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Chapter 1 – Introduction

This thesis is concerned with the modeling of phenomena central to the operation of nanoscale

magnetic devices or Spintronics. Spintronics is a relatively new area of electronics/magnetics

engineering in which the spin (or angular momentum) of the electron in ferromagnetic materials

plays a fundamental role. The signal is a magnetoresistance which depends on the relative

orientation of the magnetic directions (moments) in adjacent ferromagnetic layers. The developed

models are for important spintronic devices currently in production and for physical behaviors

being actively investigated in these devices. The models of the physical behaviors are explained

in the context of the devices and are modeled in the Verilog-A/MS behavioral language, a high-

level language which is widely used within standard integrated circuit computer-aided design

(ICCAD) software for analog and mixed-signal design simulation. The models developed in this

work are targeted at a “macrospin” level, where it is assumed that the magnetization is uniform

throughout a single magnetic layer and changes direction coherently. This assumption allows a

simplified set of mathematical expressions for the various torques acting upon the magnetization

and result in compact models accurately describing the device behavior. The goal has been to

reach a viable three dimensional (3-D) continuous-time model of magnetization for a thin-film

ferromagnetic layer subject to spin currents and magnetic fields. This goal has been achieved

beginning with a two dimensional (2-D) approximation of the magnetization dynamics of a thin-

film layer, progressed to include several inherent, basic device behaviors, and is now a 3-D

model which includes both magnetostatic behaviors and magnetization dynamics. Compact

models are behavioral components for use in circuit design and simulation with other spintronic

elements and/or with charge-based devices. The developed models have been used in transient

simulations with initial DC operating points. They are evaluated here using Spectre [2], the

Cadence version of the prevalent SPICE circuit analysis program embedded in most ICCAD
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design tools. The model results are qualitative and show correct functionality, without a critical

quantitative comparison to current experimental data.

This work is motivated by the dearth of published spintronic device compact models for the

electronics industry’s use. Modern spin-based devices have been under development since the dis-

covery of giant magnetoresistance (GMR) in ferromagnetic/non-magnetic (FM/NM) multilayers

in 1988 [3, 4, 5], independently by Albert Fert and Peter Grunberg. They have been successfully

used as sensors but with the exception of Magnetic Random Access Memory (MRAM) most spin-

tronic devices are single discrete sensor components. As sensors, spintronic elements are already

being used in a variety of technologies: automotive, airplane, and medical systems, and of course

read heads in high density magnetic recording [6]. Without readily-usable standard simulator

models, the integration of these spin-based devices in ICs will proceed more slowly. The models

will help to promote hybrid CMOS-spintronic circuit design with contemporary devices and with

spin-based logic elements in the future.

All symbols used in this thesis are defined with their units in Appendix 8.1. Système Interna-

tional (SI) units are used throughout, and vectors are represented by bold font such as H. Unit

vectors are represented in bold font with carets such as ĵ.

1.1 Literature review

Modeling of spintronic devices has been growing rapidly in the past decade. This growth has

been prompted by interest in making spin-logic and programmable spin-logic circuits with mag-

netic/magnetoresistive elements. Magnetoresistive-based circuits such as basic logic “gates”

(nand, nor, etc...), full adders, field programmable logic devices, MRAM and other CMOS-

magnetic hybrid architectures [7, 8, 9, 10, 11, 12, 13] were suggested or reported as implemented

in the literature beginning around the year 2000, though Slonczewski had a vision of such devices

as early as 1956 in his internal IBM paper on hysteresis (now published [14]). It is obvious from

published results that several research groups had developed three dimensional, continuous time
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models for magnetization dynamics [15, 16, 17], but these models are proprietary and the papers

do not reveal what languages or simulator tools were used. Early modeling work to support

spintronic elements and circuits has mostly consisted of quasi-static SPICE models which use

electrically equivalent circuits and behave, for example, like the magnetoresistive junction. Some

models are state-driven, such that when certain physics-based conditions are met, a magneti-

zation change takes place. Das and Black described HSPICE models for spin valve structures

made of subcircuits using voltage-controlled resistors, current sources, and voltage sources which

displayed hysteresis in a field-driven device [18, 19]. This method was followed by a more detailed

HSPICE macromodel which described a magnetic tunnel junction (MTJ) in [20]. In 2007, the

SPINTEC laboratory introduced the results of C-compiled models (models not published) for

MTJ-based devices for use in hybrid magnetic-CMOS circuits [13]. Recently (2010) Harms et al.

has realized an electrically equivalent circuit in a state-driven SPICE macromodel of a magnetic

tunnel junction which uses a spin-polarized current to transfer spin information to another fer-

romagnetic layer [21]. At the core of this model, a capacitor charged by a write current provides

a decision circuit with the condition for which a magnetization reversal should take place.

The above SPICE model by Harms is considered a macromodel because it is written using

already-exisiting HSPICE model components and does not need to be compiled as part of the

simulator’s HSPICE code. However, without modification, a model like the Harms macromodel

is usable only in an HSPICE simulator. Verilog-HDL (high level description language) with

the analog extension is prevalent in more simulator environments than HSPICE, but both are

industry standards.

For non-electrical systems like spintronic devices, Verilog-A overcomes the greatest drawback

of the SPICE component macromodel: Verilog-A uses physical equations to describe device

behavior. It is a natural language which effectively decouples the model equations from the

infrastructure necessary for implementation in analog simulators [22]. A set of model equations

may contain only as much detail as needed to give an accurate account of the behavior of interest,

and detail can be added or removed by simply changing the equations.
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There are several behavioral models (Verilog-A/MS or VHDL-AMS, both high-level descrip-

tion languages for analog or mixed signal for use with ICCAD tools) that are state-driven, such

as an early MTJ model in 2004 by Kammerer et al. [23] which made a magnetization reversal

decision based on a graphical approach which stated when a switching threshold was crossed

(Stoner-Wohlfarth method [14]). Zhao et al. [24] in 2006 reported simulation results of an MTJ

model with physical parameters determining the tunnel barrier height and overall conductance

of spin-polarized electrons between the two ferromagnetic layers depending on the parallel or an-

tiparallel state of the layers. Also in 2006 an MRAM sensing scheme using an MTJ was proposed

with the MTJ resistance modeled in VHDL-AMS [25]. Switching the tunneling magnetoresis-

tance via spin transfer torque (STT) was added to two more recent physics-based MTJ models

(simulation results only): a VHDL-AMS model by Madec et al. which is a continuous-time 3-D

model [26], and a state-driven Verilog-A model with thermal effects added [27]. A new VHDL-

AMS model description has been published as of June, 2010 [28] also by Madec, which contains

a more complete physical description of the MTJ conductance channel. The code for this work

is also not published, but the authors have indicated that the model is not in spherical coordi-

nates, rather a cylindrical coordinate system, and requires renormalization of the magnetization

magnitude with each simulation integration step. It does not yet include spin transfer torque or

thermal effects, although they are pursuing these additions.

The 3-D continuous-time model to be presented as my work does not yet include thermal

effects, or the bias-dependence of magnetic tunneling. The model provides approximate, but

correct order-of-magnitude timing, field and current magnitudes. It is parameterized to allow

changes in material properties. At present, all effective field equations (torques) controlling the

3-D model are contained in a single code module. It is simple to fold new torque expressions into

this module, such as the MTJ conductance equation above, but it is a future goal to separate

out certain torques into separate modules for flexibilty in combining them to make new devices.
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1.2 Spintronic devices

The devices discussed here use materials that are ferromagnetic, paramagnetic and antiferromag-

netic. A ferromagnetic material is one which exhibits spontaneous magnetization, that is, a net

magnetic moment in the absence of an external magnetic field. Paramagnetic materials have a

random magnetic moment ordering throughout the material resulting in zero net magnetization,

but can be weakly magnetized in the presence of an external magnetic field. Paramagnetic materi-

als are referred to here as non-magnetic. Antiferromagnetic materials exhibit magnetic moments

alternating direction in adjacent molecular planes. The sum of all the moments balance so as to

have zero net magnetization.

The thin-film ferromagnetic layers, non-magnetic layers and tunnel barriers which comprise

the spintronic devices in this work are very small - on the order of 10−5 µm3, and the FM films

can have all of their magnetic moments or spin vectors align coherently in a single spin direc-

tion making that layer a “single domain.” Thin layers of ferromagnetic materials are alternately

stacked with non-magnetic or metal oxide insulator materials to form nanopillar-sized magne-

toresistive devices. The magnitude of the magnetoresistive change depends on the combination

of FM materials and interface or junction materials used, and how they are physically arranged

and processed.

In many applications of spintronics the prominant architecture is that of the spin valve. In

general the spin valve is a multilayer stack of materials designed and processed to fix the magnetic

moment in one FM layer and allow another FM layer to change its magnetization with respect

to the fixed layer moment. If an applied field is enough to reverse the magnetization of the free

FM layer by 180◦, the change in magnetization will create a significant change in the resistance.

This magnetoresistive change is the device output signal.

Two other devices are discussed here, that use the physical phenomena of magnetoresistive

change and are the toggle MRAM cell and the spin transfer torque (STT) devices. A toggle

magnetic random access memory (Toggle MRAM) cell uses two free FM layers separated by

a NM spacer but the two coupled layers are always nearly antiparallel in magnetization to one
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another. The two layers respond to a field by having their combined magnetization or net moment

point in the direction of the applied field. The toggle MRAM uses an insulator or tunnel barrier

material to create its magnetoresistance. A spin transfer torque device is a spin valve but, instead

of using an external applied field to change the free layer magnetization electrons spin-polarized

by their layer’s magnetization, transfer angular momentum to the free layer transported by a

current perpendicular (CPP) to the thin-film ferromagnetic layers.

1.2.1 Spin valve

A basic spin valve consists of two ferromagnetic layers (FM) separated by a thin non-magnetic

spacer layer (NM) as illustrated in Figure 1.1(a). The magnetization of the top FM layer is free to

rotate in response to an applied magnetic field (free layer), while the bottom FM layer is held fixed

by an adjacent “pinning” layer. The applied field is due to the combination of conductor currents

Ix and Iy which can be bi-directional. The pinned layer is fixed in its magnetization by being

exchange-biased with an adjacent antiferromagnet (AFM) layer. The magnetoresistance (MR)

of the device depends on the relative orientation of the magnetic layers: lowest when the layers

are magnetized in the same direction or parallel (P) and highest when magnetized oppositely or

antiparallel (AP) as shown in (b). The P and AP states correspond to the resistance across the

junction, RP and RAP respectively. The application of a current through the multilayer from rp

to rn, allows the junction resistance to be read indirectly via the MR-generated voltage across

the junction. The MR or GMR is proportional to cos(θM − θPinned) where θM and θPinned are

the angles of the magnetization in the free and pinned layers respectively [29]. The GMR ratio

is defined most commonly in the literature as

GMR =
RAP −RP

RP
=

Rmax −Rmin

Rmin
.

The spin valve device typically has FM layers 10 nm - 50 nm thick with internal dimensions

both between ~50 nm to ~150 nm in an ellipsoidal shape. The interface or spacer layer is 1 nm -
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10 nm thick with a matching ellipsoidal area. The resistance through the multilayer is between 0.5

- 5 Ω. Devices that are constructed with a conductive (metallic), non-magnetic interface, usually

copper (Cu) or ruthenium (Ru) spacer layers, generally yield a minimum 3%-8% change in GMR,

up to a maxium of about 50%, depending on the combination of spacer and FM materials used.

From 1990 until about 2000, a NM spacer layer was the defacto interface between the two FM

layers for the creation of the GMR effect, but it has been shown that tunnel barriers, very thin

(0.5 - 3 nm) layers of an insulating, dielectric material (I), can result in an even higher MR or

tunneling magnetoresistance (TMR) [30, 31, 32]. This kind of interface is termed a magnetic

tunnel junction (MTJ) and is also common in spin valve structures.

1.2.2 Toggle MRAM

Toggle MRAM is a chosen model target because of its innovative and successful magnetic switch-

ing method. It consists of a tunneling magnetoresistive memory element between a word and

bit line. Magnetic fields to write the bit are applied to the element by passing a unidirectional

current through the write lines as shown in Figure 1.2. The simplified structure in Figure 1.2 (a)

illustrates that the magnetic element has three FM layers: a pinned magnetic layer in which the

magnetization is fixed and two free layers in which the magnetization direction can be changed.

The two free layers are coupled via the intermediate non-magnetic (for example, Cu or Ru)

spacer, so that the magnetizations of the layers are opposite in orientation (antiparallel). The

two free layers and their interfacing spacer layer are together called a synthetic antiferromagnet

(SAF). Figure 1.2 (a) also shows that the easy axis of the multilayer bit is rotated 45◦ to both

the writelines. Figure 1.2 (b) depicts how the bit cell is incorporated into an MRAM array and

how the fields from the writeline currents affect the bits. Conventional MRAM does not use the

SAF structure but has a single free layer, and the bits are not rotated. Unless the bits are spaced

adequately, they are subject to write disturbance or half-select errors: the accidental writing of

a bit on the same word or bit line as the full-selected bit at their intersection [33].
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(a)

(b)

Figure 1.1: a) Spin valve structure with electrical connections to conductors Ix and Iy creating
fields in y and x respectively. Sensor readout is across rp and rn. b) Illustration of how free layer
magnetization affects the output GMR signal: AP or antiparallel magnetization = high MR, P
or parallel magnetization = low MR.
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In Toggle MRAM, this problem was solved by Savtchenko in 2002 [34]. He proposed the

structure already described which allows the write operation to be a rotation of the moments of

the balanced synthetic antiferromagnet (SAF), where “balanced” means the free FM layers have

the same area and thickness. The SAF’s two coupled magnetic elements are switched between

two stable states using a specific sequence of magnetic field pulses from currents applied on

orthogonal word and bit lines. This pulse sequence allows the layers’ net moment to change by

~45◦ with each pulse edge. The toggle bit’s susceptibility to half-select or write disturb errors is

significantly reduced [35, 36, 37] compared to a spin valve.

The magnetic anisotropy of the bit is designed so that in the absence of write fields, the free

layers are stable in either of two states: top layer at 45◦ and bottom layer at 225◦ or vice versa.

A single bit of binary information is thus stored in the magnetization direction of the coupled

free layers with respect to the pinned FM layer. The magnetoresistive signal is generated with a

MTJ between the free and pinned layers.

The Toggle MRAM architecture allows the bit cells to be used in a higher density configuration

than conventional MRAM, which means the area of a bit cell can be reduced to a minimal size

with enough margin that it won’t switch from thermal fluctuations. A higher density bit array

still has an increased probability of falsely switching a target bit cell’s nearest-neighbor via

the writeline fields [33]. For this reason and the necessity for smaller switching currents, toggle

MRAM and other GMR- or TMR-based devices are utilizing an even newer phenomenom termed

Spin Transfer Torque (STT) .

1.2.3 Spin transfer torque (STT) devices

In the two previous devices, magnetic fields from currents (Oersted fields) in traces adjacent to

the thin film FM layers are used to reorient the magnetization in the free FM layers. Spin transfer

torque has the same result but arises from a current injected perpendicular to the plane of the

thin film junction, transferring spin-polarized electrons (polarized in the x̂ = êp direction) from a
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(a)

(b)

Figure 1.2: (a) Toggle MRAM bit cell with writeline conductors, and (b) a cross-point architecture
for a bit cell array (the activated bit is shown in red).
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Figure 1.3: Simplified spin transfer torque system

FM source electrode to a receiving FM electrode through a non-magnetic spacer region as shown

in Figure 1.3. The figure is representative of a spin valve in which the magnetization of the free

layer, m, is able to switch directions along the device easy axis (x̂) due to the electron flow (red

arrow in the figure). If the voltage bias is positive with respect to the free layer (positive voltage

on the free-layer contact), a conventional electrical current (Ispin) will flow from the free layer

to the pinned layer, and spin-polarized electrons from the pinned layer traverse the junction to

the free layer (electron current) as shown. The electrical and electron currents will be in the

reverse direction if the voltage bias is reversed, creating an electron flow that consists mostly of

the majority spin (spin-polarization) in the free layer.

STT investigations have shown reliable switching of free layers in nanopillar spin valve struc-

tures [38, 39, 40, 41, 42], as well as operating in other modes such as microwave oscillators

[43, 44, 45, 46]. The spin valve systems initially researched utilized non-magnetic spacer mate-

rials for the interlayer between the ferromagnetic electrodes, but attention has now turned to

tunnel barrier materials which yield a significantly higher magnetoresistance (TMR) compared

to GMR. One of the main advantages to using the STT switching method is that the magnitude

of the electrical current needed to provide enough spin-polarized electrons for switching, is an

order of magnitude less than current needed to create a large enough Oersted field for conven-

tional switching
(

106 A
cm2 vs. 107 − 108 A

cm2

)

. STT electrical currents are, at present, competitive

with SRAM current/power usage [47] and the switching current density is expected to be further
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reduced with materials that act as better electron spin-polarizers.

1.2.4 Summary

The devices introduced above, the spin valve, toggle MRAM, and the STT element are the

basic elements of spintronics. They are all submicron, multilayer stacks of antiferromagnets

(AFM), conductive non-magnetic metals, ferromagnetic metals (FM), and dielectric materials

(I), but the interactions between the layers varies with their arrangement, and whether they

are in the presence of current-in-plane (CIP) magnetic fields (Oersted fields) or spin-polarized

current-perpendicular-to-plane (CPP) current. The magnetic phenomena relevant to the spin-

tronic models are presented in the next chapter with a synopsis of the physics governing device

behavior and interactions, and their mathematic descriptions as used in the models.
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Chapter 2 – Magnetic properties and phenomena

2.1 Magnetic moment and magnetization

The magnetic moment, µm, is the fundamental object in magnetization. A magnetic solid consists

of a large number of atoms each with a magnetic moment, µmspin , primarily due to the electron’s

spin. The atomic magnetic moments in nanoscale devices interact together as one “macrospin.”

The collective magnetic moment of an FM element is described by the vector m in
[

Am2
]

. The

magnetic moment of a single electron is an expression of the angular momentum of that electron.

We consider here only the intrinsic spin angular momentum, Ls, of the electrons summarized

in Figure 2.1, as this is the dominant angular momentum in ferromagnetic materials. The spin

angular momentum reflects the two possible spin states ± 1
2 quantized by the reduced Planck’s

constant, !. The ratio of the spin magnetic moment to the spin angular momentum is called the

spin gyromagnetic ratio

µmspin

Ls
= γs ≈ 1.76× 1011

(

rad

s · T

)

≈ 28

(

GHz

T

)

. (2.1)

µmspin is equal to ± !e
2me

which is frequently used and labeled as the Bohr magneton, µB [48].

The number of Bohr magnetons in a ferromagnetic atom or alloy can be computed which is useful

as an approximation of the maximum magnetization magnitude. Since the (volume) magnetiza-

tion of a sample is directly proportional to its magnetic moment, M = m
V

, it reveals that the

magnetization of a sample is directly proportional to its angular momentum.
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Figure 2.1: A spinning electron with angular momentum, Ls, results in a spin magnetic moment
µmspin .

2.2 Anisotropy

In a magnetic solid, anisotropy defines the direction which the magnetization will prefer because

that direction results in a lower free energy. There are several sources of anisotropy which

contribute to the net torque acting upon the magnetic moment. In thin magnetic films, the most

significant anisotropy effects are those due to the crystalline structure of the material and the

sample shape.

2.2.1 Magnetocrystalline anisotropy

The crystalline anisotropy of a magnetic solid is determined by the crystal’s physical structure.

The atoms in the crystal have a charge polarity, positive or negative, resulting in an electric field

in the crystal. The crystal’s electric field causes the atomic orbitals to align themselves on certain

axes also aligning the magnetic moments in those same directions. The spin magnetic moments

of the atoms have their direction confined to a crystal lattice direction by the crystal electric

field, causing the magnetization to prefer that direction. This direction is called the anisotropy
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axis or direction.

Magnetocrystalline anisotropy is described as uniaxial (along a single axis) or cubic (along a

combination of the x̂, ŷ, and ẑ directions). It is expressed as the free energy in a power series

expansion for the following two cases [49], where θ is the angle of magnetization with respect to

the anisotropy axis,

1. Uniaxial anisotropy: Ek = V
[

Ku1sin2θ +Ku2sin4θ + . . . +Kunsin2nθ
]

(n = 1, 2, 3...).

Normally Ku1 ) Kun and it is sufficient to use only the quadratic term with Ku1.

2. Cubic anisotropy: Ek = V
[

K1(α
2
1 α

2
2 + α2

2 α
2
3 + α2

3 α
2
1) +K2(α2

1 α
2
2 α

2
3)
]

, where the αn s are

direction cosines (unitless) equal to αn = Mx

MS
, My

MS
and Mz

MS
.

The magnitude of the first- and 2nd order crystalline anisotropy constants (K1 or Ku1, and K2

or Ku2) for magnetic materials/alloys are in the range 102 J/m3 ≤ K ≤ 105 J/m3.

2.2.2 Shape anisotropy

Whenever magnetization creates magnetic poles along the surface of a solid, a field opposing that

magnetization, called the demagnetization field, Hd , is formed. Shape anisotropy originates with

the demagnetization field and the energy of the anisotropy is

Ed =
1

2
µ0VMHd (2.2)

=
1

2
µ0VM (−NM) (2.3)

where the factor of 1
2 is due to the term being a type of self-energy, that is, the energy terms be-

tween magnetic particles are not counted twice. The shape anisotropy is defined as Hd = −NM.

This definition shows that Hd is opposite M by a factor of N . N is a tensor of demagnetization

factors for a specific shape; for an elliptical solid, N is a diagonal matrix with terms along the

principle axes, Nx, Ny and Nz in which the sum of the demagnetization factors must add to 1.0.

Some demagnetization factor examples are pictured in Figure 2.2. The demagnetization factors
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Figure 2.2: Some examples of shape anisotropy.

represent the strength of the field caused by the separation of magnetic charges along the axes.

When magnetic charges are far apart as on the end surfaces (y-z planes) of the long cylindrical

rod, separated by the length of the rod in the x̂-direction, the demagnetization factor, Nx = 0,

and the demagnetization field is very weak or non-existent. The thin, cylindrical volume in the

figure is representative of a flat ellipsoid such as one might have for a thin film magnetic layer;

Nx and Ny , the in-plane demagnetization factors, would be very small - two to three orders of

magnitude less than the Nz ≈ 1.0 factor. In this case Nz for the direction perpendicular to the

thin-film plane indicates that the magnetic charges on the surfaces of the x-y planes are very

close together, generating a very strong demagnetization field.

The example of the thin cylindrical volume is appropriate for all models in this work. For

a thin film magnetic layer, the energy of the shape anisotropy will be minimal when the layer

is magnetized in the x-y plane, and at a maximum when magnetized perpendicular-to-the-plane

in the ẑ-direction. For situations where external fields are applied in the plane of the thin-

film, the demagnetization factor of the longer or easy axis, will always be Nx in this document.

Conversely, Ny will always refer to the demagnetization factor on the shorter or hard axis. Thus,

−NM = −
(

NxMx̂i+NyMy ĵ
)

.
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Shape anisotropy is significantly greater than the crystalline anisotropy having an energy

magnitude on the order of 106 J/m3, so a magnetic layer shape with a long axis would define the

easy axis of magnetization if it were different from the easy axis of the crystalline lattice. This

work always considers the easy axis due to the layer shape to be aligned with the crystallographic

easy axis.

2.3 Exchange

Exchange interactions are responsible for both short-range (electron-electron on the same atom,

or nearest neighbor atoms) and long-range magnetic order, that is, magnetic moments passed to

atoms further away than the first or second nearest neighbor. Exchange can affect the spins of

electrons across many atomic sites and even across nonmagnetic layers several nanometers thick.

Exchange occurs in order to create the lowest energy configuration among electrons in molecular

and atomic orbitals, trading off the energy cost of coulomb repulsion with the energy cost of

parallel spins. The difference in energy between the parallel spin and the antiparallel (paired)

spin configurations is the exchange energy.

The character of the exchange is denoted by its exchange integral or exchange constant, Jij ,

which determines how the wavefunctions of two interacting particles combine. An illustration of

this interaction in ferromagnetic metals is shown in Figure 2.3, the Bethe-Slater curve [50]. This

curve shows that when interatomic distances (rij) are small, the atoms’ electrons combine in an

atomic orbital with lower energy if they have opposite or antiparallel spins - this is antiferromag-

netic exchange. When the atoms are spaced further apart, their electrons combine in a larger

orbital where there is a lower energy cost for the electrons to have parallel spin or ferromagnetic

exchange.

This description covers only direct exchange between electrons on neighboring magnetic

atoms, however the exchange constant for more indirect exchange interactions over larger dis-

tances still retains the same proportionality: the sign of the exchange constant indicates ferro-
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Figure 2.3: Bethe-Slater curve showing the energy dependence of exchange interaction. a) Energy
of combined atoms and their electrons with antiparallel or paired spins (↑ ↓) , or parallel spins
(↑ ↑) vs. interatomic separation (rij). b) The energy difference proportional to the exchange
constant plotted against rij normalized to the radius of a d-orbital, rd.

magnetic (parallel spin) coupling for Jex > 0, and antiferromagnetic (antiparallel, paired spin)

coupling for Jex < 0, where Jex will be used as a general exchange parameter for different ex-

change interactions. With this foundation two types of exchange that are specific to the devices

modeled in this work are now covered. The first is due to a direct form of exchange called

exchange anisotropy or exchange bias and the second exchange interaction is indirect and com-

municates spin information over a range of a few nanometers called interlayer exchange coupling

(IEC).

