
AN ABSTRACT OF THE THESIS OF

LIN,PEI-CHEN for the degree of MASTER OF SCIENCE

ETRCTRICAL&COMPUTER

in ENGINEERING presented on June 8, 1979

Title: MULTIPTF, OUTPUT COMBINATIONAL NETWORK

MINIMIZATION

Abstract approved: Redacted for privacy
Dr. V. Michael Powers

An important step in the design of digital networks

lies in the derivation of the switching formulas which

describe the combinational logic networks in the system.

In most large systems the number of gates and the

number of connections are major factors that affect the

cost of the system. An algorithm MOMIN which minimizes these

two factors according to a selected cost function in two-

level, multiple-output combinational logic networks is

presented in this thesis. Attempts have been made to solve

the problem in two aspects: (1) Minimal solution, (2) sub-

minimal solution. (2) is described in detail and (1) is

implemented.

A computer program MOMIN implemented in FORTRAN has

been prepared which automatically derives a set of minimal

cost switching expressions describing the given multiple-

output combinational logic network,

Multiple-output Combinational

Network Minimization

by

LIN, PEI-CHEN

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed June 8, 1979

Commencement June 1980

APPROVED:

Redacted for privacy
Professor of Electrical & Computer Engineering

in charge of major

Redacted for privacy

Head of Department of Electrical & Computer
Engineering

Redacted for privacy

Dean o Graduate Schbol

Date thesis is presented June 8, 1979

Typed by Elee Anita Ann for LIN,PEI-CHEN

TABLE OF CONTENTS

I. Introduction 1

A. Statement of the Problem 1

B. Organization of Thesis 2

II. Background Concepts 3

A. Algebraic Reduction 5

B. Graphic Simplification OOOO 00 OOOOO OOO O 6

C. Quine-McCluskey Method 13

D. Topological Method 14

E. McKinney's New Approach 15

III. The Algorithm 18

A. Definition and Terminology 18

B. Cost Function 27

C. Overview of the Algorithm 30

D. Construction of the RAD Table 33

E. Construction of the PI Table 37

F. Removal of Essential/Pseudo-Essential PIs 48

G. Cyclic Problem 53

H. Removal of Redundancy 58

IV. Implementation 62

A. Computer-Aided Design 62

B. Results and Comparison 67

TABLE OF CONTENTS (Continued)

V. Summary and conclusion 77

BIBLIOGRAPHY 79

Appendices (MICROFICHE IN POCKET)

blackp
Typewritten Text

blackp
Typewritten Text

blackp
Typewritten Text
Microfiche has been
converted to a pdf
and attached as a
seperate file.

blackp
Typewritten Text

blackp
Typewritten Text

LIST OF ILLUSTRATIONS

Figure

2.1 3-variable Karnaugh map

2.2 Simplification with Karnaugh map

2.3 Six patterns for which four minterms may be

combined

2.4 Four patterns for which eight minterms may be

combined

2.5 4-variable Karnaugh map for 3-output functions 11

2.6 Single-output minimization results 11

2.7 Multiple-output functions minimization using

Karnaugh maps 13

2.8 Multiple-output minimization result 13

2.9 Cube representation 14

2.10 Required-Adjacency-Directions 17

3.1 3-variable Karnaugh map 23

3.2 Search for a new PI 23

3.3 Circle RAD's 23

3.4 Branching 23

3.5 Expansion 23

3.6 Self-construct PI 26

3.7 General flow of algorithm 31

3.8 RAD's for a 3-output 4-variable function 26

3.9 Complete RAD table for a 3-output 4-variable

function 36

3.10 Typical PI table 38

Page

7

7

9

LIST OF ILLUSTRATIONS (Continued)

Figure Page

3.11 Flow diagram for PI table construction version(A)39,40

3.12 Information loss during PI table construction 45

3.13 Flow diagram for PI table construction version(B) 46

3.14 PI table 49

3.15 Reduced PI table after all essential PIs and

covered TFs have been removed 51

3.16 PI table after row deletions 51

3.17 PI table after column deletions 51

3.18 A cyclic problem 54

3.19 Search table 54

3.20 Search tree for minimum solution of cyclic problem 55

3.21 A complete search tree of a 4-PI cyclic problem 54

3.22 PI table of a 2-output function 61

3.23 PI table after first-stage deletion of dominating

columns 61

4.1 Program structure 63

4.2 General flow of algorithm 65

4.3 Typical array SUBFN for a 3-output 3-variable

function 66

4.4 Sine generator 69

4.5 Two possible same cost minimal solutions for Z4 70

LIST OF ILLUSTRATIONS (Continued)

Table Page

4.1 MOMIN and DSA performance comparison for

single-output minimization 74

4.2 Performance of multiple-output minimization 75

4.3 Performance of multiple-output minimization 76

Multiple-output Combinational

Network Minimization

I. Intorduction

A. Statement of the problem

The design of digital networks involves many aspects,

in which circuit minimization is one that has to be con-

sidered first before considering any hardware implementation

if cost and volume of product are important factors. However,

the minimization of the number of input connections as well

as the number of gates is now most useful in the design of

circuit compenents, such as NISI and LSI devices, and circuits

that are not available in chip form. The traditional tech-

niques are not very useful in the design of large circuits

using MSI and/or LSI devices as components to achieve a

low cost syatem.

Circuits minimization includes single-output and

multiple-output networks. Since single-output networks

are rarely seen (at least comparatively) in the real world,

multiple-output network minimization becomes more important.

The main computational distinction between the

minimization of single- output and multiple-output networks

is that the definition of prime implicant must be broadened

to contain multiple-output prime implicants (MOPI) which can

2

cover cells in more than one output function. Thus the

advantage of using MOPI's is that once generated they can

be shared and combined to implement different output

functions. It has been shown that the network cost of an

m-output network may be significantly reduced(over a separate

minimization) by considering the irredundant cover including

NIOPI's. In this thesie, a multiple-output function minimiza-

tion algorithm MOMIN is presented to see its efficiency

and applicability.

B. Organization of thesis

The remainder of this thesis is devided into four

chapters, each of which contributes a portion of the under-

standing of the MOMIN algorithm. Chapter II contains an

intorduction to the background concepts involved in develop-

ing MOMIN. Chapter III describes the MOMIN algorithm in

detail. Chapter IV gives demonstration of the effectiveness

of the algorithm; the minimized multiple-output network

costs are compared to the summation of individual single-

output network costs. Some conclusions are made at the end.

A summary is in chapter V. Finally, the appendices contain

a listing of the FORTRAN program MOMIN as well as forty-

three sample problems all in computer output form.

3

II. Background Concepts

This chapter introdu ces some important concepts that

involve switching algebra as well as some related works

accomplished in the area of switching function minimization.

Switching algebra (or Boolean algebra), first studied

by GEorge Boole', is the mathematical foundation of switching

theory and logic design. Some of the important terminology

is defined below to assure understanding of the information

presented in the remainder of this thesis.

A switching function is a combination of a finite

number of switching variables (A,B,C....) and constants

(0,1) by means of the switching operators AND(AB), OR(A+B)

and COMPTEMENT(A). e.g. F(A,B,C)=AB+AC indicates the

operation of ((COMPLEMENT of A) AND B) OR (A AND C).

A literal is a switching variable in either true or

complemented form. A, B, A and C in the above example

are all literals. A disjunctive canonical form is a

switching function that is expressed as a sum of product

terms, each of which contains all the switching variables of

the function. For example, F(A,B,C)=AnC+W is in dis-

junctive canonical form, but F(A,B,C)=ABC+10 is not.

'Boole, George, 1815-1864. An investigation of the

laws of thought, on which are founded the mathematical

theories of logic and probabilties. New York, Dover Pub.

Co. 1951.

4

A minterm of a n-variable switching function is a

switching product of n distinct literals. Any switching

function F(A,B,C,...) can be expressed by a switching

expression in the form of a sum of all those minterms which

correspond to a true value for the function F.

A product term I of literals of a switching function

F is an implicant if it implies F. I implies F if F is

true whenever I is true. An implicant I is called a prime

implicant (PI) if and only if there exists no other

implicant I' such that I implies I'. An implicant I is

said to cover a minterm m if and only if m implies I. A

PI is said to be essential if it covers at least one minterm

that is not covered by any other PI.

A true minterm must be covered in any equivalent of

a switching function. A redundant minterm need not be

covered, but may be covered if this allows reduction of

the cost of the representation.

A switching function F of three variables may be

expressed in canonical sum-of-product form, F(A,B,C)= AB +

ABC + AEC +ABC, this function has the true value "1" for

the combination of A, B and C, F(A,B,C)=1010,011,101,111).

Sometimes the minterm notation . is used to express the
1111

same function as F(A,B,C)= m2 + m3 + + m7, where i is

the binary value for 010,011,101 and ill. They may also

be written as F(A,B,C)= E(2,3,5,7).

For easy computation,,numerical representations of

minterms will in this thesis be in octal form. e.g. a

4-variable function F(A,B,C,D) = 2(0,2,4,8,12,13) in

decimal becomesE(0,2,4,10 14,15) in octal.

A minimal sum-of-product form of a switching function

is a switching function in sum-of-product form logically

equivalent to the given function, but implementable with

a minimum of hardware, according to some accounting method

such as;

1) The two-level AND-OR realization of the minimal

sum-of-product form has a minimum number of

AND gates.

2) No AND gate can be replaced by an AND gate with

fewer inputs.

The problem of switching function minimization may be

stated as: Given a switching function, find a minimal form.

Some techniques are introducted below to serve as a probe

into the problems.

A. Algebraic reduction (2)

Minimization of switching functions in canonical sum-

of product form may be performed by application of the

following Boolean algebra axioms:

6

Al Idempotent XX=X X+X=X

A2 Commutative XY=YX X+Y=Y+X

A3 Associative X(YZ)=(XY)Z X+(Y+Z)=(X+Y)+Z

A4 Absorptive X(X+Y)=X X.4.(XY)=X

A5 Distributive X(Y+Z)=(XY).1,(XZ) Xf(YZ)=(X+Y)(X+Z)

A6 ZERO and ONE elements

X1=1X=X X+0=04.X=X

A7 Complement X7=0 X+2=1

The switching function F(A,B,C)=ABC+ABC+AnC+ABC may be

reduced by applying the above axioms as:

ABN-ABC+ASC+ABC=AB.C+ABC.I.ABC+ASC A2

AB(C+C)+AC(B4.11) A5

raill+AC A2 and A7

B. Graphic simplification (5)

There are several graphic simplification methods, such

as Venn diagram(6), Veitch diagram(5) and Karnaugh map(6),

among which, the Karnaugh map is probably the most convenient

one to use. Fig. 2.1 shows a 3-variable Karnaugh map.

