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While small fish models are assuming prominence as alternative models for

chemical carcinogenesis studies, little is known about the actual metabolism of

carcinogens in these models. This thesis investigated the metabolism of the potent

hepatocarcinogen aflatoxin B1 (AFB) and its modulation by CYP1A induction in the

zebrafish.

HPLC analysis showed that the major metabolites excreted into water following

intraperitoneal injection of [3H]AFBI in zebrafish were aflatoxicol, aflatoxicol-

glucuronide and unreacted AFBI. Fish intraperitoneally injected with 50-400 Ag

[3H]AFBI/kg body weight displayed a linear dose response for hepatic DNA-adduction

at 24 hours. AFBI-DNA adduct levels showed no statistical difference from 1 to 21

days after injection, suggesting poor adduct repair in this species. DNA binding in

female fish was 1.7-fold higher than in males. An in vitro AFB1 metabolism assay

verified that zebrafish liver supports AFBI oxidation to the 8,9-epoxide proximate

electrophile.
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Investigations were conducted assessing CYP1A response in zebrafish. 

Intraperitoneal injection of 75-150 mg Aroclor 1254/kg body weight or dietary exposure 

to 500 ppm failed to induce CYP1A protein or associated 7-ethoxyresorufin-O­

deethylase (EROD) activity. However, dietary ft-naphthoflavone (IMF) at 500 ppm 

induced CYP1A approximately 3-fold above controls. A single intraperitoneal injection 

of 150 mg 13NF/kg body weight showed maximum CYP1A protein levels between 24 

to 36 hours, while EROD activity peaked before 48 hours. CYP1A showed dose-

responsiveness in fish intraperitoneally injected with 25-150 mg 'INF/kg body weight. 

Dietary exposure to 0.75 ppm 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) significantly 

induced CYP1A. 

The effect of TCDD on the metabolism of AFB in zebrafish was examined. In 

addition to aflatoxicol, aflatoxicol-glucuronide, and parent AFB, excreted by the control 

AFB1 group, the TCDD-pretreated group also produced unresolved aflatoxin 

MI /aflatoxicol -M1 and aflatoxicol-M1-glucuronide. Hepatic AFB1-DNA adduction was 

approximately 4-fold higher in the TCDD treated group compared to controls. This 

significant difference could not be explained by increased capacity for bioactivation of 

Anti as measured by an in vitro AFBI metabolism assay. However, it was 

demonstrated that zebrafish have the capacity to bioactivate aflatoxin M1 to a reactive 

intermediate, and it is proposed that this intermediate may be responsible for the 

increased DNA binding. 
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AFLATOXIN B1 METABOLISM, CYP1A INDUCTION,
 
AND THE INFLUENCE OF CYP1A INDUCTION
 

ON AFLATOXIN B1 METABOLISM IN ZEBRAFISH
 

CHAPTER 1 

INTRODUCTION 

Fish are becoming an increasingly important model in science. While the first 

studies investigating metabolism in fish suggested low or no biotransformation 

capabilities, subsequent investigations have shown that is not the case. Not only do fish 

possess many of the metabolizing enzymes that mammals do, but they also are 

susceptible to the carcinogenic process. Fish were found to be responsive to 

carcinogens when an epizootic outbreak of liver tumors developed in hatchery-reared 

trout. The carcinogen responsible for the tumors was identified as the potent mycotoxin 

aflatoxin B1 (AFB,), which was a contaminant of the diet. The rainbow trout has since 

been shown to be the most sensitive species to aflatoxin's carcinogenic effects (Bailey 

et al., 1996). Tumors have also been found in feral fish populations, particularly 

bottom feeding fish. For many of these cancer epizootics, correlations have been made 

between the presence of neoplasia and environmental contamination, especially in 

bottom-feeding fish (Moore and Myers, 1994; Hawkins et al., 1995). For example, 

polycyclic aromatic hydrocarbons (PAHs) have been linked to hepatic lesions in English 

sole from Puget Sound and brown bullhead in the Black River (Hawkins et al., 1995, 

and references therein). It was also discovered that when fish are exposed to some of 
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these compounds, such as the PAHs and polychlorinated biphenyls (PCBs), a particular 

enzyme, cytochrome P4501A, becomes induced, and can serve as a marker of recent 

exposure. 

Many species of small fish are currently being developed as models for 

carcinogenesis. Rainbow trout have certainly proven to be a valuable model for 

carcinogenesis studies, but trout are limited by several factors including an annual 

spawning cycle, delayed maturity until approximately 2 years of age, and the 

requirement of cold water temperatures such that they are unsuitable for many in situ 

exposure protocols. Most aquarium fish, on the other hand, spawn regularly, reach 

maturity within months, and can withstand a wide range of temperatures. The guppy, 

Japanese medaka, and fathead minnow are only a few of the small fish species being 

investigated. While numerous studies have been and continue to be conducted 

investigating the susceptibility of these various species of fish to carcinogens, 

surprisingly few studies have explored the mechanistic basis behind the results of these 

exposures. 

My thesis work was part of a U.S. ARMY grant assessing the suitability of 

zebrafish as a model for carcinogenesis. The Japanese medaka is currently the small 

fish of choice for these studies, but no one species is sensitive to all carcinogens. 

Therefore, zebrafish are being investigated for their suitability as a complimentary 

species. Zebrafish have the added advantage of being a popular model for the study of 

genetics and developmental biology. Chapter two explores in vivo aflatoxin B1 

metabolism and hepatic DNA-adduction after intraperitoneal administration. The 

experiments described therein investigate the capacity of the zebrafish for bioactivation 
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and detoxification of this carcinogen. It has been shown by other studies conducted in 

our laboratory that zebrafish are resistant to the carcinogenic effects of Anti when this 

mycotoxin is administered in the diet. 

Environmental exposures are seldom limited to just one chemical or carcinogen 

as they are under the carefully controlled laboratory settings. Coexposures can have a 

variety of effects, ranging from protection to enhancement of the toxicity or 

carcinogenicity of a compound. As mentioned earlier, CYP1A is an enzyme commonly 

elevated when an animal has been exposed to any number of 3-methylcholanthrene-type 

inducers. The consequence of such induction in the normal biology of the animal is not 

certain. Chapter 3 characterizes the induction of CYP1A in zebrafish following 

exposure to three different inducers; the commercial PCB mixture Aroclor 1254, the 

synthetic flavone I3-naphthoflavone (/3NF), and 2,3,7,8-tetrachlorodibenzo-p-dioxin 

(TCDD), the most potent inducer known. The consequence of induction of CYP1A and 

the other associated enzymes following dietary administration of TCDD on AFB, 

metabolism and hepatic DNA adduction is then addressed. 

Chemical Carcinogeflesis 

One of the first documentations that an environmental agent is capable of causing 

cancer was presented by Sir Percival Pott in the late 1700's. He linked the high 

incidence of scrotal cancer in chimney sweeps to exposure to soot and coal tar. It was 

not until the early 1900s that Pott's hypothesis of the carcinogenic potential of the tar 

was tested and confirmed in a laboratory setting by Yamagiwa and Ichikawa, who found 

dermal application of coal tar on rabbits caused cancer (reviewed in Phillips, 1983). 
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Today, the American Cancer Society estimates that one in four individuals in America 

will develop cancer over the course of their lifetime. Doll and Peto (1981) proposed 

that approximately 80% of all human cancer cases in the United States are caused by 

dietary factors, tobacco smoke, and other environmental exposures. Because of the 

prominence and severity of this disease, much attention has been focused on cancer 

research. 

While evidence of carcinogenicity in humans obtained by epidemiological studies 

is the most desirable, these data are not often available. Therefore, scientists have 

turned to laboratory animals for testing the potential of an agent to cause cancer. 

Rodent models have been preferred for these studies, but they have several limitations. 

For example, these experiments are time consuming and expensive, and therefore only 

a limited number of compounds can be tested per year. In addition, the mandatory use 

of the maximum tolerated dose in these studies calls into question the validity of the 

results (Ames and Gold, 1991; Ames et aL, 1993). Furthermore, many granting 

agencies are encouraging the supplementation of mammalian models with alternative 

models and approaches. 

For the past three decades, the rainbow trout model has been investigated and 

developed as a nonmammalian alternative model for carcinogenesis studies (reviewed 

by Bailey et al., 1996). The first demonstration of the susceptibility of rainbow trout 

to carcinogens occurred in the late 1950's and early 1960's, during an epizootic 

outbreak of liver tumors in hatchery-reared trout. The cause was traced to a 

contaminant in cottonseed oil used in the diet, which was identified as the potent 

mycotoxin, AFB, (Sinnhuber et al., 1968; Ayres, et aL, 1971). Since then, rainbow 
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trout have proven to be susceptible to a number of other various carcinogens as well, 

including dimethylnitrosamine (Ashley and Halver, 1968; Grieco et al. , 1978), 

diethylnitrosamine (DEN) (Shelton a aL , 1984; Hendricks, a aL , 1994) and 

benzo[a]pyrene (Hendricks a aL , 1985). 

Rainbow trout are not the only fish species susceptible to the carcinogenic 

process. In a hallmark study in 1965, Stanton demonstrated that DEN was capable of 

inducing hepatic tumors in the zebrafish. Further studies confirmed the responsiveness 

of zebrafish to DEN and also to nitrosomorpholine, although a water exposure to 

aflatoxin B1 failed to elicit tumors (Pliss and Khudoley, 1975; Khudoley, 1984; Bauer 

a al. 1972). Surprisingly, the research on carcinogenesis in zebrafish ended with these 

few studies. Information on the sensitivity of many other small fish models is on the 

increase, however (reviewed in Hawkins et aL , 1995). 

Carcinogenic Process 

Cancer is generally believed to be a multistage process involving initiation, 

promotion, and progression, although much debate surrounds the details associated with 

these stages. The following is only a brief summary of some of the theories concerning 

the possible mechanisms of carcinogenesis. Most of the basic principles can be found 

in Williams and Weisburger (1991), Weinberg (1989a), Pitot and Dragen (1991), and 

Harris (1991). 
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Initiation 

The first step of the carcinogenic process is initiation, and usually involves 

electrophilic interaction of a compound with DNA. There are two classifications of 

initiators: direct-acting carcinogens and procarcinogens. Direct-acting carcinogens are 

reactive electrophiles requiring no further activation, such as many cytostatic agents 

used in chemotherapy. Mechanisms of action include acylation and acylation of DNA. 

Procarcinogens, on the other hand, require metabolic activation to a reactive 

intermediate, or proximate carcinogen (reviewed by Guengerich, 1992). It is this 

electrophilic intermediate which can then bind to macromolecules including DNA 

(Miller and Miller, 1981). The DNA adduct resulting from the electrophile binding to 

DNA may be repaired, may lead to cell death if the damage is extensive, or may 

become a permanent DNA mutation following replication. 

The consequence of mutagenesis depends on numerous factors, including the type 

and position of the mutation. Point mutations occur when a single base is substituted. 

When a purine is substituted for another purine, or a pyrimidine for a pyrimidine, the 

substitution is a transition; conversely, a transversion occurs when a purine is replaced 

by a pyrimidine (or visa versa). Consequences of point mutations range from having 

virtually no effect on gene function to completely inactivating a gene product. 

Frameshift mutations arise when a base is inserted or deleted, resulting in a shift in the 

reading frame of a gene. Usually the gene product is nonfunctional. Not only is the 

type of mutation important, but the location of the mutation on the DNA is also crucial. 

If it occurs in a non-critical portion of the gene, such as on a non-transcribed region, 

there may be no consequence. Mutations leading to the activation of oncogenes or the 
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inactivation of tumor suppressor genes, on the other hand, can have a substantial 

impact, which will be discussed in the following section. Once a gene containing a 

mutagenic DNA lesion undergoes a round of replication without repair, the mutation 

becomes fixed and the change is irreversible. 

Promotion 

The initiated cell can remain dormant until appropriate factors, such as 

hormones, viruses, or chemicals, stimulate cellular proliferation. This reversible 

process is called promotion, and permits the clonal expansion of cells to a preneoplastic 

lesion. Increased cellular proliferation also decreases the available amount of time for 

repairing DNA, possibly leading to genomic instability (Swenberg, 1993). Activation 

of oncogenes and/or inactivation of tumor suppressor genes (or antioncogenes) is 

believed to play a role in the transformation to neoplasia. 

Proto-oncogenes are normal constituents of the cell that are important for cellular 

function, but when activated, appear to play a central role in the carcinogenesis process. 

Proto-oncogenes can be activated to oncogenes by mutations, gene amplification, or 

chromosomal translocations (reviewed in Ladik and Fortier, 1994). Such activation can 

lead to a loss of growth regulation and differentiation of the cell (reviewed in Smith et 

al. ,1993). There is speculation that activation of at least two oncogenes is required for 

the full neoplastic conversion of a cell, although not all the evidence supports this model 

(Weinberg, 1989b). A family of oncogenes known as ras oncogenes are commonly 

mutated at codons 12, 13, and 61 in human tumors, but the percentage of ras mutations 

varies greatly depending on the tumor type (Bos, 1989). Importantly, ros mutations are 
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not limited to just human tumors, but have been found in tumors in many other species 

including fish (Chang et al., 1991; Van Bowden and Ostrander, 1994). 

