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Highlights
•	 The interruption of the sequence of events used to explore a solution space and develop a 

forest plan, and the re-initiation of the search process from a high-quality, known starting 
point (reversion) seems necessary for some s-metaheuristics.

•	 When using a s-metaheuristic, higher quality forest plans may be developed when the rever-
sion interval is around six iterations of the model.

Abstract
The use of a reversion technique during the search process of s-metaheuristics has received little 
attention with respect to forest management and planning problems. Reversion involves the inter-
ruption of the sequence of events that are used to explore the solution space and the re-initiation 
of the search process from a high-quality, known starting point. We explored four reversion rates 
when applied to three different types of s-metaheuristics that have previously shown promise for 
the forest planning problem explored, threshold accepting, tabu search, and the raindrop method. 
For two of the s-metaheuristics, we also explored three types of decision choices, a change to the 
harvest timing of a single management unit (1-opt move), the swapping of two management unit’s 
harvest timing (2-opt moves), and the swapping of three management unit’s harvest timing (3-opt 
moves). One hundred independent forest plans were developed for each of the metaheuristic / 
reversion rate combinations, all beginning with randomly-generated feasible starting solutions. 
We found that (a) reversion does improve the quality of the solutions generated, and (b) the rate 
of reversion is an important factor that can affect solution quality.
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1 	 Introduction

Forests, one of nature’s most bountiful and versatile renewable resources, provide social, cultural, 
environmental, and economic benefits and services to human society. Forest managers often need 
to balance the functions that forests serve, since demands of society for forest products and other 
provisional services may at times seem to be more immediate and important than cultural, regu-
lating, or supporting services. Forest management plans are often developed as tools to promote 
transparency of management with the intent that they can be used to help manage conflicts between 
user groups and guide the timing and placement of management activities. Land use planning 
regulations in the United States (36 C.F.R. 219.4), for example, require the U.S. Forest Service to 
develop strategic management alternatives during the planning process with the participation of user 
groups. Private forest owners (companies and individuals) also often desire to examine management 
alternatives for their forests. In terms of the methods used to help develop these plans, they range 
from ad-hoc unstructured analyses of specific alternatives to the formulation and development of 
mathematical problems, solved often with linear or mixed integer programming algorithms and 
increasingly with heuristics. Constraints that are based on spatial rules are now often important for 
long-term planning (Borges et al. 2014b). As a consequence, many plans today include non-linear 
spatial relationships (e.g., Boston and Bettinger 2006).

Forest managers often require integer solutions (yes-no or 0–1 decisions) with regard to the 
potential harvest of forest stands or the development of other resources, such as roads. Two general 
methodologies, exact and heuristic, describe the approaches people have used to solve these prob-
lems (Crowe and Nelson 2003). Exact methods applied to forest-level harvest scheduling problems 
include linear programming (e.g., Borges et al. 2014a), mixed integer programming (e.g., Tóth et 
al. 2012), goal programming (e.g., Limaei et al. 2014), non-linear programming (e.g., Härtl et al. 
2013) and dynamic programming (e.g., Wei and Hoganson 2008). Linear programming has been 
used extensively for forest-level strategic and tactical planning in North America (Bettinger and 
Chung 2004), and mixed integer programming is often used when harvest adjacency constraints are 
considered. Linear programming approaches optimize an objective function subject to inequality or 
equality constraints which define a convex polyhedral set, and the optimal solution is located using 
the maximum principle for convex functions. The Simplex Method and decomposition approaches 
represent processes for transforming the matrix of coefficients so that a mathematically optimal 
solution can be identified (Liittschwager and Tcheng 1967). When necessary global optimality or 
sufficient global optimality conditions exist, global optimality can also be guaranteed when using 
non-linear programming methods (Li and Wang 2014).

Mixed-integer programming approaches often use branch and bound algorithms to solve 
discrete or combinatorial problems. Branch and bound algorithms systematically explore alter-
native solutions to a problem by computing lower and upper bounds on potential subsets of the 
problem (branches) and deciding, based on these values, to either prune (disregard) the branch or 
explore further alterations of the subset. The process continues until the set of subproblems has 
been completely explored, when the lower and upper bounds to the problem are equal, or when 
the gap between them is less than some tolerance value (McDill and Braze 2001). Goal program-
ming is very similar to linear programming, and involves the use of two or more different metrics 
(usually defined as goals, or as deviations from goals) within the objective function. Each goal 
is potentially weighted to emphasize the importance of the goals or to standardize the outcome 
values. Dynamic programming divides a problem into subproblems, each of which are solved and 
combined, with the goal of reducing the computational burden. Dynamic programming relies on 
the Principle of Optimality or a contiguity condition (when the Principle is not valid) to warrant 
that the solution generated is optimal (Galperin 2006). The advantage of these exact approaches 
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is that optimality is generally guaranteed (Nelson 2003), to the extent of the optimality tolerance 
and other parameters used within the solver that are employed (McDill and Braze 2001). The 
main disadvantage of some of these approaches is associated with the time required to generate 
the optimal solution, typically when integer decision variables are required (Fischer et al. 2014).

