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PROPERTIES AND INTEGRAL REPRESENTATIONS
OF DISTRIBUTIONS OF OPERATORS

INTRODUCTION

The problem of characterizing linear functionals defined on

various spaces and possessing certain properties is by no means

new. The extension theorems of Hahn-Banach [10], the F. Riesz

Representation Theorem [11] and the theorem of S. Bochner [11] on

the representation of complex-valued continuous positive-definite

functions are among the more important theorems in classical analy-

sis dealing with the general problem of characterizing and represent-

ing certain classes of functions and the duals of function spaces.

The theorems mentioned above have extensive application in

various areas of mathematics and have been shown to admit various

degrees of generalization (see for example, [6], pp. 152,157,219,220,

and [8] ). The theorem that a positive continuous linear functional is

a positive Radon measure and the associated integral representation

of such (and more general) functionals carries over to scalar-valued

distributions on open subsets of Euclidean n-space R. S. Bochner's

theorem on the characterization and integral representation of con-

tinuous positive-definite functions has likewise been generalized to

distributions by L. Schwartz [6, p. 157]. More recently B. Kritt

[8] extended some of these results on positive and positive-definite



distributions to distributions defined on an open subset Sr2 of Rn

and taking their values in the Banach algebra of bounded linear

operators on a complex Hilbert space. Kritt showed that a positive

distribution of operators on an open subset 2 of Rn is given by

an operator-valued integral relative to a positive operator valued

measure on the ring generated by the compact subsets of Rn, and if

the positive operator distribution on Rn is tempered then so is the

associated operator measure. In the same paper Kritt showed that a

positive-definite distribution of operators on Rn is the Fourier

transform of a tempered positive operator-valued measure and that

such an operator distribution has a unique integral representation

with respect to the operator measure.

The first result in this thesis (Chapter 2) is an extension of the

first of the above mentioned theorems of Kritt to the extensive class

of test-function space's K{M}, containing D(Rn) as a dense sub-

space, first introduced by Geltfand and Shilov [4, p. 255] in connec-

tion with the study of the problem of classes of uniqueness of the solu-

tion of the Cauchy problem for systems of partial differential equa-

tions. The balance of this thesis (Chapters 3 and 4) is addressed to the

problem of establishing for operator-valued distributions results which

hold for certain classes of scalar-valued bilinear distributions and for

scalar-valued multiplicatively positive distributionstheorems which

have immediate application to generalized random processes [6,p.237].
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Many important transformations in analysis are multiplicative:

T T for all elements in the domain of T. The distribu-

tions of operators that are studied here are not required to be

multiplicative. On the other hand the range of these distributions

will always-be assumed to consist of bounded operators.

3



. BACKGROUND AND PRELIMINARIES

This chapter is devoted to a brief discussion of the spaces,

concepts and preparatory lemmas leading to, and culminating in, the

development of a certain operator-valued integral which plays a

prominent role in the first theorem in this thesis.

A. The Spaces K{M}

The concept of a fundamental space is central in the development

of the theory of generalized functions. Indeed a generalized function

is, by definition, an element in the topological dual of a fundamental

space.

Let C denote the field of complex numbers and let cl be a

linear space over C of complex-valued functions defined on a non-

empty subset X of Rn. Thus, if ci) and Lp are functions in

and X and p. are any complex numbers, then the function

X.4) + pap belongs to In particular, the zero function 0(x) = 0,

x E X, belongs to 1'.

Definition 1. is a fundamental space provided that:

( 1 ) is either a complete countably normed space, or it is a

countable union of complete countably normed spaces. In

the latter case is given the inductive limit topology.

4



If a = 0, that is, if

a
, 1 < j < n.0x.

The order of Da is the nonnegative integer I a I defined by

at

5

(2) If (Om in then coin 0 in C for any

X0
E

All of our work involves functions and the calculus of functions

in some fundamental space Since these functions are defined on

subsets of Rn we summarize the notation used in the n-dimensional

calculus.

A multi-index a is an ordered n-tuple of nonnegative

integers a.:

a = (a1 , a2' .'.. an).

To each multi-index a there corresponds a differential

operator

U1 a,) a
Da= D D n

1 2

where



then a < p means that a < 13.,- 3

where

If x = (x 1,x2,2,

is defined by

a = 0 = (0,0,...,0),

then we set Dal) = 4). If a, p are n-dimensional multi-indices,

a* 13 = (a 1± 13 1, , p ) ,
n n

! = al! a
2

! ... an! ,

a2 a
(

1)( 132)-
( An

is a point in Rn, the Euclidean norm Ix!

( n ) 1 /2

x2x =

j=1

If x, y E Rn, the inner product is denoted x y and is defined by

x y =

1 < j < n,

x.y.
J

j=1

1 < j < n.

Finally, if x E Rn and a is an n-dimensional multi-index, the

6

monomial a is defined by



al aZ ana
x xl x2 ...x

Rather than deal with arbitrary fundamental spaces we

restrict our attention to a class of fundamental spaces which, on the

one hand, is of sufficient generality to include the fundamental

spaces of classical distribution theory as particular cases and to

which, on the other hand, many of the theorems of distribution theory

can be extended. These spaces are the fundamental spaces K{M}

which we now proceed to define.

Let M, p = 0, 1, 2, . , be a nondecreasing sequence of

functions defined on Rn and bounded below by the function which is

identically equal to one on R Thus

1 < m <M <M < < m <M <0 1 2 p p+1

We will assume that each M is continuous on all of Rn and that

Rn.M (x) <00, p > 0, at each point x in
P

Definition 2. The set KIM 1 consists of all Cx(Rn)

complex-valued functions (j) which, for every multi-index a and

for 0 <p < 00, satisfy the following condition:

MD is a continuous bounded function on Rn.

The linear space K{M} is given the structure of a complete

7



countably normed topological vector space by the family of norms

114 defined, for each (I) E K{M } and 0 < p < 00, by

(1)=11(4p

and

For any cl) in K{M},

11.4)110 5_ 114)11, 4112 11 cHlp I

11(4 <°° 0 < p < co.

Note that each in K{M } is, together with its derivatives of all

orders, bounded on

max sup M (x)1(Da(13)(x)1
al <p xERn P

8

Definition 3. A complete countably normed space X is called

perfect [3, p. 15] if the bounded subsets of X are relatively

sequentially compact; equivalently, since X is a metric space, the

bounded subsets of X are relatively compact (the bounded subsets of

X have compact closure).

Proposition. K{M} is a complete countably normed space

[3, p. 30].

Proposition. Suppose that corresponding to any integer p > 0

there is an integer p' > p such that



lim )(x) = 0
"LP'

Then K{M} is perfect [3, p. 31].

In all discussions relating to K{M } spaces in thie thesis we

will assume that these spaces satisfy the condition of the preceding

Proposition and are therefore perfect spaces.

Convergence in K{M } Spaces

Definition 4. A sequence of functions defined on R

is properly convergent if the sequence {DaOn} converges uniformly

on bounded subsets of Rn for every multi-index a.

Definition 5. The sequence of functions {4 m.} in K{M } is

said to be M -bounded if to each p, 0 <p < there corres-

ponds a positive constant c such that 11(1) < c form p p

m = 1, 2, 3, . . .

Proposition. If {(1)rn} is an M -bounded sequence such that

9 properly, then

o in K{M}.

If {.1)rn} C K{M}

(I) (1) properly, thenm 0

K{M } [3, p. 31].
11)0

9

114)mllp - 0 for any p >0; that is,

is an M -bounded sequence such that

is in K{M } and ,1) in
m. 0



example,

Proposition. If M < co, 0 < p < 00, then the linear space
oo n

C (R ) of infinitely differentiable functions with compact support in
0

Rn is dense in K{M } [3, p. 32].

Examples of K{M } Spaces

functions cb which together with their derivatives of all orders,

decrease more rapidly at infinity than any power of ixi -1. For

exp(-Ix) and all functions in

z sup ixP(Dctc)(x)1 I

xRn

where a and p are multi-indices and

n p.
xP_ J- n x. .

j=1 3

II (HI < 00 for each cj in

Let

M (x) sup xlc-1 .Pk <p
Then M <M and

P+1

co n
consists of all C (R )-

belong to/6C.

10
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for each p. Thus the space A4 of rapidly decreasing functions (at

is realized as a particular K{M } space.

2. The Spaces S and Sa
, A

. The space Sa, (a >0),

consists of all Cx(Rn)-functions O satisfying inequalities of the

form lxk(Dc10(x)1 < C Akkka , where the constants C and A
q

depend on ep [4, p. 169]. For a = 0
S0

fi(Rn), the space of
K

oo n
C (R ) functions with support in the fixed compact set

K = {x E Rn: I XI < A}. If a > 0, the definition of Sa may be

ccformulated another way. Sa, (a > 0), consists of all C(R11)-

functions (I) which satisfy inequalities of the form

a.1(Dq(0)(x)1 <C exp(-a1x11/a)

where the constants C and a depend on ci) [4, 172].

Sa can be realized as the union of countably normed spaces.

Let Sa,A denote the set of functions (1) in the space Sa for

which the following inequalities hold..

I xk(Dc10(x)1 < C Akkka,
qA

where A is any constant greater than the constant A in Sa, A.

Thus

111)11p supx M (x)1(Da0(x)1 <00

I< P P

=

11



for 8 > 0 [4, p. 176]. When a = 0, So, A consists of those
nC(Rn) functions with compact suppose in {x E R :Ixi < A}.

Let

11/aM (x) = exp[a(1- )1x1 P

Then M <M
13+1'

I xk(Dc10(x)1 < C (A-1-8)kkkaq8

holds for any 5 > 0. Referring to the second formulation of the

spaces Sa, (a > 0), given above, it is clear that Sa, A
consists

of those functions 4) which satisfy the inequalities

I (Dq(0)(x) I <c

>2, and

exp[-(a-5)1x11ia]

1194 sup x M (x)I(D0(x)1 <00,
P cd<p

Thus the space Sa, A
belongs to the family of K{M } spaces. In

particular Sa
A

is a perfect, complete, countably normed space.

3. The Spaces Wm and
WM, a

. Let P. be a continuous

p.2.2.

co
increasing C -function on [0,00) such that 11(0) = 0 and define

12

the function M on [0,00) by



that

r
M(x) = 1/(t)dt .

0

M is an increasing, continuous, C convex function on [0,00)

with M(0) = 0 and lirn M(x) = 00 M is extended to R1 by

defining M(x) = M(- x) for x < 0.
oo 1Let W denote the set of all C (R )-functions 0 such

(D)( x) I C exp(-M(ax)) ,

where the constants C and a depend in general on 4). W is

clearly a linear space. A sequence
{0xi}

of functions in W is

said to converge to zero if
{Dc10n}

converges uniformly for all

on any finite interval in R1 and if in addition

I (Dcici)n)(x) I < Cq exp( -M(ax)) ,

where the constants C and a are independent of n.

Let W denote the set of all those functionsM, a

for which

I (Dq0(x) I < Cq exp[-Mx)]

holds, where the constant a is arbitrary but less than a. Thus,

if 4) is in WM, a, then

13
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for any fixed 5 > 0. Let

1M (x) exp(M[a(1- )x] ), p 2, 3, ..

I (Dc10(x) C exp[-M[(a-5)x]], q 0, 1, 2, ...

Then Mp <_ Mp+i, p > 2, and the functions

precisely those for which

(to

suPx M (x)1(Dc1(1)(x)1 < oo

P lql<P P

for all p > 2. Hence, Wm, is a K{M } space. Moreover, due

to the convexity of the functions M, the space Wm, is perfect.

Of courseWM is a complete countably normed space [5, pp. 2,3].

B. Operator-Valued Measures

Let H (H, <, >) be a complex Hilbert space, H I {0}, with

norm 1111 induced by the positive-definite sesquilinear form <,>

on H x H by

(1) 1101 ----
for every E H.

Let B (B(H), II) denote the Banach algebra of all bounded

linear operators on H. If T is in B(H), the norm 11 T 11 of

T is defined by

in WM, a are

14



E H, <_ 1} .

B(H) is partially ordered by the relation "<" defined on the

set of Hermitean operators by

S < T

if and only if T - S = A is a positive operator, meaning that

.1q, > 0 for every E H. We write A > 0 to denote that A

is positive. Thus if S E B(H), T E B(H), then S < T if and only

< <'M for every vector E H.