2.3.1 Exchange bias

Exchange bias is the exchange coupling of interfacial spins between a FM and a AFM layer. This

exchange is used to pin the direction of magnetization in the FM layer. The pinning process takes

advantage of the temperature dependence of ferromagnetic and antiferromagnetic order specific

to the materials. The Néel temperature, TN , of the AFM materials is the temperature above



19

Figure 2.4: Example hysteresis loop, M vs. H, for a pinned FM layer exchange coupled to an
AFM layer.

which the material no longer has antiferromagnetic order and becomes paramagnetic. Similarly,

the Curie temperature, TC , is the temperature above which the ferromagnetic materials become

paramagnetic with random spin ordering. It is important that the materials have TN < TC in

order to be able to use the AFM material to pin the FM layer. Pinning is done after the deposition

of the AFM and FM layers. The layers are heated above TN but below TC in the presence of

an applied field, thus de-ordering the AFM layer and holding the FM layer magnetized in the

direction of the applied field. The layers are then cooled below TN with the field still present,

and the AFM layer orders itself in a manner that minimizes its interaction energy with the FM

layer at the interface [51]. The FM layer’s magnetization is biased/pinned in the direction in

which it was cooled and this becomes the preferred direction of magnetization.

The effect of the exchange biasing is to produce a unidirectional exchange field, Hex, which

acts on the pinned FM layer like an external field. Thus, Hex combines with an external applied

field, H, to shift the hysteresis loop of the pinned FM layer by the value of Hex as shown in

Figure 2.4.
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2.3.2 Interlayer exchange coupling

Interlayer exchange coupling (IEC) is an indirect exchange interaction in which the electrons of a

non-magnetic spacer material communicate the spin states of two FM layers. It has the interesting

and important characteristic of alternating the sign of the coupling from positive to negative with

the thickness of the non-magnetic spacer between the FM layers as shown in Figure 2.5 from

Parkin’s original Fe/Cr data [52]. Parkin’s data illustrates the alternating coupling states with

the change in the resistance across the FM/NM/FM junction; ∆R
R is low for parallel coupling of

the layers, and high for antiparallel coupling. This characteristic allows the free FM layer, in the

absence of an applied field, to be fixed in an AP or P magnetization state with respect to the

pinned layer for a given interlayer thickness. The exchange is the transfer or reflection of spin-

up (majority) electrons and/or spin-down (minority) electrons between the layers dependent on

their spin and the magnetization of the layers. The exchange coupling causes the magnetization

of the layers to alternate P to AP at a well-defined period of spacer thickness as the magnetic

alignment of the ferromagnetic layers always takes the configuration that has thelowest energy

cost. The periodic AP and P alignment of the FM layers cause the

alternating sign of the exchange constant (ferromagnetic coupling for Jex > 0, and antifer-

romagnetic coupling for Jex < 0). Since the electron reflection/scattering is spin dependent,

there is an energy difference between the P and AP alignment of the FM layer magnetizations.

This energy difference is the interlayer exchange coupling. The energy of the coupling has been

characterized [53, 54] as

Eexch = −JcosθM − Jcosθ
2
M . (2.4)

In equation 2.4, Eexch is an energy density (per unit area, A), and θM is the angle between

the magnetizations of the FM layers. There are two exchange parameters indicated, J1 or the

bilinear exchange constant, so called because the energy per area is linear in the directions of

both magnetizations (−JcosθM = −Jm1 ·m2), and similarly, J2 or biquadratic, because it is

quadratic in both of the magnetization directions. All measured values of J2 are negative, favoring
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Figure 2.5: Interlayer exchange coupling acting in Fe/Cr layers showing parallel (∆R/R low) and
antiparallel (∆R/R high) layer magnetizations with Cr spacer thickness. [Reprinted figure with

permission from S. Parkin, N. More, and K. Roche, Phys. Rev. Lett. Vol. 64, 2304 (1990). Copyright

(1990) by the American Physical Society.]
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Exchange
superlattice

Spacer
thickness
tsp (nm)

Bilinear exchange coupling
constant, J1 ( J

m2 )

Co/Ru/Co 0.6 6.0× 10−3

Co/Cu/Co
(111)

0.85 1.1× 10−3

Co/Cu/Co
(100)

1.2 4.0× 10−4

Co/Ru/NiFe 2.5 1.8× 10−5

NiFe/Cu/NiFe 2.1 1.2× 10−6

Table 2.1: Exchange superlattices and their measured bilinear exchange coupling constant

perpendicular orientation of the two magnetizations. In general, J1 is more significant by an order

of magnitude. The biquadratic term can not always be ignored, but it is due to smaller effects

such as interface roughness. When J1 is dominant and positive (negative), the magnetization

coupling is ferromagnetic or parallel (antiferromagnetic or antiparallel). The strengths of J1 and

J2 are dependent on the FM materials and the spacer thickness. Table 2.1 lists examples of layer

structures commonly found in the literature and their measured value of the bilinear exchange

term.

In this work the biquadratic, J2 term is ignored as the interfaces are considered ideal. Gen-

erally, in spin valves and other devices with IEC-coupled layers, the coupling is designed by the

spacer thickness to be antiferromagnetic or AP (J1 < 0) . This allows for an initial state where

the opposing dipole fields from both FM layers sum to zero.

2.4 Spin polarization

Spin polarization relates the difference between the number of spin-up and spin-down electrons

participating in a certain electronic process. Spin polarization is defined at the Fermi level with a

model by Julliere [55] as the average of the density of states occupation of spin-up and spin-down

electrons,

P =
NEf

(↑)−NEf
(↓)

NEf
(↑) +NEf

(↓)
, (2.5)
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which is normalized to one. In this case, spin-up (↑) electrons means electrons with spin parallel

to the magnetization, and spin-down (↓) electrons are those antiparallel to the magnetization.

Thus a positive spin polarization means that there are more electrons at the Fermi level with spin

parallel to the magnetization of the layer, and a negative spin polarization means the contrary.

In 3d transition metals like Co, Fe, and Ni, the spin-up and spin-down d subbands are shifted

in energy, leading to more electrons in one of the spin directions, causing the d bands to be

strongly polarized.

2.5 Magnetoresistance

The Magnetoresistance (MR) through a spin valve or other multilayer device is the output signal

of a spintronic device. A large percentage change in MR is desirable for noise-insensitive output

signal levels. For both giant magnetoresistance (GMR) and tunneling magnetoresistance (TMR),

the change in MR occurs with the relative orientation of the magnetization in the adjacent FM

layers. In recent years, GMR and TMR have achieved percentage changes in MR of 65% (GMR)

[56] to 600% (TMR) [57] at room temperature. Although the same equations are used to describe

their overall effect, the two MR mechanisms are somewhat different.

2.5.1 Giant magnetoresistance (GMR)

GMR has already been introduced in section 1.2.1 with regards to the spin valve, but the mech-

anism of this effect is now discussed. The expressions for GMR are repeated here for comparison

with Figure 2.6 noting that the junction resistances of an FM/NM/FM multilayer, RP and RAP,

vary with the orientation of the FM layers (P and AP respectively):

GMR =
RAP −RP

RP
=

Rmax −Rmin

Rmin
.
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Figure 2.6: Resistive paths and their combination for P and AP FM layers. The blue arrows
indicate the magnetization (and the majority carrier) of the FM layer. R1 represents the resis-
tance seen by a spin-up(down) electron at the boundary of a layer with majority spin-up(down)
carriers, and R2, the resistance seen by a spin-up(down) electron at the boundary of a layer with
the opposite spin majority carrier.

GMR is fundamentally caused by the spin-dependent reflectivity or scattering of the spin car-

riers at the FM/NM interfaces [58] , which is the same scattering mechanism shown in Figure

2.5, causing the periodicity in the exchange coupling polarity (AP→P→AP) with spacer layer

thickness. Figure 2.6 explains the AP and P layer cases diagramatically with paths for each spin

carrier; R1 represents the resistance seen by a spin-up (down) electron at the boundary of a layer

with majority spin-up (down) carriers, and R2 (> R1), the resistance seen by a spin-up(down)

electron at the boundary of a layer with the opposite spin majority carrier. In the AP case, both

spin carriers are likely to be reflected/scattered as they diffuse to each interface resulting in an

average of the two resistances, R1+R2

2 . With P layers, the interfacial scattering occurs mostly for

the carrier with spin opposite to the majority spin of the layers so that the majority spin carrier

(spin-up in the figure) has a much lower resistance path through all the layers than the minority

spin carrier (spin-down). The resistances of each path are combined as resistances in parallel ,

2R1|| 2R2. The AP case has a higher resistance over the P case. It was stated in section 1.2.1
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that the GMR effect follows a cos(θM − θPinned) law. We use

R = Rmin +
1

2
(Rmax −Rmin) (1− cos (θM1 − θM2)) . (2.6)

The premultiplier term constrains the MR response between Rmin and Rmax, and θM1 is the

in-plane magnetization angle of the free layer with respect to θM2 = θPinned .

2.5.2 Tunneling magnetoresistance (TMR)

Tunneling magnetoresistance is the magnetoresistance across a magnetic tunnel junction. As

stated at the end of section 1.2.1 these structures consist of two ferromagnetic electrodes (FM)

sandwiching a thin insulating barrier (I). When a DC bias voltage is applied, electrons near

the FM/I interface tunnel through the barrier and, since they are spin-polarized, the resistance

depends on the relative orientation of the electrodes’ magnetization, just as it does for GMR.

The TMR ratio is defined in the same way as

TMR(%) =
RAP −RP

RP

however, the change of the tunneling current in MTJs is more dramatic (~10x greater than

GMR). TMR can be understood in terms of Julliere’s model introduced in section 2.4, which

is based on two assumptions. First, it is assumed that the spin of electrons is conserved in the

tunneling process, so that the tunneling of spin-up and spin-down electrons are independent of

one another. This assumption allows us to separate the conduction of electrons into two separate

spin channels.

It is also assumed that the conductance for a particular spin orientation is proportional to

the product of the effective density of states (DOS) of the two ferromagnetic electrodes. With
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Figure 2.7: Tunneling of electrons between electronic states (shown as DOS diagrams) in FM films
1 and 2. Spin-up (solid green arrow) and spin-down (dashed green arrow) conduction channels
are shown being independent. With P magnetization majority spins tunnel to majority spin
states and minority spins to minority spin states. For AP magnetization of the films, majority
spins in film 1 become minority carriers in film 2 and tunnel to minority spin states in film 2.
Minority spins in film 1 tunnel to majority spin states in film 2.

these two assumptions, the TMR ratio, in terms of conductance is

TMR(%) =
GAP −GP

GP
=

2P1P2

1− P1P2

and rewriting equation 2.5 for the spin-up and spin-down channels

P1 =
N1(↑)−N1(↓)
N1(↑) +N1(↓)

P2 =
N2(↑)−N2(↓)
N2(↑) +N2(↓)

.

In the DOS drawing of Figure 2.7 the white arrows indicate the spin direction and the green

arrows represent the spin channels. Electrons originating from one spin state in the first fer-

romagnetic film are accepted by unfilled states of the same spin in the second film. If the two

ferromagnetic films are magnetized parallel, the minority spins tunnel to the minority states and

the majority spins tunnel to the majority state. When the two films are magnetized antiparallel,
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a majority spin in film 1 (polarization P1) becomes a minority spin in film 2 (polarization P2), so

the majority spins of the first film tunnel to the minority states in the second film and vice versa.

The larger change in magnetoresistance for TMR has been shown to be material-dependent such

that one conduction channel gives a much greater probability of tunneling to electrons of one

spin than those with the opposite spin [59, 60].

2.5.2.1 TMR bias voltage dependence

The magnetoresistance of an MTJ is a function of the bias voltage across the junction contacts.

The TMR of MTJ devices decreases with increasing junction bias [61, 62]. This is a consequence

of the decrease in tunneling probability across the insulator when the barrier height is increased

with the junction bias. This characteristic is modeled by the empirical relationship [63, 26]

TMR(v) =
TMR0

1 +
(

Vb

Vh

)2 . (2.7)

Vb is the bias voltage and Vh is a fit parameter corresponding to the voltage bias at which the

resistance of the MTJ is half the TMR at zero voltage bias
(

TMR0

2

)

. The MR at zero-voltage

bias is TMR0 and is defined as

TMR0(%) ≡
(Rmax −Rmin)

Rmin
, (2.8)

where Rmin and Rmax are the low and high state values of the magnetoresistance respectively.

This TMR voltage-dependence is modeled similarly in [25, 13].

2.6 Dynamics

Magnetization dynamics is concerned with the time-dependent motion or precession of a sample’s

magnetic moment due to a torque from an applied magnetic field. The torque from the applied
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field is equivalent to the transfer of angular momentum to the magnetic moment causing it

to precess about the applied field. However, the moments, over time, also align themselves in

the direction of the field. This second process, called relaxation or damping, occurs because

the moments lose energy to interactions with the material lattice (phonons), intinerant electrons,

and magnons (spin waves). Without damping, the magnetic moment would simply precess about

the applied field with dm
dt

perpendicular to both the moment m and the field H; the dissipative

process of damping results in an effective torque perpendicular to dm
dt

and m which causes the

magnetization to relax into the field direction.

2.6.1 Precession and precession frequency

The precession of a magnetic moment occurs when the moment is subjected to a magnetic field

which creates a torque on the moment: T = −m × µ0H. The torque acts to change the total

angular momentum L by an amount dL in time dt, so that dL = Tdt, hence the change in the

angular momentum is directed in the direction of the torque. In Figure 2.8, The torque T, is

the cross product of the moment with the applied field, and so is perpendicular to both. The

angle of magnetization or the angular difference between the applied field and the magnetization

is θ. Because the torque is perpendicular to moment, the angular momentum L does not change

in magnitude, but only in direction. As long as the field is present, L will continue to change

as shown at the bottom of the figure, causing the magnetic moment to move or precess in the

direction of the torque. Because m and L are directly related by the gyromagnetic ratio (section

2.1), the change in the direction of the magnetic moment is also directly related to the torque by

γ as
dm

dt
= γT = γ(m×B) , (2.9)

where B = µ0H. The frequency of the precession is also related to γ
(

rad
s·T

)

. This is shown

in Figure 2.9. The component of L perpendicular to the torque vector gives the change in the

angular momentum in the direction of the torque. The rate at which both L and m precess (dϕ
dt
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Figure 2.8: Magnetic precession.

in Figure 2.9) is called the Larmor frequency, ωL. Since the torque arises from the moment’s

interaction with the applied field,

the precession frequency is also directly proportional to the applied field via γ as

ωL = γB ,

as shown in Figure 2.9. The precession of the magnetic moment from equation 2.9 can be

rewritten
dM

dt
= −γ0 (M×H) , (2.10)

where the magnetization is M = m
V , γ0 = µ0γ

(

m
A·s

)

, and V is the volume of the material.
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Figure 2.9: Precession frequency

2.6.2 Spin relaxation or damping

The relaxation of a free layer’s magnetization to the equilibrium state M×H = 0 (zero torque)

when an applied field, H, is present is called damping. Damping has been observed as a non-

linear process which determines the rate of the spin relaxation, and has generally been considered

phenomenological in nature. Recently, the intrinsic damping has been derived from first principles

and is shown to originate in spin-orbital coupling [64]. The strength of the damping is called the

Gilbert damping parameter, α, after Gilbert who accounted for the relaxation by subtracting a

viscous-type term proportional to the time derivative of the magnetization [65], which looks like

dM

dt
=

α

Ms

(

M×
dM

dt

)

. (2.11)

The damping parameter is material dependent. A larger value of α causes a stronger damping

effect or faster spin relaxation. The damping term, as can be seen from equation 2.11, is necessar-

ily perpendicular to both the magnetization and the precession direction as shown in Figure 2.10.

The magnitude of the magnetization must remain constant at its saturation magnetization, but

its direction, given by the angle θ, gradually decreases to 0◦ via the damping torque. Without
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Figure 2.10: The action of damping described by the Gilbert damping torque.

damping, the magnetization would simply precess at a constant angle, θ, to the applied field.

2.6.3 Spin transfer torque (STT)

In 1989, Slonczewski used a ferromagnetic multilayer with a tunnel barrier and observed that

even at zero junction bias, a spin current flowed across the tunnel junction whenever the mag-

netizations of two FM electrodes were not collinear [66]. Both Berger [67] and Slonczewski [68]

independently predicted that a current flowing perpendicular to the plane in a metallic multilayer

could potentially generate a spin transfer torque strong enough to switch the magnetization in

one of the layers.

The spin current is a flow of non-equilibrium conduction electrons from which the free layer

electrode absorbs some of the spin angular momentum (torque transfer). In the multilayer there

is always one FM electrode which is pinned or has a higher coercivity and is the source of spin-

polarized electrons as described by equation 2.5. The electron flow forming the spin current

can originate from the FM layer on either side of the spacer region depending on the junction’s
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voltage bias. A simplified STT system is shown in Figure 2.11 with the FM layers beginning in

an AP state. The electrical current flows from V+ to V− and the spin-polarized electron current

(spin current) from the source layer on the left, traverses the NM spacer to the interface with

the free/receiving layer. The source layer has a magnetic moment, mp

(

Am2
)

, polarized in the

direction êp, and those spin-polarized electrons build up at the interface to the free layer. The

free layer exerts a torque on mp (∝ m×(m× êp)) and mp responds with an equal and opposite

torque on m (both torques shown in red arrows), changing the moment of the free layer, so that

it becomes parallel with that of the source layer when a switching current threshold is reached.

This balance of torque occurs to conserve the total angular momentum of the system.

When the magnetization of the free layer is parallel with the polarizing/pinned layer, the same

torque transfer mechanism occurs but the minority electrons of the free layer (those with spin

opposite to mp and m) are actually the electrons making up the spin-polarized current. These

minority spin electrons become trapped in the interface layer and are reflected at the interfaces

with the FM electrodes as depicted in Figure 2.12. With each reflection event, the minority

spin electrons transfer a torque equal and opposite to the torque due to the moment in the FM

layer. This will not affect the pinned layer, which has an abundant population of êp-polarized

electrons, but the number of electrons transferring torque back to the free layer will eventually

reach a threshold which will switch the free layer AP to S1. The process of switching the free

layer from a P state to an AP state with the pinned layer requires a larger electrical current (−Is

in the figure), and more time (larger −Is pulsewidth) to complete the free layer reversal, than in

the AP to P process.

The magnitude of the torque transferred is proportional to the transverse component of

angular momentum of the spin-current electrons (which is the change in angular momentum),

∆L =
!

2
m× (m× êp) (J · s) (2.12)
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Figure 2.11: A spin valve using spin transfer torque to switch the free layer magnetization from AP
to P with the polarizing/pinned layer. Electrons with magnetization mp are transported across
the spacer layer due to the junction current Is, and transfer their angular momentum to the free
layer electrons at the spacer/free layer interface. The free layer will reverse its magnetization to
be P with the polarizing/pinned layer with a sufficient Is magnitude and pulse width.

Figure 2.12: The process of reversing the free layer moment from a P state. The majority
electrons in the free layer (spin-up, ↑) find states in the pinned layer and are transmitted across
the spacer with the electron flow (solid arrow). The minority electrons of the free layer are
confined in the spacer and upon reflection at the spacer/FM interfaces, transfer spin torque back
to the both layers (dotted lines). When the magnitude and pulse width of Is is great enough, the
free layer’s minority electrons will transfer enough angular momentum to switch the free layer
AP to the polarizing layer.



34

multiplied by the rate of transfer of the spin-current electrons,

1

∆t
=

IsG(θ)

e

(

1

s

)

. (2.13)

The transfer rate includes a conduction-efficiency factor G(θ), which is dependent on the ma-

terial polarization, P, of equation 2.5 and the parallel (θ = 0) or antiparallel (θ = π) state of

magnetization between the free and pinned layer. For a polarization of P = 0.35, G(0) ! 0.127

and G(π) ! 0.515. The torque is then

Tstt =
IsG(θ)!

2e
m× (m× êp) . (2.14)

The effect that STT has on the magnetization of the free layer is shown Figure 2.13. In contrast

to the damping torque, the STT compels the magnetization angle to become larger, moving the

moment direction away from the applied field if a field is present. By balancing the damping

and STT torques with a field applied in the initial direction of the free layer magnetization, the

free layer magnetization can undergo the dynamical state of steady state precession, given the

appropriate junction bias (spin current).
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Figure 2.13: The effect of STT on magnetization trajectory. STT torque opposes damping torque
and can increase the cone angle, θ, past 90◦ which will reverse the magnetization. Alternatively,
the STT torque can balance with the damping torque causing the magnetic moment to undergo
steady-state precession.
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Chapter 3 – Materials and device considerations

This chapter discusses some general information about common materials used for the devices

introduced in Chapter 1. The limited set of layer materials presented are those that are promi-

nent in the research papers read concerning spintronic multilayer devices. Device materials are

chosen to enhance various operating characteristics of a device, such as higher Néel and Curie

temperatures for higher temperature operation, or a pairing of a FM and Insulator material that

gives a larger TMR result.

3.1 General device/material geometries

The devices introduced in chapter 1 use material layers matched in long and short axial dimen-

sions as shown in Figure 3.1. The thickness will depend upon the particular layer. For example,

to facilitate exchange coupling, the spacer interlayer must have a thickness which is less than the

mean free path of the FM layers’ electrons. The ferromagnetic layers FM-free and FM-pinned

typically have the same thickness, but thickness asymmetry can be used to change the character

of the free layer’s hysteresis curve [35] . The required thickness of the AFM pinning layer, tAFM ,

must be greater than the finite distance needed for a gradual 180◦ reorientation of moments.

This AFM-FM interface distance is called an exchange length or domain wall. It is necessary to

keep the AFM moments fixed in the presence of an applied field as the FM moments twist in

the applied field direction. The exchange length is dependent on the AFM anisotropy constant,

KAFM

[

J
m3

]

, and the required AFM thickness is described by tAFM > J
KAFM

, where J
[

J
m2

]

is

the exchange strength between the AFM/FM layers .

An MTJ would be similarly constructed with a tunnel barrier material, 0.5 nm - 3 nm thick.
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Figure 3.1: Spin valve with typical layer geometry

AFM layer TN (◦C)

IrMn 417
FeMn 217
NiMn 797
PtMn 207
NiO 252

Table 3.1: Antiferromagnetic layer materials

3.2 Antiferromagnetic materials

The AFM pinning of the fixed FM layer in a spin valve or other multilayer magnetic device

gives the pinned layer magnetic stability which is important to the reliability and sensitivity of

the device. The materials listed in Table 3.1 are commonly-used AFM materials for pinning in

magnetoresistive multilayer devices. The Néel temperature, TN , for the antiferromagnets, is also

listed.

Most of these alloys have Néel temperatures that are less than half that of the Curie temper-

atures of the common FM materials making it simpler to achieve the exchange biasing process

described in section 2.3.1. In the case of NiMn, which might be used in a high temperature

application, an FM material with a substantially higher TC , such as the Co alloys of Table 3.2
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would be required for the pinning process and the overall ambient device operation.

3.3 Ferromagnetic materials

The ferromagnetic materials used in spintronic devices are soft magnetic materials meaning that

they can be easily magnetized - this property is called permeability (µ). The soft FM materials

like those in Table 3.2 come from the transition metal series and have a high average magnetic

moment per atom, expressed in the table as nB, the number of Bohr magnetons (µB). The atomic

moments of the ferromagnetic elements and their alloys are plotted against their atomic number

on the Slater-Pauling curve [69, 70]. This curve shows that body-centered-cubic (BCC) CoFe and

NiFe have the highest average moment count for alloys at almost 2.5µB with face-centered-cubic

(FCC) CoFe and NiFe coming in a little lower at about 1.5-1.8µB. In these specific materials,

the number of Bohr magnetons/atom translates to a high value of saturation magnetization,

MS . MS is the magnitude of the magnetization of the FM layer and is an indication of the

torque that a magnetic field will exert on it, and therefore the ability to manipulate that layer’s

magnetization.

In addition to the high saturation magnetization of NiFe alloys, NiFe thin films can be stoi-

chiometrically composed and annealed to have virtually no crystallographic or magnetostriction

anisotropy (the deformation of the film in the direction of an applied field). This creates a high

permeability, µ, where

µ ∝
M2

S

Keff
(3.1)

when the effective anisotropy, Keff, is low, which means that the material is very responsive

to small applied fields. NiFe alloys have relatively low resistivities in the range of 30 ≤ ρ ≤ 50

µΩ ·cm and can be used in the 10 MHz frequency range. The CoFe alloys have an even higher MS

but experience significant magnetostriction and resitivity of about 10 µΩ · cm [48]. To eliminate

magnetostriction and/or allow for higher frequency operation, an amorphous alloy may be used.

