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Abstract

In [BH], a chain complex was constructed in a combinatorial way
which conjecturally is a resolution of the (dual of the) integral Specht
module for the symmetric group in terms of permutation modules.
In this paper we extend the definition of the chain complex to the
integral Iwahori Hecke algebra and prove the same partial exactness
results that were proved in the symmetric group case.

Introduction

In [BH], Hartmann and the first author constructed, for any composition λ of
a positive integer r, a finite chain complex of modules for the group algebra
RW of the symmetric group W on r letters over an arbitrary commutative
ring R. The last module in this complex is the dual of the Specht module

∗MR Subject Classification: 20C08. Keywords: Iwahori Hecke algebra, Specht
module, permutation module, resolution
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Sλ and the other modules are permutation modules with point stabilizers
given by Young subgroups of W . The construction of the chain complex was
completely combinatorial and characteristic-free. It was conjectured that this
chain complex is exact whenever λ is a partition. In other words the chain
complex is conjectured to be a resolution of the (dual) of the Specht module
by permutation modules. Partial exactness results were already established
in [BH] and a full proof of the exactness was given recently by Yudin and
Santana (see [SY]) by translating the construction via the Schur functor.
Other permutation resolutions of Specht modules have been considered by
Donkin in [Dn], Akin in [A], Zelevinskii in [Z], Akin-Buchsbaum in [AB1]
and [AB2], Santana in [S], Woodcock in [W1] and [W2], Doty in [Dy] and
Yudin in [Y]. See [BH, Section 6] for a more detailed comparison of these
constructions with the construction in [BH].

The goal of this paper is to (a) lift the construction of the chain complex in
[BH] for the group algebra RW to a chain complex for modules of the Iwahori
Hecke algebra HR

r,q for any integral domain R such that the specialization
q = 1 reproduces the original chain complex; and (b) lift the partial exactness
proofs from [BH] to the new construction.

Both goals are achieved, with part (a) being relatively straightforward,
but part (b) requiring much more subtle arguments. The paper is arranged
as follows. In Section 1 we establish the necessary notation and recall results
about the Hecke algebra H

R
r,q from [DJ]. In Section 2 we introduce a group of

homomorphisms between ‘permutation modules’ of HR
r,q and show that such

homomorphisms are closed under composition. This is used in Section 3 to
construct the chain complex which generalizes the chain complex in [BH].
In Section 4 we prove that the chain complex in question is exact in degrees
−1 and 0, for arbitrary partitions λ, and that it is exact everywhere, for all
partitions of the form (λ1, λ2, λ3) with λ3 6 1, cf. Theorems 4.2, 4.4, 4.5. The
very technical proof of a key lemma, Lemma 4.3, is postponed to Section 5.

The authors are grateful to the referee for the careful reading and for
pointing out a mistake in the proof of Proposition 2.2 in a first version of
this paper.
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1 Notation and Quoted Results

Throughout this paper we denote by R an integral domain. Unadorned
tensor products and homomorphism sets will be understood to be taken over
R. Moreover, we fix a positive integer r and denote by W the symmetric
group on the set {1, . . . , r}. Elements of W are composed like functions
applied on the right in order to be consistent with [DJ]. Thus, W acts
from the right on {1, . . . , r} and we write (i)w or iw for i ∈ {1, . . . , r} and
w ∈ W . We set S := {(i, i + 1) | i = 1 . . . , r − 1}, the standard choice of
simple transpositions. The set of positive (resp. non-negative) integers will
be denoted by N (resp. N0).

1.1 The Hecke algebra H. For a unit q of R we denote by H = HR
r,q the

Hecke algebra as introduced in [DJ]. It has an R-basis consisting of the
elements Tw, w ∈ W . The multiplication in H is uniquely determined by the
following formulas for w ∈ W and s ∈ S:

TwTs =




Tws, if l(ws) = l(w) + 1, i.e., if iw−1 < (i+ 1)w−1,

qTws + (q − 1)Tw, if l(ws) = l(w)− 1, i.e., if iw−1 > (i+ 1)w−1.

The element T1 is the identity element of H.
By E we denote the strong Bruhat order on W : for u, v ∈ W , one has

u E v if there exists a reduced expression u = s1 · · · sn of u and integers
1 6 i1 < · · · < ik 6 n with v = si1si2 · · · sik . While, for given v, w ∈ W , it is
in general difficult to express TvTw in terms of the basis elements Tx, x ∈ W ,
Lemma 2.1(ii) in [DJ] and a quick induction argument on l(w) imply that

TvTw ∈
∑

wEu∈W

RTvu (1)

and that
TvTw = Tvw if l(vw) = l(v) + l(w). (2)

1.2 The H-modules Mλ. We denote by Γ the set of compositions λ =
(λ1, λ2, . . .) of r and by Λ the set of partitions of r. We define the dominance

order E on Γ by

λ E µ : ⇐⇒
e∑

i=1

λi 6
e∑

i=1

µi for all e > 1.
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This defines a partial order on Γ. Note that it differs from the dominance
relation defined in [DJ] which is not a partial order and is defined by

λ 6 µ : ⇐⇒ µ′
E λ′ , (3)

where λ′ = (λ′1, λ
′
2, . . .) denotes the dual of λ, i.e., λ′i := |{k ∈ N | λk > i}|,

for i ∈ N. Note that λ′ is always a partition.
Let λ be a composition of r. One associates to λ the set partition

Pλ := {{1, . . . , λ1}, {λ1 + 1, . . . , λ1 + λ2}, . . .}

of {1, . . . , r} and the standard parabolic subgroup Wλ consisting of all w ∈ W
which fix Pλ element-wise. Note that Wλ is generated by the elements s =
(i, i+ 1) ∈ S with the property that i and i+ 1 belong to the same element
of Pλ. More generally, a subgroup of W is called a parabolic subgroup if it
arises as the stabilizer of an arbitrary set partition of {1, . . . , r}, i.e., if it is
conjugate to a subgroup of the formWλ. Intersections of parabolic subgroups
are again parabolic subgroups. The right H-submodule Mλ of the regular
module H is defined as

Mλ := xλH with xλ :=
∑

w∈Wλ

Tw .