Let X be any nonempty set and let R be a ring of subsets

of X.

Definition 1. A positive operator-valued measure E on X
is a set function

M mA--> E(M): R > B(H)

which satisfies the following conditions:

(1) E(M) > 0 for every R.

E(MvN) = E(M) + E(N) whenever M E R, N E R and

M N =

If {M.} is a sequence in R such that i
3

co
M. n M. = and v M. = M E R, then

1

j

=>

15



00

E(M) E(104.) (pointwise).

= 1

Condition (1) states that E(M) is a positive operator on H

for every M in R. Condition (ii) expresses the additivity of

E( ) which, together with ( i) implies that E( ) is monotone: if

M, N E R and M C N, then E(M) < E(N).

Condition (iii), expresses the countable additivity of E.

A positive operator-valued measure will henceforth be referred

to as a PO-measure [2, p. 5].

The following result shows that facts concerning PO-measures

can be obtained by working with scalar-valued measures.

Proposition 1. Let R be a ring of subsets of X 4, and

E( . ) a positive operator-valued set function on R. Then E( )

is a PO-measure on X if and only if, for every vector E H,

the set function

Mcvs-011,.(M)*. R > C

defined by

(5) (M = <E(M) , >

is a measure 2, pp. 8, 9].

16



stant such that

(d) (M) <
kM

11 II

2 for all E H.

E( ) is then uniquely determined by 1-1. (M) <E(M), >

17

Thus each PO-measure E( ) on X gives rise to a family

{p..c E H} of positive measures on X indexed by the set of vectors

in the underlying Hilbert space.

The next result gives conditions under which a family

E 1-1} of finite positive measures, indexed by the vector s of a

Hilbert space H, is generated by a PO-measure [2, pp. 9, 10].

Proposition 2. Let X 41, R a ring of subsets of X,

H {0} a complex Hilbert space, and {II,: E H} a family of finite

measures on X. Then there exists a PO-measure E( ) on X

such that

= <E(M) , > for all E H

and all M R, if and only if:

/2 imo1 /2 imoi
1F1+11

(M) = I c
11(M)

(M) + (M) = 211(M) + (M) for all
g-T1

vectors E H, all complex numbers c and all

M in R, and for each M in R there is a con-



Let X = Rn, R the ring generated by the compact subsets of

B'1, and E( ) a PO-measure on B.

Definition 2. E( ) is tempered [8, pp. 865,866] if and only if

there is a positive integer p and a positive number K such that

for every vector E H,

(6) .11(1+1x12)-Pd(x) <Kl 2

where is the Borel measure given on R by

= <E(1\4) ,

for all ME R. Ix denotes the Euclidean norm of x E Rn:

12 . , xn

1 /2

x =

18

Definition 3. E( ) is {M }-tempered if and only if there is a

nonnegative integer p and a positive constant c such that

(7) .5.1(M Pldp. <c 112 for all in H.



The function M occurs in a defining sequence for a given

K{M } space.

C. Bounded Sesquilinear Forms on H x H

Let H {0} be a complex Hilbert space.

Definition 1. A function f:.H x H C is sesquilinear if and

only if

f(y, x) f(x,y), where the bar denotes complete conjugation.

f(x+y, z) f(x, z) + f(y, z)

f(cx, y) = cf(x, y), x, y E H, c E C

f(x,x) > 0 for all x E H.

f(x, x) = 0 only if x =0.

Thus, for fixed y, f is linear in x, and for fixed x, f is

conjugate linear in y, the latter meaning that

f(x,y+z) f(x,y) + f(x,z),

f(x, cy) = y).

We shall make frequent use of the following standard uniqueness

result on B(H).

Proposition 1. If T E B(H) and = 0 for every

19



E H, then T = 0 (the zero operator).

Corollary. If S E B(H), T E B(H) and =

for every H, then S = T.

Proposition 2. If fl H x H C is sesquilinear and bounded,

in the sense that

sup{lf(x, 110 = II y11 = =M <

then there exists a unique T E B(H) that satisfies

f(x, y) = <Tx, y> , x EH, y E H.

We have II II =

D. The Integral of a K{M}-Function with Respect to an
{M}-Tempered PO-Measure

P

Let R be the ring generated by the class of compact subsets

of Rn and let E( ) be a PO-measure defined on R. For every

vector in the nonzero complex Hilbert space (H, <, > ), let 1.J.

be the positive Borel measure on R given by

(1) 1-1. (1\A) = <E(M), for every m E R.

yields

20

Since E(M) is a positive operator, the Cauchy-Schwarz inequality



for all EH.

21

<E(M), = 1 <E(M) , < 11E(\4)11 11 II 2

for all M in R and all in H.

Referring to (1) above, we have

(2a) (M) < IE(M)II 11
112 for every ME R

and all EH.

Recall that a PO-measure E( ) on R is said to be

{M I-tempered if and only if there is an integer p > 0 and a posi-

tive constant A such that

M (x)I 1c1 <A 11 112 for all E H.

Definition 1. Let E( ) be an {M -tempered PO-measure on

R. A function f is E( )-integrable if and only if f is la

integrable for each H.

Definition 2. Let I(E) denote the set of all E( )-integrable

functions. Thus f E I(E) if and only if f is Borel measurable

and

.11 I f I d <



= 411

Lemma 1. Xm E 1(E) for every M E R.

Proof. The characteristic function X of the measurable set

M E R is an R-measurable function on Rn.

Sxmclp,
= 1-1. (M) = <E(1\4) , >

E(M) !HI 2 <

for all H. Hence, XM E 1(E), The preceding lemma implies

that 1(E) contains every simple function.

Lemma 2. K{M} C 1(E).
ID

Proof. Let (1) E K{M }. Since E( ) is an {M}-tempered

PO-measure, there is an integer p > 0 and a positive number

such that

-M ) < A 11 112 for all E H.

We have

$14)1dp. --4Mp143
-1

M
P

1
S.11 sup sup M (x)1Dc11)(x)1)(M )- (x)dp.

xERn 1q1<p

22



(4)

[ SXmd1-1+1.1- 71+1 Sxmdp.

= 1:4

= [ <E(M)(+11), <E(M)(-11),

1
+ i<E(M)(+i71), -Fi-11> - i<E(M)(-i-T1)) --i-1-1>

2.3

11,1)11 iloi < for all E H.

Thus

K{M } =>,..c (1314,, < co

for all E H. Hence, E I(E). Q.E.D.

Let 4) E I(E). For every pair ,'11 of vectors from H,

define L by

L [(I)) = -4-1 S4)dp. +1,1- S4)clp. Ti+ i S4)d I.J. +i,r1-i S 4)dp. in
r 1

For each fixed pair /1 of vectors in H, L *.I(E) > C is
rl

clearly linear.

Lemma 3. For each fixed pair of vectors E H,

(5) L (x ) = <E(M) , ri> for all ME R.

Proof.



[<E(m), > + <E(m) , 1> + <E(m)i-1, t> + Elmh,ii>

+ i<E(M)(iii), iii > - i<E(M), > - i<E(M), -in >

- i<E(M)(-iri), - i<E(M)(-in ), -iri >1

4<E(M) , 11>} = <E(M) ,

Thus L
(XM

) = <E(M),11> for every pair of vectors E H
,*11

and all R.

It is clear from the definition of L (cP.) in (4) that
ifTi,

f, fn E I(E), n 1, 2, . . . , and
Sfn.dia

24

fd1-1
for every E H,

Sfr

then L (f ) >L (f) for every pair of vectors E H.
rl t,

Definition 3. A linear form L on I(E) is quasicontinuous

[2, p. 22] if, whenever f,fn E I(E), n 1, 2, ... , and 0 < f f,

then L(f ) > L(f).

Any finite linear combination of quasicontinuous linear forms on

I(E) is a quasicontinuous linear form on I(E).

Lemma 4 [2, p. 23]. For every pair of vectors in H,

the linear form L on I(E) given by (4) is quasicontinuous.
g,

This is a simple consequence of the monotone convergence theorem.

- <E(m)t, > - <E(1\4) , -ii> - <E(m)(-1-), > - <E(M)(-11),-11>

+ i<E(M) , > + i<E(M) , j11> + i<E(M)(01), >



Proof. Let L(cils) =S(1)4c1p. ,. for every ci) E I(E), where

is a fixed vector in H. L is clearly linear on I(E) and the

monotone convergence theorem implies that L is quasicontinuous.

Moreover,

L(xm) Sxmdia I-L(1\4) <E(1\4) ,

for all R. By Lemmas 3 and 5, L L on 1(E); that is,

for all E H and all (I) E I(E).

25

Lemma 5 [2, pp. 23,24]. Let be a linear form on I(E)

and let be in H. Then

= 11,71(4)) for all 11) E I(E)

if and only if

(1) is quasicontinuous

(ii) (xm) = <E(M), /1> for all M E R where L 01)) is
T1

as in (4).

Lemma 6. For each vector E H,

.51.4x1p1



Lemma 7. For each fixed function 4) E I(E), the functional

L (OH x H > C is sesquilinear; that is,

L (4))
L1, TI

((1)) +

L2,1(4))2'

L (4)) = cL (4))

L (4)) L (4)) + L (0
11+12 ri21

L,. (4)) = c (4)).

In addition,

L1
(4)) = L

,

The proof is as in [2, pp. 24, 25].

We now direct our attention to K{M }. Recall that

K{M} C I(E), (Lemma 2), and

114)11 = sup sup M (x) (Dc1*(x) , p = 0, 1,2,
xERn icd<p P

For every fixed 4) E K{M}, we have a mapping

L (OH x H > C where L (c0 is the sesquilinear
rl

form on H x H given by (4).

(T))

Lemma 8. For every 4) E K

is a bounded sesquilinear form.

, L (4)): H xH > C
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(c1)) Smpl <01 (mpr SM !OHM ) Idp.pp
+

-1-1
+.11M icH(MSM

1 (4)1\4 ) P

-
< (sup sup M (x)1(Dgc)(x)1) (M )1 (x)d

P't+r1
x 1c11 < P

+S (sup sup M (x)1(Dcicp.)(x)1 (M )-1(x)dp,
< p P

+5 (sup sup M (x)1(Dc1)(x) (M )-1(x)d
1,415_13 P 11-1-171
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Proof. Recall that E( ) is an {M }-tempered PO-measure.

Thus, there is a positive integer p and a positive number C such

that

51(M
-1

< Cli X 11

for every vector X in H. With this positive integer we have

1L (1)) =
[Scjx1-1-.11

p. - S>dp. + c4)d}.). - iSck11.1
4

= [5Mp4f)(Mp)- 5Mpq)(Mp)-1d1

-
+ iSMp.:13(Mp) - icM cp(M )1d .

P P

so that



(8)

+ (sup
sup M (x) (Dc10)(x)i) (M )i(x)4

x lql<p P

SI(M ) +S(M ) dp. +.51( .
-1

P S1-11 P +s)-"tl

Mpr Ichit

04410{ t 14-1-1112+11t+irl 112+4-J11112}

= 4C11(gp(11 012+11 rd12).

Therefore

L (0) = sup {I L (col , t E H, 11 E H, 5_ 1, _<

= sup{4CIIIHIIlI t 2+ 111112), 11 01 5_ 1, IHI 5_ 1}

80011 <p (x).

Thus for each E KIM }, L()1 <8CII III Intl for every

t, ri in H.

Combining Lemmas 7 and 8, for each fixed 0 E KIM 1,

(cp): H x H > C is a bounded se squilinear form. By

Proposition 2 of Sec. C, there exists a unique bounded linear operator

S on H such that

(0) = <S,Ti> for all vectors t, E H.
'11
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Definition 5. The unique bounded linear operator S on

such that L ((1)) <n,11> for any given fixed cp. E I(E) and all

pairs of vectors in H will be denoted by

ScipdE.

Thus, to each 43. E K{M} there corresponds a unique bounded

linear operator cOcIE on H such that

.514x1E),1\\> L()
for every pair of vectors in H. By Lemma 6, we have

(s

E. Basic Properties of 541E

(1) The map (I) cix1E:K{M } --> B(H) is linear. Moreover,

STbdE = (

for all E H.

29

where denotes the adjoint. The proof is as in [2, p. 28].