The Karnaugh map is constructed such that minterms combin-

able by Axiom 5 and Axiom 7 are adjacent on the map. The

preceding 3-variable function is shown plotted on the Kar

naugh map in Fig. 2.1(d) with the minterms of the function

represented on the map by a one. It is noted in Fig. 2.1

(b) that no squares differ from any adjacent square by more

A 1

A

B

00 01 11 10

C

(a)

B

0 1 3 2

5 7

(c)

,

TOO

000

ABC

001

ABC

011

ABC

010

AEC
4
100

AEC

101

ABC

111

ABC

110

A

(b)

ABC

1

ABn

1

AEC ABC

1 1

C

d)

Figure 2.1 3-variable Karnaugh map (a) Original (b)

Terms entered (c) Decimal equivalent (d)

F(A,B,C)=ABC+ABC+AEC+ABC

A

D

A

1 1

C

1 1 1
C

A

1 1

1 1

1 1

1

B B B

(a) (b) (c)

Figure 2.2 Simplification with Karnaugh map

(a) F(A,B,C,D)-E(0,1,7,16,17)

(b) F(A,B,C,D)=Z(1,3,11,13,15,17)

(c) F(A,B,C,D)=B10,11,12,13,14,15,16,17)

8

than one variable; thus makes the combination of any adjacent

squares possible. In other words, the Karnaugh map shows

all the adjacencies that exist. For convenience, we shall

call each square in the Karnaugh map a o-cell.

Following are some basic properties of the Karnaugh map

minimizations:

1). Any adjacent pair of o-cells marked by "1" in

the Karnaugh map can be combined into one term,

and one variable is eliminated. In Fig. 2.2(a),

minterms 0,1; 16, 17 and 7, 17 are adjacent,

pairs, they are combined to form three terms (o,

1), (16,17) and (7,17), or equivalently Asn, ABC

and BCD. They are called 1-cells.

2). If four o-cells that are marked by 1 form one of

the six patterns shown in Fig. 2.3, they can be

combined into one term, and two variables can be

eliminated. In Fig. 2.2(b). patterns (c) and

(e) of Fig. 2.3 are recognized, the combined

terms are (1,3,11,13) and (11,13,15,17), which

correspond to $D and AD, respectively. They are

called 2-cells.

3). If eight o-cells that are marked by 1 form one

of the four patterns shown in Fig. 2.4, they can

be combined into one term, and three variables

can be eliminated. In Fig. 2.2(c), pattern (a)

of Fig. 2.4 is recognized, the combined term is

1

1

1

1 1 1 1

9

1 1

1 1

(a) (b) (c) (d) (e) (f)

0 indicates spacing

Figure 2.3 Six patterns for which four minterms

may be combined

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

TO 0
loo
1 0 0

D

1 0900
1 00 00

11 1 1 11

(a) (b) (c) (d)

Figure 2.4 Four patterns for which eight minterms

may be combined

10

(10,11,12,13,14,15,16,17), which corresponds to

A. It is called a 3-cell.

Karnaugh maps can be used to simplify multiple-output

switching functions. The essence lies in the usage of terms

common to more than one output functions. A 3-output 4-

variable switching function is shown in Fig. 2.5 with

Fi=2:(7 11,13,15,16,17)+d(5)

F2 Y(0,1,2,3,6,7,17)

F 31:(0,1 ' 2,6 P 7 t 10 ' 11 , 16,17)44(3,4)

If we minimize them individually, we obtain

F1 (11,13,15,17)+(5,7,15,17)+(16,17)

F2 (0,1,2,3)+(2,316,7)+(7,17)

F 3 (0,1 2,3)+(0,1,10,11)+(6,7,16,17)

If individual networks are constructed for each output

function, a total of 9 AND gates and 3 OR gates is required

as shown in Fig. 2.6. It is noted that the PI(0,1.2.3)

appears in the realization of F2 and F3. It may be shared

to reduce the number of AND gates required to 8, Further,

if we consider the simplification of F
1,

F
2
and F

3
at the

same time, as shown in Fig. 2.7 we obtain

F1.(7,17) +(16,17) +(11,13,15,17)

F2= (0,1,2,3)+(2,3,6,7)+(7,17)

F 3 (0,1,2,3)+(2,316.7)t(16,17)+(0,1 10,11)

It is clear that PIs (7,17), (16,17), (0,1,2,3) and (2,3,

6,7) ore each shared by two output function, thus reducing

11

A

4 14 10

1 5 15. 11

3 7 17 13

2 6 16 12

B

(a)

A

D

1,
1

D
1

1 1 1 1 1

1 1 1

B

(b)

B

(c) (d)

Figure 2.5 4-variable Karnaugh map for 3-output

functions, (a) Number representation

(b) F1 (c) F2 (d) F
3

Figure 2.6 Single-output minimization results,

9 AND gates and 3 OR gates are

required

A

d 1 1

1 11
C

1

1

1 11 1

D

1 1

B

C

A

-r 1

1

1d 1

1 1

B

12

Figure 2.7 Multiple-output functions minimization using

Karnaugh maps

A
B
C

DA

B
C
D

A

C

Figure 2.8 Multiple-output minimization result,

only 6 AND gates and 3 OR gates are required

13

the total number of gates required to 6 AND gates and

OR gates, this is shown in Fig. 2.8.

C. Quine-McCluskey method

Graphic simplification method becomes less convenient

and less effective as the number of variables increases.

In practice we often encounter logic design problem that

involves variables more than four, in this situation the

Karnaugh map method is difficult to apply. The Quine-

McCluskey (6) minimization method is applicable to both

single-output and multiple-output switching functions. In

particular, a digital computer can be used to aid the

minimization processes of switching functions with more

than four variables.

The essence of Quine-McCluskey tabular minimization

method

a). All prime implicants are developed by iteratively

examining all of the minterms and the reduced

terms,

example:

F(A,B,C)=7(0,1 4,6)=E(000,001,100,110)

000 is examined with 001,100, since they differ

in only one variable, two combined terms 00-and-

00 are formed (-means 0 or 1), now 001 is

examined with 110, a 1-0 is formed, thus

F(A,B,C)=(0 1)+(0,4)+(4,6)

14

b). Duplicates of prime implicants must be detected

and deleted.

c). A prime implicant table is constructed. Essen-

tial PI's are removed.

D). A covering problem(5) must be solved which in-

volves the deletion of dominated rows and domi-

nating columns as well as the selection of

essential or pseudo-essential PI's.

Since part of Quine-McCluskey's idea will be used, the

details of which will be described in subsequent chapters.

D. Topological method (10)

Some investigators in the field of switching theory in

the early fifty's, such as (10) and (12), viewed the problem

of Boolean minimization as that of operating upon the cells

of an n-cube complex. The 3-variable function, F(A,B,C)=2

(3,4,5,7) can be viewed as the cell system shown in Fig.

2-9. The minterms are viewed as vertices of an n-cube,where

for the 3-variable function n=3. The vertices identified

in Fig. 2-9 described three 1-cells. By definition (12),

the unit n-cube is made up of cells described as follows:

0-cells or vertex-- a point A

1-cell -- a line segment

2-cell -- a quadrilateral

3-cell -- a hexahedron

k-cell -- a k-dimensional
figure, k4n B

Figure 2.9

15

Two cells of the same dimension are said to be adjacent

if their representations are identical in all but one co-

ordinate position. For example, 0-cells 3 and 7 are

adjacent. The basic minimization idea is the same as

graphic simplification if the adjacency of each cell is

identified. Thus in Fig. 2.9 the 0-cells 3,7;5,7 and 4,5

are adjacent pairs. They are combined to form 1-cells

(4,5), (5,7), (3,7). Since (4,5) and (3,7) are each essen-

tial with respect to vertices 4 and 3, thus (5,7) is not

required, the final solution for this function is F(A,B,C)=

(30)+(0,5).

E. McKinney's new approach

Melvin Howard McKinney, Jr.(7) in his dissertation

presented an algorithm as well as new ideas for the minimiza-

tion of single-output switching function without finding all

prime implicants. The algorithm is directed toward the

determination of a minimum covering while performing the

least possible processing. Only those prime implicants that

have to be produced while finding one minimum-cost cover for

the function are identified.

The input minterms are categorized into three subsets.

Minterm mi is a member of:

i) a true form (TF) if F(mi)=1

ii) a false form (FF) if F(mi)=0

iii) a redundant form (XF) if F(m.) is not specified.

16

The algorithm first derives RAD's (Required-Adjacency-

Direction's) for each TF Select one TF as a starting point

and combine it with these RAD's to form the largest PI that

covers it. Once a PI is identified all TF's covered by this

PI become XF's. Then select the next uncovered TF as a new

starting point and perform the previous operations. This

process continues until all TF's become XF's.

In an n-variable function every minterm is adjacent to

n minterm. The direction of adjancency from a minterm mi is

defined as the set of signed integers {±2k1 k=0,1,2,.»

n-1), which,when added to the value of i, gives the sub-

scripts of the n adjacent minterms of mi. Each ak is posi-

tive if the kth bit of the binary form for i is zero and is

negative if that bit is one. If m4 is a TF then the direc-

tions of adjacency leading to another TF or XF is a RAD of

m. The number of RAD's immediately determines the order of

largest PI that may possibly cover that TF. The search for

PI's begins at a TF having the fewest RAD's for easy

identification of selectable PI'S;

example:

Minimize F(A,B,C,D)=B0,1,4,5,12,13.16,17). The

function's RAD list is in Fig. 210 (a)Since all

TF's have two RAD's, thus mo is arbitrarily selected

as the first TF to be expanded. Its RAD tree is

shown in Fig. 2.10(b). The search succeeds after all

RAD's have been used. Thus P11(0,1,4,5) is identified.