Tumor suppressor genes or antioncogenes are also essential for normal cellular 

function, and their numerous functions include regulating apoptosis and growth, DNA 

synthesis and repair, involvement in intercellular communication, and protease inhibition 

(Harris, 1991; Greenblatt et al., 1994). In contrast to the oncogenes, inactivation of the 

tumor suppressor gene is required for cellular transformation, and requires the loss of 

function of both alleles. The p53 suppressor gene is currently one of the most 

commonly mutated genes detected in human tumors, and unlike the ras mutations, p53 

mutations have been discovered in over 30 codons (Purchase, 1994; for review see 

Greenblatt a al. , 1994). However, there has often been a rather poor correlation 

between species in type and frequency of ras mutations and, in particular, p53 mutations 

(McMahon, 1994; Eaton and Gallagher, 1994). 

Progression 

The irreversible transformation of benign, preneoplastic lesions to malignant 

neoplasms is termed progression. During this final stage of carcinogenesis, the 

neoplastic cells frequently invade surrounding tissues and organs and enter the lymphatic 

or vascular system to be carried to other sites in the body for implantation (metastasis). 

Malignant neoplasms are associated with karyotypic changes, lack of cellular 

differentiation, metastasis, increased growth rate, and a heterogenous cell population 

(Weinberg, 1989a; Robbins and Kumar, 1987). Activation and/or inactivation of 

critical genes is believed to play an important role in this final stage of carcinogenesis 
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as well, but there is still much to learn about which genes are actually involved. The 

future holds much promise in further elucidating more of the many important factors 

associated with this disease. 

13iotransformation in Irish 

Although it had been originally hypothesized that aquatic organisms were 

incapable of metabolizing xenobiotics, numerous studies have since proven the contrary. 

Indeed, biotransformation of xenobiotics is just as significant in aquatic species as it is 

in mammals. 

Phase I Metabolism 

Biotransformation is usually divided into two phases: phase I and phase II 

metabolism. Phase I metabolism serves to add or expose functional groups, thereby 

increasing the compound's polarity. While the increased polarity may allow the 

compound to be directly excreted, phase I metabolism typically primes the xenobiotic 

for conjugation by a phase II enzyme. The reactions involved in phase I metabolism 

include oxidation, reduction, and hydrolysis, and utilize a multitude of different 

enzymes (Sipes and Gandolfi, 1991; Hodgson and Levi, 1994). 

Organic lipophilic compounds are metabolized primarily by oxidation via the 

mixed function oxidases (MFOs) and flavin monooxygenase (FMO). Although these 

enzyme systems are more thoroughly characterized in mammalian systems, research in 

aquatic species is growing. FMO metabolizes primary, secondary, and tertiary amines, 
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and sulfur-containing compounds (Sipes and Gandolfi, 1991; Ziegler, 1993). This 

membrane bound enzyme requires the electron donor NADPH and the prosthetic group 

FAD. In fish, FMOs are important in N-oxidation reactions, such as the oxidation of 

the endogenous substrate trimethylamine to trimethylamine oxide (Goldstein and Dewitt-

Harley, 1973; Agustsson and Strom, 1981; Stegeman and Hahn, 1994). FMO-like 

activity has been detected in rainbow trout (Schlenk and Buhler, 1991a; 1991b; 1993), 

cod (Agustsson and Strom, 1981), striped bass (Cashman et al., 1990), and nurse shark 

(Goldstein and Dewitt, 1973), although no FMO activity was detected in channel catfish 

(Schlenk et al. , 1993). 

The cytochrome P450s, a superfamily of heme proteins, are the most prominent 

class of phase I enzymes. These enzymes are important in the metabolism of both 

endogenous and exogenous substrates, including fatty acids, steroids, prostaglandin, 

drugs, and carcinogens. The MFO system requires the utilization of two enzymes: the 

heme protein, cytochrome P450, and NADPH-cytochrome P450 reductase, a 

flavoprotein responsible for shuttling electrons to the P450 enzyme and requiring 

NADPH as a cofactor. Although only one NADPH cytochrome P450 reductase enzyme 

has been isolated, Nebert and Nelson (1991) predict that "each mammalian species 

might easily have at least 60 and perhaps more than 200 individual P450 genes". 

Currently, P450s have been found in every phylum investigated. 

In fish livers, total amounts of P450s vary from 0.1 nmol/mg to 2.0 nmol/mg 

protein, although average hepatic levels in untreated fish range from 0.2 to 0.5 nmol/mg 

(Stegeman, 1989). Several P450s have been purified or cloned from various fish 

species. P450s identified in rainbow trout include members of families 1A, 2K, and a 
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number of P450s involved in steroid metabolism such as 11, 17, and 19 (reviewed in 

Stegeman and Hahn, 1994). One of the catalytic functions of CYP2K1 is the 

bioactivation of aflatoxin B1 to the reactive intermediate, which is capable of binding 

to protein, DNA, and RNA (Williams and Buhler, 1983). Topmumows appear to have 

a P450 with properties similar to CYP2E1, including the ability to bioactivate the 

procarcinogen nitrosodiethylamine (Kaplan et al., 1991). Scup appear to possess 

CYP1A, CYP2B and a CYP3A-like isozyme (Stegeman and Hahn, 1994; Husoy et al., 

1994), and studies in zebrafish show expression of CYP1A- and CYP2K1-like proteins 

(Buchmann et al., 1993; Collodi et al., 1994). CYP1A has also been detected in 

induced cod, perch, plaice, little skate, and medaka ( Stegeman and Hahn, 1994; Schell 

et a/. , 1987). Immunoblots from eight fish species show that the apparent molecular 

weight of hepatic CYP1A in fish ranges from 54,000-59,000 daltons (Goksoyr et aL, 

1991; Collodi et al., 1994). 

CYP1A is readily induced by a number of compounds including PAHs 

(benzo[a]pyrene, benzanthracenes), many flavones and indoles, 3-methylcholanthrene, 

and halogenated aromatic hydrocarbons (biphenyls, dibenzo-p- dioxins and 

dibenzofurans). CYP1A response in fish is currently being developed as a biomarker 

for certain environmental exposures (Goksoyr, 1995; Stegeman and Lech, 1991; Wirgin 

et aL, 1994). Levels of CYP1A can be assessed by measuring catalytic activity, 

antibody detection of protein, and cDNA probes for CYP1A mRNA. Because this P450 

plays a critical role in the metabolism of aromatic hydrocarbon procarcinogens, much 

research is now devoted to unraveling the mechanism of induction of CYP1A and 
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understanding the many factors, such as temperature and reproductive status, which 

influence this response. 

In mammals, the induction of CYP1A1 is regulated at the gene transcription level 

via the Ah (aryl hydrocarbon) receptor (AhR), a helix-loop-helix DNA-binding protein. 

In the unliganded state, the Ah receptor is found in the cytosol of the cell associated 

with two 90 kDa proteins (at least one is heat shock protein 90 (Hsp90)) and possibly 

a 46 kDa protein. Upon diffusion into the cell, the ligand binds to the Ah receptor. 

After ligand binding, the proteins dissociate from the complex, the receptor complex 

translocates to the nucleus, and the ARNT protein (Ah receptor nuclear Xranslocator 

protein) binds to the transformed AhR. The order of these events and the cellular 

location of ARNT are currently unclear, and proteins other than Hsp90 and ARNT are 

believed to play a role in the process, such as proteins involved in phosphorylation/ 

dephosphorylation of ARNT and the Ah receptor. Once in the nucleus, the receptor 

binds certain regions in DNA, including the dioxin- or xenobiotic-responsive regulatory 

elements, (DREs, XREs) upstream of CYP1A1 in DNA, increasing the rate of 

transcription of this gene product (Ah receptor regulation reviewed in Hankinson, 1995; 

Whitlock, 1993; Okey et aL , 1994). It is important to note that in mammals the Ah 

receptor is also responsible for upregulating other enzymes (such as glucuronosyl 

transferase, quinone-oxido-reductase, glutathione-S-transferase, CYP1A2, and CYP2B1) 

and for inducing proteins involved in cell growth and differentiation (Hankinson, 1995). 

Evidence from studies in fish show consistency of CYP1A induction with a receptor-

mediated response, and there has been a correlation between induction and the presence 

of the Ah receptor in fish (Stegeman, 1993; Stegeman and Hahn, 1994). 
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Phase II Metabolism 

Phase II enzymes typically conjugate phase I metabolites with an endogenous 

molecule, such as a sugar moiety, a sulfate group, an amino acid, or glutathione. The 

addition of this conjugate increases the water solubility of the metabolite even further, 

commonly leading to excretion via bile or the kidneys. While there is evidence of some 

of the other phase II reactions, such as sulfation, occurring in fish, the most prominent 

piscine phase II reactions identified and studied are glucuronidation and glutathione 

conjugation. 

Glucuronidation is just as important in fish as in mammals in the metabolism of 

endogenous compounds, such as sex steroids and bilirubin, and xenobiotics containing 

an appropriate functional group (James, 1987; reviewed in Clarke et al., 1991; George, 

1994). In general, uridine diphosphate glucuronosyltransferases (UDPGT) catalyze the 

transfer of glucuronic acid from the high energy cofactor UDP-glucuronic acid to the 

substrate to form O- glucuronides (phenols, alcohols, and carboxylic acids), N­

glucuronides (carbamates, sulfonamides, and aromatic amines), and S- or C­

glucuronides (thiols, thiocarbamic acids, some drugs) (Dauterman, 1994; Gibson and 

Skett, 1986). In fish, O-glucuronides are the most common conjugates, followed by N­

glucuronides. As in mammals, UDPGT activity is microsomal. While primarily 

located in the liver, UDPGT activity is also found in the kidney, gill and intestines 

(George, 1994). Benzo[a]pyrene, aflatoxin 131, benzene, and tetrachlorobiphenyl are 

just a few of the xenobiotics that can be glucuronidated by fish (Clarke et al., 1991). 
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Glutathione-S-transferases (GSTs) mediate the conjugation of the endogenous 

tripeptide, glutathione, with an endogenous or exogenous electrophilic metabolite. 

These ubiquitous, primarily cytosolic, enzymes exist as homo- or heterodimers. In 

mammals, the GSTs are currently grouped into four classes, and all but one class 

exhibit activity for the substrate 1-chloro-2,4-dinitrobenzene (CDNB) (George, 1994; 

Dauterman, 1994). Following conjugation with glutathione, the metabolite may be 

directly excreted, or more typically, further metabolized to a mercapturic acid and then 

excreted. All fish examined so far demonstrate activity for CDNB, and GSTs have been 

purified in several fish species (reviewed in George, 1994). It appears from these 

studies that fish also have multiple isoforms consisting of two subunits. Tissue-specific 

expression of the various GSTs appears to depend on both the specific isoform and fish 

species, but the GSTs are predominately found in liver, kidney, gills, and intestine 

(George, 1994). 

Aflatoxin B1 Metabolism and DNA Adduction 

Aflatoxins are mycotoxins produced by the fungal molds Aspergillus flavus and 

Aspergillus paraciticus. These mycotoxins frequently contaminate improperly stored 

foodstuffs, such as corn and peanuts. Afiatoxin (AFB,) is the most potent metabolite 

produced, and has recently been classified as a Group I carcinogen in humans (IARC, 

1993). Species response to this carcinogen is varied. Mice, coho salmon, and channel 

catfish are fairly resistant whereas rainbow trout, ducks and rats are susceptible to 

AFB1- induced carcinogenesis. Investigations have shown that such species differences 
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in carcinogenic response can generally be explained by differences in biotransformation 

of this carcinogen (Eaton et al., 1994; Eaton and Gallagher, 1994). 

Aflatoxin B1 Metabolism 

AFBI requires metabolic bioactivation to the reactive intermediate, the AFB1-8,9­

epoxide (AFBO), to exert its biological effects (Essigman a aL, 1982; Swenson et aL , 

1977). It is this unstable metabolite that is capable of binding to RNA, DNA, and other 

cellular macromolecules. The bioactivation of AFBI is typically a P450-mediated 

reaction, although alternative pathways, such as prostaglandin H synthetase- and 

lipooxygenase- mediated pathways, do exist. The primary P450s responsible for 

bioactivation of AFBI in humans are CYP1A2 and CYP3A4 (Gallagher a aL , 1994; 

Shimada and Guengerich, 1989; Eaton and Gallagher, 1994). CYP2K1 catalyzes AFBI 

activation in rainbow trout, and this P450 displays higher activity towards AFBO 

formation than rat P450s (Williams and Buhler, 1983). 

Differences in the production of the epoxide can sometimes explain the variations 

in sensitivity between species, such as rainbow trout compared to rat and Coho salmon 

(Williams and Buhler, 1983; Bailey a al., 1988). However, phase II detoxification 

reactions also can play a crucial role. Although mice actually have a higher microsomal 

activity for AFBO production compared to rats, mice are resistant to AFBI 

carcinogenicity due to a high activity of glutathione-S-transferase toward the epoxide 

(Degen and Neuman, 1981; Eaton et al., 1994; Eaton and Ramsdell, 1992). 