Heuristic procedures in general are not necessarily new, and they do not guarantee that an 
optimal solution will be obtained, yet they have been designed to locate sub-optimal solutions to a 
problem when the time or cost of locating the optimal solution is of concern (Hillier and Lieberman 
1980). Over the last two decades, the value of using metaheuristics such as simulated annealing 
(e.g., Falcão and Borges 2002; Borges et al. 2014b), tabu search, and genetic algorithms (e.g., 
Falcão and Borges 2001) in forest planning has been demonstrated. For example, Bettinger et al. 
(1997) developed a tabu search algorithm to demonstrate how two goals from a U.S. Forest Ser-
vice strategic plan, involving commodity production and wildlife habitat, could be simultaneously 
addressed. Brumelle et al. (1998) developed a tabu search algorithm to address multi-criteria forest 
optimization problems that involved the timing and placement of harvest activities, and Bettinger 
et al. (1998) presented a land management scheduling model based on tabu search for scheduling 
timber harvests in order to meet aquatic habitat quality and commodity production goals. Many 
other applications of metaheuristics to forest management issues have been explored. As examples, 
Seo et al. (2005) presented an approach to locate near-optimal silvicultural development paths for 
Norway spruce (Picea abies) stands using simulated annealing. Bettinger et al. (2007) developed 
a tabu search model to select management actions for individual forest stands to both improve 
forest health and to meet a higher-level landscape objectives. Heinonen et al. (2011) developed a 
simulated annealing model to assess wind risk and potential wind-related damage, and used this 
information to inform the development of forest plans.

Most of the early literature involving forest management problems has consisted of 
s-metaheuristics operating in 1-opt mode, where the status of a single management unit (stand or 
road) is changed and the solution is re-evaluated. Bettinger et al. (1999, 2002), Caro et al. (2003), 
and Heinonen and Pukkala (2004) illustrated how 2-opt (or more) moves (the swapping of manage-
ment action assignments between two management units) can be used to intensify a search within 
high-quality areas of a solution space and thus produce higher-valued solutions as compared to 
the use of 1-opt moves alone. These efforts involved tabu search, which proved computationally 
expensive for each move in the search process, since the 2-opt neighborhoods were much larger 
than the associated 1-opt neighborhoods (when all neighboring solutions are included in the assess-
ment); yet, the quality of the solutions improved. However, there are ways in which neighborhood 
assessments within tabu search can be implemented in a more efficient manner, for example by 
sampling from a smaller set of the total potential moves from the neighborhood or by partitioning 
the neighborhood and only assessing a small deterministic block of potential moves in a region-
limited manner (e.g., as in Bettinger et al. 2007).

The process of reversion within metaheuristics is not a new idea, yet has received relatively 
little attention in the literature. The goal of reversion is to intensify the search for the optimal solu-
tion to a problem around known high-quality local optima. The assumption is that better solutions 
can be found in this same neighborhood. The process of re-starting a search process from a saved 
local optimum is alluded to in Talbi (2009) in the description of a variable neighborhood descent 
algorithm. Randomization approaches (Glover and Laguna 1993, 1997), the identification of critical 
events within the search process, and parallel processing procedures (Glover and Laguna 1997) 
have been suggested as ways of accomplishing this within tabu search. In an improvement phase 
of an airline scheduling algorithm (Sinclair et al. 2014), reversion to the best solution stored in 
memory is embedded in a shortest-path heuristic process. In a reassignment phase of a clustering 
algorithm (Sağlam et al. 2006), reversion to a relaxed mixed-integer solution is embedded within 



4

Silva Fennica vol. 49 no. 2 article id 1232 · Bettinger et al. · Search reversion within s-metaheuristics…

a heuristic process. In other search processes, the chain of events in transforming one solution to 
another may technically very often revert to the best solution stored in memory, particularly when 
the probability of acceptance of inferior solutions decreases with search time and the search is 
designed to revert to the best solution (Cordeau and Maischberger 2012; Matusiak et al. 2014). 
However, this is not the standard case in some s-metaheuristics such as tabu search. Further, in 
some search processes that resemble Markov chains (e.g., threshold accepting), the typical trans-
formation process for creating solution j from solution i does not include a phase for re-starting 
the process or reverting to the best solution.

Comparisons of heuristic methods for application in forest management problems have been 
described in the literature as well. Boston and Bettinger (1999) compared the performance of three 
metaheuristic techniques that were commonly used to solve spatial harvest scheduling problems: 
Monte Carlo integer programming, simulated annealing, and tabu search. Borges et al. (1999) com-
pared the performance of a decomposition strategy inside dynamic programming to random search 
and to a heuristic that ranks potential choices for inclusion into the solution. Falcão and Borges 
(2002) compared the performance of three types of heuristics: simulated annealing, an evolution 
program, and a sequential quenching and tempering model to a problem with open size constraints 
and old forest patch requirements. Bettinger et al. (2002) compared the performance of eight types 
of metaheuristic techniques when applied to three increasingly difficult forest planning problems 
that had commodity production and wildlife habitat goals. Heinonen and Pukkala (2004) compared 
the performance of four metaheuristic techniques, random ascent, Hero, simulated annealing, and 
tabu search, when applied to a forest planning problem with a spatial objective. Zhu and Bettinger 
(2008a) developed three metaheuristics (threshold accepting, tabu search, and a combined heuristic) 
to assess the quality of forest plans and the time required to develop them. Each of these efforts 
provided interesting results that suggested modifications to the intensification and diversification 
aspects of a heuristic search process may be necessary in order to locate higher-quality and near-
optimal solutions. In advancing the science behind the use of metaheuristics for forest planning 
problems, Pukkala and Heinonen (2006) presented a method for improving the search process of 
parameters chosen for three metaheuristic techniques, simulated annealing, threshold accepting, 
and tabu search. Furthermore, Richards and Gunn (2000) described the value of using a strategic 
oscillation process to diversify the search for near-optimal solutions.

The contribution of this paper is to illustrate the refinement of two standard metaheuristic 
methods (tabu search and threshold accepting) with the use of alternative reversion rates, to com-
pare outcomes to a metaheuristic that requires reversion (raindrop method), and to describe the 
effect of reversion on the quality of forest management plans that are subsequently developed.

2 	 Materials and methods

The methodology associated with this research will be described in this order: a description of the 
hypothetical forest for which a forest plan is desired, a description of the forest planning problem 
formulation, a description of the metaheuristic search processes, and a description of the instances 
for which sets of solutions are generated. Finally, a short description of the statistical tests that are 
used to determine whether significant differences exist in the sets of solutions that were generated 
is presented as well as a short description of the computer resources employed.