For v ∈ Wλ one has
xλTv = ql(v)xλ , (4)

cf. [DJ, Lemma 3.2]. Every coset Wλw ∈ Wλ\W has a unique element of
smallest length. We denote the set of these distinguished coset representa-
tives by Dλ. For w ∈ Wλ and d ∈ Dλ one has

l(wd) = l(w) + l(d) and Twd = TwTd . (5)

The elements xλTd, d ∈ Dλ, form an R-basis of Mλ, cf. [DJ, Lemma 3.2].
As usual one identifies compositions λ with Young diagrams and we say

that λ is the shape of the corresponding Young diagram. A λ-tableau is a
filling of the r boxes of the Young diagram of λ with the numbers 1, 2, . . . , r.
We denote the set of λ-tableaux by T(λ) and usually denote elements of T(λ)
by t. The λ-tableau which contains the entries 1, 2, . . . , r in ascending order
is denoted by tλ. Thus, for λ = (1, 0, 2) one has

t(1,0,2) =
1

2 3
.
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This provides a standard numbering of the boxes of the Young diagram of λ
which we will use later. The group W acts from the right on T(λ) by simply
applying an element w ∈ W to the entries of the tableau t ∈ T(λ). This
action is free and transitive, and it yields a bijection

W
∼
−→T(λ) , w 7→ tλw .

A λ-tableau t is called row-standard if its entries are increasing in each row
from left to right. The row-standard λ-tableaux form a subset Trs(λ) of
T(λ). Two λ-tableaux t1 and t2 are called row-equivalent if they arise from
each other by rearranging elements within each row. We denote the row-
equivalence class of t by {t} and the set of row-equivalence classes by T(λ).
One has canonical bijections

Dλ
∼
−→T

rs(λ)
∼
−→T(λ) (6)

given by d 7→ tλd and t 7→ {t}. Thus, the canonical basis xλTd, d ∈ Dλ,
could also be parametrized by Trs(λ) or T(λ). For d ∈ Dλ we denote by

εd ∈ Hom(Mλ, R)

the R-module homomorphism with the property that εd(xλTe) = δd,e for all
e ∈ Dλ. In other words, the elements εd, d ∈ Dλ, form the dual basis of
the R-basis xλTd, d ∈ Dλ. If t ∈ Trs(λ) corresponds to d ∈ Dλ under the
canonical bijection in (6) we will also write εt instead of εd.

For λ ∈ Λ we have an obvious bijection T(λ)
∼
−→T(λ′), t 7→ t′, where t′

is the reflection of t with respect to the diagonal axis. Note that (tw)′ = t′w
for all t ∈ T(λ) and w ∈ W .

1.3 The homomorphisms ϕλ,µ
d : Mµ → Mλ. Let µ, λ ∈ Γ be compositions

of r. The elements of Dλ,µ := Dλ ∩D−1
µ form a set of representatives of the

double cosets Wλ\W/Wµ, and each element d ∈ Dλ,µ is the unique element
of shortest length in its double coset WλdWµ. By [DJ, Theorem 3.4], the set

Dλ,µ parametrizes an R-basis ϕλ,µ
d , d ∈ Dλ,µ, of HomH(M

µ,Mλ) given by

ϕλ,µ
d (xµ) =

∑

w∈WλdWµ

Tw = xλ
∑

e∈Dν∩Wµ

Tde = xλTd
∑

e∈Dν∩Wµ

Te , (7)

where ν ∈ Γ is determined by Wν = d−1Wλd∩Wµ. The last equality follows
from (5). We want to mention that the cited theorem requires that R is a
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principal ideal domain. But a careful examination of the canonical isomor-
phisms in [DJ, Theorems 2.5, 2.6, 2.7] involved in the proof of the theorem
show that this hypothesis is unnecessary. (More precisely, the R-modules
HomH(MHν

, N ⊗ Td) in [DJ, Theorem 2.8] are free of rank one in the case
that M and N are trivial modules.)

We will use a combinatorial description of the set Dλ,µ in terms of the
set T(λ, µ) of generalized tableaux T of shape λ and content µ. Such a
generalized tableau T is a filling of the r boxes of the Young diagram of shape
λ with µ1 entries equal to 1, µ2 entries equal to 2, etc. We denote by T λ

µ ∈
T(λ, µ) the generalized tableau which has its boxes filled in the natural order.
If we number the boxes of the Young diagram of λ according to the entries
of tλ ∈ T(λ), we may view T(λ, µ) as the set of functions T : {1, . . . , r} → N

with the property |T−1(i)| = µi for all i ∈ N. The group W acts transitively
on T(λ, µ) from the left by (wT )(i) := T (iw), for T ∈ T(λ, µ), w ∈ W and
i ∈ {1, . . . , r}. The stabilizer of T λ

µ is equal to Wµ. This defines a bijection

W/Wµ
∼
−→T(λ, µ), wWµ 7→ wT λ

µ . We call two generalized tableaux T1, T2 ∈
T(λ, µ) row-equivalent if they arise from each other by rearranging the entries
within the rows, i.e., if T2 = wT1 for some w ∈ Wλ. If we denote the row
equivalence class of T ∈ T(λ, µ) by {T} and the set of such classes by T(λ, µ)
then we have obtain a bijection Wλ\W/Wµ

∼
−→T(λ, µ), WλwWµ 7→ {wT

λ
µ }.

A generalized tableau T ∈ T(λ, µ) is called row-semistandard if in each of
its rows the entries are in their natural order from left to right. We denote
the set of these tableaux by Trs(λ, µ). Each row-equivalence class contains a
unique row-semistandard element. Thus, Trs(λ, µ)→ T(λ, µ), T 7→ {T}, is a
bijection. Altogether, we now have canonical bijections

Dλ,µ
∼
−→Wλ\W/Wµ

∼
−→T(λ, µ)

∼
←−T

rs(λ, µ) (8)

and we may use each of these sets to parametrize the basis ϕλ,µ
d , d ∈ Dλ,µ,

of HomH(M
µ,Mλ). So, if T ∈ Trs(λ, µ) and d ∈ Dλ,µ correspond under the

above bijection, we also write ϕλ,µ
T instead of ϕλ,µ

d .
We leave it to the reader to check that d ∈ Dλ,µ corresponds to T ∈

Trs(λ, µ) if and only if ϕλ,µ
T = θT : M

µ → Mλ in the case q = 1, with θT the
homomorphism defined in [BH, Subsection 1.5].

1.4 The Specht modules Sλ. Let λ ∈ Λ be a partition of r. One defines
elements

yλ :=
∑

w∈Wλ

(−q)−l(w)Tw and zλ := xλTwλ
yλ′ ∈Mλ
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of H, where wλ ∈ W is defined by the property that (tλwλ)
′ = tλ

′
. The

Specht module Sλ is defined by

Sλ := zλH .

Since zλ ∈M
λ, Sλ is an H-submodule of Mλ.