17

Now TF's 0, 1, 4 and 5 becomes XF's. The next

available TF is 12, again search succeeds after all

RAD's have been used, PI2(12,13,16,17) is identified,

Since all TF's have been covered, the minimized form

is

F(A,B,C,D)=(0,1,4,5)4.(12,13,16,17)

It has been proved in McKinney's dissertation that the

new technique is efficient in the minimization of single-

output switching functions. Interested readers are suggested

to read (7) for more information.

It is the goal of this thesis to modify this method to

use it on multiple-output functions and see how well it per-

forms.

TF RAD

0 +1,+4

1 -1,+4

4 +1,-4

5 -1,-4

12 +1,+4

13 -1,+4

16 +1,-4

17 -1,-4

(a)

(0) (12)

+11 +11

(0,1) (12,13)

+4 +41

(0,1,4,5) PI1 (12,13,16,17) P12

(b)

Figure 2.10 (a) Required-Adjacent-Directions (b) RAD tree

18

III. The Algorithm

This chapter explains the MOMIN algorithm in detail by

first examining some definition and terminology in section

A. In section B, a cost function is defined. Section C

overviews each step used in the MOMIN algorithm. Sections

D to H describe these steps in detail.

A. Definition and terminology

Following is a list of terminology used in subsequent

sections.

1) An n-variable switching function possesses 2n

different canonical terms called minterms. Each

minterm must fall into one of the three

categories:

(a) A true form (TF) is a minterm that must

be covered.

(b) A false form (FF) is a minterm that can

not be covered.

(c) A redundant form (XF) is a minterm that

need not be covered, but may be covered

to enlarge a cell if possible.

In other words, any switching function is a com-

bination of TFs, XFs and FFs. e.g. F(A,B,C)=B

0,2,3,4)+d(1,6) expresses that a 3-variable swi-

19

tching function is the combination of

{4 TFs-0,2,3 and 4

2 XFs-1 and 6

2 FFs-5 and 7

Usually FFs are not listed, since once TFs and

XFs of a switching function are specified, FFs

become self-evident.

2) Output function: Any output expression of a

multiple-output switching network is an output

function.

3) Subfunction: The intersection of any 2,3,...or m

outputs of a m-output switching functions, in

addition to the m outputs, form the subfunction

set. There are m+(m)+(m)+ (m)=2m-1
2 3 '" m subfunc-

tions for a m-output switching function. Example:

A 2 outputs switching function; F11=10,1,3,4,6),

F240,2,4,5,6), then F12, the intersection of

F1 and F2, is given by Flz _=p0,4,6). F1, F2 and

F
12 are subfunctions of this multiple-output

switching function.

4) Lower-level subfunction: A subfunction is said to

be lower in level with respect to other subfunc-

tions if it is the intersection of more outputs.

Example, F
123 is derived from the intersection

20

of F1, F
2
and F

3,
while F

12
is derived from the

intersection of F
1
and F2, thus F

123
is lower in

level than F12

5) Higher-level subfunction: F12 is a higher-level

subfunction of F
123

in the above example.

6) RAD: Any minterm mi is adjacent to another min-

term mj if the input combinations that they re-

present differ in only one variable. e.g. For

a 3-variable function F(X,Y,Z) there, are eight

minterms. They are:

XYZ, XYZ, XYZ, XYZ, XYZ, 2Y2, X42 and RY2

XYZ is adjacent to RYZ, XYZ and XY2.

XYZ is adjacent to XYZ, RYz and RM.

In Fig. 3.1, they are represented in binary form,

it is easy to find their adjacencies.

Every minterm of a n-variable switching function

is adjacent to n other minterm, the directions of

adjacency is defined(?) as the set of integers

{ak}=12k(k=0,1 2,...n-1), which, when exclusive-

ored with the value of i, gives the subscripts

of the n minterms that are adjacent to mi. For

example, with n=3, the /akIset corresponding to

m5 =XYZ=101 is {1,2,4}. When exclusive-ored with

i=5, defines the subscripts of the 3 minterms

that are adjacent to m5; they are mi, m4 and m7.

21

A direction of adjacency leading from a TF to an-

other TF or XF is defined as a Required - Adjacency

Direction or RAD.

7) Search tree method: A new technique, developed by

McKinney(?) used to find PIs in the minimization

of single-output functions is used in the minimi-

zation of multiple-output switching functions.

The RADs are used to expand the origin TF by

successively exclusive-oring the RADs to the sub-

script of that TF. Initially, it produces a pair

of TFs (or a TF-XF pair) that defines a 1-cell(6)

containing the origin TF. Ex-poring a second RAD

with the subscripts of each member of the pair

generates the subscripts of additional vertices

that, composed of a set of four minterms, defines

a 2-cell that is subsumed by the origin TF. Add-

ing additional RADs generates the subscripts of

the minterms of higher ordered cubes covering the

origin TF. Through this process, higher cells

are defined. The Exclusive-or of each RAD

doubles the number of minterms. To decide if a

newly defined cell exists, it is only necessary

to determine if the additional minterms produced

when the last RAD was Exclusive-ored to the sub

scripts of the previous set of minterms are all

TFs or XFs. Any FF appeared in the doubled set

22

indicates that the previous cell was a PI and

terminates the search along that particular

combination of RAD's. As shown in Fig. 3.2, the

search starts from an uncovered TF. A 1-cell

(0,1) which contains 0 the origin TF, is de-

rived by exclusive-or 0 with RAD 1, Exclusive-

oring a second RAD 4 with (0,1), a 2-cell is de-

rived. Since none of its minterms is FF, and

since no more RAD's of TF 0 are uncircled, we

have a PI (0,1,4,5).

8) Related lower-level subfunction: Subfunctions

that are intersection of a subfunction, say Fs,

and other output functions are related lower-

level subfunctions.to subfunction Fs. Example:

For a four-output switching function; F123, F124,

F
1234 are related lower-level subfunctions of

F
12'

9) Related higher-level subfunction: F1, F2, F4, F12,

F14 and F24 are higher-level subfunctions of

F
124 for a four-output function.

10) Circle RAD: It is necessary to circle all used

RAD's in the subfunction, for which PIs are being

searched, and all related higher-level subfunc-

tions to avoid repeated derivation of already

derived PIs. In Fig. 3.3 RAD 2 of TFs 0 and 2

Y

000

RY7

001

RYz

011

RYZ

010

Ry2

100 101 111 110

xY2 xYz XYZ XY7

Fun RAD

0

1

3

5

7 2,4

Figure 3.1 3-variable

23

F
1

RAD F
2

RAD F
12

RAD

0 1,©0 0,4 o

1 1,2 2 0,4 2 0
2 1,04 2,4

3 1,2 6 2,4

Figure 3.3 Circle RAD's

Karnaugh map Figure 3.2 Search for

a new PI

(0)

(0,1)

2

(0,)e;2,2)

(0)

liN`NN4

(0,1) (0,2)

Fun RAD

0

1

2

5

1,2

1,4

2

4

, (b)

FF

(a)

0

2

4

6

RAD

0,4

0,4
0,4

0,4

PI of F123
(0,2)

41

(0,2,4,6)

successful expansion

Figure 3. 4 Branching Figure 3.5 Expansion

24

in F
1

have been used in deriving the PI (0,2),

it is then circled as shown.

11) Covered TF: Any TF that is included in already

selected essential/pseudo-essential PIs is a

covered TF. Example: TF 0 is covered by essential

/pseudo-essential PI (0,1,2,3).

12) Branching: Whenever FFs appear in searching for

new PIs, branching technique is used. Fig. 3.4

shows the RAD column of a subfunction. False

form 3 is found in searching and is so discarded

as shown in Fig. 3.4 (a), branching is shown

in Fig. 3.4 (b), where a new PI (0,2) is derived.

13) Empty: A subfunction is said to be empty if all

of its TFs are covered.

14) Non-left: A subfunction is said to be non-left

if all of its RAD's are circled.

15) Expansion: IF a subfunction is empty but not non-

left, expand PIs from related lower-level sub-

functions with uncircled RAD's. In Fig. 3.5, F12

is empty but not non-left, if (0,2) is an essen-

tial/pseudo-essential PI of F123, then it is ex-

panded by using RAD 2, the unused RAD of TF 0 in

F
12. Expansion succeeded if all resultant min-

terms are either TF or XF, otherwise expansion

failed.

16) Self-construct PI: If expansion failed, derive

25

new PI within the subfunction. Fig. 3.6 depicts

this operation. Expansion from F
123

failed, then

self-construct the PI (1,5).

17) Pseudo-essential PI: Any non-essential PI is said

to be pseudo-essential if after row/column dele-

tions it cover at least one TF that is not covered

by any other PI on the current PI table.

18) Dominated row: A row X of a PI table is said to

dominate another row Y of that table if X covers

every TF covered by Y. Row Y is called dominated

row.

19) Dominating column: A column P in a PI table is

said to dominate another column Q of that table

if P has an "X" in every row in which Q has an

"X" Column P is called dominating column.

20) Same degree of minimum: Two minimized functions

are said to have the same degree of minimum if

they have either (i) The same switching expre-

ssions(same number of PIs and same PIs) or (ii)

The same number of PI and the same size Pis.

e.g. PI (0,1,2,3) and PI (3,7,13,17) have the same

size but PI (0,4) and PI (0,2,4,6) have different

size.

26

F
12

RAD

1 4,0

4

5 a4
11 0

If F123 has a PI (1,3), expand from it

(1,3) (1)

41 41

(1,3-(5,2) (1,5)

LFF Lself-constructed PI

failed expansion

Figure 3.6 Self-construct PI

F
1

RAD F
2

RAD F
3

RAD

0 1,2,10 0 2,4,10 0 2

1 1,4,10 2 1,2,10 2 2,4

2 2,4,10 3 1,4 6 1,2,4,10

6 4 5 1,2 7 1,10

10 1,2,10 7 2,4,10 13 4

11 1,2,10 10 2,4,10 14 1,2,10

13 1,2,4 14 1,4,10 16 1,2,10

17 4 17 2,10 *4

5 *4/ 15

12/ 12 17

Figure 3.8 RAD's for a 3-output 4-variable function

* indicates don't care(XF)

27

B. Cost function

Before developing a minimization procedure for multiple-

output switching circuits, it is necessary to define a crite-

rion to measure the network cost. There are various defini-

tions for cost functions. Three of those frequently used

definitions (2) are introduced here.

