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Constrained Instance Clustering in Multi-Instance Multi-Label Learning

Yuanli Pef, Xiaoli Z. Fern
School of Electrical Engineering and Computer Science, Oregon Sate University, Corvallis, OR 97331, USA

Abstract

In multi-instance multi-label (MIML) learning, datasetseagiven in the form of bags, each of which contains multiplgtances
and is associated with multiple labels. This paper considenovel instance clustering problem in MIML learning, whéne
bag labels are used as background knowledge to help grotgmaes into clusters. The goal is to recover the class laeis
find the subclasses within each class. Prior work on com$tbaised clustering focuses on pairwise constraints anchoafully
utilize the bag-level label information. We propose to etethe bag-label knowledge into soft bag constraints thateaeasily
incorporated into any optimization based clustering athor. As a specific example, we demonstrate how the bag @ntsrcan
be incorporated into a popular spectral clustering algoritEmpirical results on both synthetic and real-world sets show that
the proposed method achieves promising performance ceapaistate-of-the-art methods that use pairwise congdrain
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1. Introduction interested in finding such distinct modes within each spelnye
applying clustering techniques to instances. ldeally weldo
o X =~ perform clustering on instances of the same species to learn
.[23] h?S been succegs_fully applied in a variety of app"'_mﬁ' such modes. However, this is impractical because the labels
including computer vision [5, 15, 21] and audio analysis|{14 are only provided at the bag level and we do not have accurate
In MIML, datasets are given in the form of bags and each bagnstance-level species labels. Therefore, we cast thislgmo

contains multiple instances. I.t is assumed that theresedist o .1 instance clustering problem with bag-level classdaim
class structure such that each instance in the bag belong®to side information

of the classes. However, the instance class labels arereotlgli

observed. Instead, the class labels are only provided dtabe Existing literature on clustering with side informatiornrpar-
level, which is the union of all instance labels within theya ily focuses on pairwise Must-Link (ML) and Cannot-Link (CL)
The goal of MIML learning is then to build a classifier to predi ~ constraints [6-8, 12, 13, 17, 19]. Note that one could poten-

the labels for an unseen bag [22, 23] or to annotate the ldbel ¢i@lly generate ML and CL constraints based on the bag-level
each instance within the bag [1]. labels, but they incorporate only limited information fottMWL

In this paper, we consider a novel instance clustering probdatasets (as will be discussed in Sec.4.3) and aréfiigative for

instances from all bags into clusters. In particular, wekgee —annotation [1, 16, 21], where an instance classifier is
find a cluster structure that corresponds to or refines trat-exi from MIML data that predicts the class label of each instance

ing class structure. That is, we assume that each classitenta The key diference between MIML instance annotation and our

one or more subclasses and our goal is to find such subclass#8rk is that we are interested in finding the refinement ofsclas

via clustering. In our motivating application, we want taden- ~ Structure for the instances, whereas instance annotatigria

stand the structure of bird song within each species. Heegja b Cuses on recovering the class labels of instances baseteon t

corresponds to the spectrogram of a 10-second field regprdirPag-level labels.

of multiple birds, and each instance corresponds to a segmen |n this paper, we propose to incorporate the bag-level side

in the spectrogram capturing a single bird utterance (als).  information in the form otag constraints. Our approach de-

The labels of a bag are the set of species (one or more) presefiies two similarity measures between bags basedass |a-

in the recording. Birds from a single species may vocalize inpels andcluster labels respectively. By requiring the two simi-

different modes. For instance, the sound made by a WOOdpeCkﬁlﬁties to order pairs of bags Consistenﬂy, we encode|bﬂg-

has at least two distinct modes: pecking and calling. We argabel knowledge into soft constraints, which can be easitpi-

porated into traditional clustering objectives as a pgniaitm.

In particularly, we incorporate such constraints into aijap
Ermei o s spectral clustering algorithm and validate théeetiveness of

mail addresses: peiy@eecs.oregonstate.edu (Yuanli Pei), . .

xfernQeecs . oregonstate. edu (Xiaoli Z. Fern) the resulting method on both synthetic and real-world dsdsas
URL: http://web.engr.oregonstate.edu/ xfern (Xiaoli Z. Fern) Experiments show that our method produces good clustering
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results compared to spectral clustering methods with gsgrw consistently order any pairs of bags. In this way, the bag con
constraints. straints indirectly enforces the consistency betweersdidsels
and cluster labels for all bags.