A λ-tableau t ∈ T(λ) is called a standard λ-tableau if t ∈ Trs(λ) and
t′ ∈ Trs(λ′). We denote the set of standard λ-tableaux by Tst(λ). More
generally, for µ ∈ Γ, we say that a generalized tableau T ∈ T(λ, µ) is standard
if T ∈ T

rs(λ, µ) and if the entries of T are strictly increasing along each
column from top to bottom. We denote the set of standard λ-tableaux of
content µ by Tst(λ, µ).

We extend the definition of Sλ, Tst(λ), and Tst(λ, µ) to arbitrary compo-
sitions λ ∈ Γ by setting Sλ := 0, Tst(λ) = ∅, and Tst(λ, µ) = ∅ if λ is not a
partition.

Recall that the weak Bruhat order 6 onW is defined by u > v if and only
if there exists a reduced expression v = s1 · · · sn for v with s1, . . . , sn ∈ S and
k ∈ {0, . . . , n} such that u = s1 · · · sk. Given λ ∈ Λ, [DJ, Lemma 1.5] states
that

D
st
λ := {d ∈ W | d > wλ}

∼
−→T

st(λ) , d 7→ tλd . (9)

is a bijection. Thus, Dst
λ ⊆ Dλ. Note that for d ∈ W one has tλ

′
d =

(tλwλ)
′d = (tλwλd)

′ and therefore,

d > wλ′ ⇐⇒ tλ
′

d ∈ T
st(λ′) ⇐⇒ tλwλd ∈ T

st(λ) ⇐⇒ wλd ∈ D
st
λ . (10)

By [DJ, Theorem 5.6], for given λ ∈ Λ, the elements zλTd with wλ′ 6 d ∈ W
form an R-basis of Sλ. By the above, this set has cardinality |Tst(λ′)| =
|Tst(λ)|, since t ∈ T(λ) is standard if and only if t′ ∈ T(λ′) is standard.
Moreover, [DJ, Lemma 5.1] states that if d > wλ′ and if one expands the
basis element zλTd of Sλ in terms of the standard basis of Mλ, i.e., zλTd =∑

e∈Dλ
αd,exλTe, with αd,e ∈ R, then

αd,wλd = ql(d) (11)

and
αd,e 6= 0⇒

(
e = wλd or l(e) > l(wλd)

)
. (12)

Thus, if we setDns
λ := DλrDst

λ then the R-span of the elements xλTe, e ∈ Dns
λ ,

is a direct complement of Sλ in Mλ, and we state for later reference:

For every λ ∈ Γ, the Specht module Sλ is R-free of rank |Tst(λ)|
and Sλ has an R-complement in Mλ.

(13)
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2 Ascending Generalized Tableaux and Ho-

momorphisms

In this section we introduce, for any compositions λ, µ ∈ Γ, an R-submodule
Hom∧

H
(Mµ,Mλ) of HomH(M

µ,Mλ). In Proposition 2.2 we show that for ϕ ∈
Hom∧

H
(Mµ,Mλ) and ψ ∈ Hom∧

H
(Mν ,Mµ) one has ϕ ◦ ψ ∈ Hom∧

H
(Mν ,Mλ).

2.1 Let λ, µ ∈ Γ be compositions of r. We say that T ∈ T(λ, µ) is ascending
if, for every i ∈ N, the i-th row of T contains only entries which are greater
than or equal to i. As in [BH], we denote the set of ascending and row
semistandard elements of T(λ, µ) by T∧(λ, µ). One has

T
∧(λ, µ) 6= ∅ ⇐⇒ µ E λ ⇐⇒ T λ

µ ∈ T
∧(λ, µ) (14)

and T∧(λ, λ) = {T λ
λ }.

We define D∧
λ,µ as the image of T∧(λ, µ) under the canonical bijection in

(8). Moreover, we define

Hom∧
H
(Mµ,Mλ) :=

⊕

d∈D∧
λ,µ

Rϕλ,µ
d ⊆ HomH(M

µ,Mλ) . (15)

By (14) we have
Hom∧

H
(Mµ,Mλ) 6= {0} ⇒ µ E λ .

For i ∈ N, we define the intervals Pi := {λ1+· · ·+λi−1+1, . . . , λ1+· · ·+λi}
and Qi := {µ1 + · · ·+ µi−1 + 1, . . . , µ1 + · · ·+ µi}. One has for any w ∈ W :

wT λ
µ is ascending

⇐⇒ Piw ⊆ Qi ∪Qi+1 ∪ · · · for all i > 1

⇐⇒ (Pi ∪ Pi+1 ∪ · · · )w ⊆ Qi ∪Qi+1 ∪ · · · for all i > 1.

We define Wλ,µ to be the set of elements w ∈ W satisfying the above equiva-
lent properties. Clearly, Wλ,µ is a union of double cosets in Wλ\W/Wµ. The
following properties are also immediate from the definition:

Wλ,µ 6= ∅ if and only if µ E λ,

Wλ,λ =Wλ ,

Wλ,µWµ,ν ⊆Wλ,ν if ν E µ E λ,

Wλ1Wµ ⊆Wλ,µ if µ E λ,

Wλ,µ ∪Wµ,ν ⊆Wλ,ν if ν E µ E λ.

(16)
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The goal of this section is the proof of the following proposition.

2.2 Proposition Let λ, µ, ν ∈ Γ be compositions of r and let α ∈
Hom∧

H
(Mν ,Mµ) and β ∈ Hom∧

H
(Mµ,Mλ). Then β ◦ α ∈ Hom∧

H
(Mν ,Mλ).

Before we can prove the proposition, we need three lemmas.

2.3 Lemma Let λ, µ ∈ Γ be compositions of r and let w ∈ Wλ,µ (in partic-
ular, µ E λ). If w = sv with s ∈ S, v ∈ W and l(w) = l(v) + 1 then there
exists ρ ∈ Γ such that µ E ρ E λ, s ∈ Wλ,ρ and v ∈ Wρ,µ.

Proof Write s = (i, i+1) with i ∈ {1, . . . , r−1} and note that iw > (i+1)w,
since l(w) > l(sw). Let P1, P2, . . . and Q1, Q2, . . . be the subsets of {1, . . . , r}
associated to λ and µ, respectively, as above. If there exists j ∈ N with
{i, i + 1} ∈ Pj then s ∈ Wλ and ρ := λ satisfies the required conditions,
since Wλ = Wλ,λ and v = sw ∈ WλWλ,µ = Wλ,µ. Hence, we may assume
that there exist positive integers j < k such that i ∈ Pj and i + 1 ∈ Pk (we
need to allow the possibility that Pj+1 = · · · = Pk−1 = ∅). Set P ′

l := Pl for
l /∈ {j, k}, and set P ′

j := Pj r {i} and P
′
k := Pk ∪ {i}. Moreover, let ρ ∈ Γ

be the composition defined by P ′
1, P

′
2, . . .. Then clearly, ρ E λ and s ∈ Wλ,ρ.

