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Abstract

In multi-instance multi-label (MIML) learning, datasets are given in the form of bags, each of which contains multiple instances
and is associated with multiple labels. This paper considers a novel instance clustering problem in MIML learning, where the
bag labels are used as background knowledge to help group instances into clusters. The goal is to recover the class labelsor to
find the subclasses within each class. Prior work on constraint-based clustering focuses on pairwise constraints and can not fully
utilize the bag-level label information. We propose to encode the bag-label knowledge into soft bag constraints that can be easily
incorporated into any optimization based clustering algorithm. As a specific example, we demonstrate how the bag constraints can
be incorporated into a popular spectral clustering algorithm. Empirical results on both synthetic and real-world datasets show that
the proposed method achieves promising performance compared to state-of-the-art methods that use pairwise constraints.
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1. Introduction

The Multi-Instance Multi-Label (MIML) learning framework
[23] has been successfully applied in a variety of applications
including computer vision [5, 15, 21] and audio analysis [14].
In MIML, datasets are given in the form of bags and each bag
contains multiple instances. It is assumed that there exists a
class structure such that each instance in the bag belongs toone
of the classes. However, the instance class labels are not directly
observed. Instead, the class labels are only provided at thebag
level, which is the union of all instance labels within the bags.
The goal of MIML learning is then to build a classifier to predict
the labels for an unseen bag [22, 23] or to annotate the label of
each instance within the bag [1].

In this paper, we consider a novel instance clustering prob-
lem within the MIML framework, where the goal is to group
instances from all bags into clusters. In particular, we seek to
find a cluster structure that corresponds to or refines the exist-
ing class structure. That is, we assume that each class contains
one or more subclasses and our goal is to find such subclasses
via clustering. In our motivating application, we want to under-
stand the structure of bird song within each species. Here a bag
corresponds to the spectrogram of a 10-second field recording
of multiple birds, and each instance corresponds to a segment
in the spectrogram capturing a single bird utterance (a syllable).
The labels of a bag are the set of species (one or more) present
in the recording. Birds from a single species may vocalize in
different modes. For instance, the sound made by a woodpecker
has at least two distinct modes: pecking and calling. We are
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interested in finding such distinct modes within each species by
applying clustering techniques to instances. Ideally we would
perform clustering on instances of the same species to learn
such modes. However, this is impractical because the labels
are only provided at the bag level and we do not have accurate
instance-level species labels. Therefore, we cast this problem
as an instance clustering problem with bag-level class labels as
side information.

Existing literature on clustering with side information primar-
ily focuses on pairwise Must-Link (ML) and Cannot-Link (CL)
constraints [6–8, 12, 13, 17, 19]. Note that one could poten-
tially generate ML and CL constraints based on the bag-level
labels, but they incorporate only limited information for MIML
datasets (as will be discussed in Sec.4.3) and are not effective for
our problem. Another closely related topic is MIML instance
annotation [1, 16, 21], where an instance classifier is learned
from MIML data that predicts the class label of each instance.
The key difference between MIML instance annotation and our
work is that we are interested in finding the refinement of class
structure for the instances, whereas instance annotation only fo-
cuses on recovering the class labels of instances based-on the
bag-level labels.

In this paper, we propose to incorporate the bag-level side
information in the form ofbag constraints. Our approach de-
fines two similarity measures between bags based onclass la-
bels andcluster labels respectively. By requiring the two simi-
larities to order pairs of bags consistently, we encode bag-level
label knowledge into soft constraints, which can be easily incor-
porated into traditional clustering objectives as a penalty term.
In particularly, we incorporate such constraints into a popular
spectral clustering algorithm and validate the effectiveness of
the resulting method on both synthetic and real-world datasets.
Experiments show that our method produces good clustering
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results compared to spectral clustering methods with pairwise
constraints.