The above bag constraints can be easily incorporated igto an
optimization based clustering algorithm. Ligtbe the objective
to be maximized by a clustering algorithm, the bag constisain
can be incorporated as

2. Problem Statement

In our problem, the data consists bf bags{B;,--- ,Bu},
where each baf; contains instances, i.eB; = {Xi1,--- , Xin, }
with Xiq € R4, As prior knowledge, each; is associated with
a set of class labels, denoted By C {1,---,C}, whereC is
the total number of distinct classes. Denate= (J)_; B, and
let N = Y1, Ny be the total number of instanceim X, our  whereM is the total number of bagsM® is introduced as a nor-
goal is to partition theN instances inX into K disjoint clusters  malizer to makex invariant to diferent number of bags, and the
that respect the class boundaries. That isgifind xq belong  parameterr controls the tradeft between the bag constraints
to the same cluster, they must belong to the same class, whihd the original clustering objective.
the converse is true only K = C, in which case we wish to
recover the classes perfectly by clustering. In the cage»fC,
some classes may contain multiple clusters that corresfmnd
subclasses of the existing classes.

max fat s 3 > [ )-QL( 9Nl D-Qa(r. 9] (2)
@i.)) (r.9)

4. Incorporate Bag Constraintsto Spectral Clustering

In this section, we incorporate the bag constraints int@spe
tral clustering by modifying théNormalized LinkRatio objec-
3. Bag Constraintsfor MIML Instance Clustering tive. We show that .this IgaQs t_o a stapdard spectral clusteri

problem with a modified similarity matrix.

In our setup, the desired cluster labels are closely related o )
the class labels. To capture this relationship, we intredwo 4.1 Preliminaries on Spectral Clustering
different representations for each pair of bags using theisclas We first briefly review the spectral clustering. L&t =
label set and cluster-label set respectively, and reqgoésettwo  [au1. -+, a] be apartition matrix, where each columa is a
representations to induce similarities that behave sityiim ~ binary assignment vector for clust, with agc = 1 if instance
terms of their ranking orders. That is, if a pair of bagjsand  Xq iS assigned to clustéfy and 0 otherwise. LV be the sym-
B; is more similar to each other than another gairandBs ~ metricsimilarity matrix of instances. Define theegree matrix
according to their class labels, the similarity should raim D = Diag(W1y), where Diag{) forms a diagonal matrix with
the same order when measured using cluster labels. This wilements of the input vector as the diagonal elemeijfsie-
allow us to find a clustering solution that implicitly respethe  notes aN-dimensional vector of all 1's, anNl is the total num-
class labels. ber of vertices. Th&-way spectral clustering witNormalized

More formally, we usei( j) to represent a pair of ba@is and  LinkRatio objective is defined as [18]

B;. LetQ(i, j) be theclass-label similarity betweerB; andB;,

and letQa(i, j) be theircluster-label similarity.? Conceivably, max Z ay Way 3)
a good clustering result is such that a large valuepfi, j) A 4 a Day
corresponds to a large value @(i, j). For example, for a pair st Ac 0. VK, AL = 1y @)

of bagsB; andB; with a certain number of class labels, the more
class labels they share, the larger the valg, j) will be and  Rewrite the objective as
correspondingly we expect the valgg(i, j) to be larger.
Using the above defined notation, we introduce the bag con- 1 Wa i af DY2D~12WD-1/2DY2g
straints as follows:
Kid aIT Da = & Day

[QuL(, J) — QL. 9)[QA(lL ]) = Qa(r. 9] 2 0, Vi, j.r.se{l.....M} pefinez, = |D1/2a[||’ andZ = [z, -- -, z]. lgnoring the discrete

(1) constraint foiZ at this stage, one can formulate a new clustering

, . i , problem with respect to variabeas
The first term on the left hand side of the above inequality-com

pares the dference of class-label similarities betweerj and max tr(Z"D-Y2wDY272) (5)
(r,s). The second term computes the correspondifigmtince z .
of the cluster-label similarities. By requiring the nonatg- st. 2 Z=I (6)

ity of the product, the inequality requires the two simies to where the constraint (6) comes from the definitionZof The

solution ofZ for this new problem is the eigenvectors associ-
" ol it ated with the K largest eigenvalues BfY?WD~/2? [2]. Cor-
n this paper, we assume that all instances are distinct. H H : Fps
2At this point, we do not specify the function forms @t () andQa...). respond'lngly, a dlgcrete soluthnof the original problem can
since they can be problem-specified. However, this does meept us from  0€ obtained by taking a rounding prpcedure frérte.g., using
viewing them as geometrical similarities. Kmeans or the approach proposed in [18]).