Amorphous ferromagnetic alloys are formed using a nonmetallic element with some metallic
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FM layer TC(◦C) nB (µB) MS (A/m)

NiFe 803 ~2.3 8× 105 (FCC)
CoFe 1200 ~2.4 2× 106 (BCC)
Co 1388 1.7 1.44× 106 (HCP)

CoFeB >1300 1.6× 106 (Amor.)
Fe 1043 2.2 1.7× 106 (BCC)

Table 3.2: Soft ferromagnetic layer materials

Spacers Tunnel barriers

Cu Al2O3

Ru MgO

Table 3.3: Spacer and tunnel barrier materials

properties, like Boron (B), and combining it with a ferromagnetic alloy, like CoFe. Their prop-

erties are low coercivity, low hysteresis loss and high permeability. These materials also have

higher electrical resistivity. They have Curie temperatures comparable to most ferromagnetic

crystalline alloys. For CoFeB it can be seen in Table 3.2 that the MS is not much decreased

from polycrystalline CoFe, but the reduction in the effective anisotropy will increase the alloy’s

permeability, and the Tc is in fact increased over CoFe. In addition, the resistivity of CoFeB is

much higher, up to 130-150 µΩ · cm in thin films compared to ~ 10 µΩ · cm in CoFe. The higher

resistivity allows for higher frequency operation by decreasing eddy currents in the film [71, 72].

3.4 Interlayer materials

The two non-magnetic (NM) spacer materials given in Table 3.3 , Copper and Ruthenium, are

frequently encountered in the literature as interlayer materials in multilayer devices. Metallic

spacer materials allow spin communication between the FM layers through exchange coupling, but

because this coupling is weak, the FM layers are also allowed to be independently switched. The

magnitude of the GMR effect is also an important factor in choosing a FM/NM pair. Additionally,

the spacer metals should have relatively good lattice matching (0-10%) with the FM metals

to prevent lattice discontinuites which disrupt electron transport. For GMR, the spacer layer
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thickness must be less than the mean free path of electrons in the metal spacer to allow the

carrier’s spin to traverse the spacer thickness without spin-flip.

The two metal oxide dielectrics, Aluminium oxide (Al2O3) and Magnesium oxide (MgO), are

by far the most commonly-used materials for magnetic tunnel junctions (MTJ), Al2O3 partly

due to historical reasons. The popular choice of these materials as tunnel barriers stems from the

high TMR ratios achieved when they are used with several of the FM layer materials in Table 3.2.

The mechanism of polarized spin conduction between the insulator and FM electrodes discussed

in section 2.5.2, MgO tunnel barriers have achieved up to 600% TMR [57], while MTJs using

Al2O3 now have TMR values ranging from 60% - 70% [73].

3.5 Summary

The literature regarding the characteristics of multilayer materials for spin valves and other

magnetic devices indicates that there are many properties and interactions yet to research and

understand. This is a relatively new field (GMR was discovered in 1988), and at this time

there are no completely clear recipes which define successful material choices and combinations,

although many important guidelines have been established. Much of the ongoing research is

to understand the underlying mechanisms of material combinations that work well. Material

properties have not been a focus in modeling the magneto- static and dynamic components

of spin valves and MRAM devices, but basic material properties and interactions have been

reviewed. In this work all modeling has been done using parameters for Ni80Fe20 (Permalloy)

for the FM layers and copper as the non-magnetic spacer layer (using an appropriate exchange

constant, J1). In the Toggle MRAM, the TMR block assumes an MgO tunnel barrier with a bias

effect parameter based on measurements of Fe/MgO/Fe MTJs [31]. A strong exchange bias for

the AFM-FMpinned layers is assumed, such that the direction of the FM pinned layer is fixed.
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Chapter 4 – Effective fields and torques

In this chapter certain material and physical anisotropies and their effective fields will be ex-

plained and expressions will be developed for the torque acting upon the free layer due to these

fields. The field and torque expressions are divided into 2-D and 3-D sections. Both sections are

intended for three dimensional devices, but the torques and fields acting on the magnetization

vector are either derived as 2-D or 3-D expressions. Precession in magnetization occurs as the

thin-film magnet’s angular momentum, L, changes, making torque, T = dL
dt

, an appropriate term

with which to work in the conservation of angular momentum. It is often easier to work with

an energy expression for a particular interaction and deduce the torque from the derivative of

the energy term with respect to the angle of magnetization. In a defined system Brown’s theo-

rem, M ×Heff = 0, expresses that the torque exerted on a magnetization by an effective field

must be zero at equilibrium [74]. The device models use this concept by equating the balance of

individual torque terms at equilibrium and thus determine a stable equilibrium solution for the

magnetization.

4.1 Effective fields

Every torque term acting on a magnetic moment or magnetization vector is the result of an

effective field term. The field terms that have been modeled sum to a total effective field

Heff = Ha +Hk +Hd +Hex +Hstt, (4.1)

where the fields are defined as follows (V is the volume of an FM layer and µ0 is the permeability

of free space):

Ha An external, applied field.
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Hk The anisotropy field for a set of intrinsic, material anisotropy effects.

Hd The demagnetization field, an internal field which develops due to the shape of the

ferromagnet.

Hex The effective field from the transfer of spin information through a spacer layer via

the interlayer exchange coupling.

Hstt The effective field from the transfer of spin torque via a current-perpendicular-to-the-

(thin-film)-plane (CPP) .

4.1.1 Relationship of torque to effective field

A magnetic material can have its magnetization orientation described by an energy function in

θ which might include a variety of conditions such as any of the effective fields above. As torque

acts upon the magnetic moment of the thin-film layer, the energy function will vary as a function

of θ. A torque term may be computed as

T =
∂E

∂M

∂M

∂θ
=

∂E

∂θ
(4.2)

where θ is the angle of magnetization with respect to the easy axis of the FM layer. This is

identical to taking the cross product of the magnetic moment with the effective field term,

T = −µ0m×H . (4.3)

The torque can also be indirectly accessed by using equations ?? and ?? to result in an expression

for Heff [75],

Heff = −
1

µ0VMS

∂E

∂θ
(4.4)

(and the torque as T = −µ0VMSHeff ) . These relationships for determining the expressions for

torque or field are used throughout this chapter. When either the system energy is minimized,
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∂Esys

∂θ
= 0, or the system torques are balanced, the system equations yield a stable equilibrium

value for the magnetization in terms of θ.

4.2 Energy and torque for two-dimensional models

A 2-D dynamic model is appropriate for systems where timing the process of magnetic reversal

or switching does not need to be precise - only the end state of the magnetization need be correct

relative to its previous state. The path of the magnetization is approximated to remain in the

plane of the FM thin film with an increased damping effect which can result in faster switching

results over those of a 3-D model. The 2-D model is simpler than the 3-D version, and can act

as a fast-runtime compact model for observing magnetization behavior of a device or system of

devices. Transitioning to 3-D field terms is also made more tractable by beginning with the 2-D

components.

The overall 2-D model for a spin valve considered only uniaxial crystalline anisotropy, an

applied field, and the dynamic damped precessional torque. The interlayer exchange coupling

along with a dipole coupling field between FM layers were subsequently added for the Toggle

MRAM model.

4.2.1 Applied field

The applied field in the 2-D case is confined to be in the plane of the thin-film with components

in the x̂ and ŷ directions. The energy from the applied field is often called the “Zeeman” energy

after the Dutch physicist Pieter Zeeman, who observed that there was an interaction between

the magnetic moment of an atom or molecule and an applied magnetic field. The energy is

simply Ea = m · µ0Ha where the magnetic moment is the magnetization over the layer volume,

m = MV , and Ha is the vector sum of the applied field components in the x̂ and ŷ directions.
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Ea and its torque, ∂Ea

∂θ
are written as:

Ea = −µ0VMS (HxcosθM +HysinθM ) (4.5)

Ta = µ0VMS (HycosθM −HxsinθM ) . (4.6)

4.2.2 Shape anisotropy

The shape anisotropy field was introduced in section 2.2.2 as Hd = −NM. Using this field to

expand equation 2.3 gives

Ed =
1

2
µ0VM (Nx +Ny)M

=
1

2
µ0VM2

S

(

Nxcos
2θ +Nysin

2θ
)

=
1

2
µ0VM2

S

[

Nx + (Ny −Nx) sin
2θ
]

if Nxcos2θ is replaced with Nx

(

1− sin2θ
)

. Since θ is measured with respect to the long/easy

axis (x-axis, θ = 0◦), the energy expression for the shape anisotropy shows that Ed will be a

maximum in the ŷ direction (θ = 90◦), on the short axis, and a minimum in the x̂ direction on

the long axis (θ = 0◦). The torque is

Td =
1

2
µ0VM2

S(Ny −Nx) sin2θ = KshV sin2θM , (4.7)

with the shape anisotropy constant defined as Ksh = 1
2µ0M2

S (Ny −Nx). The energy and torque

for the shape anisotropy are very similar to these same expressions for crystalline anisotropy, and

may be combined.

Ksh has not been included in the 2-D models but has been transformed with spherical coor-

dinates (section 4.6.3) and used in 3-D spin valve and STT simulations .
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Figure 4.1: Uniaxial crystalline anisotropy torque present in a thin-film ferromagnetic layer. The
uniaxial anisotropy causes two energy minima (upper graph) on the long or easy axis at 0◦ and
180◦, while the torque (lower graph) is zero at the energy minima.

4.2.3 Uniaxial crystalline anisotropy

An energy function for the uniaxial crystalline anisotropy was given in section 2.2.1 as

Ek = V (Ku1sin
2θ +Ku2sin

4θ + . . .) . (4.8)

In the models, we use only one anisotropy constant, Ku1 = Ku = 300 J/m3 for simplicity. The

torque is

Tk =
dEk

dθ
= 2V KusinθMcosθM = KuVsin2θM . (4.9)

The mathematical form of the shape anisotropy torque, Td, is identical to Tk with the constant

Ksh replacing Ku. Depending on the component values used for the tensor N , 25 ≤ Ksh

Ku
≤ 50,

revealing that Tk is small compared to Td. Shape anisotropy defines the easy axis as the long

axis of the FM layer, along which it costs less energy to magnetize the sample as there exists a

smaller opposing field in the long direction. It is not unusual to combine the uniaxial and shape
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anisotropy constants as K = Ku+Ksh and use K in place of Ku in equation 4.9 to add the effect

of shape to the model. The torque’s effect on the magnetization of the FM layer and how the

system energy varies with θ is shown in Figure 4.1. θM is the angle of magnetization measured

relative to the easy axis, which in the figure is on the x-axis for θEA ≡ 0◦. The crystalline

anisotropy torque works to pull M back to the easy axis whenever θM is not collinear with θEA.

The energy diagram shows that the crystalline anisotropy results in two stable energy minima

along the x-axis at 0/360◦ and 180◦, and the torque Tk (lower graph), is zero at the energy

minima. The unstable energy maxima (also where Tk = 0) are along the shorter, hard axis

(y-axis) at 90◦ from θEA.

4.2.4 Effect of combined applied field and crystalline anisotropy

If the crystalline anisotropy energy from equation 4.8 is summed with the energy in equation 4.5,

one can get a sense for how the particle will respond in an applied field. At the top of Figure

4.2 the zero applied field state is shown. There are two stable energy minima at 0◦ and 180◦.

The middle drawing shows that when a field with arbitrary direction is applied, M rotates away

from it’s initial position in the direction of the applied field due to the torque from the field,

as depicted in the cartoon, and the energy minima shift to a single magnetization angle in the

bottom drawing, when the field/torque is of a critical strength; the magnetization minimum (θ
′

1

on the bottom graph) remains as long as the field is constant.

4.2.5 Interlayer exchange coupling (IEC)

The torque for the interlayer exchange coupling is developed using only the bilinear (J1) term in

equation 2.4 and multiplying by the area of the layers , A, for a result in joules. The IEC energy

is

Eexch = −AJex cosθM , (4.10)
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Figure 4.2: Effect of an applied field combined with uniaxial anisotropy. The plots of the single-
domain particle energy vs. θM under the indicated applied field conditions show that in zero
field, the uniaxial anisotropy controls the magnetization of the film. With non-zero fields stable
magnetization angles are found at local minima (θ1 and θ2), but with a large critical field applied,
only one global minimum or stable magnetization (θ

′

1) exists.
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and the torque,

Texch =
dEexch

dθ
= AJex sinθM (4.11)

where Jex is the same bilinear exchange constant in Table 2.1. Since the energy of exchange

depends on the relative orientation of the layer magnetizations and the interlayer thickness, the

interlayer exchange torque works to bring the FM layers into P alignment for some thicknesses,

and into AP alignment for others, depending on which of these states the energy is minimized

for. In this way, the spin information between the FM layers is communicated.

4.2.6 Dipole coupling

When two FM layers are in close proximity, the magnetic fields from one layer affect the other

through magnetostatic dipole forces. This interaction favors the anti-parallel alignment of the

layers. The magnetic moment of an FM layer determines the direction of the magnetic field

emanating from that layer while internally, an opposing magnetic field is set up called the de-

magnetizing field. For very thin layers in close proximity, the magnetic fields are assumed to

be approximately the same as the demagnetizing fields determined by the layer’s demagnetizing

factors, Nx and Ny. Given two FM layers (layer 1 and 2), the effective magnetostatic coupling

field from layer 1 to layer 2, H12, is proportional to the demagnetizing field in layer 1 multiplied

by a magnetostatic coupling attenuation factor, r, assuming the lateral dimension of the layers

are much larger than their thicknesses [76]. The complementary situation is also true for layer

2 and its proportional field, H21. Deriving an expression for torque due to this magnetostatic

coupling begins by describing the demagnetization fields of the two coupled layers. Regarding

Figure 4.3, the required parameters are listed on each layer with MS1,2 and Hd1,2 as the satu-

ration magnetization and demagnetizing fields for layers 1 and 2 respectively. Because the FM

layer magnetization prefers a particular direction due to the layer’s shape, the magnetostatic

coupling field is proportional to the shape anisotropy (defined in section 2.2.2 as −NM). The
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Figure 4.3: Ferromagnetic layers coupled by dipole fields H12 and H21 with parameters noted
on each layer. The ellipsoidal layers illustrate the H21 field from layer 2 producing a torque on
M1 .

demagnetizing fields for layers 1 and 2 are calculated as

Hd1 = −
1

2
(Ny1 +Nx1 )M1, and Hd2 = −

1

2
(Ny2 +Nx2 )M2 . (4.12)

These are once again, internal, self-generated fields, requiring a factor of 1/2. The attenuation

factor is in the range 0 ≤ r ≤1 , however Wang [77] estimates that r = 0.8 for zero separa-

tion between the FM layers for his rectangular shaped layers, implying a shape/aspect ratio

dependence for r. Using equation 4.12 and expanding M into its components in x̂ and ŷ as

MScosθx̂+MSsinθŷ, the coupling fields are

H12 = r ·Hd1 =
rMS1

2
(−Ny1 sinθM1 −Nx1cosθM1) (4.13)

H21 = r ·Hd2 =
rMS2

2
(−Ny2 sinθM2 −Nx2cosθM2) . (4.14)
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Note that the demagnetizing factors are not vectors but can be applied only to the magneti-

zation component along the same principle axis as the factor, which maintains the directional

components of the vector. The torque on layer 2 due to the dipole field of layer 1 is

T12 = −µ0V1 (M2 ×H12) = −µ0V1
rMS1MS2

2
·







cosθM2 sinθM2

−Ny1 sinθM1 −Nx1cosθM1







T12 = J12 · (Ny1sinθM1cosθM2 −Nx1cosθM1sinθM2) . (4.15)

V1 = A1t1 and is the volume of layer 1. Similarly, the torque on layer 1 due to the dipole coupling

field of layer 2 with V2 = A2t2 is

T21 = −µ0V2 (M1 ×H21) = J21 · (Ny2sinθM2cosθM1 −Nx2cosθM2sinθM1) , (4.16)

J12 = µ0V1
rMS1MS2

2
and J21 = µ0V2

rMS1MS2

2
. (4.17)

where J12 and J21 are the dipole coupling constants and parameterize the torque for FM layers

of different materials and thicknesses. Normally the areas of both layers would be equal and the

volumes would differ only due to the thicknesses, t1 and t2.

4.3 Two-dimensional magnetization dynamics

The dynamic magnetic response of a small magnetic element such as the free layer is described by

the Landau-Lifshitz-Gilbert (LLG) equation [78], equation 4.18 where M, the magnetization and

H, the effective magnetic field are, in general, vectors in three dimensions, γ0 is the gyromagnetic

constant γ0 = µ0γ
(

m
A·s

)

, and α is the Gilbert damping parameter for the material.

dM

dt
= −γ0 (M×H) +

α

|M|
M×

dM

dt
(4.18)
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Figure 4.4: 2-D effective damping in precessional dynamics. The precessional term is pushed out
of the thin film plane, but the large out-of-plane demagnetizing field pulls it back in-plane in the
direction of the damping.

The first term on the right-hand-side (RHS) is recognized as the magnetic precession of the

moment due to the applied field H (from equation 2.10) , while the second term represents the

damping experienced by the magnetization’s precession which will eventually align the magneti-

zation with the applied field. For thin films, shape anisotropy forces the magnetization vector to

lie principally in the plane and an effective in-plane magnetization dynamic can be found [79, 80]

dM′

dt
= −

γ0
MS

(

α+
1

α

)

M′ × (M′ ×H′) (4.19)

for M′ = (Mx,My) and H′ = (Hx,Hy) restricted to the film plane, and the magnitude of M

remains constant (|M| ≡ MS ). Figure 4.4 is an illustration of Cervera and Kohns’ work which

reveals that the three-dimensional (3-D) precessional term M×H gets converted, in the thin-film

limit, to a two-dimensional (2-D) damping term proportional to 1/α, increasing the 2-D effective

damping and essentially causing the precession term to act as a damping term.

The magnetic elements are modeled as a single magnetic domain. Since the magnitude of

M must remain constant, it is simpler to normalize M′ by its magnitude as M′

MS
= m′ and to

describe the magnetization vector only by its angle, θM , with respect to the x axis. First the

precession dynamic term on the RHS of 4.19 is expanded using m′ = cosθM x̂+ sinθM ŷ:

m′ × (m′ ×H′) = (HycosθM sinθM −Hxsin
2 θM )x̂ − (Hycos

2 θM−HxcosθM sinθM )ŷ . (4.20)
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The left-hand-side (LHS) of 4.19 is transformed by using

dm′

dt
=

dm′

dθM
·
dθM
dt

(4.21)

where
dm′

dθM
= −sinθM x̂+ cosθM ŷ ,

and both the LHS and RHS are multiplied by their transposes or inverses. The dynamics ex-

pression is then written as

dθM

dt = −γ0
(

α+ 1
α

)

×
[

(HycosθM sinθM −Hxsin
2 θM )x̂− (Hycos

2 θM−HxcosθM sinθM )ŷ
]

· (−sinθM x̂+ cosθM ŷ)T

which becomes

1

γ0
(

α+ 1
α

)

dθM
dt

= HycosθM sin
2 θM −Hxsin

3 θM −Hxcos
2 θM sinθM +Hycos

3 θM

= HycosθM
(

sin2θM + cos2θM
)

−HxsinθM
(

sin2θM + cos2θM
)

,

and finally takes the form of an effective field,

1

γ0
(

α+ 1
α

)

dθM
dt

= (HycosθM−HxsinθM ) . (4.22)

Equation 4.22 can be cast equivalently as a sum of torques acting on the magnetic moment by

rearranging and multiplying both sides by µ0VMS :

0 = µ0VMS (HycosθM−HxsinθM )−
µ0VMS

γ0
(

α+ 1
α

)

dθM
dt

[J] (4.23)

and

Tdyn =
µ0VMS

γ0
(

α+ 1
α

)

dθM
dt

. (4.24)
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The first term in parentheses in equation 4.23 is recognized from equation 4.6 as the torque due

to external applied fields and the final dynamic term is the (2-D) combined precessional and

damping torque. The form of equation 4.23 is used in the spin valve and toggle MRAM systems

discussed in sections 5.1 and 5.2 . With the dynamic 2-D torque term defined, it is now simple

to add other previously-derived torque terms to the models in a torque balance form.

4.4 Effective fields of three-dimensional systems

The model components of the 3-D spin valve system are analogous to all the 2-D model com-

ponents in that an energy or torque expression is developed for an effective field, but in the

method that follows, it is the effective field (directly proportional to torque) that is used to find

the change in the magnetic moment. However, the different effective fields are summed together

in one module [81, 82, 75]. This method seems to be more tractable from the standpoint of the

simulation software, but is less desirable in terms of modular device construction. In Chapter

5, it is convenient and intuitive to connect appropriate system nodes together with blocks rep-

resenting the torque between those nodes. In what follows, this ability is lost, combining all the

system torques into a total effective field term, which is used in the 3-D single domain LLG block

in Figure 4.5. Even though the model method is effective, it may be more useful in the future

to use the field and torque expressions derived below in a modified manner to allow for block

modularization as in the 2-D model.

4.5 Mathematical development of a three-dimensional sys-

tem equation

In this section the LLG equation is transformed from cartesian to spherical coordinates and cast

in a form like that of equation 4.22 in order that the change of the magnetic moment in time

is expressed fully by its change in angle with respect to an anisotropy or easy axis. First, the
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Figure 4.5: Single model block containing all interaction equations for the 3-D device model.

Figure 4.6: Spherical coordinate system and angles: θ is the polar angle with respect to the
z-axis, and ϕ is the azimuthal angle in the x-y plane.

rotational coordinate system with respect to the fixed, cartesian coordinates is defined by the

angles θ and ϕ in Figure 4.6. This is a more intuitive coordinate system in which to model the

precession of the magnetic moment because the length of the radial vector, r , is the magnitude of

M which is constant at its saturation magnetization MS , requiring only the two angle variables to

describe the motion. The magnetization can be normalized by MS and its path followed on a unit

sphere as it changes in the polar and azimuthal directions represented by θ and ϕ respectively.

First some foundational work must be done to describe the unit vectors of the rotational system.

To begin, the time rate of change of the magnetization dM
dt

is described with the position vector
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for M:

M =













MSsinθcosϕ x̂

MSsinθsinϕ ŷ

MScosθ ẑ













(4.25)

and M changes with time as

dM

dt
=

∂M

∂r

dr

dt
+

∂M

∂θ

dθ

dt
+

∂M

∂ϕ

dϕ

dt
. (4.26)

In this case, r is the length or magnitude of the magnetization vector, MS, according to the

fundamental constraint of ferromagnets that |M(r, t)| = MS, so that the first term on the RHS

of eqn. 4.26 is ∂M
∂MS

dMS

dt
. The partial derivative terms are contained in the unit vectors as

êm =
∂M

∂MS

1
∣

∣

∣

∂M
∂MS

∣

∣

∣

=
∂M

∂MS
, êθ =

∂M

∂θ

1
∣

∣

∂M
∂θ

∣

∣

=
1

Ms

∂M

∂θ
, and êϕ =

∂M

∂ϕ

1
∣

∣

∣

∂M
∂ϕ

∣

∣

∣

=
1

MSsinθ

∂M

∂ϕ
.

(4.27)

This allows the scale factors for each unit vector to be clearly understood and the variation of

the magnetization with respect to MS , θ and ϕ to be written in terms of the unit vectors as:

êm =
∂M

∂MS
, MS êθ =

∂M

∂θ
, and MSsinθ êϕ =

∂M

∂ϕ
.

Applying this coordinate system in equation 4.26 one can write

dM

dt
= ṀS êm +MS θ̇ êθ +MSsinθ ϕ̇ êϕ (4.28)

with the dot representing the time-derivative of the variable. The Landau-Lifshitz-Gilbert (LLG)

equation in the Gilbert form is
dM

dt
= −γ0 (M×Heff ) +

α

MS

(

M×
dM

dt

)

. (4.29)

A system of equations is formulated for dM
dt

using equation 4.28 as the LHS and eqn. 4.29 as the

RHS. The two RHS terms in equation 4.29 are expanded first as
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M×Heff = MS êm × [(Heff · êm) + (Heff · êθ) + (Heff · êϕ)]

=













êm êθ êϕ

MS 0 0

(Heff · êm) (Heff · êθ) (Heff · êϕ)













= MS(Heff · êθ)êϕ −MS(Heff · êϕ)êθ (4.30)

and

M×
dM

dt
=













êm êθ êϕ

MS 0 0

ṀS MS θ̇ MSsinθ ϕ̇













= M2
S θ̇ êϕ −M2

S sinθ ϕ̇ êθ . (4.31)

Putting equation4.28 and the expanded LLG terms from equations 4.30 and 4.31 together in

matrix form yields













ṀS êm

MS θ̇ êθ

MSsinθ ϕ̇ êϕ













=













0
(

γ0MS(Heff · êϕ)− α
MS

(M2
S sinθ ϕ̇)

)

êθ
(

−γ0MS(Heff · êθ) +
α

MS
(M2

S θ̇)
)

êϕ













(4.32)

but the terms with Heff must also be expanded. This is done in terms of the change in total

energy with the change in magnetization. The total energy is defined as

E = −µ0VMHeff
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and Heff can be expressed as

Heff = −
1

µ0V

∂E

∂M
.

Thus, γ0MS(Heff · êϕ) = γ0MS ·
(

− 1
µ0V

∂E
∂M

)(

∂M
∂ϕ

1
MSsinθ

)

recalling that êϕ = 1
MSsinθ

∂M
∂ϕ

.

Similarly for -γ0MS(Heff · êθ) it is seen that −γ0MS(Heff · êθ) = −γ0MS ·
(

− 1
µ0V

∂E
∂M

)(

∂M
∂θ

1
MS

)

.