2.1 	Hypothetical forest to which the models are applied

The study area is a 1841 hectare forest that is divided into 87 management units (Fig. 1). It is 
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located in western Oregon (USA), and owned mainly by the State of Oregon. The land area is real, 
and the stands were delineated by a forester using aerial photography, a topographic map, and a 
road map. The initial inventory (timber volume) and the age of each stand was however estimated; 
therefore, the forest is considered hypothetical. Volumes are originally expressed as thousand 
board feet (MBF) per unit area, yet for this presentation are converted to cubic meters (m3). The 
age class distribution of the forest is illustrated in Fig. 2, and represents a fairly regulated type 
of forest with the exception of a large area of 11–20 year-old forests. The target harvest volume 
for each 5-year time period was assumed to be 32 918.33 m3, which was selected because it was 
nearly one-half of the volume produced from a relaxed linear programming model (i.e., a model 
that lacked harvest adjacency constraints and allowed non-integer decisions), and was slightly 
lower than the sustainable harvest level calculated using the Hanzlik formula (Hanzlik 1922), 
which assumed a desired 50-year final harvest age. Adjacent stands are defined for the purpose 
of this research as those that physically share an edge. Thus, there are 210 unique, non-redundant 
adjacency relationships within this dataset.

2.2 	Forest planning problem formulation

In order to demonstrate the effects of using alternative reversion rates on the quality of devel-
oped management plans, a single, realistic forest management planning problem for the land was 

Fig. 1. A map illustrating the layout of stands within the Lincoln Tract in western Oregon (USA).
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developed. The length of the planning horizon is 30 years. There are six time periods, and each 
five years in length. The objective function was developed to minimize the squared deviations in 
the scheduled timber harvest volumes from a target volume:

H TMin (1)t t
t

2

1

6

∑( )−
=

where
t	 =	a time period
Ht	=	the total scheduled timber harvest volume during time period t
Tt	 =	the target harvest volume per time period

This is an even-flow (of harvest volume) objective, which seeks to locate the solution that has the 
closest scheduled harvest volumes in each time period to the target that was selected. A steady flow 
of harvest volume over time is often recognized as important to forest products industries to ensure 
full utilization of equipment and labor (Martins et al. 2014). Given the structure of equation 1, the 
objective function units in this work are therefore (m3)2. To accumulate scheduled harvest volumes, 
accounting rows were used to acquire the scheduled harvest volume during each time period:

x v H t0 (2)it it t
i

n

1
∑( )− = ∀
=

where
i	 =	a management unit (stand)
n	 =	the total number of management units
xit	 =	a binary decision variable representing whether (1) or not (0) management unit i is scheduled 

for harvest during time period t
vit	 =	the volume available for harvest within management unit i during time period t

Resource constraints were included in the problem formulation to prevent each stand from being 
harvested more than once during the 30-year time horizon:

Fig. 2. The age class distribution of the hypothetical dataset.
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x i1 (3)it
t 1

6

∑ ≤ ∀
=

If the mean age associated with a stand of trees (i) was equal to or above the assumed minimum 
harvest age (30 years), xit ∈{0,1}, otherwise xit = 0. We acknowledge that the minimum harvest 
age and the desired future harvest age are different in this problem. Unit restriction adjacency con-
straints (Murray 1999) were employed, where stands that share an edge (side) cannot be harvested 
during the same time period:

x x t i j N1 , , { } (4)it jt i+ ≤ ∀ ∈

where
j	 =	a management unit (stand)
Ni	=	the set of all management units (stands) that share an edge with management unit i

There are various ways in which forest harvest adjacency constraints can be formulated. The unit 
restriction problem is easier to formulate and to generally solve than the area restriction model (Tóth 
et al. 2012). For this work, we are using pairwise adjacency constraints, which have been shown to 
perform better in forest planning problems containing overmature and old-growth forests (McDill 
and Braze 2001). However, Type I non-dominated constraints may be able to shorten solution 
generation times when solving problems in mixed integer programming format, maximal clique 
unit restriction adjacency constraints have performed better than pairwise constraints in old-growth 
forest situations, and new ordinary adjacency matrices may perform better in forest planning prob-
lems involving immature forests (McDill and Braze 2000; Manning and McDill 2012). Recently, 
Manning and McDill (2012) examined two types of adjacency constraints for the unit restriction 
adjacency problem (pairwise and maximal clique) in an effort to gauge what the optimal parameter 
settings might be for mixed integer branch and bound solvers. Mean solution times were generally 
equal to or less when using the pairwise constraints on immature, regulated, and mature forest 
problems. They also found that an optimal parameter set can generally reduce the time required 
to solve a problem such as ours, but the time required to determine the optimal parameter set may 
be extensive (over one day), in general. They further noted that the optimal set of parameters may 
be specific to each problem being solved, and thus the investment in the parameter tuning process 
may only be worthwhile if similar problems are to be solved multiple times. Others (e.g., Martins 
et al. 2005; Goycoolea et al. 2005; Constantino et al. 2008) have applied pairwise, maximal cliques 
or other types of constraint formulations to the area restriction model of adjacency and clusters 
or blocked regions of stands. Our example forest problems are composed of a relatively uniform 
distribution of age classes (neither immature nor over-mature); therefore, they were formulated 
using a pairwise adjacency constraints. The use of a parameter tuning tool (not employed here) has 
also been shown to shorten solution generation times (Manning and McDill 2012).