4.2. Spectral Clustering with Bag Constraints Algorithm 1 Spectral Clustering with Bag Constraints
Input: A set of bags{IB%i}i"jl, Bi = {X1,:--,Xn); & set of known la-
bel sets associated with baf(&;,B;)}; parametewr; the number of
To incorporate the bag constraints, we need to define the twigStance clusterk. _
similarity functions in Eq. (1), the class-label similgritunc- Output: InSFance dUSt_e“_ng_reSUIt' _
tion Q. (-) and the cluster-label similarit@a(-). Ideally, Q. (-) 1: Create |nsta_nce S|mllar|ty matriw/ € RNN; form the diagonal
should satisfy the following conditions: (1) In the case vehe degree matriD = Diag(W1y).

class label information between two bagsandB; is unam- 2: Form the label indicator matriX and the bag indicator matri,
S ! as described in Sec. 4. Construct the bag-constraint m@tex

biguous, (i.e., they do not share class label or they botbrigel B(YTY — ul)B.

to the same single clasgp, (i, j) should achieve minimum or 3. compute the normalized similarity matrix with bag constraints
maximum values; (2) In the ambiguous case where Bagsd W = D Y2(W + ¢Q)D-Y2.

B; have multiple labels and;NY; # ¢, the smaller the quantity  4: Find theK largest eigenvectors &, vy, - - , vk; form the matrix
'@B?J'l (IYi| is the number of distinct classes 1) is, i.e., the V=, v € RV _ o -
smaller the relative “common-label” set is, the smailg(i, j) > Re-normalize the rfvl‘go‘to have unitlength yielding” € R™,
should be. e, Vij = Viy/ (2 Vig) ™™ -

) i i 6 Treat each row o¥/’ as a point ink¥ and clusteV’ via Kmeans.
Based on the above ConSIdeI’atlonS, we define the fO”OWlng Assign the Origina| instan% to C|uste|’Xk if and on|y if theq_th

class-label similarity function. Let be theC x 1 binary class row of V' is assigned t&.
indicator vector for bad;, with elementsc = 1/|Y;| if c € Y,
andyic = 0 otherwise. Denot¥ = [y1,--- ,ym], wherey, =0
for any bagBn, that is not labeled. Thelass-label similarity  objective
betweenf( j) is defined as

itz >, D QL) — Q. 9N ) - Qa9 (©)

QUi 1) =Yy (7) L e
=T @D72 37 > 01y — ¥l ya)(bib! ~ beb))DH22)

To define Qa("), denote thebag indicator matrix B = G e9 (10)
[by,--- , bw], with column vectom; € {0, 1}N<! and the element
b = 1 if instancex, € B;, andbg = O otherwise. Theluster =a-tr (ZT D2B(YTY — ul)BT D_l/zz) (11)
structure of bagB; can be captured by th€ x 1 column vector o (ZT D_1/2QD_1/ZZ)
Z"D~Y2h;. Thek-th element in the cluster structure vector is . ’
XN , : : _ v
||Dll</2a1||’ where|Xy N B;| counts the number of instances inbag | .. L= SumM(\; ) and Q = B(YTY — ul)BT. (12)

B; that belong to clusteXy. EssentiallyZ™ D~/2b; forms a his-

togram of the cluster labels in bm and normalizes each count The two summations in Eq (9) sum over all possib|e Configura_

by a quantity that can be roughly interpreted as the volume ofions of ¢, j) and ¢, s), and the function sur(in Eq. (12) sums
the ClUStEIS. This normalization allows the S|m||ar|ty measure to over all elements of input matrix. The detailed derivaticond

balance the contributions of clusters oftdrent sizes. We now Eq. (10) to Eq. (11) can be found in Appendix A.

define thecluster-label similarity betweent j) as Adding the above bag constraints as a penalty term to the
Normalized LinkRatio objective (5) and taking into account the

Qa(i, j) = (Z'D"Y2p)T(Z2"D"Y?b;) = bf D"Y22ZTD~¥?p; (8) original constraint (6), we can rewrite the spectral clriate
with bag constraints as

SubstitutingQy (i, j) and Qa(i, j) into the inequality of bag max tr(Z"DY3(W + aQ)DY22) (13)
constraints Eg. (1) , we have T
st. Z2'Z=1 (14)
o7y — Yy (' D2ZZTD"2b; — b D2ZZT D "?hg) > 0 Itis easy to see that this formulation is equivalent to thedard
e trZ"DY2(y]y; - v ys)(bjb! — bsb)D2Z) > 0 spectral clustering Eq. (5) and Eq. (6) with a modified simila

ity matrix. We can then apply the general approach of spectra
clustering to solve this optimization problem.