These two Heff terms now look like

γ0MS(Heff · êϕ) = −
γ0

µ0V sinθ

∂E

∂ϕ
and − γ0MS(Heff · êθ) =

γ0
µ0V

∂E

∂θ

and equation 4.32 can be rewritten













ṀS êm

MS θ̇ êθ

MSsinθ ϕ̇ êϕ













=













0
(

− γ0

µ0V sinθ
∂E
∂ϕ − αMSsinθ ϕ̇

)

êθ
(

γ0

µ0V
∂E
∂θ + αMS θ̇

)

êϕ













. (4.33)

Finally we arrive at two equations in θ̇ and ϕ̇ :

MS θ̇ = −
γ0

µ0V sinθ

∂E

∂ϕ
− αMSsinθ ϕ̇ (4.34)

MSsinθ ϕ̇ =
γ0
µ0V

∂E

∂θ
+ αMS θ̇ (4.35)

and isolating θ̇ and ϕ̇ on the LHS of equations 4.34 and 4.35 respectively,

θ̇ = −
γ0

µ0VMS sinθ

∂E

∂ϕ
− α sinθ ϕ̇ (4.36)

ϕ̇ =
γ0

µ0VMS sinθ

∂E

∂θ
+

α

sinθ
θ̇ . (4.37)
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Substituting the RHS of equation 4.37 for ϕ̇ in equation 4.36, we get the result

θ̇ = −
γ0

µ0VMSsinθ

∂E

∂ϕ
− αsinθ

(

γ0
µ0VMSsinθ

∂E

∂θ
+

α

sinθ
θ̇

)

θ̇ = −
γ0

µ0VMSsinθ

∂E

∂ϕ
−

αγ0
µ0VMS

∂E

∂θ
− α2θ̇

θ̇(1 + α2) = −
γ0

µ0VMS

1

sinθ

∂E

∂ϕ
−

αγ0
µ0VMS

∂E

∂θ

θ̇(1 + α2) =
γ0

µ0VMS

[

−
1

sinθ

∂E

∂ϕ
− α

∂E

∂θ

]

. (4.38)

Likewise, substituting the RHS of equation 4.36for θ̇ in equation 4.37, we find that

ϕ̇ =
γ0

µ0VMSsinθ

∂E

∂θ
+

α

sinθ

(

−
γ0

µ0VMSsinθ

∂E

∂ϕ
− α sinθ ϕ̇

)

=
γ0

µ0VMSsinθ

∂E

∂θ
−

αγ0
µ0VMSsin2θ

∂E

∂ϕ
− α2ϕ̇

ϕ̇(1 + α2) =
γ0

µ0VMS

1

sinθ

[

−
α

sinθ

∂E

∂ϕ
+

∂E

∂θ

]

. (4.39)

It is noted that the terms in brackets in equations 4.38 and 4.39 are the torques experienced

by the system in the θ and ϕ directions due to E, the total free energy that is present. If the

convention is taken that the effective fields in θ andϕ are

Hθ = −
1

µ0VMS

∂E

∂θ
and Hϕ = −

1

µ0VMS sinθ

∂E

∂ϕ
,
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then we can write the result from equations 4.38 and 4.39 in terms of Hθ and Hϕ as follows:

dθ

dt
=

γ0
(1 + α2)

[Hϕ + αHθ] (4.40)

dϕ

dt
=

γ0
(1 + α2)

1

sinθ
[αHϕ −Hθ] (4.41)

Equations 4.40 and 4.41 match expressions found in the literature [82] for the angular velocity

of the magnetization due to an effective magnetic field .

The torques of equations 4.38 and 4.39 are scaled by − 1
µ0VMS

to convert them into effective

fields in A/m, denoted as Hθ andHϕ, and the gyromagnetic ratio, γ =
2.21× 105

1 + α2

( m

As

)

multi-

plied by the effective field terms yields the rate of change of the moment in θ and ϕ. One can

see that these expressions of angular velocity fold together all the magnetostatic and anisotropy

terms with the dynamic field response in the effective field variables Hθ and Hϕ. Therefore, to

use equations 4.40 and 4.41 in Verilog-A, the torques derived earlier must be transformed into

the defined spherical coordinate system in Figure 4.6, which is done next.

4.6 Energy and effective fields for three-dimensional models

Relating the 2-D terms in spherical coordinates is done with three kinds of manipulations:

1. If the 2-D term is expressed with magnetization (M) components in the x̂, and/or ŷ, and/or

ẑ directions, the components of the position vector in equation 4.25 replace the cartesian

components, eg., Mx = MSsinθ cosϕ î, remembering that now θ and ϕ are the polar and

azimuthal angles of the spherical coordinate system.

2. If a vector term other than M must be portioned into the θ and ϕ directions, a dot product

can be taken between the vector term and êθ and/or êϕ. The spherical unit vectors êθ

and êϕ were defined in equation 4.27 and are êθ = cosθcosϕ̂i + cosθsinϕ̂j − sinθk̂ , and

êϕ = −sinϕ̂i+ cosϕ̂j.



60

3. To represent an angle between two vectors (as for the dipole or exchange coupling terms),

a dot product of the two vectors must be performed in spherical coordinates.

In addition to transforming the expressions for torque in cartesian to torque in spherical coor-

dinates, each term is divided by µ0VMS or µ0VMSsinθ as appropriate, in order to give it the

correct units as an effective field in the θ and ϕ directions. These field terms are then used in

equations 4.40 and 4.41.

Two vector definitions are given in the Verilog-A code, one for the easy axis which has a

default setting

êa =
(

1̂i, 0̂j, 0k̂
)

, (4.42)

but the vector components can be set to any direction, as long as the magnitude of êa = 1. The

other definition is for M and has already been given in equation 4.25, but in the Verilog-A code

it is used as the unit vector M
MS

= (sinθ cosϕ î, sinθ sinϕ ĵ, cosθ k̂) = m̂ .

4.6.1 Uniaxial crystalline anisotropy

This anisotropy depends upon the angle between the magnetic moment and the easy axis, where

originally θM was the angle in

Ek = KuV sin2θM , and Tanis = KuV sin2θM . (4.43)

Now the angle will be designated as ψ as it depends on both θ and ϕ, and is

ψ = cos−1(êa · m̂) = cos−1u , (4.44)
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where êa · m̂ = u = eaimi + eajmj + eakmk = eaisinθ cosϕ + eajsinθ sinϕ + eakcosθ. The

derivatives of the energy function in equation 4.43 are needed for the effective field:

∂Ek

∂θ
=

∂

∂ψ

(

KuV sin2ψ
) ∂ψ

∂θ

∂Ek

∂ϕ
=

∂

∂ψ

(

KuV sin2ψ
) ∂ψ

∂ϕ
,

where first it is easy to see that the common term, ∂
∂ψ

(

KuV sin2ψ
)

= KuV sin2ψ as before. To

find ∂ψ
∂θ

and ∂ψ
∂ϕ

the chain rule is used

∂ψ

∂θ
=

∂ψ

∂u

∂u

∂θ

recognizing that

∂ψ

∂θ
=

∂

∂u
(cos−1u)

∂u

∂θ
=

−1√
1− u2

(eaicosθ cosϕ+ eajcosθ sinϕ− eaksinθ) ,

and in the same manner a similar expression for ∂ψ
∂ϕ

is found. This leads to the torques in both

θ and ϕ as

∂Ek

∂θ
= KuV sin2ψ ·

−1√
1− u2

(eaicosθ cosϕ+ eajcosθ sinϕ− eaksinθ) , (4.45)

∂Ek

∂ϕ
= KuV sin2ψ ·

−1√
1− u2

(−eaisinθ sinϕ+ eajsinθ cosϕ) . (4.46)

Using the definition of the effective field:

Hθ = −
1

µ0VMS

∂E

∂θ
and Hϕ = −

1

µ0VMS

1

sinθ

∂E

∂ϕ
,

the effective fields for the uniaxial crystalline anisotropy are

Hkθ =
Kusin2ψ

µ0MS
·

1√
1− u2

(eaicosθ cosϕ+ eajcosθ sinϕ− eaksinθ) , (4.47)
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and

Hkϕ =
Kusin2ψ

µ0MSsinθ
·

1√
1− u2

(−eaisinθ sinϕ+ eajsinθ cosϕ) . (4.48)

4.6.2 Applied field or Zeeman energy

The energy due to the applied field Ha in the x̂, ŷ, and ẑ directions is

Ea = −µ0V (MxHx +MyHy +MzHz) ,

where Mx = MSsinθcosϕ, etc..., for the magnetization components in spherical coordinates, so

that

Ea = −µ0VMS (Hxsinθ cosϕ+Hysinθ sinϕ+Hzcosθ) ,

and the torques are

∂Ea

∂θ
= −µ0VMS (Hxcosθ cosϕ+Hycosθ sinϕ−Hzsinθ)

and
∂Ea

∂ϕ
= µ0VMSsinθ (Hxsinϕ−Hycosϕ) .

These are scaled as before to effective fields as

Haθ = (Hxcosθ cosϕ+Hycosθ sinϕ−Hzsinθ) (4.49)

and

Haϕ =(Hycosϕ−Hxsinϕ) . (4.50)
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4.6.3 Shape anisotropy

The shape anisotropy results in an energy responsible for the demagnetization field within the

free layer and is the product of the magnetization M with the demagnetization tensor N. A free

layer of NiFe with elliptical shape is assumed for which the tensor has only diagonal elements in

the x̂, ŷ, and ẑ directions. In simulation the demagnetization factors Nx = 0 .0182 , Ny = 0.0515,

and Nz = 0.931 from [83] are used. The demagnetizing field internal to the free layer is

Hd = −NM = −
(

NxMx î+NyMy ĵ+NzMzk̂
)

with an energy due to this field

Ed = −µ0VMHd =
(

NxM
2
x +NyM

2
y +NzM

2
z

)

.

Replacing the components of M with the appropriate spherical expressions, Ed becomes

Ed = µ0VM2
S

[

(Nx −Nz) sin
2θ + (Ny −Nx) sin

2θsin2ϕ+Nz

]

.

Taking the derivative of the energy with respect to θ and ϕ and scaling the torques to effective

fields, the resultant shape anisotropy fields are

Hdθ = −MSsin(2θ)
[

(Nx −Nz) + (Ny −Nx) sin
2ϕ

]

(4.51)

and

Hdϕ = −MSsin(2ϕ) (Ny −Nx) sinθ . (4.52)
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4.7 Spin transfer torque (STT)

The magnetization dynamics of a ferromagnetic free layer can also be manipulated by an effect

called spin transfer torque (STT). In this effect a spin-polarized current flowing perpendicular

to the magnetic multilayers may transfer spin angular momentum between layers resulting in a

torque on the magnetic moments of the layers. The origin of the spin transfer torque is the s-d

interaction between the spin momentum of the conduction electron and the local dipole moment

of the magnetic layer. The spin torque effect can give rise to local magnetization excitations

such as spin wave generation [67, 39, 84], magnetic reversal or switching [38, 42], and stable

precession [43, 44, 46]. The two latter effects are considered in this work. The spin transfer

torque provides an electrical method to switch the layer magnetization in a magnetic-based

memory or magnetologic element instead of the traditional Oersted field switching method.

The STT term is realized as the change in angular momentum of the FM layer perpendicular

to that layer’s original magnetization direction, due to the angular momentum imparted by the

electrons that build up at the interface of the spacer layer and the FM layer when a CPP current

is applied through the multilayer. The transverse component is the only component considered

due to the constraint that the magnitude of M can not change. Figure 1.3 from Chapter 1

is redrawn in Figure 4.7 to show how a spin-polarized electron coming through the conductive

spacer is acted upon by a torque in the direction −M× (M× êp) from the free FM layer, where

êp is the unit magnetization vector of the polarizing FM layer and its electrons. In order to

conserve the system’s angular momentum the intinerent electron reacts with a torque exactly

opposite with direction M × (M× êp), which an electron near the interface in the free FM

layer absorbs. When enough spin-polarized electrons interact in this manner with the FM layer’s

electrons, the polarized electron flow will succeed in switching the FM layer moment and align

its magnetization with that of the polarizing/pinned layer. The spin torque is
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Figure 4.7: Transfer of angular momentum from spin-polarized electrons to a FM layer magne-
tized antiparallel to the pinned layer.

Tstt =
Is!G(ψ)

e · 2 ·M2
S

M× (M× êp) [J] where

dL =
!

2 ·M2
S

M× (M× êp) [J·s] and

Is
e

= rate of electron impingement [s−1] .

The spin torque expression describes the change in angular momentum dL of the FM layer at

the rate of Is
e

from the flow of electrons in the spin-polarized current, Is [85, 68]. The term G(ψ)

reflects the device conductance and the efficiency with which the electron flow is able to travel

through the spacer layer to either FM layer, and what proportion of those electrons are spin-

polarized in the direction of the pinned layer. The angle ψ is the angle between the magnetization

vector and the easy axis, êp · m̂ , in the spherical coordinate system. The spin torque term can

be shown to contribute to the total magnetization change of the free layer, dM
dt , as follows,

dM

dt
= −γ0 (M×Heff ) +

α

MS

(

M×
dM

dt

)

− γ0
Is!G(ψ)

µ0V M2
S 2 e

M× (M×êp) [
A

m · s
] (4.53)

where it is noted that µ0V
γ0

dM
dt = T. The STT term can be combined as part of the effective field
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term,

dM

dt
=

α

MS

(

M×
dM

dt

)

− γ0M×
[

Heff +
Is!G(ψ)

µ0V M2
S 2 e

(M×êp)

]

(4.54)

where the last term on the RHS of the Landau-Lifshitz-Gilbert equation is the effective STT field,

Hs = 1
µ0·V ·MS

· Is!G(ψ)
MS ·e·2 (M×êp) [ A

m
]. In order to use this new field term in the LLG equation in

spherical coordinates, Hs must be separated into parts in the θ and ϕ directions. To deal with

the Hs components the cross product (M×êp) is first computed with directional components in

the î, ĵ, and k̂ directions,

(M×êp) = Ff (θ,ϕ) = (eaycosθ − eazsinθ sinϕ) î− (eaxcosθ − eazsinθ cosϕ) ĵ (4.55)

+(eaxsinθ sinϕ− eaysinθ cosϕ) k̂ . (4.56)

Ff (θ,ϕ) represents the cross product of equation 4.56 here and in the Verilog-A code. The dot

product of equation 4.56 with the corresponding components of êθ and êϕ will be represented

as Ff (θ,ϕ) · êθ,ϕ. The magnetization direction of the polarizing/pinned layer is taken to be

the in-plane easy axis already denoted as êa =
(

eax̂i, eayĵ, eazk̂
)

, and M is already defined in

4.25. It was said in section 4.5 that Hθ,ϕ = − 1
µ0V

∂E
∂M · êθ , êϕ , thus (Hs · êϕ) = Hs·∂M∂ϕ

1
MSsinθ

noting that êϕ = ∂M
∂ϕ

1
MSsinθ

. Similarly, (Hs · êθ) = Hs · ∂M
∂θ

1
MS

with êθ = ∂M
∂θ

1
MS

, with êθ =

cosθ cosϕ̂i + cosθ sinϕ̂j− sinθk̂ , and êϕ = −sinϕ̂i+ cosϕ̂j. However, the actual magnetization

vector used in the Verilog code is normalized with respect to MS as seen in equation 4.56 so a

1
MS

term must be eliminated. The resulting expressions for Hsθ and Hsϕ using Hs and equation

4.56 are

Hsθ =
1

µ0 V MS
·
Is!G(ψ)

2 e
Ff (θ,ϕ) · êθ (4.57)

Hsϕ =
1

µ0 V MS
·
Is!G(ψ)

2 e
Ff (θ,ϕ) · êϕ . (4.58)

Finally, the transport and polarization efficiency factor, G(ψ) must also be calculated in the

model. First postulated by Slonczewski according to material and geometric parameters [86, 68],
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this factor is described in the form of equation 4.59 by [87] as

G(ψ) =

[

−4 + (1 + P )3 ·
3 + (êp · m̂)

4P
3
2

]−1

(4.59)

where P is the spin-polarization factor of the incident current and has typical values of P .

0.3− 0.4 in ferromagnetic metals. In the STT model G(ψ) is computed using the dot product of

êa with m̂, and P = 0.35 .

4.8 The 3-D model

We have gone through a lot of math to derive a three dimensional dynamics expression made

from the combination of equations 4.40 and 4.41, and several key effective field terms; uniaxial

crystalline anisotropy in equations 4.47 and 4.48, Zeeman field in equations 4.49 and 4.50, shape

anisotropy in equations 4.51 and 4.52, and STT fields in equations 4.57 and 4.58. The 3-D model

takes all the effective field terms and combines them as Hθ and Hϕ in equations 4.40 and 4.41,

repeated here for convience,
dθ

dt
=

γ0
(1 + α2)

[Hϕ + αHθ]

dϕ

dt
=

γ0
(1 + α2)

1

sinθ
[αHϕ −Hθ]

as

Hθ =
Kusin2ψ

µ0MS
·

1√
1− u2

(eaicosθ cosϕ+ eajcosθ sinϕ− eaksinθ)

+ (Hxcosθ cosϕ+Hycosθ sinϕ−Hzsinθ)

−MSsin(2θ)
[

(Nx −Nz) + (Ny −Nx) sin
2ϕ

]

1

µ0 · V ·MS
·
Is!G(ψ)

e · 2
Ff (θ,ϕ) · êθ
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and

Hϕ =
Kusin2ψ

µ0MSsinθ
·

1√
1− u2

(−eaisinθ sinϕ+ eajsinθ cosϕ)

+ (Hycosϕ−Hxsinϕ)

−MSsin(2ϕ) (Ny −Nx) sinθ

1

µ0 · V ·MS
·
Is!G(ψ)

e · 2
Ff (θ,ϕ) · êϕ .

The final term in each expression is the STT term which is further expanded in terms of Ff (θ,ϕ) ·

êθ and Ff (θ,ϕ)·êϕ in the Verilog-A code. It is apparent here that with all the terms combined into

one equation for determining the magnetization angles M(θ) and M(ϕ), it is no longer possible

to keep torque terms in individual circuit modules and combine them for a specific device.
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Chapter 5 – Spin valve, toggle MRAM, and STT systems

Brief descriptions of a spin valve, toggle MRAM and a spin torque transfer system were given

earlier in the introduction, and the torques and fields needed to build the Verilog-A models have

been developed for each of those systems. In this chapter more detail is provided about each

system; signals and operation, and the composition of each Verilog-A model. The spin valve and

toggle MRAM systems use 2-D magnetization statics and dynamics while the STT system uses

the 3-D magnetization model.

Some portions of the Verilog-A code will be given in this chapter. In order to model magnetic

behaviors, a new discipline (a collection of related physical signal types, eg., current and voltage,

or angle and angular force) has been defined for magnetic fields with an appropriate nature (a

set of attributes) such as units of
[

A
m

]

and the access term H( ) as in H(hx), for accessing the

magnetic field signals. The magnetization angles and torque belong to a rotational discipline

with natures of angle and angular force respectively. Thus to use or access the angle θM1, the

code uses the access term Theta( ) or Theta(M1). The nature of angular force is used to describe

torque. Torque can be accessed with the term Tau( ) as in Tau(M1). In this way, the various

physical terms comprising a signal simply “contribute” to the signal using the Verilog-A symbol,

<+ . In Verilog-A these signal contributions may occur only inside an analog process as they

are (piecewise) continuous-time signals.

5.1 Spin valve

The physics of the spin valve is the basis for most other magnetic sensors and devices at present.

In the modeled spin valve system, only the most basic elements were added; uniaxial crystalline

anisotropy, applied fields in x̂ and ŷ , and the 2-D dynamic field term. The spin valve of Figure
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Figure 5.1: Spin valve system with test connections and current inputs.

1.1 is redrawn here so that the fields and electrical connections can be viewed.

5.1.1 Quasi-static behavior

For bistable operation, a uniaxial anisotropy is required to hold the magnetization of the free

layer in one of two opposite directions along an easy axis. With the uniaxial anisotropy and zero

applied field, the free layer magnetization, θM1, could be at either 0◦ or 180◦, but the spacer

thickness is such that the IEC sets the free layer AP to the pinned layer in zero field. Thus, the

free layer has a magnetization of 180◦. To verify the switching characteristics of this device a

single switching field (Hx or Hy) is calculated as Hx,y = 2Ku

µ0MS
according to Stoner and Wohlfarth

[88, 14] with respect to a single-domain magnetic particle with uniaxial anisotropy. The resulting

value is used as a minimum switching threshold (the coercive field, Hc). When a single field must

reverse the free layer magnetization (+MS to −MS, and vice-versa) a value greater than this
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minimum threshold is applied, and if both Hx and Hy are used for switching, each field is set

to greater than half the minimum threshold. The first term in equation 5.1 is the applied field

torque. This term combined with the uniaxial anisotropy term has equilibrium or switching field

points (zero torque) at θM = 0◦ and 180◦, when a field in only the ±x̂ easy axis is used (Hy = 0).

This easy axis, quasi-static switching characteristic is the classic square hysteresis curve from

Stoner-Wohlfarth theory as shown in Figure 5.2 where the easy axis, M vs. H (M normalized to

the saturation magnetization, MS , and H to the coercive field, Hc) curve is highlighted in green.

Other key quasi-static switching curves are also shown. The red dashed line shows the case

where only Hy is applied (short or hard axis field), so that as θM rotates from 180◦ ( M
MS

= −1)

to 0◦ ( M
MS

= 1), the magnetization changes linearly with the field, resulting in a diagonal curve

without hysteresis. With both Hx = Hy applied, the gold-highlighted curve shows the switching

characteristic combining aspects of both the distinct coercive switching points of the easy axis

field and the coherent rotational characteristic of the hard axis diagonal, with the equilibrium

point always found for θM = 45◦.

5.1.2 The spin valve model

The effects of the Zeeman and anisotropy torques are now brought together with the dynamic

component to complete the spin valve model. The dynamic term was combined with the Zeeman

term in equation 4.23. The anisotropy has already been modeled as a torque in equation 4.9 and

its function is to bring the magnetization back to the easy axis (positive or negative x̂-direction),

where Ku is the strength of the uniaxial anisotropy. The balance of these three torques is

0 = µ0VMS (HycosθM−HxsinθM )−KuV sin2θM −
µ0VMS

γ0
(

α+ 1
α

)

dθM
dt

. (5.1)

The first two terms describe the static behavior of a single domain particle as explained above

and the final term is the dynamic or transient response. This physical model captures the

two-dimensional hysteretic switching characteristics and dynamic magnetization response of the
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Figure 5.2: A Stoner-Wohlfarth hysteresis curve showing switching characteristics of a single
domain magnetic particle; normalized magnetization against the applied field normalized to the
coercive field, M/MS vs. H/Hc. The green, square highlighted curve is for only H = Hx applied
(Hy = 0), the red dashed highlighted curve is for only H = Hy applied (Hx = 0), and the gold
highlighted curve is the case where H = Hx +Hy and Hx = Hy.

single-domain, thin-film magnetic free layer with uniaxial anisotropy.

A block diagram for the model is presented in Figure 5.3. In this diagram the torques are

balanced inside the Free layer block, which outputs the magnetization angle, θM1. The Verilog-A

code for this is simply the sum of the three torques in equation 5.1 at node Tau(M), which will

result in a value for M = θM when the sum equals zero.

Verilog-A analog process for 2-D torque balance:

analog begin

// torque due to external field:
Tau(M) <+ -‘P_U0*Ms*(H(hx)*sin(Theta(M))-H(hy)*cos(Theta(M)));
// anisotropy:
Tau(M) <+ -Ku*sin(2*Theta(M)) ;
// damping torque:
Tau(M) <+ -ddt(Theta(M))* Ms/((alpha+1/alpha)*‘P_gamma);

end
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Figure 5.3: Block diagram of the spin valve and its modules.

The applied fields Hx and Hy are provided to the Free layer by currents on the electrical inputs

of the bit and word lines, through a model block, Write Line (WL). This is a simple module

which computes the magnetic field based on the current sheet approximation

H =
Js
2

(5.2)

where Js is the sheet current density in the line. This assumes that the magnetic element is close

to a wide, thin conductor. The Write Line has parameters W and R which are the width and

resistance of the write line respectively. More sophisticated models could include the effects of

thicker lines or magnetically cladded lines and spacing loss due to the separation between the

write line and the magnetic element. In most cases, however, the write field will still be simply

proportional to the current. Two write line modules are used in the spin valve cell, one for the

word line (Ix) producing Hy, and the other for the bit line (Iy) producing Hx.