Let F1, F . F
m be the set of switching expressions

describing a multiple-output switching circuit and let T1,

T2, ... T
p be the set of all distinct terms appearing in

the m output expressions.

1) If Li. denotes the number of literals in the term

Ti,. then the cost of the multiple-output switching

circuit is given by the numerical quantity Ci=L.
1=1 1

(This counts the number of inputs to AND

gates in the two-level AND-OR network).

Example, A 3-output 3-variable switching circuit

has the expressions:

F1(A,B,C)=AB4C+ASC

F2(A,B,C)=W
F3(A,B4O)=B+AgC

There are four distinct terms, i.e. Ti AB in

Ti=113C

T3-=---APC

T= B

these expressions.. Then L1 2, L2 2, 11=3, L4=1,

The cost of this multiple-output switching cir-

cuit is given by

Cl= AL1 2+2+3+1=8

2) The cost of the multiple-output switching circuit

is Cj= p (The number of distinct AND gates in the

representation).

Example, A 3-output 3-variable switching circuit

has the expressions:

28

Fl(A,B,C)=AB+SC+ASC

F2(A,B,C)=AM

F3(A,B,C)=B+ASC

The cost of this 3-output switching circuit is

given by the number of distinct terms in the re-

presentation which is 4.

3) The cost of a multiple-output switching circuit

is given by the number of gate inputs appearing

in the representation. The number of gate inputs

can be calculated as follows: Let Ai equal the

number of terms in F. unless there is only a

single term, in which case let Ai equal 0. Also,

let Bj equal the number of literals in the term

Ti . unless the term consists of a single literal,

in which case let B equal O. The number of gate

inputs in the representation of the multiple-out-

put switching circuit as given by the numerical

quantity C3=A_Ai+ (The first term indi-

cates total number of inputs to OR gates, the

second term is the number of inputs to AND gates).

Example, A 3-output 3-variable switching circuit

has the expression:

F
1
(A,B,C)=AC+EC+AM

F2(A,B,C)=Ann

F3(A,B,C)=B+AM

There are four distinct terms, i.e. Ti AC

T
2
=$C

29

T3=AEa

TLI!=B in

these expressions. Then Af=3, A3 0,.A32; Bi=2,

B2 2, 133=3, BT=0. The cost of this 3-output swit-

ching circuit is given by Cr(3+04.2)+(24.2+3+0)

=5+7

=12

Since the rapid growth of advanced IC technology assures

the product cost increases slightly as the internal connec- I,

tion does, it is not necessary to include internal connec-

tion costs when designing chips. Comparatively, the external

connection cost becomes important. Thus, a fourth cost

function that measures the external connection cost is selected

and used in this thesis.

4) The cost of a multiple-output network is given by
p.

(where the first term indicates the

number of inputs to AND gates and m is the number

of outputs of OR gates).

Example, A 3-output 3-variable switching function

has the expressions:, F1(A,B,C)=AB4C+ASn

F
2
(A,B,C)=At

F
3
(A,R,O)=E+ASn

It has 4 distinct terms, i.e. T1 AB,

TfATIC, TLF4B, then,

The cost of this multiple-output switching func-

tion is given by C4=(24.2+31.1)+3

=11

30

The switching function in this thesis is represented

in octal number, such as, Fl(A,B,C,D)=(12,13 16,17)+(2,3,12,

13)+(0,1), F2(A,B,C,D)=(0,1) F3(A,B,C,0=(4,5,6,7,14,15,16,

17)4(0,1). A formula is given too compute costs easily:

COST=1(N-log2A0+m

N: number of input variables

Ai. - number of TFs and XFs in T.

m: number of outputs

In above example, Ty=(12,13,16,17)

T2 (2,3,12,13)

T3 (0,1)

T4F:(4,5,6,7,14,15,16,17)

COST=2+2+3+1+3

11

C. Overview of the algorithm

A1=4

A =4

A :=-2
3

A
4"--

8

The steps performed by the MOMIN algorithm are summa-

rized below. They will be described in detail in subsequent

sections. Fig. 3.7 is a general flow diagram of the steps

taken and listed below. Some more flow diagrams of those

major steps will be seen in later sections.

STEP 1: Obtain the multiple-output switching functions

in numerical form.

Example: A 2-output 3-variable switching

functions are F
1
(A,B,C)=I(0,1,4,7)+d(2,6)

Enter

Read in a

problem

1/

Derive all

subfunctions

Derive RAD 's

for all TFs

of each sub-

function

Construction

RAD table

Construct the

PI table

Delete domin-

ating columns

and remove

essential PIs

Update PI

table length

Yes

PI

table

length=0

Yes

Last=TI

table length

Delete dominated

Rows and update

PI table length

Delete dominating

columns and update

PI table length

is

PI table

length=Last

Resolve Cyc-

lic problem

Remove pseudo-

essential PIs

and update PI

table length

Figure 3.7 General flow of algorithm

32

F2(A,B,C)=B1,4,5,6)-Pd(0)

This expresses that (a) Output F1 consists of

four TFs and two XFs; they are 0, 1, 4, 7 and

2, 6, respectively. (b) Output F2 consists of

four TFs and one XF; they are 1, 4, 5, 6 and 0,

respectively.

STEP 2: Determine all subfunctions and derive RAD's

for all TFs of each subfunction. Note that

output functions F1 and F2 are also subfunc-

tions.

STEP 3: Construct a complete RAD table including all

the subfunctions.

STEP 4: Construct the PI table with a search method.

STEP 5: Removing essential PIs and corresponding

columns.

STEP 6: Recursive selection of pseudo-essential PIs.

(This is essentially a covering problem)

STEP 7: If PI table is empty, GO TO STEP 10, otherwise

GO TO step 8.

STEP 8: If any row or column deletion is possible, GO

TO STEP 9.

STEP 10: Algorithm terminates.

33

D. Construction of the RAD table

As mentioned earlier, an RAD expresses a relation

between a pair of adjacent TFs; or a TF-XF pair. They

are numbers as 2r(r=0,1,...,n-1) or in octal form RAD=1,

2,4,10,20,40... ;where n is the number of input variables.

1) RAD's for outputs Fi: Exclusive-or a TF with any

other TF or XF in the same function and check the

result. If it is equal to 2r(r=0,1,2, ,n-1),then

the TF has a RAD, 2r.

Example, A 3-output, 4-variable switching circuit

has the expression:

Ff7=Im(0,1,2,6,10,11,13,17)+d(5,12)

F2- -Tm(0,2,3,5,7,10,14,17)+d(4,12)

F3 IM(0,2,60,13,14 16)+d(4,15,17)

In order to find RAD's for TF 1 of F
1'
exclusive-or

(X-OR) it with all other TFs and XFs in F1:

TF 1 X-OR with 0=1=2°

TF 1 X-OR with 2=3

TF 1 X-OR with 6=7

TF 1 X-OR with 10=11

TF 1 X-OR with 11=10=23

TF 1 X-OR with 13=12

TF 1 X-OR with 17=16

TF 1 X-OR with 5=4=22

TF 1 X-OR with 12=13

34

TFs 0 and 11, XF 5 are adjacent to TF 1, thus 1,

10 and 4 are RAD's of TF 1; using the same logic

operation, RAD's can be determined for all other

TFs as shown in Fig. 3.8

2) RAD's for subfunctions Fi ,F.j
ljk

If F
r

and F
s
are any multiple-output switching

expressions, r4s, and if TF(Fr), TF(Fs), TF(Frs),

XF(Fr), XF(Fs) and 1F(Frs) represent the TF and

XF of Fr, Fs, Frs,respectively, then,TF(Frs) =

TF(Fr)TF(Fs)+TF(Fr)XF(Fs)+XF(Fr)TF(Fs); XF(Frs)=

XF(Fr)XF(Fs). Thus the subfunction Frs=TF(Frs)+

XF(Frs).

Example, Let r=1, 5=2 for the example in section

1), TF(F1)=B0,1,2,6,10,11,13,17)

XF(Fl)=B5,12)

TF(F2)=B0,2,3,5,7,10,14,17)

XF(F2)=B4,12)

Then TF(F12):=TF(F1)TF(F)+TF(F1)XF(F2)4,

XF(F1)TF(F2)

=(0,2,5,10,17)

XF(F12)=XF(F1)XF(F2)

..(12)

Thus subfunction F12:4(0,2,5,10,17)+d(12).

For a m-output network there are 2m-1 sub-

functions (Because there are one out of m, two

out of m, m out of m choices, the total

number of subfunctions is given by (m)+(
m m-1

(1111)=2m-1).

Example, For m=3,there are:

35

31 out of 3 choicesy=3. i.e. Fl,F2,F3

2 out of 3 choices-- (2i)=3. i.e. F12,F23

and F
13

3 out of 3 choices--(3)=1. i.e. F123

A total of seven subfunctions are found.

Treating each subfunction as single output function and

using the technique described in section (1), a complete RAD

table can thus be formed as shown in Fig. 3.9.

F
1

RAD F
2

RAD F3 RAD F
12

RAD F
13

RAD F
23

RAD F
123 RAD

0 1,2,10 0 2,4,10 0 2 0 2,10 0 2 0 2,4 0 2

1 1,4,10 2 1,2,10 2 2,4 2 2,10 2 2,4 2 2 2 2

2 2,4,10 3 1,4 6 1,2,4,10 5 #X 6 4 7 10 17 #x

6 4 5 1,2 7 1,10 10 2,10 13 4 14 10

10 1,2,10 7 2,4,10 13 4 17 #X 17 4 17 2,10

11 1,2,10 10 2,4,10 14 1,2,10
*
12 *4 .,/'

13 1,2,4 14 2,4,10 16 1,2,10

17 4 17 2,10 *4

*
*45 15/12 /// 12 17

Figure 3.9 Complete RAD table for a 3-output 4-variable function

*: XF(don't care)

#: if a TF has no RAD, a "X" is entered in the RAD column

Note: XFs(don't cares) are also listed but no RAD is entered

in the RAD columns for them, because RAD is meaningless

and useless to a XF.