The spectral clustering algorithm with bag constraintsiias
marized in Algorithm 1. Note that in step 1, one can choose
any method to compute the similarity matki% so that the data
similarities are properly captured (Existing methodstude the
ones in [9, 10, 20]). We applied the Kmeans rounding proce-
dure in Step 6. One can, of course, apply any other apprepriat

3The normalization factor for clusté is||D*2a] ||, whereay is the binary r_ounding procedure. Ste_p 2 in_V()lves several _matrix mudep!
indicator vector for clusteXy andD is the degree matrix. tions. Since the dimension &fisC x M andBis N x M, the
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wherey'y; — yys is a scalar. This inequality constraint is im-
posed for two pairs of bags. To incorporate the bag constrain
for all pairs of bags, we follow the method introduced in E&). (
and add the following penalty term to thiermalized LinkRatio




Table 1:Relation of Bag Constraints and Pairwise Constraintsfor K = C. Table 2:MIML Datasets Information. “Single-Label bags” is the number of

Cases Qpg ML/CL bags that contain only a single class; “Multi-Label bagsthis number of bags
IYil = 1, Xp, Xq € B 1-u ML that have multiple labels; “Avg. Inst.” is the average numbieinstances in
Yi =Yy, [Yil =1Yjl =1, Xp € Bj, Xq €B; 1 ML each bag; “Avg. Bag Label” is the average number of classdahetach bag.
YiNnYj=¢, Xp €Bj, Xq € Bj 0 CL Dataset Birdsong MSRCv2  Carroll Frost
[Yil > 1, Xp, Xq € B M N/A C!asse; 13 23 24 24
YiNYj # ¢, IYil > 1or|Yjl > 1,%, € Bj,xq € Bj (0,1) N/A Dimension 38 48 16 16
Single-Label Bags 199 130 1 12
Multi-Label Bags 349 461 165 132
complexity of Step 2 is dominated IB(N2M). Step 4 computes EEZ: IE:]E;?S 5338 f?és %ig égg
the topK eigenvectors ofV’, which is the most computation-  ayg. Inst. 0.12 297 432 3.92
ally expensive part. Using the Lanczos method, the comfglexi  Avg. Bag Label 2.02 251 3.93 3.60

of Step 4 iSO(KTnnz(W’)), whereT is the number of Lanczos
iteration steps andnz(W’) is the number of nonzero elements _ o
in matrix W’ [6]. Hence, the overall complexity is not increased CL can be imposed, the value Qf,q lies in range (01) and

by introducing bag constraints. the magnitude depends on the extend of the overlap. The more
overlap their label sets have, the larger the valu®gjf is. As
4.3. Relation to ML/CL Pairwise Constraints such, we can view pairwise ML and CL constraints as only able

As analyzed previously, in some cases pairwise constraint§ accommodate the cases whelig, takes extreme values. In
can be induced from the bag-level labels. Wier: C, parti- ~ contrast, our proposed method can captuféecént levels of
tioning instances int& clusters is similar to predicting the class @mbiguity by allowingQ,q to take a continuous value between
labels for instances. In this case, if a bag only has a siatpel| Z€ro and one, which potentially leads to mofieetive usage of
then all instances within the bag belong to the same clustér a the bag-level label information.
thus ML constraints can be imposed. Similarly, if two single
label bags have the same label, ML constraints should also tge
imposed on all pairs of instances formed across the two bags.
For two bags that do not share any label, since they can not be-\ye ¢onduct experiments on synthetic and real-world MIML
!ong to the same cluster, CL constraints can be imposed on aNYatasets to evaluate the proposed bag-constrained sméesra
instance pairs formed across the two bags. WKenC, Some o ing method. The baseline methods include both uncon-

classes may correspond to more than one clusters. Thusywe c&4ined spectral clustering and existing spectral diirgjeal-
not impose ML constraints even for instances pairs that ComSOrithms with pairwise constraints

from a single class label. However, CL constraints are [sifl-
sible when two bags do not share any label.

