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PROPERTIES AND INTEGRAL REPRESENTATIONS
OF DISTRIBUTIONS OF OPERATORS

INTRODUCTION

The problem of characterizing linear functionals defined on
various spaces and possessing certain properties is by no means
new. The extension theorems of Hahn-Banach [10], the F. Riesz
Representation Theorem [11] and the theorem of S. Bochner [11] on
the representation of complex-valued continuous positive-definite
functions are among the more important theorems in classical analy-
sis dealing with the general problem of characterizing and represent-
ing certain classes of functions and the duals of function spaces.

The theorems mentioned above have extensive application in
various areas of mathematics and have been shown to admit various
degrees of generalization (see for example, [6], pp. 152,157,219, 220,
and [8] ). The theorem that a positive continuous linear functional is
a positive Radon measure and the associated integral representation
of such (and more general) functionals carries over to scalar-valued
distributions on open subsets of Euclidean n-space R™. S. Bochner's
theorem on the characterization and integral representation of con-
tinuous positive-definite functions has likewise been generalized to
distributions by L. Schwartz [6, p. 157]. More recently B. Kritt

[8] extended some of these results on positive and positive -definite



. . . . . . ° n
distributions to distributions defined on an open subset £ of R

and taking their values in the Banach algebra of bounded linear
operators on a complex Hilbert space. Kritt showed that a positive
distribution of operators on an open subset $I of R™ s given by
an operafor—valued integral relative to a positive operator valued
measure on the ring generated by the compact subsets of Rn, and if
the positive operator distribution on R™ s tempered then so is the
associated operator measure. In the same paper Kritt showed that a
positive-definite distribution of operators on R™  is the Fourier
transform of a tempered positive operator -valued measure and that
such an operator distribution has a unique integral representation
with respect to the operator measure.

The first result in this thesis (Chapter 2) is an extension of the
first of the above mentioned theorems of Kritt to the extensive class
of test-function spaces K{Mp}, containing D(Rn) as a dense sub-
space, first introduced by Gel'fand and Shilov [4, p- 255] in connec-
tion with the study of the problem of classes of uniqueness of the solu-
tion of the Cauchy problerﬁ for systems of partial differential equa-
tions. The balance of this thesis (Chapters 3 and 4) is addressed to the
problem of establishing for operator-valued distributions results which
hold for certain classes of scalar-valued bilinear distributions and for
scalar-valued multiplicatively positive distributions--theorems which

have immediate application to generalized random processes [6,p.237].



Many important transformations in analysis are multiplicative:
T =T T for all elements in the domain of T. The distribu-
b, ¢ ¢, ¢
172 1 2
tions of operators that are studied here are not required to be

multiplicative. On the other hand the range of these distributions

will always be assumed to consist of bounded operators.



1. BACKGROUND AND PRELIMINARIES

This chapter is devoted to a brief discussion of the spaces,
concepts and preparatory lemmas leading to, and culminating in, the
development of a certain operator-valued integral which plays a

prominent role in the first theorem in this thesis.

A. The Spaces K{Mp}

The concept of a fundamental space is central in the development
of the theory of generalized functions. Indeed a generalized function
is, by definition, an element in the topological dual of a fundamental
space.

Let C denote the field of complex numbers andlet ¢ be a
linear space over C of complex-valued functions defined on a non-
empty subset X of RrR™. Thus, if ¢ and ¢ are functions in
$ and N and p are any complex numbers, then the function

Ao + py belongs to @. In particular, the zero function ©6(x) = 0,

x € X, belongsto @&

Definition 1. ® is a fundamental space provided that:

(1) @ 1is either a complete countably normed space, or it is a
countable union of complete countably normed spaces. In

the latter case @ 1is given the inductive limit topology.



2 - in &, - in C
(2) If c{)m @ in then q)m(x) 0 in for any

All of our work involves functions and the calculus of functions
in some fundamental space ®. Since these functions are defined on
subsets of R" we summarize the notation used in the n-dimensional
calculus.

A multi-index a 1is an ordered n-tuple of nonnegative

integers aj:

To each multi-index a there corresponds a differential

operator
a,. a a
o 172 n
D = D1 D2 - Dn
where
D, =-"§— , 1 <j<n.
j o=, - -
J
The order of D% is the nonnegative integer ]al defined by
n
la] = Z“' .
J
j=1

If |a| =0, thatis, if



then we set D°q> =¢. If a, B are n-dimensional multi-indices,

then a < 8 means that aj iﬁj, 1 <j<n,
ax B = (alﬂzﬁl,...,andzﬁn) ,
I = [ ! |
a a tayloiia !,
a a a
1 2 n
(B)*(B )(5) (5)’
1 2 n
where
a a. !
( J) = '—'—L—— , 1<j<n
Ma.-B.)! - -
F-sJ F-sJ J )
If x= (Xl,xz,...,xn) is a point in Rn, the Euclidean norm
of x is defined by
n 1/2
Z 2
x = )«
J
j=1

x|

If x,yce¢ R”, the inner product is denoted x-y and is defined by

n

X - = X. ..
Y Z JYJ

j=1

Finally, if x e R” and o is an n-dimensional multi-index, the

monomial x is defined by



Rather than deal with arbitrary fundamental spaces 2 we
restrict our attention to a class of fundamental spaces which, on the
one hand, is of sufficient generality to include the fundamental
spaces of classical distribution theory as particular cases and to
which, on the other hand, many of the theorems of distribution theory
can be extended. These spaces are the fundamental spaces K{Mp}
which we now proceed to define.

Let Mp, p=0,1,2,..., be anondecreasing sequence of
functions defined on R" and bounded below by the function which is

identically equal to one on R™. Thus

1<M, <M, <M, <...<M <M

<...
0 1 2 P ptl —

We will assume that each Mp is continuous on all of Rn and that

n

_Mp(x) <®, p>0, ateachpoint x in R

o0
Definition 2. The set K{Mp} consists of all C (R™)

complex-valued functions ¢ which, for every multi-index a and

for 0 < p <®, satisfy the following condition:

MpD°¢ is a continuous bounded function on R'.

The linear space K{Mp} is given the structure of a complete



countably normed topological vector space by the family of norms

||¢Hp defined, for each ¢ ¢ K{Mp} and 0 < p <%, by

(1) loll = max sup M_(x)](D%)(x)]
P lal <p xern P

For any ¢ in K{Mp},

lellg < el < lolly <o <ol < lol <o

and

loll, <= 0<p<e.

Note that each ¢ in K{Mp} is, together with its derivatives of all

orders, bounded on Rn

Definition 3. A complete countably normed space X is called
perfect [3, p. 15] if the bounded subsets of X are relatively
sequentially compact; equivalently, since X is a metric space, the
bounded subsets of X are relatively compact (the bounded subsets of

X have compact closure).

Proposition. K{Mp} is a complete countably normed space

[3, p- 30].

Proposition. Suppose that corresponding to any integer p >0

there is an integer p' >p such that



lim (
|x[—~oo Tp'

Then K{Mp} is perfect [3, p. 31].

In all discussions relating to K{Mp} spaces in thie thesis we
will assume that these spaces satisfy the condition of the preceding

Proposition and are therefore perfect spaces.

Convergence in K{Mp} Spaces

Definition 4. A sequence {ci)n} of functions defined on Rn

is properly convergent if the sequence {qu)n} converges uniformly

on bounded subsets of R’ for every multi-index a.

Definition 5. The sequence of functions {¢m} in K{Mp} is
said to be Mp-bounded if to each p, 0 <p <, there corres-

ponds a positive constant ¢ such that |¢_|| <c for
P m-p = p

m=1,2,3,...

Proposition. If {é } is an M -bounded sequence such that
L.roposition m P q

¢m — 0 properly, then ”q)m”p — 0 for any p >0; thatis,

$_ 0 in K{Mp}.

If {¢m} C K{Mp} is an Mp—bounded sequence such that

¢m ?, properly, then ci)o is in K{Mp} and dpm"d)o in

K{Mp} [3, p. 31].
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Proposition. If Mp <®, 0 <p <2, then the linear space

8

C0 (Rn) of infinitely differentiable functions with compact support in

R" is dense in K{Mp} [3, p. 32].

Examples of K{Mp} Spaces

n

00
1. The Space/i. The space 4 consists of all C (R7)-

functions ¢ which together with their derivatives of all orders,

-1
decrease more rapidly at infinity than any power of ]xl . For

0
example, exp(-[ x[z) and all functions in CO (Rn) belong to/&.

¥ ¢ isind, |o o, is defined by

a

] B
telly o " supy %" (D )

where a and f are multi-indices and

||¢”a,5<°o for each ¢ in/i:

Let

M (x) = sup IXkI
P k] <p

Then Mp <M and
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Toll = supy M_(x)|(D%)(x)| < =
P lal<p
for each p. Thus the space /é of rapidly decreasing functions (at

©) is realized as a particular K{Mp} space.

2. The Spaces S and S The space S , (a >0),
a a a —

LA

0
consists of all C (Rn)-functions ¢ satisfying inequalities of the

form [xk(qu))(x)l iCqukka, where the constants Cq and A

depend on ¢ [4, p. 169]. For a =0, SO ZOBI;(RH), the space of

0

C (R™) functions with support in the fixed compact set

K={xe Rn: |x| < A}. If a >0, the definition of Sa may be
n

[o0]
formulated another way. Sa’ (a >0), consists of all C (R)-

functions ¢ which satisfy inequalities of the form

1/a
|0%9))| < € expl-alx| T,
where the constants Cq and a depend on ¢ [4, 172].
Sa can be realized as the union of countably normed spaces.
Let Sa A denote the set of functions ¢ in the space Sa for

which the following inequalities hold:

k,._.q —~k, ka
< —_
% (D7) (x)] _chA ko,

where A is any constant greater than the constant A in S

Thus
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x5 (D) (x)| < Cqé(A+6)kkka

holds for any & > 0. Referring to the second formulation of the

spaces Sa’ (a >0), given above, it is clear that Sa A consists
]

of those functions ¢ which satisfy the inequalities

[(D%)(x)| < Céé expl-(a-6)]x] 1/C‘]

for 6§>0 [4, p. 176]. When a =0, SO A consists of those

® . n . . . n
C (R) functions with compact suppose in {x e R : ]xl < A}.

Let

]./Cl]

Mp(x)=exp[a(l--’}')|x] , PT2,3,...

Then Mp <M p>2, and

p+l’

||<1>llp = sup, Mp(x>|(Dq¢)(x)l <w, p>2.
lql <p

Thus the space S, a Delongs to the family of K{Mp} spaces. In

particular Sa A is a perfect, complete, countably normed space.

3. The Spaces W and W ILet | be a continuous

M M,a’

00
increasing C -function on [0,%) such that p(0) =0 and define

the function M on [0,%) by
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X
. M(x) = S pit)dt
0
00
M is an increasing, continuous, C convex function on [0,00)
1
with M(0) =0 and 1lim M(x) = . M is extended to R by
X0

defining Mi(x) = M(-x) for x < 0.

o0 1
Let W denote the set of all C (R )-functions ¢ such

M
that
| (D99)(x)| < Cq exp(-M(ax)) ,
where the constants C and a depend in general on ¢. WM is
clearly a linear space. A sequence {cpn} of functions in WM is

said to converge to zero if {Dq¢n} converges uniformly for all g

on any finite interval in R1 and if in addition
I(Dq¢n)(x)| < Cq exp(-M(ax)) ,

where the constants Cq and a are independent of n.

Let W denote the set of all those functions ¢ in W

M, a M

for which

| (D%)(x)| < <, exp| - M(ax)]

holds, where the constant a 1is arbitrary but less than a. Thus,

if ¢ is in WM,a’ then



14
| (DY) (x)| <C, exp[-M[(a-8)x]], q=0,1,2,...
for any fixed & > 0. Let

Mp(x) = exp(M[a(l- =)x]), p=2,3,...

T |~

Then Mp <M p > 2, and the functions ¢ in W are

p+l’

precisely those for which

loll )= supx M ()| (DI9)(x)] < o0
lal<p
for all p >2. Hence, WM a is a K{Mp} space. Moreover, due
to the convexity of the functions M, the space WM s is perfect.
Of course W is a complete countably normed space [5, pp. 2,3].

M

B. Operator-Valued Measures

Let H=(H,<,>) be a complex Hilbert space, H # {0}, with
norm ||| induced by the positive-definite sesquilinear form <,>

on HxH by
(1) ”E,” =N)<§,§> for every £ ¢ H.

Let B = (B(H), || ||) denote the Banach algebra of all bounded
linear operators on H. If T isin B(H), the norm |T| of

T is defined by
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(2) [Tl = sup{liTEl: 6« B [E] <1}

B(H) is partially ordered by the relation "<" defined on the

set of Hermitean operators by

(3) S<T

if and only if T - S = A is a positive operator, meaning that

<AE,E> >0 forevery &£e¢ H. We write A >0 to denote that A
is positive. Thus if S e B(H), T e B(H), then S < T if and only
if <S¢, &> i <TE, &> for every vector & ¢ H.

Let X be any nonempty set and let R be a ring of subsets

of X.