Glutathione conjugation of AFBO does not appear to be a significant reaction in fish 

(Gallagher and Eaton, 1995; Valsta a al., 1988). 



16 

Other metabolic pathways include additional phase I and phase II reactions. 

Reduction of AFBI by a cytosolic reductase generates aflatoxicol (AFL), a metabolite 

identified in rats, rabbits, birds, and fish (Eaton et aL, 1994; Gallagher and Eaton, 

1995; Toledo et aL, 1987). In mammals, 0-demethylation or hydroxylation produces 

the metabolites aflatoxin P1 (AFP1), aflatoxin Q1 (AFQ1), and aflatoxin M1 (AFM1). 

Trout can also form ARAI and can further reduce it to aflatoxicol M1 (AFL-M1) 

(Loveland et aL, 1979; 1983). AFL and AFL-M1 can be further metabolized by 

glucuronidation, a particularly important reaction in fish (Loveland et aL, 1984; Toledo 

et al., 1987). While hydroxylated metabolites of AFBI are generally considered to be 

detoxification products, the metabolites ARAI and AFL are still carcinogenic (Eaton et 

al., 1994; Shoenhard et al., 1981; Nixon et al., 1981; Bailey et al., 1994). In addition, 

in some species, AFL serves as a reservoir for AFB1, in that it can be oxidized back to 

AFBI for subsequent bioactivation (Salhab and Edwards, 1977; Loveland et al., 1977). 

A summary of the AFBI biotransformation pathways in rainbow trout is found in Figure 

1.1. 

Significance of 4latoxin B1 DNA adducts 

Aflatoxin-8,9-epoxide, the reactive intermediate produced by bioactivation of 

AFB1, can bind to cellular DNA, primarily forming the trans-8,9-dihydro-8-(N7-guany1)­

9-hydroxyaflatoxin B1 adduct (Swenson et al., 1977; Eaton and Gallagher, 1994; Bailey, 

1994). This adduct can undergo rearrangement to a ring opened formamidopyrimidine 

(FAPY) derivative, which is very persistent over time. Despite its persistence, 

however, evidence points to the initial adduct formed being the most important in 
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tumorigenesis (Bailey, 1994). Molecular dosimetry studies in both rats and trout 

demonstrate that DNA adduct formation highly correlates with tumor response, as does 

AFB, dose with the number of DNA adducts generated. These correlations are even 

more powerful because they display a strong linear relationship, even at low doses, 

suggesting that there is not a threshold for AFB, genotoxicity (Bechtel, 1989; Appleton 

et al., 1982; Choy, 1993; Dashwood et al., 1992; Bailey, 1994). 

DIHYDRODIOL 

1 
0 0 

TROUT DNA 
ADDUCTS 

OCH3 P4502K1 0 0 OCH 3­
8,9-EPDXIDE 

GST 

0 0 0cH3 

AFL-M1 

Figure 1.1 Biotransformation pathways of AFB, in rainbow trout. Abbreviations used: 
Anil, aflatoxin M1; AFL-MI, aflatoxin MI; AFL, aflatoxicol; UDPGT, UDP 
glucuronosyltransferase; GST, glutathione-S-transferase (from Breinholt, 1994). 
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The location of AFBrinduced mutagenesis again depends on the species and gene 

under investigation. Ras mutations, and in particular Ki-ras mutations, have been 

identified in both rat and trout exposed to AFB,, with hotspots at codons 12 and 13 

(Bailey, 1994; Eaton and Gallagher, 1994). Studies in humans have yet to detect 

activated oncogenes in populations exposed to AFB1. It appears that inactivation of the 

p53 tumor suppressor gene plays a role in humans. An association has been found 

between mutation in codon 249 in p53 and liver tumors from individuals from aflatoxin­

endemic areas (Harris, 1991). Further refinements in the sensitivity of techniques used 

in detecting mutations should help to elucidate other molecular events critical in AFBI-

induced carcinogenesis. 
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Abstract 

The zebrafish (Danio rerio) is assuming prominence in developmental genetics 

research. By comparison, little is known of tumorigenesis and nothing is known of 

carcinogen metabolism in this species. This study evaluated the ability of zebrafish to 

metabolize a well-characterized human carcinogen, aflatoxin B, (AFB1), to phase I and 

phase II metabolites and assessed hepatic AFB, -DNA adduction in vivo. Fish i.p. 

injected with 50-400 lig [3H]AFBI/kg body weight displayed a linear dose-response for 

hepatic DNA binding at 24 hours. AFB1-DNA adduct levels among treatments showed 

no statistical difference over the period from 1 to 21 days after injection, suggesting 

poor adduct repair in this species. DNA binding in female fish was 1.7-fold higher than 

in males (p < 0.01). An in vitro AFB, metabolism assay verified that zebrafish liver 

extracts oxidize AFB, to the 8,9-epoxide proximate electrophile (Km = 79.0 ± 16.4 

14114, Vmax = 11.7 ± 1.4 pmol/min/mg protein at 28.C). The excretion of AFB, and 

its metabolites was also examined by HPLC. As is typical of other fish studied, major 

metabolites excreted were aflatoxicol (AFL) and aflatoxicol-glucuronide (AFL-g), 

followed by unreacted AFB1. AFL appeared as early as 5 minutes after injection, 

whereas AFL-g was a significant metabolite after 18 hours. This study shows that in 

vivo administration of AFB, in zebrafish results in moderate adduction of the carcinogen 

to liver DNA, and that zebrafish have the capacity for both phase I and phase II 

metabolism of AFB1. The approximate 4-fold difference between rainbow trout and 

zebrafish AFB1-DNA covalent binding index appears insufficient to explain the relative 

resistance of zebrafish to dietary AFB1 hepatocarcinogenicity. 
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Introduction 

Aquarium fish are gaining use as alternative models for chemical carcinogenesis 

studies. Many contributing factors include short life span, short time to tumor response, 

ability to spawn regularly, reduced husbandry costs, the ability to include the whole fish 

sagittal-section on one microscope slide for histology, and a low spontaneous tumor 

incidence (Hawkins a al., 1988). The zebrafish was the first aquarium species in which 

chemically-induced tumors were demonstrated (Stanton, 1965). Later studies confirmed 

their responsiveness to diethylnitrosamine and also to nitrosomorpholine ( Khudoley, 

1984; Pliss and Khudoley, 1975). However, subsequent investigations have focused on 

life stage effects and toxicity upon exposure to various chemicals and heavy metals 

(Braunbeck et a/. ,1990a; 1990b; Nagel et al., 1991, Kalsch et al., 1991; Bresch et al., 

1990; Nielson a al., 1990; Dave and Xiu, 1991), with surprisingly little work on the 

response of zebrafish to carcinogens. 

Aflatoxins are secondary metabolites produced by the fungus Aspergillb flavus, 

with aflatoxin B1 identified as the most toxic metabolite. AFB, is a potent 

hepatocarcinogen and hepatotoxin in some species, such as the rat, duck, and rainbow 

trout, whereas other species, such as the mouse, seem to be fairly resistant to its effects. 

AFB, has recently been classified as a Group 1 carcinogen in humans (IARC, 1993). 

Aflatoxin exposure may occur via contaminated food, such as moldy corn and peanuts. 

Research has indicated that interspecies differences in sensitivity to this 

hepatocarcinogen can often be explained by variations in the biotransformation of AFB, 

(Eaton and Gallagher, 1994; Bechtel, 1989; Bailey et al., 1996). The activation of 

AFB, to the exo-AFB, 8,9-epoxide is thought to be responsible for its carcinogenic 
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effects because this unstable, highly reactive intermediate can bind to cellular 

macromolecules including DNA (Essigman et aL, 1982; Swenson et aL, 1977). Recent 

studies have shown that the endo-AFB, epoxide stereoisomer can also be produced, and 

although this epoxide is the more stable stereoisomer, it does not appear to be as 

efficient in forming DNA adducts (Raney et al., 1992a; 1992b; Eaton and Gallagher, 

1994). The rate and ratio of formation of the exo- and endo-AFB, epoxide 

stereoisomers depends on the species under investigation. Formation of this 

intermediate alone is not enough to account for carcinogenesis, since detoxification is 

possible via a glutathione-S-transferase mediated reaction. Successful scavenging of the 

exo-AFB, epoxide by this pathway has been shown to be responsible for lower 

susceptibility to the carcinogenic effects of AFB, in mouse compared to rat (Degen and 

Neumann, 1981; Raney et al., 1992a). 

AFB, response in fish depends upon the species being investigated. For 

example, coho salmon and catfish are resistant but rainbow trout are one of the most 

sensitive species known to the carcinogenic effects of AFB, (reviewed in Hendricks, 

1994; Bailey et al., 1996). A study in 1968 showed that exposure to microgram 

quantities of AFB, was acutely toxic to zebrafish embryos and larvae (Abedi and 

McKinley, 1968). However, zebrafish did not develop tumors after 2 ppm water 

exposure for 3 days (Bauer et. al., 1972). We have recently found AFB, to be a 

relatively weak hepatocarcinogen in this species (unpublished results). The purpose of 

this study was to characterize the in vivo metabolism and hepatic DNA adduction of 

AFB, in the zebrafish as a first step in assessing the mechanisms of AFB, resistance in 

this species. 
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Materials and Methods 

Animals 

Adult (sexually mature) male and female zebrafish with an average body weight 

of 0.5 g were obtained from the Food Toxicology and Nutrition Laboratory at Oregon 

State University. The zebrafish were maintained in 29 gallon aerated aquariums and a 

controlled temperature of 26°C (± 1) and a 14 hour light:10 hour dark photoperiod. 

During the week, fish were fed twice daily with Tetra Min Staple Food (flakes) each 

morning, and a combination of Oregon Test Diet (OTD) (Sinnhuber a al. , 1977) and 

brine shrimp in the afternoon on Monday, Wednesday, and Friday, and TetraMin Staple 

Food and brine shrimp on Tuesday and Thursday afternoons. On weekends, fish 

received only one feeding per day consisting of OTD and brine shrimp. Fingerling 

rainbow trout (Oncorhynchus mykiss) were reared in the Food Toxicology and Nutrition 

Laboratory as described (Sinnhuber et al., 1977). 

Chemicals 

AFB1 was purchased from Sigma Chemical Company (St. Louis, MO), and was 

assessed for purity by thin layer chromatography (TLC); MAFBI was from Moravek 

Biochemicals (Brea, CA) and the chemical and radiopurity was checked by TLC 

followed by radioscanning; Proteinase K, and RNase, DNase free were from Boehringer 

Mannheim Biochemicals (Indianapolis, IN); HPLC grade acetonitrile, methanol, 

tetrahydrofuran, and J.T. Baker C18 Empore extraction disks were from VWR (Seattle, 
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WA); Hoechst #33258 from Calbiochem-Behring Corp. (La Jolla, CA); aflatoxin HPLC 

standards aflatmdcol (AFL), aflatoxicol-glucuronide (AFL-g), aflatoxin-M1 (AFM1), and 

aflatodcol-M, (AFL-M1) were prepared in our laboratory by previously published 

methods (Loveland et. al., 1983; 1984); all other chemicals were purchased from Sigma 

(St. Louis, MO) or Aldrich Chemical Company (Milwaukee, WI). 

Metabolism of riljAFBi 

Adult female zebrafish, fasted for 24 hours, were intraperitoneally (i.p.) injected 

with 400 pg/kg body weight of [3H]AFB, (11.6 Ci/mmol) in 50% ethanol. The fish 

were rinsed with 2 ml of water after injection to account to remove residual traces of 

radioactivity, and placed in the dark in individual beakers containing 50 ml water. 

Water samples were collected and counted at various time points up to 24 hours for 

metabolite analysis. AFB, and metabolites were extracted from the aqueous samples 

using C18 Empore Extraction Disks. The disks were washed with 45 ml of the elution 

solvent (10 mM potassium acetate (KOAc), pH 5.0, adjusted to 60% methanol (MeOH)) 

in 15 ml increments, and then conditioned with 45 ml of 100% Me0H, 45 ml of 50% 

Me0H, and 45 ml of 10% Me0H. Pooled water samples from each time point 

(approximately 150 ml) were adjusted to 10% methanol and were loaded onto the 

conditioned disks. Prior to elution, the disks were washed with 10 ml of 10 mM 

KOAc, pH 5.0, adjusted to 10% Me0H, to wash off proteins, salts, and exchanged 

tritium. AFB, and metabolites were eluted with 15 ml of 10 mM KOAc, pH 5.0, 

adjusted to 60% methanol. Total recovery rates (comprised of all fractions and the 

disk, which was cut up and counted) were greater than 85%, and the amount of 
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radioactivity associated with the 60% methanol eluant represented 60-88% of the total 

radioactivity. The methanol eluates, containing the aflatoxin metabolites, were 

concentrated using a rotary evaporator and redissolved in 15 % acetonitrile: methanol: 

tetrahydrofuran (AMT; 15:20:6 v:v:v) and 85 % 0.02 M KOAc, pH 5.0. Reverse phase 

high pressure liquid chromatography was performed with a Beckman Model 334 

instrument using a 4.6 x 150 mm, 5 micron Phenomenex C18 column. The solvent 

system consisted of AMT (15:20:6 v:v:v) and 0.02 M KOAc, pH 5.0, with a 15 minute 

linear gradient from 15% AMT to 46% AMT. The flow rate was 1 ml/min, and IN 

detection was at 345 nm. Effluent samples of 30 drops (0.3 ml) were collected for 

liquid scintillation counting using a Beckman LS 7500 scintillation counter. 