The bag-constraint matri® introduced in Sec. 4 has some
important properties that are closely related to pairwige-c We use two real-world datasets and two synthetic datasets to
straints. We summarized these properties in the followingevaluate our method. These datasets are previously used by a
proposition. recent study on instance annotation for MIML [1] and are lavai
able onling* The summary of the datasets is provided in Table
2.

HJA Birdsong is a real-word MIML dataset with 548 bags,
each representing the spectrogram of a 10-second birdsong
recording. Each instance corresponds to a bird song sgllabl
in the spectrogram described by a 38-dimensional featuwe ve
tor. There are 10232 instances, 4998 of which are providéd wi
ground-truth class labels. For evaluation purpose, wehesglt
tered dataset, which only contains the labeled instanceadh

Empirical Evaluation

5.1. Datasets Description

Proposition 1 (Properties of Q) Let Y; and Y; be the sets of
class labelsfor bag B; and bag B; respectively. Let [Y;| and |Y;|
be the sizes of the label set Y; and Y j, respectively. Denote Q¢
as the value of the entry in Q that corresponds to the pair of
instances x, and Xy. Then the value of Qpq can be determined
according to Table 1.

Proof. By the definition of Q in Eq. (12), we know that if

_ 1 ; . . : )

Xp, % € Bi, Quq = 77 — 4, and that ifx, € Bi,Xq € Bj,  pag. Note that the ground-truth instance labels are onlg irse
pg = %. It is thus easy to verify the first four cases. For the evaluation.

the last case, sind®&; N Yj| # ¢, it follows that|Y; N Yj| > O. MSRC v2 is the second version (v2) of Microsoft Research

Because the denominatfy;| - |Y;| is also positive, we know Cambridge (MSRC) image datasetontaining 591 images and
Qpq > 0. Also given thatlYj| > 1 or[Yj > 1, we know 23 classes. Each image is considered as a bag and regioss in th
IYi NYj| < [Yil - [Y;|. Hence Qpq < 1. [0  images are viewed as instances. Each instance is descsibed b

_ _ a 16-dimensional histogram of gradients and a 32-dimeasion
It can be seen that, when ML constraints can be inferred fopistogram of colors.

Xp andXq, the value ofQpq is 1 or 1— i (approximately equal
to 1 sinceu is usually very small), which is the maximum of
the con'stralnt matr|?<. The value @p,q reaches 0 when CL “http://web.engr.oregonstate.edu/~briggsf/kdd2012datasets
constraints can be inferred. In other cases where some OVer-sy;.;. //research.microsoft. con/en-us/projects/
lap exists between the class labels of two bags and no ML Objectclassrecognition/
4




Letter-Carroll andLetter-Frost are two synthetic datasets 5.4. Experiments and Discussions
generated using the Letter Recognition dataset from the UCI \ye conducted experiments in twofigirent scenarios. In the
Machine Learning repositofyand two poems. To generate  first scenarick is set toC and the goal is to group the instances
these datasets, words in the poems are viewed as bags ansi letly 550 on their classes. In the second scenario, wekiave
in each word are the instances and are randomly sampled (WitQnq some classes are represented by more than one cluster. Ir
out replacement) from the Letter Recognition dataset. Bagt i scenarios, we test our algorithm with two implementei
labels are formed as the union of all letter labels in the word  y order to thoroughly evaluate its performance. The first im
All datasets are standardized such that the mean of each fegrementation (CSP) is a direct implementation of algorithm
ture is 0 and the standard deviation is 1. Instance similariThe second implementation (CSP w.o.ciml) is designed to tes
ties are computed using tHecal scaling factor proposed in  nhow well our algorithm could perform if we ignore the informa
[20]. Specifically, the similarity between instancgsand Xy tion that can be captured by ML and CL constraints. For this
is computed bWy, = exp(—w), whereo, andoq are  implementation, we set the entries that correspond to MLLor C
. constraints in the bag-constraint matxo 0 and leave the rest

local scaling factors. The local scaling factery is defined as i ; § ) i
_ (t) ® : . unchanged. The two implementations are identical otherwis
oq = lIXg— Xg'll, wherexg’ is thet-th nearest neighbor of,. We

adoptt = 7 as recommended in [20], which is also shown to be o
effective in [11]. 5.4.1. Senariol: K=C