Set

Therefore

1 <.A, >1

Thus

S.:1AF
(A = A*).

Then

>= L (0 z Scpdp1

=
S(M )(I:4M )-1(4. .

P P

-S(M )c1)(M ) ld
P P P'S/-

5(Mp)1(1)1(M ) idp.
P

< S sup M (x)1(Del(1))(x)1 (M ) 1(x)dp.
X p< p

< 1144 S(M 1(x)dP, < 0'44 11012
P P

30

(2) For some integer p > 0, there is a positive constant C such

that 11 S clxIE < C11 for every E K{M} .

Proof. Let 4) be any real-valued function in K{M } . Since

E( ) is an {M }-tempered PO-measure, there is an integer p > 0

and a positive constant k such that

M )-1dp., < kil 01 for all c H.
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IlAll k11011p

That is,

IIdEII <k 01

Finally, if 0 = + then 110111p II p and It 4)2 II p 11011p,

so that

II SepdEll = II S(01+142)dEll =jj,S1.431dE +Si02dEll

21c( 11011Ip+ II 02119) 414

In any case, then,

II SodE II II ollp

for some , some positive constant C and all it. in K{M}.

(3) If 0,0n E K{M}, n = 1, 2, ..., and On > c1 in K{M }, then

II S OndE - 0dE . That is, SOndE > ct)dE uniformly.

Proof. Let 0, On E /OM), n 1, 2, . . . , and suppose that

(I)n
in K{M }. Then II On-011 p 0 as n 00 for

0 < p < 00. Hence, for some p,



(by (2) above). Thus,

ScOndE - ScbcIE ,c(cP'n-OdE II

4k11 0cHlp

>0 as n 00.
S(OndE

- SOdE II
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2. OPERATOR-VALUED DISTRIBUTIONS

The principal notion in this chapter is that of an operator-valued

distribution. The scalar distributions of L. Schwartz are discussed

briefly as motivation for the definition of distributions of operators on

various fundamental spaces of test functions. Examples of nonmulti-

plicative as well as multiplicative distributions of operators are

given. Integral representation theorems for positive and positive-

definite distributions of operators due to Kritt [8] are stated. The

chapter concludes with the proof of our first theorem which general-

izes a result on the integral representation of positive distributions of

operators on oe-)-(Rn) to positive distributions of operators on the

broad class of fundamental spaces K{M}.

A. Distributions of Operators

oo
The space C0(2) of infinitely differentiable functions with

compact support in a nonempty open subset 2 of Rn is funda-

mental in the theory of distributions. C0(2) is a linear space

under the usual definition of pointwise addition of functions and

multiplication of a function by a scalar. If K is any nonempty corn.-
co

pact subset of 0, let clE.F. (0) denote the set of the Co (0)-K

functions with support in K. The family of seminorms on offic(0),

defined by

33



(cI)) = sup {I (Dasb)(x)1}, m = 0, 1,2,
x E K

induces a locally convex topology on cffic(C2) such that, if K/ C K2,

then the topology on A,. (0) is the same as the relative topology
1\1

on d3K (C2) as a subspace of cer (n). Let K 1, 2,
K2

Kbea sequence of compact subsets of E-2 such that K. Ci+1 and
00 0
v K = E-2. K.+1 denotes the interior of Kin.. The topological
i= 1

vector space 015(E-2)of L. Schwartz is then the strict inductive limit

of the spaces gr.- (E2) The elements of =oer(2) = C0(2) are
K.

called test functions. We let co,,,,CP(E-2) denote the dual space

of all continuous linear maps from otY(Rn) to the field of complex

numbers C with C carrying the usual topology of the complex

plane. Thus Z' = (IPE2), C) is the space of distributions of

Schwartz.

Let H = (H, <, > ) be a complex Hilbert space, H {0}, with

norm 1111 induced by the positive-definite sesquilinear form <, >

on H by 11 11
E H. Let B(H) (B(H), II ) denote

the Banach algebra of all bounded linear operators on H. B(H) is

given the uniform operator topology induced by the norm II II

defined by II T II = sup{ : E H, II < 1} for T E B(H). Thus

if T , T E B(H), n = 1, 2, ... , then IITn-T > 0 if and only if

>0 uniformly on the closed unit ball E H: II 1}.
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Let offilit (0) = L(02), B(H)) denote the set of all continuous

linear maps from offf(S2) to B(H). If T E£1, the "value" in

B(H) of T at cl) E oig(0) is the unique bounded linear operator

on H denoted by T. Or is clearly a linear space with
H

(S+T)0
= S + T

0 0

(aT) a(T ) ,

for all S, T E o,a' all ci) E cer(C2), and all complex numbers a.
1-1

As is usually the case, the value of the operator T the vector

E H will be denoted by T,z1).

Definition 1. An element T in off ( 0) is called a

distribution of operators in 0 or a distribution of operators on

off(0)-

There corresponds to each vector 1-1 a unique continuous

scalar-valued function on cff (0) determined by <T

(I) oer( Rn ) . We thus obtain, for each in H, a Schwartz dis-

tribution oe5.10-2),

T:oef(0)> C

by

35
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It is customary in the scalar setting to indicate the value of T at

0 by (T a, 0). Thus for any given E H, we have a T E 0151(E2)

defined by

(T,0) = <T , for all 4) E cef(S2).

The point of all this is that a distribution of operators on S2 gives

rise to a family of Schwartz distributions indexed by the set of vectors

in the underlying Hilbert space. Henceforth the term scalar-

distribution refers to the elements of offf'(&2) =0'1 (0), where C

is the Hilbert space of complex numbers with the usual inner product.

Our main concern is with distributions of operators in Rn.

A scalar distribution T is positive if (T, 4)) > 0 whenever

(1) E cer(52) is nonnegative.

Definition 2. A distribution of operators T in 2 is

positive if the scalar distribution T is positive for each E H.

Thus, T is positive iff T a positive operator whenever 0

is nonnegative:

> 0 => <T > 0 V E H.
d?

A scalar distribution T is positive-definite if (T,0*0*) >

for each 0 E cer(0), where 4)* is defined by 0*(x) (1)(-x), the

bar denoting complex conjugation, and 0.*4* is the convolution of 4)

and 0*:
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(I)*(1)*(x) = c¢(y)43.*(x-y)dy .

Definition 3. A distribution of operators T in Rn is

positive-definite if the scalar distribution T is positive-definite

for every E H. Thus, T is positive-definite iff for every

(/) E 00-(Rn),

<T > 0 for each E H.
(04(4**

Definition 4. A distribution of operators T in Rn is

tempered if T is continuous on ORn) in the relative topology

on oe_5-(Rn) as a subspace of 4(R1). Thus the tempered distribu-

tions of operators are just those operator distributions T which

have continuous extensions S to 4.(Rn). These extensions are

co-pc- nunique since cd,)(R ) is dense in ,d(Rn).

With the notion of a tempered distribution of operators in hand

we use the usual definition of the Fourier transformation of a tem-

pered distribution of operators.

Definition 5. The Fourier transform of a tempered distribution

of operators T is that distribution of operators T defined by

T = TA for every (1) E 015.(Rn).
4' 4'



is tempered and therefore has a unique extension to 4. (Rn).

Definition 6. A distribution of operators T in R is said

to be Ly 1-tempered if T is continuous in the relative topology on

ff(Rn) as a subspace of K{M }. Since oer(Rn) is dense in

KIM 1, the {M }-tempered distributions of operators are just those

that have continuous extensions to K{M }. These extensions are

unique. In case M (x) = (1+1x1 )P, the K{M } space is ,Ef(Rn)

and M -tempered specializes to tempered as defined earlier.

Definition 7. Let T be a distribution of operators. T is

multiplicative if and only if T T for every pair
Trez si,2

in oeY(2).

11)1' 4)2

Note. The product T A, T the operators T and
Y1 Y2 ci3s1

is defined in the usual way by composition:

(T T = T (T for all E H.
ePz (1)2

The multiplicative distributions of operators are the operator-

valued algebra homornorphisms on at5(0). The spectral theory of

normal operators is concerned with the case of multiplicative and

positive distributions of operators [2]. We will be concerned in this

thesis with distributions of operators that are not required to satisfy

the condition of being multiplicative.
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B. Examples

Let S E deP(Rn), B E B(H). Then T=SO B defines an

element in (R') by the equation

= (S B) = (S, 4))B.

T is obviously a distribution of operators.

In particular, if B = I, the identity operator on H, then the

mapping 4)&vs-.),T :ff(Rn) > B(H), defined by T = 4)(0)I clearly

belongs to ciZT (Rn). For a given vector E H, T defined by

4)) = <T > belongs to oeire' (Rn). Since
14)

(T a, 4)) = <4)(0), = 4)(0)11 112, choosing from the unit sphere

in H leads to 4)) = 4)(0) = (8, 4)), where 5 is the Dirac

measure on Rn. Thus this special case of the first example,

namely, T I, is a Dirac distribution of operators. More

generally, E B for any B E B(H) is called a Dirac distribution

of operators. Note that T = S 6 B is a positive element in

cifFI"Rn)
if S E (R) is positive and B is a positive operator.

(a). Let x PA--> A(x): Rn > B(H) be continuous and define

T(R) > B(H) by T ic4)(x)A(x)dx, where the integral is in

the sense of Riemann.

(b). Let 4)(x) A(x) be continuous into H for any
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Define T by

<T f, f> = f> =
(1)

In connection with the above examples see also [1, pp. 409,413],

[7, p. 268] and [9, p. 364].

. The distribution of operators defined by T f = (1)f for

every f E L2(R1) is clearly multiplicative. Moreover,

whenever I) > 0. Thus T is a positive distribution of operators.

We now give in some detail examples of specific distributions

of operators, most of which are nonmultiplicative, some of which are

positive and others positive -definite.

4. Consider the map (1)/w---> T: (Rn) B(L2(Rn)) given

by T f = cl)*f for every f in L2(Rn). We have, for every

f,g L2 and all complex numbers a,

T (af+g) = 4';,1/4(af+g)

= f ) 43.*g = a ((I)*f) cp);:g

aT't'f
+ Tg

(13(x)<A(x)n, dx .

cp. f >0
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Thus, T is linear and T clearly a linear operator on

L2(R1) for every 4) E

For any 4) E

II T II

sup
Ifil<l2

sup 114)*f II 2

If < 12

sup lk)Il II f 11 2f2 <1

(HI 1 k)(3c) 1 clx <.
L =SRfl

T is a bounded operator on L2(R) for each 4) E dej(Rn)
(1)

and we have IT II 4)II Let K be an arbitrary compact

subset of Rn.

IITII supT f = sup II 4»;:f II

< L22 1 L2 11 < 1
L2

4)11 111 fl 2 11'14 1

L L L

sup I Da 4)(x) dx
K xE K

0 < a < m

= 11(in PK m"))

pK,m(4))dx

41

n 143(
)1dx = S 4)(x)1 dx S 1 .1)(x)Iclx

supp
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where Kin is the n-dimensional Lebesgue measure of the set K.

Set !Kin = CK. Thus, <_ CKpK, m(q)) Hence, T is con-

tinuous on every space

limit of the spaces oec(Rn) as K varies throughout the family

of all compact subsets of Rn, T is continuous on 045--(R n) and is

therefore a distribution of operators. Since (c11432):;:f (01*02).*f in

general,

T f (I) (1)2)*f 1(01*02)*f
4)1(I)a

Since

Hence, T is positive-definite.

A
( *0 *f)f

n/2 S ", 2
= (27r) .4)1 f > 0 .

def(Rn) is the inductive

(1,1*(02*f) = Toi(Tep 2f) = T f.

Thus T is nonrnultiplicative.

Finally, for all 4 E CI5( Rn ) and any f E L2(Rn),

<T
4)..44

*f , f>
2

= < (01)*)*f, f> 2

A A
= <((I)*(I)*) , f >< 4)4,-4) %,f f >

L2 L2

2
n/2 yni:(1371/f\-/;\



where

Therefore

< sup n
tEK

Thus

SIll2dt < sup ItncH2
1
If1dt.

tEK

II tricl)(t)f(t) II .<_ f ,

L

CK = sup I tr14)(t) I > 0 .
E

43

5. Let the map 4)/v"---> T :ov(R1 ) > B(L2(R1)) be defined by
(1)

T f(t) t(t)f(t) for every f E L2(R1), where n is a nonnega-
4)

tive integer. If n = 0, this is just Example 3. Let n > 0. Then

)1+4f(t) tn(a4)1+432)(t)f(t)a4)2

= tn(0.4)1(t)+432(t))f(t)

= a.tn401(t)f(t) + t2(t)f(t)

= a T f(t) + T f(t)

Thus T is linear.