Definition 1. A positive operator-valued measure E on X

is a set function
(4) M o> B(M): R > B(H)

which satisfies the following conditions:
(i) E(M) >0 for every Me R.
(ii) E(MUN)} = E(M) + E(N) whenever Me¢ R, Ne¢ R and
M~ N=d.

(iii) If {MJ} is a sequence in R suchthat i#j =

[+ o]
Mir\ Mj=d and qu:Me R, then
j=1
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[e0]

E(M) = Z E(Mj) (pointwise).
j=1

Condition (i) states that E(M) is a positive operator on H

for every M in R. Condition (ii) expresses the additivity of
E(:) which, together with (i) implies that E(:) is monotone: if
M,Ne R and M N, then E(M) < E(N).

Condition (iii), expresses the countable additivity of E.

A positive operator-valued measure will henceforth be referred

to as a PO-measure [2, p. 5].

The following result shows that facts concerning PO-measures

can be obtained by working with scalar-valued measures.

Proposition 1. Let R be a ring of subsets of X # ¢, and

E(.) a positive operator-valued set function on R. Then E(-)
is a PO-measure on “X if and only if, for every vector § ¢ H,

the set function
Mm—apg(M):R -=> C ,
defined by

(5) '" pe(M) = <E(MDE, £>,

is a measure [2, pp. 8,9].
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Thus each PO-measure E(') on X gives rise to a family
{ptg'-g € H} of positive measures on X indexed by the set of vectors
in the underlying Hilbert space.

The next result gives conditions under which a family
{Mglg ¢ H} of finite positive measures, indexed by the vectors of a

Hilbert space H, is generated by a PO-measure [2, pp. 9, 10].

Proposition 2. Let X # ¢, R a ring of subsets of X,

H # {0} a complex Hilbert space, and {pg: £ ¢ H a family of finite
measures on X. Then there exists a PO-measure E(:) on X

such that

Hg(M) = <E(M)E, £ > for all § ¢ H

and all M e R, if and only if:

1/2 /2

) k.. ()] S_[ug(M)]l/2+[un(l\/I)]1

Hein

(b) |2

M) = |c (M)

Mot b

(c) ug_l_n(M) + ptg_n(M) = Zpg(M) + an(M) for all

vectors £,Mme H, all complex numbers ¢ and all
M in R, andforeach M in R there is a con-

stant kM such that

@ w0 <kyllE 1% for all £ H.

E(-) is then uniquely determined by ptg(M) = <E(M)E, £>.




18
Let X =R", R the ring generated by the compact subsets of

R™, and E(:) a PO-measure on r"

Definition 2. E(-) is tempered [8, pp. 865, 866] if and only if
there is a positive integer p and a positive number K such that

for every vector £ ¢ H,
6) 5(1+|x[2)_pdpg(x) <kle]?,

where “g is the Borel measure givenon R by

Be (M) = <E(M)E, £>
for all Me¢ R. |x| denotes the Euclidean norm of x ¢ R":
X = (xl,xz, .. ,Xn),
n 1/2
2
Ix| = z(X.)
J
5=1

Definition 3. E(-) is {Mp}-tempered if and only if there is a

nonnegative integer p and a positive constant c¢ such that

(7) S(Mp)-ldpg < cl¢ ||2 for all £ in H.
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The function Mp occurs in a defining sequence for a given

K{Mp} space.

C. Bounded Sesquilinear Forms on H x H

Let H # {0} be a complex Hilbert space.

Definition 1. A function f:H xH ™ C 1is sesquilinear if and

only if:

(a) f(y,x) = f(x,y), where the bar denotes complete conjugation.
(b) f(xty,z) = f(x, z) + fly, z)

(c) flcx,y) = cf(x,y), x,ye H, ce C

(d) f(x,x) >0 forall xe H.

(e) f(x,x) =0 onlyif x=0.

Thus, for fixed vy, f is linear in x, and for fixed x, f is

conjugate linear in y, the latter meaning that

f(x, ytz) = f(x,y) + f(x, z),
and

f(x, cy) = cf(x,vy).

We shall make frequent use of the following standard uniqueness

result on B(H).

Proposition 1. If T e B(H) and <TE,£€>=0 for every
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& e H, then T =0 (the zero operator).

Corollary. If S e B(H), Te B(H) and <S§,£>=<TE, >

for every &€ H, then S =T.

Proposition 2. If f:H xH = C is sesquilinear and bounded,

in the sense that

sup{[£Gx, y) |+ [[x]] = liyll = 1} = M <,

then there exists a unique T ¢ B(H) that satisfies

f(x,y) = <Tx,y>, =xe¢H, yeH.

We have | T| =M.

D. The Integral of a K{Mp}—Function with Respect to an

_{_I\_/Ip}- Tempered PO-Measuyre

Iet R Dbe the ring generated by the class of compact subsets
of R™ and let E(-) be a PO-measure defined on R. For every
vector £ in the nonzero complex Hilbert space (H,<,>), let Hg

be the positive Borel measure on R given by
(1) Hg(M) = <E(M)E,£€> for every m € R.

Since E(M) is a positive operator, the Cauchy-Schwarz inequality

yields
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2) <E(M)E, £> = | <EME £>] < |EM)]]l€ ]2

forall M in R andall & in H.

Referring to (1) above, we have

(2a) (M) < lEM) || |l & ”2 for every Me R

Me
and all £ ¢ H.
Recall that a PO-measure E(:-) on R 1is said to be

_{__Iyip}-temgered if and only if there is an integer p >0 and a posi-

tive constant A such that

(3) Sﬁ[Mp(x)]’ldug <Ale)l® foran & em.

Definition 1. Let E(-) be an {Mp}—tempered PO-measure on

R. A function f is E(-)-integrable if and only if f is Hg—

integrable for each § ¢ H.

Definition 2. Let I(E) denote the set of all E( - )-integrable

functions. Thus f e I{E) if and only if f is Borel measurable

and
Slfldug <

for all & ¢ H.
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Lemma 1. e I(E) for every M e R.

XM

Proof. The characteristic function of the measurable set

M

Me R is an R-measurable function on Rn.

S‘XMd”g = ug(M) = <E(M)¢, &>
< JEM|]E]® <o

for all & ¢ H. Hence, I(E). The preceding lemma implies

LSV

that I(E) contains every simple function.
Lemma 2. K{Mp} C ().

Proof. Let ¢ ¢ K{Mp} Since E(-) is an {Mp}-tempered
PO -measure, there is an integer p >0 and a positive number A

such that

S(Mp)_ldpg <_AH§|]Z for all £ ¢ H.

We have

§|¢|dug =S1v1pl¢lMl;,lomg

<§( sup sup M (x)|Dq¢(x)|)(Mp)‘1(x)dp

Y xeR™ |q|<p -

IN

_ -1
= ll¢llp S(Mp) dig



f_”c})”pA||§HZ<oo for all €& ¢ H.

Thus

e KM} :>§|¢|dug <o

for all £ e¢ H. Hence, ¢ ¢ I(E). Q. E.D.

Let ¢ ¢ I(E). For every pair £,n of vectors from H,

define Lg’n by

' _ 1 . i
() Lf‘s, n(¢) T4 5¢d”€+n' S¢d”§—n+15‘¢d”§+in'lg¢d”§—in

For each fixed pair §,n of vectors in H, L‘E n'.I(E) = C is

clearly linear.

ILemma 3. For each fixed pair of vectors §,mne H,

(5) Lg, T](xM) = <E(M)£,n> for all Me R.
Proof.
1€ . .
Le, nXpg =3 LSade”éwLn'gde”é—n+1§XMd”§+in ISXMd”é-in:'
1T ) .
= 2| <EQ(E+N), £40> - <E(M)(E-T), £-1>

+i<E(M)(E+in), £E+in> - i<E(M)(E-in), £-in >] =

23
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=< [<E(M>§, £> + <E(M)E, 1> + <E(M)n, £> + E(M)n, 1>
- <E(M)E, £> - <E(M)E, -n> - <E(M)(-n), §> - <E(M)(-1)-n>
+i<E(M)E, £> + i<E(M)E, in> + i<E(M)(in), £>
+i<E(M)(in), in> - i<E(M)E, £> - i<E(M)§ -in>

- i<E(M)(-in), £> - i<E(M)(-in), -in >}

1 {(4<EQWE, 1>} = <E(M)E, 7>

Thus L‘E Tl()(M) = <E(M){,n> for every pair of vectors £,1 ¢ H

and all M e R.

It is clear from the definition of L‘E 1,](cp) in (4) that if
= ce. -
f, fn e (E), n=1,2, ,  and §fndH§ Sfdpg for every £ ¢ H,

- i .
then L§ n(fn) : Lg’n(f) for every pair of vectors §,me¢ H

)

Definition 3. A linear form L on I(E) is quasicontinuous

[2, p. 22] if, whenever £,f ¢ IE), n=1,2,..., and 0 f_fan,

then LI(f )= L(f).

Any finite linear combination of quasicontinuous linear forms on

I(E) 1is a quasicontinuous linear form on I(E).

Lemma 4 [2, p. 23]. For every pair of vectors £,m in H,

the linear form L‘E n on I(E) given by (4) is quasicontinuous.

This is a simple consequence of the monotone convergence theorem.
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Lemma 5 [2, pp. 23, 24]. Let i_, be a linear form on I(E)

and let &,m bein H. Then

(6) o) = L, () forall ¢cIE)

if and only if
(i) i is quasicontinuous

(1) Jlxyy) = <E(M)E, n> for all Me R where Lg  (¢) is

H

as in (4).

Lemma 6. For each vector § ¢ H,

(7) Lg’g(cﬁ) = Sd)dptg

Proof. Let L(¢) =S¢'dpg for every ¢ ¢ I(E), where §
is a fixed vector in H. L is clearly linear on I(E) and the
monotone convergence theorem implies that L 1is quasicontinuous.

Moreover,
L(xy,) = Sdeug = 4 (M) = <E(M)E, £>

for all Me¢ R. By Lemmas 3 and 5, L = Lg ¢ on I(E); that is,

S.q)dpg = Lg, g(q)) for all & e¢ H and all ¢ ¢ I(E).
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Lemma 7. For each fixed function ¢ ¢ I(E), the functional

(E, n)n~—> 1L (6):Hx H->C is sesquilinear; that is,

£, m

(a) L§1+§2, n(¢) ) L& ,n(d)) ! Léz, n(q’)

1

(b) L (¢) = ch’ T](<i>)

(c) () = L ($) + Lg, n (¢)

L
é,n1+n2 §,n1 5

(d) L (¢) = ch’ T](fb)-

In addition,

(&) L &)=L, (& .

The proof is as in [2, pp. 24, 25].

We now direct our attention to K{Mp} Recall that
K{Mp} C I(E), (Lemma 2), and
loll, = sap  sup M _Go|(D%)G)], p=0,1,2,...
xeR™ |qf[<p

For every fixed ¢« K{Mp}, we have a mapping

(€, M)m~> L () Hx H—>C where L (¢) is the sesquilinear

€, m €, m

formon H xH given by (4).

Lemma 8. For every ¢« K{Mp}, (E,m)r—> L‘g 1,](q))'.HxH - C

is a bounded sesquilinear form.
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Proof. Recall that E(-) is an {Mp}—tempered PO-measure.
Thus, there is a positive integer p and a positive number C such
that

-1 2
§<Mp> dpy, < Gl

for every vector A in H. With this positive integer p we have

N rS , (
L, n(® =) ) ¢dkeyy 'S‘*’d“&-f lgq’d“&ﬁn ) 1§¢d”€—i”]

( -1 | 1
jMpMMp) Abgn §Mp¢(Mp) dbe n

1

>

1

A - . -1
+ 1SMP¢(MP) d“g-i-in - 1SMP¢(MP) dug_in] )

so that

-1 -1
Ly @] < SMp!¢I<Mp> dipgy, ¥ SMle(Mp) dig

-1 -1
+ gMpl ¢l (M) dug+in+§Mp| ol )" dpg

) g

< S‘ (sup sup Mp(x) | (qu))(x)l ) (Mp

- x |ql<p

S‘sup sup Mp( )I(chb)(x)!) (Mp)'l(x)dptg

-M
lal<p

-1
S sup M(x)|<Dq¢)<x))<M> (x)dp, .+
( lal<p P §+in
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§

= | ¢ll S(M ) ldp, +S(M ) lau +§(M ) g,
P P g+n p €-m P E+in

-1
+S(Mp) d”&—in]

<cllel themnl®+le-n ] grin | *+] 6-in ]| %)

sup sup M (x)l(Dq¢)(x)|)(Mp)_l(x)dug

x |ql<p “H

= aclell_diel®+In .

Therefore

Ire (@1 =supllL, (@]¢cm ne s e] <1, In] <

1

supeciol (NEl*hnl®), el <1 Inll <m

IA

8Clell | < .

Thus for each ¢« K{Mp}, ng’ n(q;)[ < 8C||¢|p|| ElfIn]l for every

| £,m in H.

Combining Lemmas 7 and 8, for each fixed ¢ ¢ K{Mp},

(&, m )f""‘?Lg 1,](<i>)1 Hx H—> C is a bounded sesquilinear form- By

Proposition 2 of Sec. C, there exists a unique bounded linear operator

S on H suchthatv

(8) L«ﬁ 1,](cp) = <8¢, n> for all vectors £,1mn € H.
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Definition 5. The unique bounded linear operator S on H

such that L§ n(¢) = <S§,M> for any given fixed ¢ ¢ I(E) and all

pairs §&,m of vectors in H will be denoted by

(9) §¢dE.