This problem was solved initially using the default parameter settings of the non-linear solver 
within Lingo 14.0 (Lindo Systems 2013). Since the decision variables were related to the harvest of 
stands, and since a minimum harvest age was assumed, the problem was reduced to a set of logical 
variables and irrelevant constraints were removed. The problem thus consisted of 450 variables, 
349 of which were integer, and 892 constraints, 12 of which were non-linear. During initial trials 
using the default parameters within Lingo, it was observed that the global optimum solution could 
not be located in eight days of processing on a personal computer with a 1.80 GHz Intel® Xeon® 
E5-2603 processor and 4 Gb of RAM. Therefore, a few parameter settings were adjusted in an 
effort to decrease the computing time required to solve the problem. The global solver within Lingo 
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was enabled to overcome some of the weaknesses in the default non-linear solver through range 
bounding and range reduction procedures. With respect to the non-linear solver, the non-linear 
optimality tolerance was set first to the default (0.0000001), then to 0.02 and 0.05. With respect 
to the integer solver, the relative optimality tolerance was set first to the default (0.00001), then to 
0.02 and 0.05 when the respective non-linear optimality tolerances were changed. The run-time 
limit for these three attempts at solving the problem was 86 400 seconds (one day).

A very similar problem to this was also solved using mixed integer goal programming, where 
one adjustment was made to the objective function:

H TMin (5)t t
t 1

6

∑( )−
=

Through experience we have learned that within a metaheuristic process the squaring of the 
deviations helps the search process better discern between two solutions that have the same sum 
of deviations (as in equation 5), yet where one is superior due to its ability to represent a more 
even distribution of the scheduled harvest volumes over the time periods of the planning horizon. 
Within mixed integer goal programming, this did not seem to be the case. The planning problem 
was formulated using integer programming techniques and solved using LINGO 14.0 (Lindo 
Systems, Inc. 2013). Parameter settings within Lingo were adjusted, as described earlier with the 
non-linear formulation, and with respect to the integer solver, the relative optimality tolerance was 
set first to the default (0.00001), and then changed to 0.02 and 0.05. The run-time limit was again 
86 400 seconds (one day).

While our problem seems trivial to solve, a smaller but similar problem, where mixed integer 
programming was compared against simulated annealing without reversion, was recently reported 
by Gomide et al. (2013) where they indicated a computing time of about 0.25 to 38 hours might 
be required for solving the problem formulated with mixed integer programming.

2.3 	Metaheuristic search processes

Three different metaheuristic search processes are used to illustrate the effects of reversion on 
final solution quality. Given that different sets of n-opt decision choices are also employed, the 
metaheuristic techniques we examined were:

1. Tabu search with 1-opt moves
2. Tabu search with 1-opt and 2-opt moves
3. Tabu search with 1-opt, 2-opt, and 3-opt moves
4. Threshold accepting with 1-opt moves
5. Threshold accepting with 1-opt, and 2-opt moves
6. Threshold accepting with 1-opt, 2-opt and 3-opt moves
7. Raindrop method

Each of these techniques uses the following general local search process (for minimization prob-
lems):

s0 ← initial solution()
s* ← ŝ ← s0
while termination() do
	 s' ← perturb(ŝ)
	 if accept(s') then
		  ŝ ← s'
		  count = count + 1
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	 end if
	 if f(ŝ) < f(s*) then
		  s* ← ŝ
	 end if
	 if count mod reversion interval = 0 then
		  ŝ ← s*
	 end if
end while
return s*

where
s0	=	the initial feasible solution generated
ŝ	 =	the current feasible solution
s'	 =	a proposed new feasible solution
s*	=	the best feasible solution

Within each iteration of tabu search and the raindrop method, a candidate move (s') is always 
accepted, and it alters the current solution. In threshold accepting, the proposed candidate may 
not always be acceptable. Therefore, in the general search process that we provided, the “counter” 
simply counts acceptable choices made. At some point, depending on the state of the counter, the 
reversion process occurs. For example, if the reversion interval is 5 acceptable iterations, then after 
iterations 5, 10, 15, etc. (count mod reversion interval), reversion occurs.

Tabu search is a local search algorithm that was initially developed by Glover (1989, 1990), 
and has been applied to numerous types of problems, including telecommunications, machine 
scheduling, and forest management and planning problems not previously mentioned (e.g., Murray 
and Church 1995). In most cases in forest planning, tabu search has been employed with a 1-opt 
search process, where a new forest plan is created by changing the status (timing of harvest, choice 
of management regime, etc.) of one forest management unit. Changes made (moves) are consid-
ered off-limit (taboo) for a certain number of iterations of the search, unless aspiration criteria are 
employed. Aspiration criteria allow the selection of a previously disallowed (taboo) move when 
the resulting solution is deemed better than any other previously-examined solution. Typically, 
short-term memory is employed to understand how recent each choice was made and the point at 
which the tabu status of that choice ends. Longer-term memory can be employed to diversify the 
search and require the selection of seldom-selected choices. As mentioned, enhancements of tabu 
search can include the use of a 2-opt search strategy to switch the timing of harvest (or choice of 
management regime) of two different stands of trees. This process results in a smaller change to 
the objective function, and can produce plans that might not otherwise be located using similar 
consecutive 1-opt choices (Bettinger 2008). 3-opt (and greater) moves have been suggested for 
use in forest planning problems (Bettinger et al. 1999), but due to the amount of time and effort 
required to build a 3-opt tabu search neighborhood, their use has not been sufficiently explored; 
as we noted earlier, this really depends on whether the total potential neighborhood is sampled or 
is partitioned.