37

E. Construction of the PI table

The derivation of multiple-output prime implicants

using search trees has two versions. (A) Derive necessary

multiple-output prime implicants. (B) Derive all multiple-

output prime implicants. The choice depends on circuit

design requirements.

If size of product instead of design cost is more impor-

tant,,i.e. a minimal solution is desired, version (B) is best

suited; if design cost is more important, version (A) is re-

commended, since it gives us a subminimal solution by saving

labor spent in deriving a minimal solution and thus reduces

design cost.

A typical PI table is of the form as in Fig. 3.10. The

first column indicates all subfunctions related to PIs; the

second column is a list of prime implicants derived; and the

third column and after are TFs of each output. A "X" is

entered if the corresponding TF is contained in one PI. The

last column indicates cost of that PI. Example, row 2

indicates PI (1,11) is shared by F1 and F2, cost is 3.

(A) Derivation of necessary multiple-output prime im-

plicants: The flow diagram in Fig. 3.11 is best

suited to help understand the PI table construc-

tion algorithm. Necessary details are described

below (numbers correspond to the flow diagram).

(1) Begin with the lowest level subfunction.

38

F
1

F2

Fun PI 0 1 4 5 6 7 11 1 3 11 13 14 COST

F
12

(1,11) X X X X 3

F
2

(1,3,11,13) X X X X 2

F
2

(14) X 3

F1
1 (0,1,4,5) X X X X 2

F
1

(4,5,6,7) x x x x 2

Figure 3.10 Typical PI table

39

Yes

Enter

is
ext higher

level subfunction
empty

9

No

(1)

Derive PI

Yes

Circle used
RAD's in related
higher level
subfunctions

Circle used
RAD's in itself

Update PI
table with

newly derived
PI

Test for row
dominances,

delete all do-
minated rows

(4)

(5)

Figure 3.11 Flow diagram for PI table

construction version (A)

4-0

Yes

Yes

Try expansion
from all related

"lower level"
subfunctions

Exit

Oircle used RAD's
in all related
subfunctions

Self-construct
PIs

Circle used RAD's
in current sub-
function

(9)

Figure 3.11 Flow diagram for PI table

construction version (A) (continued)

(2) Deriving PIs: If a subfunction has a list of

RAD's as:

(3) Test

list

F
12

F
123

RAD

1 2

4

3

X

cost for

cost for

41

search tree indicates

two PIs

(1) (4)

(La)

(since TF 4 has no

RAD, it is a PI it-

self)

PI (1,3)=3+log22=2

PI (4) =3 +1og21=0

for branching: If a subfunction F12 has a

of remaining RAD's (uncircled) as shown:

RAD

0 CDA',

3 X

4

1

."4.)

a FF 5 appeared when deriving PI from

TF 0. (0,1,4,5) is not a PI of F12,

thus the search tree becomes:

(0)

11 (0)

=a>
(0,1) 1

4 /
/

(0,1) ,4)

(0,./4,)r I______,,
FF

We call this branching. Whenever branch-

ing occurs, circles are placed only on those

RAD's of the current subfunction, as shown

42

above (dotted circles).

(4) Mark used RAD's : Circle RAD's in related

higher level subfunctions and itself. In the

example of (2), F123 has related higher level

subfunctionsFFFFFand F23,F1, F2, F3, F12, F13

RAD's 2 and "X" are circled in this subfunction

and itself.

(5) First stage reduction of the PI table: Each

time a new PI is derived, row dominance test

is performed to eliminate rows and thus reduce

the size of PI table.

Example:

a

b

PI 1 2 3 6 7 0 2 4 6 COST

A

B

X X

XXXX
X X

X X

2

row b dominates row a, thus row a can

be eliminated without the possibility of in-

creasing the total cost of the final solution.

(6),(7) and(8) Expand PIs from lower level sub-

functions to get larger dimension PIs: If a

subfunction,say F12, has the following RAD

list, it is easily seen that F12 is empty i.e.

at least one of the RAD's in each TF is

circled. But since TFs 0,1 and 5 have unused

RAD's, we try expansion from PIs of the related

lower level subfunctions. If F
123

has a PI

F
1

RAD F
2

RAD F
12

RAD

0 tD,© 0 CD,© 0 ti;,©

1 (la 1 10)R 1 a),©

2 2 3 2,4 4 0,©
4 CAD 4 aqD 5 1,0,4

5 t,11,0),g) 5 ti),O 7

7 7

(0,4) then we expand

of TF 0.

43

it by using unused RAD 1

(0,4)

14

(0,1,4.5)

(successful expansion)

This is a successful expansion. Thus a

new PI (0,1,4,5) is derived. Circle RAD's 1

and 4 in related higher level subfunctions and

itself (dotted circles in the RAD table).

(9) Developing PIs by self-construction : If TF 5

in the above example does not exist in both F1

and F2, then the expansion above would fail,

as shown below,

F
12

RAD

0 1),(D

1 al

4 4

7

(0,4)

/1 (failed expansion)

(0,1,4,1)1J

i FF

44

Whenever expansion fails we derive

PI by "self-construction" (0)

1

(0,1)

then we circle only RAD's in F12 (dotted circles

in the RAD table).

The example in Fig. 3.12 illustrates an information

loss during PI table construction, PI (2,3,12,13) in F3 is

not derivable after the above process, since it is impossible

or at least fairly complicated (too much labor is required)

to keep track of this kind of information loss. To save

design cost, this kind of information is ignored. This is

the essence of subminal solution. If this information loss

does not occur then we can have a minimal solution through

the usage of this subminimal solution process.

(B) Derivation of all multiple-output prime impli-

cants: This approach differs from (A) in that (i)

It derives all MOPIs and (ii) It has a simpler

algorithm but is much more laborious.

Begin with highest level subfunction. A flow

diagram in Fig. 3.13 helps explain the algo-

rithm. Necessary details follow. (Numbers

correspond to the flow diagram)

(1) Process subfunctions one at a time from high

level to low level subfunctions: e.g.

F1-F2-
4F12

F
3

RAD F
13 RAD F

23
RAD F34 RAD _RADF

134 RAD F234RAD F1234 RAD

0 0,10 0 2,10 3 10 0 2 5 X 0 2 3 10 6 x

2 alaaxD 2 2,4,10 5 X 2 1,2,4 6 X 2 2,4 6 X

3 CD,CD, 0 5 x 6 x 3 1,4,10 10 2 6 4 13 10

5 2 6 4,10 10 1,2 6 1,4 12 2

6 Oklt) 10 2,10 11 1,2 7 1,4

7 al2A) 12 2,4,10 12 1,2 13 10

100,0,4,10 16 4,10 13 1,2,10 14 X

11 CIO

12 taLICAA 0

13 CD,3, 0

14 2,4

16 2,g,o
.,

F234: (3) F
134 :

10i

(3,13)

(0)

2i

(0,2)

F
123

: (10)

21,

(10,12)

F
34 (7)

11

(6:7)

F
23

: (1)

11

(10,11)

F
13

: (16)

41

(12,16)

7/ indicates used RAD's

41(2,3 6,7)

2i1

(10,11,12,13)

Figure 3.12 Information loss during PI table construction

(2,6,12,16)

46

1

there
another

subfunction to
be processe

Generate all
RAD combi-
nations for
next TF

Get next RAD
combination

Update PI
table with
newly derived
PI

Delete all
dominated

rows

1
AD com-

binations
proces-

ed ?
all

TF teste

Figure 3.13 Flow diagram for PI table construction

version (B)

(2) Generate all RAD combinations for each TF:

If a TF has a list of RADs as shown,

F12
RAD

4 1,2,4

47

its combinations are 1; 2; 4;

1,2; 2,4; 1,2,4. They are lis

ted in the order (1,2,4); (1,4);

(2,4); (1,2); (4); (2); (1)(reasons follow)

(3) Begin with a new RAD combination.

(4), (5),and (6) Derive PI by using same techni-

que described in version (A): TF 0 has a

list of RAD combinations 1,4; 4 and 1, Each

combination is tested to derive PIs.

F
23

RAD

0

1

4

5

1,4

1

2,4

1,4

(0) (0) (0)

11 4 1

(0,1) ja%,) 1)

41

(0,1,4,5)

(both are dominated by

(0,1,4,5))

Since the RAD combinations are in such an

order that larger PIs could be derived earlier

as seen in the above example, and row domin-

ance is tested each time a new PI is derived,

thus eliminate the number of rows in the PI

table. (0,1) and (0,4) are deleted right

after their derivations.

48

F. Removal of essential/pseudo-essential PIs

Consider the multiple-output switching functions (6):

Fl(A,B,C,D)=.1(1,2,3,5,7,10,11.,14,16)

F2(A,B,C,D)=D0,1,2,3,4,6,10,11,12,13)

F
3
(A,B,C,D(1,3,5,7,10,11,14,15,16,17)

The PI table is shown in Fig. 3.14. Essential prime impli-

cants C, F, G, H, M and all TFs covered by them have been

checked off. The reduced PI table, which is obtained by re-

moving the essential PIs and the columns covered by them, is

shown in Fig. 3.15 Although none of the PIs in the table

is essential, some of them may be removed. For example, row

B has "X" in column 11 in both F
1

and F3, while row D has "X"

in columns 10 and 11 in both F
1

and F
3'

Since B and D have

the same cost, the the removal of row B can not prevent us

from finding at least one minimal expression; and since row

D covers the TFs covered by row B, it can replace row B

in every expression for F1 and F3 without affecting its

logical value. This is row dominance.

Definition: A row X of a PI table is said to dominate

another row Y of that table if X covers every TF covered by

Y and the cost of row X is less than or equal to row Y. If

row X dominates row Y, then row Y can be deleted from the

PI table.