The Magnetoresistance (MR) module is shown as the output block in Figure 5.3. It models

the magnetoresistance effect which determines the output resistance as a function of the magne-

tization angles of the two magnetic layers labeled θM1 (the free layer magnetization) and θM2

(the pinned layer magnetization). In the case of the spin valve, θM2 is held fixed by connecting

port M2 to a constant angle source. When the magnetization angle of the free layer is AP to

that of the pinned layer, the magnetoresistance will be at its maximum, and at a minimum when
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the layers are P, allowing a change in output voltage for a given current. The magnitude of the

current is typically in milliamps and the voltage change is in millivolts. The change in the MR is

modeled simply as ∆R ∝ cos(θM1−θM2). The parameters for the MR module are the maximum

and minimum resistance values of the device. The module cores (analog processes) for the Write

Line and Magnetoresistance are,

Verilog-A analog process for Write Line module:

analog begin

V(inp,inn) <+ R * I(inp,inn);
H(hout) <+ I(inp,inn) / (2*W);

end

analog process for Magnetoresistance module:

parameter real R_max = 1000 ; // high resistance [ohm]

parameter real R_min = 500 ; // low resistance [ohm]

analog begin

V(rp,rn) <+ I(rp,rn)*(R_min+ 0.5*(R_max-R_min)* (1-cos(Theta(M1)-Theta(M2))))
;

end

5.2 Toggle MRAM

The Toggle MRAM model describes the magnetic behavior of two single-domain, magnetic free-

layers coupled through exchange and magnetostatic interactions. The free layer (single domain)

module from the spin valve is duplicated for both free layer blocks with the same uniaxial crys-

talline anisotropy, applied fields, and 2-D spin-dynamic effects obtained in equation 5.1. A

physical model of the Toggle MRAM cell in Figure 5.4(a) illustrates the layers and the signal in-

terface for its input and output signals. Figure 5.4(b) gives a block diagram showing the module
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(a) Single Toggle MRAM bit sandwiched between bit and word line conductors.
The structure has two FM free layers separated by a NM spacer, with a tunnel
barrier between the bottom free layer and the pinned layer.

(b)

Figure 5.4: A Toggle MRAM bit. a) physical structure and b) model block diagram showing
two free FM layers interacting via exchange and dipole coupling blocks. The output magnetore-
sistance is implemented with a magnetic tunnel junction between the bottom free layer and the
pinned layer.
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connections, where the external interface to the model is like that for the spin valve, with a bit

line and a word line to input electrical current, which is then converted to magnetic fields in the

x̂ and ŷ directions via two writeline modules. The output is again in the form of a magnetore-

sistance based on the orientation of the free and pinned layers, however, the bottom free layer is

separated from the pinned layer by a thin, insulating tunnel barrier. Electron tunneling through

this barrier or magnetic tunnel junction (MTJ) depends on the angle between the magnetization

of the bottom free layer and the pinned layer, resulting in a tunneling magnetoresistance (TMR).

The read circuitry of an MRAM determines the binary state of the bit by measuring this tunnel

junction resistance through the adjoining contacts. When the bottom free layer and pinned layer

are magnetized in the same direction, the resistance is lower (binary ‘‘0”) and when the bottom

free layer and pinned layers are magnetized in opposite directions the resistance is higher (binary

‘‘1”).

5.2.1 Dynamic operation and response

Two useful properties of the Toggle MRAM cell are that there are two free layers, and that the

entire layer stack is angled at 45◦ to the x and y axes. These two attributes work together to

lower the energy needed to cause the free layers to “spin-flop” (i.e. the layers discontinuously jump

from an AP state (0,π) to a scissored state (θ,−θ) state, with their net moment in the direction

of the applied field). Examples of spin-flop states are phases (1), (2) and (3) in Figure 5.5. When

the bit is the intended target cell in an MRAM bit array, it experiences a full-select field (both

Hx and Hy) as part of a pulse sequence (phase (2) in the figure). When a half-select field is

experienced (only Hx or Hy) the field is not along the 45◦ easy axis of the bit and the activation

energy increases, which significantly reduces erroneous half-select switching errors. The spin-flop

phase and its near-zero activation energy allows the two free layers to rotate through a set of

field pulses to finally toggle their moments (switch magnetization direction) and is the key to

this architecture [35].
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Figure 5.5: Toggling of the free layer magnetizations using a “box field” sequence.

Figure 5.5 is used to explain a toggle sequence graphically. The magnetic state of the free

layers in the bit to be written (target bit), is reversed by applying a sequence of magnetic field

pulses through the word and bit lines as in [36]. Although a variety of different field sequences

can result in the toggling of the bit, the most common is the ‘‘box field” sequence illustrated

in the figure. First a current is put through the word line; then the bit line is also activated.

The word line is then turned off before the bit line. When plotted in the Hx −Hy plane, the

resulting field sequence follows the outline of a square box [76, 89]. Application of a magnetic

field from a word line or bit line by itself (half-select) does not affect the state of the target

bit. However, the Hx and Hy fields can affect MTJ bits which are neighbors to the target bit in

the MRAM cell array depending on the spacing of the cells [33]. The response of the two free

layer magnetizations is illustrated in the bit drawings which follow the time sequence in Figure

5.5. At the beginning of the sequence (0), there is no applied magnetic field and the two layers

are oriented along the 45° anisotropy direction and opposite to each other with the bottom free

layer’s moment at 225° (solid wide arrow) and the top free layer’s moment (thin arrow) at 45°.

With application of the Hy field (1), the magnetization directions ‘‘spin flop” to orient themselves

perpendicular to the applied field. When Hx is then added (2) the magnetic moments remain in

the spin flop state but rotate around so that their net moment is along the direction of the total
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applied field. In step (3) only Hx remains and the magnetic moments continue to rotate together

in the same direction. Finally, all fields are removed (4) and the magnetic moments relax back

to the anisotropy axis but with their directions reversed from the original state, with the top free

layer’s moment now at 225°, and the bottom free layer’s moment at 45°. The box field sequence

reliably toggles the state of the MRAM bit regardless of the initial state. Prior to writing, the

state of the bit must be read to determine whether it needs to be toggled or not.

5.2.2 Model differences from the spin valve: TMR, dipole and ex-

change coupling

Three important effects are added to the model of the Toggle MRAM bit cell over the original

spin valve/MRAM cell; the bias voltage dependence of the output TMR covered in section 2.5.2,

and the coupling field, composed of the dipole and spacer exchange coupling. For the former, the

full expression for the MTJ resistance which depends on the relative orientation of the magnetic

moments of the bottom free layer θM2 , with respect to the orientation of the pinned layer

θMpinned, is

RMTJ =
Rmin

2
· (1 + TMR(v)) (1− cos(θM2 − θpinned)) . (5.3)

Rmin is the low value of the magnetoresistance and the tunneling magnetoresistance (TMR) has

the bias-voltage dependence in equation 2.7 . In simulation, a Vh value for MgO tunnel barriers

was used obtained from [31]. The Verilog-A code for for the TMR is

Verilog-A analog process for TMR module:

parameter real Vh = 0.4; //Bias effect parameter [volts]

parameter real M_ea; //Pinned angle = easy axis angle

real BE; //bias effect value based on Vh

analog begin

BE = 1 + pow((V(rp,rn)/Vh), 2);
I(rp,rn) <+ V(rp,rn) / (0.5 * R_min * (1 + (TMR/BE) * (1 - cos(Theta(M1)
- M_ea))));
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end

In this code,
(

TMR

BE

)

is equal to the expression for TMR(v) in equation 2.7. This code module also

sets the pinned, easy axis angle internally to 45◦ degrees using the parameter M_ea. Because the

bias voltage, V(rp, rn), is the controlled value, the current through the tunnel junction, I(rp, rn),

is the variable for which the simulation is solved.

The other differences between the toggle MRAM bit cell model and the spin valve model is

the additional use of the exchange coupling and dipole coupling torques. These two blocks are

shown in Figure 5.4(b) coupling together the two free layers by the effective fields acting between

the layers. As noted earlier in Chapter 1, the free layers are coupled antiferromagnetically (due to

IEC) by the spacer thickness. To account for the 45° easy axis in free layers, the dipole coupling

torque equations 4.15 and 4.16 must subtract the designated easy axis angle (θEA) from the

magnetization angle:

Tdip12 = J12 ·Ny1sin (θM1 − θEA) cos (θM2 − θEA)−Nx1cos (θM1 − θEA) sin (θM2 − θEA) ,

Tdip21 = J21 ·Ny2sin (θM2 − θEA) cos (θM1 − θEA)−Nx2cos (θM2 − θEA) sin (θM1 − θEA) .

In the case of the exchange coupling torque, the exchange interaction depends only on the dif-

ference between the layers’ magnetization angles (ie., not with respect to the easy axis), so the

torques applied in the exchange coupling block become (from equation 4.11)

Texch12 = −A1Jsin (θM1 − θM2)

Texch21 = −A2Jsin (θM2 − θM1) ,

and it is reasonably assumed that the free layers’ areas are the same (A1 = A2).

The Verilog-A code for the dipole and exchange torques are entered just as the above equa-

tions.
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Figure 5.6: Block diagram of an spin valve system using STT. Ispinis the injected CPP current.

5.3 Spin transfer torque spin valve

The STT device introduced with Figure 1.3 is basically a GMR spin valve (NM spacer) with CPP

current injected through the layers. This primary mode of STT has been developed in section

4.7. Here we cover the set-up and operation of the STT spin valve in its free layer switching

mode and also its mode of steady state precession. The STT device model was developed only

in 3-D.

5.3.1 STT-driven magnetic reversal of spin valve free layer

For the switching of the FM free layer in a spin valve via STT we use the block diagram shown

in Figure 5.6. It is a block diagram of a GMR spin valve with a single domain free layer. The

3-D model is labeled “3DLLG Single Domain+STT” and the specific field terms from section

4.8 can vary. The figure shows a CPP current (labeled Is) injected through the multilayer via

the rp and rn terminals to generate the electron or spin current which will transfer spin angular

momentum at the NM/FM interfaces. The current sources, Ix and Iz are unnecessary for this
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operational mode. In practice, a field along the easy axis direction generated with Iy is sometimes

used to guarantee a fixed magnetization in the polarizing/fixed layer. As an initialization step,

Iy is pulsed negative (positive) to ensure that in simulation, the free layer begins AP (P) to the

polarizing layer.

After the the free layer magnetization direction is initialized, Is is ramped or pulsed as a

positive current (negative current) in order to switch the magnetization of the free layer P (AP)

to the polarizing layer. The spin torque from the current, Is , moves m away from its initial equi-

librium. With enough current, the precession angle due to the spin torque can grow overcoming

the damping torque, and switch the magnetization when the polar angle, θ, increases past 90◦.

A minimum current magnitude for switching is determined with the current ramp.

5.3.2 Steady-state precession using STT

The ability to manipulate the thin-film free layer magnetization in a device using the transfer

of spin angular momentum has spurred much investigation into what other kinds of magnetic

motion might be generated with this torque. Another discovered form of magnetic excitation

using STT is steady-state precession. Without any mechanical motion, a spin-valve multilayer

is able to convert energy from the perpendicular DC spin current into high-frequency magnetic

rotations that could be used as microwave sources or nanoscale oscillators.

Several sources have documented phase diagrams of spin transfer dynamics as a function of

spin current and magnetic field [17, 44, 90, 16]. These authors and several more have investigated

the different phases of spin transfer dynamics, and the phase diagrams are consistent with one

another. These diagrams indicate the conditions under which steady-state precession is able to

occur.

To reach the conditions of steady-state precession, a field in the initial direction of the free

layer magnetization must be present. The spin torque from the current, Is, moves m away from

its equilibrium (P or AP to the polarizing/fixed layer), but if the damping torque increases with
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Figure 5.7: Phase diagram of spin transfer dynamics - for a fixed field H, a bistable region labeled
A/B exhibits the A state when I is scanned from left to right, and the B state when I is scanned
from right to left. Reference [17] has 108 A/cm2 ↔ 10mA. Green and red highlights have been
added for clarity. [Reprinted figure with permission from J. Xiao, A. Zangwill, M. D. Stiles, Phys. Rev.
B. Vol. 72, 014446 (2005). Copyright (2005) by the American Physical Society.]
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the precession angle faster than the spin torque, the precession angle may become limited (by the

damping). In this case, m can achieve a state of dynamical equilibrium and precess continuously

at some fixed average angle in response to the DC spin current. The energy gained from the spin

torque during each cycle is balanced by the energy lost to damping.

In Figure 5.7 some of Xiao’s data at T=300K is exhibited. If the region is labeled A/B then

it exhibits the A state when I = Is is scanned from left to right, and the B state when I = Is

is scanned from right to left. It is seen for this particular nanopillar geometry that at fields of

0 ≤ |Hea| ≤ 32 kA/m (0 ≤ µ0H ≤ 0.04T), applied along the easy axis in the direction of the

initial AP magnetization, a current is reached (going lower right to lower left, AP → IPP) where

an in-plane precession (IPP) occurs. This IPP region is a small triangular sliver highlighted in

green. In order to switch from a P state to an equilibrium IPP state (upper green region, going

upper left to upper center, P → IPP → OPP ), a larger magnitude field must be applied, and a

larger magnitude spin current as well. In the case of beginning in an AP state, it is somewhat

easier to find the spin current region for IPP, but if Is is too great, m will simply switch to the

P state. In all cases, the applied field, Hea must be larger than the coercive field Hc = Hk + Hd

to achieve steady-state precession.
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Chapter 6 – Simulating in Spectre/Spice

Spectre is specifically named in this work because it is Cadence’s own derived SPICE-like analog

simulator, which has benefits of accuracy in several areas and the inclusion of Verilog-A. The

SPICE and Spectre simulators do work similarly, but several algorithms, such as local truncation

error and convergence checking are different.

The simulation of the device models in Figures 5.3, 5.4 and 4.5 are performed using the

Cadence Virtuoso IC design platform with its Spectre Circuit simulator in its Analog Design

Environment. The analog high-level description language (AHDL) in which the models are

written, Verilog-A, is part of the Spectre Verilog-A Simulation option, and is an open standard.

The Spectre circuit simulator uses direct methods such as implicit integration and Newton-

Raphson, to simulate analog circuit modules at the differential equation level. The behavior

of each module is described mathematically in terms of its terminals and external parameters

applied to the module.

The magnetic device models here have been based on fundamental physics and are intended

to be accurate, but not so detailed that they would be a bottleneck in a system simulation with

other circuits. The goal has been to achieve correct critical behaviors, such as magnetic moment

switching, control of that switching with material and device parameters, and correct system

time constants.
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Verilog-A and Spectre simulation mechanics

6.0.3 Verilog-A and magnetics

Working with the multi-disciplinary models in Verilog-A is similar to working with an electrical

circuit in that Kirchoff’s potential and flow laws (KPL and KFL) are still used. The potentials

around a loop of branches sum to zero and all the branch flow quantities must sum to zero

at a node. A Verilog-A system is just a lumped network of nodes and branches where the

potentials across the branches and the flow quantities through the branches are allowed to be

any physical quantity, not only voltage and current. When potential and flow quantities are

used together, their product within the system is conserved, and these quantities make up a

conservative discipline. The potential and flow quantities are physical quantities and each is

called a nature. A conservative system must have two natures, one that is a potential quantity

and one that is a flow quantity. If a discipline uses only one nature, it is not a conservative

discipline [91].

In the magnetic device models, two of the disciplines used are 1) electrical - with Voltage

and Current as potential and flow quantities, and 2) rotational - with Angle and Angular_Force

(Torque) as its potential and flow quantities. Both of these are conservative disciplines; the first

conserves power and the latter, energy. It was necessary to define a third, new discipline for

magnetic fields. There is only one nature assigned to this discipline which requires that it have

a potential nature. The statements are

nature Magnetic_Induction

abstol = 1e-6 ;

access = H ;
units = "A/m" ;

endnature

discipline sig_flow_H

potential Magnetic_Induction ;
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enddiscipline

For the quantities of torque and magnetization angle the natures and disciplines are

nature Angle

abstol = 1e-6 ;
access = Theta ;
units = "rads" ;

endnature

and

nature Anglular_Force

abstol = 1e-6 ;
access = Tau ;
units = "N*m" ;

endnature

discipline rotational

potential Angle ;
flow Angular_Force ;

enddiscipline

It is obvious that the nature defines the attributes of the physical quantity and the discipline

defines a signal as a potential (and/or flow if there are two natures). In fact, the input/output

ports of the block are defined by the discipline assigned to the port signal. The core 2-D single

domain block is a good example of how the natures work as the lumped element model depicted

in Figure 6.1. There are three torques in this core block; applied field Ta, uniaxial crystalline

anisotropy Tk, and the 2-D dynamic or damping torque Tdyn. These torques with the output

torque flow must sum to zero at every simulation time step (the Spectre circuit simulator directly

checks Kirchhoff’s Current/Flow Law at each time step), resulting in a value for the magnetization

angle, θM , which is a potential across its branch.
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Figure 6.1: Torques or Angular_Force as flow natures, summing at the torque balance node (θM )
in the 2-D single domain block. θM is the block output and resultant moment angle which is a
potential of the same discipline as the torques (rotational).

6.0.4 Spectre/SPICE simulation

The correct simulation mode for the magnetic device models is transient analysis, as the output

of interest is the change in the angle of magnetization with time. Transient analysis generates a

system of non-linear differential equations which are discretized in time to convert the problem

into a sequence of systems of non-linear algebraic equations making the time derivative into a

finite difference approximation [class notes, ECE 521 - Analog Circuit Simulation]. A transient

simulation does not require a DC operating point to be calculated, but it does require an initial

state that allows the simulation to converge. The DC operating point is important only if

it is desired to run an AC small-signal analysis because the small-signal analysis begins by

linearizing the circuit about an operating-point. An AC analysis would be used with these

models if investigating, for example, susceptibility, which requires the addition of a small-signal

current(s) (which convert to an AC magnetic field) on the input to the model. In this case,

the simulation does not record the system output in time, but keeps the system nodes at their



88

operating point values and computes a Taylor series expansion [92] of the change in system

response to the small, sinusoidal change in the stimulus (∆M
∆H

), using complex (phasor) notation

for the stimulus and output variables. In most cases (2-D and 3-D LLG models) a DC operating

point could be found, but it was common in the 3-D LLG model with the additional STT term,

for the simulator to fail to find an operating point solution. It is likely that with the proper

initial state and simulator settings that the operating point could be found if needed.

6.0.4.1 Transient Analysis

It is helpful to view what happens during a transient analysis. Going back to Figure 6.1,

KPL/KFL gives the torque equation

T0 = −Ta −Tk −Tdyn

T0 = µ0VMS (HycosθM−HxsinθM )−KuV sin2θM −
µ0VMS

γ0
(

α+ 1
α

)

dθM
dt

T0 = µ0VMS

[

Hy

(

1−
θ2M
2!

+
θ4M
4!

− . . .

)

−Hx

(

θM −
θ3M
3!

+
θ5M
5!

− . . .

)]

− · · ·

and the simulator, for example, will expand the Ta equation’s sinθM and cosθM terms in their

respective series. It is clear that all but the dynamics expression can be formulated as a series

expansion or the product of series expansions, and the simulator must deal with a derivative

in the dynamic torque (circled in the figure). There are several possibilities for the derivatives’

discrete approximation, but the two methods regularly employed in the model simulations were:

1. Backward Euler d
dt
(θM (tk+1)) ≈ 1

h
[θM (tk+1)− θM (tk)]

2. Trapezoidal rule d
dt
(θM (tk+1)) ≈ 2

h
[θM (tk+1)− θM (tk)]− d

dt
(θM (tk))

where h = tk+1 − tk , and in the Trapezoidal rule, d
dt
(θM (tk)) is the previously-solved derivative.

The rules for choosing the time step are two-fold;

1. the size of the simulation time step (h) must be much smaller than the time constant of
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the dynamic response, and

2. very small time steps will allow the computed solution to be more accurate (closer to the

real solution), if the system is convergent (i.e., moving towards the actual solution).

The above example requires an initial value for θM and iterates a set of non-linear algebraic

equations using a finite difference approximation for the time derivative, illustrating the concept

of numerical integration - solving finite difference equations one point at a time starting from an

initial condition.

6.0.4.2 The system solving algorithm: Newton-Raphson

The set of equations at every step of a transient analysis are non-linear algebraic systems and

can not be solved directly. The simulator uses the Newton-Raphson method, which takes an

initial guess of the solution of the system of non-linear equations, and refines it, making it more

and more accurate on each iteration. In the above section, the expression for T0 has had all its

components approximated and discretised in time, but the overall system simulation is looking

for the solution, θM , where f(θM ) = T0 = 0. As an example of a simple scalar system using f(vk)

with solution, v̂ , the system solution is found using the Newton-Raphson iteration equation,

∂f(vk)

∂v

(

vk+1 − vk
)

= −f(vk) (6.1)

which is presented graphically in Figure 6.2 [92].

With an initital value v(0), the simulator computes f(v(0)) and linearizes the function about

v(0) by taking the derivative of f(v(0)) with respect to v (left graph). This generates the first

iteration value, v(1) about which the function is linearized a second time (right graph). The

process continues until two convergence criteria are met (in Spectre):

1. The difference between the last two iterations must be small,
∣

∣vkn − vk−1
n

∣

∣ < reltol·vnmax+

abstol, where vnmax = max
(
∣

∣vkn
∣

∣ ,
∣

∣vk−1
n

∣

∣

)

, reltol = 10−3 , and abstol = 10
−6 (defaults)
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Figure 6.2: A graphical representation of Newton’s method.

.

2. If fnmax is the absolute value of the largest Flow entering node n from any one branch,

then the residue (or error) is converged if
∣

∣fn(vk)
∣

∣ < reltol · fnmax + iabstol, where

iabstol = 10−12.

Criterion 1 assures that the iteration values have successively moved closer together in the same

direction, and if the value at a node is close to zero, the simulator allows an update smaller than

vabstol to be accepted. The second criterion requires that the value of the function at node n

be very close to zero when converged, with iabstol present to allow the simulator to accept a

value less than iabstol . As long as the initial solution guess or initial conditions are a good

choice, and the model equations are continuously differentiable, convergence can occur.

Simulation choices

In the magnetic model simulations the Backward Euler integration method is used automatically

by the simulator on the first time step and at changes in the input waveform (breakpoints).

Backward Euler is ideal for a linear signal response, which for a slow startup response, is quite
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reasonable. Also, both Backward Euler and Trapezoidal methods are “one-step,” i.e., they com-

pute the value of the current time point using the value of the one immediate predecessor, which

means they are able to adapt quickly to abrupt signal changes. The Trapezoidal rule is ideal if

the solution is quadratic, which is more like the expected magnetodynamic behavior. The Trape-

zoidal method was most often used in simulation because it is known to definitively report the

stability of a system, to react fast to signal changes, and it does not exhibit artificial numerical

damping. The latter is important to simulating to a more accurate magnetic moment switching

time. The drawback to the Trapezoidal integration method is that it is very sensitive to errors

made on previous timesteps, and so should not be used unless the relative step-to-step error

tolerance (reltol) is set conservatively - this was always done, but this sometimes made it more

difficult to converge.
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Chapter 7 – Simulation results and discussion

7.1 2-D Spin valve

The 2-D Spin valve uses the free-layer single domain module in the system shown in Figure

7.1 (introduced in section 5.1). The single domain module uses the torque balance expression

in equation 5.1. The simulations follow the movement of the free-layer moment, θM1, via the

GMR-based output voltage across the electrical output ports, rp and rn. The GMR should

behave as shown in Figure 1.1 and output a low resistance when the free and pinned layers are

parallel in magnetization, and a high resistance when the layers are antiparallel. To sense the

GMR voltage, the test circuit used a 1 A current source into the MR block and the voltage read

across the output ports, V(rp,rn), allowed the calculation of the MR value in ohms. The output

resistance is arbitrarily fixed in the range 500Ω ≤ R ≤ 1000Ω by setting Rmin = 500Ω and

Rmax = 1000Ω in the Magnetoresistance (mr Listing 2 in Appendix 8.2) module’s equation for

the resistance across the junction,

R = Rmin +
1

2
(Rmax −Rmin) (1− cos (θM1 − θM2)) .

The parameters used for the transient switching and hysteresis simulations that follow are given

in Table 7.1 .

7.1.1 Transient simulations of the spin valve used as an MRAM cell

The block diagram and physical depiction of the spin valve cell in Figure 7.1 is representative

of a single element (one free layer) MRAM cell. In a transient simulation a sequence of four

current pulses was applied to the bit and word lines as shown in the plot of the results in Figure
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Figure 7.1: a) 2-D spin valve block diagram and b) physical multilayer representation of block
diagram in (a).

2D spin valve

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300

(

A
m

)

shape anisotropy (Hd) Hd = 0
external applied field(s) (Ha) via

Ixword
and Iybit

Transient: −1.2
(

kA
m

)

and 0.5
(

kA
m

)

Hysteresis: −1.5
(

kA
m

)

to 1.5
(

kA
m

)

and back
interlayer exchange coupling (Hex) N/A

dipole coupling (Hdip) N/A
spin transfer torque (Hstt) N/A

Other parameters
Gilbert damping factor (α) 0.02

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.1: Fields and parameter values used for the 2D spin valve transient and hysteresis
simulations.
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Figure 7.2: Spin valve simulated as an MRAM cell with word- and bit- line pulses.

7.2. The lower plot shows the resulting change in resistance of the spin valve. The sequence

of pulses is as follows: first, a large negative current pulse exceeding the switching threshold

is applied to the bit line (-Hx) to switch the free layer from the initial low resistance state at

0° to the high resistance state at 180°. The second pulse is a smaller positive current on the

bit line (+Hx) which does not result in any resistance change because it does not exceed the

switching threshold along the easy axis. The third pulse is a current pulse on the word line

(Hy), also below the switching threshold. This pulse results in a small, temporary rotation of the

magnetization (because the field was applied along the hard axis) and a small change in resistance

for the duration of the pulse. Finally, a coincident pulse is applied on both the word and bit lines,

resulting in a 45° field exceeding the switching threshold. The spin valve is switched backed to the

original low resistance state by this pulse. This sequence illustrates situations that would occur

in the addressing of a MRAM array. The second and third pulses are ones that would be seen by

un-addressed bits on the same word or bit line as an addressed bit. The final pulse is that which

would be experienced by the addressed bit. In addition to correctly modeling the switching,
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Figure 7.3: Hysteresis curves for field applied along the easy axis (square loop), hard axis (diag-
onal - no hysteresis) and at a 45◦ to both axes (rounded loop).

the resistance variations of the un-addressed bits are accurately represented. The model also

captures time delays associated with the damped response of the magnetization, particularly in

situations where large angle rotations are called for. Particularly notable is the long delay from

the beginning of the first negative field pulse to when the magnetization finally reverses itself.