2. Problem Statement

In our problem, the data consists ofM bags{B1, · · · ,BM},
where each bagBi containsni instances, i.e.,Bi = {xi1, · · · , xini }

with xiq ∈ R
d. As prior knowledge, eachBi is associated with

a set of class labels, denoted byYi ⊆ {1, · · · ,C}, whereC is
the total number of distinct classes. DenoteX =

⋃M
m=1 Bm and

let N =
∑M

m=1 nm be the total number of instances1 in X, our
goal is to partition theN instances inX into K disjoint clusters
that respect the class boundaries. That is, ifxp and xq belong
to the same cluster, they must belong to the same class, while
the converse is true only ifK = C, in which case we wish to
recover the classes perfectly by clustering. In the case ofK > C,
some classes may contain multiple clusters that correspondto
subclasses of the existing classes.

3. Bag Constraints for MIML Instance Clustering

In our setup, the desired cluster labels are closely relatedto
the class labels. To capture this relationship, we introduce two
different representations for each pair of bags using their class-
label set and cluster-label set respectively, and require these two
representations to induce similarities that behave similarly in
terms of their ranking orders. That is, if a pair of bagsBi and
B j is more similar to each other than another pairBr and Bs

according to their class labels, the similarity should maintain
the same order when measured using cluster labels. This will
allow us to find a clustering solution that implicitly respects the
class labels.

More formally, we use (i, j) to represent a pair of bagsBi and
B j. LetΩL(i, j) be theclass-label similarity betweenBi andB j,
and letΩA(i, j) be theircluster-label similarity.2 Conceivably,
a good clustering result is such that a large value ofΩL(i, j)
corresponds to a large value ofΩA(i, j). For example, for a pair
of bagsBi andB j with a certain number of class labels, the more
class labels they share, the larger the valueΩL(i, j) will be and
correspondingly we expect the valueΩA(i, j) to be larger.

Using the above defined notation, we introduce the bag con-
straints as follows:

[ΩL(i, j) −ΩL(r, s)][ΩA(i, j) −ΩA(r, s)] ≥ 0, ∀i, j, r, s ∈ {1, . . . ,M}

(1)

The first term on the left hand side of the above inequality com-
pares the difference of class-label similarities between (i, j) and
(r, s). The second term computes the corresponding difference
of the cluster-label similarities. By requiring the nonnegativ-
ity of the product, the inequality requires the two similarities to

1In this paper, we assume that all instances are distinct.
2At this point, we do not specify the function forms ofΩL(·, ·) andΩA(·, ·),

since they can be problem-specified. However, this does not prevent us from
viewing them as geometrical similarities.

consistently order any pairs of bags. In this way, the bag con-
straints indirectly enforces the consistency between class labels
and cluster labels for all bags.

The above bag constraints can be easily incorporated into any
optimization based clustering algorithm. LetfA be the objective
to be maximized by a clustering algorithm, the bag constraints
can be incorporated as

max
A

fA+
α

2M2

∑

(i, j)

∑

(r,s)

[ΩL(i, j)−ΩL(r, s)][ΩA(i, j)−ΩA(r, s)] (2)

whereM is the total number of bags, 2M2 is introduced as a nor-
malizer to makeα invariant to different number of bags, and the
parameterα controls the trade-off between the bag constraints
and the original clustering objective.

4. Incorporate Bag Constraints to Spectral Clustering

In this section, we incorporate the bag constraints into spec-
tral clustering by modifying theNormalized LinkRatio objec-
tive. We show that this leads to a standard spectral clustering
problem with a modified similarity matrix.

4.1. Preliminaries on Spectral Clustering

We first briefly review the spectral clustering. LetA =

[a1, · · · , aK ] be apartition matrix, where each columnak is a
binary assignment vector for clusterXk, with aqk = 1 if instance
xq is assigned to clusterXk and 0 otherwise. LetW be the sym-
metric similarity matrix of instances. Define thedegree matrix
D = Diag(W1N), where Diag(·) forms a diagonal matrix with
elements of the input vector as the diagonal elements,1N de-
notes aN-dimensional vector of all 1’s, andN is the total num-
ber of vertices. TheK-way spectral clustering withNormalized
LinkRatio objective is defined as [18]

max
A

1
K

K
∑

k=1

aT
k Wak

aT
k Dak

(3)

s.t. A ∈ {0,1}N×K , A1K = 1N . (4)

Rewrite the objective as

1
K

K
∑

k=1

aT
i Wai

aT
i Dai

=

K
∑

k=1

aT
k D1/2D−1/2WD−1/2D1/2ak

aT
k Dak

.