Thus rows B and E in Fig. 3.15 are deleted because they

are both dominated by row D. Similarly, row I is removed be-

,
.1 v F

1.1 F2 F3v
Fun PI 1 2 3 5 7 10 11 14 16 0 1 2 3 4 8 10 11 12 13 1 3 5 7 10 11 14 15 16 17 COST
F
123

A X X X X X X 3

F
123

B X X X X X X 3

F
12 C ®X X X 3

F
123

D X X X X X X 3

F1
3

E X X X X 3
F
13

F X® X X 3

F
2

G X X 00 2

F
13 H X X®® XXXX 2

F
3

I X X X X 2

F3 J XXXX 2

F
3

K X X X X 2

F
3

L X X X X 2

,
F
2

M XXXX X X ®® 1

A=(1,3) D=(10 11) G=(0,2,4,6) J=(10,11,14,15)

B=(1,11) E=(10,14) H=(1,3,5,7) K=(5,7,15,17)
C=(2,3) F=(14,16) I=(1,5,11,15) L=(14,15,16,17)

M=(0,1,2,3,10,11,12,13)

Figure 3.14 PI table (i) circled X's indicates essential PIs

(ii)all essential PIs and covered TFs have been checked off

50

cause it is dominated by row J, row L is deleted because it

is dominated by row K.

The PI table after deletion of rows B, E, I and L is

shown in Fig. 3.16, clearly, row D and row K must be selected

since they are the only remaining PIs that cover TFs 10, 11

of Fl, and TFs 15, 17 of Fl, respectively. After this

removal of pseudo-essential PIs, the PI table becomes empty.

Thus the minimal cost expression for this function consists

of PIs C, D, F, G, H, K and M.

FI--C4D+F+H=(2,3)+(10,11)+(14,16)+(1,3,5,7)

F =C+D+G+M=(2,3)+(10,11)+(0,2,4,6)

+(0,1,2,3,10,11,12,13)

F 3 D+F+H+K=(10,11)+(14,16)+(1,3,5,7)

+(5,7,15,17)

Note that there are two redundant PIs in F2, (2,3) and

(10,11). This is because they are shared PIs.. It does not

increase the total cost according to our cost function.

Total cost=16+13=19

The prime implicant table can also be reduced by remov-

ing certain columns, Consider, for example, column 10 of F1

and column 10 of F
3

in Fig. 3.15. In order to cover column

10 of F1, either row D or row E must be selected, then column

10 of F
3
will automatically be covered since it has X's

in rows D and E. The reverse is not true, since column 10

of F
3
can also be covered by row J, but this will not cover

column 10 of F1.

51

Fun PI 10 11 10 11 15 17 COST

F
123 B X X 3

F123 DXXXX 3

F13 E X x 3

F
3

I x x 2

F
3

J X X X 2

F
3

K X X 2

F
3

L X X 2

Figure 3.15 Reduced PI table after all essential

PIs and covered TFs have been removed

F F

Fun PI 10 11 10 11 15 17 COST

F
123 D 0 0 x X 3

F
3

J X X 2

F
3

K 0 0 2

Figure 3.16 PI table after row deletion

Fun PI 10 11 17 COST

F
123 B X 3

F123 D X X 3

F
13

E X 3

F
3

K X 2

F
3

L X 2

Figure 3.17 PI table after column deletions

52

Definition: A column P in a PI table is said to dominate

another column Q of that table if P has an "X" in every row

in which Q has an "X". Then the dominating column P can be

deleted without affecting the search for a minimal expres-

sion. In Fig. 3.15, it is clear that columns 10 and 11 of

F
3
can be deleted according to the above definition. Also,

column 15 of F3 dominates column 17 of F3; column 15 of F3 is

deleted. The reduced table is shown in Fig. 3.17. Again,

rows 13, E and L can be removed because they are dominated by

row D and row K, respectively. Thus we have the same final

minimal solution as directly derived from row deletions.

Following are a list of steps required to recursively

select essential/pseudo-essential PIs:

(1) Remove all dominating columns from the PI table.

(2) Remove all dominated rows from the PI table.

(3) Remove all essential/pseudo-essential PIs from

the PI table and include them in their respect

function, or include them in two or more func-

tions if they are shared.

(4) Repeat (1) to (3) as many times as needed until

every TF of each function is covered by an

essential/pseudo-essential PI, or until none of

the three steps can be applied. In this case a

cyclic problem is encountered.

53

G. Cyclic problem

It may occur that a PI table has no essential PIs,

dominating columns or dominated rows. It can happen either

at the beginning or at the end of PI table reduction. The

remaining covering problem is known as a cyclic problem.

A typical cyclic problem example is shown in Fig. 3.18,

a search tree(7) method is used to solve this problem.

First a search table is constructed and is shown in Fig.

3.19. Columns a, b and c represent TFs of F1 or F2. The

coverage of PI is shown with a "1" where it covers a TF and a

"0" where it does not. Each PI has a cover mask, for example,

PI C has a cover mask 011, which indicates that TFs b and c

are covered by it.

The search is shown in emanating from the start node

"0" in Fig. 3.20. The nodes are shown with the PIs, the

covering masks, and their cumulative cost. The cover mask at

a node is the cumulative cover masks of all the PIs combined

at that node(the OR of all these PI cover masks).

For example, the node AB-111-6 in the tree indicates

that PIs A and B are combined at a total cost of six to ob-

tain a full cover of the TFs. A perpendicular line accross

a branch indicates terminating of that branch. The paths

below a terminated branch are never reached.

The search is performed in a depth-first manner; as

shown in Fig. 3.21, pursuing one branch from a node then one

54

Fun PI 2 3 7 COST

F
1

A X x 4

F2 B X 2

F12 C X 3

F
1

D X 1

F
12

E X X 4

PI a b c COST

A 1 1 0 4

B 0 0 1 2

C 0 1 1 3

D 1 0 0 1

E 1 0 1 4

Figure 3.18 A cyclic problem Figure 3.19 Search table

(0)

15 9 1--.13....-'

D B A C/N
/10 12 2 14N\

BC BD AB AC AD CD

/1 3 5

BCD IBC ABD yACD

4

AB CD

Figure 3.21 A complete search tree of

a 4-PI cyclic problem(number

correspond to searching sequen

ces)

D- 00-1

151

DE-101-5

13

CE-111-7

(C)

14 11 1

-01 -3 A-110-4

12 4

rcD-111-41

6

B-001-2

17
BC-011-5

BCD-111-6 BCE -111 -9

AE-111-8

10

AC-111-7 AD-110-5

AtE-111-9

BD-101-3

BDE-101-7

Figure 3.20 Search tree for minimum solution of cyclic problem

(i) Upward arrows indicate reason of termination.

(ii) Numbers beside the arrows indicate sequence of searching.

56

from the node that branch leads to, etc. until a branch ter-

minates. For example, nodes AB, ABC, ABCD,... etc.. A is

selected first. It has a cover mask 110 and cost of four.

Because the cover mask at the node is not 111, B is combined

with A(because B is the next PI on list to be selected).

Since B has a cost of two and a cover mask of 001, the cost

and the cover of AB are six and 111, respectively. Because

the cover mask includes all one's, i.e. it covers all TFs,

AB is a complete cover and the combination of AB and the cost

of six is the best cover thus far into the search.

The branch to AC is discarded because the cumulative

cost of AC is seven which exceeds the better cost of six that

is already known. Again, the branches to ADE and AE are dis-

carded for the same reason. The search then backs up to node

"0" and proceeds to examine the PI combinations not contain-

ing A. PI B has a cover mask of 001 and a cost of two. The

combination of B and C has a cumulative cover mask of 011

and a cumulative cost of five. Since it does not exceed

the already-known lower cost which is six, the search is con-.

tinued downward. PI D has a cost of one and a cover mask of

100, the combination of BC and D is a complete cover, and the

total cumulative cost is six. Since it is no better than the

current lower cost cover, node BCD is discarded. Node BCE

is also discarded, since it has a cumulative cost of nine.

PI D is combined with. PI B. Node BD has a cumulative cover

mask of 101 and a cost of three, so PI E is added. Node

57

BDE has a cumulative cover mask of 101 and a cumulative cost

of seven, which exceeds the already-known better(lower)

cost. BDE is then discarded. Now the search tree backs up to

node "0" to examine the PI combinations not containing A and

B. PI C has a cover mask of 011 and a cost of three. Since

the cumulative cover mask is not 111 but the cumulative cost

does not exceed the current lower cost, PI D is combined

with C. The cumulative cover mask of node CD is 111 andnd

the cumulative cost is four, which is lower than the current

best cover. Thus CD is selected as the new best cover. The

search tree backs up to node "0" again and to examine PI

combinations not containing A, B and C. The cover mask

of D is not 111. E is combined with D, since E has a cover

mask of 101, and a cost of four. The cost of DE is five,

which exceeds the already-known lower cost of four. It is

discarded. The search terminates since there are no PIs

not already considered. A minimum cost covering of this

cyclic problem is, therefore composed of PIs C and D with a

total cost of four.

58

H. Removal of redundancy

Redundancy occurs when one PI is contained in 2 or more

other PIs, e.g. F11=(4,5)4(1,3,5,7)1.(0,2,4,6). The PI (4,5)

is redundant. It is caused by the selection of essential PIs

as well as pseudo-essential PIs. Fig. 3.22 depicts the PI

table of a 2-output 4-variable switching circuit after the

first-stage deletion of dominated rows during table construc-

tion. After deleting the dominating columns, the PI table

is shown in Fig. 3.23.

The PI (4,5,14,15) is an essential PI of F
1.

It is

included in the cover of F
1.

The PI (4,14) is an essential

PI of F2. It is included in the cover of F2, but since the

PI (4,14) is shared by Fl, it is also included in the cover

of Fl. The cover of F1 and F2 becomes:

F1=(4,5,14,15)+(4,14)4

F2=-(4,14)+...

(4,14) is redundant

to (4,5,14,15) in the cover of F1.