We still need to show that v ∈ Wρ,µ. This also implies µ E ρ by (16). For
l /∈ {j+1, . . . , k} we have P ′

l∪P
′
l+1∪· · · = Pl∪Pl+1∪· · · and (P ′

l∪P
′
l+1∪· · · )v =

(Pl∪Pl+1∪· · · )v = (Pl∪Pl+1∪· · · )sv = (Pl∪Pl+1∪· · · )w ⊆ Ql∪Ql+1∪· · · .
For l ∈ {j+1, . . . , k} we have i+1 ∈ P ′

l ∪P
′
l+1 ∪ · · · = (Pl ∪Pl+1 ∪ · · · )∪{i}

and (P ′
l ∪P

′
l+1∪ · · · )v = ({i}∪Pl ∪Pl+1∪ · · · )v = ({i}∪Pl ∪Pl+1∪ · · · )sv =

({i} ∪ Pl ∪ Pl+1 ∪ · · · )w ⊆ {iw} ∪ Ql ∪ Ql+1 ∪ · · · , since w ∈ Wλ,µ. It
suffices to show that iw ∈ Ql ∪ Ql+1 ∪ · · · . But since w ∈ Wλ,µ, we have
(i + 1)w ∈ (Pk ∪ Pk+1 ∪ · · · )w ⊆ Qk ∪ Qk+1 ∪ · · · ⊆ Ql ∪ Ql+1 ∪ · · · , and
iw > (i + 1)w now implies also iw ∈ Ql ∪ Ql+1 ∪ · · · . This completes the
proof of the lemma.

2.4 Lemma Let λ, µ ∈ Γ and let w ∈ Wλ,µ. If u ∈ W satisfies u D w then
also u ∈ Wλ,µ.

Proof We proceed by induction on l(w). Note that µ E λ, since Wλ,µ 6= ∅.
If w = 1 we have u = 1 and u = w ∈ Wλ,µ. Now assume that l(w) > 1 and
write w = sv with l(w) = l(v) + 1 and s ∈ S. By Lemma 2.3 there exists
ρ ∈ Γ such that µ E ρ E λ, s ∈ Wλ,ρ and v ∈ Wρ,µ. Since u D w = sv and
l(w) > l(v), we have u D v or su D v. If u D v then l(u) 6 l(v) < l(w)

9



and, by induction, v ∈ Wρ,µ implies u ∈ Wρ,µ. But Wρ,µ ⊆ Wλ,µ by (16). If
su D v then, again by induction, v ∈ Wρ,µ implies su ∈ Wρ,µ, and further,
u = s(su) ∈ Wλ,ρWρ,µ ⊆Wλ,µ. Now the proof is complete.

2.5 Lemma Let λ, µ, ν ∈ Γ, v ∈ Wλ,µ, and w ∈ Wµ,ν . Then TvTw ∈∑
u∈Wλ,ν

RTu.

Proof This follows immediately from Equation (1), Lemma 2.4 and
Wλ,µWµ,ν ⊆Wλ,ν .

Proof of Proposition 2.2 By the definition in (15) we may assume that
α = ϕµ,ν

d and β = ϕλ,µ
e for some d ∈ D∧

µ,ν and e ∈ D∧
λ,µ. By Equation (7)

and since d ∈ Wµ,ν and e ∈ Wλ,µ, we have ϕµ,ν
d (xν) ⊆ xµ ·

∑
w∈Wµ,ν

RTw and

ϕλ,µ
e (xµ) ⊆

∑
v∈Wλ,µ

RTv. Together with Lemma 2.5 this implies

(ϕλ,µ
e ◦ ϕ

µ,ν
d )(xν) ∈ ϕ

λ,µ
e (xµ) ·

∑

w∈Wµ,ν

RTw ⊆
∑

v∈Wλ,µ
w∈Wµ,ν

RTvTw

⊆
∑

u∈Wλ,ν

RTu =
∑

f∈D∧
λ,ν

∑

u∈WλfWν

RTu .

Since the elements ϕλ,ν
f , f ∈ Dλ,ν, form an R-basis of HomH(M

ν ,Mλ) we

can write ϕλ,µ
e ◦ ϕ

µ,ν
d =

∑
f∈Dλ,ν

afϕ
λ,ν
f with af ∈ R, for f ∈ Dλ,ν . Thus,

(ϕλ,µ
e ◦ ϕ

µ,ν
d )(xν) =

∑

f∈Dλ,ν

afϕ
λ,ν
f (xν) =

∑

f∈Dλ,ν

af
∑

u∈WλfWν

Tu .

Comparing this with the above yields af = 0 for all f ∈ Dλ,ν rD∧
λ,ν , and the

proof is complete.

3 The Chain Complex C̃λ
∗

Throughout this section we fix a composition λ ∈ Γ. We will use the R-
modules Hom∧

H
(Mµ,Mλ) from Section 2 and the result from Proposition 2.2

to construct a chain complex C̃λ
∗ of left H-modules. In the case q = 1, this

chain complex coincides with the chain complex constructed in [BH] for the
symmetric group algebra.

10



3.1 The definition of C̃λ
∗ . For every strictly ascending chain

γ = (λ(0) ⊳ · · · ⊳ λ(n)) (17)

of length n in Γ we set

Mγ := Hom∧
H
(Mλ(0)

,Mλ(1)

)⊗ Hom∧
H
(Mλ(1)

,Mλ(2)

)⊗ · · ·

· · · ⊗ Hom∧
H
(Mλ(n−1)

,Mλ(n)

)⊗Hom(Mλ(n)

, R) .

We view Mγ as left H-module via

h(ϕ1 ⊗ · · · ⊗ ϕn ⊗ ε) := ϕ1 ⊗ · · · ⊗ ϕn ⊗ hε ,

for h ∈ H, ϕi ∈ Hom∧
H
(Mλ(i−1)

,Mλ(i)
), i = 1, . . . , n, and ε ∈ Hom(Mλ(n)

, R),

where (hε)(m) := ε(mh) for m ∈Mλ(n)
.

For every integer n > 0, we write ∆λ
n for the set of chains γ as in (17)

with λ(0) = λ. Further, we define the left H-module

Cλ
n :=

⊕

γ∈∆λ
n

Mγ .