Definezk =
D1/2ak

‖D1/2aT
k ‖

, andZ = [z1, · · · , zK ]. Ignoring the discrete

constraint forZ at this stage, one can formulate a new clustering
problem with respect to variableZ as

max
Z

tr(ZT D−1/2WD−1/2Z) (5)

s.t. ZT Z = I (6)

where the constraint (6) comes from the definition ofZ. The
solution ofZ for this new problem is the eigenvectors associ-
ated with the K largest eigenvalues ofD−1/2WD−1/2 [2]. Cor-
respondingly, a discrete solutionA of the original problem can
be obtained by taking a rounding procedure fromZ (e.g., using
Kmeans or the approach proposed in [18]).
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4.2. Spectral Clustering with Bag Constraints

To incorporate the bag constraints, we need to define the two
similarity functions in Eq. (1), the class-label similarity func-
tion ΩL(·) and the cluster-label similarityΩA(·). Ideally,ΩL(·)
should satisfy the following conditions: (1) In the case where
class label information between two bagsBi andB j is unam-
biguous, (i.e., they do not share class label or they both belong
to the same single class),ΩL(i, j) should achieve minimum or
maximum values; (2) In the ambiguous case where bagsBi and
B j have multiple labels andYi∩Y j , φ, the smaller the quantity
|Yi∩Y j |

|Yi∪Y j
| (|Yi| is the number of distinct classes inYi) is, i.e., the

smaller the relative “common-label” set is, the smallerΩL(i, j)
should be.

Based on the above considerations, we define the following
class-label similarity function. Letyi be theC × 1 binary class
indicator vector for bagBi, with elementsyic = 1/|Yi| if c ∈ Yi,
andyic = 0 otherwise. DenoteY = [y1, · · · , yM], whereym = 0
for any bagBm that is not labeled. Theclass-label similarity
between (i, j) is defined as

ΩL(i, j) = yT
i y j (7)

To define ΩA(·), denote thebag indicator matrix B =

[b1, · · · , bM], with column vectorbi ∈ {0,1}N×1 and the element
bqi = 1 if instancexq ∈ Bi, andbqi = 0 otherwise. Thecluster
structure of bagBi can be captured by theK × 1 column vector
ZT D−1/2bi. The k-th element in the cluster structure vector is
|Xk∩Bi |

‖D1/2aT
k ‖

, where|Xk ∩ Bi| counts the number of instances in bag

Bi that belong to clusterXk. Essentially,ZT D−1/2bi forms a his-
togram of the cluster labels in bagBi and normalizes each count
by a quantity that can be roughly interpreted as the volume of
the cluster.3 This normalization allows the similarity measure to
balance the contributions of clusters of different sizes. We now
define thecluster-label similarity between (i, j) as

ΩA(i, j) = (ZT D−1/2bi)
T (ZT D−1/2b j) = bT

i D−1/2ZZT D−1/2b j (8)

SubstitutingΩL(i, j) andΩA(i, j) into the inequality of bag
constraints Eq. (1) , we have

(yT
i y j − yT

r ys)(b
T
i D−1/2ZZT D−1/2b j − bT

r D−1/2ZZT D−1/2bs) ≥ 0

⇔ tr(ZT D−1/2(yT
i y j − yT

r ys)(b jb
T
i − bsb

T
r )D−1/2Z) ≥ 0

whereyT
i y j − yT

r ys is a scalar. This inequality constraint is im-
posed for two pairs of bags. To incorporate the bag constraints
for all pairs of bags, we follow the method introduced in Eq. (2)
and add the following penalty term to theNormalized LinkRatio

3The normalization factor for clusterXk is ‖D1/2aT
k ‖, whereak is the binary

indicator vector for clusterXk andD is the degree matrix.

Algorithm 1 Spectral Clustering with Bag Constraints
Input: A set of bags{Bi}

M
i=1, Bi = {xi1, · · · , xini }; a set of known la-

bel sets associated with bags{(Yi,Bi)}; parameterα; the number of
instance clustersK.
Output: Instance clustering result.

1: Create instance similarity matrixW ∈ RN×N ; form the diagonal
degree matrixD = Diag(W1N).