The field from the bit line in this case is exactly opposite of the original magnetization direction,

resulting in an unstable equilibrium which persists for almost one nanosecond. In fact, a small 1

µA current was required in the word line to get the spin valve model to switch at all.

7.1.2 Hysteresis loops

The single domain module was also tested for its hysteretic behavior. The model response for

fields in the x direction, y direction and at 45◦ is shown in Figure 7.3. In each case, the field is
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swept positive and then negative. As is traditional, only the component of magnetization in the

applied field direction is plotted. The resulting hysteretic curves are identical to those calculated

by Stoner and Wohlfarth in their 1948 work [88] on single-domain particles. The x-axis (easy

axis) curve displays the expected square hysteresis loop while the y-axis (hard axis) response is

hysteresis free. The 45° loop displays some hysteresis but with considerably lower switching field

than the x-axis response. The spikes in the 45° degree loop are transients resulting from the

time-stepped solution in Verilog.

7.2 2-D Toggle MRAM

The Toggle MRAM model is more complex in its behavior than the spin valve-based MRAM

cell, and uses all the torque equations derived in Chapter 4, sections 4.2-4.3, and also the voltage

bias-dependent TMR effect in section 2.5.2. The Spectre schematic connects the model blocks

together as in Figure 5.4(b) for simulation.

The model was evaluated with stimuli that demonstrate the behavior of the coupled free layers

in response to a 45° field and simulate the toggle MRAM writing sequence. Parameter values

used in the simulations are those from Worledge’s work, listed in Table 7.2 [35, 36, 93]. These

parameters provide the conditions for spin flop and toggle switching and represent a realistic

design point. Except in the case of the combined spintronic-CMOS read/write circuit simulation

presented in Figure 7.7, the Vh parameter was set to the first, large value in Table 7.2 (1×106V)

thus disabling the TMR bias voltage effect. The demagnetizing factors are determined by the

shape of the bit and can be approximated by Nx = 2t
πa and Ny = 2t

πb , where t is the layer

thickness, and a and b are the length and width of the bit (a thin, rectangular layer). These

approximate factors were used in the simulation of the toggle MRAM model and in some of

the simulations that follow for the 3-D model. Otherwise the demagnetization factors used are

published values for Nx , Ny and Nz from McMichael [83].
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Figure 7.4: Response of free layer moments (bottom and top free layers) in the toggle MRAM
model in response to a 45° field (Hx = Hy). The spin flop transition and saturation fields are
smaller for the r=0.2 attenuation case and larger for the r=0.7 case.

7.2.1 Static response

The static response of the coupled free layers to a 45° applied field (i.e. Hx = Hy) is shown in

Fig. 7.4. The equilibrium angles of both bottom and top free layers are plotted as a function of

the magnetic field as this is increased from 0 to 20 kA/m. Orientation of the free layer moments

is shown schematically in the circles above the plots at key transition points. At low fields,

the anisotropy keeps the moments along the 45° easy axis. As the field is increased, there is

a transition to the spin flop state at a critical field which depends on the strength of coupling

between the free layers. At this point, the anisotropy is overcome and the magnetic moments

turn perpendicular to the applied field. As the field is increased further, the magnetic moments

gradually scissor towards the applied field until they are aligned parallel to the field at the

saturation point. The changing angle of the bottom free layer is reflected in a corresponding

change in magnetoresistance. The two curves are for two different dipole coupling attenuation

factors, r. Higher values of r (thinner spacer layer) result in stronger anti-parallel coupling
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Figure 7.5: Hysteresis curve for the MRAM bit model stimulated by increasing and decreasing 45°
field (Hx = Hy). P designates parallel moments in each layer, AP – anti-parallel, S – scissoring,
→ Hsf – going into spinflop field, → Hr – returning to AP state.

between the layers pushing the spin flop and saturation transitions to higher fields. A full

hysteresis loop is shown in Figure 7.5 for a 45° applied field first increasing and then decreasing.

The transitions to and from the spin flop transition occur at different fields depending on whether

the applied field is increasing or decreasing. This hysteretic behavior is consistent with that

predicted by Worledge [35, 36].

7.2.2 Dynamic response

The response of the model to a box field stimulus is shown in Figure 7.6. Three box field stimuli

are applied with successively smaller transition delay times (2 ns, 300 ps, 50 ps), testing the speed

at which the MRAM bit can toggle. The circle figures at the top indicate the orientations of the

two free layers at each step in the sequence. The first, slow sequence shows the progression of

the magnetic moments through the toggle sequence, moving to a spin flop state with application

of the first Hy field (Ix) and rotating in step with the subsequent sequence. Following the first

sequence after 10 ns, the orientation of the free layers has been reversed and the resistance of
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Figure 7.6: Response of the toggle MRAM model to three box field sequences with successively
faster pulse edge timings: 2 ns, 300 ps and 50 ps. Circle figures at the top indicate directions of
the free layer magnetizations at key time points in the sequence. The final pulse sequence fails
to toggle the bit.
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the device has changed from high to low. The dynamic response of the model is seen clearly in

the first transition at 56 ns. The response of the magnetization is slow because it is initially in

an unstable equilibrium in which there is very little net torque on the magnetic moments. In the

second box field sequence starting at 68 ns the timing has been compressed so that there is only

a 300 ps delay between the pulse edges. In the third sequence starting at 72.5 ns, the sequence

has been further sped up so that the delay between the pulses is only 50 ps. The toggle operation

fails in this case because the magnetic moments cannot respond fast enough.

7.2.3 Hybrid spintronic-CMOS circuit

The use of the Verilog-A MRAM model in a hybrid spintronic-CMOS circuit was demonstrated

with a representative read/write circuit connected to the electrical ports of the Verilog-A model

[circuit designed and simulation performed by colleague Michael Hall, Washington University, St.

Louis, MO]. The circuit performs a read/write function with the wordline and bitline currents

sourced by CMOS circuitry. A simple read amplifier is also included, providing a digital output.

The schematic is shown on the left in Figure 7.7.

In this simulation, Vh has been set to 0.4 V, and the Read current through the tunnel junction

is about 100 µA, resulting in a bias voltage, VMTJ1, of about 100 mV. As can be seen in the

simulation results in Figure 7.8, the boxfield toggle sequence along the bottom row is repeated

with three toggle cycles. Due to the initialization of the block in Verilog-A, the first toggle

sequence does not begin with the top and bottom free layers exactly 180° apart in magnetization.

However, by the beginning of the second toggle sequence at 20 ns, Mtop is at 45° and Mbot at

225° as expected. As the magnetoresistance, labeled ‘‘TMR,” steps up to its maximum value

(only 970 Ω compared to Rmax = 1000 Ω due to the voltage bias effect) when the free layers

become antiparallel in magnetization, the output of the sense amplifer, labeled as ‘‘Output (V)”,

registers a ‘‘high” value or a ‘‘1”, and conversely for a low MR value when the free layers have

parallel magnetizations. The second toggle sequence of Figure 7.8, beginning at 20 ns, mimics
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(a) Read/write circuit.

(b) Toggle MRAM cell block diagram.

Figure 7.7: (a) Hybrid spintronic-CMOS schematic of the read/write circuit used to simulate a
set of boxfield toggle sequences. The toggle MRAM symbol contains the model shown in the
block diagram of (b).
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Figure 7.8: Simulation results for the spintronic-CMOS read/write circuit. Three repeated toggle
sequences are shown, and in each sequence the magnetic moments of the top and bottom layers
switch to directions opposite their starting angle and switch 180°. opposite each other. The sense
amplifier output, ‘‘Output”, is high for a high MR, and low for a low MR. The bias effect in the
TMR module is enabled, consequently the TMR values are about 3% lower than with the bias
effect disabled.

the first, slower boxfield sequence shown in Figure 7.6, except that the time between rising and

falling edges of Hx and Hy is 2.5 ns in Figure 7.8, and only 2.0 ns in Figure 7.6.

7.3 3-D Spin valve with Oersted field switching

Several test situations were arranged using the 3-D single domain LLG block of Figure 4.5 as

the core of the spin valve shown in Figure 7.9, to qualify the single domain model derived in

section 4.5. In these simulations, Iz is a theoretical construct used to provide a field in the ẑ

direction. The outputs of the single domain model are the polar and azimuthal angles of the

magnetization θ and ϕ, and the output module is a magnetoresistive (MR) block (as opposed to

TMR) appropriate for a non-magnetic spacer interlayer. The easy axis is set in both the single

domain and MR modules, and is set to the x̂ axis in the figure, but this setting changes with the

simulation cases. In most of the test cases that follow, only the field inputs and magnetization
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Table 7.2: Toggle MRAM bit cell; model parameters and variables

Text
symbol

Verilog
symbol

Values
used

Description

parameters
w w 1× 10−6 Write line width (m)
R R 0 Write line resistance (Ω)
MS Ms 8× 105 Sat. magnetization (A

m )
Ku Ku 300 Uniaxial anisotropy (J/m3))
α alpha 0.01 Gilbert damping parameter

θEA M_ea π/4 Easy axis angle (rad)
J J −1.8× 10−5 Exchange coupling (J/m2)
a1,2 a1,2 300× 10−9 Length of long axis - free layer (m)
b1,2 b1,2 150× 10−9 Length of short axis - free layer (m)
t1,2 t1,2 3× 10−9 Free layer thickness (m)
A1,2 A1,2 a · b · π Area of elliptical bit (m2)
Rmax R_max 1000 Maximum resistance (Ω)
Rmin R_min 500 Minimum resistance (Ω)
TMR TMR Rmax−Rmin

Rmin
MTJ resistance ratio

Vh Vh 1× 106, 0.4 MTJ bias at TMR0/2 (V)
Nx1,2 Nx1,2 2t/πa Demag. factor in-plane long axis
Ny1,2 Ny1,2 2t/πb Demag. factor in-plane short axis
r r 0.2− 0.7 Dipole field atten. factor
J12
J21

J_12
J_21

1
2Atµ0M2

Sr Dipole coupling (J)

Variables

θM1 Theta(M1)
Top free layer

magnetization angle (rad)

θM2 Theta(M2)
Bottom free layer

magnetization angle (rad)
I I(inn, inp) Write line current (A)

Hx,y hout Write line field (A
m)

V(rp, rn) Junction voltage (V)
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Figure 7.9: Spin valve cell using the 3D-single domain LLG block.

angle components θ and ϕ are plotted as outputs. In the Figures that follow, the red axis line in

the 3-D xyz plots is always the easy axis, and is labeled “EA”; the dark (red) ball indicates the

initial (θ, ϕ) setting - the starting point of the magnetization.

7.3.1 Oersted field sustained precession

Sustained precession tests for the correct precession frequency and dynamics in the absence

of damping. The field was calculated to produce a precession cycle of the magnetic moment

between 1 - 2 ns. When there is no damping torque (α = 0), the gyromagnetic ratio γ =

1.76 × 1011 (rad/s·T) will create a field-dependent precession of 35 kHz/A
m according to equation

4.29 (the LLG equation). With ẑ set as the easy axis (0, 0, 1), and no crystalline anisotropy field,

an applied field of 23 kA/m in the ẑ direction should yield a precession frequency of 805 MHz, or

a 1.242 ns cycle period. The test conditions are summarized in Table 7.3.

The initial angle for θ was set to 90◦ so that the precession would begin in the x-y plane (z=0),

and ϕ began at 0◦, which is (x,y,z) = (1,0,0) on the xyz plot. The simulated magnetization in

Figure 7.10 is observed to remain in the x-y plane while ϕ rotates in a constant circle around the
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3D spin valve: sustained precession

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy (Hk) Ku = 300
(

J
m3

)

Hk ≈ 300
(

A
m

)

shape anisotropy (Hd) Hd = 0
external applied field(s) (Ha) Transient: 23 kA

m (46mA)
Other parameters

Gilbert damping factor (α) 0.02
Easy axis direction ẑ axis, EA=(0, 0, 1)

Table 7.3: Field and parameter values used for the 3D spin valve transient simulation for sustained
precession.

Figure 7.10: Top plot: 3-D xyz plot of sustained precession using applied field in the ẑ direction
with easy axis set also in the ẑ direction (0, 0, 1); damping is set to zero. Bottom plot: Hz

applied and the precession response of θ and ϕ over 4 precession cycles.
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3D spin valve: uniaxial crystalline anisotropy

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300

(

A
m

)

shape anisotropy (Hd) Hd = 0
external applied field(s) (Ha) Transient: Hy = 1.8

(

kA
m

)

and 2.5
(

kA
m

)

Other parameters
Gilbert damping factor (α) 0.08

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.4: Field and parameter values used for the 3D spin valve transient simulation for testing
uniaxial anisotropy.

ẑ axis at a period of 1.242 ns per cycle as anticipated.

7.3.2 Applied field and uniaxial crystalline anisotropy

In this simulation, the uniaxial anisotropy code is tested. The easy axis was set to the x̂ direction

(1, 0, 0) , uniaxial crystalline anisotropy was included (Hk ≈ 300 A
m ) , and a hard-axis field (Hy)

is applied and then removed so that the torque from the crystalline anisotropy could be shown

to pull the magnetic moment back to the easy axis. To overcome the crystalline anisotropy and

move the moment towards the hard axis, the applied field must be greater than the uniaxial

anisotropy, Hk. The in-plane easy axis direction has θ = 90◦, ϕ = 0◦, and for the moment m to

point in the ŷ direction in the x-y plane, θ = 90◦, ϕ = 90◦. Table 7.4 lists the test information.

Two simulation plots are shown in Figure 7.11 to illustrate how the timing and field strength

affect the results. In Figure 7.11(a) the field in the ŷ direction is applied for 50 ns and is 1.8

kA/m. Both the 3-D xyz plot and θ, ϕ vs. time plot show that the magnetization moves towards

the Hy field but does not have time in the 50 ns field pulse to fully settle to θ = 90◦, ϕ = 90◦.

In both Figures 7.11(a) and (b) the magnetization dynamic in the xyz plots during the applied

field pulse is indicated in green, and the blue portion of the curves indicate the magnetization

precession when the applied field is zero, where the crystalline anisotropy field is pulling M back
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(a) Hard axis field applied for 50ns (Hy = 1.8 kA/m).

(b) Hard axis field applied for 100ns (Hy = 2.5 kA/m).

Figure 7.11: 3D precession with applied field in the ŷ direction for (a) 50 ns, and (b) 100 ns,
with easy axis set to the x̂ direction (1, 0, 0). In both (a) and (b), the magnetization dynamic
in the xyz plot on the left, during the applied field pulse, is shown in green. The blue xyz curves
occurs during the time that Hy=0. The Hy field pulse on the right is also shown in green.
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3D spin valve: easy axis not a principle axis

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy (Hk) Ku = 300 (J/m3)
Hk ≈ 300

(

A
m

)

shape anisotropy (Hd) Hd = 0
external applied field(s) (Ha) Transient: Hy = 5.0

(

kA
m

)

interlayer exchange coupling (Hex)
dipole coupling (Hdip)

spin transfer torque (Hstt)
Other parameters

Gilbert damping factor (α) 0.08
Easy axis direction EA=(1, 0, 1)

Table 7.5: Field and parameter values used for the 3D spin valve transient simulation for testing
uniaxial anisotropy along a non-principle axis.

to the easy axis. If the field magnitude is increased and applied for a longer pulse duration (100

ns) as in Figure 7.11(b), the magnetization is able to reach the ŷ direction with θ = 90◦, ϕ = 90◦

by the end of the applied field pulse. In both (a) and (b) it is apparent that when the field

pulse goes to zero, θ remains in the x-y plane at 90◦, and ϕ moves back to the easy axis at 0◦.

This is the expected behavior but it is noted that in Figure 7.11(a), the magnetization begins to

precess back to the easy axis immediately as Hy goes to zero, while in Figure 7.11(b) there is a

significant delay of about 100 ns. This occurs because in Figure 7.11(b) the magnetization has

reached an unstable equilibrium at the y-axis and the torque moving the magnetization back to

the easy axis is very small (almost zero) due to the very small angle of M relative to the y-axis.

The anisotropy torque increases with the angle of M as it gradually moves away from the y-axis.

7.3.3 Easy axis not set to a principle axis

This test is similar to the preceeding test but further exercises the anisotropy code with a non-

principle easy axis setting. The settings in Table 7.5 for this test are only slightly different from

those in the previous simulation: Only uniaxial crystalline anisotropy is included (Hk ≈ 300 A
m )

and the easy axis was set to the (1, 0, 1) direction. The applied field, Hy = 5 kA/m > Hk is applied
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Figure 7.12: Easy axis set to (1, 0, 1) and applied field in ŷ direction, then removed. the
magnetization dynamic in the xyz plot on the left, during the applied field pulse, is shown in
green. The blue xyz curve occurs during the time that Hy=0. The Hy field pulse on the right is
also shown in green.

for 100ns, then removed. The intent is to verify that when the applied field is removed, the easy

axis setting is correctly followed, even though it is not along a principle axis; the anisotropy

should force the magnetization back to the (1, 0, 1) direction. Just as in Figure 7.11 above, the

green curve in the xyz plot indicates the precession dynamic during the applied field pulse, and

the blue portion of the curve indicate the precession when the applied field is zero, where the

crystalline anisotropy field is pulling M back to the easy axis. In Figure 7.12 the simulation

begins at the dark (red) ball at the top of the plot where θ and ϕ were initialized to θ = 10◦,

ϕ = 15◦. The magnetization spirals towards the ŷ direction, bringing the moment all the way

to the ŷ axis. When the Hy field is removed, the anisotropy gradually brings the magnetization

back from its unstable equilibrium at the y-axis to the correct easy axis direction of θ = 45◦,

ϕ = 0◦.
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3D spin valve: shape and uniaxial anisotropy

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300 (A/m)

shape anisotropy (Hd) Ny −Nx = 0.0333
Hd(in−plane) = MS (Ny −Nx) = 26.6 (kA/m)

external applied field(s) (Ha) Transient: Hy = 6
(

kA
m

)

and 53.75
(

kA
m

)

Other parameters
Gilbert damping factor (α) 0.08

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.6: Field and parameter values used for the 3D spin valve transient simulation for testing
uniaxial anisotropy.

7.3.4 Including the shape anisotropy, Hd

The demagnetization field is now included in simulations similar to those in section 7.3.2 in

Figure 7.11. The intent and setup for the simulations are almost the same, except here the hard

axis field in the ŷ direction has two settings,

1. Hy = 6.0 kA/m < Hk + Hd - not large enough to overcome the shape and uniaxial

anisotropies, and

2. Hy = 53.75 kA/m > Hk + Hd - larger in order to overcome Hk + Hd ≈ 27 kA/m with

Hd(in−plane) = MS (Ny −Nx) = 26.6 kA/m.

The Hy field pulse is 600 ns to allow adequate settling time. The Hdθ field has a strong component

due to the demagnetization factor Nz (see equation 4.51) which works to keep θ in the x-y plane at

90◦. This should result in the magnetization following a more in-plane path. The two simulation

cases are plotted in Figure 7.13 and the magnetization begins at the red ball near the bottom of

the plot where θ and ϕ were initialized to θ = 150◦, ϕ = −30◦. Table 7.6 lists the test conditions.

In Figure 7.13(a) the applied Hy field is only 6.0 kA/m, but the magnetization does approach

the ŷ axis once m reaches the x-y plane. It is not expected that m should reach the ŷ axis

because the field magnitude is less than the opposing fields, Hk + Hd. In Figure 7.13(b) the Hy
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3D spin valve simulated as MRAM cell

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300 (A/m)

shape anisotropy (Hd) Ny −Nx = 0.0333
Hd(in−plane) = MS (Ny −Nx) = 26.6 (kA/m)

external applied field(s) (Ha) Transient: −80
(

kA
m

)

and 40
(

kA
m

)

Hysteresis: −40
(

kA
m

)

to 40
(

kA
m

)

and back
Other parameters

Gilbert damping factor (α) 0.02
Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.7: Fields and parameter values used for the 2D spin valve transient and hysteresis
simulations.

field is almost 54 kA/m and the magnetization just reaches the ŷ axis when the applied field is

removed. Although these results are expected it is more interesting to compare these results with

the simulations of section 7.3.2 which had Hd = 0. Compared to the large diameter spiral paths

in the ẑ direction that m takes in Figure 7.11, m is constrained to more planar travel in Figures

7.13(a) and (b) due to the presence of the demagnetization field.

7.3.5 3-D static and dynamic response

Using the 3-D single domain model, hysteresis curves were generated for the three standard

cases, 1) field applied along the easy axis, 2) field applied along the hard axis, and 3) a field

applied at 45◦ to the easy and hard axes. Conditions are given in Table 7.7. These conditions

are comparable to those used for the 2-D model simulations of section 7.1.1. The quasi-static

curves have correct behavior and are shown in Figure 7.14. Each curve plots its magnetization

component vs. its applied field direction. The square loop is created by a field along the easy axis

(x̂), the diagonal line without hysteresis shows the coherent rotational response to the field in the

ŷ direction, and the curved, dashed line shows the hysteretic response to a field 45◦ to the easy

axis. This quasi-static simulation confirms that the dynamic 3-D LLG and the demagnetization
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(a) 6kA/m field: Hy < Hd +Hk

(b) 53.75kA/m field: Hy > Hd +Hk

Figure 7.13: Comparison of applied field (a) Hy < Hd +Hk and (b) Hy > Hd +Hk.
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Figure 7.14: 3-D magnetostatic response. The black square magnetization loop is due to a field
in the x̂ axis, the blue diagonal line without hysteresis is the response to an applied field in the
ŷ direction, and the curved, dashed red line shows the magnetization response to a field 45◦ to
the easy axis.

field code do not interfere with correct magnetostatic operation. For the dynamic response

we once again plot the write line currents and their effect on the magnetoresistance in Figure

7.15(a). The results look similar to Figure 7.2 and use the same damping, but the out-of-plane

precession appears here as oscillatory switching on the MR plot that is not present in the 2-D

magnetoresistance curve. The write line pulses begin with a large, negative pulse on Iy_word to

take the model out of equilibrium and force the free layer AP to the reference pinned layer. In

the AP state, the MR changes from 500 Ω (low resistance state) to 1 kΩ (high resistance state).

The next pulse is positve on Iy_word but at a half-select field level, and does not create sufficient

field in the x̂ direction to switch the magnetization back to a P state. The third pulse on Ix_bit

creates a half-select field in the ŷ direction which causes the magnetization to rotate toward the

opposite direction but is not sufficient to completely switch it. Finally, both the write lines are
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activated and the vector sum of their resultant fields at a 45◦ to the easy axis surpasses the

switching field threshold and reverses the magnetization back to a P state with the pinned layer.

This simulation scenario is also shown in an xyz plot in Figure 7.15(b). The simulation begins at

the red dot (and also finishes at this point) which is (x, y, z) = (1, 0, 0) or the easy axis. With

the reversal to the AP state, the magnetization undergoes a large-angle switching precession to

(x, y, z) = (-1, 0, 0) . It remains at the negative easy axis until the third, Hy field pulse, when it

moves slightly away from (-1, 0, 0) in a very small angle precession (hard to see) and then back

to the negative x̂ axis. When the final, 45◦ field is presented, the magnetization makes another

large angle precessional sweep towards the applied field and precesses around it (smaller loops

near (1, 0, 0)), and switches back fully to the easy axis direction as the applied field vanishes.

An additional simulation of the dynamic response with the 3-D spin valve model was per-

formed with Hd = 0. The simulation results are depicted in Figure 7.16. The time scale is

much longer even using a larger damping factor compared to the 3-D simulation with Hd present

(Figure 7.15); ≈ 1.1µs vs. 75ns. When the demagnetizing field is disabled, the precession out-

of-plane is unconstrained and takes longer to settle to a stable magnetization state, slowing the

dynamic response dramatically.

7.4 3-D Spin valve using spin transfer torque

In this section a spin-polarized current is used in the model to apply spin transfer torque to

an FM free layer. A means to supply the spin-polarized current to the 3-D single domain LLG

module is needed as the MR output block only converts θ and ϕ into a magnetoresistance across

the terminals rp and rn, yet these same terminals would also be used to conduct the STT current

in a physical device. This requires the block diagram of Figure 7.9 to be updated to include

the rp and rn terminals as in Figure 7.17. The outputs needed are only the angles θ and ϕ, so

in these simulations, the rp and rn ports are used solely for the STT spin current, Is. The goal

of the following simulations is to show that the model equations will use the stimulus, Is from
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(a) Magnetoresistance as a function of Ha, (Hk,Hd != 0).

(b) xyz 3D plot of dynamic switching precession in (a).

Figure 7.15: 3-D dynamic response with shape anisotropy included, Hk,Hd %= 0.
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Figure 7.16: 3-D model dynamic response with α = 0.2, but Hd = 0.