Threshold accepting is local search algorithm that was introduced by Dueck and Scheuer 
(1990). Threshold accepting typically employs 1-opt moves to examine a single randomly-selected 
change to a current solution, and an acceptance rule that allows inferior solutions to be created as 
long as the decline in objective function value is within a threshold (using objective function value 
metrics) of the current or best solution saved in memory. It is similar to simulated annealing, yet 
with threshold accepting the acceptance rule (and its rate of change) is typically deterministic, rather 
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than stochastic. The behavior of the algorithm can be modeled as a Markov chain, as the sequence 
of transformations from solution i to solution j has a non-zero probability and only depends on i 
and j, thus theoretically transition probabilities could be developed for all possible transitions in 
the search process. Threshold accepting has previously been used in forest management planning 
(Pukkala and Heinonen 2006; Heinonen et al. 2007; Bettinger and Boston 2008; Zhu and Bettinger 
2008a, 2008b) with application to the development of spatially-constrained forest plans.

The raindrop method was initially developed by Bettinger and Zhu (2006) for specific 
application to forest management and planning problems that have harvest adjacency constraints. 
Adjacency constraints prevent the harvest of adjacent stands on the landscape for a minimum 
specified period. Application of the method to other types of problems has provided inferior results 
(Potter et al. 2009). During the course of a single iteration of the model, a random change is forced 
into the current solution (a change is made to the status of a forest stand). The infeasibilities are 
located and the associated forest stands are noted. The stand that is nearest in proximity to the 
stand associated with this random change is selected (based on the planar, straight-line distance 
associated with the center of each stand). The infeasibility related to the selected stand is mitigated 
by deterministically choosing the next best option (e.g., harvest timing) that does not result in 
an infeasibility with stands located closer to the original randomly-chosen stand nor the original 
randomly-chosen stand. However, as changes are made, other infeasibilities may arise in associa-
tion with stands that are located further away from the original stand selected; these changes and 
their associated infeasibilities are allowed. The process continues by mitigating the infeasibilities 
associated with the next-closest stand to the original stand, and so on. The process of mitigating 
infeasibilities radiates outward from the original randomly-chosen stand until there are no more 
infeasibilities. At that point, one iteration of the model has concluded, and another begins with the 
random selection of stand and the forceful change of its status. Bettinger and Zhu (2006) concluded 
that for the type of problem presented here the raindrop method produces superior solutions to 
other basic s-metaheuristics. However, they also noted that the process of reversion was required 
every 4 to 5 iterations of the search process. Expansion of this work to a problem that had both 
wood-flow and area restriction adjacency constraints illustrated a few disadvantages, such as the 
amount of time required to solve different problems (Zhu et al. 2007).

The sequence of events that are used to transition from one state of the system within the 
search process to another state does not technically meet the formal definition of a Markov chain 
process within two of these heuristics. A random process for mapping the transition of states is 
not used within tabu search, and only a partial random process is used within the raindrop method. 
Transition probabilities are also not employed in any of the three metaheuristics, therefore no prob-
ability distribution is developed to assist in the location of the future state of the system. The future 
state is determined deterministically or in purely random fashion, depending on the metaheuristic. 
In this research, we are evaluating the use of a reversion process to interrupt the sequence of events 
that are used to explore the solution space. Re-initiation of the search process then begins from a 
high-quality, known starting point.

2.4 	Instances for which forest plans are developed

For tabu search and threshold accepting, three different sets of move processes (1-opt; 1-opt and 
2-opt; 1-opt, 2-opt and 3-opt) were utilized. Four reversion interval (0, 3, 6 and 9 iterations) were 
used for each of these methods, based on the conclusions from Bettinger and Zhu (2006) that 
indicated a reversion rate of 4 or 5 seemed best for the raindrop method. Another way to envision 
these is that 0 is the lowest rate of reversion (no reversion), and 3 is the highest rate of reversion 
(every third iteration). While we use the terms (0, 3, 6 and 9 iterations), they could alternatively 
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be viewed as none, 1/3, 1/6, and 1/9. A standard set of 1 million iterations were performed when 
using the tabu search and raindrop methods. Given the parameters described in Table 1, theoreti-
cally 1 million feasible iterations would be performed with threshold accepting as well, although 
if a sufficient number of unsuccessful (infeasible) moves were attempted, the metaheuristic would 
terminate prior to the completion of 1 million iterations. Tracking the unsuccessful iterations and 
forcing the threshold to change allowed the algorithm to complete its work; otherwise, without 
this, the threshold accepting algorithm would run for a long period of time when the threshold 
became relatively small. A sufficient number of unsuccessful iterations were allowed, as determined 
through trial runs of the models, to prevent what seemed to be pre-mature termination of the search 
process (if too small) and waste (if too large). In Table 2, we describe the parameters that represent 
the tabu search application. The tabu state was randomly selected between 0 and 200 iterations 
with each move made during the search process. Through trial runs of the model, we found this 
to be a better tactic to employ than a simple fixed tabu state. The raindrop method was run for 1 
million iterations and 0, 3, 6, and 9 iteration reversion intervals were applied. As we noted earlier, 
reversion is required with the raindrop method, therefore a reversion interval of 0 (no reversion) 
was attempted only to illustrate why it is required.

One hundred feasible solutions for each of the 28 metaheuristic processes were generated, 
each from a random feasible starting solution. Therefore, a total of 2800 solutions (forest plans) 
were generated in order to examine the effect of the reversion intervals on the results.

2.5 	Statistical tests employed

A Mann-Whitney U test and Tamhane’s T2 test were both employed to test the null hypothesis 
that two different processes produced the same quality samples. Tamhane’s T2 test is the more 
conservative of the two, yet if the variances of the sets of objective function values are very differ-
ent, it may allow one to guard against an inflated Type I error. Therefore, it helps us guard against 
incorrect rejection of the null hypothesis, or in other words the detection of significant effects that 
really do not exist. In our case, ideally both tests would suggest the same outcome when compar-
ing the means of two different sets of data (objective function values).

Table 1. Threshold accepting instances.