2: Form the label indicator matrixY and the bag indicator matrixB,
as described in Sec. 4. Construct the bag-constraint matrixQ =
B(YT Y − µI)BT .

3: Compute the normalized similarity matrix with bag constraints
W ′ = D−1/2(W + αQ)D−1/2.

4: Find theK largest eigenvectors ofW ′, v1, · · · , vK ; form the matrix
V = [v1, · · · , vK ] ∈ RN×K .

5: Re-normalize the rows ofV to have unit length yieldingV ′ ∈ RN×K ,
i.e.,V ′i j = Vi j/(

∑

j V2
i j)

1/2 .
6: Treat each row ofV ′ as a point inRK and clusterV ′ via Kmeans.

Assign the original instancexq to clusterXk if and only if theq-th
row of V ′ is assigned toXk.

objective

α

2M2

∑

(i, j)

∑

(r,s)

[ΩL(i, j) −ΩL(r, s)][ΩA(i, j) −ΩA(r, s)] (9)

=
α

2M2
tr(ZT D−1/2

∑

(i, j)

∑

(r,s)

(yT
i y j − yT

r ys)(b jb
T
i − bsb

T
r )D−1/2Z)

(10)

=α · tr
(

ZT D−1/2B(YT Y − µI)BT D−1/2Z
)

(11)

=α · tr
(

ZT D−1/2QD−1/2Z
)

,

with µ =
sum(YT Y)

M2
and Q = B(YT Y − µI)BT . (12)

The two summations in Eq. (9) sum over all possible configura-
tions of (i, j) and (r, s), and the function sum(·) in Eq. (12) sums
over all elements of input matrix. The detailed derivation from
Eq. (10) to Eq. (11) can be found in Appendix A.

Adding the above bag constraints as a penalty term to the
Normalized LinkRatio objective (5) and taking into account the
original constraint (6), we can rewrite the spectral clustering
with bag constraints as

max
Z

tr(ZT D−1/2(W + αQ)D−1/2Z) (13)

s.t. ZT Z = I (14)

It is easy to see that this formulation is equivalent to the standard
spectral clustering Eq. (5) and Eq. (6) with a modified similar-
ity matrix. We can then apply the general approach of spectral
clustering to solve this optimization problem.

The spectral clustering algorithm with bag constraints is sum-
marized in Algorithm 1. Note that in step 1, one can choose
any method to compute the similarity matrixW so that the data
similarities are properly captured (Existing methods include the
ones in [9, 10, 20]). We applied the Kmeans rounding proce-
dure in Step 6. One can, of course, apply any other appropriate
rounding procedure. Step 2 involves several matrix multiplica-
tions. Since the dimension ofY is C × M andB is N × M, the
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Table 1:Relation of Bag Constraints and Pairwise Constraints for K = C.
Cases Qp,q ML /CL

|Yi | = 1, xp, xq ∈ Bi 1− µ ML
Yi = Y j, |Yi | = |Y j | = 1, xp ∈ Bi, xq ∈ B j 1 ML
Yi ∩ Y j = φ, xp ∈ Bi, xq ∈ B j 0 CL
|Yi | > 1, xp, xq ∈ Bi

1
|Yi |
− µ N/A

Yi ∩ Y j , φ, |Yi | > 1 or |Y j | > 1, xp ∈ Bi, xq ∈ B j (0,1) N/A

complexity of Step 2 is dominated byO(N2M). Step 4 computes
the topK eigenvectors ofW ′, which is the most computation-
ally expensive part. Using the Lanczos method, the complexity
of Step 4 isO(KTnnz(W ′)), whereT is the number of Lanczos
iteration steps andnnz(W ′) is the number of nonzero elements
in matrixW ′ [6]. Hence, the overall complexity is not increased
by introducing bag constraints.

4.3. Relation to ML/CL Pairwise Constraints

As analyzed previously, in some cases pairwise constraints
can be induced from the bag-level labels. WhenK = C, parti-
tioning instances intoK clusters is similar to predicting the class
labels for instances. In this case, if a bag only has a single label
then all instances within the bag belong to the same cluster and
thus ML constraints can be imposed. Similarly, if two single-
label bags have the same label, ML constraints should also be
imposed on all pairs of instances formed across the two bags.
For two bags that do not share any label, since they can not be-
long to the same cluster, CL constraints can be imposed on any
instance pairs formed across the two bags. WhenK > C, some
classes may correspond to more than one clusters. Thus, we can
not impose ML constraints even for instances pairs that come
from a single class label. However, CL constraints are stillpos-
sible when two bags do not share any label.