Thus, to each ¢ ¢ K{Mp} there corresponds a unique bounded

linear operator §¢dE on H such that

(10) <S¢dE>§, w> =Ly, @)

for every pair £,7m of vectors in H. By Lemma 6, we have

(11) §¢dp§ = \{§¢dE{, g,§ for all £ e H.

E. Basic Properties of Scde

(1) The map ¢N\/~—>§¢dEI K{Mp} —> B(H) is linear. Moreover,

SEdE = (S‘¢dE)*,

where * denotes the adjoint. The proof is as in [2, p. 28].
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(2) For some integer p >0, there is a positive constant C such

that H Sd)dE” < C”d)”p for every ¢ ¢ K{Mp} .

Proof. Let ¢ be any real-valued function in K{Mp} Since
E(-) is an {Mp}-tempered PO-measure, there is an integer p >0

and a positive constant k such that

S‘(Mp)—ldpg < kH:_E,iI2 for all £ ¢ H.
Set
A =§¢dE (A = A%).
Then

<AL E>= L, (6] = S¢dug

-1
S(Mp)¢(Mp) ng -

Therefore

_ -1
| <ag, £>] = lg(Mpm(Mp) dug|

-1
M M
sS( p>l¢!( ) e

< S Supy MP(X)|(Dq¢)(X)l(Mp)_l(x)dug

Vel

< fol ) o) oang <xclell_fel

Thus
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lall _<_kll¢llp-

That is,

Ilgdxmll <kloll, -

Finally, if ¢ =¢; +i¢,, then [lo\fl < foll) and o, <ol .

so that

| $oazl = 1 (o riopae) = 1 §o,am + (o,

sartlioy | tle ) < axlofl -
In any case, then,
I f«pdEH < clell,
for some p >0, some positive constant C and all ¢ in K{Mp}
(3) I ¢, NG K{Mp}, n=12..., and ¢ —>¢ in K{Mp}, then
I ScpndE - Sq;dEH -> 0. That is, §¢naE - \§¢dE uniformly.

Proof. Let ¢, cpn € K{Mp}, n=1,2,..., and suppose that
- i . - - -> 0
¢n ¢ in K{Mp} Then || cpn ol b 0 as n for

0 <p <%. Hence, for some p,



(by (2) above).

I $oae - (oamy = 1 (o -0raz]

< 4kllo -oll

Thus,

“ SCPndE -S‘¢dEH =0 as n—> o0,

32
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2. OPERATOR-VALUED DISTRIBUTIONS

The principal notion in this chapter is that of an operator-valued
distribution. The scalar distributions of I.. Schwartz are discussed
briefly as motivation for the definition of distributions of operators on
various fundamental spaces of test functions. Examples of nonmulti-
plicative as well as multiplicative distributions of operators are
given. Integral representation theorems for positive and positive -
definite distributions of operators due to Kritt[8] are stated. The
chapter concludes with the proof of our first theorem which general-
izes a result on the integral representation of positive distributions of
operators on ﬁ(Rn) to positive distributions of operators on the

broad class of fundamental spaces K{Mp}

A. Distributions of Operators

0
The space CO (2) of infinitely differentiable functions with

compact support in a nonempty open subset {2 of R®  is funda-

0
mental in the theory of distributions. C_(f2) 1is a linear space

0
under the usual definition of pointwise addition of functions and
multiplication of a function by a scalar. If K is any nonempty com-
00
pact subset of £, let ﬁK(Q) denote the set of the CO (§2)-

functions with support in K. The family of seminorms on ﬁK(Q),

defined by
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Pr. (@ = sup (D)} m=012,...,
xe K
laf< m

induces a locally convex topology on ﬁK(Q) such that, if K1 C KZ’

then the topology on ﬁK (2) is the same as the relative topology

1
on OS-K (2) as a subspace of ﬁK (). Let Ki’ iz 1,2,...,
1 2 o
be a sequence of compact subsets of 2 such that Ki C Ki+1 and
© o
- Q. . . . .
-\—Jl'Ki K.1+1 denotes the interior of K.1+1 The topological
1-—-

vector space ﬁ-(ﬂ) of L.Schwartz is then the strict inductive limit

o0
of the spaces ﬁK (£2). The elements of 4@ =,,5(S2) = CO () are

i
called test functions. We let a@' =LF'(2) denote the dual space

of all continuous linear maps from 06~(Rn) to the field of complex
numbers C with C carrying the usual topology of the complex
plane. Thus ,,6' = (ﬁzg), C) 1is the space of distributions of
Schwartz.

ILet H=(H,<,>) be acomplex Hilbert space, H 7 {0}, with
norm ” “ induced by the positive-definite sesquilinear form <,>
on H by [¢&] = N <£,£> £te¢H. Let B(H)=(B(H),||) denote
the Banach algebra of all bounded linear operators on H. B(H) is

given the uniform operator topology induced by the norm IRl

defined by || T|| = sup{||TE|: € ¢ H, ||| <1} for T e B(H). Thus
if T,Te¢B(H), n=12,..., then I Tn—TH ~> 0 if and only if

I Tng -TE | = 0 uniformly on the closed unit ball {£ ¢ H: || £] < 1}.
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Let ﬁf'{(g) = L(og(Q), B(H)) denote the set of all continuous
linear maps from A(2) to BH). If T 605}'{, the "value" in
B(H) of T at de 05(52) is the unique bounded linear operator

on H denoted by Tq). d@’ILI is clearly a linear space with

(S+T), =8, + T,

(aT)¢ = a(T¢) )

forall S,T eaa'f'_l, all ¢ eo@’(Q), and all complex numbers «a.
As is usually the case, the value of the operator Tq) at the vector

€ ¢ H will be denoted by T¢§.

Definition 1. An element T in "51'{(9) is called a

distribution of operators.in £ or a distribution of operators on

(9).

There corresponds to each vector £ ¢ H a unique continuous
scalar-valued function on ﬁ(ﬂ) determined by <T¢§, £ >,

n ) . .
b eﬁ(R ). We thus obtain, for each £ in H, a Schwartz dis-

tribution 78 ¢ ),

5. Be) - ¢

£

T (¢)=<T¢§,§> Y oc¢ (R)
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It is customary in the scalar setting to indicate the value of Tg at

g,q)). Thus for any given & ¢ H, we have a T‘g € ﬁ'(ﬂ)

¢ by (T
defined by

(Tg,cp) = <T¢§, £>, for all ¢ edJ(R).

The point of all this is that a distribution of operators on £ gives
rise to a family of Schwartz distributions indexed by the set of vectors
in the underlying Hilbert space. Henceforth the term scalar-
distribution refers to the elements of 05"(9) :ﬁé(ﬂ), where C

is the Hilbert space of complex numbers with the usual inner product.

Our main concern is with distributions of operators in R .

A scalar distribution T is positive if (T,¢) >0 whenever

d € ﬁ"(ﬂ) is nonnegative.

Definition 2. A distribution of operators T in £ is

positive if the scalar distribution T‘g is positive for each £ ¢ H.

Thus, T is positive iff T is a positive operator whenever ¢

¢

is nonnegative:

b >0 = <T¢§,§>2O YV &< H.

A scalar distribution T is positive-definite if (T, ¢%d*) >0

for each ¢ e T(R), where ¢* is defined by ¢*(x) = ¢(-x), the
bar denoting complex conjugation, and ¢x*x¢* is the convolution of ¢

and ¢
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Prgi(x) = S L bly)oHx-y)dy -
R

Definition 3. A distribution of operators T in R is

positive-definite if the scalar distribution Tg is positive -definite

for every £ € H. Thus, T is positive-definite iff for every

o e JO(RD),

<T¢\.,¢,*§’ £>>0 for each £ ¢ H.

e g . . n .
Definition 4. A distribution of operators T in R is

tempered if T 1is continuous on ﬁ(Rn) in the relative topology
n e
on aey(R ) as a subspace of /{(Rn). Thus the tempered distribu-
tions of operators are just those operator distributions T which
. . n .
have continuous extensions S to /d,(R ). These extensions are

unique since ﬁ(Rn) is dense in ,&(Rn).

With the notion of a tempered distribution of operators in hand
we use the usual definition of the Fourier transformation of a tem-

pered distribution of operators.

Definition 5. The Fourier transform of a tempered distribution

~
of operators T 1is that distribution of operators T defined by

A
T

= € n .
o T$ for every ¢ ﬂ(R )
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T is tempered and therefore has a unique extension to A(Rn).

n
Definition 6. A distribution of operators T in R is said

to be i_l\_/[p}-temgered if T is continuous in the relative topology on
mRn) as a subspace of K{Mp} Since ﬁ(Rn) is dense in
K{Mp}, the {Mp}—’tempered distributions of operators are just those
that have continuous extensions to K{Mp} These extensions are
unique. In case Mp(x) = (1+]x] )p, the K{Mp} space is ,&(Rn)

and Mp—tempered specializes to tempered as defined earlier.

Definition 7. Iet T be a distribution of operators. T is

multiplicative if and only if T

in J(9).

for every pair ¢1, 4)2

¢1¢2 ) T(:DlT(PZ

Note. The product of the operators T and T

T T
¢ b, ¢ ¢,

is defined in the usual way by composition:

T T =T (T f 11 £ ¢ H.
(cp1 4)2)& ¢1( ¢z§) or all §

The multiplicative distributions of operators are the operator-

valued algebra homomorphisms on 0@’(&2), The spectral theory of

normal operators is concerned with the case of multiplicative and

positive distributions of operators [2]. We will be concerned in this

thesis with distributions of operators that are not required to satisfy

the condition of being multiplicative.
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B. Examples

1. Let Se SI'(RY), Be B(H). Then T =S® B defines an

element in ﬁ}'{(Rn) by the equation

T, =(S® B) =(S,¢)B
¢( )¢(¢)

T is obviously a distribution of operators.

In particular, if B =1, the identity operator on H, then the

mapping ¢M->T¢,:a@’(Rn)—>B(H), defined by T, = $(0)I clearly

belongs to J:TI'_I(Rn). For a given vector & ¢ H, T‘g defined by
(Tg, $) = <T¢§, &> Dbelongs to aﬁé(Rn). Since
(Tg, ¢) = <p(0)€, £>= ¢(0)] & || 2, choosing £ from the unit sphere

in H leads to (Tg

»®) = ¢(0) = (8,9), where & 1is the Dirac
measure on R". Thus this special case of the first example,
namely, T = 6@ 1, 1is a Dirac distribution of operators. More
generally, 6 @®& B for any B e B(H) is called a Dirac distribution

of operators. Note that T =S & B 1is a positive element in

OD'}"{(Rn) if S eoD’é:(Rn) is positive and B is a positive operator.

2.(a). l.et x mMm—> A(x): R™ = B(H) be continuous and define
szRn) - B(H) by T Sq)(x x)dx, where the integral is in
the sense of Riemann.

(b). Let ¢.(x)=A(x)§ be continuous into H for any §£.
3
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Define T by

<T¢1’l, £> = §¢(x)<A(X)"I, g£>dx .

In connection with the above examples see also [1, pp- 409, 4:13],

[7, p. 268] and [9, p. 364].

3. The distribution of operators defined by T f = ¢f for

¢
2

1
every fe L'(R") is clearly multiplicative. Moreover,

<T¢f,f>= <¢f, > = §(¢f)_f: §¢|f|2_>_0

whenever ¢ >0. Thus T is a positive distribution of operators.

We now give in some detail examples of specific distributions
of operators, most of which are nonmultiplicative, some of which are

positive and others positive -definite.

4. Consider the map ¢Mm~> Tq):aB’(Rn) -> B(LZ(Rn)) given

2
by T f=¢xf for every f in L (Rn). We have, for every

¢

2
f,g e L and all complex numbers «a,

T¢(af+g) = ¢px(aftg)

¢*(Qf) + ¢>.‘<g = Q(¢:}:f) + ¢:}:g

aT £+ 7T .
¢ b
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Thus, T is linear and T<$> is clearly a linear operator on

LZ(Rn) for every q)e,@’(Rn).

For any ¢eo®’,

Tl = “f”suff_l I ¢>:<fHL2
L
< ”f“sufil H<1>||L1||fllLZ
L

< l|<1>l|LI = an | 6(x)|dx < .

Thus TcI) is a bounded operator on LZ(Rn) for each ¢ eﬁ(Rn)

and we have || Tq)” < l| ol 1 ILet K Dbe an arbitrary compact

L
subset of Rn.
IT ll=  sup I £l =  sup [ oxf]
A T IS T A S TS L’
L L
< sup el lEll 5 < Mol

hell <1 L L L

L

= Sn | o(x)]dx = S | o(x)]dx < 5" | o(x)|dx

R supp ¢ K

sup 'Daq)(x)idx = S Py m(¢)dx
x ¢ K K ’
0 <a<m

n pK’m(¢) ,
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where lKln is the n-dimensional L.ebesgue measure of the set K.