For each 4), T is clearly a linear operator on Lz and

II tileg 11 2 2
SRi

tn4)f I 2dt



Hence

11T43
-T I <_ sup1(1)3.-

ITcII sup iltn(l)f II 2 < 47; < 00,
11 f 11 < 1

L2

so that T is a bounded operator on L2(R 1) for every

E

"
R

To establish the continuity of T,in o>let. 4) ff(R1).
4).3

1This means that there is a compact subset K of R such that

supp (I) C K for all j, and for every nonnegative integer a,

CLD
1)(1).

D ci) uniformly on K. In particular, 1 4:,.- 1 >0 uni-
J J

formly on K and therefore so does 1 qij -(1)12. We have

il tnio.f_tncof II 2 .1' 4) jf_tn , ,.
2dt,

J
(pi 1

L2 R.

1 0

= 5' 14). -4)12Itnfl 2dt < sup. 12- 2supitn 1 dt
1 1

K3 K J K

2 , 1 1supltni Sifi2dt

>0 as j > 00. Thus T is continuous, hence, a distribution of

operators.

If n is even, T is a positive distribution of operators,

since ri>0, n even, and 4)>0 yield
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AA AA
4)1*9)2 9)14)2

<T f> = <tricl)f, f> tni:1) 1 f 1 2dt > 0

45

in general, we have

T f =
(1)

f
(2Tr).-1112(c1)141\12)fSY2 1 2

, A A
4 (4)1(1)-)f = T ((?) f) = T (T f) = T T f .

CO 2 4'1 ' P2 1)1 14)2

Thus T is nonrnultiplicative.

for all f e L( 1

Finally, T is nonrnultiplicative for n > 0:

T f(t) = tric1)1(t),a2(t)f(t)4)2

whereas

T (T f(t)) = T (t42(t)f(t))
(I)1 4)2 1 -

tne1)1(t)[tric132(t)f(t)] tanTdp1,4)2f(t)

T. f(t) tri(1)1cy
Tisvz

6. Let Jo TZRi B(L2(R1)) be defined by T f (134
(1).

for every f E L2 (R1 ). Since the Fourier transform is linear, the

linearity of T is clear. It is also clear that T is a linear

operator on L2 (R.1 ) for each c1) E ei5(R1). Noting that



We verify the continuity of T. Let supp C K.

#" 1/2
II 011 2 = <0,0> 2

INN iNN 1/2= <4f, f> 2

A A 112
2 < , *f>

12'

,n/2= (2Tr) <43:::(f;

VA
= II 4)*fll 2 <2

L L

114 1IIfM 2,

L L

(5% ilegx)ldx) lid
2

(sc
sup I Da cID(x) dx

K x K
0< I al < m

PK, m(4))1 KI1 f 11

V
(.4)(x) 4)(-x))
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where IKI is the Lebesgue measure of the compact subset K of

RI Et) E cc. Therefore



Asup II IT 2 = sup IkfIIilfil,< 1 L fit< 1 Lt-
2

L2

<110sup2 1

pK, mkb)
K1 II f

L2

< C p (4))K K,m

where C - IKI
1

Thus T is continuous on each space fr (R1)K

and therefore T is continuous on (R1 ) . Hence, T is a dis-

tribution of operators in Rl.

In addition, for every it. e eff(R1), we have

><f ScIP:(4)*ff = 2 nia SI;clifT
T4)*(0'sf'

>0 for every f E
2

(R

so that T is positive-definite.

C. Integral Representations of Distributions of Operators

We shall make use of the following two propositions, due to

B. Kritt [8], concerning positive and positive-definite distributions of

operators.

Proposition 1 (Kritt). For every positive distribution T of

47

operators in an open subset

ni2S 2 2= (2 14)1 I fl

Rn there is a unique PO measure



48

E( ) on the ring R generated by the compact subsets of C2 such

that

T = ..c4)dE

for every test function 4) from j31S2). If in addition S-2 = Rn

and T is tempered, then so is EL).

Recall that E( ) is tempered means that there is a positive

integer p and a positive number A such that for every vector

from H,

SO+ 2 -pd (x) <AJIIt

where 1..L is the positive Borel measure, on the class of Borel sets

in Rn, uniquely determined by peM) = <E(M) , for all M

in R.

Proposition 2 (Kritt). For every positive-definite distribution

T of operators in Rn there is a unique tempered PO measure

E(. ) on the ring R generated by the compact subsets of Rn such

that

= Siii)dE for every 4) E ca(Rn),

where 4) denotes the Fourier transform of 4).
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See [8] for the definitions of the integrals occurring in

Propositions 1 and Z.

The following result is our first theorem in this thesis and deals

with a generalization of Kritt's Proposition 1 to a class of distribu-

tions of operators defined on K{M } spaces.

Theorem 1. Let the space K{M } satisfy the following

conditions:
oo

The functions M are C in the complement of some

common bounded neighborhood of the origin in Rn;

for any nonnegative integer p there are numbers q and

C such that if 0 < lki < p, then

[(M )-1](k)(x)1 < C (M )- 1(x) in the complement of some
q P P

neighborhood of zero in Rn.

Then to each positive distribution of operators T on K{M} there

corresponds a unique {M }-tempered positive operator-valued meas-

ure E( ) on the ring generated by the compact subsets of Rn

such that

Scl)clE
for every in K{M} .

Proof. Let T be a positive distribution of operators on

K{M }. Thus,-T: K{M }> B(H) is a positive continuous
(0. P

linear mapping. Since ot5(Rn) C K{M} and the topology on
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oef(Rn) is stronger than the relative topology on eer(Rn) induced as

a subspace of K{M}, T is continuous on 05(Rn). T is obviously

positive and linear on eff(Rn). According to Proposition 1 (Kritt)

there exists a unique PO-measure E( ) on the ring generated by

the compact subsets of Rn such that

(1)
Sl)dE for all 4) in

We will first show that E( ) is {M }-tempered and that therefore

4)dE is defined for all 4) in KIM 1. The following discussion

and lemmas prepare us to prove that E( ) is an {M }-tempered

PO -me a s ure .

Let LP E defiRn), 0 < iti < 1, 4i(x) = 1 on {x: lxj < 1} and

14J(x) = 0 on {x: 1 1 > 2}. Then supp Ili = {x: 1 xj 2}. Set

'.Ii(x) = 4i( /m), m = 1, 2, 3, . . . Then ti(x) = 1 on {x: I x 1 <m},

klini(x) 0 on {x: Ix! .> 2rn}, and supp tlim C supp Llim+1 for all

m. Thus the functions "flatten out" with increasing m. Let

sup sup (Dc10(x)1 = r
x kit< p

Then

sup sup ( I Dc14iin)(x) I < r for every m.
x kik P P

Recall now that a neighborhood U = U of zero in K{M }p,



is determined by a fixed nonnegative integer p and a positive

number i and is defined by

(4) = E KIM }: sup sup M (x) I (Dc1.4))(x) <

P xliPP
We may assume, without loss of generality, that the neighborhood Q

00
of zero in Rn in the complement of which all the M and C

is a closed ball. Let et be an open neighborhood of Q and let

R > 0 be such that N = {x: I I < R} D er The set N is fixed in
00

what follows. Fix a C -function h, 0 <h < 1, such that h 0

in er and h = 1 in NC, the complement of N. Then

(6) sup sup I (Dc1h)(x) = s < 00.

x I < P

With h as above define a sequence {cI) } as follows:

(7)(I)m(x) = Ah(x)Lpm(x)(Mq0) 1(x),

where A is a positive constant, Llim(x) = tp(x/m), m = 1,2, ... ,

and
cl0

is chosen as in hypothesis (b) of the theorem. Note that

E Ceri Rn) and .4) >m° for each m.

Lemma 1. The positive constant A can be chosen small

enough to ensure that cl)m E U for every m.
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Proof. Since U = {4). E K{M }: 114 < }, we need to
showPP

that A can be chosen in such a way that

11(0_ = sup sup M (x)1(Dc1(1)m)(x)1 <
P 1(1.1<p P

We need the Leibnitz formula,

M (x)! (Dcici) )(x)
P m

= M(x)1Dq(Ah(x)(p( x I I = AM (x)1Dci(h(x)tp(x ) 1p x) )1 =m M (x) (

q0 q0

Dq(uv) =

Dcl(uvw) = Dc1[(uv)w} =

a.< q

with three factors uvw. We obtain

u(x) = h(x), ) = and

< P, we have:

a< q

q q-a a
( )(D u)(D ,

(q)(Dcl- a (uv) )(D w)
a.

((qa) / (q-a)(Dcl-a-PuXDPv)
13

a,<q 13<q-a

which we apply torom(x) = Ah(x)Lii(m. m 1 (x)
X E Q, with

q0
1

) - M (x)
c10

For all
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such that



= AM (x)
(cal)(

(q-a)(Dq-a-6h(x)(Di3ip()-1-)) (Da 1 )m (x)

< AM (x) (q)( (q-a)IDq-a-Ph(x)I I DP4J(!)) m p(x)
P

a<q 13 <q-a

where we have just applied hypothesis (b) of the theorem. Therefore,

Mp(x) I 13c4m(x) I < ACp (cci)( (qpa) I Dq- a- f3h(x) 1 I DPkii( )---- ) Im
a<ci 13 <q-a

Applying (4) and (6) above, we obtain

114)m(x)I1 p

= sup sup M (x)IDg4(x)1
x lqj <p P

< AC sup sup (q)[ (cl-a)1Dq-a-13h(x)11DPOILIA)aP
ct,<q p < q-a
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< AM

< AM

(x)
P

(x)
P

a< q

a < q

i3<q-a 0

1

((q)

/ (q(3a-13h(x)(D134i(!)) (Dam (x) )

p q<q-a 0

a 1

(q-a) I Dq-a-Ph(x) I I DPip( ) I)(2.)( M (x)P
a.<q 3'q-a q0



AG

where G is the positive finite constant

(
P i I

(a)) (< AC max
1c11. -P a< q

(G =Csr max
P P P P 1

1 qi < p

max
q-al <p

(q)

(q-a)
< q-a

max

srpp

Thus, 114) II < AG for all m. Given any 11 > 0 we may takem p p

A = 1 /2G which implies thatlIcIp II < 71 for all m. Thus AP

can be chosen in such a way that itim E U for all m. Q.E.D.

Lemma 2. The PO-measure E(.) is {M }-tempered.

Proof. Since T is continuous on K{M } there is a

neighborhood U of zero in K{M } such that

<T < II

a for all cla in U

and all in H.

Let {cOna} be the sequence constructed above. Note that

(1)111 >0 for all m. By Lemma 1 we choose the positive constant

A so that op.rn E U for all m. By continuity,
I 112

for all cl) E U. In particular, I <T < 112 for all m,
4)m

2and since cl) >0, it follows that <T < for all m
4)mm-
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and for all in H.

We need to establish the existence of a positive constant K

such that

1

M
4 <K 112 for all in H.

c10

Recalling that N = x E R11: I x I < R, R > 01, we have, since

M >1,
q0

d < S 1 d = (N) = <E(N),
N qo

11E(N)1111 112 kNII 112

where k IIE(N)II. Thus

ml
N qo

Sb
1(x) 4 (x) -

tiNc

dp. <
kN

11 112 for all in H.g -

On the complement NC of N, we have:

A
c M (x) dp. (x)

1\T qo N q

Ah(x)
1

dp. (x) =
M (x)

q0 (since h = 1 on NC)
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for all in H. Thus

Slim Ah(x)LP(mx)1 (x) d(x)
NC

q0

(urn (x))dp. (x)
Nc m co m

<c (x)clp. (x)mm N

(by Fatou's lemma, since (Om > 0)

= lim <T < lim II

(1)
00 m m-00

(sincecl)m E U)

= o for all E H.