Hepatic aflatoxin-DNA adduction 

To evaluate the dose-response of eirjAFBI-DNA binding, adult male and female 

zebrafish fasted for 24 hours were i.p. injected with 0, 50, 100, 200, or 400 µg/kg body 

weight of [3H]AFB, (11.6 Ci/mmol) in 50% EtOH and were rinsed with 2 ml of water 

to remove any residual skin contamination. Twenty-four hours after injection, livers 

were sampled with the gall bladders carefully removed, with 3 pools of 3 livers per 

dose. After sampling, the livers were not rinsed but immediately frozen in liquid 

nitrogen. DNA isolation and purification was based on the procedure by Strauss (1991), 

with the following modifications. Liver pieces were homogenized with digestion buffer. 

The samples were first extracted with equal volumes of phenol saturated with Tris-HC1 

buffer, pH 8.0., and then extracted twice with equal volumes of chloroform: isoamyl 

alcohol (24:1). The DNA was precipitated using 0.1 volume of 3 M sodium acetate and 
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2 volumes of cold 100% EtOH. After centrifugation, the EtOH was removed and the 

DNA allowed to dry. The DNA was dissolved in 0.5 ml of purified water by heating 

the samples at 38°C for 30 minutes, and then DNase-free RNase was added to the 

sample (final concentration 5µg/ml), and the incubation continued for another 30 

minutes. The samples were extracted twice with equal volumes of chloroform: isoamyl 

alcohol (24:1), and the DNA was again precipitated. After centrifugation, the EtOH 

was removed, and the DNA was washed with 70% ice-cold EtOH. DNA samples were 

stored at -20°C after dissolving the DNA in Tris-ethylenediaminetetraacetic acid 

(EDTA) (TE) buffer, pH 8.0. DNA concentration was quantified using the 

microfluorometric procedure described by Cesarone et al. (1979), with a Hoefer 

TKO100 DNA fluorometer. To determine the amount of riflAFBI bound to the DNA, 

samples were hydrolyzed by mixing with equal volumes of 1.0 M perchloric acid and 

heating at 70°C for 20 minutes. The hydrolyzed samples were then counted with a 

scintillation counter. Control liver samples spiked with rHJAFBI during the DNA 

isolation process revealed that there was negligible carry-over of non-bound tritium 

through the isolation process. 

To verify the sex-related difference in DNA binding observed in the dose-

response study, an experiment was conducted with 9 groups of 3 females, and 7 groups 

of 3 males. The fish were i.p. injected with 400 pg/kg body weight of rHiAFBi (13.0 

Ci/mmol), the highest dose used in the dose-response experiment. Livers were sampled 

24 hours later, and the amount of hepatic DNA binding was determined. 

To evaluate the time-course of AFB, -DNA binding, adult male and female 

zebrafish were i.p. injected with 400 µg/kg body weight of [311)AFB1 (15.4 Ci/mmol), 
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and livers were sampled 1, 2, 4, 7, 14, and 21 days after injection. Livers were 

immediately frozen in liquid nitrogen. DNA binding was determined as described 

above. 

In vitro AFBI-metabolism assay 

The in vitro metabolism of AFB, was carried out with juvenile trout (n =10), or 

adult female (n=20) or male (n =6) zebrafish liver homogenates. The fish were fasted 

for 24 hours before sampling. Female zebrafish and juvenile trout livers were excised 

and immediately frozen in liquid nitrogen and stored at -80°C. Male zebrafish livers 

were immediately placed into homogenization buffer and homogenized and then frozen 

due to difficulties with protease release during liver excision. Livers were homogenized 

in a buffer containing 0.1 M potassium phosphate (pH 7.25), 20% glycerol, 1 mM 

EDTA, 0.1 mM butylated hydroxytoluene, 1 mM dithiolthreitol, and 0.1 mM 

phenylmethylsulfonylfiuoride on ice. Samples were centrifuged at 1,000x g for 10 

minutes, and the supernatant decanted and stored at -80°C. Protein concentration was 

determined by the method of Lowry et al. (1951), with bovine serum albumin as the 

standard. 

The in vitro AFB1- metabolism assay was based on the method of Monroe and 

Eaton (1987), as modified by Takahashi et al. (1996). Samples were preincubated for 

2 minutes at room temperature before initiating the reaction with NADPH and reduced 

glutathione. Incubations were carried out for 45 minutes. Michaelis-Menton kinetics 

were determined with trout homogenates at both 13°C and 28°C using substrate (Anil) 

concentrations of 5, 10, 20 and 40 fiM AFB,, and with female zebrafish homogenates 
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at 28°C at substrate concentrations of 10, 20, 40 and 80 pM AFB1. The initial rates 

of epoxide formation were linear with substrate concentration. Male zebrafish 

homogenates were assayed using 80 pM AFB1, the highest substrate concentration, for 

comparison to female zebrafish. All assays were conducted in duplicate. Incubations 

without homogenates were used to correct for the low inherent epoxidation activity of 

butylated hydroxyanisole (BHA)-induced mouse cytosolic protein included in the assay 

mixture. 

Statistical analysis 

Statistical analysis was performed with SAS, version 6.8 (SAS Institute Inc., 

1989). Analysis was performed by either a one-way or two-way analysis of variance. 

A p value of less than 0.05 was considered significant. 

Results 

In vivo metabolism of flIMF731 

Early excretion kinetics of [41]AFBI were evaluated by measuring the amount 

of radioactivity recovered in water within a 24 hour time period after i.p. injection 

(Figure 2.1). By 24 hours, 47% of the radioactivity administered to the zebrafish was 

recovered in the water. Excretion occurred rapidly with 25% of the administered 

radioactivity recovered by 45 minutes. This amount represented more than half of the 

total radioactivity recovered in the 24 hour time period. The remaining 53% of the 
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Figure 2.1. The cumulative percentage of radioactivity excreted into water within 24 
hours after i.p. injection of [3H]AFB,. (n=3 females, error bars are ± SEM). 
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administered dose is presumed to represent material found bound strongly to 

macromolecules and material eventually eliminated via fecal excretion. 

The major metabolites of AFB, recovered in the water at various time points 

after i.p. injection were identified as aflatoxicol (AFL), aflatoxicol- glucuronide (AFL­

g), and unreacted parent AFB, (Figure 2.2). Identification of these peaks was based on 

the retention times of known aflatoxin standards generated in our lab. Formation and 

excretion of AFL occurred rapidly in the zebrafish and was present in the water at 5 

minutes, the earliest time point examined. Over the 24 hour time-period, AFL was the 

predominant metabolite, accounting for 17.3% of the original dose of AFB, 

administered. AFL-g and unreacted AFB, accounted for 4.1% and 3.6%, respectively. 

Figure 2.3 shows the proportion of AFB, and metabolites recovered in the HPLC 

profile at each time point investigated, with values normalized to 100. AFL was the 

major metabolite recovered in the water at each time point up to 18 hours, accounting 

for 60 to 80% of the metabolites recovered. After 18 hours, AFL-g was the major 

metabolite, and represented over 80% of metabolites recovered at the 24 hour time 

point. An unidentified polar peak accounting for only a minor percentage of the 

metabolites was occasionally detected, being most prominent at 5 minutes. While this 

peak could represent a more polar metabolite, it did not co-elute with authentic AFB1­

glutathione conjugate, and was not reproducible in another experiment conducted 

investigating aflatoxin metabolism (Chapter 3, this thesis). The role of sulfate 

conjugation in AFB, metabolism by zebrafish investigated in another experiment by aryl 

sulfatase treatment indicated non-detectable levels of this conjugate (Chapter 3, this 

thesis). Unresolved aflatoxicol-M, (AFL-M1) plus aflatoxin-M, (AFM1) represented 
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only a very minor fraction of the metabolites, comprising less than 2% of the 

metabolites recovered at any one time point. 
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Figure 2.2. The cumulative percentage of AFB, and metabolites excreted into water as 
determined by HPLC as a percentage of the original dose administered. Each data point 
represents the pooled water samples from 3 females. 
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Figure 2.3. The proportion of AFB1 and metabolites excreted into water at various time 
points over 24 hours as determined by HPLC. Values are normalized to 100. 
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In vivo AF731-DNA adduction in liver 

The in vivo dose-response for AFB, -DNA adduct formation was linear from 50­

400 gig AFBI/kg body weight (Figure 2.4). Females had a higher level of DNA binding 

than the males at all doses tested. The covalent binding index (CBI), where CBI = 

gimol chemical bound/mol DNA/mmol chemical administered/kg body weight, was 

32,700 ± 21,800 for males, and 56,000 ± 15,500 for females. Females had a DNA 

binding index which was significantly higher (1.7 fold higher) than males (p < 0.01). 

A follow-up study investigating sex-related difference in AFB, -DNA adduction verified 

the results found in the dose-response experiment. The binding index in the second 

experiment was 68,000 ± 31,400 for females and 29,100 ± 12,600 for males, which 

represents a 2.3 fold higher binding index in females compared to males (p < 0.05). 

An investigation of the time-course of rHJAFBI-DNA binding was conducted 

to assess when maximum DNA adduct formation occurred, and to investigate the 

persistence of DNA adducts in this species (Figure 2.5). Although there was some 

trend toward highest adduction at day 7, the time-course experiment failed to show any 

statistical difference in binding levels from 1 to 21 days. Therefore, the time at which 

maximal adduct formation occurs could not be calculated. The half-life of the DNA 

adducts was also not evident from this experiment. However, a significant difference 

was again noted between male and female AFB, -DNA binding levels, with the females 

exhibiting a binding index on average 42,000 units higher than the males (p < 0.001 

when comparing the average of females to the average of males). 
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Figure 2.4. The in vivo dose response of hepatic aflatoxin-DNA adduct formation at 24 
hours. Fish were i.p. injected with 50-400 ihg [3H]AFB, /kg body weight (data are 
means ± SEM from 3 pools of 3 fish each.) 
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Figure 2.5. Aflatoxin-DNA adduct formation from 1-21 days. (Data are means ± SEM 
from 3 pools of 3 fish each; data for males at Day 21 are mean ± SEM from 2 pools 
of 3 fish each). 



45 

In vitro An:II-metabolism assay 

Trout liver homogenates exhibited a higher Vmax for oxidation of AFB, to the 

8,9-epoxide at both 13°C and 28°C compared to the female zebrafish. As was 

expected, trout Vmax decreased at the lower temperature. However, the values at 13°C 

are probably more representative of the physiological response in the trout, since this 

is their normal environmental temperature. At 13°C, the trout liver homogenates had 

a 3.1 fold higher Vmax and a similar Km when compared to female zebrafish 

homogenates at 28°C (Table 2.1) in this experiment. The 7-fold lower Km for AFL 

production suggests that the reaction would predominate over AFB, -8-9-epoxide 

formation at low AFB, concentrations in vivo in zebrafish, and is consistent with the 

rapid excretion of AFL within 5 minutes of AFB, treatment. 

Not surprising was the relatively high amount of aflatoxicol which was formed 

in the zebrafish liver homogenates. At 80 icM AFB,, male and female liver 

homogenates exhibited comparable activities for aflatoxicol production, with the female 

zebrafish liver homogenates possessing an activity of 8.17 ± 0.09 pmol/min/mg 

protein, and male zebrafish an activity of 8.70 ± 0.04 pmol/min/mg protein. Male 

zebrafish did appear to have a lower activity towards formation of the AFB,- epoxide 

than females (4.10 ± 0.08 pmol/min/mg protein compared to 5.90 ± 0.10 

pmol/min/mg protein, p < 0.01). 
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Table 2.1. Michaelis-Menton kinetics of AFB,- epoxide formation in rainbow trout and 
zebrafish liver homogenates and aflatoxicol formation in zebrafish liver homogenates 
with the substrate AFB,'. 