K
tinuous on every space agK(Rn). Since MRn) is the inductive

Set |K|n = C__. Thus, ”Tcpﬂ iCKpK’m(cp). Hence, T 1is con-

limit of the spaces o®;(Rn) as K wvaries throughout the family

of all compact subsets of Rn, T 1is continuous on mRn) and is

therefore a distribution of operators. Since (¢1¢2)=::f # (tbl:::cpz):::f in

general,

T¢1¢zf = (&10p) 5 7 (§ )5

= & (b, «f) = T f)=T, T, f.
0 3laysD) = T, (T, 0 =T, T,

Thus T 1is nonmultiplicative.

n

2
Finally, for all ¢ eﬂ.('Rn) and any fe L (R7),

i

<T ‘f’f < ok 3 :,’:f, f>
¢:F¢" >L2 (q) qb ) L

H
(N
©
%)
>
|
H
~
2
o]
\
\S)
ey
<>
>
>
o> |

1
=
B
S~
(g%]
L/")
et
(g%]
B
(g%]
v
o

Hence, T 1is positive-definite.
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1 2
5. Let the map ¢m=> T¢: dafR ) = B(L (Rl)) be defined by

1
T¢f(t) = tn¢(t)f(t) for every fe LZ(R ), where n is a nonnega-

tive integer. If n =0, this is just Example 3. Let n >0. Then

n
Ta¢1+¢2f(t) = ¢ (a¢1+¢2)(t)f(t)
n
=t (a¢1(t)+¢2(t))f(t)

= at’ ()f(t) + tn¢2(t)f(t)

I

aT¢1f(t) + T¢2f(t) .

Thus T is linear.

2
For each ¢, T¢ is clearly a linear operator on L and

s g | 1%s] %ar
L R

< sup |17 | [o1%ar < oup 112§ 111%e
K

teK teK R
Thus
2 2
It wew) |7, < c el =, ,
LZ K LZ
where
2
Cy = sup [t o(t)]” 20.

Therefore



It ll = sup [Pt , <VC <,
o, < L
L

1
so that Tq) is a bounded operator on LZ(R ) for every
1
¢« IR
. L . 1
To establish the continuity of T, let q>j > ¢ in ﬁ(R ).
1

This means that there is a compact subset K of R such that
supp ¢j C K for all j» and for every nonnegative integer a,
D¢ ¢j - Du¢ uniformly on K. In particular, |¢j-¢l >0 uni-

formly on K and therefore so does l¢j—¢|2. We have

€%, £t ] % = S 1£%0 £-¢%0t| %at
j L R j
i 2 2 2 2
= § Lo-ol 6] %ac < suplo, -0l Zsuple™| {11120
K K K
Hence

2 n 2
17, Tl < suple-61% suple) [e)%ar
j K K
>0 as j—>©. Thus T is continuous, hence, a distribution of
operators.
If n is even, T is a positive distribution of operators,

since n2>0, n even, and ¢ >0 vyield

44
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<T L > <t®of, £> = gtn¢|f[2dt >0

for all f e LZ(Rl).

Finally, T is nonmultiplicative for n > 0:

_ .,
T flt) = ¢t cpl(t)cpz(t)f(t) )

IR
whereas
T (T f(t))=T (" f
¢1( 5, (t)) ¢1(t ¢2(t) (t))
_.n n _ .2n
= ¢ ¢1(t)[t ¢2(t)f(t)] =t T¢1¢2f(t)
T f(t) = £ f.
4 516, (t) = t79,9,
1 2,1 ) A
6. Let ¢M-—>T¢:£f(R ) > B(LYUR')) be defined by T f =6t

1
for every fe¢ LZ(R ). Since the Fourier transform is linear, the

linearity of T 1is clear. It is also clear that T¢ is a linear
2,1 1
operator on L (R') for each ¢¢ RY). Noting that

A A AN
¢1*¢2 ¢ ¢1¢2 in general, we have

_ Pl N -n/Z/\ "‘/\
T¢1¢2f = 9,6,f = (2m) (cpl—.‘cpz)f
AA
7 f=T f)=T (T £f)=T T f.
(¢1¢2) 5 ¢2) 4’1( ¢2) 5,0,

Thus T is nonmultiplicative.




We verify the continuity of

N
ot ||
LZ

where IKI 1

R1 and ¢eﬂ‘.

K

T. Let supp ¢ C K.

1
= <?)f,,(?)f> /2

- . v
-n/2 J‘.X#QQQZ (;((x) - b(-x))

- n‘é*?an < n?énLlu?uLz

el el

(§Rl|¢<x>1dx) Il
( (0 w

K x ¢ K
0< |af <m

1

A

D ¢<x>ldx)llfllL2

L

Therefore

is the Lebesgue measure of the compact subset K

46

of
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N
Iyl =~ sap  lmeell 5= sup  fot]
bl <1 L gl ;<1 L
L L
< sup p (WK [ 1]
hel p<n o™ b
L
< CkPr, m®)
where CK: [K|1 Thus T 1is continuous on each space o@;{(Rl)

1
and therefore T is continuous on ﬂ-(R ). Hence, T 1is a dis-
. . . 1
tribution of operators in R .

1
In addition, for every ¢ ¢ ﬂ(R ), we have

T gl §¢/¢\f; - (2m)P/? S‘%\E

= (Zn)nlzglfmzlfIZZO for every fe LZ(RI),

so that T 1is positive-definite.

C. Integral Representations of Distributions of Operators

We shall make use of the following two propositions, due to
B. Kritt [8], concerning positive and positive-definite distributions of

operators.

Proposition 1 (Kritt). For every positive distribution T of

operators in an open subset £ of R" there is a unique PO measure
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E(-) on the ring R generated by the compact subsets of £ such

that
T = \&dE
¢ S ¢

for every test function ¢ from 08-(9). If in addition £ = R"
and T 1is tempered, then so is E(-).

Recall that E(:) is tempered means that there is a positive
integer p and a positive number A such that for every vector

¢ from H,
§ol®) Pap, 0 < Al 1,

where pg is the positive Borel measure, on the class of Borel sets
in Rn, uniquely determined by pg(M) = <E(M)§,£> for all M

in R.

Proposition 2 (Kritt). For every positive -definite distribution

T of operators in R™ there is a unique tempered PO measure
E(-) on the ring R generated by the compact subsets of R™ such
that

T¢ = S‘{SdE for every ¢ ¢ mRn),

A
where ¢ denotes the Fourier transform of ¢.
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See [8] for the definitions of the integrals occurring in
Propositions 1 and 2.
The following result is our first theorem in this thesis and deals
with a generalization of Kritt's Proposition 1 to a class of distribu-

tions of operators defined on K{Mp} spaces.

Theorem 1. Let the space K{Mp} satisfy the following

conditions:

[+ o]
(a) The functions Mp are C in the complement of some

common bounded neighborhood of the origin in rRY,
(b) for any nonnegative integer p there are numbers q and
cp such that if 0 < |k| <p, then

1T ) %)
q

< Cp(Mp)‘l(x) in the complement of some
neighborhood of zero in Rr™.

Then to each positive distribution of operators T on K{Mp} there

corresponds a unique {Mp}-tempered positive operator-valued meas-

n

ure E(-) on the ring generated by the compact subsets of R

such that

Tc}) = Sc})dE for every ¢ in K{Mp} .

Proof. Let T be a positive distribution of operators on

K{Mp} Thus, ¢Mm>T :K{Mp} —> B(H) 1is a positive continuous

¢
. . . n
linear mapping. Since dJ9 (R™) C K{Mp} and the topology on
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ﬂRn) is stronger than the relative topology on omRn) induced as
a subspace of K{Mp}, T is continuous on o@’(Rn). T 1is obviously
positive and linear on ﬂ(R ). According to Proposition 1 (Kritt)
there exists a unique PO-measure FE(-) on the ring generated by

the compact subsets of R" such that

(1) T¢ = §¢dE for all ¢ in ﬁ(Rn).

We will first show that E(.) is {Mp}—tempered and that therefore
Sq)dE is defined for all ¢ in K{Mp} The following discussion
and lemmas prepare us to prove that E(.) is an {Mp}-tempered .
PO-measure.

Let ¢eJR"), 0<w<l, ¢x)=1 on {x:|x| <1} and
U(x) =0 on {x: [xl >2}. Then supp ¢ = {x:|x| <2} Set
o) = Wlx/m), m=1,2,3,... . Then y_(x) =1 on {x:|x| <m),
q;m(x) =0 on {x:|x]| >2m}, and supp me C supp me+l for all

m. Thus the functions U "flatten out" with increasing m. Let

(2) sup sup |(DW)(x)| = T
x lql<p
Then
(3) sup  sup (IDquJ )(x)| <r for every m.
x lql<p ” P

Recall now that a neighborhood U =TU n of zero in K{Mp}

’
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is determined by a fixed nonnegative integer p and a positive
number M and is defined by
(4) U={de K{Mp}t sup sup Mp(x)|(Dq¢)(x)| < n}.

x |al<p
We may assume, without loss of generality, that the neighborhood Q
[¢ o]
of zero in R" in the complement of which all the Mp and C
is a closed ball. Let & be an open neighborhood of Q and let
R >0 be such that N ={x:|x| <R} D&. The set N is fixed in

(%)
what follows. Fix a C -function h, 0 <h <1, suchthat h=0

in & and h=1 in Nc, the complement of N. Then

(6) sup sup [(th)(x)| = sp < 0.
x [qf<p

With h and | as above define a sequence {¢m} as follows:

-1
(™ P = B ()M, )7 ),
where A is a positive constant, {_(x) = Wx/m), m=1,2,...,
and 9 is chosen as in hypothesis (b) of the theorem. Note that

n
¢m€o@'(R) and ¢m20 for each m.

Lemma 1. The positive constant A can be chosen small

enough to ensure that ¢m ¢ U for every m.
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Proof. Since U ={¢¢ K{Mp}: I ¢[|p <M}, we need to show

that A can be chosen in such a way that

- q
lo 0, = wp | e M (x)[ (D¢ _)(x)| < 7.
al<p

We need the Leibnitz formula,

DY(uv) = Z o 0oy,

alq

with three factors uvw. We obtain

DY(uvw) = DH(av)w] = Z (Ho? * (w0 w)

asq
) (3)(2 @ H PP | 0w,
a<q P=q-a

which we apply to ¢m(x) = Ah(x)y( %) M L x)’ X Q, with

9
u(x) = h(x), vix) = ;p(;-’;-) ‘and  wix) = M 1(x)' For all q such that

99

lq] < p, we have:

M) | (DY) ()|

i q x,_1 , q X =
= M) [DIARGIN T 37 | = AM ) [DImeu ) )]

99 9o
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- am_| ) (i)( > (q;NDq—a'Bh(x)(D%"i‘”) Gl vl
a<q PB<q-a o
a<gqg B<g-a 1o

< AM(x) Z (3)( z (qéu)qu"“"Bh(x)lIDBLP‘";'{I)I) vl
alq 'B<qg-a to

C
q q9-a,1q-a-P B x| —P—
< AM (x) Z () Z (Cg 1D h(x)||D ¢<m)l)M ol
a<q B<g-a P
where we have just applied hypothesis (b) of the theorem. Therefore,
S X, D e ST

al<q PB<Lg-a

Applying (4) and (6) above, we obtain

o6l

= sup sup M(X)|Dq¢m(x)|
x lql<p

< AC) sup sup Z (3)[ 2 (qé“)iDq'“’BMx)IIDBM;’;—I)G)S_
x lalze a<qg Pf=<q-a
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< AC max Z (q) max Z (q—a) s r

P lal<p 27/ \larelsp g P PP

£q-a

AG ,

i

where G is the positive finite constant
p

Gp = Cpsprp max z (2) max Z (qéa)
< - <
lal<p T lazel<p g 7o
Thus, ” ¢m|lp < AGp for all m. Givenany M >0 we may take

A= n/ZGp which implies that || cfpm“p <m for all m. Thus A

can be chosen in such a way that ¢m e U forall m. Q.E.D.
Lemma 2. The PO-measure E(-) is {Mp}-tempered.

Proof. Since T 1is continuous on K{Mp} there is a

neighborhood U of zero in K{Mp} such that
|<T¢§,§>| §_|}§||Z for all ¢ in U

and all & in H.
Let {c{)m} be the sequence constructed above. Note that
¢m >0 forall m. By Lemma 1 we choose the positive constant
A sothat ¢ ¢ U forall m. By continuity, [<T¢§,§>[ < Ilgilz

for all ¢ € U. In particular, |<T¢ £, 6> < | ¢ ”2 for all m,

m
and since ¢m20, it follows that <T¢ §,§>§_“§H2 for all m

m



and for all § in H.

We need to establish the existence of a positive constant K

such that
. '—l—dp <K|¢& 2 for all & in H.
M g
9

Recalling that N = {x ¢ Rn: lx[ <R,R> 0}, we have, since

] (
g —— dyp <_§ 1dp, = p(N) = <E(N)E, £>
NMqo 3 N g 3

<TEefe]® = rgliel®,

where kN = |E(NN)]|. Thus

f I\—/I—l——dpggkNHgHZ for all £ in H.
N 4

On the complement NC of N, we have:

1 i A
ASNC =) dpg(x) = § M D ) dpg(x)
q

M
e N 0
= c Ah(x) L du,(x) =
Iy M (x) “Pe
9o

(since h =1 on NC)
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[y
5
-
3
[o N
-
U
kel

(by Fatou's lemma, since q>m > 0)

- lim <T, & £>< lim |lg]°

¢

m— X m m "

(since q)me U)
= ”{é” for all & ¢ H.