Initial  
threshold

Iterations 
per 

threshold

Threshold 
change

Unsuccessful 
iterations 

per threshold

Reversion 
interval 

 (iterations)a)

1-opt 
moves  

iterationsb) 

2-opt 
moves  

iterationsc)

3-opt 
moves 

iterationsd)

10 000 000 10 100 2000 0 ALL
10 000 000 10 100 2000 3 ALL
10 000 000 10 100 2000 6 ALL
10 000 000 10 100 2000 9 ALL
10 000 000 10 100 2000 0 100 10
10 000 000 10 100 2000 3 100 10
10 000 000 10 100 2000 6 100 10
10 000 000 10 100 2000 9 100 10
10 000 000 10 100 2000 0 100 10 3
10 000 000 10 100 2000 3 100 10 3
10 000 000 10 100 2000 6 100 10 3
10 000 000 10 100 2000 9 100 10 3

a) Reversion intervals: 0 = none, 3 = 1/3, 6 = 1/6, and 9 = 1/9
b) If 2-opt or 3-opt iterations are employed, 1-opt iterations are employed at the end of each of these sets
c) 2-opt iterations are employed immediately after each set of 100 1-opt iterations
d) 3-opt iterations are employed immediately after each set of 10 2-opt iterations
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Each of the metaheuristics was developed within the HATT environment (Bettinger 2005). 
HATT 2.0 was developed within Visual Basic 2012, and a personal computer with a 2.50 GHz 
Intel® Xeon® E5-2609 processor and 8 Gb of RAM was used.

3 	 Results

The best forest plan that was developed, with respect to the objective noted above, was generated 
using 1-opt and 2-opt tabu search with a reversion interval of 6 iterations (Table 3). The value of 
this solution was 0.078, and therefore the scheduled timber harvest volumes for each time period 
were nearly exactly what were desired. For comparison purposes, the best solution generated 
using non-linear mixed integer programming methods had a value of 4.80 when the non-linear and 
integer optimality tolerances were set to 0.05 and the solution generation process was interrupted 
after one day (84 600 seconds). The solutions values were 9.31 and 15.08 when the optimality 
tolerances were 0.02 and default levels, respectively. The best mixed integer goal programming 
solution was 20.71 using the default optimality tolerances. Undaunted by these results, we allowed 
the Lingo solver (using default parameters) to run for over 2.1 billion iterations using the mixed 
integer goal programming formulation, and after interrupting the process the best solution gener-
ated had a value of 2.31 when the deviations in target volumes (the outcomes) were squared in a 
post-process manner.

The second and third best metaheuristic solutions were generated using 1-opt and 2-opt 
tabu search with a reversion interval of 9 iterations and 1-opt, 2-opt and 3-opt tabu search with 
reversion interval of 9 iterations, respectively. The values of second and third best solutions were, 
respectively 0.150 and 0.262. While these were not quite as good as the best solution generated 
using 1-opt and 2-opt tabu search with a reversion interval of 6 iterations, the sets of 100 solutions 
generated were not significantly different when evaluated with the Mann-Whitney U test (p = 0.187 
and p = 0.141, respectively) and Tamhane’s T2 test (p = 1.000) from those generated using 1-opt 
and 2-opt tabu search with a reversion interval of 6 iterations.

Table 2. Tabu search instances.

Number of 
iterations

Reversion 
interval 

(iterations)a)

1-opt 
moves  

iterationsb) 

2-opt 
moves  

iterationsc)

3-opt 
moves 

iterationsd)

1 000 000 0 ALL
1 000 000 3 ALL
1 000 000 6 ALL
1 000 000 9 ALL
1 000 000 0 100 10
1 000 000 3 100 10
1 000 000 6 100 10
1 000 000 9 100 10
1 000 000 0 100 10 3
1 000 000 3 100 10 3
1 000 000 6 100 10 3
1 000 000 9 100 10 3

a) Reversion intervals: 0 = none, 3 = 1/3, 6 = 1/6, and 9 = 1/9
b) If 2-opt or 3-opt iterations are employed, 1-opt iterations are employed at the end of each of these sets
c) 2-opt iterations are employed immediately after each set of 100 1-opt iterations
d) 3-opt iterations are employed immediately after each set of 10 2-opt iterations
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Table 3. Results of the s-metaheuristic search processes when applied to the forest management problem.

Search 
process

Reversion 
interval 

(iterations)

Minimum (best) 
solution value 

(m3)2 

Maximum (worst) 
solution value 

(m3)2 

Average 
solution value 

(m3)2 

Standard 
deviation of  

solution values 
(m3)2

Average time 
required 

(seconds)

RD 0 74 894 37 996 939 3 620 631 6 199 511 37.2
RD 3 768 47 142 10 285 8397 39.3
RD 6 858 34 429 7656 6704 35.7
RD 9 980 32 937 10 424 7690 40.7
TA1 0 7462 18 287 902 386 149 2 072 861 15.5
TA1 3 1119 326 233 23 120 37 113 13.2
TA1 6 1932 98 510 19 328 17 162 14.3
TA1 9 1270 360 189 22 140 37 102 17.4
TA12 0 13 130 136 130 62 917 26 155 17.1
TA12 3 200 21 577 4026 4271 14.7
TA12 6 323 29 963 6153 5457 18.5
TA12 9 991 28 465 6994 5591 18.4
TA123 0 9923 330 688 68 858 39 769 29.2
TA123 3 173 34 262 5000 5463 21.1
TA123 6 329 41 796 7590 6688 24.8
TA123 9 217 61 753 9032 8971 25.7
TS1 0 969 517 278 20 692 63 162 98.6
TS1 3 217 1 959 049 73 424 323 694 106.0
TS1 6 7.406 2 205 650 33 171 238 905 102.0
TS1 9 19.612 11 248 1158 2077 112.3
TS12 0 27.029 674 329 139 212.0
TS12 3 3.625 4082 206 496 218.1
TS12 6 0.078 746 42 111 222.3
TS12 9 0.150 440 24 56 225.5
TS123 0 23.057 690 323 145 2219.1
TS123 3 2.979 5273 223 596 2137.1
TS123 6 0.395 462 38 78 2249.5
TS123 9 0.262 251 24 50 2102.4

