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Total energy calculations based on density functional theory are generally a good

approach to obtain the properties of solids. The local density approximation (LDA) is

widely used for calculating the ground state properties of electronic systems; for excited

states the errors are in general unknown. The important aspects of LDA pertain to the

modeling of the exchange-correlation interaction. If the exchange-correlation potential is

approximately the same for the ground and excited states, one expects good results from

the LDA calculations for excited states. In this thesis, we utilize the total energy technique

for numerical computations of the electronic structure of iron in several magnetic phases

and crystalline structures.

1. Body-centered-cubic iron in the ferromagnetic and several antiferromagnetic

configurations. We use the total energy results to obtain the parameters in a model

Heisenberg Hamiltonian. These include the interaction parameters up to 6-th nearest

neighbors. Based on this model Hamiltonian we calculate properties such as the critical

(Curie) temperature and spin stiffness constant. We assume that the total exchange-

correlation energy functional is the same in the ferromagnetic ground state and the

antiferromagnetic excited states. Our model parameters are based directly on ab initio

calculations of the electronic structure. Our calculation yields good results compared with

experimental values and earlier work. Some other physical quantities, related to the phase

transition, and spin waves are also discussed.

2. Face-centered-tetragonal iron. If iron is grown on a proper substrate ( e.g.,

Cu(100) ), the crystal structure of the thin film displays a face-centered-tetragonal distortion



due to the lattice constant misfit between the film and substrate. Therefore, we performed

calculations for fct iron in its ferromagnetic, antiferromagnetic, and nonmagnetic phases for

a wide range of values of the lattice parameters. In the ferromagnetic calculations, we found

two minima in the total energy: one is close to.the bcc structure and the other ( with a lower

energy ) is close to fcc. In the antiferromagnetic and nonmagnetic calculations, we found in

each case that there is only one minimum near the fcc structure, providing us clear evidence

that the antiferromagnetic and nonmagnetic states are (meta)stable near the fcc region and

unstable in bcc region. The antiferromagnetic and nonmagnetic states are almost degenerate

near the fcc minimum, but the antiferromagnetic phase has the lowest total energy in the

whole fct region. Magnetic moments are also calculated for a variety of fct structures. Near

the fcc minimum we found that two ferromagnetic phases co-exist, one with a low spin and

one with a high spin. These results are consistent with experimental facts and other earlier

calculations. Some structural properties, such as the elastic constants and the bulk

modulus, are also studied and compared with experimental data and some earlier

calculations.
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Electronic Structures and Magnetic Properties of Iron
in Various Magnetic States and Structural Phases

Chapter 1. Introduction

The theory of quantum mechanics as well as the theory of relativity are both

essential for the interpretation of the magnetic behavior of solids.1-2 For iron, one of the

most important transition metals, much work has been done to obtain the electronic

properties through ab initio calculations. Most relevant for our work are references 3 and 4.

There are still questions concerning the treatment of the exchange-correlation potential and

the short-range order of the magnetic moments. In addition, few of the ab initio calculations

are directly. related to magnetic properties, such as the transition temperature and spin wave

excitations, without resorting to some approximation. Also, all the calculations for iron are

performed for cubic structures. Calculations for a different structure are useful to discuss

the magnetic behavior of thin films. In this thesis, we perform these calculations and we

believe that they help us to understand the nature of magnetism in solids.

Density-functional theory, with effective single-particle equations in which the

exchange-correlation potential is approximated by the local-spin density form, is the

computationally efficient method we use to obtain the total energy of iron. The single-

particle equations are solved self-consistently by the full-potential linearized augmented-

plane-wave method. In Chapter 2, we describe the above techniques in detail in the

following order: density functional theory (§2.1.1), local density approximation (§2.1.2),

total energy behavior in charge- and spin-density space (§2.1.3), the self-consistent

process (§2.1.4), FLAPW method (§2.1.5), and finally band fitting procedures (§2.1.6).

In Chapter 3 and 4, we give an initial and a complete discussion of critical temperature,

spin wave behavior, and related properties from the electronic structure calculations of bcc

iron. Ferromagnetic and antiferromagnetic electronic properties of face-centered-tetragonal
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are discussed in Chapter 5 and 6, respectively. Chapter 3 through 6 are in the form of

published papers: Chapter 3 -- J. Appl. Phys.64, 5607(1988), Chapter 4 -- Phys. Rev.

B43, 3518(1991), Chapter 5 -- J. Appl. Phys.67, 4567(1990), and Chapter 6 accepted

for publication in J. Appl. Phys. Some details of the results can be found in the appendix.
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Chapter 2. Theoretical Background

2.1 General Theoretical Formalisms

2.1.1 Density Functional Theory

The energy of the electrons in a crystal consists of the kinetic energy, classical

Coulomb energy, external energy ( due to the interactions between the electrons and the

atomic nuclei, and the interactions between the electrons and external fields ), and the

exchange-correlation energy. Once the decision on a suitable approximation for the

exchange-correlation potential has been made -- our choice is the Local Spin Density

Approximation, or LSDA, which will be discussed in detail in the next section -- the ab

initio calculation of the electronic structure for a crystal is in principle relatively

straightforward; the task can be achieved simply by solving the Schrodinger equation

directly, although the process may be extremely complicated and not analytically soluable in

most cases. Density functional theory provides an effective approach, both numerically and

theoretically, to obtain the total energy of a solid in a given crystal structure.