The bag-constraint matrixQ introduced in Sec. 4 has some
important properties that are closely related to pairwise con-
straints. We summarized these properties in the following
proposition.

Proposition 1 (Properties of Q). Let Yi and Y j be the sets of
class labels for bag Bi and bag B j respectively. Let |Yi| and |Y j|

be the sizes of the label set Yi and Y j, respectively. Denote Qp,q

as the value of the entry in Q that corresponds to the pair of
instances xp and xq. Then the value of Qp,q can be determined
according to Table 1.

Proof. By the definition of Q in Eq. (12), we know that if
xp, xq ∈ Bi, Qp,q =

1
|Yi |
− µ, and that if xp ∈ Bi, xq ∈ B j,

Qp,q =
|Yi∩Y j |

|Yi |·|Y j |
. It is thus easy to verify the first four cases. For

the last case, since|Yi ∩ Y j| , φ, it follows that |Yi ∩ Y j| > 0.
Because the denominator|Yi| · |Y j| is also positive, we know
Qp,q > 0. Also given that|Yi| > 1 or |Y j| > 1, we know
|Yi ∩ Y j| < |Yi| · |Y j|. Hence,Qp,q < 1.

It can be seen that, when ML constraints can be inferred for
xp andxq, the value ofQp,q is 1 or 1− µ (approximately equal
to 1 sinceµ is usually very small), which is the maximum of
the constraint matrix. The value ofQp,q reaches 0 when CL
constraints can be inferred. In other cases where some over-
lap exists between the class labels of two bags and no ML or

Table 2:MIML Datasets Information. “Single-Label bags” is the number of
bags that contain only a single class; “Multi-Label bags” isthe number of bags
that have multiple labels; “Avg. Inst.” is the average number of instances in
each bag; “Avg. Bag Label” is the average number of class labels in each bag.

Dataset Birdsong MSRC v2 Carroll Frost
Classes 13 23 24 24
Dimension 38 48 16 16
Single-Label Bags 199 130 1 12
Multi-Label Bags 349 461 165 132
Total Bags 548 591 166 144
Total Inst. 4998 1758 717 565
Avg. Inst. 9.12 2.97 4.32 3.92
Avg. Bag Label 2.02 2.51 3.93 3.60

CL can be imposed, the value ofQp,q lies in range (0,1) and
the magnitude depends on the extend of the overlap. The more
overlap their label sets have, the larger the value ofQp,q is. As
such, we can view pairwise ML and CL constraints as only able
to accommodate the cases whereQp,q takes extreme values. In
contrast, our proposed method can capture different levels of
ambiguity by allowingQp,q to take a continuous value between
zero and one, which potentially leads to more effective usage of
the bag-level label information.

5. Empirical Evaluation

We conduct experiments on synthetic and real-world MIML
datasets to evaluate the proposed bag-constrained spectral clus-
tering method. The baseline methods include both uncon-
strained spectral clustering and existing spectral clustering al-
gorithms with pairwise constraints.

5.1. Datasets Description

We use two real-world datasets and two synthetic datasets to
evaluate our method. These datasets are previously used by a
recent study on instance annotation for MIML [1] and are avail-
able online.4 The summary of the datasets is provided in Table
2.

HJA Birdsong is a real-word MIML dataset with 548 bags,
each representing the spectrogram of a 10-second birdsong
recording. Each instance corresponds to a bird song syllable
in the spectrogram described by a 38-dimensional feature vec-
tor. There are 10232 instances, 4998 of which are provided with
ground-truth class labels. For evaluation purpose, we use the fil-
tered dataset, which only contains the labeled instances ineach
bag. Note that the ground-truth instance labels are only used in
the evaluation.