Thus we have

el .

2> 1=

1
[ o
NchO £

Putting these last two facts together, we obtain

1 ~ 1

——— = — + —

SM die § M e § c™M I
44 N q, N 9

<illel®+ 5 el

forall & in H. Thus
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§ o ap <xle)?
4o

1
for all § in H, where K = kN + A is a positive finite constant.

This shows that E(:') is {Mp}-tempered. Q.E.D.

Since the PO-measure E(-) is {Mp}—tempered, the integral
5¢dE exists for every ¢ in K{Mp}
To establish that T‘P = §¢dE for every ¢ in K{Mp}, let
¢ be an arbitrary element of K{M }. Since 05 is dense in
P
K{Mp}, there is a sequence of functions ¢m in ﬁ converging to
¢ in the topology of K{Mp} Thus || ¢m-¢|lp =0 as m-—>»

for 1 <p < 9. We have

I §o am - Coaml = o (o_-oraml

§4C”¢m'¢“p_>0 as m-—>®©, 1 <p<®,
(see page 31)

Hence
HyagE—gwm%>m
that is,
”T¢m —§¢dEH - 0.
Therefore

§¢dE= lim T, =T

e b b



58

by the continuity of ¢m~»T. from K{Mp} into (B(H), | ||). This

¢

completes the proof of the theorem.

Corollary. Let a distribution of operators T on K{Mp}
satisfy T 2 20 for every real ¢. Then there is a unique tempered
¢

PO-measure E(-) on the ring generated by the class of compact

subsets of R" such that T¢: S‘q)dE for all ¢ in K{Mp}

M. The set of functions of the form ¢$, b € K{Mp}, is
dense in the set of positive functions in K{Mp} [6, pp. 150, 151].
With ¢ real, we have ¢_q: = ¢2 >0. Thus T is a positive
operator on a dense subset of the positive functions in K{Mp} The

result now follows by continuity and the theorem just proved.
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3. BILINEAR DISTRIBUTIONS OF OPERATORS

We begin with a brief review of bilinear mappings on arbitrary
topological vector spaces. This is followed by the definitions per-
taining to bilinear distributions of operators. An application of
Proposition 2 (Kritt) is shown to yield an operator-valued integral
representation for bilinear distributions of operators of a certain
type. The chapter culminates in the proof of an integral representa-
tion theorem for arbitrary positive-definite Hermitean bilinear

translation--invariant distributions of operators.

A. Bilinear Mappings on Topological Vector Spaces

Let E, F, G be three topological vector spaces and

(1) (%, y)¥»®(x,y):E x F—> G a bilinear mapping. Thus for every

fixed X, ¢ E, the mapping

(2) y ey @x (xo,y):{xo} x F—=> G 1is linear, and for each fixed
0
Vo € F the mapping

y
(3) X ey 0(x, yO):E % {yO} > G is linear.

Definition 1. The bilinear mapping & E x F—=> G is jointly
continuous if for every neighborhood W of zero in G there is a

neighborhood U of zero in E and a neighborhood V of zero in
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F  such that

x€ U and ye V =>9%(x,y) e W.

In case the vector spaces E, F, and G are locally convex the

condition defining continuity of the bilinear map & takes the follow-

ing form:

Definition 2. The bilinear mapping & E x F =G is continuous
if to every continuous seminorm r on G there are continuous

seminorms p on E and q on F such that

r(®(x,y)) < plx)qly)

foral xe¢ E and ye F [11, pp. 420,421].

In the following discussion we will be interested in the case
where E=F =og_(Rn), the Schwartz space of Coo(Rn)-complex—
valued functions with compact support and G = B(H), the ring of

bounded linear operators on a complex Hilbert space H.

B. Positive-Definite Hermitian Bilinear
Distributions of Operators

Let H be a nonzero complex Hilbert space and let B(H)
denote the space of all bounded linear operators on H. B(H) is given
: n
the uniform operator topology. Let ST(R™) be the L. Schwartz

space of test functions with the usual topology. Let B be the
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correspondence

(1) (9, W)= B(b, §): SHR™) x D(R™) ~ B(H).

Definition 1. B is Hermitian bilinear if

(i) for each fixed eog(Rn), ¢ => B(¢,y) 1is linear and
continuous, and

(ii) for each fixed ¢ ¢ a@YRn), Y > B(¢, y)* 1is linear and
continuous, where B(¢,y)* is the adjoint of the operator

B(d, ¢).

Definition 2. B is tempered if in (i) and (ii) above the

continuity is in the relative topology on ﬁ(Rn) as a subspace of

LRM.

Definition 3. B is positive-definite if B($,¢) is a positive

operator for every ¢ ¢ T (R™).

Iet h be any vector in R™  and let ThImRn) __>OD”(Rn) be

i defined by ('rhq))(x) = ¢(xth) for every ¢« T (R™M). Clearly
¢ T (R™) = 7, ¢ T (RY).

Definition 4. B is translation-invariant if for every pair &,y

n

?

of functions in ﬁ(Rn) and every vector h in R

B('rhq), —thp) = B(d, ).
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n

Definition 5. By a distribution of operators on TR xLTRD)

we mean a bilinear jointly continuous mapping of o@(Rn) xﬁRn) to

B(H).

Let ¢MT¢:mRn) —> B(H) be any distribution of operators

and set

1 B(o, =T \
( ) ((P li) ¢*LP:,:

for every pair of functions ¢,y in LT (R™). Recall that Uk is

defined by Y*(x) = y(-x), the bar denoting complex conjugation, and
¢*P* is the convolution of ¢ with Y.

Let ci)l = 'rhq), Lpl = 'thp, where h is any fixed vector in
R™. Since

i) = eubxx)  [6, p. 167],

B, as given by (1), is translation-invariant. We verify that B is
Hermitian-bilinear.

Fix Y and consider ¢ —> T¢\’_¢2,z. We have

aq)l + Bcj)z ->

T T
(Cl,q)l‘l'ﬁci)z):::qﬁ.‘: aq)l:“:w:(:q.g 4)2*4)*

1l

aT +B

T 2
¢ 1 *L{J * ¢2 *'JH*

since T 1is linear. Thus B(a¢1+ﬁq>2,q;) = aB(d)l,Lp) + BB(QbZ,kP) for



63
for each fixed ; thatis, B is linear in its first argument. We

have for ¢ and U in o@(K(Rn)

1

s ) (x
T¢*¢*I| <cC sup | D7 (o) (x) |

|s|<m

B W = |l

K

C sup [¢=:<Dsq;*(x)]
x e RD
lsl<m

n

C sup | S‘q)(X)DSL]U*(X'Y)le
x ¢eRP
|s|<m

<c sup_ {1600] D%y ay
x eR®
|sl<m

<C sup |(D%¢)(x)| sup |(D°¢ (x)] meas(K).
xe K x e K
|sl<m ls|<m

Thus || B(¢,¥)|| < constant pK(cp)pK(\p), where Py denotes the

a@%-norm. Hence, B 1is continuous.

Now consider the map ¢y —> T In view of the properties

of convolution this map is clearly linear. By the linearity of T, we

have ¢ => B(¢, Y)* =T is linear in U for each fixed ¢.

Putting this together we have the following result: if

¢MF?T¢20©'(Rn) —> B(H) 1is any distribution of operators, then

(6, Y)~2B(4, ) = T IR xI(R™) = B(H)

o
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is a translation-invariant Hermitian bilinear distribution of operators.

C. Integral Representation of Translation-Invariant
Hermitian Bilinear Distributions of Operators

The following result is a corollary of Proposition 2 (Kritt) stated

on page 48.

Proposition 1. Let ¢N-)T¢:ﬁZRn) - B(H) be any

positive-definite distribution of operators and set

B(o,p) =T for every (o, ) eﬁ(Rn) men).

B
Then B 1is positive-definite and

B(¢, y) = (2w )n/gS‘@@dE for all (¢, 0) ¢ & (R™) xI(RM),

where E(-) is as in Theorem 2 of Kritt and the "hat'" denotes

Fourier transform.

The integral occurring here is the integral of a rapidly
decreasing function with respect to a tempered PO measure as
defined in [8, pp. 866,867]. This same integral occurs in the main

theorem developed in the next section.

Proof. T¢>.<¢* = B(¢,¢) is a positive operator for all

o} eoa"(Rn). Thus B is positive-definite. B Proposition 2 of Kritt,
y



there is a unique PO-measure E(-) onthe ring R generated by

the compact subsets of R™  such that

T = 5AdE
gapr T ) FIVTAE S

P "N
But  ¢xx = (Zﬁ)n/zglp, and therefore

B(¢, ) = (2w )n/zfﬁ?@dE : Q.E.D.

We summarize the results of Sections B and C.

If ¢rAm>T tmRn) —> B(H) is any distribution of operators in

¢
R, then the formula

B¢, ) = ,
(6 4) = Ty,

defines a translation-invariant Hermitian bilinear distribution of

operators:

(¢, ) B(o, ): ST(RT) x STR™) = B(H).

'If, in addition, T is positive-definite, then B is positive-

definite and has the unique representation

Bo, b = (2m)™'? S$§dE ,

65
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where E(-) is a tempered PO-measure on the ring R generated

by the compact subsets of R".

D. Main Theorem

The following result characterizes a class of bilinear
distributions of operators as positive operator-valued measures.

The proof involves the notion of a barrier sequence as in [6, pp. 161,

164].

™ xI(R") = BH) be

Theorem 2. Let (¢, y)m>B(o, qJ)'.ﬁ(R
any continuous Hermitian bilinear translation-invariant positive -
definite mapping. Then there is a unique tempered PO measure . E{-)

n

on the ring R generated by the class of compact subsets of R

such that

(1) B, ) = \SQAE for all (¢, ) < LT(RD) x TR,

In other words, every Hermitian translation-invariant bilinear
il e n, n, . .
distribution of operators on ﬁ(R ) xddJ(R™) is uniquely represented

by a tempered PO measure in the sense of Equation (1) above.
Proof. For each vector £ ¢ H, the map

(4 Y)>L (9, v):dI(R™) x TR = ¢
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given by

(2) Lg(q)’ ll’) = <B(¢’ 1Jg)§,§>

is a Hermitian bilinear translation-invariant positive-definite distri-
bution. According to Theorem 6 [6, p. 169] there is a tempered posi-

tive measure pg such that
(3) Lg(q:,Lp) = Sfﬁédpg for all ¢,y ea@(Rn).

We thus obtain a famil {p.: &€ € H of positive tempered measures
y £ p

. n
in R.

Lemma 1. There is a positive integer p and a positive

number K such that
S.(l+lxlz)—pdpg < K|€]|% forall £c H.
Proof. Let S ={xc¢ Rn: lxl < 1}. Since B is continuous,
there is a neighborhood & of the origin in 06'(8) xa@?S) such that

| <B(¢, WE, £>] < 1||g[|2 for all (¢, ) e F=Ux V,

where U is a neighborhood of the origin in JdJ(S) and sois V.

In other words, |<B(¢,P)E, > < | ¢ ||2 for all ¢ € U and all
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Ye V.

There is a barrier sequence [6, p. 161] a_ corresponding to

U; that is, @ is a sequence such that

/& >0 for all m
m—- .

lim a (x) = ao(x) exists for all xe¢ U
m—"

-q,-n-1
ao(x>3A(1+|x|2) ! ,

where A is a positive constant, dq is a nonnegative integer and

n is the number of variables. Similarly there is a sequence Bm

corresponding to V such that

o o _
ﬁmG CO(V) forall m=1,2,...
~ A

5* =B >0 forall m

m. m—.

lim B (x) = B,(x) exists forall xe¢V, and
m m

_q '...'n_]_
Box) 2BOHx[®) 2,

where 9, is a nonnegative integer and B is a positive constant.

Recalling that pg is a positive measure for each & in H, we

have
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-q,-q,-2n-2 q,-2n-2
2 1 2 2 1 32
S(Hle ) dug = l§(1+! 19 dig |
= |X§S°oﬁo(x)d“gl
1 . ~
N |§n§f1wa B die |
=L im 2 F a,
AB ') =—/ m "¢
1 A A
(Fatou's lemma)
1 Sk
=B ]m%@w <B(am,ﬁm)§, £> |
1 . "
ey In_lli_rz,:oo | <Bla_,B*)E, &> ]
1 2, 1 .. .2
<3m | tim 1617 =55 el

Let p=q1+q2+2n+2, K =1/AB. Then

§oe1x12)Pay, < xle)?

for all & ¢ H.

Lemma 2. B is tempered. That is, B is continuous on

ﬂRn) X a@?Rn) in the relative topology induced by K(Rn) xé(Rn).
‘ polog



Proof. Let pl=ql+n+l, Kl=l/A, p2=q2+n+l,

K2 = 1/B, where qy> 9y A and B are as in Lemma 1 above.