Species Temperature	 Km Vmax 

GAO (pmol/min/mg) 

Production of AFB, -8,9-epoxide: 

Rainbow trout 13°C 81.2 ± 12.8 35.9 ± 4.1 

Rainbow trout 28°C 109.3 ± 15.0 66.6 ± 7.1 

Zebrafish (female) 28°C 79.0 ± 16.4 11.7 ± 1.4 

Production of AFL: 

Zebrafish (female) 28°C 11.2 ± 1.3 9.1 ± 0.3 

* n=10 for trout, and n=20 for zebrafish; all assays were run in duplicate, with 
nonenzymatic background activity subtracted; errors are given as asymptotic standard 
error. Only female zebrafish were used for this comparison against juvenile rainbow 
trout, which do not show sexual differences in AFB1 metabolism prior to maturity. 
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Discussion 

The results demonstrate that zebrafish have the capacity for both Phase I and 

Phase II metabolism of AFBI. The major in vivo metabolites excreted into water were 

AFL and AFL-g, followed by unreacted AFBI. This metabolic profile is similar to that 

seen in other fish species, such as the Japanese medaka, rainbow trout, and channel 

catfish (Toledo et aL, 1987; Gallagher and Eaton, 1995; Loveland et al., 1984). AFL, 

produced by a cytosolic reductase reaction, was recovered in the water at 5 minutes, the 

earliest time point examined. This has also been observed in the Japanese medaka 

(Toledo et al., 1987). It is important to note that while AFL is a polar metabolite of 

AFBI, it has been shown to be 70% as mutagenic and just as carcinogenic as AFBI in 

rainbow trout, and is also a potent carcinogen in Fischer 344 rats (Coulombe et al., 

1982; Schoenhard et al., 1981; Nixon et al., 1981; Bailey et al., 1994). The major 

conjugation (Phase II) reaction was glucuronidation, which is an important reaction in 

eliminating hydroxylated compounds in fish (Clark et al., 1991). No evidence of 

glutathione conjugation was present, as shown by co-chromatography with a glutathione 

conjugate standard. Formation and excretion of the aflatoxin metabolites occurred 

rapidly in the zebrafish after i.p. injection. 

The in vitro assay assessing AFBI metabolism again demonstrated the proficiency 

of AFL formation in zebrafish. This assay also evaluated the ability for AFB, 

epoxidation to the reactive intermediate by trapping the epoxide as the aflatoxin­

glutathione adduct formed. The results from this assay revealed that zebrafish possess 

the enzymes necessary for bioactivation of this carcinogen. When compared to trout 

liver homogenates assayed at 13°C, zebrafish appear to have a comparable Km and only 
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a 3-fold lower Vmax, which suggests that zebrafish should be a fairly sensitive species 

for AFB, carcinogenesis. Buchmann a al. (1993) conducted immunohistochemical 

analysis to detect the presence of the cytochrome P450 isozyme LMC2 (CYP2K1) in 

zebrafish. This isozyme is believed to be primarily responsible for the bioactivation of 

AFB, to the epoxide in rainbow trout (Williams and Buhler, 1983). The 

immunohistochemical analysis of zebrafish using antibodies directed against trout 

CYP2K1 showed that this isozyme was constituitively expressed in the liver, kidney, 

skin, and oral mucosa of zebrafish, with lower expression in gills, pseudobranch, 

intestines, and ovaries. It is possible that this or a similar P450 may be responsible for 

the observed bioactivation of AFB, in zebrafish. 

A significant difference in DNA adduct formation between male and female 

zebrafish was observed in all DNA binding experiments performed. An in vitro AFB, 

metabolism assay also confirmed the difference between males and females in their 

ability to bioactivate AFB, to the exo-AFB, epoxide, which is trapped with high 

selectivity by the mouse cytosolic glutathione transferase in this assay (Rany a aL , 

1992b). The in vitro assay did not measure differences in the abilities of males and 

females to produce the endo-epoxide, which is not efficiently trapped by the mouse 

enzyme. It might be that there is a different ratio of endo- and exo-epoxide production 

in males and females. Differences between sexes in their ability to metabolize 

xenobiotics are not unusual. A difference in xenobiotic biotransformation between male 

and female zebrafish was previously noted by Buchmann a al. (1993), where males 

tended to have higher 7-ethoxyresorufm-O-deethylase activity. This activity is usually 

associated with the presence of cytochrome P4501A1. The in vivo dose-response of 
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hepatic aflatoxin-DNA adduct formation was linear from 50-400 iig AFB, /kg body 

weight, which is consistent with experiments examining hepatic DNA binding in other 

fish species following AFB, administration (Dashwood et al., 1988; Toledo et al., 1987; 

and Witham et al., 1982). Using the highest dose, the time-course of aflatoxin -DNA 

binding showed no statistical difference in binding levels from 1 to 21 days, suggesting 

slow DNA repair in zebrafish liver. A useful method for comparing DNA binding 

between species is the CBI (cumulative binding index, units of iimol chemical 

bound/mol DNA/mmol chemical administered/kg body weight). A composite CBI 

calculated from the three DNA-binding experiments is approximately 70,600 in female 

zebrafish and 35,000 for males. For comparison, the CBI for rat and Japanese medaka 

is approximately 10,000 and 13,000, respectively, and is 240,000 for trout (Toledo et 

al., 1987, and references therein). From these data, zebrafish exhibit approximately a 

4-fold lower capacity for DNA adduct formation compared to trout, and a 5-fold higher 

capacity than rat and medaka. 

The results from both the investigation of in vivo DNA binding after i.p. 

administration of [3H]AFB, and the in vitro AFB, metabolism assay suggest that 

zebrafish should be a fairly sensitive model for AFB, carcinogenesis, if indeed the 

amount of DNA adducts present in this species truly correlates with tumor incidence as 

demonstrated in the trout model (Dashwood, et al., 1992). Not only are zebrafish 

capable of bioactivating AFB, to its active epoxide form, but the DNA adducts that 

result seem to be persistent over time. However, a study conducted in our laboratory 

investigating dietary exposure to AFB, is providing evidence to the contrary. Zebrafish 

appear to be quite resistant to the carcinogenic effects of AFB, when administered by 
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the dietary route (Tsai, 1996). A preliminary investigation of DNA binding after 

dietary administration of [3H]AFB, showed only a low level of adduct formation 

(unpublished results). This dramatic difference is suggestive of a difference in 

absorption. It appears that if one could get the carcinogen to the target organ, zebrafish 

might prove quite sensitive. Studies assessing carcinogenicity of i.p. administered AFB, 

have yet to be conducted. It may also be that, while there is evidence for persistence 

of DNA adduct formation after i.p. administration, these adducts simply do not go on 

to form initiated cells with any great efficiency in this species. Finally, even if 

initiation occurs, there could be a lack of promotion/progression of these cells in 

zebrafish liver. Further studies will be required to test these hypotheses. 

Other studies conducted in our laboratory with dietary administration of high 

amounts of diethylnitrosamine, dimethylnitrosamine, or dimethylbenz[a]anthracene for 

6 months have shown limited or no tumor response as well (Tsai, 1996; unpublished 

results). However, high doses of dietary methylazoxymethanol acetate did manage to 

elicit almost a 30% tumor response (Tsai, 1996). Detailed metabolism studies have not 

been conducted after administration of these various carcinogens, so it is uncertain if 

these low tumor responses are the product of low capacity for bioactivation, high 

capacity for detoxification and elimination, inability of these compounds when 

administered in the diet to reach the respective target organs, or some other factor 

governing the carcinogenic process. Interestingly, zebrafish exposed as embryos or fry 

to many of these carcinogens are proving to be more sensitive, indicating that zebrafish 

may be more susceptible to carcinogens at an early stage of development. 
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In conclusion, adult zebrafish can rapidly metabolize and excrete the potent 

hepatocarcinogen AFB, after intraperitoneal administration. Both in vitro and in vivo 

studies verify that this species has the capacity to bioactivate AFB, to its reactive 

intermediate. The DNA adducts that result are suggestive of sensitivity to this 

carcinogen. These results are in apparent contradiction to the resistance of zebrafish to 

dietary administration of APB" and suggest a mechanism related to factors other than 

inherent ability to metabolize and bioactivate this carcinogen. 
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Abstract 

This study investigated the response of cytochrome P450 1A (CYP1A) in the 

zebrafish (Dario rerio) following exposure to Aroclor 1254, p-naphthoflavone (I3NF), 

and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TODD), and then investigated TCDD 

modulation of aflatoxin B, (AFB,) metabolism and hepatic API:II-DNA adduction. 

Aroclor 1254 fed at 500 ppm for 1 to 9 days or intraperitoneal (i.p.) injection of 75 ­

200 mg Aroclor 1254/kg body weight failed to induce CYP1A protein or associated 7­

ethoxyresorufin-O-deethylase (EROD) activity. Dietary IMF at 500 ppm for 3 or 7 

days induced CYP1A protein and EROD activity approximately 3-fold above controls. 

A single i.p. injection of 150 mg #NF showed maximal induction of CYP1A protein 

and EROD activity by 24 hours, both of which decreased rapidly during the next 6 

days. A more refined study showed maximum CYP1A protein levels between 24 and 

36 hours, while EROD activity had an observable peak at 16 hours. CYP1A and 

EROD activity showed dose-responsiveness following single i.p. administration of 25, 

50, 100, or 150 mg fiNF/kg body weight. Dietary exposure to 0.75 ppm TCDD for 3 

days also significantly induced CYP1A. The effect of TCDD on the metabolism of 

[3H]AFB, in zebrafish was then investigated. The major rlljAFBI metabolites excreted 

in water over 24 hours in the control group were afiatoxicol, aflatoxicol-glucuronide, 

and parent AFB,. By contrast, the predominant metabolites in the TCDD-pretreated 

group were aflatoxicol-Mrglucuronide, aflatoxicol, aflatoxin M1 plus aflatoxicol-M1 

unresolved, aflatoxicol-glucuronide, and parent AFB,. Surprisingly, hepatic API:II-DNA 

adduction was approximately 4-fold higher in the TCDD treated group compared to 

controls. This significant difference could not be explained by increased capacity for 
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bioactivation of AFBI as measured by an in vitro AFBI metabolism assay. However, 

it was demonstrated that zebrafish have the capacity to bioactivate aflatoxin M1 to a 

reactive intermediate, and it is proposed that secondary bioactivation of this genotoxic 

intermediate may be responsible for the increased DNA binding. 

Introduction 

Fish are becoming important models in many areas in science, including 

developmental biology, genetics, neurobiology, aquatic toxicology, and carcinogenesis 

(Powers, 1989). The trout model has been and continues to be extensively characterized 

as an alternative nonmammalian vertebrate model in carcinogenesis research (for 

review see Bailey et aL, 1996). The use of smaller fish as experimental models is also 

assuming prominence because they have several advantages over the trout model such 

as their small size, ability to spawn regularly, reduced husbandry costs, and their overall 

hardiness (Hawkins et al., 1988). Many small fish species, such as the guppy, Japanese 

medaka, and zebrafish are proving to be susceptible to numerous carcinogens, including 

diethyl- and dimethylnitrosamine, 2-acetylaminofluorene, nitrosomorphiline, and 

methylazoxymethanol acetate (Sato et al., 1973; Khudoley, 1984; Fournie et al., 1987; 

Nakazawa et al., 1985; Hawkins et aL, 1986; Stanton, 1965). Zebrafish are a 

particularly attractive fish model because they are also being extensively developed in 

both genetics and developmental biology. Studies in our laboratory investigating the 

sensitivity of zebrafish to carcinogens are demonstrating that this species is a complex 

model. Adult zebrafish appear to be somewhat resistant to carcinogens administered in 
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the diet, but zebrafish are susceptible to carcinogen exposures in the water, particularly 

when exposed as embryos and fry (Tsai, 1996; unpublished results). 

Induction of cytochrome P450 lA (CYP1A) in fish is being investigated as a 

biomarker of exposure to certain compounds commonly found in the environment such 

as polyaromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and 

halogenated dibenzo-p-dioxins and dibenzofurans (for review see Goksoyr, 1995). 

While fish appear to lack the equivalent of inducible phenobarbital-type P450s, most fish 

species do possess a CYP1A-like P450 that can be effectively induced to a high level 

(Goksoyr et aL , 1991; Stegeman, 1989; Stegeman and Hahn, 1994). CYP1A is not 

normally constituitively expressed in significant levels. Following induction, it is 

primarily located in hepatic tissue, although in fish, it can also be found in extrahepatic 

tissues such as gill, kidneys, gut and heart (Buchmann et aL , 1993; Stegeman et aL , 

1989; Husoy et aL , 1994). Induction of CYP1A occurs following exposure to a wide 

range of compounds, including the classic inducer 3- methylcholanthrene, many flavones 

and indoles, and the PAHs and PCBs. In mammals, the Ah-receptor is the mediator of 

induction, and is known to be responsible not only for the induction of CYP1A1, but 

a host of other enzymes including quinone-oxido-reductase, glucuronsyltransferase, 

glutathione-S-transferase, CYP1A2, and CYP2B1 (Poland, 1979; Hankinson, 1995). 

The enhanced metabolic capabilities following exposure to one of the many 

CYP1A-inducing agents may result in altered metabolism of other xenobiotics including 

procarcinogens. One of the most extensively characterized procarcinogens is the potent 

mycotoxin aflatoxin B1 (AFB,), which requires bioactivation to the reactive intermediate, 

the AFB, -8-9-epoxide. While both the endo- and exo -AFB1 epoxide may be produced, 
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it is primarily the exo- epoxide stereoisomer that is responsible for binding to DNA 

(Raney et al., 1992a; 1992b; Eaton and Gallagher, 1994). This mycotoxin is 

carcinogenic in many species, including rat, human, and rainbow trout, the most 

sensitive species. Numerous investigations have explored the modulation of aflatoxin 

B1 metabolism and carcinogenesis by compounds known to act via the Ah receptor. 