MSRC v2 is the second version (v2) of Microsoft Research
Cambridge (MSRC) image dataset,5 containing 591 images and
23 classes. Each image is considered as a bag and regions in the
images are viewed as instances. Each instance is described by
a 16-dimensional histogram of gradients and a 32-dimensional
histogram of colors.

4http://web.engr.oregonstate.edu/~briggsf/kdd2012datasets
5http://research.microsoft.com/en-us/projects/

objectclassrecognition/
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Letter-Carroll andLetter-Frost are two synthetic datasets
generated using the Letter Recognition dataset from the UCI
Machine Learning repository6 and two poems.7 To generate
these datasets, words in the poems are viewed as bags and letters
in each word are the instances and are randomly sampled (with-
out replacement) from the Letter Recognition dataset. Bag-level
labels are formed as the union of all letter labels in the word.

All datasets are standardized such that the mean of each fea-
ture is 0 and the standard deviation is 1. Instance similari-
ties are computed using thelocal scaling factor proposed in
[20]. Specifically, the similarity between instancesxp and xq

is computed byWpq = exp
(

−
‖xp−xq‖

2

2σpσq

)

, whereσp andσq are

local scaling factors. The local scaling factorσq is defined as
σq = ‖xq − x(t)

q ‖, wherex(t)
q is thet-th nearest neighbor ofxq. We

adoptt = 7 as recommended in [20], which is also shown to be
effective in [11].

5.2. Baseline Methods

Our baseline methods include unconstrained spectral clus-
tering (SP)and two constrained spectral clustering algorithms,
Spectral Learning (SpLearn) algorithm proposed in [7] and con-
strained spectral clustering by regularization (SpReg) method
proposed in [6]. SpLearn incorporates ML and CL constraints
by directly modifying the entries of similarity matrix to 1 for
ML constraints and to 0 for CL constraints. SpReg encodes ML
constraints by adding a penalty term into the Normalized Cut
objective. Note that SpReg only incorporates ML constraintbut
not CL constraints. To apply unconstrained spectral clustering
(SP) to MIML instance clustering, we ignore the bag structure
as well as the bag-level labels. For constrained spectral clus-
tering, we create ML and CL constraints according to Table 1.
The parameterβ in SpReg that controls the enforcement of con-
straints is set to 20, the same value as that used in [6].

5.3. Parameter Selection

In our algorithm, the parameterα is introduced to balance the
trade-off between instance-feature similarity and the bag con-
straints. A large value ofα imposes stronger restriction on the
clustering solution to conform to the bag constraints and a small
value ofα produces clustering results without being heavily in-
fluenced by such constraints. We tested the performance of our
method over a range ofα values (from 0 to 1, by a 0.005 in-
crement) on all our datasets and the results have shown that a
value in the range [0.5,1] typically leads to significantly im-
proved clustering performance. Figure 1 shows the performance
of our method on the two real-world datasets as a function ofα.
In all the following experiments, the parameterα is set to 0.7.

6http://archive.ics.uci.edu/ml/machine-learning-databases/

letter-recognition
7The poem that generates the Letter-Carroll dataset is “Jabberwocky” writ-

ten by Lewis Carroll in his 1872 novelThrough the Looking-Glass, and What
Alice Found there. The other poem that is used to create the Letter-Frost dataset
is “The Road Not Taken” by Robert Frost, published in 1916 in the collection
Mountain Interval.

5.4. Experiments and Discussions

We conducted experiments in two different scenarios. In the
first scenarioK is set toC and the goal is to group the instances
based on their classes. In the second scenario, we haveK > C
and some classes are represented by more than one cluster. In
both scenarios, we test our algorithm with two implementations
in order to thoroughly evaluate its performance. The first im-
plementation (CSP) is a direct implementation of algorithm1.
The second implementation (CSP w.o.clml) is designed to test
how well our algorithm could perform if we ignore the informa-
tion that can be captured by ML and CL constraints. For this
implementation, we set the entries that correspond to ML or CL
constraints in the bag-constraint matrixQ to 0 and leave the rest
unchanged. The two implementations are identical otherwise.

5.4.1. Scenario 1: K = C
In this scenario, we evaluate the performance of our method

by changing the percentage of labeled bags. In particular, we
vary the percentage of labeled bags from 20% to 100% of the
whole dataset, with a 20% increment. For a fixed percentage,
we randomly subsample bags (without replacement) to create
the bag-constraint matrix and pairwise ML/CL constraints. The
experiment is repeated for 20 random runs and the results are
averaged.