Figure 7.17: Spin valve block diagram using rp and rn ports to input spin current for STT
simulation.
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Figure 7.18: Spin valve layers with spin current (spin-polarizing electrons) originating from the
polarizing layer, crossing to the NM spacer / free FM layer interface.

equations 4.57 and 4.58 to add a torque due to the spin current that will switch the free layer

magnetization in a direction depending on the polarity of the applied current. There is a critical

spin current to enable magnetization change predicted for this process

Ic =
2e

!

α

G(π, 0)
µ0VMS(Heff) (7.1)

where 2e
!

is current per joules of energy, and the last term, µ0VMS(Heff), is the energy of the

intrinsic and applied fields which need to be overcome for the magnetization switch to occur.

The middle term, α
G(π,0) , is the unitless spin transport factor which depends on the ratio of the

damping factor, α, to the conductance of the layer stack as detailed in equation 4.59. G(π) is

proportional to the conductance of the device when the free and pinned layers are AP, and G(0)

when the layers are P. The critical current is not an exact switching value as it depends on the

buildup of spin-polarized electrons at the interface; a longer current pulse with magnitude Is may

cause the free layer to switch whereas a shorter current pulse with the same magnitude may not.

7.4.1 Switching the FM free layer from AP to P with STT

A normal AP coupling for the spin valve is used as the initial state shown in Figure 7.18, and

a positive spin current, Is is produced from rp to rn such that a spin-polarized electron current
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Figure 7.19: AP to P switching with Is. Time domain graph (top) zoomed to switching region
and 3-D xyz (bottom) plot.

flows from the polarizing/pinned layer through the spacer layer and exerts a torque on the free

layer which will eventually flip the free layer magnetization to be parallel with that of the pinned

layer. The torque will increase with the number of electrons at the spacer/FM interface whose

spins are polarized in the direction of the pinned or polarizing layer, êp . In order to find the

approximate current at which the switching precession begins, a positive current ramp with a

5µA/µs slope was used for Is. The results are shown in Figure 7.19. In the lower 3-D xyz plot, the

simulation begins on the red ball at the left, close to the negative easy axis where θ and ϕ were

initialized to θ = 80◦, ϕ = 180◦ for an AP beginning state. The top time domain plot is zoomed

in to show θ and ϕ changing with the spin current. There are no applied fields in this simulation

with the exception of a very small 0.5 kA/m field on Hz used to help the Spectre simulator with

convergence, and only the anisotropy field Hk is present (Hd = 0) , so Heff ≈ Hk (300 A/m ).

These conditions are summarized in Table 7.8.

When Is is close to 0, m is influenced only by the anisotropy field and moves to the negative



119

3D spin valve: using STT for magnetization reversal AP → P

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300 (A/m)

shape anisotropy (Hd) Hd = 0
spin transfer torque (Hstt) 0µA ≤ Ispin ≤ 80µA

Other parameters
Gilbert damping factor (α) 0.05
spin-polarization factor (P) 0.35

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.8: Field and parameter values used for the 3D spin valve using STT to reverse magneti-
zation from AP to P.

easy axis (θ = 90◦, ϕ = 180◦ or (x, y, z) = (-1, 0, 0)) completely AP with the polarizing layer.

As Is increases to around 8 µA (not shown), ϕ begins to oscillate on a small scale around 180◦,

and by 15 µA at 3 µs, both θ and ϕ show emergent oscillation. In the time between 3.3 - 4.3

µs the spin current has caused enough electron accumulation from the polarizing layer at the

spacer/FM interface, to switch the magnetization in the free layer to θ = 90◦, ϕ = 0◦ or (x, y,

z) = (1, 0, 0). The angular changes in m in the time domain graph show the θ and ϕ rotations

and in the xyz plot the 3-D precessional switching path followed by m is clearly indicated .

There is no exact spin current at which the switch in m takes place, but it is reasonable

to place the critical current in the simulation between 8µA ≤ Ic ≤ 15µA. If calculated with

equation 7.1, G(π) = 0.515 is computed from equation 4.59 and α = 0.05, giving Ic = 4.5µA.

This is lower, but still in the approximate range of the observed critical current value.

7.4.2 Switching the FM free layer from P to AP with STT

The reverse situation from section 7.4.1 above is that the polarizing/pinned layer and the free layer

begin in a P state. This case is not as intuitive as the former because now the spin current must be

reversed (-Is) , that is, the spin current will now flow from the free layer to the polarizing layer as

in Figure 7.20. Because the layers are parallel in magnetization, the minority spin-down electrons
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Figure 7.20: Layers with spin-polarizing electron current from the FM free layer.

will be confined in the spacer layer as discussed in section 2.3.2 and will transfer their change

in angular momentum upon reflection to the electrons at each interface, until the free layer’s

magnetization is reversed. It is expected that this reflection process should require a larger spin

current for the same switching period, which in the simulations is about 1 µs.

Two separate simulations were run in order to compare the effects of both damping factor

and G(π, 0) with the previous AP-to-P simulation. In the first simulation, α = 0.05, which is

the same α used in the AP-to-P simulation. The second simulation uses α = 0.08. According

to equation 7.1, the critical current is larger for larger α, and larger also if switching P-to-AP

because beginning in the P state, G(0) < G(π) by a factor of about 4. The test conditions are

listed in Table 7.9.

The results shown in Figure 7.21(a) and (b) follow theory. In both figures (a) and (b), one

observes the same kind of precessional switching in the time domain graphs as seen in Figures

7.19 and 7.11, with the comment that these are longer simulations and use larger timesteps so

the angle changes in θ and ϕ look more discrete. However, comparing the Ic result from Figure

7.21(a) with the simulation of Figure 7.19 , both using α = 0.05, it is clear that switching the

free layer from a P to AP state requires more spin current than the reverse case, as predicted.

In the P to AP test case of Figure 7.21(a), a maximum estimate for Ic is ≈ −65µA (calculated

value: 18 µA), while the AP to P test case of Figure 7.19 has a maximum estimate of Ic ≈ 15µA

(calculated value: 4.5 µA). Although these are higher values overall than the calculated values
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3D spin valve: using STT for magnetization reversal P → AP

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300 (A/m)

shape anisotropy (Hd) Hd = 0
spin transfer torque (Hstt) a) −80µA ≤ Ispin ≤ 0µA

b) −110µA ≤ Ispin ≤ 0µA
Other parameters

Gilbert damping factor (α) a) 0.05 b) 0.08
spin-polarization factor (P) 0.35

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.9: Field and parameter values used for the 3D spin valve using STT to reverse magneti-
zation from P to AP.

of 18µA and 4.5µA of Ic for each case respectively, the correct trend is followed, and Ic is not

being measured here with regards to a specific spin current pulse width.

Comparing Figures 7.21(a) and (b), it is also observed that a larger damping factor increases

the magnitude of Ic also as predicted, with an Ic = −65µA for α = 0.05, and Ic = −92µA for

α = 0.08 . An interesting adjunct in the xyz plots of Figures 7.21(a) and (b) is the manner of

the precessional characteristic: unlike the xyz plot of Figure 7.19 and other AP-to-P simulations,

it seems that in P-to-AP STT switching, there is a very direct precession to the AP minimum

energy state on the easy axis. In Figures 7.21(a) and (b) the simulations begin at the red ball

at the right near the positive easy axis (θ = 80◦, ϕ = 0◦) in which m is almost parallel with

the magnetization of the pinned layer. At small negative values of Is the anisotropy coerces m

into the easy axis at (x, y, z) = (1, 0, 0) and is in a P magnetization state. As Is increases

in magnitude and approaches Ic, the data shows that m makes only two or three small-angle

precessions and then switches directly to the AP state at θ = 90◦, ϕ = 0◦ , or (x, y, z) =

(-1, 0, 0). The 3D switching characteristic indicates that the spin-dependent reflection process

causes a build-up or large accumulation of minority-spin electrons at the spacer/FM interface

very rapidly, causing an abrupt torque transfer and fast switching process. This is in contrast to

the AP-to-P simulations which have all resulted in xyz plots like those of Figure 7.19, where the
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magnetization precessional characteristic indicates a gradual torque transfer from a steady flow

of electrons.

7.4.3 Steady-state precession initiated with STT from AP state.

Experiments were performed using the simulation model in Figure 7.17 and the simulation con-

ditions suggested by Figure 5.7 (AP → IPP, low field and current case) in section 5.3.2 to cause

steady-state precession with STT. The simulation setup is shown in Figure 7.22. Note that the

axes have been rotated compared with those of previous simulations to facilitate graphing. The

perpendicular direction to the multilayer is now along the x̂ axis and the easy axis is now ẑ, and

for θ to be in the thin-film plane, θ = 0◦ or 180◦ (whereas before in-plane meant θ = 90◦). The

FM free layer begins AP to the polarizing/pinned layer, and a spin current is conducted through

the multilayer such that the electron current will come from the polarizer. The applied field is

in the -ẑ direction and needs only to be greater than the anisotropy field Hk = 300A/m, as Hd is

set to zero. The Hz field keeps the magnetization of the free layer from directly switching P to

Mpinned, opposing the spin torque. The steady-state precession frequency should increase with

|Heff |.

Two simulations are shown using the conditions listed in Table 7.10.

In the first simulation (case (a) in Table 7.10) shown in Figure 7.23, the initial settings for θ

and ϕ are 179◦ and 90◦, pointing m in the −ẑ direction. The Hz field is present from time 0, and

ϕ begins immediately to rotate in the x-y plane. The spin current is not introduced for 2 µs, and

at about 8 µs, θ begins to change to a larger precession cone angle in the positive +ẑ direction

and ϕ simultaneously changes and slows its precession rate. By about 18 µs, θ has stabilized at

an angle of 114◦, and the precession frequency for ϕ is also stable, calculated from the lower ϕ

(rad)-vs-time plot as
∆ϕ (rads)

2π∆t
= 29.5MHz (33.9ns).

In the absence of the demagnetizing field, Hd, the Kittel relation [94] for ferromagnetic resonance
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(a) α = 0.05

(b) α = 0.08

Figure 7.21: P to AP switching with Is.
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Figure 7.22: Conditions and setup for steady-state precession beginning in an AP state.

predicts the precession frequency with Heff = 900A/m as

fprec =
γ0
2π

Heff = 31.6MHz (31.6ns).

The experimental result is different by about 7%, which can be due to the 0.1 ns (0.5 ns max)

simulation timestep used. The precession slope was measured over approximately 277 cycles

and it would take only 24 cycles to be off by .1ns to create the 2.405 ns difference between the

calculated and experimental periods. The second simulation in Figure 7.24 was run with less

accuracy (0.5 ns, 2 ns max timestep) and for only 20 µs. The purpose of this simulation was

twofold - to verify the repeatability of entering the same dynamic phase region of the previous

simulation, but with different parameters (case (b) in Table 7.10), and to show that the precession

frequency does indeed increase with |Heff |. For this purpose both Is and Hz are increased as

detailed above, but because a larger timestep is employed, the simulator does not converge

without the addition of small 5A/m and 40A/m fields on Hx and Hy, respectively. These fields

change the beginning of the simulation such that ϕ initially oscillates around its starting point of

90◦, which is the ŷ direction, and settles at 90◦ until 2 µs when Is is stepped to 11 µA. In the next
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Figure 7.23: Steady-state precession AP -> IPP, Is = 9µA.

Steady-state precession with 3D spin valve using STT, starting from AP state

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 300 (J/m3)
Hk ≈ 300 (A/m)

shape anisotropy (Hd) Hd = 0
effective applied fields (Heff) |Heff | = |Hk|+ |Hz|

a) Figure 7.23: 900 (A/m)
b) Figure 7.24: 1200 (A/m)

spin transfer torque (Hstt) a) Is = 9µA step at 2 µs
b) Is = 11µA step at 2 µs

Other parameters
Gilbert damping factor (α) 0.02
spin-polarization factor (P) 0.35

Easy axis direction ẑ axis

Table 7.10: Is and parameter values for a 3D spin valve using STT to operate in steady-state
precession.
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Figure 7.24: Steady-state precession AP -> IPP, Is = 11µA.

4 µs, θ and ϕ change as before to reach a steady-state precession cone angle and frequency. It is

interesting to note another effect of the Hx and Hy fields; they cause the precession angle to vary

about its average value by ± 1.5◦ as ϕ makes a revolution around Hz. This total 3◦ difference in

θ during a precession cycle can be seen as a slight tilt in the 3-D xyz plot of the precession cone

angle, and also in the width of the θ line in the time domain plot, especially when compared to

the constant θ vs. time line of Figure 7.23, where Hx and Hy were set to zero.

The measured average precession frequency is 45.6 MHz while the calculated frequency is 42.2

MHz, which is a difference of 8%. This is 1% more error than for case (a) in Table 7.10, but it is

expected that the error would increase with increasing timestep. The simulation does show that

the model’s precession frequency does indeed increase with |Heff |.

Simulations for the dynamic phase regions where steady-state precession occurs P -> AP have

not been performed. Attempts to add the demagnetization field to the simulations in section 7.4

have had limited success due to convergence difficulties.
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7.5 Model comparisons to published data

The simulation results above show that the model exhibits correct static and dynamic behavior,

but many of the simulations have used an anisotropy field value that was unrealistically small

whenever the shape anisotropy was not used in the simulation. This has kept the current levels for

magnetic field switching and STT magnetization reversal in the 1 mA range and the 10 µA range

for magnetic field and STT switching, respectively, which is about an order of magnitude too low

for existing devices with the dimensions used. In this section we will compare the 3-D model’s

behavior to that of two research papers representative of published work which uses fabricated

devices. For these examples, the dynamic magnetization reversal times will be compared using

the papers’ physical constants and intrinsic fields whenever they are reported.

7.5.1 Magnetization reversal using Oersted fields

The reference work is from [1] and uses a large 10 µm x 2 µm sample with a 15 nm thick NiFe free

layer. The known parameters and test conditions are given in Table 7.11. The author’s purpose

is to demonstrate that although an applied field in-plane with the easy axis is used to reverse the

magnetization of the free layer, the reversal occurs much faster if a small transverse field (Hy) is

also applied. There are two simulations for the two field conditions. The first is shown in Figure

7.25(a) and has no transverse field applied, while the second simulation in Figure 7.25(b) has a

transverse field of Hy = 1.4
(

kA
m

)

throughout the simulation.

The authors measure a forward (P to AP) switching time, τs, of 1.6 ns defining τs as the

interval for 10% to 90% of the total change of M in the x̂ direction, Mx. They do the measurement

physically using time-resolved scanning Kerr microscopy. We measure the model’s time-domain

output for the azimuthal, in-plane magnetization angle, ϕ, and use a straight line crossing at

180◦ and 0◦ to determine the magnetization reversal time. The approximate forward switching

time from the model data is 1.74 ns. The reverse (AP to P) switching time measured on the

physical device is 7.3 ns, slower than the forward τs due to the presence of only the small bias
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3D spin valve: fields and parameters used in the model to match the reported physical
parameters and conditions

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Kueff = 670 (J/m3)
Hk = 0

(

kA
m

)

shape anisotropy (Hd) Ny −Nx = 0.00463
Hd(in−plane) = MS (Ny −Nx) = 3.68

(

kA
m

)

Nx, Ny = 2t
πa

, 2t
πb

, a = 10µm, b = 2µm, t = 15 nm
external applied field(s) (Ha) Simulation 1: Hx = 4.8− (−19.2)

(

kA
m

)

Hy =0
(

kA
m

)

Total switching field, Hs = Hx = 24
(

kA
m

)

Simulation 2: Hx = 4.8− (−19.2)
(

kA
m

)

, and

Hx = 7.65
(

kA
m

)

,
Hy =1.4

(

kA
m

)

Other parameters
Gilbert damping factor (α) 0.02

Saturation Magnetization (MS) 820
(

kA
m

)

Gyromagnetic ratio (γ0) 1.41× 105
(

m
As

)

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.11: Field and parameter values from [1] used for the 3D spin valve dynamic switching
comparison simulation.
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field in the positive easy axis direction of 4.8
(

kA
m

)

. Of course, the physical device certainly has

a crystalline anisotropy field, to assist the reversal. In the model, Ku was set to zero, letting the

shape anisotropy term, Hd, determine the effective anisotropy. As a result, the model does not

reverse switch (AP to P) after the 10 ns Hx pulse of −19.2
(

kA
m

)

unless the positive Hx field is

raised from 4.8 to 7.65
(

kA
m

)

. The reverse τs is measured from the data beginning where ϕ starts

to change to where it just reaches a parallel condition. This is measured at 8.42 ns.

In Figure 7.25(b) the second case with a transverse field (Hy) applied is shown. Due to this

field, reverse switching AP to P in the model simulation takes place immediately, without the need

for increasing the positive Hx field. The measured reversal times from the physical data are given

in the comparison table on the right. In case 1 (no Hy field) the percentage differences between

the model and physical data for forward and reverse switching are 8% and 15%, respectively.

For case 2 (with an Hy field) the forward and reverse differences are 23% and 3%, respectively.

The percentages give only good agreement in the switching times of the physical device vs. the

model simulation.

7.5.2 Magnetization reversal using an STT current

The published work used for this comparison is [40]. The physical device is a 100 nm x 50 nm thin

film stack of Co/Cu/Co with a Co free layer, 3nm thick. The authors demonstrate a linear region

for the switching time , τs, which is dependent on the amplitude of the pulsed STT current, Is,

and is indicative of spin angular momentum conservation. They also determine a curved onset

for the thermal threshold of their device above which there is the linear dependence of τs on

Is, and below which the dynamics have a dependence on thermal perturbation. The threshold

current they observed is between 10 and 11 mA. The conditions and parameters from this work

used in the model simulation are listed in Table 7.12.

The results of the model simulation and physical device experimental data are shown together

in Figure 7.26. The authors’ experimental data has many hundreds of averaged data points over
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Hy = 0 Forward τs Reverse τs

Physical device 1.6 ns 7.3 ns

model 1.74 ns 8.42 ns

(a) Magnetization reversal with no transverse field (Hy = 0). Reversal times compared
with those of a physical device.

Hy = 1.4
(

kA
m

)

Forward τs Reverse τs

Physical device 1 ns 1.3 ns

model 1.23 ns 1.33 ns

(b) Magnetization reversal using transverse field. Reversal times compared with those of
a physical device.

Figure 7.25: Magnetization reversal (P to AP to P) experiments using parameters and fields of a
reported physical device. (a) Reversal using a bias field along the easy axis (x̂ axis) of 4.8

(

kA
m

)

,
with a switching field of Hx = −19.2

(

kA
m

)

used to reverse M antiparallel. Hy = 0. After the 10

ns switching pulse, the positive Hx field must be raised to 7.65
(

kA
m

)

to get M to reverse again
parallel with the easy axis, in the absence of a crystalline anisotropy field. The physical device
switches back parallel without additional field. The vertical lines indicate approximate switching
times, also reported in the accompanying table. (b) Reversal with a transverse field applied,
Hy =1.4

(

kA
m

)

. Switching times P to AP and AP to P are very similar.
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3D spin valve: using STT for magnetization reversal AP → P

Effective field terms included in
simulation

Parameter and field values

uniaxial crystalline anisotropy
(Hk)

Ku = 0 (J/m3)
Hk = 0 (A/m)

shape anisotropy (Hd)
Hd = 3.66× 104 (A/m)
Ny −Nx = 0.0254

spin transfer torque (Hstt) 6mA ≤ Is ≤ 12mA

external applied field(s) (Ha)
Hx = 14.65

(

kA
m

)

Hy =0.05
(

A
m

)

Other parameters
Gilbert damping factor (α) 0.0326
spin-polarization factor (P) 0.38

spin transport and polarizing
factor (η) or G(ψ)

0.5
(typical value for switching AP to P with

0.35 ≤ P ≤ 0.4)
Is pulse width, (τs) 100 ns

Saturation Magnetization (MS) 1.44× 106
(

A
m

)

Gyromagnetic ratio (γ0) 1.76× 1011
(

m
As

)

Easy axis direction x̂ axis, EA=(1, 0, 0)

Table 7.12: Field and parameter values used for the 3D spin valve using STT to reverse magne-
tization from AP to P in Co/Cu/Co nanopillars.

thousands of current sweeps, so only a few points are displayed here that represent the physical

device curve for comparison. The switching frequency, 1
τs

, was found to be linear with Is above

10 mA (10 MHz, τs ≥ 100 ns). The model data was taken only for current pulses with 100

ns widths. The 3-D model curve compares well with the experimental curve only at the 11

mA data point. There are two main reasons for the difference in the curves. The first is that

model does not include thermal effects, which have the effect of adding a curvature onset at

the zero-temperature threshold current, Ic0, rescaling the current threshold, Ic , by a factor of

[1− (kBT/E) ln (τ/τ0)] where kBT is the thermal activation energy, τ is the thermal activation

lifetime, τ0 is the inverse of the nanomagnet’s attempt frequency (the frequency at which the

nanomagnet’s moment attempts to reverse it’s direction by overcoming its thermal energy barrier)

, and E is the actual barrier height of the nanomagnet determined by its size, shape, intrinsic

anisotropy and applied field strength. The second reason concerns the paper’s choice of the
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barrier height, E = E0

(

1 + H
Hd

)2
where E0 is the zero-applied-field energy of the nanomagnet.

In their work, the authors choose a value for the ratio of E0 to the thermal energy based on

their experimental data, ie., E0

kBT = 120. This choice determines important parameter values for

the system such as the applied field, H, and the effective anisotropy field, Hd, which are back-

calculated for use in the model and simulation. The authors show that the slope of the curves in

Figure 7.26 are dependent on the ratio, H
Hd

. Their data follows a curve with −0.4 ≤ H
Hd

≤ −0.3

whereas the model simulation curve matches more closely a curve with H
Hd

≈ −0.6 . For each of

the six points plotted from the model simulation, the reversal time measured was from the onset

of the current pulse to full reversal of the magnetization angle, ϕ. This measurement method

may not be comparable to what was used experimentally (not disclosed), generating possibly

longer reversal time values compared to the paper’s data.

In general, the model’s simulation data is only valid in the linear region above 10mA ≤ Is ≤

12mA, where the reversal times are around 4.2 ± 0.03 ns with an average switching frequency

calculated as τ−1 = 237.72MHz. In the same range for the experimental data, there is a higher

slope and much more variation with 2.0 ≤ trev ≤ 14.3 ns. Because the authors do not specify

actual values for their shape anisotropy and applied field terms, it is difficult to make a one-to-one

comparison of the model settings to a device.
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Figure 7.26: Experimental and model simulation data of the switching frequency, 1
τs

, in reversing
the magnetization of a Co/Cu/Co nanopillar AP to P, using an STT current, Is.
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Chapter 8 – Conclusion

This work has covered several important phenomena in nanoscale magnetics. I have attempted

to qualitatively describe these phenomena and show their bearing in models of currently relevant

device structures. To this end each behavior has been described mathematically in both two

and three dimensions, as either a torque or an effective field (which is proportional to the torque

by µ0VMS). The implementation language, Verilog-A, accepts the mathematical description

directly, but the choice of how to describe the system so that the equations are efficiently solved

is an important aspect of the modeling process. The models presented here rely on the equations

of torque or field (proportional to torque), being solved for the equilibrium condition where

the torques sum to zero at the magnetization node(s), θ (two dimensions), or θ and ϕ (three

dimensions), where the system energy is minimized. This algorithm has been shown to be a

successful procedure in solving for the time-domain change of the magnetic moment(s) in a thin

film free layer(s) subject to internal and external fields. The model that has been developed has an

advantage over currently reported models [27, 95] because it is executed in spherical coordinates

maintaining a constant magnetization magnitude in keeping with a macrospin system. The

model allows simulation of magnetization precession in three dimensions which is important to

the accuracy of switching dynamics.

Further, nanoscale device structures of a spin valve, Toggle MRAM bit, and a spin valve using

spin transfer torque, have been modeled and successfully demonstrated in two operational modes;

magnetic moment reversal using Oersted fields and STT, and steady-state precession (STT),

using the torques/fields and parameters significant to each. There is validation for the toggle

MRAM device model. The parameters used in the simulation of this model were derived from

Worledge’s magnetic phase diagram of coupled nanomagnets [93] which included details of the

exchange coupling parameter vs. intrinsic anisotropy (dimensions and demagnetization factors)
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for the synthetic antiferromagnetic free layers. With the addition of dipole coupling between

the coupled free layers, the model used material constants, fields, and dimensional parameters

from Worledge’s MRAM modeling paper [35]. Our simulations, using realistic intrinsic and

applied field values, successfully reproduced Worledge’s hysteresis results for free layers of the

same thickness as shown in Figure 7.5. Although no numerical field values were reported with

Worledge’s hysteresis result, the detailed switching and spin-flop phases are exactly as in his

model. Worledge’s model is verified by early toggle MRAM work done by [34, 37].

With regard to magnetic moment reversal, the model’s dynamic performance has been com-

pared to work published on physical devices where Oersted fields and STT currents were used

to stimulate switching. In these comparisons, all physical parameters and test conditions given

in the papers were included in the model and simulation setup. The spin valve, switched with

Oersted fields [1] from currents in the plane of the device, showed good agreement between the

model’s reversal times and those of the physical device. The comparison performed for magneti-

zation reversal using STT currents [40] was not as clear, due to 1) the model’s lack of a thermal

effect, 2) not having a measured value for the anisotropy constant of the physical devices, and

3) not knowing if the field calculated from the paper’s energy constant was actually applied in

the physical experiment. With these shortcomings, the three valid simulated reversal times from

the model were only within 4 ns of the analogous physical device data points. Even though

these points are in the linear (high frequency) region of operation, the resulting model curve is

in disagreement with the physical device measurement. It is very likely that the experimental

parameters were misunderstood, since the model using STT, as shown in the simulation fig-

ures throughout section 7.4, behaves correctly. The thermal effect is very important at longer

switching times and is work yet to be done to complete this model.