Studies with rainbow trout have shown that pre-exposure to the synthetic flavone I3­

naphthoflavcme (1:114F), the PCB mixture Aroclor 1254, and the natural plant constituent 

indole-3-carbinol reduces AFB, carcinogenesis by altering the metabolism of AFB, and 

reducing DNA adduction (Shelton et al., 1986; Goeger et al., 1986; Nixon et al., 1984; 

Takahashi et al., 1995; 1996). An in vitro investigation of IMF-induced channel catfish 

microsomes showed induction of CYP1A enhanced detoxification of the carcinogen, but 

did not affect bioactivation of AFB, to its reactive intermediate (Gallagher and Eaton, 

1995). Other studies investigating IMF-induced rabbit pulmonary and hepatic 

microsomes and IMF-induced guinea pig liver, kidney, and lung microsomes have also 

shown increased formation of the less toxic metabolite aflatoxin m, and reduced DNA 

adduction (Daniels and Massey, 1992; Liu, et al., 1993). Although 2,3,7,8­

tetrachlorodibenzo-p-dioxin (TCDD) is the most potent Ah receptor agonist known, 

surprisingly few studies have investigated the modulation of AFB, metabolism and DNA 

adduction by pre-exposure to TCDD. The purpose of this study was to characterize 

CYP1A induction in zebrafish by Aroclor 1254, /3NF, and TCDD. After characterizing 

CYP1A induction, further studies were conducted to investigate the in vivo modulation 

of AFB metabolism and hepatic DNA adduction following dietary exposure to TCDD 

at a concentration known to exert biological effects on metabolizing enzymes. 
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Materials and Methods 

Chemicals 

AFBI and AFMI were purchased from Sigma Chemical Company (St. Louis, 

MO), and assessed for purity by thin layer chromatography (TLC); MAFBI was from 

Moravek Biochemicals (Brea, CA) and the chemical and radiopurity was checked by 

TLC followed by radioscanning; IMF was from Fluka Chemical Corp. (Ronkonkoma, 

NY); Aroclor 1254 was from Monsanto Company (St. Louis, MO); TCDD was from 

ANALABS (New Haven, CT); 7- ethoxyresorufin and resorufin were from Molecular 

Probes, Inc. (Eugene, OR); RNase, DNase free were from Boehringer Mannheim 

Biochemicals (Indianapolis, IN); HPLC grade acetonitrile, methanol, tetrahydrofuran, 

and J.T. Baker C18 Empore extraction disks were from VWR (Seattle, WA); Hoechst 

#33258 was from Calbiochem-Behring Corp. (La Jolla, CA); aflatoxin HPLC standards 

aflatoxicol (AFL), aflatoxicol-glucuronide (AFL-g), aflatoxin M1 (AFM1), and 

aflatoxicol -M1 (AFL-M1) were prepared in our laboratory by previously published 

methods (Loveland et. al., 1983; 1984). 

Animal care and maintenance 

Adult (sexually mature) zebrafish were reared and maintained in the Food 

Toxicology and Nutrition Laboratory in aerated 29 gallon aquariums with a controlled 

temperature of 26°C (± 1) and a 14 hour light:10 hour dark photoperiod. During the 

week, fish were fed twice daily with TetraMin Staple Food (flakes) each morning, and 
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a combination of Oregon Test Diet (OTD) (Sinnhuber et aL , 19Th and brine shrimp 

in the afternoon on Monday, Wednesday, and Friday, and TetraMin Staple Food and 

brine shrimp on Tuesday and Thursday afternoons. On weekends, fish received only 

one feeding per day consisting of OTD and brine shrimp. For dietary exposures, fish 

were fed one feeding of OTD or the test reagent in OTD per day during the course of 

the treatment. For the Aroclor 1254 dietary exposure only, fish were fed a control diet 

consisting of the purified casein diet (PC diet) or control diet containing Aroclor 1254 

(DeKoven et al., 1992). 

Preparation of liver tissue 

All fish were fasted for 24 hours before receiving the appropriate treatment. 

When fish were sampled, livers were immediately excised from the zebrafish, the gall 

bladders carefully removed, and the unrinsed livers placed on ice until the appropriately 

sized pools of tissue were obtained. The samples were then flash frozen in liquid 

nitrogen and stored at -80°C. Before use, livers were homogenized in ice-cold buffer 

containing 0.1 M potassium phosphate (pH 7.25), 20% glycerol, 1 mM 

ethylenediaminetetraacetic acid, 1 mM dithiolthreitol, 0.1 mM butylated hydroxytoluene, 

and 0.1 mM phenylmethylsulfonylfluoride. The samples were centrifuged for 10 

minutes at 1,000x g and the supernatant decanted for protein work. When DNA binding 

was also being investigated, the pellet was saved for DNA isolation and purification. 
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Investigation of CYP1A induction by Aroclor 1254, Off, and TCDD 

A total of 18 male and 18 female adult zebrafish were fed 500 ppm Aroclor 1254 

twice per day and 3 males and 3 females each were sampled on 1, 2, 3, 5, 7, or 9 days. 

Four males and 4 females were fed the control PC diet twice per day and 1 male and 

1 female sampled at days 2, 3, 5 and 7. When dietary exposure failed to show 

induction of CYP1A, 6 adult, female fish were i.p. injected with 100 or 200 mg 

Aroclor 1254/kg body weight, 4 were injected with carrier dimethylsulfoxide (DMSO), 

and all were sampled 24 hours later. 

To confirm results from a preliminary investigation which showed CYP1A 

induction after i.p. exposure to IMF, a time-course study was undertaken. Thirty adult 

female zebrafish were i.p. injected with 150 mg ONF/kg body weight and sampled at 

day 1, 2, 3, 4, and 7; 6 controls were injected with DMSO and sampled at day 1, 2, 

and 3. A concurrent dietary exposure to 500 ppm of 13NF was also conducted to 

investigate whether dietary exposure to this flavone was capable of inducing CYP1A in 

zebrafish. Sixteen adult female fish were fed 500 ppm /3NF and 8 fish fed control diet 

for 3 or 7 days. To further pinpoint the time of maximum CYP1A induction by fINF, 

32 adult female zebrafish were i.p. injected with 150 mg/kg body weight of IMF in 

DMSO and sampled at 8, 16, 24, or 36 hours after injection. Twenty-four female 

zebrafish were also injected with 25, 50, or 100 mg/kg body weight of INF in DMSO 

and sampled 24 hours later to try to establish a dose response (the 24 hour group in the 

time-course served as the 150 mg $NF/kg body weight dose). To evaluate if the use 

of DMSO instead of corn oil as a vehicle influenced the kinetics of induction, 40 

females were i.p. injected with 150 mg/kg body weight of fINF in corn oil and sampled 
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24, 36, 48, 72, and 96 hours after injection. Lastly, to verify previous results 

demonstrating a lack of detectable CYP1A following exposure to Aroclor 1254, 16 

female fish were i.p. injected with 75 or 150 mg Aroclor 1254/kg body weight using 

DMSO as a carrier. Ten females were i.p. injected with DMSO and 8 females were 

injected with corn oil and sampled 24 hours later to serve as controls for these 

experiments. 

Finally, to verify that TCDD induces CYP1A in the zebrafish, 16 adult female 

zebrafish were fed 0.75 ppm TCDD or control diet for 3 days and sampled on the 

fourth day. This dosage was based on a previous study by Buchmann et al. (1993) 

which also investigated CYP1A in zebrafish. 

TCDD modulation of aflatoxin DNA-binding 

Sixty-four adult female zebrafish were fasted for 24 hours and then fed control 

OTD or OTD diet containing 0.75 ppm TCDD for 3 days. The day after feeding was 

completed, 8 of the control fish and 8 of the TCDD-treated fish were sampled for 

representative assessment of CYP1A levels and EROD activity at the time of AFB, 

dosage. Then, 12 of the control and 12 of the TCDD-treated fish were i.p. injected 

with DMSO and the other 12 control and 12 TCDD-treated fish were i.p. injected 400 

µg/kg body weight of rIBAFBI (16.6 Ci/mmol) in DMSO. Fish were rinsed with 1 

ml of water to account for residual skin contamination before placement in respective 

5 gallon buckets containing approximately 16 liters of aerated water. Rinse water 

accounted for less than 4% of the injected dosage. Livers were sampled 24 hours after 

injection. 
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DNA was isolated and purified using a modification of Strauss (1991) 

(modification found in Troxel et al., Chapter 2 this thesis). DNA was quantified using 

the microfluorometric procedure of Cesarone et al. (1979) with a Hoefer TKO100 DNA 

fluorometer. The amount of [31]AFBI bound to DNA was determined after hydrolyzing 

the DNA by heating the samples at 70°C with equal volumes of 1 M perchloric acid for 

20 minutes and then counting with a Beckman LS 7500 scintillation counter. 

TCDD modulation of AFBI metabolism 

Twelve adult female zebrafish were fasted for 24 hours and then fed control 

OM or OM diet containing 0.75 ppm TCDD for 3 days. The day after feeding was 

completed, 3 control and 3 TCDD-treated fish were i.p. injected with DMSO, whereas 

the remaining 3 control and 3 TCDD-treated fish were i.p. injected with 400 µg/kg 

body weight of rITJAFBI (16.6 Ci/mmol) in DMSO. Fish were rinsed with 1 ml of 

water to remove any residual radioactivity before placement in individual beakers 

containing 50 ml of water. Rinse water contained less than 5% of the administered dose 

except for fish 2 of the AFB1/TCDD treatment group, which contained approximately 

8% of the injected dosage. At various time points, fish were removed to fresh beakers 

of water, the previous water samples were collected, and an aliquot was taken for 

scintillation counting. At 24 hours, the livers of the fish were sampled and treated as 

described earlier for enzyme analysis and quantification of DNA adduction. 

Water samples were extracted with C18 extraction disks and metabolite analysis 

performed by HPLC as described (Troxel et al., Chapter 2 this thesis). The amount of 

radioactivity remaining after filtration by the C18 filter (i.e., the amount not trapped by 
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the filter) was higher than expected in some samples, so these water samples were 

refiltered with another C18 filter. Some additional radioactivity was trapped in the 7 and 

24 hour samples of the AFBI/TCDD treated group, suggesting incomplete adsorption 

in the first filtration. However, there still was a high amount of radioactivity remaining 

unbound in these doubly filtered water samples. To investigate the nature of this 

material, the 7 and 24 hour water samples from both AFB,- treated groups were treated 

with 0.2 M sodium acetate buffer (pH 5.0), buffer containing /3-glucuronidase (4000 

units/ml), or sulfatase (20 units/ml, with 40 mM D-saccharic acid -1,4- lactone added to 

inhibit 13-glucuronidase activity) (Fong et aL , 1993). The samples were incubated at 

37°C for 18 hours before extracting twice with 2 volumes of ethyl acetate. When 

analysis of the results showed some glucuronidation in the 7 and 24 hour sample from 

the AFB1/TCDD treated group and the 24 hour sample from the AFB, group, up to 50 

ml of the water samples were evaporated down to 1 ml, and the samples were then 

injected into the HPLC for further analysis. Under these HPLC conditions, AFM, and 

AFL-M1 were not fully resolved, and therefore are reported together in the analysis. 

Immunobloaing 

Using bovine serum albumin as the standard, total protein was quantified by the 

method of Lowry et al. (1951). Proteins were separated by SDS-PAGE (Laemmli, 

1970) and electrophoretically transferred to nitrocellulose membranes (Towbin et al., 

1979). Due to the large number of samples to compare, after verification that only one 

cross-reacting band was present in blots analyzed for CYP1A protein, subsequent 

analysis of CYP1A was limited to dot blots. The blots were incubated with rabbit anti­



68 

trout IgG against LM41, (CYP1A) at a concentration of 2 µg/m1. The membranes were 

next probed with goat anti-rabbit secondary antibody conjugated to horseradish 

peroxidase. The P450 isozyme was detected using the ECL chemiluminescence 

detection kit. Densitometry analysis was performed with an HP Scan Jet flatbed scanner 

with NIH Image version 1.54 software (Wayne Rasband, NIH, public domain). 

Previously quantified ftNF-induced trout liver microsomes were used as standards on 

the blots, and all blots were normalized with the same sample of IMF-induced zebrafish 

liver homogenate. 

Enzyme assays 

EROD activity was determined by the method of Prough et al. (1978). The 

assay was conducted at 30°C with a substrate concentration of 2 AM. 

The in vitro AFB, metabolism assay was conducted using the method of Monroe 

and Eaton (1987), with modifications by Takahashi et al. (1996). This assay can 

indirectly measure bioactivation of AFB, by trapping the reactive intermediate with 

glutathione. Previous studies in which trout microsomes were incubated with Anil, 

instead of AFB, have shown the formation of another glutathione adduct with a different 

HPLC retention time than that of the AFB,- glutathione adduct, suggesting that trout also 

bioactivate AFM, to a reactive intermediate (data not shown). In this experiment, the 

metabolism of both AFB, and AFM, was investigated in zebrafish liver homogenates. 