(m3)2 = Cubic meters of harvest volume squared, the objective function unit value
RD = Raindrop method
TA1 = Threshold accepting with 1-opt moves only
TA12 = Threshold accepting with 1-opt and 2-opt moves
TA123 = Threshold accepting with 1-opt, 2-opt and 3-opt moves
TS1 = Tabu search with 1-opt moves only
TS12 = Tabu search with 1-opt and 2-opt moves
TS123 = Tabu search with 1-opt, 2-opt and 3-opt moves
Reversion intervals: 0 = none, 3 = 1/3, 6 = 1/6, and 9 = 1/9

The worst forest plan developed was generated using the raindrop method with a reversion 
interval of 0 iterations; however, we noted earlier that the raindrop method does not work well 
without a reversion process, which was illustrated in the original raindrop method paper (Bettinger 
and Zhu 2006). Ignoring this method (raindrop method, reversion interval of 0 iterations), one 
solution generated by 1-opt threshold accepting with a reversion interval of 0 iterations was clearly 
very poor, and 3–6% of the solutions generated using 1-opt tabu search (with a reversion interval 
between 0 and 6 iterations) had objective function values greater than 23 500. The worst result 
generated by the 1-opt, 2-opt and 3-opt tabu search process with reversion interval of 9 iterations 
was far better than the best results generated by raindrop method, 1-opt threshold accepting, and 
other threshold accepting processes with a reversion interval of 0 iterations. In general, regard-
less of the combination n-opt choices, the worst solutions generated by tabu search improved as 
the reversion interval increased (reversion rate decreased). This suggests that reversion may be 
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necessary for this metaheuristic, and the search process performed better when it was allowed to 
explore the solution space longer between reversion points.

There are a number of ways to compare algorithm results, and a statistical analysis of sig-
nificant differences between mean results is important. We used a random starting point (feasible 
solution) for each run of each instance of the s-metaheuristics; and thus the assumption was that 
the best solution from each run could be viewed as a random variable (Golden and Alt 1979; Los 
and Lardinois 1982). An initial test among the 28 heuristics employed showed that there was a dif-
ference among the mean solution values. However, only the raindrop algorithm with no reversion 
produced a set of solutions that were significantly different (p ≤ 0.05 using both statistical tests) in 
mean solution values than all other algorithms. All of the tabu search algorithms produced signifi-
cantly different mean solution values (p ≤ 0.05 using both statistical tests) than the raindrop and 
threshold accepting algorithms except for 1-opt threshold accepting with no reversion. This was 
due to the large variance among the 100 samples using 1-opt threshold accepting with no reversion, 
and thus Tamhane’s T2 test was unable to distinguish a difference among the sets of solution values. 
Most of the threshold accepting mean solution values were not significantly different (p > 0.05) than 
the results from the raindrop algorithm, except for the 1-opt and 2-opt threshold accepting with a 
reversion interval of 9 iterations and 1-opt, 2-opt, and 3-opt threshold accepting with a reversion 
interval of either 6 or 9 iterations.

The best mean solution was generated by the 1-opt, 2-opt and 3-opt tabu search process 
that used a reversion interval of 9 iterations, yet the 1-opt and 2-opt tabu search process that used 
a reversion interval of 9 iterations had nearly an equal mean solution value. These two processes 
also produced a sets of solution values that had the smallest variation, and the set of solutions 
generated were not significantly different (p = 0.826 using the Mann-Whitney U test, and p = 1.000 
using Tamhane’s T2 test). The standard deviation value of these two processes (50.11 and 55.68 
(m3)2), is about half or less of the standard deviation value (111.37 (m3)2) of the 1-opt and 2-opt 
tabu search process with a reversion interval of 6 iterations (the process that produced the very 
best solution). When simply examining the tabu search results, regardless of the combination 
n-opt choices, the variation in solutions generated declined as the reversion interval increased. 
When examining the 1-opt, 2-opt and 3-opt tabu search results using the Mann-Whitney U test, 
(a) the solutions generated using a reversion interval of 9 were significantly different (p ≤ 0.05) 
than those using a reversion interval of 6; (b) the solutions generated using a reversion interval 
of 6 were significantly different (p ≤ 0.05) than those using a reversion interval of 3; and (c) the 
solutions generated using a reversion interval of 3 were significantly different (p ≤ 0.05) than 
those using a reversion interval of 0. However, Tamhane’s T2 test only suggested a significant 
difference (p ≤ 0.05) in the latter case (c). When examining the 1-opt and 2-opt tabu search results 
using the Mann-Whitney U test, (a) the solutions generated using a reversion interval of 6 were 
significantly different (p ≤ 0.05) than those using a reversion interval of 3; and (b) the solutions 
generated using a reversion interval of 3 were significantly different (p ≤ 0.05) than those using a 
reversion interval of 0. However, Tamhane’s T2 test suggested no significant differences existed 
(p > 0.05) for these sets of data. Using both statistical tests, the 1-opt and 2-opt tabu search solu-
tions generated using reversion interval of 6 or 9 were not significantly different (p = 0.187 using 
the Mann-Whitney U test, p = 0.407 using Tamhane’s T2 test). These results tend to suggest again 
that reversion was necessary, and the search process performed better when it was allowed to 
explore the solution space around 6 iterations between reversion points. With threshold accept-
ing and the raindrop method, the variation in solution values was lower with shorter reversion 
intervals.