For n > 1, γ ∈ ∆λ
n and i ∈ {1, . . . , n}, we denote by γi ∈ ∆λ

n−1 the chain
obtained from γ by omitting λ(i). We define an H-module homomorphism

dλn,i : Mγ →Mγi

by
ϕ1 ⊗ · · · ⊗ ϕn ⊗ ε 7→ ϕ1 ⊗ · · · ⊗ ϕi+1 ◦ ϕi ⊗ · · · ⊗ ϕn ⊗ ε ,

where ϕi+1 is interpreted as ε if i = n. The direct sum of these homomor-
phisms yields an H-module homomorphism dλn,i : C

λ
n → Cλ

n−1 and we set

dλn :=
n∑

i=1

(−1)i−1dλn,i : C
λ
n → Cλ

n−1 .

Since the maps dλn,i : C
λ
n → Cλ

n−1 satisfy the usual simplical relations, we
obtain dλn ◦ d

λ
n+1 = 0 for n > 1. Thus, we have constructed a chain complex

Cλ
∗ : 0 qq

qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq Cλ
a(λ)

dλa(λ)
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq Cλ
a(λ)−1

dλa(λ)−1
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq · · ·
dλ1

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq Cλ
0

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq 0
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of finitely generated left H-modules and H-module homomorphisms. Here,
a(λ) is defined as the length of the longest possible strictly ascending chain
γ as in (17) with λ(0) = λ, in other words, a(λ) is the largest integer n with
∆λ

n 6= ∅.
Note that the definition of dλn implies immediately that

dλ
(0)

n (ϕ1 ⊗ · · · ⊗ ϕn ⊗ ε) = (ϕ2 ◦ ϕ1)⊗ · · · ⊗ ϕn ⊗ ε

− ϕ1 ⊗ d
λ(1)

n−1(ϕ2 ⊗ · · · ⊗ ϕn ⊗ ε) ,
(18)

for n > 2, γ as in (17), ϕi ∈ Hom∧
H
(Mλ(i−1)

,Mλ(i)
), i = 1, . . . , n, and ε ∈

Hom(Mλ(n)
, R).

Finally, we extend the chain complex Cλ
∗ by the H-module homomor-

phism

dλ0 : C
λ
0 = Hom(Mλ, R)→ Hom(Sλ, R) =: Cλ

−1 , ε 7→ ε|Sλ ,

and obtain a chain complex

C̃λ
∗ : 0 qqq

qqq
qqq
qq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq Cλ
a(λ)

dλa(λ)
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Cλ
a(λ)−1

dλa(λ)−1
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq · · ·
dλ1

qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Cλ
0

dλ0
qq
qqq
qqq
qqq
qqq
qq
qq

qqqqqqqqqqqqqqqqqq Cλ
−1

qqq
qqq
qqq
qq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq 0

in the category of finitely generated left H-modules. In fact, in the next
proposition we show that dλ0 ◦ d

λ
1 = 0. Note that Cλ

−1 = 0 if λ is not a

partition. Also note that every H-module in the chain complex C̃λ
∗ is finitely

generated and free as R-module so that after applying the functor Hom(−, R)
we obtain a chain complex starting with 0→ Sλ → Mλ → · · · and involving
direct sums of modules of the form Mµ with µ ⊲ λ from there on.

3.2 Proposition With the notation from 3.1 one has dλ0 ◦ d
λ
1 = 0.

Proof We may assume that λ is a partition, since otherwise Cλ
−1 = 0. Let

λ ⊳ µ be a chain of length 1 in Γ and let d ∈ Dµ,λ. It suffices to show that

ϕµ,λ
d (Sλ) = 0. Since Sλ = zλH, it suffices to show that ϕµ,λ

d (zλ) = 0. But,

ϕµ,λ
d (zλ) = ϕµ,λ

d (xλTwλ
yλ′) = ϕµ,λ

d (xλ)Twλ
yλ′ ∈ xµHyλ′

and it suffices to show that xµTwyλ′ = 0 for all w ∈ W . So assume that
xµTwyλ′ 6= 0 for some w ∈ W . Then [DJ, Lemma 4.1] implies λ′′ > µ, with
respect to relation 6 defined in (3). But λ′′ > µ is equivalent to λ′′′ E µ′.
Now λ′′′ = λ′ and λ′ E µ′ implies µ′′ E λ′′. Since λ is a partition, we have

12



λ′′ = λ and obtain µ E µ′′ E λ, a contradiction to λ ⊳ µ. This shows that
xµTwyλ′ = 0 for all w ∈ W and the proof is complete.

3.3 For λ ∈ Γ and an integer n > 0 we denote by Bλ
n the set of symbols

(λ(0) ⊳
T1

λ(1) ⊳
T2

· · · ⊳
Tn

λ(n), t) (19)

with γ = (λ(0) ⊳ · · · ⊳ λ(n)) ∈ ∆λ
n (so λ(0) = λ) and Ti ∈ T

∧(λ(i), λ(i−1)) for
i = 1, . . . , n, and with t ∈ Trs(λ(n)). By the definition of Cλ

n , the elements of
Bλ

n parametrize and R-basis of Cλ
n , by associating the symbol in (19) with

the element

ϕλ(1),λ(0)

T1
⊗ · · · ⊗ ϕλ(n),λ(n−1)

Tn
⊗ εt ∈Mγ ⊆ Cλ

n .

Note that Bλ
0 = Trs(λ). For completeness we set Bλ

−1 := Tst(λ) and associate
to a standard tableau t ∈ Tst(λ) the element ψt ∈ Hom(Sλ, R) with the
property ψt(zλTd) = 1 if d ∈ D

st
λ corresponds to t under the bijection (9) and

ψt(zλTd) = 0 otherwise.

4 Exactness Results

The goal of this section is to state three exactness results, Theorems 4.2, 4.4
and 4.5, on the chain complex C̃λ

∗ . The lengthy and technical proof of a key
lemma, Lemma 4.3, which is needed in the proof of the two latter theorems,
will be postponed to the next section. The strategy of the proofs is the
same as in [BH]. The proofs in this section are adaptations of the proofs in
[BH]. We will present them for the reader’s convenience in the Hecke algebra
setting. However, the proof of Lemma 4.3 is more difficult if q 6= 1.

4.1 Assume that λ ∈ Γ, that n > −1 is an integer and that Kλ
n is an

R-submodule of Cλ
n satisfying

im(dλn+1) +Kλ
n = Cλ

n (Aλ
n)

and
ker(dλn) ∩K

λ
n = {0} . (Bλ

n)

13



Then it is easy to see that the chain complex C̃λ
∗ is exact in degree n. In

fact, the conditions (Aλ
n) and (Bλ

n) together are equivalent to

im(dλn+1) = ker(dλn) and ker(dλn)⊕K
λ
n = Cλ

n .