We use two criteria to evaluate the clustering performance,
Normalized Mutual Information (NMI) and Class Purity. The
NMI is defined as

NMI =
2I(X; C)

H(X) + H(C)
(15)

whereX andC are the numerical cluster and class label vectors,
I(·; ·) computes the mutual information, andH(·) calculates the
entropy. To computeClass Purity, each cluster is assigned to
the most frequent class in the cluster, and then the accuracyof
this assignment is measured by comparing the assigned labels
with the ground-truth class labels. Formally,

purity(X,C) =
1
N

∑

k

max
j
|Xk ∩ C j| (16)

where X = {X1, . . . ,XK} is the set of clusters andC =

{C1, . . . ,CC} is the set of classes.
The NMI and Class Purity results are reported in Fig. 2 and

Fig. 3, respectively. From these results, we have the following
observations and conclusions:

• Both CSP and CSP w.o.clmloutperforms SP significantly
as more bags are labeled.

• Our method iscomparable with SpLearn andoutperforms
SpReg when the average number of bag-level labels is
small (HJA Birdsong). In this case, the ambiguity of in-
stance labels induced from the bag-level labels is low, and
many ML and CL constraints can be inferred. Such con-
straints can be properly incorporated by SpLearn to im-
prove clustering. However, the number of ML constraints
is relatively smaller compared to that of CL constraint, and
thus the constraints do not help SpReg as much. In the
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Figure 1: Class Purity results as a function ofα (see Sec. 5.4.1 for the introduction of Class Purity). Higher value suggests better clustering performance. SP is
unconstrained spectral clustering. CSP is the proposed spectral clustering with bag constraints.
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Figure 2: Scenario ofK = C: NMI results as a function of constraints creating from different percentage of labeled bags. Results are averaged over20 random runs
of independently sampled constraint sets; error bars are reported with mean and standard deviation.
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Figure 3: Scenario ofK = C: Class Purity results as a function of different number of constraints. See Figure 2 caption.

meantime, the proposed method enables the clustering al-
gorithm to incorporate information beyond what can be
captured by the basic ML and CL constraints, which al-
lows it to achieve competitive performance compared to
SpLearn and SpReg.

• Our methodoutperforms SpLearn and SpReg when the
number of average bag-level labels is relativelylarger
(MSRC v2, Letter-Carroll and Letter-Frost). In this case,
very limited ML and CL constraints can be inferred, and
our method with bag constraints better captures the side
information in the bag-level labels. The fact that CSP
and CSP w.o.clml performs almost the same in Letter-
Carroll datasets indirectly demonstrates that ML and CL
constraints can hardly be inferred. This gives more expla-
nation why our method outperforms SpLearn and SpReg.

• On Letter-Carroll and Letter-Frost, while our method still
outperforms SP, SpReg showsno gain and SpLearn ac-
tually leads todegraded clustering performance. Similar
negative results have been reported in [4], which showed
that constraint sets generated based on the ground truth
labels can sometimes lead to degraded clustering perfor-

mance. Further examination on these two datasets indi-
cates that their bag-labels mostly induce CL constraints,
which cannot be used by SpReg (thus explaining its flat
performance). Moreover, the degraded performance by
SpLearn suggests that CL constraints alone might not pro-
vide good guidance for MIML instance clustering. It
is interesting to note that prior research [3] has demon-
strated thatCL constraints can sometimes make the so-
lution space overly constrained, leading to more difficult
clustering problem. This provides a possible explanation
for the degraded performance of SpLearn.

5.4.2. Scenario 2: K > C
In the scenario ofK > C, we evaluate the performance of our

method by changing the number of clustersK. For each dataset,
we assume that all bags are labeled at the bag-level and vary the
number of clusters fromK = C to roughly 2C with 7 steps. In
the case ofK > C, ML constraints can not be extracted (see
discussion in Sec. 4.3). Hence, no constraints can be incorpo-
rated into SpReg and only CL constraints could be incorporated
into SpLearn. We therefore do not consider the SpReg baseline
in this scenario and remove ML constraints in SpLearn. The
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Figure 4: Scenario ofK > C: Class Purity results as a function of the number of clusters.Results are averaged over 20 random runs. Error bars are reported with
mean and standard deviation.

parameters setting is the same with the previous experiment.