In this scenario, we evaluate the performance of our method
) by changing the percentage of labeled bags. In particular, w
5.2. Baseline Methods vary the percentage of labeled bags from 20% to 100% of the
é/yhole dataset, with a 20% increment. For a fixed percentage,
we randomly subsample bags (without replacement) to create
the bag-constraint matrix and pairwise MIL constraints. The
experiment is repeated for 20 random runs and the results are
Saveraged.
We use two criteria to evaluate the clustering performance,
Normalized Mutual Information (NMI) and Class Purity. The
Ml is defined as

Our baseline methods include unconstrained spectral clu
tering (SP)and two constrained spectral clustering algos,
Spectral LearningpLearn) algorithm proposed in [7] and con-
strained spectral clustering by regularizaticGpReg) method
proposed in [6]. SpLearn incorporates ML and CL constraint
by directly modifying the entries of similarity matrix to bif
ML constraints and to O for CL constraints. SpReg encodes M
constraints by adding a penalty term into the Normalized Cu
objective. Note that SpReg only incorporates ML constriirit 21(X; C)
not CL constraints. To apply unconstrained spectral ctiurgge NMI = m (15)
(SP) to MIML instance clustering, we ignore the bag struetur
as well as the bag-level labels. For constrained spectuat cl whereX andC are the numerical cluster and class label vectors,
tering, we create ML and CL constraints according to Table 1/(-;-) computes the mutual information, aht{-) calculates the
The parametgs in SpReg that controls the enforcement of con-entropy. To computelass Purity, each cluster is assigned to
straints is set to 20, the same value as that used in [6]. the most frequent class in the cluster, and then the accofacy

this assignment is measured by comparing the assigned label

5.3. Parameter Selection with the ground-truth class labels. Formally,

In our algorithm, the parameteris introduced to balance the purity(X, C) = 1 Z max|Xy N C;j (16)
trade-df between instance-feature similarity and the bag con- N k!

straints. A large value af imposes stronger restriction on the
clustering solution to conform to the bag constraints anualls .
value ofa produces clustering results without being heavily in- {Cq,...,Co}is the set of cl(_:lsses. o
fluenced by such constraints. We tested the performancerof ou_The NMI anq Class Purity results are reported in F|g. 2 and
method over a range af values (from O to 1, by a 0.005 in- Fig. 3, re;pectwely. From' these results, we have the fatigw
crement) on all our datasets and the results have shown thatogservatlons and conclusions:

value in the range [8, 1] typically leads to significantly im- « Both CSP and CSP w.o.clmltperforms SP significantly

where X = {Xi,...,Xk} is the set of clusters an@ =

proved clustering performance. Figure 1 shows the perfoocma as more bags are labeled.
of our method on the two real-world datasets as a functian of
In all the following experiments, the parameteis set to 07. e Our method isomparable with SpLearn anautperforms

SpReg when the average number of bag-level labels is
small (HJA Birdsong). In this case, the ambiguity of in-
stance labels induced from the bag-level labels is low, and

http://archive.ics.uci.edu/ml/machine-learning-databases/

letter-recognition many ML and CL constraints can be inferred. Such con-
"The poem that generates the Letter-Carroll dataselalsberwocky” writ- straints can be proper|y incorporated by SpLearn to im-

ten by Lewis Carroll in his 1872 novdlhrough the Looking-Glass, and What prove clustering. However, the number of ML constraints

Alice Found there. The other poem that is used to create the Letter-Frostetatas . . )

is “The Road Not Taken” by Robert Frost, published in 1916 in the collection is relatively smaller compared to that of CL constraint, and

Mountain Interval. thus the constraints do not help SpReg as much. In the

5



HJA Birdsong MSRC v2
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Figure 1: Class Purity results as a functionaofsee Sec. 5.4.1 for the introduction of Class Purity). Higleue suggests better clustering performance. SP is
unconstrained spectral clustering. CSP is the proposedrapelustering with bag constraints.
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Figure 2: Scenario ok = C: NMI results as a function of constraints creating frorfietient percentage of labeled bags. Results are averaged®vandom runs
of independently sampled constraint sets; error bars amgtegbwith mean and standard deviation.
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Figure 3: Scenario dk = C: Class Purity results as a function offérent number of constraints. See Figure 2 caption.