If a PI is essential or pseudo-essential with respect

to both outputs then it may not be redundant. This can be

seen from the following examples:

59

F F
2

Fun PI 4 5 14 15 1 3 4 5 7 14 COST

F
12

(4
'

14) x X X X 3

F
1

(4,5,14,15) XXXX 2

F2 (3,7) X x 3

F2 (1,3,5,7) X X X X 4

F
12

(1
'
5) X X X 3

Figure 3.22 PI table of a 2-output function,

with F1 y(4,5,14,15)+ d(1)

F2 E(1,3,4,5,7,14)

F

Fun PI 15 1 3 4 COST

F
12

(4,14) 0 3

F
1 (4,5,14,15) 0 2

F2 (3,7) X 3

F2 (1,3,5,7) X X 4

F
12 (1,5) x 3

Figure 3.23 PI table after first-stage

deletion of dominating columns

60

Example 1.

to:

tFl
F
2

Fun PI 0 4 1, 1Q 12 14 ei 1 2 3 4 COST

F
12

F
12

F2

F
1

F1

(0,2)

(0,4)

(1,3)

(0,2,10,12)XX

(0,4,10,14)

1

4
1

i

1 1

I 1

1 1

i 1

X 1ill

i
t

1

1

I

X

1

1

I

1

1

i

1

/C
i

X

X

1

X
i

1

1

I

X

x

X

3

3

3

2

2

After deleting dominating columns this table is reduced

F
1

Fun PI 12 14 1 2 3 4 COST

F
12

(0,2) CD 3

F12 (0,4) CD 3

F
2

(1,3) CD CD 3

F
1

(0,2,10,12) ® 2

F
1

(0,4,10,14) CD 2

Now all five PIs become essential i.e.

Ff(0,2)+(0,4)+(0,2,10,12)+(0,4,10,14)

F2=(0,2)+(0,4)+(1,3)

Obviously, (0,2),(0,4) in F1 are redundant.

61

Example 2: TFs 10,12 and 14 in example 1 are eliminated to

show a non-redundant situation.

F
1

F
2

Fun PI 0 2 4 0 1 2 3 4 COST

F
12

(0,2)XX X X 3

F
12

(0,4) X X X X 3

F
2

(1,3) X X 3

After deleting dominating columns 0,4 of F1 and 2 of

F2, the PI table becomes:

F, F

Fun PI 2 3 4 COST

F
12

(0
'
2) 3

F
12

(0,4) 3

F
2 (1.3) 0 3

We have 3 essential PIs and the final covering is:

Fi=40,2)+(0,4)

F2=(0,2)+(0,4)+(1,3)

None of the PIs in the covering is redundant.

We usually remove redundancies from the final covering

although they do not cost more according to the definition

of our cost function.

62

IV. Implementation

A. Computer-aided design

This chapter demonstrates the effectiveness of the

MOMIN algorithm by testing run forty-three examples and

comparing their results.

As mentioned early in chapter III, two approaches: (A)

Minimal solution, and (B) Subminimal solution were presented

in this thesis, but only the first one was programmed

for computer-aided design. The current implementation is on

the CDC CYBER model 73. To save memory, several data items

were often stored in a single word.

The program structure is shown in Fig. 4.1. The general

flow of the program is shown in Fig. 4.2. Supporting

subroutines are described below:

1) Subroutine DATA reads a multiple-output switching

function in decimal form, converts TFs and XFs

into octal numbers 01 and 11, respectively, and

stores them in array SUBFN.

2) Subfunction SUBFUN derives all subfunctions.

The ID codes are generated by subroutine IOCODE

and stored in a single word. Example: A sub-

function F
123

has an ID code 111 in binary form.

It is stored in the first column of array SUBFUN

as where 0,1,2,

Subroutine

DATA

Subroutine

SUBFUN

Subroutine

IDCODE

Main program

MOMIN

Subroutine

FINRAD

Subroutine

PITAB

Subroutine

PRIME

Subroutine

GENCOD

Subroutine

PIRED

Subroutine

RDOM IN

Figure 4.1 Program Structure

1Subroutine

REDNT

64

...59 indicate bit numbers. Fig. 4.3 depicts how

information is stored in array SUBFN. The sub-

function ID code (F1- -p1; F2-->2; F3-+4; F123-4'7""

...) is stored in first column, subscripts of min-

term
mi . is stored in the first row; "00" indicates

FF, "01" indicates TF and "11" indicates XF. For

example, F2 B1,2,6,7)+d(0,5) "01" is entered in

columns 1, 2, 6 and 7; "11" is entered in columns

0 and 5.

3) Subroutine FINRAD derives RAD's for each TF. This

is done by exclusive-or each TF with adjacency-

directions to see if the result is a TF or XF.

Since RAD's are of the form 2r(r=0,1,...n-1; n is

the number of variables), they are stored by their

exponents. A "1" is stored in bit number 1 if 21

is a RAD. Example: If a TF has 3 RAD's, say 1,2

and 8(or in exponential form 20, 21 and 23), they

will be stored in a single word as
59 3 2 1 0

1 0 11101111]. If a TF has

no RAD, a -2 is stored instead to avoid misinter-

preting stored information(any number that can

achieve this requirement may be used).

4) Subroutine PITAB construct a complete PI table by

searching down the RAD tree. Each time a new PI

is derived, subroutine RDOMIN is referenced .to

delete any dominated row(PI).

Enter

NY

[Read in a

problem

4(

Derive all

subfunctions

65

Yes

Last PI

table length

Delete dominated

Rows and update

PI table length

Construction

RAD table

Delete dominating

columns and update

PI table length

Construct the

PI table

Yes

Delete domin-

ating columns

and remove

essential PIs

i

Update PI

table length

is

PI table

length Last

9

Remove pseudo-

essential PIs

and update PI

table length

Figure 4.2 General flow of algorithm

66

TF

Fun
0 1 2 3 4 5 6

F
1

00 01 11 11 01 01 00 00

F
2

11 01 01 00 00 11 01 01

F
3

01 00 01 01 00 00 00 11

F
12

00 01 01 00 00 01 00 00

F
13

00 00 01 01 00 00 00 00

F
23 01 00 01 00 00 00 00 01

F
123

00 00 01 00 00 00 00 00

(a)

0 1 2 3 4 5 6

1 00 01 11 11 01 01 00 00

2 11 01 01 00 00 11 01 01

4 01 00 01 01 00 00 00 11

3 00 01 01 00 00 01 00 00

5 00 00 01 01 00 00 00 00

6 01 00 01 00 00 00 00 01

7 00 00 01 00 00 00 00 00

(b)

Figure 4.3 Typical array SUBFN for a 3-output

3-variable function (a) Written form

(b) Computer storage form

67

5) Subroutine PRIME searches for a new PI each time

it is referenced by subroutine PITAB.

6) Subroutine GENCOD generates an RAD tree sequence.

If a TF has RAD's 1 and 4, then a 14, 1 and 4

sequence is generated to order the PI search in

this order.

7) Subroutine RDOMIN performs row dominance checking

and deletes these dominated rows.

8) Subroutine PIRED first removes essential PI's from

the PI table, then reduces the PI table by delet-

ing dominated rows and dominating columns, as

well as selecting pseudo-essential PI's.

9) Subroutine REDNT removes redundancy from each

output function by chedking if TFs in a PI are

all covered by other PI's.

B. Results and comparison

All examples presented in this section were used to

test various aspects of the multiple-output minimization

algorithm.

A typical design example would be: A Sine generator(2)

which accepts input angle(X) in digital form and generates

approximate results Sin(X) in digital form.

68

Let us first express an angle as X=A1X1+A2)C2+,..+AnXn,

where Al 2-1, A 2 2
-2
"" nA :=2

-n
'
X. is 0 or 1, thus X will be

in the range 0.4)(41. Next express, the result Sin(X71)1=Z=B1Z1

+B
2
Z ...+BmZm, where BT2 , B2=-2

-2
,..Bri=2

-m
, Zi is 0 or 1,

thus Z will be in the range OAZ<1. Assume that m=n=4(note

that with this assumption we can have only a limited applica-

tion for its poor accuracy) Fig. 4.4(b) shows such an approxi-

mation. The truth table is shown in Fig. 4.4(a), we now

have a multiple-output combinational circuit design problem.

The switching function of this problem is translated

directly from the table.

Zi(X1,X2,X30(4)=Z(3,4,5,6,7,10,11,12,13,14,15)

Z2(Xi,X2,X3,X4)=E(2,5,6,710,11,12,13,16)

Z (X X X ,
3 l' 2' 3 X

4)=L(1,2,4,6,7,10,11,12,14,16,17)

Z4 (, X2 , X3 , X14)=B 1,4, 5, 7, 10 g Hip 13 it 17)

If we minimize each function individually, we can have the

following solutions(Refer to examples No, 1 to No. 4 in

appendix B for computer-aided design output).

Z =(4,5
'
6,7)+(3,7)+(4,5,14,15)+(10,11,12,13)

Z2=(2,6,12,16)+(5,7)+(10,11,12,13)

Z
3=(1,11)+(6,7,16,17)+(2,6,12,16)+(10,12,14,16)

+(4,6,14,16)

Z4=(1,5)+(4,14)+(10,11)+(11,13)+(7,17)

Note that Z
4 is a cyclic problem. Two minimal solutions are

shown in Fig. 4.5. If we make no attempt to share PI's, the

X1 x2 x3 x4 Z1 z2 z
3 z4

o 0 0 0 0 0 0 0

0 0 0 1 0 0 1 1

0 0 1 0 0 1 1 0

0 0 1 1 1 0 0 0

0 1 0 0 1 0 1 1

0 1 0 1 1 1 0 1

0 1 1 0 1 1 1 0

0 1 1 1 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 1 1 1 1 1

1 0 1 0 1 1 1 0

1 0 1 1 1 1 0 1

1 1 0 0 1 0 1 1

1 1 0 1 1 0 0 0

1 1 1 0 0 1 1 0

1 1 1 1 0 0 1 1

(a)

1.0

0.5

69

0.5 1.0

Figure 4.4 Sine generator (a) Truth table

(b) Approximated Sine function

X

(b)

70

xi

11 11 1

11 11

11'ii

(a)

xi

1 11 1

1 I IL,
li

X
2

(b)

Figure 4.5 Two possible same cost solutions for Z4

(a) Z4=(1,5)+(4,14)+(10,11)+(11,13)+(7,17)

(b) Z4=(1,11)+(5,7)+(4,14)+(10,11)1.(13,17)

71

total cost is 46. But if the multiple_ output minimization

algorithm is used as shown in appendix B example No. 5, some

PI's are shared by more than 1 output function, and the total

cost becomes 32, which is 14 lower. This is the major

advantage of multiple-output minimization. The minimal solu-

tion of this example is somewhat different from that of

Dietmeyer(2), but the degree of minimality is the same.