The final assay concentration of AFM, or AFB, was 80 AM, and 0.51 mg/nil of 

supernatant protein from liver homogenates was used. Assay conditions consisted of 

a 2 minute pre-incubation at room temperature before the addition of the glutathione and 
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NADPH. Incubations were carried out at 28°C for 45 minutes before termination with 

ice-cold 2 M acetic acid and internal standard AFG1. Preliminary studies showed that 

this time point was in the linear range of time. 

Statistical analysis 

Statistical analysis was performed with SAS, version 6.10 (SAS Institute Inc., 

1989). Differences in the means between two groups were determined using the t-test 

procedure (equal or unequal variance t-test). Time or dose response data were analyzed 

using analysis of variance (GLM procedure), followed by polynomial trend analysis. 

The dietary f3NF study was analyzed by two way analysis of variance (days and /3NF 

dose effects). A p value less than 0.05 was considered significant in all analyses. 

Results 

Investigation of CYP1A induction in adult zebra fish by Aroclor 1254, 13NF, and TCDD 

The dietary exposure of adult zebrafish to 500 ppm Aroclor 1254 for up to 9 

days failed to increase CYP1A protein quantities above control levels, and did not 

measurably induce hepatic EROD activity. A subsequent study investigating the 

induction of CYP1A following i.p. injection of 100 or 200 mg Aroclor 1254/kg body 

weight also showed no response to this common inducer. A second attempt to induce 

CYP1A following i.p. injection of 75 or 150 mg Aroclor 1254 was again unsuccessful. 
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Thus Aroclor 1254 failed to evoke a detectable response in the zebrafish by either 

dietary or i.p. treatment. 

By contrast, a time-course investigation of CYP1A induction following i.p. 

injection of 150 mg #NF/kg body weight showed strong and maximal induction of both 

CYP1A protein and EROD activity by 24 hours, the first time-point examined following 

injection, with a curvilinear decrease over time (linear, p=0.0001; quadratic, p <0.004) 

(Figure 3.1, panel A). There was a rapid decrease in both protein and activity during 

the remaining course of the week, with barely detectable levels of EROD activity and 

non-detectable levels of protein at day 7. A dietary exposure of 500 ppm /RV for 3 or 

7 days demonstrated an approximate 3-fold increase in protein levels and EROD activity 

above controls (p <0.04, IINF main effect), but there was no statistical difference 

between the days (p =0.7) (Figure 3.1, panel B). Noteworthy is that low but detectable 

levels of CYP1A were observed in the controls from the dietary exposure, whereas 

control values in the injection experiment were non-detectable. This is suggestive of 

a dietary component possessing some CYP1A-inducing activity. 

Additional studies were conducted to further investigate the response of zebrafish 

CYP1A following exposure to 131%1F. Another time-course experiment using a narrower 

range of time was performed, because CYP1A was already maximally induced at the 

first time point examined in the previous time-course experiment. This study showed 

that protein levels displayed an increasing linear response over time (p= 0.003), and 

were highest between 24 and 36 hours following injection, while the EROD activity 

exhibited a significant curved response (quadratic, p= 0.035), with an observed peak at 

16 hours (Figure 3.2, panel A). It is interesting to note that the amount of induction 
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Figure 3.1. Induction of CYP1A protein and EROD activity in adult female zebrafish 
following i.p. or dietary administration of /3NF. A) Single i.p. injection of 150 mg 
tINF/kg body weight (data are means ± SEM from 3 pools of 2 fish each) B) dietary 
exposure to 500 ppm /INF (data are means ± SEM from 4 pools of 2 fish each for 
treated, and 2 pools of 2 fish each for controls). * and # designate statistical difference 
(p<0.05) from the observed peak for protein induction (*) and EROD levels (#). 
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Figure 3.2. Induction of CYP1A protein and EROD activity in adult female zebrafish 
by IMF following different treatments. A) single i.p. administration of 150 mg i3NF/kg 
body weight with sampling up to 36 hours after injection B) i.p. administration of 25, 
50 100, or 150 mg /3NF/kg body weight and sampled 24 hours later C) single i.p. 
administration of 150 mg/kg body weight of IMF in corn oil instead of the carrier 
DMSO, sampled up to 4 days following injection. All data are means ± SEM for 4 
pools of 2 fish each). * and # designate statistical difference (p <0.05) from the 
observed peak for protein induction (*) and EROD levels (#). 
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documented in this experiment is considerably less than that observed in the first study. 

It should also be noted that these samples showed high variability between groups, 

especially at the 36 hour time-point, which might explain the discrepancy with maximal 

induction of EROD activity occurring before peak induction of protein. Intraperitoneal 

injection of 25, 50, 100, or 150 mg IINF/kg body weight provided dose-responsive 

induction of protein and EROD activity (Figure 3.2, panel B). The response to IMF 

was also investigated by conducting another time-course experiment following i.p. 

injection of 150 mg/kg body weight of (31%1F in corn oil instead of DMSO (Figure 3.2, 

panel C). Over the range of four days, there was a decreasing trend for EROD activity 

(p=0.0004), with an observed peak at 36 hours. This time point, however, was not 

statistically different from the 24 hour time point (p =0.1), which is consistent in the 

experiments with DMSO as a carrier. As in the experiment in Figure 3.2, panel A, 

levels of CYP1A protein showed less dramatic changes than EROD activity over the 

period examined. 

TCDD, the most potent Ah receptor agonist yet described, was found to be a 

potent inducer of hepatic CYP1A in this species as well. Zebrafish fed 3 days with 

0.75 ppm TCDD in OTh had an EROD activity approximately 17-fold higher than 

controls (391 ± 29 pmol/min/mg protein compared to 23 ± 5 pmol/min/mg protein). 

Protein levels were also greatly induced in TCDD-treated fish (96 ± 17 densitometry 

units versus non-detectable levels in controls). 
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TCDD modulation of AR; metabolism in vivo 

Early excretion kinetics of AFB, metabolites following i.p. administration of 

[3H]AFB, was assessed by measuring the amount of radioactivity recovered in the water 

over 24 hours. The amount of radioactivity did not significantly differ between 

treatment groups. Approximately 52 ± 13% of the administered radioactivity was 

recovered by 24 hours in the TCDD/AFB, treatment group, while 45 ± 7% was 

accounted for in the AFB, treatment group (Figure 3.3). These data show that, overall, 

early excretion kinetics of [3H]AFB, were not strongly affected by preexposure of 

zebrafish to TCDD. 

However, whereas the total amount of radioactivity recovered in the water was 

similar, the actual metabolic profile of AFB, was different between the two groups. 

The AFB, treatment group exhibited a similar metabolic profile to that seen in the 

earlier metabolism study (Troxel et al., Chapter 2 in this thesis). Aflatoxicol (AFL) 

accounted for approximately 17% of the original dose administered, followed by 

unreacted AFB, at 6.1% and aflatoxicol-glucuronide (AFL-g) at 5.3% (Figure 3.4, panel 

A). Less than 1% of the administered dose was recovered as aflatoxin MI (AFM,), 

aflatoxicol MI (AFL-M1), or aflatoxicol-M1-glucuronide (AFL-M1-g) combined. As was 

expected in the TCDD/AFB, treatment group, there was a higher production of 

AFM, /AFL -M, and of the glucuronides. AFL-M,glucuronide was the predominate 

metabolite, accounting for 8.6% of the original dose, followed by AFB, and AFL with 

approximately 7.5% each, AFM, and AFL-M, with 5.6%, and lastly AFL-g with 4.0% 

(Figure 3.4, panel B). Treatment of the water samples with sulfatase demonstrated that 
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Figure 3.3. The cumulative percentage of radioactivity recovered in the water within 24 
hours in control and TCDD-treated zebrafish following i.p. administration of rliJAFBI. 
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Figure 3.4. The cumulative percentage of individual metabolites recovered in water over 
24 hours following i.p. administration of [3H]AFB1, expressed as a percentage of the 
original dose administered A) in the control-fed group B) in the TCDD-fed group. 
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sulfate conjugation represented only a minor metabolite (at most representing less that 

0.5% of the administered dose) in the zebrafish. 

Figure 3.5 shows the percentage of each metabolite recovered at each time point 

as a percentage of the original dose administered. Overall, the total percentage of 

recovery of the metabolites varied slightly between the groups, with 29% of the dose 

recovered in the AFBI group, and 33.2% in the TCDD/AFBI group. The slight 

increase in metabolites recovered in the TCDD/AFBI group occurred primarily at the 

24 hour time point, where there was the increased production and excretion of the 

glucuronides of AFL and AFL-M1. The greater production of AFL-M1-g compared to 

AFL-g might reflect substrate availability, or perhaps the more polar AFL-M1 may be 

preferentially glucuronidated over AFL. 

TCDD modulation of in vivo hepatic AFB-DNA adduction and in vitro activation of AFB 
and Anil 

The in vivo hepatic AFB-DNA adduction at 24 hours after i.p. injection of 400 

[3H]AFBI/kg body weight was determined to be almost 4-fold higher in the group 

pre-exposed to TCDD than in the control group (1660 ± 175 pmol AFB1/mg DNA 

versus 438 ± 109 pmol AFBI/mg DNA, p < 0.05) (Table 3.1). To further investigate 

the cause of this notable difference in adduction levels, in vitro AFBI and ARAI 

metabolism studies were conducted (Table 3.1). The results from these metabolism 

experiments showed no statistical difference between the control or TCDD-treated 

groups in their ability to bioactivate AFBI or AFM, to the respective reactive 

intermediate. There was also no statistical difference between the two groups in their 
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Table 3.1. Effects of TCDD pretreatment on in vivo hepatic [3H]AFBI -DNA adduction 
and in vitro AFBI and AFM1 bioactivation and metabolism'. 

AFBI TCDD /AFBI 

'hepatic DNA adduction 

pmol AFBI /mg DNA 438.2 ± 109.1 1660.2 ± 175.4 

baflatoxin-8,9-epoxide 

pmol/min/mg protein 13.5 ± 5.4 9.5 ± 1.0 

aflatoxin M1 (AFM1) 

pmol/min/mg protein 1.0 ± 0.3 24.2 ± 3.0 

aflatoxicol (AFL) 

pmol/min/mg protein 9.2 ± 2.4 8.3 ± 0.8 

caflatoxin MI -8,9- epoxide 

pmol/min/mg protein 8.2 ± 3.1 6.2 ± 0.6 

' data are means ± SEM from 3 pools of 4 fish each, and 1 pool of 3 fish each 
b assays were run in duplicate with a final substrate concentration of 80 Amol AFBI, 
with nonenzymatic background subtracted 
c assays were run singly, with a final substrate concentration of 80 AM AFMI, with 
nonenzymatic background subtracted. The epoxide was trapped as the glutathione 
adduct similarly to the AFBI -8,9-epoxide. 
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capability of metabolizing AFB, to the primary metabolite AFL. However, the TCDD-

treated group did have a 22-fold increase (p =0.0001) in their capability to metabolize 

Anti to AFMI, a reaction believed to be mediated by CYP1A in zebrafish as has been 

shown for trout (You et al., unpublished results). 

Mew of TCDD on CYNA protein and EROD activity. 

CYP1A protein levels and EROD activity were measured at day 0 (the time that 

the AFBI dosage was administered) in eight control and eight TCDD-treated fish to 

provide a representative value of CYP1A induction in the zebrafish at the time of AFliti 

dosing. The results were in accordance with the preliminary TCDD-dietary exposure 

already described earlier in this section. The average EROD activity was 337 ± 10 

pmol/min/mg protein, and protein levels were 128 ± 4 densitometry units. In this 

experiment, no CYP1A activity was detectable in the controls. CYP1A induction was 

also measured in the supernatant from the samples used in the DNA-adduction and 

metabolism experiments. Protein levels and EROD activity were non-detectable in the 

samples that received no TCDD treatment (i.e., the groups fed control diet and injected 

with either DMSO or [311]AFB1). CYP1A protein levels and EROD activity were 

comparable between the TCDD-treated groups (i.e., the groups fed TCDD and injected 

with DMSO or [31I]AFB1). The TCDD-treated group that received [311]AFBI had a 1.6­

fold higher mean EROD activity than the TCDD-treated group injected with carrier only 

(550 ± 64 pmol/min/mg protein versus 344 ± 68 pmol/min/mg protein), but this 

difference in mean activity did not achieve significance (p =0.07) (Figure 3.6). The 
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results verify that TCDD treatment in fact did induce hepatic CYP1A in fish used for 

the AM:II-DNA binding experiment. 
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Figure 3.6. Levels of CYP1A protein and associated EROD activity in the supernatant 
from zebrafish liver homogenates used in the metabolism and DNA adduction 
experiments. (Data are means ± SEM from 3 pools of 4 fish each, and 1 pool of 3 fish 
each). 
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Discussion 

CYPIA in zebrafish 

A cytochrome P4501A1-like protein has been found in all fish species so far 

investigated, including zebrafish. Using anti-trout P4501A1 IgG, Buchmann et al. 