We will produce, for certain choices of λ and n, submodules Kλ
n which satisfy

(Aλ
n) and (Bλ

n), by taking the R-span of the basis elements of Cλ
n parametrized

by a subset Kλ
n of the canonical R-basis Bλ

n, cf. Subsection 3.3. By abuse of
notation we then will say that Kλ

n satisfies (Aλ
n) or (B

λ
n), if its R-span does.

4.2 Theorem The chain complex C̃λ
∗ is exact in degree −1 for every com-

position λ ∈ Γ.

Proof Since Sλ has an R-complement in Mλ, cf. (13), the restriction map
Hom(Mλ, R)→ Hom(Sλ, R) is surjective, and the proof is complete.

The following lemma will be a key ingredient to the proof of Theorem 4.4,
which in turn forms the base case for the inductive proof of Theorem 4.5. To
state the lemma we need to introduce the following notation. For λ ∈ Γ, every
tableau t ∈ T(λ) can be thought of as a sequence of numbers by appending
the second row at the end of the first, and so on. On these sequences we have
the lexicographic total order. We set t′ < t if and only if the first entry in
the sequence of t which differs from the corresponding entry of t′ is greater
than the one for t′. Moreover, for t ∈ Trs(λ) we denote by Cλ

0,<t the R-span
of the canonical basis elements εt′ of Hom(Mλ, R) with t > t′ ∈ Trs(λ). See
the end of Subsection 1.2 for the definition of εt, t ∈ T

rs(λ).

4.3 Lemma Let λ ∈ Γ be a composition and let t ∈ T
rs(λ). If t is not

standard then εt ∈ im(dλ1) + Cλ
0,<t.

The proof of Lemma 4.3 will be given in the next section.

4.4 Theorem Let λ ∈ Γ be a composition and set

K
λ
0 := {(λ, t) ∈ B

λ
0 | t ∈ T

st(λ)} .

Then (Aλ
0) and (Bλ

0 ) are satisfied. In particular, C̃λ
∗ is exact in degree 0 for

every composition λ ∈ Γ.

14



Proof In order to show that (Aλ
0) holds for Kλ

0 , we order the elements
in Trs(λ) in ascending lexicographic order: t1 < t2 < · · · < tn. For every
i ∈ {1, . . . , n}, Lemma 4.3 implies that ti ∈ Tst(λ) or εti ∈ im(dλ1)+C

λ
0,<ti

. An
easy induction argument on i ∈ {1, . . . , n} now shows that εti ∈ im(dλi )+K

λ
0 ,

and (Aλ
0) holds.

If λ is not a partition then (Bλ
0 ) holds trivially. Suppose that λ is

a partition. In order to show that (Bλ
0 ) holds for Kλ

0 , we number the
standard λ-tableaux t1, . . . , tm in such a way that the following holds for
i, j ∈ {1, . . . , m}: If ti = tλwλdi with unique wλ′ 6 di ∈ W , cf. (9) and
(10), then l(wλdi) < l(wλdj) implies i > j. Next assume that there exists
0 6= ε ∈ Kλ

0 ∩ ker(d
λ
0) and write ε =

∑m
i=1 aiεti with ai ∈ R. Let i be minimal

with ai 6= 0. Then, since 0 = dλ0(ε) = ε|Sλ, we have

0 = ε(zλTdi) =
m∑

j=i

ajεtj(zλTdi) .

By (11) we obtain εti(zλTdi) = ql(di). Moreover, by (12) we obtain εtj (zλTdi) =

0 for j > i. This implies 0 = aiq
l(di), and since q is a unit, we have ai = 0, a

contradiction. Thus, (Bλ
0 ) holds and the proof is complete.

We recall from [BH] that a composition µ ∈ Γ is called a quasi-partition

if µ∗ = µ̄. Here, µ̄ is the unique smallest partition in Λ which dominates
µ (cf. [BH, Lemma 4.2]) and µ∗ ∈ Λ denotes the unique partition obtained
by reordering the parts µ1, µ2, . . . of µ in weakly descending order. Recall
also that a composition λ ∈ Γ is called tame if every composition µ ∈ Γ
with λ E µ is a quasi-partition. Tame compositions are classified in [BH,
Proposition 4.6]. They include all partitions of the form (λ1, λ2, λ3) with
λ3 ∈ {0, 1}.

The technical definition of a tame composition is dictated by the inductive
proof of the following theorem. The proof is a straight forward adaptation
of the proof of Theorem 5.1 in [BH] and will not be repeated here.

4.5 Theorem Let λ ∈ Γ be a tame composition. For n = −1 set Kλ
−1 := ∅,

for n = 0 set Kλ
0 := Tst(λ) and for n > 1 set

K
λ
n :=

{
(λ = λ(0) ⊳

T1

λ(1) ⊳
T2

· · · ⊳
Tn

λ(n), t) ∈ B
λ
n | t ∈ T

st(λ(n)
}
.

Then (Aλ
n) and (Bλ

n) hold for all n > −1. In particular, the chain complex
C̃λ

∗ is exact.
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5 Proof of Lemma 4.3

The exclusive goal of this section is to prove Lemma 4.3. The proof is a
substantial refinement of the proof of [BH, Lemma 3.4]. Throughout we fix
a composition λ ∈ Γ and a λ-tableau t ∈ Trs(λ) r Tst(λ). We first need to
establish some notation that will be used throughout this section.

5.1 Since t ∈ Trs(λ) is not standard, there exist consecutive rows of t, say
rows k and k + 1, which we write as

a1 a2 · · · am (m = λk)

and
b1 b2 · · · bn (n = λk+1),

such that there exist i ∈ {0, . . . ,min{m,n− 1}} satisfying

a1 < b1, a2 < b2, · · · , ai < bi, and (ai+1 > bi+1 or m = i) .

The case m = i can arise when λk+1 > λk. We also set

Z := {a1, . . . , am, b1, . . . , bn} .

For every subset X ⊆ Z with |X| 6 n we set

µX := (λ1, . . . , λk−1, λk + n− |X|, |X|, λk+2, . . .) ∈ Γ

and denote by tX ∈ Trs(µX) the tableau which coincides with t in all rows
except row k and row k+1, and which has the elements of X in row k+1 and
those of ZrX in row k. Moreover, we denote by dX ∈ DµX

the element which
satisfies tX = tµXdX , and by εX ∈ Hom(MµX , R) the element εtX = εdX . We
will also use the composition

νX := (λ1, . . . , λk, n− |X|, |X|, λk+2, . . .) ∈ Γ .

We then have

νX E λ E µX and WνX = WµX
∩Wλ .