When comparing the results regarding average software processing times, threshold accept-
ing produced solutions in 13 to 26 seconds, which was nearly half the time required for a raindrop 



15

Silva Fennica vol. 49 no. 2 article id 1232 · Bettinger et al. · Search reversion within s-metaheuristics…

method solution to be generated, and at least four times as fast as 1-opt tabu search regardless of 
reversion interval. As expected, 1-opt and 2-opt tabu search was about half as fast as 1-opt tabu 
search, and 1-opt, 2-opt and 3-opt tabu search was about 20 times slower than 1-opt tabu search 
regardless of reversion interval. The 1-opt and 2-opt tabu search processes, with reversion intervals 
of 6 or 9 iterations, generated the better solutions in an average time of about 222 to 225 seconds 
(about 3.7 minutes). The 1-opt, 2-opt and 3-opt tabu search process with a reversion interval of 
9 iterations, which produced the third best solution, required on average about 35 minutes to 
generate a solution. The reversion intervals seemed to have no impact on the software processing 
speed. It was apparent that the software processed faster while using the raindrop method and 
threshold accepting metaheuristics simply due to the characteristics of the search processes (i.e., 
no neighborhood to assess, as in tabu search). We chose a set of 1-opt, 2-opt and 3-opt choices 
(Table 2) for tabu search that, if changed, could have a significant effect on software processing 
speed. For example, increasing the number or frequency (by reducing the number of 1-opt or 2-opt 
moves) would increase the software processing time due to the need to generate and assess the 
3-opt neighborhood more often.

4 	 Discussion

A reversion process is not a standard aspect of either tabu search nor of threshold accepting pro-
cesses, although it has been suggested (by Glover and Laguna 1993, 1997) for use in tabu search. 
The effect of the reversion interval on the results of the tabu search processes is apparent, as is 
the need to use more than 1-opt moves within both threshold accepting and tabu search. However, 
with the 1-opt moves alone, the resulting solutions were better and more consistent for tabu search 
when the reversion interval was 9 iterations. Unfortunately, with 1-opt moves alone and reversion 
intervals of 3 or 6 iterations, 3–6% of the time the resulting solution was very poor. It seems as if 
the search could not extract itself from the local optimum, and continuously reverted to that place 
in the solution space, even though the tabu state was randomly defined between 0 and 200 itera-
tions with each choice made. For threshold accepting, reversion always led to higher quality sets of 
solutions than when reversion was not employed. For the raindrop method, as we have mentioned, 
reversion is necessary (Bettinger and Zhu 2006).

The reversion process is, in effect, an intensification of the search through the solution space. 
The success of the intensified search around high-quality solutions was facilitated by the stochastic 
nature of move selection within threshold accepting, and the stochastic duration of the tabu state 
we employed within tabu search. The ability to randomly release from tabu status prevented tabu 
search from cycling through a small set of common solutions. With standard tabu search, and with 
the use of a fixed tabu state, this likely would have happened when reversion was applied. There-
fore, the stochastic selection of tabu states from values within a pre-defined range facilitated the 
exploration of different solutions within and around high-quality areas of the solution space when 
the re-starting point was common and used frequently.

With respect to the amount of effort required to employ a reversion process within a 
s-metaheuristic, the additional amount of code and logic, at least in this case, amounted to twelve 
lines of Visual Basic code and two objects on the Visual Basic graphical user interface. One line 
of code was used to access the reversion interval from the graphical user interface and ten lines 
of code were developed to determine (a) whether a reversion interval other than 0 was specified, 
(b) whether it was time to revert, based on the number of search process iterations, (c) to change 
the current harvest schedule to the best schedule saved in memory, and (d) to change the total cur-
rent scheduled volumes to the best scheduled volumes saved in memory. An additional five lines 
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of Visual Basic code were necessary to instruct the program to change the value of the reversion 
interval when a user changed the value on the graphical user interface.

While our analysis of the effects of reversion on s-metaheuristics was limited to one case 
study and a small set of search parameters, the results are compelling enough to suggest that this 
process would be a valuable addition for s-metaheuristics where it is normally or typically not 
employed. Certainly, we could have examined the effects of reversion on other metaheuristic pro-
cesses, on other forestry problems (or problems of other fields), or in conjunction with other sets 
of search parameters. Each metaheuristic has a general behavior (stochastic, deterministic, or both 
in the case of the raindrop method) with regard to how it explores the solution space in search of 
the optimal solution to a problem. Li et al. (2009), without investigating reversion, illustrated the 
promise of combining the search behavior of the metaheuristic processes used here (tabu search, 
threshold accepting, raindrop method). From this previous work it was suggested that a relatively 
fast heuristic (e.g., threshold accepting) might be used to transition from a random starting point 
to a very good solution, before another process (tabu search, raindrop method) is used to refine 
the solution. Further work might thus explore the use of n-opt moves, reversion, and the combined 
behavior of the s-metaheuristics.

5 	 Conclusions

A reversion process was incorporated into two s-metaheuristics (tabu search and threshold accept-
ing). The process was based simply on the amount of time (as represented by search process itera-
tions) that had passed during the search for the optimal solution to a forest planning problem. The 
reversion process involved re-starting a metaheuristic from a known, high-valued local optima, the 
best solution (s*) stored in memory at the time the reversion was employed. This intensification 
of the search process was facilitated by the stochastic nature of move selection within threshold 
accepting and the stochastic selection of tabu states within tabu search. In addition, n-opt move 
combinations were incorporated within tabu search and threshold accepting. As others have found, 
the use of 2-opt and 3-opt moves can improve the solutions generated with s-metaheuristics. We 
have also demonstrated the value of periodically reverting to the best solution stored in memory. 
The results suggested that reversion may be a necessary aspect within tabu search and threshold 
accepting, and that the search processes performed better when they were allowed to explore the 
solution space for around 6 iterations between reversion points.
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