Let Wl be the neighborhood of the origin in A(Rn) given by

1Y
wo= (o e sup [4]x|%) o] < 50,
x ¢ RP 1

and let W2 be the neighborhood of the origin in A (R™) given by

R e LI <x>l<——-}

x ¢ RP
. -1 . . .
With c§ denoting the inverse Fourier transform, let
-1
u, =F w) CLERY .,

and

1
w,) C&LERY

&= U, x U, is a neighborhood of the origin in /Jx,i Let

(6, 4) e T~ x. Then

i

| <B(o, P)E, £> |

| {o%au,l < (16T1an,

—(p tp,)
1+|X‘ : Zng <

1Le (00

H

(ZK )(ZK )S

70



1
= 4KiK2 (KK, [ € 1% = 7 le ||2 

Thus

|L5<¢,¢>l - [<Bo,WE &> | <= |lE]2,

and therefore

ILgte. 0l = supd|Lelon0l: 6] < 1) < -

The associated bilinear form Lg Tl(ci), ) = <B(d, )€, n> is

symmetric and therefore
_ 1
Hie @l = liLge.nl = 7

Given arbitrary ¢ >0, let

U1:=2V?_U, V11=2V?"V .
If GleUl, GZGVI, then
61=2\7e_¢, e U, eZ:ZV?Lp, Ye Vv,

and

i

| <B(8,,0,)8 6> | = [<BRNT ¢, 2VT §)¢, &> |

it

4e | <B(¢, P)E, £> |
<acqlel?

- efel?.
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Therefore
and

6, eV

Ing’n(el,ez)H < ¢ for all 61 ¢« Uy, 0, 1

But € >0 is arbitrary. Hence B 1is continuous as asserted.

We extend by continuity the continuous map B:JJ xJ— B(H)
to a unique map B: A4 x AL ~> B(H) which, in view of Lemma 2, is

continuous.

Lemma 3. <B'(¢,P)E, £> = S$7¢dpg for all (¢, ) e 4 x,é

and every £ e H.

Proof. Let ¢,ye¢ A& and take sequences ¢n and b such
that ¢n —=>¢ and Lpn —> ¢ in the topology of A& . Note that
Lp;: —> y* in the A—topology. Then {Sn —'>$ and ﬂ\n - @ in the
J—topology and therefore also @n@ —>$@< in 4 .  Hence,

p,tp
sap [ (1+]x]%) 1 26 (3P| o,

n'n
xe R

where P, and p, are as in Lemma 2. Thus

ng @kdug - S&ﬂ\*dpg = 56@1“& :

nn
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Consequently,

<B'(¢, Y)E, £> = lim ,<B'(¢n,xpn)€, £>
nT"o

= AN = AN
lim 37 - (4,
for all (¢, ) € A x AL and every £ ¢ H, Thus

<B'(¢: g, £> = Sa\’ﬁdﬂg

on & x & foran £ cH.

Recall that R is the ring generated by the compact subsets

of Rn. If Me R, then M is bounded in Rn.

Lemma 4. The family {pgzg ¢ H} of positive tempered
measures in R satisfies the following conditions:
(a) For each Me¢ R there is a positive constant QM such
that ug(M) iQM”f_.‘,”z for all § ¢ H,

1/2+[

(b) [”§+n(M)]l/2 s[ug(M)] B (M)]l/Z forall Me R

and all §,7n ¢ H.

(c) }l)\g(M)= lhlz}lg(M) forall MeR, X e C and £ ¢ H.

(d) pé‘f"ﬂ (M) + p.g,n(M) = Zpg(M) + Zun(M) for all Me R

and all §,7m € H,



Proof. (a) Let Me R and take b, Y€ ,& such that

AA vy
o, € oES and '$fp\2 X M the characteristic function of the set

Then

pe (M) = SdeP-g < S@dug

— -(p;tp,)
S(1+|xl 1+|x| @(x)(1+|x|2) ! Zd”g

p,tp,
< sup [(1+]x]%) ' 26D )] S(H‘lez)_pdpg
xe M

_QMH‘g“Z for all & e H.

Here
+

2 PP -,;
Qy = sup [0+[x1h) %0008,
x ¢ R

where A, B and p= Py + p, are as in Lemma 2.

(b) Let C be an arbitrary nonempty compact subset of R

and take sequences ¢n, Lpn € ,&(Rn) such that $n,fp\n € og(Rn)’

$nl Xc and ;L;\ni’ XC' For all & ¢ H, we have
<B'(¢n,¢ , > = Scb d@: dug > ‘gxcdug >0.

Thus B'(cpn, Lpn) is a positive operator for each n. Since

$ {P\ l c’ the Monotone Convergence Theorem implies that
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(1) S$n7‘ﬁnd“§+n \L SxCdH§+‘1 ) H&‘“’I(C)’
(ii): S‘$n;‘§nd“g ‘Lgxcdpg = ptg(C) , and

NA -
(1i1) \S‘q)anndHTl‘l' gxcdpﬂ ) H"I(C).

By the positivity of the operator B(¢n, L‘Un) for each n,
<B'(¢n,¢n)§,§>_>_ 0 for each vector & ¢ H. The generalized

Cauchy-Schwartz inequality yields

/2

<B'o_, ¢ )(E+n), 637 < <BUg g g, £5 1

+ <B'(¢n, Lpn)n, n>1 /2 .

Letting n—> ®© and taking (i), (ii) and (iii) above into account, we

obtain

]1/2 1/2 b 1/2

(C) < [Hg(C)] Hn(C)]

[Hg+n

for all vectors §&,mM ¢ H and all compact subsets C of Rn. We

invoke the regularity of the measures {pg: £ ¢ H} to conclude that

the preceding inequality holds for all sets M in R.

) AN
(c) Let C, ci)n and Lp.n be as in (b) above so that ¢ann l«XC°

Then



2 Ve _ .
IM“<B'(¢_, 4 )&, E> = <B'(¢_, ¥ INENE>

N §$nﬁj\ndukg
Thus
2 . =
IXI <B (¢n,¢n)§, g£> = Sa;n:l}nd}k)\g .
Since

<B'(¢ .y )&, £> = Sﬁ?n@ndug l chdug = ug(C),

we have

M2 () = by (C)

for all compact subsets C of R™  and all complex numbers
By regularity the preceding equality holds for all M in R.

(d) Let C, ¢n, Lpn be as above. Then

g PpPndPein | Hean(C)
and

We have

<B'(¢n, ¢n)(§+n ), E+n> + <B'(¢n, Lpn)(&-n ), E-n>

= <B'(¢_, ¥ )&, £> + <B'(¢_, ¥ )&, N>+ <B'(¢ .y )N, E> +
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+ <B'(¢n, Lpn)n, n>+ <B'(¢n, \Pn)g, £>+ <B'(¢n, Lbn)g, -n>

+<BUo_,u )(-n), £> + <B'(o_, ¢ )(-n), -n>

= 2<B'(¢n,¢n)g, £> + 2<B'(¢n, Lpn)n, n>.

Thus

<B’(¢n, Y NEN), 40>+ <B'(¢_, wn)<§—n ), E-n>

= 2<BY¢_, ¥ )E,E>+ 2<B (¢ , ¢ In.M>,

so that

(88 an,, + (800, S 3 Tan, +2 (33,

Applying the Monotone Convergence Theorem we obtain

(C) + (C) = Zug(C) + Zun(C)

Me+n e -m

for all vectors &,mM ¢ H and all compact subsets C of Rn. By

regularity the result holds for all M e R. This concludes the proof

of Lemma 4.

In view of Lemma 4, there is a unique PO measure E(-) on

R such that p.g(M) = <E(M)E,£> for all Me R and all § ¢ H.

Lemma 1 implies that E(-) 1is tempered. Since
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Lg (¢, ) = <B(d, h)E, £>

and

<B(¢, L), E> = S‘$¢dH§ forall & ¢ H,
we have

<B(¢, $)E, > = <(§¢¢dE £,£€> for all £ ¢ H.
Hence

B(d, ) = S@E\m for all (4, ¥) ¢ T (R™) x D(RY).

It remains to show that the representation

B(4, ¢) = S?ﬁdE

of B in terms of the tempered PO measure E(-) is unique.
To this end suppose that F(:) is another PO-measure on R

such that

B, V) = S@fﬁd}z = §$§dp

for all (¢, ) eﬁ(Rn) xﬂ(Rn). For each § ¢ H set

Vg(M) = <F(M)§,€> for all Me R. Then V& is a positive meas -

ure [2, PpP- 8,9] and



79

n~Aa _ AR
§¢¢dug = Sq’\bdvg

for each § ¢ H and all functions $¢‘ with ¢,y cAJ(RD). Since

d@(Rn) is dense in ,é(Rn) and the Fourier transform maps

A(R")  onto ,d(Rn),

AR _ AN
§¢¢dug - gwdvg

on 4 (Rn). But the Fourier transform is a continuous linear

surjection of A(Rn) to itself. Therefore

§¢mdug = §¢mdvg

holds on J(Rn) and thus also on ﬁ(RH). In particular, if  is
chosen in ﬁ(Rn) such that ¢ =1 on the support of ¢, there

follows

y""“‘a ) 5“"%

on a@(Rn). But 06’(Rn) is dense in CO(Rn), Hence pg = V{;’

and the uniques in Proposition 2, Chapter 1, implies that E(:) = F(*).

Therefore the representation

B(4, §) = ﬁ;ﬁdE, for all (¢, ) ¢ & (R™) x T (R™),



80

is unique. This completes the proof of the theorem.

Corollary. Given any Hermitian bilinear distribution of

operators

B in R" x R" thatis positive-definite and translation-

invariant, there is a distribution T of operators such that

Proof.

the proof of

Blg:§) = T, 5 forall (6,0) e TR x LNRY) .

The unique tempered PO-measure E(‘) obtained in

the above theorem determines T through

'1"e = SGdE for every © eﬁRn) .
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4. CONDITIONALLY POSITIVE-DEFINITE DISTRIBUTIONS
OF OCPERATORS
The main theorem in this chapter yields a representation of a
class of distributions of operators on ﬁ(R ) satisfying a condition

called conditionally positive-definite. The Fourier transform is

applied to obtain the equivalent and more readily workable notion, that

of multiplicative positivity, on the space Z of entire analytic func-

tions of exponential type on c™. We begin with a discussion of the

. . n . e ey
space Z, its relation to o&(R ) and the basic definitions needed
in the study of multiplicatively positive operator-valued distributions.
Kritt's Proposition 2 is restated in terms of Z and applied in the

proof of the main theorem in this chapter.

|
|
\
%
A. The Space Z
n 1 1 )
C" denotes, as usual, the set C x...xC, with n

factors, and carries the standard topology. If z ¢ Cn, then

JJ J ] J7J]

1 2
z=(z,,...,2), z,=x, +iy,, x,y,¢ R, 1<j<n, and i° = -1.
1 U T T M =)=
If r= (rl, ce, rn) is an n-dimensional integer, then
r] r,.
zr=z ...zn, and rz=r.z. t+... +r z , with
1 n 171 n n
| rz. =rx tiry, 1<j<n.
|
|
|

Definition 1. A function ¢ defined on ¢ is of exponential

type if there are constants a and C such that
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(1) | 6(z)] f_Cexp(a‘zl).

Definition 2. The set Z consists of all entire analytic

functions ¢ of exponential type on c® satisfying
(2) | 2" 9(z)] < C,, pexplalyl), z=x+iy,

for all r. The constant a depends on the function ¢ and the

constant Cq)r depends on ¢ and r. If ¢ e Z then

2

(3) 125 (D%)(z)] < C explaly])

for every r and q, where the constant C depends on r and

q [6, p. 22].

Z is a linear space and the subset Z(a) of Z consisting of
all functions in Z satisfying (2) with a fixed value of a is a linear
subspace of Z. We have Z = U Z(a).

a
L ¥ b i in Z
et {¢m m=1 e a sequence of functions in . The sequence

0

{¢m}m=l converges to zero in 7 if every function ¢m in the

sequence satisfies

(4) Izr¢m(z)| < Cexplalyl|)

for some constants C and a with a independent of m (that
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is, ¢me Z(a) for all m), and for every r and q,
. 2
(5) lim sup|(1+]x]| )r(chpm)(x)I =0
m™—> % x

is satisfied.
Letting y =0, then 2z =x; thatis

,z)=(x,x,...,x)eRn, and (3) above reduces to

Z:(ZI’ZZ"" n 1’72 n

(6) lxr(Dq¢)(x)[ < C for every r and q.

Thus the mapping ¢;w~.)¢| Rn: z > A(Rn) defines a continuous
imbedding of Z into & (R™).

The Fourier transform '}' is a continuous bijection of ,4 (R™)
onto itself and carries E(Rn) onto Z. In other words, there is a

unique continuous mapping 'E (the Fourier transform) such that

¢"~‘)¢l n
R

¥

z > &

T 3

06' ~ dense \4
ip) =¢ 7

Thus Z is dense in ,& . The relations between the spaces

a& Z and é relative to the Fourier transformation '5 are

summarized as follows:

P @=2 F(2:=L F&H=4£.
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Both J2 and Z are dense in ,é (6, pp. 22-25].