Thus we have

SC M1
1

,11
2

N go

Putting these last two facts together, we obtain

Sim 1
S

1 1
dp, +M c M

q0 N go N go

_ kN I 1 I 2 + 1 I 2
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J M1
<K II 2

1for all in H, where K = k + is a positive finite constant.
N A

This shows that E( ) is {M}-tempered. Q.E.D.

Since the PO-measure E( - ) is {M}-tempered, the integral

.c4)dE exists for every 4) in K{M }.

To establish that T, ,--- ScpclE
W

for every (1) in K{M }, let
P

be an arbitrary element of K{M } . Since 6.1 5 is dense in
P

Trn0E5K{M}, there is a sequence of functions ril in converging to
P

(I) in the topology of K{M }.
P

Thus II ei)m-(HI p > 0 as m > 00

for 1 <p <00. We have

,114)nidE =IIS(4)m-4))dE11

< 4c114) -4)11 0 as m oo, 1 < p < 00.
p

(see page 31)
Hence

II mdE - SOE11 > 0

that is,

T
(I)m

Therefore

ScOclE
lim

m'00
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by the continuity of 4) A.A.,,T from K{M } into (B(H), 1111). This

completes the proof of the theorem.

Corollary. Let a distribution of operators T on K{M}

satisfy T > 0 for every real 4). Then there is a unique tempered

PO-measure E( ) on the ring generated by the class of compact

subsets of Rn such that T = S4)dE for all
(1)

in K{M}.

Proof. The set of functions of the form 4)4), 4) E K{M }, is

dense in the set of positive functions in K{M } [6, pp. 150, 151].

With 4) real, we have 4)-4) = dpz > 0. Thus T is a positive

operator on a dense subset of the positive functions in K{M }. The

result now follows by continuity and the theorem just proved.

58



3. BILINEAR DISTRIBUTIONS OF OPERATORS

We begin with a brief review of bilinear mappings on arbitrary

topological vector spaces. This is followed by the definitions per-

taining to bilinear distributions of operators. An application of

Proposition 2 (Kritt) is shown to yield an operator-valued integral

representation for bilinear distributions of operators of a certain

type. The chapter culminates in the proof of an integral representa-

tion theorem for arbitrary positive-definite Hermitean bilinear

translation--invariant distributions of operators.

A. Bilinear Mappings on Topological Vector Spaces

Let E, F, G be three topological vector spaces and

(x, y)t-,-->4(x, y): E x F> G a bilinear mapping. Thus for every

fixed
x0

E E, the mapping

y^,^^.,Tx (x0, y):{x0 } x F >G is linear, and for each fixed
0

yo E F the mapping

x yo(x, yo): E x {yo} G is line ar.

Definition 1. The bilinear mapping T.: E x F > G is jointly

continuous if for every neighborhood W of zero in G there is a

neighborhood U of zero in E and a neighborhood V of zero in
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such that

X E U and y E V =-> 't(X, y) E W.

In case the vector spaces E, F, and G are locally convex the

condition defining continuity of the bilinear map takes the follow-

ing form:

Definition 2. The bilinear mapping .1':E x F > G is continuous

if to every continuous seminorm r on G there are continuous

seminorms p on E and q on F such that

r((x, y)) < p(x)q(y)

for all x E E and ye F [11, pp. 420, 421].

In the following discussion we will be interested in the case
oo nwhere E = F =aer(R11), the Schwartz space of C (R )-complex-

valued functions with compact support and G B(H), the ring of

bounded linear operators on a complex Hilbert space H.

B. Positive-Definite Hermitian Bilinear
Distributions of Operators

Let H be a nonzero complex Hilbert space and let B(H)

denote the space of all bounded linear operators on H. B(H) is given

the uniform operator topology. Let 0ti(R11) be the L. Schwartz

space of test functions with the usual topology. Let B be the
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correspondence

(1) (4), iti)Ns-->B(4), 4J): 05(-Rn) x(R) B(1-1)

Definition 1. B is Hermitian bilinear if

for each fixed Lp E off(Rn), (ID -> B(4), 4)) is linear and

continuous, and

for each fixed 4) E der(Rn), > B(4), qi)* is linear and

continuous, where B(4), 4i)* is the adjoint of the operator

B(4), 4J).

Definition 2. B is tempered if in (i) and (ii) above the

continuity is in the relative topology on 0.13-(Rn) as a subspace of

Definition 3. B is positive-definite if B(q), .1)) is a positive

operator for every 4) 15(Rn).

Let h be any vector in Rn and let Th(Rn) >otY(Rn) be

defined by (Th)(x) = (ID(x+h) for every .1) E Ce5(Rn). Clearly

d? 00(Rn) => Th4) Ectr(Rn).

Definition 4. B is translation-invariant if for every pair 4), qi

of functions in cle5-(Rn) and every vector h in Rn,

B(Th4), Th4J) = B(4), 4J).
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Definition 5. By a distribution of operators on 015(Rn) xce/(0)

we mean a bilinear jointly continuous mapping of f5(Rn) xZ(ltn) to

B(H).

Let(1)tv,-->T '13(Rn) > B(H) be any distribution of operators
(1).

and set

B(O, 4,) = T ,

qS*4)'''

for every pair of functions 4, Lp in cEi(Rn). Recall that is

defined by Lp*(x) = t4i(-x), the bar denoting complex conjugation, and

(1)*Lii* is the convolution of (I) with (P*-

Let (1)1 = Th(1), = T
h4i,

where h is any fixed vector in

Since

(01, T(x) = (1)=4*(x) [6, p. 167],

B, as given by (1), is translation-invariant. We verify that B is

He

Fix LI) and consider it. > T ,. We have

a4) + 131) > T
1 2 (a,(1)1+13,02));q1,* Ta..131*

= a T + 13T
`131):4-'

*LI,*

( 1)

(1)

since T is linear. Thus B(a (1)1+13 (1)2, = a B(.13,i, Lp) + p 13(432, 43) for
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for each fixed 4J; that is, B is linear in its first Argument. We

have for cl) and 4, in 06 R n

II B(4), ) IT <C sup Ds(c1)*
14)*qj* xEiln

C sup cp.*Dsq)*(x)
X E Rn

< na

= C sup I Scl)(x)Ds
X E Rn

I s I < m

< C sup )(1 4)(x)11Dsix-y)1dy
X E Rn

I sl < m

sup (Dsci))(x) sup (Ds (x) rneas(
x E K x E K

IsIm

Thus I1B* 1011 < constant pK(OpK(4)), where pK denotes the

f. norm. Hence, B is continuous.

Now consider the map i > In view of the properties

of convolution this map is clearly linear. By the linearity of T, we

have 4:i> B(cp, = T
(1)

Putting this together we have the following result: if

:ca(Rn) > B(H) is any distribution of operators, then
(i)

(4), LIJ)1`^'1*B(.4), 41) T , clt\-(Rn) xff(Rn) > 13(H)

x

is linear in qi for each fixed 4).
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is a translation-invariant Hermitian bilinear distribution of operators.

C. Integral Representation of Translation-Invariant
Hermitian Bilinear Distributions of Operators

The following result is a corollary of Proposition 2 (Kritt) stated

on page 48.

RProposition
. Let 4) r.^--), .15( n) > B(H) be any

positive-definite distribution of operators and set

B(4), ip) T for every (CI), 41) E Z(Rn) x cor5(Rn).
414*

Then B is positive-definite and

B(4), 4J) = 2.1r
/2 SA7N-44dE for all (4),4J) E J.:5(Rn) xoei(Rn),

where E( ) is as in Theorem 2 of Kritt and the "hat" denotes

Fourier transform.

The integral occurring here is the integral of a rapidly

decreasing function with respect to a tempered PO measure as

defined in [8, pp. 866,867]. This same integral occurs in the main

theorem developed in the next section.

Proof. T = B(4),4)) is a positive operator for all

d? E dei(Rn). Thus B is positive-definite. By Proposition 2 of Kritt,



there is a unique PO-measure E( ) on the ring R generated by

the compact subsets of Rn such that

T , Scto*Lfr*dE .

4)44

ni2K-r-But 4),:t4,* = (ZIT) (1)4J, and therefore

B(,) ( arr )1112 SAE Q. E. D.

We summarize the results of Sections B and C.

If Ovs-t T43: der(Rn) > B(H) is any distribution of operators in

Rn, then the formula

B(cO,L1j)
=

T$=:4*

defines a translation-invariant Hermitian bilinear distribution of

operators:

((1),LP)",v-*B(c1),4J):cia(Rn) xcf.7(Rn) > B(H).

If, in addition, T is positive-definite, then B is positive-

definite and has the unique representation

NS., 4J) = (ZTr)11/2 SdE ,
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where E(- ) is a tempered PO-measure on the ring R generated

by the compact subsets of R.

D. Main Theorem

The following result characterizes a class of bilinear

distributions of operators as positive operator-valued measures.

The proof involves the notion of a barrier sequence as in [6, pp. 161,

164].

Theorem 2. Let (q), kii)is13(4), LI*(Rn) x elf)-( Rn) > B(H) be

any continuous Hermitian bilinear translation-invariant positive -

definite mapping. Then there is a unique tempered PO measure E(')

on the ring R generated by the class of compact subsets of Rn

such that

(1) B() SITiclE for all ( ) E oC5-( Rn ) xoer(R11).

In other words, every Hermitian translation-invariant bilinear

distribution of operators on J:i(Rn) x otY(Rn) is uniquely represented

by a tempered PO measure in the sense of Equation (1) above.

Proof. For each vector E H, the map

(0, 4J),--1_, (4), tp):015(Rn) xi:5(Rn) c



S(1+1 xl KI 1 for all E H.

Proof. Let S = {x E Rn: I X I < 1}. Since B is continuous,

there is a neighborhood er of the origin in 04(S) x(S) such that

1 <B(4), < 111 112 for all (4),) E Cr = 11 X V,

where U is a neighborhood of the origin in oef(S) and so is V.

In other words, 1 <II 112 for all 4) E U and all
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given by

I-, ((Ix, qi) = <B(ci), LP) >

is a Hermitian bilinear translation-invariant positive-definite distri-

bution. According to Theorem 6 [6, p. 169] there is a tempered posi-

tive measure such that

L (4),4J) = S-4;41dp. for all 4),4) E 19)j(Rn).

We thus obtain a family of positive tempered measures

in Rn.

Lemma 1. There is a positive integer p and a positive

number K such that



V.

There is a barrier sequence [6, P. 161] a corresponding to

U; that is, is a sequence such that

00LE C (U), m = 1, 2,m 0

a > 0 for all mrn-
Alirn (x) = a (x) exists for all x U

0

(x) >A(1+Ix12)-c11-11-1

where A is a positive constant, q1 is a nonnegative integer and

n is the number of variables. Similarly there is a sequence Pm

corresponding to V such that

p* E C0 (V) for all m = 1, 2, ...m

= >0 for all m

lim `(3%. ( ) 30(x) exists for all x E V, and

9 - 1

Po(x) >B(1+1

whereq2 is a nonnegative integer and B is a positive constant.

Recalling that is a positive measure for each in H, we

have
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s(1+lx12)-qi-q
-2n-2 -q -q2-211-2

df,L = I 5(1+IX12

-AlgSa0130(x)dP'0

1 n /Ns

AB I
lim mmm 00

1 I= S lim /c\C dp.AB m 00

1 27.< urns a p dP,t1- AB mmm °°

(Fatou's lemma)
1

I lirn <B( a. , p*
IAB m mm 00

-AT3 I <B(am, I I

-` 00

1 urn 2 1 2
II 11 =ABII g

Let p qi + q2 + 2n + 2, K=1/AB. Then

.11(1+Ix12)-PcIP. Z

for all E H.

Lemma 2. B is tempered. That is, B is continuous on

x of$Rn) in the relative topology induced by V(R) x4(Rn).
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Proof. Let p1 r,
q1

+ n + 1, K1 = 1/A, p2
=

q2
+ n + 1,

K2 = 1/B, where cii, q2, A and B are as in Lemma 1 above.

Let
W1

be the neighborhood of the origin in .41(Rn) given by

= {4) E A: sp 1(1+1x12u )
1P1(1)(x)1

X E 1

and let
W2

be the neighborhood of the origin in /d (Rn) given by

W2 = {* EA sup I (1+1 xi)P24J*(x) < 1}.
XERn 2

With l denoting the inverse Fourier transform, let

and

c-o- -1
U1 = (

U2 W2) CI(R)n)

er. u1 x u2 is a neighborhood of the origin in A x A. Let

(4),o E ef(Thoerx Then

I LO, 101 = I <B(4), >

I S'11)Td11.0 I (141d1-1

1

(2K )( K ) So+15(12)-(Pi+P2)41.