The structures emulated in this work are fundamental devices for the development of future

spintronic elements. The model components may be reused in different physical layer arrange-

ments in the construction of a new device (the Toggle MRAM device is a good example of this).

The present state of the three dimensional single domain LLG module introduced in section 4.4,
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requires that the model be updated with any new fields that may be required for a new structure.

This is a drawback to the 3-D model, however, the module code may be changed to allow blocks

with additional fields to be schematically- or port-connected and summed within the core LLG

module in which the final sum and integration of all the field terms takes place.

The models presented in this work will be published [The 2-D spin valve and Toggle MRAM

models already are. [96, 97]] making them publicly available. The availability will serve to

assist research in testing new device structures without complex and lengthy micromagnetic

simulations. The models will also make it easier for IC design companies to try incorporating

magnetic devices in electronic systems, thus encouraging innovation with these devices.

8.1 Appendix 1: Symbols used in manuscript

V Volume
[

m3
]

A Area
[

m2
]

I Current [A]

V Volt [V]

n Number of states

wb Weber [V · s]

P Spin polarization [↑ ↓]

T Tesla
[

wb
m2

]

J Joule (Energy)

Aex Material exchange stiffness
[

J
m

]

µ0 Permeability of free space
[

4π × 10−7 wb
A·m

]

µm Atomic magnetic moment
[

Am2
]
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µB Bohr magneton (Atomic spin magnetic moment) = 0.927× 10−23
[

Am2
]

γ Gyromagnetic ratio of material
[

common : 1.76× 1011 c
Kg or

rad
s·T

]

γ0 Gyromagnetic ratio
[

γ0 = µ0 · γ, 2.21× 105 m
A·s

]

e Electron charge, coulombs
[

1.602× 10−19 c
]

! Planck’s constant divided by 2π
[

1.005× 10−34 J · s
]

ω Angular frequency
[

rad
s

]

Jex Exchange integral or constant
[

J
m2

]

L Orbital angular momentum, !
√

l(l + 1) [J · s]

M Magnetization vector
[

A
m

]

m magnetic moment
[

Am2
]

B Magnetic flux density vector
[

T or wb
m2

]

H Magnetic field vector
[

A
m

]

T Torque vector
[

J
rad

]

S Spin angular momentum, !
√

s(s+ 1) [J · s]

J Total angular momentum, J = L+ S, !
√

j(j + 1) [J · s]

θM In-plane (2D) or polar (3D) angle of magnetization [degrees, ◦]

θPinned Angle of magnetization of pinned FM layer [degrees, ◦]
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8.2 Appendix 2: Verilog-A module code

The following code modules may be schematically connected as in Figures 5.3, 5.4(b), 7.9, or

7.17, or may be instantiated by module name in a single top-level cell (as in Listing 7 below) if

using Verilog-AMS. Listings 1 - 7 are for the 2-D model dynamics approximation. The 3-D single

domain module is in Listing 8 and must be used with the 3-D magnetoresistance block in Listing

10 if a magnetoresistive output is desired. Likewise with the 3-D single domain block with STT,

Listing 9, the 3-D magnetoresistance block must also be used. The parameters to be set in each

file are at the beginning of the file with existing values. Some “strobe” (print) commands have

been left in the longer modules to allow the user to observe certain signals of interest.

Listing 1. Write Line module (writeline)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”
module writeline(vp,vn,hwrite);

inout vp, vn;

output hwrite;

electrical vp, vn;

sig_flow_H hwrite;

parameter real W = 1.0u; // write line width [m]

parameter real R = 0; // line resistance [ohms]

analog begin

V(vp,vn) <+ R*I(vp,vn);
H(hwrite) <+ I(vp,vn)/(2*W);

end
endmodule
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Listing 2. Magnetoresistance module (mr)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”
module mr(M1,M2,rp,rn) ;

inout M1,M2,rp,rn ; rotational M1,M2 ;

electrical rp,rn ;

parameter real R_max = 1000 ; // High resistance [ohm]

parameter real R_min = 500 ; // Low resistance [ohm]

analog begin

V(rp,rn) <+ I(rp,rn)*(R_min+0.5*(R_max-R_min)*(1-cos(Theta(M1)-Theta(M2))));

end
endmodule

Listing 3. Single Domain module (single_domain)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”

nature Magnetic_Induction

abstol = 1e - 12;
access = H;
units = ‘‘A/m”;

endnature
discipline sig_flow_H

potential Magnetic_Induction ;

enddiscipline

‘define P_gamma 1.76e11 // Gyromagnetic constant [Hz/tesla]

module single_domain(hx, hy, M ) ;



140

input hx, hy ; // magnetic field vector components

inout M ; // magnetization angle and torque

sig_flow_H hx, hy ; // port discipline for H-field vector components

rotational M ; // port discipline for magnetization angle

parameter real Area = 14.14e-14 ;// [m^2] surface area (PI*a*b)

parameter real thickness = 3.0e-9 ;// [m]

parameter real Ms = 8e5; // saturation magnetization [A/m]

parameter real Ku = 500; // uniaxial anisotropy [J/m^3]

parameter real alpha = 0.02; // LLG damping factor [unitless]

parameter real M_ea = 0 ; // easy axis angle [rads]

analog begin

// Torque due to applied field:
Tau(M) <+ -‘P_U0*Ms*Area*thickness*(H(hx)*sin(Theta(M))- H(hy)*cos(Theta(M)));

// Torque due to crystalline anisotropy energy:
Tau(M) <+ -Ku*Area*thickness*sin(2*(Theta(M)- M_ea)) ;

//damping torque = angular velocity * damping :
Tau(M) <+ -Area*thickness*ddt(Theta(M))* Ms/((alpha+1/alpha)*‘P_gamma);

end
endmodule
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Listing 4. Dipole Coupling module (dipole_coupling)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”
module dipole_coupling (M1,M2);

inout M1,M2; rotational M1,M2;

parameter real t1 = 3.0e-9; //thickness top [m]

parameter real t2 = 3.0e-9; //thickness top [m]

parameter real a1 = 300e-9; //length of long_axis top [m]

parameter real a2 = 300e-9; //length of long_axis bottom [m]

parameter real b1 = 150e-9; //length of short_axis top [m]

parameter real b2 = 150e-9; //length of short_axis bottom [m]

parameter real A1 = a1*b1*‘M_PI; //top_area_ellipse [m^2]

parameter real A2 = a2*b2*‘M_PI; //bottom_area_ellipse [m^2]

parameter real Ms = 8e5;

parameter real Ny1 = (2*t1/‘M_PI)*1/b1;

parameter real Nx1 = (2*t1/‘M_PI)*1/a1;

parameter real Ny2 = (2*t2/‘M_PI)*1/b2;

parameter real Nx2 = (2*t2/‘M_PI)*1/a2;

parameter real r = 0.2; //attenuation factor Hij/Hdi

parameter real J_12 = A1*t1*‘P_U0*pow(Ms,2)*r/2; //dipole prefactor [J]

parameter real J_21 = A2*t2*‘P_U0*pow(Ms,2)*r/2; //dipole prefactor [J]

analog begin

Tau(M1) <+ J_12*(Ny1*sin(Theta(M1) - ‘M_PI/4)*cos (Theta(M2) - ‘M_PI/4)
- Nx1*cos(Theta(M1) - ‘M_PI/4)*sin(Theta(M2) - ‘M_PI/4));

Tau(M2) <+ J_21*(Ny2*cos(Theta(M1) - ‘M_PI/ 4)*sin(Theta(M2) - ‘M_PI/
4) - Nx2*sin(Theta(M1) - ‘M_PI/ 4)*cos(Theta(M2) - ‘M_PI/4));

end
endmodule
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Listing 5. Exchange coupling module (exchange)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”
module exchange (M1,M2);

inout M1,M2;

rotational M1,M2;

parameter real J = -1.8e-5; //Exchange coupling constant [J/m^2]

parameter real a1 = 300e-9; //length of long_axis top [m]

parameter real a2 = 300e-9; //length of long_axis bottom [m]

parameter real b1 = 150e-9; //length of short_axis top [m]

parameter real b2 = 150e-9; //length of short_axis bottom [m]

parameter real A1 = a1*b1*‘M_PI; //top_area_ellipse [m^2]

parameter real A2 = a2*b2*‘M_PI; //bottom_area_ellipse [m^2]

parameter real Ms = 8e5;

analog begin

@(initial_step)begin

Theta(M1) <+ ‘M_PI/4; Theta(M2) <+ ‘M_PI*5/4;

end
Tau(M1) <+ -A1*J*sin(Theta(M1) - Theta(M2));
Tau(M2) <+ -A2*J*sin(Theta(M2) - Theta(M1));

end
endmodule
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Listing 6. TMR module (tmr)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”
module tmr(M1,rp,rn);

input M1;

inout rp,rn;

rotational M1;

electrical rp,rn;

parameter real R_max = 1000; //High resistance [ohm]

parameter real R_min = 500; //Low resistance [ohm]

parameter real TMR = (R_max - R_min)/R_min;

parameter real M_ea; //Pinned angle = easy axis angle

parameter real Vh = 0.4; //Bias effect parameter [volts]

real BE; //bias effect value based on Vh

analog begin

BE = 1 + pow((V(rp,rn)/Vh), 2);
I(rp,rn) <+ V(rp,rn)/(R_min * (1 + 0.5 * (TMR/BE) (1 - cos(Theta(M1) -
M_ea))));

end
endmodule
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Listing 7. ToggleMRAM_bit [top level] (toggle_mram_top)

‘define ANGLE_ABSTOL 1e - 6

‘define ANGULAR_FORCE_ABSTOL 1e - 6

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”

nature Magnetic_Induction

abstol = 1e - 6;
access = H;
units = ‘‘A/m”;

endnature

discipline sig_flow_H

potential Magnetic_Induction;

enddiscipline

‘define P_gamma 1.76e11 //Gyromagnetic const. [rad/s/tesla]

module toggle_mram_top (wlp, wln, blp, bln, rp, rn);

inout wlp, wln, blp, bln, rp, rn;
rotational M1, M2;
electrical wlp, wln, blp, bln, rp, rn;
sig_flow_H hx, hy;
writeline WLbit (.inp(blp), .inn(bln), .hout(Hy));
writeline WLword (.inp(wlp), .inn(wln), .hout(Hx));
single_domain Top (.hx(Hx),.hy(Hy),.M(Mtop));
single_domain Bottom (.hx(Hx),.hy(Hy),.M(Mbot));
exchange X1 (.M1(Mtop),.M2(Mbot));
dipole_coupling DC1 (.M1(Mtop),.M2(Mbot)); //Pinned layer is set inside
TMR block as M_ea
tmr MR1 (.M1(Mbot), .rp(MRv),.rn(ntest));

endmodule
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Listing 8. 3D Single Domain module (sd_3d)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”

nature Magnetic_Induction

abstol = 1e - 12;
access = H;
units = ‘‘A/m”;

endnature

discipline sig_flow_H

potential Magnetic_Induction;

enddiscipline

‘define P_gamma 1.76e11 //Gyromagnetic const. [rad/s/tesla]

//————————————————————-

// Module sd_3d

//————————————————————-

module sd_3d(hx, hy, hz,Mpol,Maz,Mea );

input hx, hy, hz ;

inout Maz, Mpol, Mea ;

sig_flow_H hx, hy, hz, hMpol, hMaz ; // H-field vector components

rotational Mea, Maz, Mpol, Anis; // port discipline for easy axis angle and
// magnetization angles(spherical)

//—————- free layer parameters ———————————————

parameter real a1 = 300e-9 ; // length of long_axis top [m]

parameter real b1 = 150e-9 ; // length of short_axis top [m]

parameter real Area = a1*b1*‘M_PI ; // top_area_ellipse [m^2]

parameter real t1 = 3.0e-9 ; // [m]

parameter real Ms = 8e5 ; // saturation magnetization (A/m)

parameter real Ku = 300.0 ; // uniaxial anisotropy (J/m^3)

parameter real alpha = 0.02 ; // LLG damping factor (unitless)

parameter real Vol = Area*t1 ; // volume [m^3]

parameter real C1 = 1/(1+pow(alpha,2));

parameter real C2 =‘P_U0*Vol*Ms ; // [wb*m] note: J/(wb*m) = A/m

parameter real G0 = ‘P_gamma*‘P_U0; // (1.76e11 Hz/T*1.26e-6 wb/Am) = [2.21e5
m/As]
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parameter real Nx = 0.0182; //for NiFe [JAP97 10J901, McMichael & Stiles (2005)]

parameter real Ny = 0.0515;

parameter real Nz = 0.931;

// set easy axis vector components EA, in cart. coord.; |EA|=1

// EA with i,j,&k components has comp. value = 0.57735, 2 comps. => 0.707

parameter real EAi = 1;

parameter real EAj = 0;

parameter real EAk = 0;

real ThetaMpol, ThetaMaz, TauMpol,TauMaz ;

real Mi, Mj, Mk, u ;

real ddu_acos, dd_Anis, du_dMpol, du_dMaz;

//———————————————————————

analog begin

@(initial_step)begin

Theta(Mpol) <+ 80*‘M_PI/180 ; // [rad] start polar angle non-zero
Theta(Maz) <+ 0*‘M_PI/180 ; // [rad] start azimuth. angle non-
zero
$strobe("Mpol_init = %5.2f rad", Theta(Mpol) );
$strobe("Maz_init = %5.2f rad", Theta(Maz) );

end
Theta(Mea) <+ 0; // use when not connected to "EA gnd" at higher level
Mi = sin(Theta(Mpol))*cos(Theta(Maz));
Mj = sin(Theta(Mpol))*sin(Theta(Maz));
Mk = cos(Theta(Mpol));
//***************************************************************
u = (EAi*Mi)+(EAj*Mj)+(EAk*Mk); //dot prod. of M and EA.
//***************************************************************
//——————- Anistropy eqns ———————————–
$strobe("u = %5.2f rad", u );
Theta(Anis) <+ acos(u); // angle between M and EA:[M’dot’EA]=cos(u)
ddu_acos = -1/sqrt(1-pow(u,2));
du_dMpol = (EAi*cos(Theta(Mpol))*cos(Theta(Maz))

+ EAj*cos(Theta(Mpol))*sin(Theta(Maz))- EAk*sin(Theta(Mpol)));

du_dMaz = sin(Theta(Mpol))*(EAj*cos(Theta(Maz)) - EAi*sin(Theta(Maz)));
dd_Anis = Ku*Vol*sin(2*Theta(Anis));

//———————————————————————
// Field components of angular velocity due to applied field, uniaxial
// crystalline anisotropy and magnetostatic(shape) free energies:
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//———————————————————————
//H(hMpol) = (dEa_dmpol + dEk_dmpol + dEd_dmpol) / C2 :

H(hMpol) <+ (H(hx)*cos(Theta(Mpol))*cos(Theta(Maz))

+ H(hy)*cos(Theta(Mpol))*sin(Theta(Maz))-H(hz)*sin(Theta(Mpol)))
- (dd_Anis * ddu_acos * du_dMpol)/C2
- Ms*sin(2*Theta(Mpol))*((Nx-Nz) + (Ny-Nx)*pow(sin(Theta(Maz)),2));

//H(hMaz)=(dEa_dmaz + dEk_dmaz + dEd_dmaz) / (C2*sin(Theta(Mpol))):

H(hMaz) <+ (H(hy)*cos(Theta(Maz)) - H(hx)*sin(Theta(Maz)))

- (dd_Anis * ddu_acos * du_dMaz)/(C2*sin(Theta(Mpol)))
- Ms*sin(Theta(Mpol))*sin(2*Theta(Maz))*(Ny-Nx);

//———————————————————————
// complete 3D dynamic equations in H(theta) and H(phi); integrate d(theta)/dt
and d(phi)/dt:

Theta(Mpol) <+ idt((C1*G0)*(H(hMaz) + alpha*H(hMpol)),1.396) ;
Theta(Maz) <+ idt(((C1*G0)/sin(Theta(Mpol)))*(alpha*H(hMaz)- H(hMpol)),0);
//—————————————————————————
$strobe("Anis = %5.2f rad", Theta(Anis));
$strobe("Mpol_2 = %5.2f rad, Maz_2 = %5.2f rad",Theta(Mpol), Theta(Maz));

end
endmodule
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Listing 9. 3D Single Domain module with STT (sd_3dstt)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”

nature Magnetic_Induction

abstol = 1e - 12;
access = H;
units = ‘‘A/m”;

endnature
discipline sig_flow_H

potential Magnetic_Induction;

enddiscipline
‘define P_gamma 1.76e11 //Gyromagnetic const. [rad/s/tesla]

‘define P_hbar 1.054e-34 // Plancks const./2pi [J*s]

//————————————————————-

// Module sd_3dstt

//————————————————————-

module sd_3dstt (hx, hy, hz,Mpol,rp,rn,Maz,Mea );

input hx, hy, hz ;

inout rp, rn, Mea, Maz, Mpol ;

sig_flow_H hx, hy, hz, hMpol, hMaz ; // H-field vector components

rotational Mea, Maz, Mpol, Anis; // port discipline for easy axis angle and magnetization
angles(spherical)

electrical rp,rn ;

//—————- free layer parameters ———————————————

parameter real a1 = 100e-9 ; // length of long_axis top [m]

parameter real b1 = 50e-9 ; // length of short_axis top [m]

parameter real Area = a1*b1*‘M_PI ; // top_area_ellipse [m^2]

parameter real t1 = 3.0e-9 ; // [m]

parameter real Ms = 8e5 ; // saturation magnetization (A/m)

parameter real Ku = 300.0 ; // uniaxial anisotropy (J/m^3)

parameter real alpha = 0.02 ; // LLG damping factor (unitless)

parameter real Vol = Area*t1 ; // volume [m^3]

parameter real C1 = 1/(1+pow(alpha,2));

parameter real C2 =‘P_U0*Vol*Ms ; // [wb*m] note: J/(wb*m) = A/m
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parameter real G0 = ‘P_gamma*‘P_U0; // (1.76e11 Hz/T*1.26e-6 wb/Am) = [2.21e5
m/As]

parameter real Nx = 0.0182; //for NiFe [JAP97 10J901, McMichael & Stiles (2005)]

parameter real Ny = 0.0515;

parameter real Nz = 0.931;

// set easy axis vector components EA, in cart. coord.; |EA|=1

// EA with i,j,&k components has comp. value = 0.57735, 2 comps. => 0.707

parameter real EAi = 0;

parameter real EAj = 0;

parameter real EAk = 1;

parameter real P = 0.35; // [unitless,~0.3-0.4 pg236 Bertotti] polarization factor

//—– reals for Magnetization and anisotropy field ——–

real Mi, Mj, Mk, u, epoli, epolj, epolk, eazi, eazj, eazk ;

real ddu_acos, dd_Anis, du_dMpol, du_dMaz;

//——- reals for spin injection field, Hs —————

real G, g, Is, Ff, Ffi, Ffj, Ffk ;

real dG_dMpol, dG_dMaz, dFf_dMpol, dFf_dMaz ;

//———————————————————————

analog begin

@(initial_step)begin

Theta(Mpol) <+ 179 * ‘M_PI/180; // intialize theta
Theta(Maz) <+ 90 * ‘M_PI/180; // initialize phi
$strobe("Mpol_init = %5.2f rad", Theta(Mpol) ); // print initial
theta
$strobe("Maz_init = %5.2f rad", Theta(Maz) ); // print initial phi

end
Theta(Mea) <+ 0; // use when not connected to gnd at higher level
Mi = sin(Theta(Mpol))*cos(Theta(Maz));
Mj = sin(Theta(Mpol))*sin(Theta(Maz));
Mk = cos(Theta(Mpol));
//**************************************************************
u = (EAi*Mi)+(EAj*Mj)+(EAk*Mk); // dot prod. of M and EA.
//unit vector components in the theta(polar) and phi(azimuthal) directions:
epoli = cos(Theta(Mpol))*cos(Theta(Maz));
epolj = cos(Theta(Mpol))*sin(Theta(Maz));
epolk = -sin(Theta(Mpol));
eazi = -sin(Theta(Maz));
eazj = cos(Theta(Maz));
eazk = 0 ;
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//*************************************************************
// calculate the angle between Easy axis and M:
//——————- Anistropy eqns ———————————–
$strobe("u = %5.2f rad", u );
Theta(Anis) <+ acos(u); // angle between M and EA:[M’dot’EA]=cos(u)
ddu_acos = -1/sqrt(1-pow(u,2));
du_dMpol = (EAi*cos(Theta(Mpol))*cos(Theta(Maz))

+ EAj*cos(Theta(Mpol))*sin(Theta(Maz))- EAk*sin(Theta(Mpol)));

du_dMaz = sin(Theta(Mpol))*(EAj*cos(Theta(Maz)) - EAi*sin(Theta(Maz)));
dd_Anis = Ku*Vol*sin(2*Theta(Anis));
//—— functions and derivatives for spin injection field, Hs —–
g = (-4 + pow((1+P),3)*(3+u)/(4*pow(P,1.5))) ;
G = 1/g ;
// Ff = ep x M = -M x ep
Ffi = EAj*cos(Theta(Mpol)) - EAk*sin(Theta(Mpol))*sin(Theta(Maz)) ;
Ffj = -EAi*cos(Theta(Mpol)) + EAk*sin(Theta(Mpol))*cos(Theta(Maz)) ;
Ffk = EAi*sin(Theta(Mpol))*sin(Theta(Maz))

- EAj*sin(Theta(Mpol))*cos(Theta(Maz)) ;

Ff = ( Ffi + Ffj + Ffk );
Is = I(rp,rn) ;
//———————————————————————
//Field components of angular velocity due to applied field, uniaxial crystalline
// anisotropy and magnetostatic(shape) free energies:
//———————————————————————
// H(hMpol) = (dEk_dmpol + dEs_dmpol + dEd_dmpol + dEa_dmpol )
/ C2
H(hMpol) <+ - (dd_Anis * ddu_acos * du_dMpol)/C2

- ((Is*‘P_hbar/(2*‘P_Q*g*C2))*((epoli*Ffi)+(epolj*Ffj)+(epolk*Ffk)))
- Ms*sin(2*Theta(Mpol))*((Nx-Nz) + (Ny-Nx)*pow(sin(Theta(Maz)),2))
+ ((H(hx)*cos(Theta(Mpol))*cos(Theta(Maz))
+ H(hy)*cos(Theta(Mpol))*sin(Theta(Maz))-H(hz)*sin(Theta(Mpol))))
;

//H(hMaz)=(dEk_dmaz + dEs_dmaz + dEd_dmaz + dEa_dmaz)*
// 1/ (C2*sin(Theta(Mpol)))
H(hMaz) <+ - (dd_Anis * ddu_acos * du_dMaz)/(C2*sin(Theta(Mpol)))

- ((Is*‘P_hbar/(2*‘P_Q*g*C2))*((eazi*Ffi)+(eazj*Ffj)))
- Ms*(Ny-Nx)*sin(Theta(Mpol))*sin(2*Theta(Maz))
+ (H(hy)*cos(Theta(Maz)) - H(hx)*sin(Theta(Maz))) ;
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//———————————————————————
// complete 3D dynamic equations in H(theta) and H(phi); integrate d(theta)/dt
and d(phi)/dt:
//———————————————————————
Theta(Mpol) <+ idt((C1*G0)*(H(hMaz) + alpha*H(hMpol)),3.1239) ;
Theta(Maz) <+ idt(((C1*G0)/sin(Theta(Mpol)))*(alpha*H(hMaz)- H(hMpol)),1.57);
//———————————————————————
// view theta & phi
$strobe("Mpol_2 = %5.2f rad, Maz_2 = %5.2f rad", Theta(Mpol), Theta(Maz)
);
$strobe("————————————");

end
endmodule
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Listing 10. 3D Magnetoresistive module (mr3d)

‘include ‘‘constants.vams”
‘include ‘‘disciplines.vams”
module mr3d(Mpol,Maz,rp,rn);

input Mpol,Maz ;

inout rp,rn ;

rotational Mpol,Maz,Mdiff ;

electrical rp,rn ;

real Mi, Mj, Mk, uMR;

// set easy axis vector components in cartesian coordinates:

parameter real EAi = 1;

parameter real EAj = 0;

parameter real EAk = 0;

parameter real R_max = 1000 ; // High resistance [ohm]

parameter real R_min = 500 ; // Low resistance [ohm]

analog begin

Mi = sin(Theta(Mpol))*cos(Theta(Maz));
Mj = sin(Theta(Mpol))*sin(Theta(Maz));
Mk = cos(Theta(Mpol));
uMR = (EAi*Mi)+(EAj*Mj)+(EAk*Mk); //dot prod. of M and EA.
//——————- diff. angle between M and EA ——————
Theta(Mdiff) <+ acos(uMR);
//———- Calculate GMR with Mdiff ———————————
V(rp,rn) <+ I(rp,rn)*(R_min+ 0.5*(R_max-R_min)*(1-cos(Theta(Mdiff))));

end
endmodule
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