B. Multiplicatively Positive and Conditionally Positive-Definite
Distributions of Operators

Definition 1. The distribution of operators

q>rw-9T¢: ﬁ(Rn) => B(H) 1is said to be conditionally positive-definite of

order s if, for each vector £ from H,
(1) (DBTg, ¢>}<¢*) 2 0

holds for all ¢ eJEﬁ’(Rn) and all linear homogeneous constant coef-
ficient differential operators D of order s (see [6, p. 176] for

the scalar-valued case).

Let
k k
3 OIS — d
D = akdk,D—(-l) akdk’
|k[=s % Ikl=s %
where
dk 8k1+"'+kn
kK k N LI k)
dx 1 n
ox ox
1 n

and set (Tg,q)) = <T¢§, £> .

Associate with each D as above the polynomial
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PO = (2n) P72 }: 2y -in)<
|k|=s
Then
PO\ = (2m) /2 Z PRIt
|k|=s

corresponds to D. In view of the fact that

?\ /2 k/\
4L, (2m) ™ 2 inErs
k
dx
k k1 kZ kn
where (i\) :)\lw-)(i)\l) (i)\z) C (i)\n) » there follows
P

P ) ~

gT\'g = PTg- Since ¢xp* = (ZTT)n/ZAQ, Definition ! above is equiva-

lent to the following:

Definition 2. The distribution of operators

¢MT¢:5(Rn) —> B(H) is conditionally positive -definite of order s

if, for each vector £ from H and any homogeneous polynomial

> _
P of degree s, (PPTg,LM))ZO for all ¢ e Z. (Recall that
reli
TR =2 .)

Definition 3. A distribution of operators on L (or Z or

A s multiplicatively positive if, for each vector & from H,

(T€,¢$)_>_O for every ¢ in L (or Z oré ).

It will be convenient in what follows to have the following
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equivalent statement of Kritt's Proposition 2 {see Chapter 2).

Proposition 2' (Kritt). Every multiplicatively positive

distribution of operators S on Z is given by a tempered PO-
measure E(-); that is, S¢=S¢dE for all ¢ in Z. This

situation is described in the following diagram:

UN, > S

¢ ; > B(H)
T T = §¢dE
1-1 |onto / ¢
cont.

3 ¥el b

i
l
S¢=S$=T¢=§$dE:S¢dE

1
S
N

Thus,
SLIJ = SLpdE for every ¢ in Z.
Remark. Let RO be the ring generated by the compact
subsets of R - {0} and let pg be a measure defined on RO. We
will say that pg is tempered if there is a nonnegative integer p

and a positive constant K such that

S{I (1+|x|2)—de§ _<_K||§H2 for all £ in H.
x| >1
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If there is a PO-measure F(-) on R0 such that for each & ¢ H

v = <FE, £>

for all Me RO, and each of the measures ug is tempered in the
above sense, then the PO-measure F(:) will also be called

tempered (cf. Definition 2, Chapter 2, B).

Theorem 3. ILet T:Z —> B(H) be adistribution of operators
which is conditionally positive of order s. Then there exists a
unique tempered positive operator-valued measure F(-) on the ring

R0 generated by the compact subsets of R™ - {0} such that

(k) (k)
- ¢ (0) k ¢ (0)
T¢—§[¢—a Z - x]dF+ Z o B

k| <2s-1 ' k| <2s

where a is a functionin Z such that a-1 has a zero of order

2stl at the origin, Ek =T K’ k| < 2s, are fixed operators,
az
and Ek’ lk| = 2s, are certain fixed operators such that, for all
complex numbers ni, ll| = s,
n.E.,. >0
ﬂiﬂjE1+J >
lil=]j]=s

The tempered PO-measure F{(-) is controlled at zero, in the sense

that the corresponding measures given, for each £ ¢ H, by
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WS = <FOMIE €5 M R,

satisfy the condition that there is a positive constant A such that

£

lxlzsdp S_AH{;“Z for all & ¢ H.

Yo<|x|<1

Proof. I.et P Dbe any homogeneous polynomial of degree s.
By Proposition 2', there exists a unique tempered PO-measure E

such th‘at
(1) PPLp SLP x)dE for all Y e Z.
For each § ¢ H, set L§(¢) = <T¢§, £€> ¢ e Z. Then

L,(PPy) = <T._~= &, £>.

(2) ¢ =

From (1) and (2) we have

<T = £.8> = <( ﬁ(xmp)g,@

L, (PPy) Py

i

! _ g
SLP(X)d<Ep§, E> = gw(X)de

Thus

(3) Lg(P_fhp) = SLp(x)dvg , b Z,
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where VE is the tempered measure given by VE(-) = <Ep(-)§, £>.

Define ¢ on ct by

$(z) = zk¢(z), be Z, |k|=2s.

: 1 S U R O D L iproge (L l52
Since z" = zz’, il = |j] = s, and =z ~(Zz+zz) —(Zz-zz)

i 1 3 1 i j )
+ — — — -
> z° PZ(Z) =3 Z z, it follows that

Nl»—-ﬂ

1
letting Pl(z) =5

P1 = El’ P2 = —P-’—Z, and (3) above applied to qu.z(z), Y e Z, vyields

k _ — —

L, (P P) - L, (P,P,4)

€ €
SLp(x)d VPl - .S‘L!J(X)d vp2

SLp(x)d vE ,

where by definition the Radon measure { —> ngdVE is given by

| Skbd\/:i = Sq;dvgl - 5¢dv§2 .

i

ti

Note that VE is not defined as a set function. Thus

L, () = Cooart

®
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where the measure

me—)SquvE
. . - _ k _
is not necessarily positive. Let I = {x:x =0} and set
- ph . k . .
=R -TI . Since x #0 in Q , the mapping
k k k
0 3 dvé
C. (2 )—>y M%§¢(X)du = Slj)(X)
0 k k k
def X

determines a measure in Qk. But

Lg(Lpzjzk) = §¢zjdVE = vazkdvf’ ,

so that
(4a) §¢dpg = S.Lpdp,g on 2.~ Q ;
J k j k
that is, the measures { —> 5¢dp§ are compatible. Let QO = Qk'
k

Then

Q =u 2 =u (R'-T))

0 K k K k
=R" -~ T, =R"-{0}.
K k

In view of the compatibility of the measures S__dpE » there exists

a unique measure S_v__dpg on QO such that
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§~d”g ) S—d”é on & .

as in [3, p. 59]. Returning to (4), it follows that

hi

g U(x)d VE

k 3
(5) L.(zy) = S Y(x)dv
§ rR" k Q T

Sg Lp(x)dVE + S‘ Lp(x)dvk
k

S p(x)dps +5 Ylx)dv
19

k k

11

1

S. xknp(x)dpg + S‘ LlJ(X)dVE .
| Q

| k k
i .

|

|

|

|

|

|

|

|

Since kap vanishes in the complement of £ and Q (C &

k k 0’
we have
k k
(6) S Ly(x)dp’ = S y(dpt
Q2 Q
k 0
For |k| =2s, 1let l"l'c i denote the set of points x ¢ R" such
that xk =0 and x, =96,, where 6. =(0,0,...,1,0,...,0), with
1 in the jth position. (Recall that x = X, X, ...xnn, where
the k_, 1 <j <n, are nonnegative integers). Taking (4a) into

J
account together with the fact that
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k,j ) ]
we have
(7) 0= S __xjdvg "
r .
k,j
and since some xj 70 on I‘k ., there follows
)
SF L dvk =0
k,j
But the set I‘k can be partitioned into the set {0} = {(0,0,...,0)}

and a finite number of sets in each of which at least one of the factors

xj 4 0. In view of the fact that

|

|

|

1 k

|

i

i for every j, it follows that the measure
|

|

|

i

w o
| 1_‘k

is concentrated on the set {0}. Returning to (5) we have



Lg(szp) = S kap(x)dpsg + S q,x(x)dvfi
9] T
k k
= S kap(x)d}.L‘E + Lp(x)dvé
Q {0}
k
= g kap(x)ch\Lsg + $(0) S dvi ]
Q {o}
k
Thus,
(8) Lg(szp) = Sa xqu(x)dug + ak¢(0) ,
Q2
k
where
(8a) a = S dvg k] = 2s
k k’ )
{0}
K (k)(O)
Since ¢(z) = z W(z), Ve Z, ‘kl = 2s, then y(0) :LET_’ and
therefore (8) rﬁay be written as
ko ( e %o
(9) Ly(z ¢>=§Q olx)dn +a S,

0

whenever ¢ = szp, Ye Z, |k| =2s. The fact that each derivative
of order j, |j| = 2s, of the function ¢ = zktp vanishes at the

origin if j # k implies that (9) can be written as

93
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(k)

(10) Lg(¢)=S wlx)du® + Z 2 &40
o .
0 |k|=2s

for all functions ¢ of the form ¢(z) = szp, k| = 2s, for some
choice of Y e Z, and where

ak= | dvg, lk]-’-Zs.

k
{0}
Since the right member of (10) is independentof k (the
dependence is on s), (10) holds by linearity for all functions ¢ of

the form

(11) ¢(z)»= Z zk¢k(z), ¢ € Z-

€

Lemma 1. p is a positive tempered measure for each & ¢ H.

Proof. Since

Sgk—xkd*’k = fgk——d"ﬁ

g=pg on &

K I it follows that

and g
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—— —

S‘ xkdpg =\ dVE on R - {0}

because both sides vanish on Pk - {0}. Choose k =2j, |j| =s, so
L 2 2, 2
that x = Xy X, X % Since T is conditionally positive of

order s, szT is multiplicitively positive. Proposition 2' implies
the existence of a tempered PO-measure EZJ_(-) which represents

szT in the sense stated in that proposition. The associated family
{VEJ_:AS, ¢ H consists of positive tempered measures. ‘Thus there is

>0 and aconstant K_,. >0 such that

an integer ij 2 2

-P,.
S(1+|X|2) ZJdVEj < KZJ.HgHZ for all & ¢ H.

The fact that szdpLg = dvgzj and dvgj is positive for every §

and every j implies that the measure dp is positive for every
.
To establish that dpg is tempered, choose

k = 2(0,0,...,0,s,0,...,0) with s inthe ith position. Since

e lxl 210 C U x| >
i=1

1

R

2
dpg is positiveand x ' =x = > l/ns, we have



-P,. -Ps. 5.
S (1+] x| %) ZJdpg < n® (14]x] %) Zszinpg
lxilzl/'\/n u’xilzl/'\/n
- (1+1x %) Hav,
|x.]>1/Nn ]

for all & ¢ H. Thus

.
(1+]x]%)  Zap® < afe)?
{xlxlz 1}

for all £ ¢ H, where A is a positive constant. Therefore the

measure dp is tempered.
Lemma 2. Let B = {x:0 < |x| < 1}. Then there exists a

constant K < ®© such that

S xzjdugf_Kllgllz, ljl =s, forall & e H.
Bo



P,5. -P,5.

<2 235 (1+[x|%)  Havs,

2j
Bo

P, . -p,.
<2 ZJS (1+[x] %) Ziave

P,.
2j 2
<2 Pk, ¢

P,
forall & in H. Thus K= 2 JKZJ.,

Corollary.

{1x%2at < a)g)?
BO

for a1 § ¢ H, where A is a positive constant.

from the fact that the integral above is a finite linear combination of

This follows

integrals of the form occurring in the statement of Lemma 2.

k 3

Recall that a, = S dV“é |kl = 25 (see (8a) above).
£ o)

Lemma 3. The numbers 2y k| = 2s,

Hermitian form

lil=]j]=s

are such that the

97

a.1+j11 inj is positive-definite (see[6, p.184]).
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Proof. There corresponds to the homogeneous polynomial

P(z) = Z nsz of degree s a positive measure dVE (see (3)

|jl=s
above) such that

(i) LE(P-ISq)) = Sc{)(x)dvg’ for all ¢ ¢ Z. We also have

it

(ii) L.(PP¢)

: Lg(z“jmniﬁ.

J
51T =

n

Z ni;j S¢(x)dvf+j for every £ ¢ H.
lif=1i]=s

Since (i) and (ii) hold for every ¢ in Z,

(iii) 0 < ldvg = ldV?’ m.m. for any compact set
= +
S p . . S 1 J 1 J
[il=]5]=s

S. 1In particular, (iii) holds for S = {0}. In view of the
€ _

fact that 1dv’, . =a.,., we have
oy M9

- —_
0 Z ai+jninj

li[=]3]=s
for all complex numbers M. nj, li]=]j]=s.

The preceding results may be summarized as follows:

For every vector § ¢ H,



L, ($) = 552 sx)diE + Z
0.

for all functions ¢ of the form

T

*x

99

k!

o(z) = Z 2, (),

|k|=2s

¢k € Z. There is a nonnegative integer

such that

p

and a positive constant K

§| (1+]x] %) Papt < k2|2

xlzl

for all £ € H. (that is, }.Lg is tempered) and

{ x2%ay® < Al |?
0

<|x| <1

for all £ ¢ H (that is, pg is controlled at zero). In addition

there is a nonnegative integer p and a constant K >0 such that

0

for all £ ¢ H. Moreover, the numbers

el 220 = Pt < ki) 2
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are such that the Hermitian form Z ni_ﬁjaﬁj is positive-

31=T51=s
definite.