(1993) noted a single cross-reactive band from zebrafish liver microsomes following 

dietary exposure to TCDD, and Collodi a al. (1994) found 2 cross-reactive bands 

(50,000 and 54,000 kDa) from zebrafish liver homogenates following exposure to a 

static water bath containing TCDD. Our results showed that a single cross-reacting 

band was induced in zebrafish liver homogenates following exposure in vivo to $NF or 

TCDD using this same antibody. Interestingly, both an in vivo static bath exposure of 

zebrafish to 50 itg/1 of /31sIF for 48 hours and zebrafish liver cells exposed to OW in 

vitro showed no detectable induction of a CYP1A-like protein (Collodi et al., 1994; 

Miranda a al., 1993). Our studies, however, demonstrated that zebrafish CYP1A was 

indeed responsive to this flavone in the whole animal following i.p. administration or 

dietary exposure. The explanation for this difference is unknown. 

13141F induction of CYNA 

Induction of the CYP1A-like protein and associated EROD activity following 

exposure to OF is similar to that seen in other fish species, including the rainbow 

trout, Japanese medaka, and goldfish (Zhang a al., 1990; Schell et al., 1987; Gooch 

and Matsumura, 1983). The decreased levels of activity seen between the first and 
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second time-course experiments is not too surprising. While both experiments were 

conducted using fish from the same spawning, the experiments were not performed 

concurrently. The levels and inducibility of CYP1A in fish can vary greatly depending 

on the reproductive status of the fish (Fortin and Haux, 1990; Larsen et al., 1992). 

Courtenay et al. (1994) investigated CYP1A mRNA expression in Atlantic tomcod and 

found varying degrees of CYP1A mRNA expression in prespawning, spawning, and 

spent male and female tomcod. The consequences of continuous spawning in such fish 

as the zebrafish are not known at this time. 

Lack of Aroclor 1254 induction of CYP1A 

The lack of induction of CYP1A in zebrafish liver following both dietary 

exposure and i.p. administration of Aroclor 1254 is puzzling This commercial mixture 

of PCBs containing 54% chlorine is usually quite effective as a 3-methylcholandrene­

type inducer in most species. Only seldom is non-responsiveness to this mixture 

documented. One example is the study by Yawetz et al. (1992), in which exposure of 

a Mediterranean mollusc species to Aroclor 1254 increased overall P450 levels in the 

digestive gland, but actually decreased EROD activity. In another example, redfish 

receiving a single i.p. injection of Aroclor 1254 did not show any increase in 

microsomal mixed function oxidases (Stahl et al., 1984). Studies in fish using high 

doses of /3NF, benzo[a]pyrene, or planar PCBs have demonstrated that high doses of 

these inducers can actually lead to inhibition of activity or mRNA of the very protein 

being induced (Gooch et al., 1989; Goddard et al., 1987; Haasch et al., 1993; 

Melancon and Lech, 1983). In the present study, not only was EROD activity non­
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detectable, but protein levels were also not induced above control values, even at the 

lowest dose (75 mg/kg body weight) investigated. Another possible explanation might 

be that induction by this PCB mixture could be delayed, and simply was not detected 

by 24 hours following i.p. administration. The dietary exposure, however, was 

continued for 9 days with continuous feeding, and was also unsuccessful at inducing 

CYP1A. The Ah receptor has not yet been isolated in zebrafish. While the assumption 

is that the mechanism of induction of CYP1A in zebrafish is mediated by the Ah 

receptor, this has not been verified. If the Ah receptor is indeed present, it might be 

that the agonist binding site is more selective in this species. 

TCDD modulation of AFIII metabolism 

The in vivo metabolism of AFB, in zebrafish observed in this experiment was 

similar to the metabolic profile documented in a previous study (Troxel et al., Chapter 

2 of this thesis). The predominant metabolites excreted into water over 24 hours were 

again AFL, AFB1, and AFL-g. The AFB, metabolites excreted by the TCDD pretreated 

group consisted of AFL, AFB1, and AFL-g, but additionally included AFK/AFL-M1 

and the glucuronide of AFL-M1. It is believed that CYP1A1 is the enzyme responsible 

for production of AFMI, and is postulated that AFM, can become further hydroxylated 

to form AFL-M1, which can than be glucuronidated, as is the case in rainbow trout 

(Loveland et al., 1983; 1984; Goeger, et a/. , 1988; You, publication in progress). 

Therefore it is no surprise to see increased levels of AFK/AFL-M1 and the glucuronide 

of AFL-M1. 
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The in vitro metabolism experiments showed increased formation of AFMI in the 

TCDD-treated liver homogenates, confirming the results of the in vivo study. Although 

there was a significant difference in the in vivo production of AFL between the control 

and TCDD-treated groups (17.1% versus 7.5%), there was no difference in the 

formation of AFL between the two groups in the in vitro metabolism assay. TCDD-

treatment also did not affect the ability of the liver homogenates to bioactivate AFB, and 

AFM1 in vitro. Unfortunately, enzyme activities could not be calculated in terms of 

P450 content, but rather only on a per mg protein basis, since zebrafish livers were too 

small to permit total P450 quantification. Analysis of CYP1A in the supernatant from 

zebrafish liver homogenates used in the metabolism and DNA adduction experiments 

verified that this protein and its associated EROD activity were induced by the TCDD 

treatment. 

TCDD modulation of AFBI-DNA adduction 

The results from the investigation of TCDD modulation of hepatic AFB1 -DNA 

adduction showed an approximate 4-fold increase in the amount of hepatic DNA­

adduction in the TCDD-treated group. A study by Walsh et al. (1992) also 

demonstrated that TCDD pretreatment increased DNA adduction and toxicity following 

exposure to AFBI in a human epidermal cell line. The increased binding in the TCDD-

treated group of zebrafish cannot be explained by an increased ability to bioactivate 

AFBI to the reactive exo-8-9-epoxide, since the in vitro AFB1 metabolism assay failed 

to show any difference in this activity between groups. This assay uses mouse cytosolic 

glutathione transferase which almost exclusively traps the exo-, but not the endo-AFIti­
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epoxide. The increased binding could be related to the increased production of AFM1 

and/or AFL-M1, and further activation to a DNA binding species. The in vitro AFM1 

metabolism assay did demonstrate that zebrafish are quite capable of bioactivating AFM1 

to a reactive intermediate capable of binding glutathione and forming an adduct. in vivo 

genotoxicity tests of AFMI in Drosophilia melanogaster showed a only a 3-fold lower 

potency for damaging DNA compared to AFB, in one test, and equal genotoxicity in 

another test (Shibahara et al., 1995). Work with rainbow trout hepatocytes also 

demonstrated that AFMI and AFL-M1 had DNA binding values approximately 80% that 

of Anti (Loveland, et al., 1988). 

In conclusion, zebrafish possess a CYP1A1-like protein that is readily inducible 

following i.p. administration or dietary exposure to I3NF, but is refractory to Aroclor 

1254 at the doses investigated in this study. Dietary exposure to TCDD, the most 

potent Ah receptor agonist, was also found to effective. Following exposure to TCDD, 

the metabolism of AFBI was altered in a pattern consistent with increases in CYP1A1, 

which is usually considered a detoxifying pathway. However, this pathway appears to 

correlate with an increase in the toxicity of AFB, in this species, as measured by an 

approximate 4-fold increase in hepatic AFBI -DNA adduction. 
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CHAPTER 4
 

CONCLUSIONS AND FUTURE DIRECTIONS 

Zebrafish are efficient at metabolizing AFB, to both phase I and phase II 

metabolites, including bioactivation of AFB, to a reactive intermediate capable of 

binding to DNA, as shown by an in vitro AFB, metabolism assay and confirmed in the 

in vivo hepatic DNA-binding experiments. These data suggest that zebrafish should be 

fairly sensitive to the carcinogenic effects of AFB,. However, Tsai' has demonstrated 

that zebrafish are actually resistant to Anti-induced carcinogenesis when the carcinogen 

is administered in the diet. Hepatic DNA-binding studies conducted following a dietary 

exposure to [3H]AFB, also showed only low levels of adducts (unpublished results). 

These results suggest a difference in absorbance and distribution of dietary AFB, 

compared to i.p. administration. It seems that if the carcinogen can reach the target 

organ, zebrafish are quite capable of bioactivating AFB,. For future studies, this 

hypothesis could be evaluated by comparing the biodistribution of [H]AFB, following 

gavage or injection, in order to measure the proportion of doses effectively delivered 

to the target organ by these two exposure routes. A logical companion study would be 

to compare the tumor response by dietary and i.p. administration of APB, in zebrafish. 

Zebrafish CYP1A responded to the common CYP1A inducers $NF and TCDD, 

as measured by catalytic activity and antibody detection of protein. CYP1A induction 

'Tsai, H.-W. (1996). Evaluation of zebrafish (Brachydanio rerio) as a model for 
carcinogenesis. [Ph.D. dissertation]. Oregon State University, Corvallis, OR. 
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occurred by 48 hours following i.p. administration of PM. Surprisingly, there was no 

measurable response following dietary or i.p. administration of Aroclor 1254, a 

commercial mixture of PCBs that is an effective inducer in trout and other species. It 

would be interesting to further assess CYP1A response by measuring mRNA levels to 

see if transcription of this gene was activated or not. One could also explore the affects 

of other typical CYP1A inducers, such as 3-methylcholanthrene and some of the planar 

non-ortho substituted chlorinated biphenyls. By conducting investigations using more 

specific inducers, one could better evaluate if the agonist binding site might be more 

selective in this species. 

The modulation of AFBI metabolism by a CYP1A inducer, in this case TCDD, 

was consistent with experiments conducted by other scientists. Due to increased levels 

of CYP1A, the metabolic profile shifted to formation of ARA and AFL-Mr 

glucuronide, the metabolite and its glucuronide conjugate typically associated with 

CYP1A. The 4-fold increase in hepatic DNA binding in the TCDD-pretreated group 

could not be explained by an enhanced capacity for bioactivation of AFBI. It is 

postulated that AFK is also bioactivated to a reactive intermediate that can bind to 

DNA. One approach to investigating this hypothesis is to essentially repeat the previous 

in vivo TCDD-modulation experiment, but this time going a step further. Instead of just 

measuring the total amount of radioactivity bound to DNA, one could look at the actual 

adduct profiles produced by the control or TCDD-pretreated groups following AFBI 

exposure. The adduct profile generated from the HPLC analysis should indicate 

whether AFM1, or perhaps even AFL-M1, forms an adduct with DNA, or if some other 

difference exists between the treatment groups in their DNA-adduction patterns. 
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The future of the zebrafish as a model for chemical carcinogenesis remains 

uncertain. Zebrafish do not appear to be sensitive to carcinogenesis following dietary 

exposures to AFB1, N-nitrosodiethylamine and N-nitrosodimethylamine, but they did 

respond to the direct acting carcinogen, methylazoxymethanol acetate'. As already 

mentioned, the lack of response in zebrafish following dietary exposures could be due 

to lack of absorption and distribution of the carcinogens. It should be noted that 

zebrafish do not have a stomach, and the effect of the absence of this organ on the 

process of absorption of compounds is not known.. Other factors may play a significant 

role as well. For example, the dietary exposures could not be initiated until the fish 

were large enough to eat the diet used in carcinogen exposures. This timing typically 

coincided with sexual development2, which in rainbow trout has correlated with 

decreasing sensitivity to carcinogens. Also, zebrafish are selective eaters, and it is 

difficult to assure that the proper dose has been given. In contrast to the lack of 

response of zebrafish following most dietary exposures of carcinogens, static water bath 

exposures of zebrafish fry and embryos resulted in tumorigenesis. Unfortunately, the 

metabolism of carcinogens other than Ant, has yet to be studied in zebrafish. 

Additional studies investigating the metabolic capabilities of this species could further 

elucidate the mechanistic basis for these contrasting results. 

Another drawback of this fish model is that it is difficult to conduct biochemical 

studies in zebrafish. The liver is diffuse and difficult to remove, and large numbers of 

livers need to be pooled together in order to have enough tissue with which to work. 

'Tsai, H.-W. (1996). Evaluation of zebrafish (Brachydanio rerio) as a model for 
carcinogenesis. [Ph.D. dissertation]. Oregon State University, Corvallis, OR. 
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In addition, due to the virtual impossibility of removing the liver intact, it appears that 

proteases are released during sampling, and if one is not careful, one can quickly lose 

biological activity of proteins. For a more detailed biochemical analysis, one might 

have to resort to using in vitro test systems, such as zebrafish cells in culture or cloned 

gene products. One will then have the additional question of the validity of the results 

as they relate to the in vivo system. 

Because of the many difficulties and unexpected results encountered in the 

overall project to develop the zebrafish as a model for chemical carcinogenesis, many 

questions remain regarding zebrafish and their response to carcinogens. 
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