Solution from Dietmeyer is:

21=(3,13) +(10,11 ,12,13) +00.11,14,15) +(4,5,6,7)

Zf..(5,7)+(2,6,12,16)+(10,11,12,13)

Z =(4,14)+(1,11)4122.11)+(2,6,12,16)+(6,7,16,17)

Z4=(4,14)+(5,7)+(13,17)+(1 11)+(10,11)

Solution from MOMIN is:

ZI:=(3,7)+(10,11,12,13)4.(4,5,14.1)+(4,5,6,7)

Z
2=(5,7)+(2,6,12,16)+(10,11,12,13)

4,14)*(1,11)+(10,14)+(2,6,12,16)+(6,7,16,17)Z3(

Z41=(4,14)+(5,7)+(11,17)+(1,11)+(10,14)

Note that: (i) PIs (3,7) and (4,5,14,15) are selected in ZI

instead of PIs 3,13) and (10,11,14,15), respectively.

(ii) PI (10,14) is selected in Z3 instead of PI

(10,11).

(iii) PIs (11,17) and (10,14) are selected in Z4

instead of PIs (13,17) and (10,11), respectively.

Although different cost function are used, we have the

same degree of minimality.

72

Example No. 6 to No. 12 in Appendix B correspond to

example 1, 2, 5, 7, 8, 9 and 10 in L.ckinney's dissertation

(7). It is seen that all seven examples have the same

minimal cost results(even though there are some different

essential/pseudo-essential PIs, they have the same cost,

e.g. The PI (8,10,24,26) in example No. 6 instead of

the PI (10,11,26,27) is selected. The comparison is shown

in Table 4.1.

Two sets of single-output functions were used to reveal

the advantage of multiple-output minimization.

(1) Example No. 13 to 18 in Appendix B are six

4-variable single-output functions, they are minimized

individually as shown. They were combined to form ten

m-output 4-variable functions(where m is 2, 3, 4, 5 or 6)

as shown in Table 4.2 column four. It is seen that the

execution time increases as the number-of TFs/XFs increases.

Examples No. 19 and 20 are the combinations of examples

No. 13 and No. 14 and No. 15 and No. 16, respectively.

Because there are no shared PIs, the multiple-output

minimization result costs are the same as the single-output

minimization result costs. Example No. 21 is the combination

of examples No. 14 and 18. The PI (3,7) instead of the PI

(3,7,11,15) is selected to share with F1. This reduces the

total cost by two. Example No. 25 is the combination of ex-

amples No. 15, 16, 17 and 18. The PI (3,7) instead of (6,7)

is selected in F
2

since it can be shared by F1. F3 has

73

the same result as example No, 17; although in F4 the PI (6,

7,14,15) has a lower cost than PI (6,14), (6,14) is selected

since it is shared by F2 and F4. The PI (3,7,11,15) is shared

by F3 and F4. The total cost is reduced by 3+2+2=7. Other

examples show same kind of cost reductions. The P.C. ratio

(product cost ratio; multiple-output minimization cost/single

- output minimization costs) shown in Table 4.2 indicates

that the network cost decreases(compared with summation of

each single-output cost) as the number of outputs increases.

(2) Examples No. 29 to 34 are six 5-variable single-

output functions,minimized individually. The same kind of

comparisons are made as shown in Table 4.3. Note that the

execution time is related to (i) the number of outputs, (ii)

the number of variables and (iii) the number of TFs/XFs.

The MOMIN algorithm has a fairly slow increasing execution

time with the above factors. Example No. 43 , the combina-

tion of examples No. 29 to 34, is a 6-output, 5-variable

function. It is a cyclic problem. In general it is more

time consuming to solve cyclic problems, because a cyclic

chain(all remaining PIs in the PI table) has to be resolved.

In order to find a minimal solution for a cyclic problem,

most combinations of remaining PIs must be examined. This

has been done by many previous investigators and thus it is

not repeated in this thesis.

Table 4.1 MOMIN and DSA performance comparison for single-output

minimization

Example No. of No.

variables TF

of

XF

Execution time(sec.)

DSA MOMIN

Product cost

DSA MOMIN

6 4 2 11 0.43 0.275 3 3

7 4 9 0 0.58 0.406 12 12

8 4 9 0 0.59 0.362 15 15

9 5 4 12 0.74 0.310 13 13

10 5 10 7 0.99 0.485 21 21

11 5 15 0 0.88 0.638 13 13

12 6 16 9 5.03 0.759 47 47

Note: Execution time of DSA includes both POS and SOP solutions,

while MOMIN finds only SOP solution

Different computer systems were used in DSA and MOMIN

Table 4.2 Performance of multiple-output minimization

Example No. of No.

outputs TF

of

XF

Combined

s-o examples

Execution

time(sec)

Product cost

m-o s-o's

P.C. ratio

m/s

19 2 8 6 13,14 0.323 15 15 1

20 2 8 4 15,16 0.299 19 19 1

21 2 9 5 14,18 0.350 11 14 0.785

22 3 12 9 13,14,15 0.503 18 24 0.750

23 3 12 5 16,17,18 0.545 14 21 0.666

24 4 16 10 13,14,15,16 0.745 25 34 0.735

25 4 12 6 15,16,17,18 0.788 22 30 0.733

26 5 21 11 14,15,16,17, 1.410 28 38 0.736
18

27 5 20 12 13,14,15,16, 1.183 28 39 0.710
17

28 6 24 14 13,14,15,16, 2.051 31 45 0.689
17,18

Notes: Variable number n=4 P.C. means product cost

m-o means multiple-output, s-o means single-output

Table 4.3 Performance of multiple-output minimization

Example No. of No.

outputs TF

of

XF

Combined

s-o examples

Execution Product cost

time(sec) m-o s-o's

P.C. ratio

35 2 34 3 29,30 1.939 38 38 1

36 2 16 5 31,32 0.705 38 38 1

37 2 13 5 31,33 0.456 32 32 1

38 3 41 3 29,30,31 2.597 52 60 0.866

39 3 27 18 32,33,34 2.240 27 30 0.900

40 4 34 18 31,32,33,34 3.030 47 52 0.903

41 4 43 21 29,32,33,34 4.269 43 51 0.843

42 5 5o 21 29,31,32,33,34 5.816 57 73 0.780

43 6 68 21 29,30,31,32,33,34 Cyclic problem

Note: Variable number n=5

77

V. Summary and Conclusion

McKinney's new technique for minimizing single-output

switching functions emphasizes that those PIs that must be

covered in the final solution are generated first. This

avoids the possibility of creating non-essential PIs

except in cyclic problems. It differs from the conventional

approach in that not all PIs are generated. However, since

in the minimization of multiple-output switching functions

multiple-output prime implicants must be generated and

tested to see if sharing is possible, this new technique

becomes less applicable(since McKinney's method is not

directed toward the derivation of all Pis, thus the

derivation of all MOPIs becomes difficult).

From the computer-aided design outputs we see that

multiple-output minimization is less useful in comparison

with individual minimization if the number of outputs is

small. But if the number of outputs increases, the

advantage of multiple-output minimization becomes evident

as discussed in chapter II.

The MOMIN algorithm presents the applicability of

RAD's and RAD trees in the minimization of multiple-output

functions. Although it is basically a conventional approach,

i.e. derive all PIs and find a cover for the function, the

algorithm shows a different way in generating PIs as well as

the advantage of multiple-output minimization.

78

k faster and more efficient algorithm for the

minimization of multiple-output circuits is the current

trend of study and is also the goal of this thesis. It

has been found that McKinney's directed search algorithm

DSA is difficult to apply directly to multiple-output

circuits if an absolute minimal solution is required(since

MOPIs must be considered). But if a subminimal solution

is desired, the ideas of DSA algorithm(not finding all Pis)

may be applied.

Although the hardware costs of a multiple-output

circuit may be significantly reduced by finding a minimal

solution, yet the hardware costs saved may be less than

the design costs saved by finding an easily found sub-

minimal solution. A subminimal solution is sometimes more

economical. In designing logic circuits, these two factors

are to be compromised. It is why the two versions of the

minimization algorithm are presented in this thesis.

79

BIBLIOGRAPHY

1. Bartee T. C., "Computer Design of Multiple-output

Logical Networks, " IRE Transactions on Electronic

Computers, vol. EC-10, pp. 21-30, March 1961.

2. Dietmeyer D. L., Logic Design of Digital Systems,

Boston, Mass.: Allyn and Bacon, 1971.

3. Douglas L., Computer-Aided Design of Digital Systems,

New York: Crane Russak, 1977.

4. Hong S. J., Cain R. G. and Ostapko D. L., "Mini:

A Heuristic Approach for Logic Minimization," IBM

Technical Journal, pp. 443-458, September 1974.

5. Kohavi Z., Switching and Finite Automata Theory, New

York: McGraw-Hill, 1970.

Lee S. C., Digital circuits and Logical Design,

Englewood, N. J.: Prentice-Hall, 1976.

7. McKinney M. H., "A Directed Search Algorithm for the

Canonical Minimization of Switching Function," Ph. D...

dissertation, Texas A&M Univ., College Station, TX.
1974.

8. Nagle H. T. Jr., Carroll B. D. and Irwin J. D.,

An Introduction to Computer Logic, Englewood Cliffs,

N. J.: Prentice-Hall, 1975, Chapter four.

9. Rhyne V. T., Noe P. S., McKinney M. H. and Pooch
U. W., "A New Technique for the Fast Minimization

of Switching Functions," IEEE Transactions on

Electronic Computers, vol. C-26, pp. 757-764,

August 1977.

80

10. Roth J. P., "Algebraic topological methods for the

synthesis of switching systems," Transaction of the

American Mathematical Society, vol. 88, pp. 301-326,

July 1958.

11. Su Y. H. and Dietmeyer D. L., "Computer Reduction

of Two-level, Multiple-Output Switching Circuits,"

IEEE Transactions on Electronic Computers, vol.

C-18, pp. 58-63, January 1969.

12. Urbano R. H. and Mueller R. K., "A topological

method for the determination of the mihimal forms

of a Boolean function," IRE Transactions on Computers

vol. ED-5, pp. 126-132, September 1956.