) CA(Rn)
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Given arbitrary E > 0, let

Ul = 2 u, v = v

elEu, 0 E V1, then

0 = 2N7
1

U, 02 = qi E V,

<B(01, 02)t, = I<B(2\17 (1), 2,\!T 4,)t, >

and

1 2
1K

2

2
(KiK2 II ) = II II

Thus

L (4), LP)I = I <B(cb, LA, < 1'4 g 112

and therefore

III- (1), )11 suP{ILeeP, 01: 11 II < <

The associated bilinear form L (4), 41) = <B(c1), > is

symmetric and therefore

Ili_ (43,)11 = 40,011 =4.t,

= 4E <B(4,,

4E II 11 2

ol
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Therefore

11 .1., (0 , ) < E

1 2

and

where pl and

sup 1(1+1x
x E Rn

III- (0 0 )11 <1, 2 E for all E U E V
1 1 2 1

But E > 0 is arbitrary. Hence B is continuous as asserted.

We extend by continuity the continuous map B:Zxoer> B(H)

to a unique map 131: /S x.4 > B(H) which, in view of Lemma 2, is

continuous.

Lemma 3. <13'(4), S'417:1All for all (.1), E X '4
and every E H.

Proof. Let 4, ii E /EC and take sequences
cl)n

and LI, suchn

that cOn > 4) and 4/21 -> lp in the topology of 4 . Note that
/" ..".

LP* > 4)* in the '4-topology. Then
I)n >I). and tp*> 4P:' in then n

d ... ,--.; ....,-topology and therefore also 4);ILP > 44' in /45f . Hence,

2 P1+P2 n n"
) (it.n4J;- (1:44')(x) 1 > o,

are as in Lemma 2. Thus

S"I:1) klAdt.t. (312'dfl S/c1)7:5d1J,n n
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Consequently,

<B (41, og, g> = lim <131(4)n, )g, g>
n.-°0

S"= lim 1)114in = (ixpdf.t

for all (4), 4,) c Ax xr and every c H. Thus

<131(41t Og, g> = kinICI}J.g

on 04. x de. for all g EH,

Recall that R is the ring generated by the compact subsets

R. If ME R, then M is bounded in Rn.

Lemma 4. The family {Fig: g E I-1) of positive tempered

measures in Rn satisfies the following conditions:

(a) For each M E R there is a positive constant Q such

that 1-1.g(m) < Qmii g z for all g H,

(b) 1 /2 1/Z
(M)1 5. [I-tg(M)11 + [111.) (AM

and all g, E H.

for all M R

M) (M) for all M E R, X. E C and tE H.

p.g+r, (M) + (M) = 4.4(M) + (M) for all ME R

and all g, E
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m =

Here

2 P1+P2^7\Q = sup 44( ) AB ,

x E R

where A, B and p = p1 + p2 are as in Lemma 2.

(b) Let C be an arbitrary non.empty compact subset of Ril

Proof. (a) Let M E R and take 4), tj E such that

cIIi E 0Q10 qniCi > , the characteristic function of the set M.

Then

1S(1 2 2
Pl+P2)

-1-1x12 \)(x)(1+Ix1)P2(x)(1+1x1)

< sup [(1+
X E M

112

P2+P1 2 r
(4)(0(x)] ,) (1+1x' 2)-Pdp.t

for all t E H.

and take sequences4)n, gi En It(R11)

and 4i4 x . For all

such that
i)n,?1\in

E off(R11),

E H, we have

<B'(.4)11,n) =S'cr)nndia SeXcdti

Thus B'(4)n, qin) is a positive operator for each n. Since

?1J, X, the Monotone Convergence Theorem implies that
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) 14)

fl fl SXcdP- +1.1 = (C),

(ii)' .11$nTh;ndla = and

(iii) Scl') d iSxCd = (C).n n T1

By the positivity of the operator B(cOn, klin) for each n,

<B'(cOn, o for each vector E H. The generalized

Cauchy-Schwartz inequality yields

/ z 1 Z
<B'(4)n, 4)11X -1""r1 < <EV(4>n, LPri)t,

1/2
<B'(4)n, 4in)11, 11>

Letting n> co and taking (1), (ii) and (iii) above into account, we

obtain

[ (C)]1/2 <(C)]1/2 + [p. (C)]1/2
r1

for all vectors g, 1 E H and all compact subsets C of R11 We

invoke the regularity of the measures : E H) to conclude that

the preceding inequality holds for all sets M in R.

(c) Let C, .rOn and gin be as in (b) above so that 11\1' ri(7-n i Xc

Then
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and

We have

<B'( 4)n 4in)(4-11), +1-1>+ <13?($n,LPn)(-11), -T1>

= <13,t(Sin,4in), + <131(4)n, + <1314,n,14,n)n,

2<BI(.12.n, = <131(cOn, Llin)), X

S'441n?Cpndi.i.
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Thus

I X
2

<B(4)n, = ,51%%cilax

Since

<131(4) kPn)g, = ke\Pri:India SXcd1-1. = (C),

we have

12
1 (C) = (C)

for all compact subsets C Rn and all complex numbers N..

By regularity the preceding equality holds for all M in R.

(d) Let C, 4, pn be as above. Then

dp. I (C)n n +'11 '



+ <B'(4,11, 1> + >+

+ <BT1)n,klin)(--11), <13Vcin, -4in)(-T1),

= 2<13'(4:1n,ipn), >+ 2<B'(ion,i1,11)71,1-1>

Thus

<13'(epn, 4J11)(+1), <B1((lSn, 4111)( -'n),

= 2<Bi(ct.n,Ltin) , + 2<13'((i)n.,,,pn)r),Ti> ,

so that

+ = 2 11%1"Indp. + 2 SIniirindt.tri

Applying the Monotone Convergence Theorem we obtain

1-i4.11(C) + = 21.1(C) + 2i(C)

for all vectors E H and all compact subsets C of By

regularity the result holds for all M E R. This concludes the proof

of Lemma 4.

In view of Lemma 4, there is a unique PO measure E( ) on

R such that p.eM) = <E(M) , for all M E R and all EH.

Lemma 1 implies that E( ) is tempered. Since
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and

L (El ) <BOO,

<B(c1),A, = SdFi for all E H

we have

<B(400A, = <( S'gdE) , for all E H.

Hence

B(EI), LP) = ScllliSdE for all ((I), qi) E ciff(Rn) x00(Rn).

It remains to show that the representation

B(O,)= SiCi4dE

B in terms of the tempered PO measure E( ) is unique.

To this end suppose that F( ) is another PO-measure on R

such that

B(1), kp) = S*E = SaVp-CdF

for all (Elf, 1.0 E Per( Rri ) x00(R11). For each E H set
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v(M) = <F(M), for all ME R. Then is a positive meas-

ure [2, pp. 8,9] and
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(1\)(7,c1 = .11$17d%

for each E H and all functions vit) with 4i ec,0-(Rn). Since

00TRn) is dense in AfEr(Rn) and the Fourier transform maps

4(Rn) onto Ast" ( R n )

S'c'1)7q",ci
ff",a

on "S(Rn). But the Fourier transform is a continuous linear

surjection of Aft (R n) to itself. Therefore

,51(1)tridy. = .51dv

holds on .4"(Rn) and thus also on ,214Y(Rn). In particular, if 4J is

chosen in 015.(Rn) such that 4i 1 on the support of 4), there

follows

S4)dp.g
514)dv

on f3(Rn). But 05(Rn) is dense in CD(R). Hence p. = V,

and the uniques in Proposition 2, Chapter 1, implies that E(-) F().

Therefore the representation

B(.4),4))511.17dE, for all (.1),) Gii(R11) xot:7(R11)



is unique. This completes the proof of the theorem.

Corollary. Given any Hermitian bilinear distribution of

operators B in Rn x Rn that is positive-definite and translation-

invariant, there is a distribution T of operators such that

0B(4, qi) T0,4j* for all (c0,4)) E0--(Rn) xe/5(Rn)

Proof. The unique tempered PO-measure E() obtained in

the proof of the above theorem determines T through

T SHE for every 0 E cia(Rn) .
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4. CONDITIONALLY POSITIVE-DEFINITE DISTRIBUTIONS
OF OPERATORS

The main theorem in this chapter yields a representation of a

class of distributions of operators on cs :/(Rn) satisfying a condition

called conditionally positive-definite. The Fourier transform is

applied to obtain the equivalent and more readily workable notion, that

of multiplicative positivity, on the space Z of entire analytic func-

tions of exponential type on C. We begin with a discussion of the

space Z, its relation to Pf(Rn) and the basic definitions needed

in the study of multiplicatively positive operator-valued distributions.

Kritt's Proposition 2 is restated in terms of Z and applied in the

proof of the main theorem in this chapter.

A. The Space Z

Cn denotes, as usual, the set C1 x x C1, with n

factors, and carries the standard topology. If z E Cn, then

z (zr .. , z ), z. = x. + iy., x., y. E R1, 1 < j < n, and i2 = -1.n J 3 .3

If r = (r,r ) is an n-dimensional integer, thenl' n
ri rn

= z
1

. . zn , and rz = r1 z1+ . . . + rnzn, with

r.z. r.x. + ir. , 1 j < n.3333 3J
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Definition 1. A function 4) defined on Cn is of exponential

type if there are constants a and C such that



1.4)(z)1 < C exp(al ) .

Definition 2. The set Z consists of all entire analytic

functions I) of exponential type on Cn satisfying

I zr.zp(z)l <
ccj) r exp(a

,

for all r. The constant a depends on the function (I) and the

constant C r depends on cic, and r. If (1) E Z then

lzr(Dc1,0)(z)1 < C exp(alY1)

for every r and q, where the constant C depends on r and

[6, p. 22].

Z is a linear space and the subset Z(a) of Z consisting of

all functions in Z satisfying (2) with a fixed value of a is a linear

subspace of Z. We have Z = Z(a).
a

Let {ci)m}: be a sequence of functions in Z. The sequence

converges to zero in Z if every function it. in the
{4)m}:=1

sequence satisfies

(z)1 < c exp(aly1)m
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for some constants C and a with a independent of m (that



is, 4) E Z(a) for all m), and for every r and q,

lim supl(1+1x12)r(DN)m)(x)1 = 0
m--00 x

is satisfied.

Letting y = 0, then z = x; that isz, 2, .,z) = (x1 ,x2' ,x) E R, and (3) above reduces ton

I xr(041.)(x)I < C for every r and q.

Thus the mapping : Z >4(11/1) defines a continuous
Rn

imbedding of Z into A (Rn).

The Fourier transform is a continuous bijection of oe (Rn)

onto itself and carries da(Rn) onto Z. In other words, there is a

unique continuous mapping (the Fourier transform) such that

0.^--) 4)1 n

dense
i((1)) = 4)

Thus Z is dense in . The relations between the spaces

ele), Z and 4' relative to the Fourier transformation are

summarized as follows:

(o) = z, (z) (,e) =4.
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Both cot"- and Z are dense in ,Z) [6, pp. 22-25].

B. Multiplicatively Positive and Conditionally Positive-Definite
Distributions of Operators

Definition 1. The distribution of operators

(4)90-12.n) --> B(H) is said to be conditionally positive-definite of

order s if, for each vector from H,

(1) (D-15Tt,c1)*(1)*) > 0

holds for all (I) E Cr5 ) and all linear homogeneous constant coef-

ficient differential operators D of order s (see [6, p. 176] for

the scalar-valued case).

Let

D
ak

= (-1)/ki akdx dxk

dk
k

lki=s

dk

where

k +...+kndk 1
8

dk l
lk I k1 + + kn

x
k knax ...axn1

and set (Tt,(1)) = <T t> .

(I)

Associate with each D as above the polynomial
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P(X) = (2Tr)-n/2 / ak (-iX)k.