Finally, we define the adjacent, pairwise disjoint intervals of integers,

AX := {λ1 + · · ·+ λk−1 + 1, λ1 + · · ·+ λk−1 + 2, . . . , λ1 + · · ·+ λk−1 + λk} ,

BX := {λ1 + · · ·+ λk + 1, . . . , λ1 + · · ·+ λk + (n− |X|)} ,

CX := {λ1 + · · ·+ λk + (n− |X|+ 1), . . . , λ1 + · · ·+ λk + n} ,
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(with n = λk+1) and set

D := {1, . . . , r}r (AX ∪BX ∪ CX)

Thus, (AX , BX , CX) are the k-th, (k+1)-th, (k+ 2)-th respective subsets of
the set partition associated with νX , (AX , BX∪CX) are the k-th and (k+1)-th
respective subsets of the set partition associated with λ, and (AX ∪BX , CX)
are the k-th and (k + 1)-th subsets associated with µX .

Recall from Subsection 1.3 that, for X as above, one has an element
ϕµX ,λ
1 ∈ Hom∧

H
(Mλ,MµX ).

5.2 Lemma Let X ⊆ Z be a subset with |X| 6 n.
(a) For d ∈ Dλ, the set

WX,d :=WµX
∩ (DνX ∩Wλ)dd

−1
X

has at most one element.
(b) In Hom(Mλ, R), one has the equation

εX ◦ ϕ
µX ,λ
1 =

∑

d∈Dλ
WX,d 6=∅

ql(wX,d)εd ,

where we write WX,d = {wX,d} when WX,d 6= ∅.

Proof (a) Let d ∈ Dλ and assume that one has elements w1, w2 ∈ WµX
and

e1, e2 ∈ DνX ∩Wλ with wi = eidd
−1
X for i = 1, 2. Then e1e

−1
2 = w1w

−1
2 ∈

WµX
∩Wλ = WνX . Since e1, e2 ∈ DνX , we have e1 = e2 and w1 = w2.

(b) Recall that the elements xλTd, d ∈ Dλ, form an R-basis of Mλ. For
d ∈ Dλ we have

εX
(
ϕµX ,λ
1 (xλTd)

)
= εX

(
ϕµX ,λ
1 (xλ)Td

)
=

∑

e∈DνX
∩Wλ

εX(xµX
Ted)

by (7). For every e ∈ DνX ∩ Wλ there exists a unique fd,e ∈ DµX
with

ed ∈ WµX
fe,d and a unique element we,d ∈ WµX

with ed = we,dfe,d. We
continue the above computation:

εX
(
ϕµX ,λ
1 (xλTd)

)
=

∑

e∈DνX
∩Wλ

εX(xµX
Twe,dfe,d)

=
∑

e∈DνX
∩Wλ

ql(we,d)εX(xµX
Tfe,d) =

∑

e∈DνX
∩Wλ

fe,d=dX

ql(we,d) .
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But, if e ∈ DνX ∩Wλ satisfies fe,d = dX then we,d = edd−1
X ∈ WX,d = {wX,d}

and e is the only element in DνX∩Wλ with fe,d = dX . Conversely, ifWX,d 6= ∅
and we write wX,d = edd−1

X with e ∈ DνX ∩Wλ then e satisfies fe,d = dX .
Thus, we have

εX
(
ϕµX ,λ
1 (xλTd)

)
=




0 if WX,d = ∅,

ql(wX,d) if WX,d 6= ∅.

Now the statement in (b) is immediate and the proof is complete.

5.3 Lemma Let X ⊆ Z be a subset with |X| 6 n.
(a) The function

{X ⊆ Y ⊆ Z | |Y | = n} → Dλ , Y 7→ dY ,

is injective with image {d ∈ Dλ | WX,d 6= ∅}.
(b) In Hom(Mλ, R), one has

εX ◦ ϕ
µX ,λ
1 =

∑

X⊆Y⊆Z
|Y |=n

ql(wX,Y )εY ,

where wX,Y := wX,dY .
(c) For X ⊆ Y ⊆ Z with |Y | = n one has

l(wX,Y ) =
∑

y∈Y rX

|{z ∈ Z r Y | y < z}| .

Proof (a) For X ⊆ Y ⊆ Z with |Y | = n we have dY ∈ Dλ, since µY = λ.
Moreover, the map Y 7→ dY is clearly injective. Our next goal is to show that
WX,dY 6= ∅. Note that X ⊆ Y = (BX ∪ CX)dY implies (X)d−1

Y ⊆ BX ∪ CX .
We define an element e ∈ W by

e|AX∪D is the identity,

e|CX
: CX

∼
−→(X)d−1

Y is monotonous,

e|BX
: BX

∼
−→(BX ∪ CX)r (X)d−1

Y is monotonous.

(20)

Then, e ∈ DνX , since e is monotonous on AX ∪ BX , on CX and on D.
Moreover, e ∈ Wλ, since (BX ∪ CX)e = BX ∪ CX and e is the identity on
AX ∪D. We set

w := edY d
−1
X . (21)
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We claim that
w|CX∪D is the identity map. (22)

In fact, for x ∈ D we have (x)edY d
−1
X = (x)dY d

−1
X = x, since dX and dY

coincide on D. Also, w|CX
is the composition

CX
e

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq (X)d−1
Y

dY
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq X
d−1
X

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq CX .

This composition is monotonous, since each of the three factors is
monotonous (because e ∈ DνX , dY ∈ Dλ, dX ∈ DµX

and (CX)e ⊆ BX ∪CX).
Thus, w|CX

is the identity map and Claim (22) is proven. Since w is the iden-
tity on D ∪ CX , we obtain (AX ∪ BX)w = AX ∪BX . This implies w ∈ WµX

and w ∈ WX,dY .
Conversely, let d ∈ Dλ with WX,d 6= ∅. Then there exits w ∈ WµX

and
e ∈ DνX ∩Wλ with w = edd−1

X . Since w ∈ WµX
, we have (CX)w = CX , and

since e ∈ Wλ, we have (CX)e ⊆ (BX ∪ CX)e = BX ∪ CX . Therefore,

Y := (BX ∪ CX)d ⊇ (CX)ed = (CX)wdX = (CX)dX = X

and |Y | = |BX ∪ CX | = n. We claim that d = dY . For j /∈ {k, k + 1} and
Dj := {λ1 + · · ·+ λj−1 + 1, . . . , λ1 + · · ·+ λj−1 + λj} we have

(Dj)d = (Dj)ed = (Dj)wdX = (Dj)dX = (Dj)dY ,

since e ∈ Wλ and w ∈ WµX
. Moreover, d and dY are monotonous on Dj, since

d, dY ∈ Dλ. Therefore, d and dY coincide on Dj. Further, (BX ∪ CX)dY =
Y = (BX ∪ CX)d and d and dY are monotonous on BX ∪ CX . Therefore,
d and dY coincide on BX ∪ CX . The above implies that (AX)d = (AX)dY
and since d and dY are monotonous on AX , they also coincide on AX . Thus,
d = dY .