The set of functions ¢ of the form

k
1 =
(12) o) = ) A s <
lk|=2s
is dense (in the Z-topology) in the set of functions in Z having a

zero of order 2s at the origin [6, pp- 194, 195]. Let

| (k)
i) = € o (0)
0 lk|=2s

for all functions ¢ of the form (12). Then L'g is continuous in
the topology of Z [6, p. 194]. Since L'g = L§ on the set of

functions of the form (12) and this set of functions is Z-dense in the

set of functions in Z having a zero of order 2s at the origin, it

follows that (10) holds for all functions in Z having a zero of order

2s at the origin.

Let ¢ ¢ Z Dbe arbitrary andlet a be any fixed function in Z

such that the function a - 1 has a zero of order 2s + 1 at the

origin [6, p. 177, footnote 4]. Then



()
(14) 6(z) = ¢(z) - a(2) e JoL .k

k| <2s-1

has a zero of order 2s at the origin. Hence,

— (k)
_ & 6 (0)
(15) Lg(e) = S‘Q B(x)dp > + Z 2 T
0 Ik[:Zs
Since G(k)(O) = ¢(k)(0), lkl = 28, we have

(k)
(16) Lg(e) = S G(X)dp + Z akL—_'
0 k| =25
Taking (14) into account there follows
(17) Le(@) = L(0) + Q;k#)l Lg(qu) .
lkl <2s5-1
Set
k
(18) ak=Lg(z a), 0<|k| <2s-1.

Then we have

i

(19) Lg(¢) <T¢§, £>

i

(k)
S {¢(X) a(x) z L——( ]dpg(x) Z a

k| < 28-1 k| <2s

101
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0 < [k| < 2s-1,

Lemma4. Let ¢e¢ Z, 1 >0 and |¢  (0)] <n,
0 < (k! < 2s. Then there is a positive number M such that
(k)(O) 5
(20) | Z a £ cnmfg ) foran £ e
|| < 2s
Proof. Since a, = Lg(zka) = <Tzka§,§> for
it follows that
la | = 1<t seol <l Ilel® = Mgl
k k >’ - k k ’
z a z a
where Mk =T K | <o since T K € B(H). For |k| = 2s,

z Q zZz a

o] =1\ afl =1\ @of o\ @b
k (o} K g{o} Py Sﬁ{O} P,

= |<E  ({ohg, e>- <E  ({0})E, £> |
Py P2

< I<E_ (ohe, 8] + | <k (ot &>

1 2

. 2 2
< Epl({O})llé 1=+ IlEpz({O})H Ie

= (IIEpl

where

M, = | EP1({O})”+” Ep2<{0})ll-

Set

|

(hl+IE, donIEl® = ney 1
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|k <2s
Then
Y e, Y letwl,
k! k' — k! k
k<2 k[<2s
2
<n ) el <mfg)?.
k[ <2s
Lemma 5. Let {c})m} be a sequence converging to zero in Z
and let
U
(21) 02 = ¢ (z) - alz) oz
k| <2s-1

where a is a fixed function in Z such that a-1 has a zero of
order 2s * 1 at the origin. Then the sequence {Gm} converges

to zero in Z. This is clear and the proof is omitted.

The functions Gm in the preceding lemma have a zero of

order 2s at the origin and therefore

(22) Gm(z) = 2 zk(bm’k(z), ¢m’k € 7,
|k|=2s

[6, p. 194]. Since 0, converges to zero in the topology of Z,
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given any M >0 thereis an N such that for m >N,

2s
(23) e (x)] < _ol=l"" [6, p. 185].

Lemma 6. ¢f\-—>T¢: Z —> B(H) is tempered. Thatis, T is

continuous on Z in the relative topology as a subspace of /5

Proof. Let cpm be a sequence of functions of the form (22)

1

converging to zero in the topology of ,éi , andlet n = m )

where M'>M with M as in Lemma 4, and K' is a positive
constant, K'>K, K as in the Corollary to Lemma 2, such that for

some nonnegative integer p,

g{ l (lJrlxIZ)'pdpLg_<_K'H$,H2 for all £ ¢ H.
x|>1

Such a constant K' exists because is tempered (Lemma 1).

Then

tt

<T¢ £, E>

m

o) | "oy
S‘Q {cpm(x)—a(x) Z If:! x}du + z a IEI .

0 k] <2s-1 k| <2s

24) Ly )

11

Since ¢m—>0 in Z, given M >0 there is an N1 such that
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!¢(k)(0)l <7n, |k|] <2s, forall m>N,. By Lemma5, 6 —>0
m - 1 m

in Z. Given the same M as above, there is an N2 such that (23)

holds for all m >N2. ILet N = max{Nl,NZ}. Then for all m > N,

, ¢ 9. '(0)
PO ISQ 6_(x)dp” + Z T
0

|k|=2s
(k)
$_"(0)
< loglafel ) E—a
0 k| < 2s

< U nlxl® a2 ?Pad + g )2
Q0

< kel + amle | - oo kel e 12 < g e )%

(K'+M')
Thus

(25) |<T

¢m§,§>] S_:ll‘“gl‘z for all § ¢ H,

and therefore

(26) [<T, &> < [ENINM for al &0 in H,

m
from which it follows that

I, 1l =sepll<T, £n> flel <t Inl<t) =1,

m m

b

Thus
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(27) T <1l forall m >N.
q)m
If “ Tq) ” +> 0, then there exists an ¢ >0 such that HT H >e
m q)m_
J
for j=1,2,3,... . But then H TZ ” >2, contradicting (27)
| < Pm,
J
for the sequence %q) —> (0. Therefore ||T, || >0 and T is
mj ¢
tempered.

The situation now is as depicted below

where T 1is the unique extensionof T.

Lemma 7. ? has the same form on /& that T hason Z.

| That is, for each § ¢ H,

for all ¢« 4 . All other symbols have precisely the same meanings

as before.
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Proof. Choose any ¢« 4 and let c{)m be a sequence from /&

converging to ¢ in the space 4 Then

sup| (1+]x]%) Plo_-)a)| >0

X
and therefore

sup[(1+|x|2)'p(em-e)(x)l =0 .
X

Since

0,60 < il “Suelx] BP0

the Bounded Convergence Theorem implies that

S\ 0 dpg—>\§ detg for all £ in H.
m Q

QO 0

Therefore

<¥¢§,§>= lim <T, £¢>

m > % m
: s0)
= lim S 0 (x)dp” + Z 1 a
m " ® Q k
0 k| < 2s
‘ " 0)
= llmS 0 (x)dp” + Z lim l a =
m — V{2 m ™ ® ke k
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- § swane ) ey
2 k| < 2s
o) 1 ¢ " (0)
=§ [c})(x)—a(x) "y X}d}i + 1 ay
% k| < 25-1 k| < 25
Q.E.D

Lemma 8. For every pair of vectors §,1M in H and all M

in the ring RO generated by the compact subsets of £ _ = R™ - {o},

0
() o1t < b1t /? s o)t

® 22w+ 5w = 2pb o) + 20 0w

(c) ng(M) = Iclng(M) for all ce¢ C, and

2
(d) pg(M) _<_kM“ el for all & ¢ H, where the positive con-

stant kM depends on the set M.

Proof. (a) Let C be an arbitrary compact subset of QO

and let r = d({0},C) >0 denote the distance between the sets {0}

Xe denote the characteristic function of the set C,

and choose a sequence c})m from /4 such that

(i) c})m € a®/and supp ¢m'C Q for all m, where Q is a
compact subset of QO’
(ii) ¢, '(0) =0, |k| <2s, for all m, and

(iii) ¢m1{ Xc



Since

— . (k)
<T¢§,§>= S e(x)dug + Z ¢ 10,
2 k| < 2s

for all ¢ in K, and therefore for all ¢ eﬂ it follows that

. e ¢ ¢
<T §,€>= g ¢ (x)du” = S ¢ (x)dp
¢m QO m o m

> §xcdpg = pg(C)_>_O for all § in H.

Thus <-T—¢ £,€>>0 for all m and each § ¢ H. Similarly,
m
<T¢ n,M>>0 and <T¢ (§+1),£€4n>>0 for all m and all

m m
vectors §, m in H. By the Monotone Convergence Theorem,

S‘q)mduém \L ), S°¢de§J/ £ic)

§¢mdu“ J, W) .

and

Applying the Generalized Cauchy-Schwartz inequality, we obtain

T (gt ein> P T g e P T on,ast/?

¢m m m

for all m and all £, M in H. Letting m-> ®© yields

109
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1/2Jr ]1/2

L 01 2 < bio W (c)

for any compact sets C in QO. By the regularity of the measures

involved, (a) holds for all M ¢ RO.

Parts (b) and (c) of the lemma are established in a similar

manner. To establish (d), fix M ¢ RO. Since the ring R

is gen-

0

erated by the compact subsets of QO’ there is a compact set Q

in QO such that Q ) M. Choose a function ¢ satisfying
(i) ¢606, supp ¢ C Q,
ii > .
(i) ¢ > XQ

Then

wSovy < wbi) = SxQdug

= S plx)an = § o) (1+] x| 2 7P| x| 251+ x| 2)P| x| “23%au’
Q Q

< sup [ ]x) 9P 2500 ] § [x] %04 x]%) Payt
xeQ Q

<_kS %] 2 (1+] x| %) Pap®
Q0

< kxfg)*

for all & ¢ H, (LLemmas ! and 2), where



since 0d Q. Thus

pg(M) ngHg H?‘ for all & ¢ H,

where kM = kK. Q.E.D.

In view of the preceding lemma and Proposition 2 of Chapter 1,

there is a unique PO-measure F(-) on the ring RO such that, for

each £ ¢ H,

pg(M) = <FP(M)E, E> for all Me R0 .

Moreover, F(') is tempered, by Lemma 1, and controlled at zero
in the sense of Lemma 2.

Recall that the measure dvg

. Was defined by LpW?S\pdVE ,

with

1 i
where Py» Py refer to the polynomials Pl(z) =5 (z1+zJ),

—Zj), |i|=lj|=s. Thus vé(M) = vEl(M) - VEZ

k| = 2s, is defined

PZ(Z) = El (z1 (M). The

corresponding operator valued measure Ek’

by
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3

k(M).

<Ek(M)g7 g> = <(Ep1(M)"Ep2(M))g7 g> =V

In particular,

_ 6
<k, ({0}, &> = v ({0}

and by Lemma 3,

for all complex numbers m,, 1, |i|=|;j]=s.
1 J

Recalling that Lg(q)) = <T¢§, £>, where

(k)
_ o (0) k|, & ¢ (0)
L(9) = gﬂ [¢-a z " X]du + Z a
0 |k|<2s-1 k| < 2s

and that pg(M) = <F(M)E, E>, Me RO, for all & ¢ H, we have

(k) (k)
- ¢ (0) Kk $_(0)
<T¢g,g>-<(§[¢-q Z o x}dF-ﬁ z E §,§>

k| <2s-1 k| <2s
for all £ ¢ H. Thus
(k) (k)
T¢= §¢-a Z Ll:!-(—glxk:,d]?+ z SP-—E!—@l}ik
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where F(') is the PO-measureon R a 1is a fixed function in

0’
Z such that a -1 has a zero of order 2s + 1 at the origin,

Ek =T K |k| <2s, are fixed bounded operators on H, and for
z a

k| = 2s, Ek = Ek({O}) are bounded operators on H such that

lil=]jl=s

for all complex numbers ni, nj with |i|=]j|=s; that is,

<( >, B, |66)20

li]=]jl=s

for all £ ¢ H. This completes the proof of the theorem.

Theorem (Converse of Theorem 3). Let F be a positive

tempered operator-valued measure on the ring R0 generated by the

compact subsets of R™ - {0} such that

{ x| 2%au® < ke |

0< |x|< 1
for all § ¢ H, where pg(M) = <F(M)E,E> £ ¢ H, for all
Me¢ R.; E (|k|] =2s) operators on H such that for all complex

0 k

numbers n. li| = s,
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lk|=]jl=s

Ek’ (|k| < 2s) certain fixed operators on H, and a a fixed

function in Z such that the function a - 1 has a zero of order

2s + 1 at the origin. Then T defined by

(k) — (k)
T¢— S[¢(x)—a(x) Z Q“k*,—(—o—)x]dF+ Z Q—L—(—!(—QEk
|k|<2s-1 [k|<2s

is a distribution of operators on Z which is conditionally positive

of order s.

Proof. 1Itis clear that T is a distribution of operators. Let
P be any homogeneous polynomial of degree s. We need to show -

-_— — . . . Z. . = -
that TPP¢¢ is a positive operator for any ¢ ¢ Since PPoéo
(k)

has a zero of order 2s at the origin, (P_ng)g) (0) = 0, |k| < 2s-1.

On the other hand for k =i+ j with |k| = 2s,

P00y = > iyt B
i+j=k
lil=]5]=s

and therefore
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(i) (j)

C2 e o))
- == + e E. ..
TPP¢¢ S\.P(M dF Z il j! itj
i+tj=k
[il=13]=s
Since |Po] 2 >0 and F is a positive operator-valued measure,

SIP(M Zd}:" is a positive operator. Moreover the operator

(j)

S ea0) Eao)
. 7 4
1. K 17
lil=13]=s
is positive. Hence
<TP_P_>¢$§’ £>>0

for every ¢ in H which means, by definition, that T is

conditionally positive of order s.
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