I= s
Then

n/2 k
(X) 2Tr

ak (-iX)

k I .-zs

corresponds to D. In view of the fact that

/^.
d (21.0-n/2(-ik)kT
dxk

k2where (iX)k:Xtvs-,-+(i) )
1(iX.2) ... (iXn) n, there follows

1

n/21.7.DT = PT . Since 4) 4:4) = (2Tr ) 44, Definition 1 above is equiva-

lent to the following:

Definition, 2. The distribution of operators

Ov-+T GU(Rn) > B(H) is conditionally positive-definite of order s
(1).

if, for each vector from H and any homogeneous polynomial

P of degree s, (PPT,IIT":1)) > 0 for all ip E Z. (Recall that

Z(Rn) = Z . )

Definition 3. A distribution of operators on elf5- (or Z or

is multiplicatively positive if, for each vector from H,

(T > 0 for every ci). in caer (or Z or ).

It will be convenient in what follows to have the following
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equivalent statement of Kritt's Proposition 2 (see Chapter 2 ) .

Proposition 2' (Kritt). Every multiplicatively positive

distribution of operators S on Z is given by a tempered PO-

measure E(); that is, S = Lpd E for all 4i in Z. This

situation is described in the following diagram..

subsets of

B(H)

= STicIE = c4iclE

Thus,

= 4idE for every Lti in Z.

Remark. Let
R0 be the ring generated by the compact

Rn {0} and let be a measure defined on R .
0

We

will say that 11 is tempered if there is a nonnegative integer

and a positive constant K such that

(1+ 2)d < KII II for all in H.
>1

SdpdE
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LP



If there is a PO-measure F() on R such that for each E H
0

(M) <F(M) ,

for all M E R, and each of the measures is tempered in the
0

above sense, then the PO-measure F() will also be called

tempered (cf. Definition 2, Chapter 2, B).

Theorem 3. Let T: Z > B(H) be a distribution of operators

which is conditionally positive of order s. Then there exists a

unique tempered positive operator-valued measure F() on the ring

generated by the compact subsets of Rn - {0} such that

I il=1j1s

(k.(kk)(0)

kix dF +
!

1.ThE. . > 0 .
1 3 1+3

k <2s

where a is a function in Z such that a- 1 has a zero of order

2s+1 at the origin, Ek Tk' k I < 2s, are fixed operators,
Z

and Ek' tkt = 2s, are certain fixed operators such that, for all

complex numbers 1i, l it =

cl)(k)(0)
k! Ek

The tempered PO-measure F() is controlled at zero, in the sense

that the corresponding measures p. given, for each E H, by
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satisfy the condition that there is a positive constant A such that

< Ail
2 for all E H.

(1)

(2)

'o<IKI <1

Proof. Let P be any homogeneous polynomial of degree s.

By Proposition 2', there exists a unique tempered PO-measure E

such that

(M) = <F(M), M E Ro ,

T = ,110x)dE
PPLp

for all ip E Z.

For each E H, set L() = <T E Z. Then

L (P-P4J) = <T
PPLIJ

From (1) and (2) we have

L(PP) = <T = <( cP(x)dEPP4J

= (x)d<Ep, = t.c111)(x)dv
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Thus

(3) L(PP) = S(x)dvp , E Z



where is the tempered measure given by v (-) <E

Define (I)on cn by

(1)(z) = z(z), E Z, lk 2

Since iiz z ,

89

= I I s, and z
k 1j2 li1j2= (z ) - ( z - )

2 2 '

1 i 1 ljletting P (z) = z + z , P2(z) = z - z, it follows that
2 2

P1 P' P2 = P2' and (3) above applied to zicIti(z), E Z, yields

t(zick0 = L(P1ID 1qi-P2-132)

= Lt Lt (P2P20

SLIJ(x)dv 4,(x)dv
P1 132

= St1)(x)dvk ,

where by definition the Radon measure Jdv is given by

Sqid-tA - Stpdv..

P1 P2

Note that is not defined as a set function. Thus

dvk

(4)L(z) Siii(x)dvk ,



where the measure

is not necessarily positive. Letk = {x: xk = and set

Ok Rn - r k. Since xk 4 0 in 2k, the mapping

Cg() >qiiw,-4(x)dp.! =

determines a measure in
2k* But

Lb(
zjzk) zjdiA = SqJzkdiA

so that

(4a) FJ,!. on C2 (--)

that is, the measures 4J> S

Then

del

= = (Ril-Fk)

= Rn - = R .
n

In view of the compatibility of the measures there exists

a unique measure Si_dilg on 20 such that

90

p.k. are compatible. Let 2 = 2k.0



we have

(6)

that x = 0

d
k

p.! on E2

as in 3, p. 59]. Returning to (4), it follows that

(5) L(z) = Setti(x)dv! qi(x)dv

qi(x)dvk + tp(x)dvk

f2k Fk

47- S x 11)(x)cli'ik + iii(x)dv!
Fk

$1.2 kx kji(x)clilt + 4J(x)dv

rk

Since xl(tii vanishes in the complement of
Ok

and
E2kC 1.20

tli(x)dp. = xk

E2
0

For Zs, let denote the set of points x E Rn such= rt .

x. = 5,, where 5. = (0,0,...,1,0,...,0), with
3 J J

u. k1 k2 k
1 in the jth position. (Recall that x- = x1 x2 ... xnn, where

the k., 1 <j < n, are nonnegative integers). Taking (4a) into
J

account together with the fad that
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(7)

xkd= x.dv
, j k

rk, j rk, j

we have

O = _yin!
rk, j

and since some x. 0 on rk, j, there follows

S di)! = o.

rk, j

But the set r can be partitioned into the set {0} = f(0, 0, . . , 0))

and a finite number of sets in each of which at least one of the factors

x. 1 0. In view of the fact that
3

dvk = 0

k,j

for every j, it follows that the measure

is concentrated on the set {0}. Returning to (5) we have
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L ( =

Ss-2

Since .0(z) = zictli(z), Lti E Z,

xictli(x)dp.

therefore (8) may be written as

(k)0)L (z)=S (1)(x)dia + ak

0

whenever O = zk E Z, 1k1 = 2s. The fact that each derivative

of order j, Iii= Zs, of the function cl) = zkIll vanishes at the

origin if j k implies that (9) can be written as

(9)

xlcox)4t tp(x)dv
{0} k

xkLii(x)dp. + qi(0) U dv.
{0} k

Thus,(8)k k(8)L (z) x qi(x)dp. +
akkli(0)

where

(8 ) =dv, lki = 2s.
{0} 1`.

1k1 = Zs, 00) - 4Pc)(°) ,then and
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(10) 4)) = Lli(x)dp. +
V a(k)to)
L k k!

0 Ik1=2s

for all functions 4) of the form 4)(z) = zktp, = Zs, for some

choice of 4) E 2, and where

= dv, = 2s .
{0} k

Since the right member of (10) is independent of k (the

dependence is on s), (10) holds by linearity for all functions 4) of

the form

dp(z) = zicc!) (z), E Z.

1k! 2s

Lemma is a positive tempered measure for each g E H,

Proof. Since

and

xkdt.J.k =

on 12 it follows thatk'

94



because both sides vanish on rk - {0}. Choose k = 2j, 1j1 = s, so
2 j 2j2 2j

that xk = xl x2
... xn . Since T is conditionally positive ofn

order s, z2jT is multiplicitively positive. Proposition 2 implies

the existence of a tempered PO-measurewhich represents

z2jT in the sense stated in that proposition. The associated family

: E H} consists of positive tempered measures. Thus there is2j

an integer paj > 0 and a constant K2j > 0 such that

< K .11 11

2 for all g E H.3 23

The fact that x dtig - dvg and dvg is positive for every g2j

and every j implies that the measure is positive for every

g

To establish that cl.p.g is tempered, choose

k = 2(0, 0, , 0, s, 0, ,0) with s in the ith position. Since

1

{x: x > 1} C LI{x: x I > }i
1

2j 2s
dp.g is positive and x = x. > I Ins, we have

3.

on Rn - {o}
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(1+Ixj2 )-P2j< n

-132j< n (1+1x!2 ) dv
23

0

< nsK2j 11

2

for all. E H. Thus

2 -132i2
1}(141x1 )

d <11

for all H, where A is a positive constant. Therefore the

measure 1.1. is tempered.

Lemma 2. Let Bo -= {x: 0 < x I < 1}. Then there exists a

constant K < Co such that

<llll, 1j1 s, for all EH.

-P2 23 4.3 g0+1.1 )

> 1 n

-P2(1+1x12)
xiLl> 1 A/ n

2j
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9 7

for all

Proof.

Recall that

Hermitian form

2 p2j ,2,-P2j 2j
= (1+1x 1) (1+13(1 ) x

dv2j
BO

-P .

$1
(1+1x1 2) 23c1vt2j

P2j 2 P2j< 2 S 11) dv2j
Rn

P .

<2 23K2.IIII2

BO

132iin H. Thus K = 2 3K..

= dvt , Ikl = 2s (see (8a) above).
{0} k

Lemma 3. The numbers
ak, lki = Zs, are such that the

a.1 . is positive-clefinite (see [6, p.184]).
1+j 1 3

Corollary.

x
2s

A11012
BO

for all t E H, where A is a positive constant. This follows

from the fact that the integral above is a finite linear combination of

integrals of the form occurring in the statement of Lemma 2.



(ii) (pi:) =

(iii) 0 <$I ldiA
S P

I il =lit =s

I

=s s

i+i
(z

11.11..510(c)av.wr every E H.
1 3 i+3

Since (i) and (11) hold for every
$

in Z,

S11.71.i+j 1 3

S. In particular, (iii) holds for S = {0}. In view of the

fact that .51ldv = a. we have
{0} i+j i+j

< 2 a. .11.11.
1+3 1 3

I il I =s

for all complex numbers n i =I j I =s.
1 j

The preceding results may be summarized as follows:

For every vector E H,

for any compact set
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Proof. There corresponds to the homogeneous polynomial

P(z) n.zi of degree s a positive measure 011) (see (3)

lil's
above) such that

(i) L(PP) = SO(x)dvp for all E Z. We also have



2s <A 112

for all E H (that is, 1.1. is controlled at zero). In addition

there is a nonnegative integer p and a constant K > 0 such that

- 1122s
(1+1x12) Pdp, < II

for all E H. Moreover, the numbers
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L) +
ak (I)(kk)!(0)

0 jkl=2s

for all functions 43 of the form

4)(z) zkc/D (z),

=2s

(134k E
Z. There is a nonnegative integer p and a positive constant K

such that

(1+1,c12)-Pdp, <
Ix > 1

for all E H. (that is, is tempered) and



are such that the Hermitian form

definite.

ak = dv, , iki = 2s,
{0} 1`

T1.11.a.
1 3 i+j

iHiIs

The set of functions (13, of the form

4:1(z) = zkk(z), E Z,

is dense (in the Z.-topology) in the set of functions in Z having a

zero of order 2s at the origin [6, pp. 194, 195]. Let

(k)(0)
(.4)) = ci)(x)dp, + ak k!

0 lki=2s

for all functions cl) of the form (12). Then L is continuous in

the topology of Z [6, p. 194]. Since L on the set of

functions of the form (12) and this set of functions is Z-dense in the

set of functions in Z having a zero of order 2s at the origin, it

follows that (10) holds for all functions in Z having a zero of order

2s at the origin.

Let 11E Z be arbitrary and let a be any fixed function in Z

such that the function a - 1 has a zero of order 2s + 1 at the

origin [6, p. 177, footnote 4]. Then

is positive-
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(14) 0(z) = 43(z) - a(z)
Ikl<2s-1

has a zero of order 2s at the origin. Hence,

0(k)(0)L(e) = 9(x)dp. +
ak k !

0 1k1=2s

Since 0(k)(0) = (01(k)(0), I k I = Zs, we have

L (0) = 9(x)cl.[J + a 4) (k)(°)k k!
0 Ik1=2s

Taking (14) into account there follows

L) = L (9) +
(k)

11) 1(0) 1_, (zka,) .

NI <2s-1

Set

ak = L

Then we have

LAO =
(i)

= [4)(x)-a(x)

0

, 0 < <2s-1 .

(0(k)(0) k
k! z
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0(k)(0) ki (k)
ci) (0)x (x)+k!L ak k!