(b) Using Lemma 5.2(b) and Part (a), we have

εX ◦ ϕ
µX ,λ
1 =

∑

d∈Dλ
WX,d 6=∅

ql(wX,d)εd =
∑

X⊆Y ⊆Z

|Y |=n

ql(wX,dY
)εdY

and (b) is proven.
(c) By (22), wX,Y is the identity on D ∪ CX , and we can view wX,Y as a

permutation of AX ∪ BX . We claim that w := wX,Y is the permutation of
AX ∪ BX with maps BX monotonously onto the positions of Y r X in the
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k-th row of tX . In fact, we need to show that (BX)wdX = Y rX and that
w is monotonous on BX . But by (20) we have

(BX)wdX = (BX)edY =
(
(BX ∪ CX)r (X)d−1

Y

)
dY = Y rX ,

where e is defined as in Part (a). Moreover, since (BX)w ⊆ AX ∪ BX and
since dX is monotonous on AX ∪ BX , w is monotonous on BX if and only
if wdX = edY is. Again, since (BX)e ⊆ BX ∪ CX and dY is monotonous on
BX ∪ CX , edY is monotonous on BX if and only if e is. But, e ∈ DµX

is
monotonous on AX ∪BX and so also on BX . This shows the claim.

Since l(w) is equal to the number of inversions of w, where w is viewed as a
permutation of AX ∪BX , our claim immediately implies the desired equation
if we can also show that w is monotonous on AX . But, w is monotonous on
AX if and only if wdX = edY is, by the argument above. Further, e is the
identity on AX , cf. (20), so that with dY also edY is monotonous on AX , and
the proof of the lemma is complete.

Next we consider the element

c1 :=
∑

X⊆{a1,...,ai}

(−1)|X|qf(X)
(
ϕ
µ
X̃
,λ

1 ⊗ ε
X̃

)
∈ Cλ

1 ,

where
X̃ := X ∪ {bi+2, · · · , bn}

and
f(X) :=

∑

j∈{1,...,i}
aj∈X

(m+ 1− j) .

5.4 Lemma With the above notation, one has

dλ1(c1) ∈ q
lεt + C0,<t ,

for some integer l.

Proof By Lemma 5.3(b) we have

dλ1(c1) =
∑

X⊆{a1,...,ai}

(−1)|X|qf(X)
(
ε
X̃
◦ ϕ

µ
X̃
,λ

1

)

=
∑

X⊆{a1,...,ai}

(−1)|X|qf(X)
∑

X̃⊆Y ⊆Z

|Y |=n

q
l(w

X̃,Y
)
εY

=
∑

{bi+2,...,bn}⊆Y ⊆Z

|Y |=n

( ∑

X⊆{a1,...,ai}∩Y

(−1)|X|q
f(X)+l(w

X̃,Y
)
)
εY .

20



For every Y ⊆ Z with {bi+2, . . . , bn} ⊆ Y and |Y | = n we study the contri-
bution of the corresponding summand at the end of the last equation. We
distinguish three cases.

If Y = {b1, . . . , bn} then εY = εt and the only possible set X in the
inner sum of the last equation is the empty set. Therefore, the summand
corresponding to Y is equal to qlεt with l = f(∅) + l(w

∅̃,Y
).

If Y ∩ {a1, . . . , ai} = ∅ and Y 6= {b1, . . . , bn} we claim that tY < t. Note
that in this case we havem > 1. Let j ∈ {1, . . . , i+1} be minimal with bj /∈ Y
(note that a1 < bj) and let p ∈ {j − 1, . . . , i} be maximal with ap < bj (note
that aj−1 < bj−1 < bj). Then the k-th row of tY begins with a1, a2, . . . , ap, bj
and bj < ap+1. Note that p < m, since if p = m then a1, . . . , am ∈ ZrY and
therefore Y ⊆ {b1, . . . , bn}, a contradiction. Now our claim is proved and the
contribution of the summand corresponding to Y is an element in Cλ

0,<t.
We are left with the case that Y ∩{a1, . . . , ai} 6= ∅. If tY < t we are done.

So assume that tY > t. Our goal is to show that
∑

X⊆{a1,...,ai}∩Y

(−1)|X|q
f(X)+l(w

X̃,Y
)
= 0 .

First let j ∈ {1, . . . , i} be minimal with aj ∈ Y . We claim that

{z ∈ Z r Y | z < aj} = {a1, . . . , aj−1} . (23)

Clearly, the right hand side is contained in the left hand side. Now let
z ∈ Z r Y with z < aj and assume that z is not contained in the right
hand side. Then z = bp for some p ∈ {1, . . . , i + 1}, since bi+2, . . . , bn ∈ Y .
Let r ∈ {1, . . . , i + 1} be minimal with br ∈ Z r Y and br < aj , and let
s ∈ {1, . . . , j − 1} be maximal with as < br (note that j > 1, since br < aj
and that a1 < br). Then the k-th row of tY starts with a1, a2, . . . , as, br and
one has br < as+1. This implies tY < t, a contradiction. Therefore, the claim
(23) is proven. For our given set Y , the subsets X of {a1, . . . , ai} ∩ Y =
{aj, . . . , ai} ∩ Y fall into two classes, the ones that contain aj and the ones
that don’t. So let X1 be a subset of {a1, . . . , ai} ∩ Y with aj ∈ X1 and let
X2 := X1 r {aj}. Since X1 7→ X2 defines a bijection between these two
classes, it suffices to show that

(−1)|X1|q
f(X1)+l(w

X̃1,Y
)
+ (−1)|X2|q

f(X2)+l(w
X̃2,Y

)
= 0 ,

or, equivalently, that

l(w
X̃1,Y

) +m+ 1− j = l(w
X̃2,Y

) . (24)
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But by Lemma 5.3(c) and Equation (23), and since Y r X̃2 = Y r X̃1∪{aj}
and |Z r Y | = m, we have

l(w
X̃2,Y

)− l(w
X̃1,Y

)

=
∑

y∈Y rX̃2

|{z ∈ Z r Y | y < z}| −
∑

y∈Y rX̃1

|{z ∈ Z r Y | y < z}|

= |{z ∈ Z r Y | aj < z}| = m− |{z ∈ Z r Y | z < aj}| = m− (j − 1) .

This shows Equation (24) and the proof of the lemma is complete.

Now Lemma 4.3 is an immediate consequence of Lemma 5.4.
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