We report the averaged Class Purity results over 20 runs in
Fig. 4. NMI results are highly similar, and thus omitted to avoid
redundancy. We can see that our method still outperforms SP
consistently and significantly.

In the datasets with large average number of class labels
(MSRC v2, Letter-Carroll, and Letter-Frost), we again observe
that CSP and CSP w.o.clml performs similarly, which shows
that few CL or ML constraints could be extracted. This is one
of the possible reasons that SpLearn can not compete with our
method for these datasets. Nonetheless, When the average num-
ber of class labels is small (HJA Birdsong), SpLearn excels.
One possible explanation is that the bag label information in this
dataset is relatively unambiguous and many pairwise constraints
can be extracted. While our method can handle ambiguous in-
formation much better, SpLearn deals with unambiguous infor-
mation more directly. Note that when we remove the single-
label bags in HJA Birdsong and conduct the same experiment,
we observed that our method is comparable with SpLearn (the
result is not reported due to space limit). These results suggest
that our method is more suitable for MIML datasets containing

large numbers of multi-label bags.

6. Conclusion

In this paper, we introduce a novel instance clustering prob-
lem in the MIML framework, where the bag-level labels are
used as side information to inform the clustering of instances.
The goal is to recover the classes or to discover subclasses
within each class. Traditional constraint-based clustering meth-
ods can not fully leverage the knowledge provided by the bag-
level class labels. In contrast, we present a simple yet effec-
tive principle that incorporates the bag-level label information
as bag constraints. The proposed constraints can be readily
integrated into any optimization-based clustering algorithm by
adding a penalty term to the objective. In this paper, we demon-
strate how the bag constraints can be incorporated into spectral
clustering and empirically validate its effectiveness on both syn-
thetic and real-world MIML datasets. The results show that the
proposed bag-constrained method for spectral clustering gener-
ally outperforms state-of-the-art spectral clustering algorithms
that use pairwise ML and CL constraints and is most suitable
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for MIML datasets that contain relatively large number of multi-
label bags.
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Appendix A.

In this appendix, we show the derivation from Eq. (10) to Eq.
(11). First we focus on the summation term inside the trace op-
eration. Since the two summation sum over all possible config-
urations of (i, j) and (r, s), we have the following rearrangement
∑

(i, j)

∑

(r,s)

(yT
i y j − yT

r ys)(b jb
T
i − bsb

T
r )

=
∑

(i, j)

∑

(r,s)

[

(yT
i y j)b jb

T
i + (yT

r ys)bsb
T
r − (yT

r ys)b jb
T
i − (yT

i y j)bsb
T
r

]

= 2[
∑

(i, j)

∑

(r,s)

(yT
i y j)b jb

T
i −
∑

(i, j)

∑

(r,s)

(yT
i y j)bsb

T
r ]

= 2[
∑

(i, j)

b j(y
T
i y j)b

T
i

∑

(r,s)

1−
∑

(i, j)

(yT
i y j)
∑

(r,s)

bsb
T
r ]

= 2[M2
∑

(i, j)

b j(y
T
i y j)b

T
i − sum(YT Y)BBT ]

= 2M2 · [
∑

(i, j)

b j(y
T
j yi)b

T
i −

sum(YT Y)
M2

BBT ]

= 2M2 · (BYT YBT −
sum(YT Y)

M2
BBT )

= 2M2 · B(YT Y − µI)BT

where sum(·) denotes summing over all elements of matrix,
µ =

sum(YT Y)
M2 , and I is the identity matrix. In the derivation,

we have used the fact thatyT
i y j is a scalar andyT

i y j = yT
j yi. Cor-

respondingly, Eq. (10) is derived to Eq. (11) as

α

2M2
· tr
(

ZT D−1/2[2M2B(YT Y − µI)BT ]D−1/2Z
)

= α · tr
(

ZT D−1/2B(YT Y − µI)BT D−1/2Z
)

.
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