(k)(0)(20)
ak k!

lid< Zs

Set

Proof. Since ak = L (zka) = <T for 0 < di
z

it follows that

<T k >1 < IT k 1111 112 Mk
112,

where M IT II < COsince B(H). For lk = 2s,
Z CL z a

for all

(11 E
({0})11+11EP2({0})11

)11 11

1

-M jli
31

where

Mas = 11Epl({0})11+11EP2({0})11

H .

=

IS{0}

S dv -5dv
{0} P1 {0} P2

I

= 1 <E ({0}),
131

- <E ({U}),
P2

1

< 1<E ({0})
P1

>1 + I <E ({0}) ,

P2
>1

< 11E ({0})11 112
4-11EP2({o})1111

112
P1
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Lemma 4. Let cl) E Z > 0 and 4,(k)(0)1
<

0 < I kl < 2s. Then there is a positive number M such that



Then

k!I / (1)(k)(0) akl
1k! <2s

M.
Ikl<2s

< 1,0(k)(0)1
k! takI

1k! <2s

< 1-1 I akI . .'11\411 112

1k <2s

Lemma 5. Let {(j) } be a sequence converging to zero in Z

and let

(k)
,4)m. (0)

em(Z) = 11)m(Z) - a(z)
Id zk

iki<2s-1

where a is a fixed function in Z such that a- 1 has a zero of

order Zs + 1 at the origin. Then the sequence
{19m}

converges

to zero in Z. This is clear and the proof is omitted.

The functions 0 in the preceding lemma have a zero of

order 25 at the origin and therefore

Bm(z) = z 41m,k(z), m, k E Z

1k! 2s

[6, p. 194]. Since Om converges to zero in the topology of Z,

M =
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given any fl > o there is an N such that for m >N,

(23) 10m(x)I < 111x122%
(1+1x1-)P's

(24) L ((j)g m

2
Pdp.g < for all g H.

(k)
,c1) (0) -m

xk
k !

s -1

d

[6, p. 185].

(k)
cOrn(0)

ak k!
11(1<2s

Since d >0 in Z, given T1 >0 there is an
N1 such that
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Such a constant exists because is tempered (Lemma 1).

Then

Lemma 6. (1)(w.-->T,:Z B(H) is tempered. That is, T is

continuous on Z in the relative topology as a subspace of

Proof. Let (t) be a sequence of functions of the form (22)

converging to zero in the topology of , and let 1

4(K'+1\41)

where M' > M with M as in Lemma 4, and K' is a positive

constant, K' > K, K as in the Corollary to Lemma 2, such that for

some nonnegative integer
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Ici)(mk)(0)1 <1, IkJ < Zs, for all m >N1. By Lemma 5, 0m
>0

in Z. Given the same Ti as above, there is an Nz such that (23)

holds for all m >N . Let N = max{N 1, N2}. Then for all m >N,

(k)

0d + )111 (0)

k!
S2

0 Ik1=2s

Thus

<1K II 112

(x)Idp. +

Ik1.5_2s

2
28(1+IxI2)-Pdp. +111\111

1

(K+M)I1 4 2-112 - 2 4114(1<t+Mt)

Thus

1

I<T >1 < 112 for all E H,
(1)m

and therefore

T ,k>1 II II XII for all X in H,
(Om

from which it follows that

TII= sup{I <T X>
(Oni

(k)
cOm (0)

k! aki

110 5_1, 11x11 1



(27) IT II < 1 for all m >N.
(I)m

If II T II 4> 0, then there exists an E > 0 such that IIT E

(I*

But then II T2 2, contradicting (27)

7 Pria

for j = 1,2,3,...

for the sequence (ID > 0. Therefore
E M

3

tempered.

The situation now is as depicted below

where T is the unique extension of T.

Lemma 7. T has the same form on that T has on Z.

That is, for each tE H,

as before.

(cI)) = <7 = e(x)dlj +

k 1 s

>0 and T is

(ID(k)

k! ak
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for all cl) E All other symbols have precisely the same meanings
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Proof. Choose any 4) E 4 and let 4)rn be a sequence from 4
converging to 4) in the space ,./er. Then

sup1(1+1x1 >0

and therefore

sup (1+1x12)-P(0m-0)(x)I > .

Since

(x)I <111x,2s(1+Ix12)-p-sm

the Bounded Convergence Theorem implies that

S0 d >
-

0dia for all in H.
0 m 120

Therefore

4)(k)m. (0)
urn0in(x)dil + lim

k! akm 00m00000 I k I < 2s

rn-(15)(x) I

cl)<T = Urn <Tthm yrn

(k)
ciSnar ( 0 )

= lim
m--1"00

0m(x)dp.
- lki< 2s

k! ak



[ispri (1\4)31/2 Own 1 /2 (AI)] 1 /2

+11 (m) + (m) = 21-1- (M) + 2N- (M)

p.c (M) = 2p. (M) for all c E C, and

11(M) for all E H, where the positive con-

stant km depends on the set M.

Proof. (a) Let C be an arbitrary compact subset of
0

and let r = d({0}, C) >0 denote the distance between the sets {0}

and C. Let x denote the characteristic function of the set C,

and choose a sequence s:Pm from ,Z such that

(1)ni E OCi and supp .4)ni C Q for all m, where Q is a

compact subset of C20,

(k)cbm (0) = 0, I k I <2s, for all m, and

(1)m`1 xC.

= 0(x)d.p.

[4:1)(x)-a(x)
C2

(k)(0)
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(I)(k)(0)

k ! ak
< 2s

c13.(k)(0) k-
k! X k! ak

0 j k < j kj < 2s

Q. E. D.

Lemma 8. For every pair of vectors ri in

generated by the compact subsets of

H and all M

Cio
Rn - {0},in the ring

Ro



Since

= 0(x)dp. +

Qo I k< 2s

(13,(k)(0)

k! ak

for all in 4', and therefore for all (13 E o it follows that

- m(x)dp. = ,51 CLix)dp.
(i)m

E2 Q0

Thus <7 > 0 for all
(i)m

> > o and <7
4)m 4)m
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= (C) > 0 for all in H.

m and each E H. Similarly,

), +/-1> > 0 for all m and all

vectors in H. By the Monotone Convergence Theorem,

ScOrndp, "

and

Scl)mdp.11
p.ri(C) .

Applying the Generalized Cauchy-Schwartz inequality, we obtain

<T (+1.1), _1_,11>1/2 <T ri,1 >1 /2

4)m 4)m 4)m

for all m and all 1 in H. Letting m> 00 yields



< sup 1(1+
xEC1

112

-1-1(c)]
1 /2 <(C)]1/2 [11 (C)]

for any compact sets C in By the regularity of the measures
0

involved, (a) holds for all M E R.

Parts (b) and (c) of the lemma are established in a similar

manner. To establish (d), fix M E Ro. Since the ring Ro is 'gen-

erated by the compact subsets of 00, there is a compact set Q

in S1 such that Q D M. Choose a function (1) satisfying
0

(1) 1) E Ot52 SUPP C Q,

(ii)

Then

L(Q) = Sixoc4L

cp(x)dp. =
(1)(x)(i+ix.12)-plx12so+ix12)pl -2s

2) x-2sci)(x)i ,51 2s( 1+1 x12)-pdf.i

for all E H, (Lemmas 1 and 2), where

1-L(1\4) <

110



k = sup 1(1+15(12)-px-2,s(I)(x)i <00
xEQ

since 0 fi Q. Thus

(M) < k 11 for all E H,
M

where k = kK. Q. E. D.

In view of the preceding lemma and Proposition 2 of Chapter 1,

there is a unique PO-measure F(-) on the ring Ro such that, for

each E H,

p. = <F(M), for all M E Ro .

Moreover, F(,) is tempered, by Lemma 1, and controlled at zero

in the sense of Lemma a.

Recall that the measure dvk was defined by qi tA"-iStlidv! ,

dv
P1 P2

refer to the polynomials P 1(z) (zi+zj),
2131, P2

P (z) = (z1-e), 1i1=1j1=s. Thus v(M) = v(m) - IA (M). The
1

2 2 k pl p2
corresponding operator valued measure Ek, 1k1 --, 2s, is defined

by

111

with

where



In particular,

<E

and by Lemma 3,

.E. >0
1 3 1+3

I il=1,i1=s

for all complex numbers Ti., 1., I il =hi =s.
3

Recalling that L(4) <T where

L =[a (I)(k)(0) 11 (I)(k)(0)
k!

x dp. + k! ak
,

0 Ikl<2s-1

for all E H. Thus

SE)

= <(E
(M)-EP2(M))

, = AM).
P1

<Ek({0})' v({0}),

s-

(k)(0) k
k! X

dF +
(k)

cl) (0)
k!

112

and that

<T

M = <F(M), , M E Ro'

cl)(k)(0) k

for all

dF +

< 2s

E H, we have

(1)(k)(0)=<(..r[cpa. k! x
iki < s -1

k! Ek



where F() is the PO-measure on R ; a is a fixed function in
0

Z such that a - 1 has a zero of order 2s + 1 at the origin;

Ek Tk < 2s, are fixed bounded operators on H, and for
z a

Ik = 2s, Ek = Ek({0}) are bounded operators on H such that

>0
1. 3 i+j

for all complex numbers Ti. with I I j1=s; that is,
1 j

< ( > 0

1 1=1:31=s

for all E H. This completes the proof of the theorem.

Theorem (Converse of Theorem 3). Let F be a positive

tempered operator-valued measure on the ring R0
generated by the

compact subsets of Rn - {0} such that

Mc Ro; Ek (1k1 = 2s) operators on H such that for all complex

numbers Ti.,

I
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for all E H, where I.J. (M) = <F(M), E H, for all



and therefore

= sE(X)-CL(X)

.E. . > 0 ;j 1+3

I Hil=s

Ek (Ikl < 2s) certain fixed operators on H, and a a fixed
'

function in Z such that the function a - 1 has a zero of order

2s + 1 at the origin. Then T defined by

,k(k)inl
(13.(k)(0)

k! xi] dF +
k! Ek

I k I s-1 Ikl<2s

is a distribution of operators on Z which is conditionally positive

of order s.

Proof. It is clear that T is a distribution of operators. Let

P be any homogeneous polynomial of degree s. We need to show

that T is a positive operator for any cl) E Z. Since P-1=-N)74)
PP(I)(1)

has a zero of order 2s at the origin, (PP,13.713)(k)(0) = 0, Ikl < 2s-1.

On the other hand for k = i + j with I k I = 2s,

(p1;;)(k)( ) (i+ j), (ID (P.)

1.
: (0) (P(j)(0)

J
i+j=k

li1=1:11's
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T
PPqa.t.

(P)(i)(0) (P) )

1. J i+j

Since IP'012 >0 and F is a positive operator-valued measure,

SI Pq) 2dF is a positive operator. Moreover the operator

(P(I))(( 0 ) (13 d?)()
1. 3

Iii =s

is positive. Hence

for every in H which means, by definition, that T is

conditionally positive of order s.

115



Press, New York (1967).

Gerfancl, I. M., and Vilenkin, N. Ya., Generalized Functions,
vol. 4, Academic Press (1964).

Ko-mura, T., Semigroups of Operators in Locally Convex Spaces,
Journal of Functional Analysis 2, 258-296 (1968).

Kritt, B., Spectral Decomposition of Positive and Positive-
Definite Distributions of Operators, Bulletin De L'Academie
Polonaise Des Sciences, Serie des sciences math. , astr. et phys.,
16 (1968), 865-870. MR 39#3307.

, Generalized Pseudo-Hermitian Operators,
Proceedings of the American Mathematical Society, Volume 30,
Number 2, (October, 1971).

Treves, F., Topological Vector Spaces, Distributions and
Kernels, Academic Press, New York- London (1967).

Yosida, K. , Functional Analysis, second edition, Springer-
Verlag New York Inc. (1968).

BIBLIOGRAPHY

Amrein, W. O. , Georgescu, V., and Jauch, M., Stationary State
Scattering Theory, Institute of Theoretical Physics, University
of Geneva, Geneva, Switzerland (9. X11. 70).

Berberian, S. K., Notes on Spectral Theory, Van Nostrand,
Princeton (1966).

Friedman, A. , Generalized Functions and Partial Differential
Equations, Prentice-Hall, Inc- Englewood Cliffs, N.J. (1963).

Gelrfand, I. M., and Shilov, G. E. , Generalized Functions,
vol. 2, Academic Press, New York (1968).

, Generalized Functions, vol. 3, Academic

116