meantime, the proposed method enables the clustering al- mance. Further examination on these two datasets indi-
gorithm to incorporate information beyond what can be cates that their bag-labels mostly induce CL constraints,

captured by the basic ML and CL constraints, which al- which cannot be used by SpReg (thus explaining its flat
lows it to achieve competitive performance compared to performance). Moreover, the degraded performance by
SpLearn and SpReg. SpLearn suggests that CL constraints alone might not pro-
vide good guidance for MIML instance clustering. It
Our methodoutperforms SpLeamn and SpReg when the is interesting to note that prior research [3] has demon-
number of average bag-level labels is relativédyger strated thatCL constraints can sometimes make the so-
(MSRC v2, Letter-Carroll and Letter-Frost). In this case, lution space overly constrained, leading to morgidilt

very limited ML and CL constraints can be inferred, and ¢ stering problem. This provides a possible explanation
our method with bag constraints better captures the side ¢, ihe degraded performance of SpLearn.

information in the bag-level labels. The fact that CSP

and CSP w.o.clml performs almost the same in Letter-5_4.2. Seenario 2 K > C

Carroll datasets indirectly demonstrates that ML and CL )

constraints can hardly be inferred. This gives more expla- N the scenario oK > C, we evaluate the performance of our

nation why our method outperforms SpLearn and SpReg'method by changing the number of clustirsFor each dataset,
we assume that all bags are labeled at the bag-level andhary t

e On Letter-Carroll and Letter-Frost, while our method still number of clusters frork = C to roughly ZC with 7 steps. In
outperforms SP, SpReg showso gain and SpLearn ac- the case oK > C, ML constraints can not be extracted (see
tually leads todegraded clustering performance. Similar discussion in Sec. 4.3). Hence, no constraints can be ineorp
negative results have been reported in [4], which showedated into SpReg and only CL constraints could be incorpdrat
that constraint sets generated based on the ground truthto SpLearn. We therefore do not consider the SpReg baselin
labels can sometimes lead to degraded clustering perforn this scenario and remove ML constraints in SpLearn. The
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Figure 4: Scenario ok > C: Class Purity results as a function of the number of clusteesults are averaged over 20 random runs. Error bars argedpuaith
mean and standard deviation.

parameters setting is the same with the previous experiment large numbers of multi-label bags.

We report the averaged Class Purity results over 20 runs in
Fig. 4. NMlI results are highly similar, and thus omitted toiav 6. Conclusion
redundancy. We can see that our method still outperforms SP

consistently and significantly. In this paper, we introduce a novel instance clustering prob
In the datasets with large average number of class labelem in the MIML framework, where the bag-level labels are

(MSRC v2, Letter-Carroll, and Letter-Frost), we again alsee used as side information to inform the clustering of inséanc

that CSP and CSP w.o.clml performs similarly, which showsThe goal is to recover the classes or to discover subclasses

that few CL or ML constraints could be extracted. This is onewithin each class. Traditional constraint-based clusteneth-

of the possible reasons that SpLearn can not compete with oads can not fully leverage the knowledge provided by the bag-

method for these datasets. Nonetheless, When the average nuevel class labels. In contrast, we present a simple ffete

ber of class labels is small (HJA Birdsong), SpLearn excelstive principle that incorporates the bag-level label infiation

One possible explanation is that the bag label informatidhis ~ as bag constraints. The proposed constraints can be readily

dataset is relatively unambiguous and many pairwise caingsr  integrated into any optimization-based clustering athoni by

can be extracted. While our method can handle ambiguous iradding a penalty term to the objective. In this paper, we demo

formation much better, SpLearn deals with unambiguoug-nfo strate how the bag constraints can be incorporated intdrgpec

mation more directly. Note that when we remove the single<clustering and empirically validate it§fectiveness on both syn-

label bags in HJA Birdsong and conduct the same experimenthetic and real-world MIML datasets. The results show that t

we observed that our method is comparable with SpLearn (thproposed bag-constrained method for spectral clusteengrgy

result is not reported due to space limit). These resultgestg ally outperforms state-of-the-art spectral clusteringpathms

that our method is more suitable for MIML datasets contanin that use pairwise ML and CL constraints and is most suitable
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for MIML datasets that contain relatively large number ofltiau
label bags.
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Appendix A.
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In this appendix, we show the derivation from Eq. (10) to Eq. [7]
(11). First we focus on the summation term inside the trace op
eration. Since the two summation sum over all possible config
urations of {, j) and ¢, s), we have the following rearrangement
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