Density Functional Theory,
5-7 or DFT, describes the total energy E of the electronic

system as a general functional of its charge density ( and spin density as well in a magnetic

system ), i.e., E=E[p]. Given this functional one's main task is to minimize E in the space

of physically allowed charge densities to obtain the ground state energy. The global

minimum of E always corresponds to the total energy of the ground state. Sometimes this

process ends up with a local minimum; if it corresponds to a physical state ( in most cases,

it does not ! ), this will be an excited state of the system.

The total energy is defined as the sum of three contributions: many body kinetic

energy, many body Coulomb energy, and external energy ( due to the atomic nuclei and

other external fields ). In density functional theory these terms in the total energy are

described as a general functional of the electronic charge density, which may be further
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divided into spin-up and spin-down charge densities in a magnetic case. They are

approximated by the kinetic energy of a non-interacting system with the same charge and

spin densities, the classical Coulomb energy, and the same external energy as in the real

system. One adds a correction term to arrive at:

Etotal[Pc,Ps] = Ek[Pc,Ps] ECoui[Pc,Psi Eext[Pc,Ps] Exc[Pc,Ps]

The correction term, named exchange correlation energy, is by definition the difference

between the real total energy and the contribution of the first three in density functional

theory. Obviously, all the many body effects are included in the exchange-correlation

energy. The LSDA is applied to the exchange-correlation energy in the calculations to

obtain an expression for the exchange-correlation energy in terms of the charge densities.

The basic aim of density functional theory is to find the global/local minima in the energy as

a function of the charge density ( and spin density in magnetic case ), and verify that they

correspond to ground/excited states of the system in the real world.

2.1.2 Local Density Approximation

Although the application of density-functional theory can provide an effective

approach to an electronic-structure calculation, the relation between the potential and

electronic densities has to be found. The simplest form of such a relation is constructed in

the Thomas-Fermi model of the inhomogeneous electron gas,8 where at most two electrons

can occupy a cell with volume h3 in phase space. The total number of electrons can be

expressed as :

N = 2
47rPf3V 8/cP f3

3h3 3h3

where Pf is the Fermi momentum and p is the electronic charge density.
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In solids, of course, this form will be invalid and has to be generalized to include

the periodic potential in a crystal. In this case, Ef = Pf2(r)/(2m) + V(r), and the relation

between p(r) and V(r) is:

)38N 3 87t(2m/2p(r) = 7Pf (r) [Ef -V(r)]3/2
3h'

More importantly, we also have to find the dependence between the density and the

exchange-correlation contributions; thus, the above formula is too simple for a real crystal.

The standard Local Density Approximation (LDA)5-7'9 is based on the results for an

inhomogeneous interacting electron gas. For the ground state of an electronic system,

Hohenberg and Kohn5 showed in 1964 that all aspects of the electronic structure are

determined by its electronic density p(r). On this fundamental basis, Kohn and Sham6

derived a set of self-consistent one-particle equations, known as the Kohn-Sham equations,

to describe the electronic ground state. The one-particle effective potential veff(r) depends

on the charge density p(r) in a complicated way and takes into account all the many body

effects. In practice, one often applies the so-called Local Density Approximation, or LDA,

in which the effective potential depends only in a simple manner on the electronic charge

density p(r) at the point r. This ignores all the terms in a gradient expansion normally used

to improve the calculations for an electronic system with a charge density which varies

rapidly in space. Typically, the results of calculations using the Kohn-Sham equations with

LDA are better than those of Hartree-Fock calculations, since the former includes a good

estimate of the exchange-correlation energy while in Hartree-Fock the exchange

contribution is included exactly but the correlation effects are totally ignored.

We follow the Kohn-Sham approach to show the derivation of self-consistent one-

particle equations. As discussed in the section on density functional theory, the total energy

can be written as:



6

Etotal[p(r)] = TM[p(r)] + 21 drdr' + fp(r)v(r)dr + Exc[p(r)]
JJ

f
Plri2P('Ir')

where Tm[p(r)] is the kinetic energy of a non-interacting system with the same charge

density as in the real system; Exc[p(r)] is, by definition, the exchange-correlation energy;

v(r) is the external potential. To minimize the total energy with the condition J p(r) dr = N,

we have to satisfy the following condition:

8TNI[p]
+ + vxc(r) - µ = 0

Sp(r)

where: 4)(r) = v(r) +J
p(r) 8Ex

dr, vxc(r) =
[p]

and is the Lagrange parameter
Sp(r)

determined by the normalization condition, which is equal to the chemical potential.

Further detailed proofs show that the above process is equivalent to solving the

following one-particle equations, known as Kohn-Sham self-consistent equations:

A + veff<r) = ei 1110)

where: veff(r)=0(r)+vxc(r), p(r)=Thiti(r)12. Therefore, the total energy is given by:

Etotai = ; 12 IP(irr)Priiri) drdr' + Exc[P(0] 1P(r)vxc(r)dr

The terms with a minus sign in the formula above are needed to avoid double counting of

the Coulomb and exchange-correlation contribution of the total energy. The whole idea

behind this is to solve the kinetic energy TM[p] in a "reference system" for the non-

interacting electronic system with charge density p(r). For the system with a slowly

varying charge density ( without considerable change in a distance - kF1), we can apply

the LDA in the form of:

Exc[P] = Sexc(p(r)) p(r) dr,

where Exc(p) is the exchange-correlation energy per particle in a homogeneous electron gas

with charge density p(r). The exchange-correlation potential can then be written as:
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vxc(r) (exc(P(rDP(r))
dp

It only depends in a simple manner on the charge density. Various forms have been

proposed for exc(p) and vu(r), e.g., Gunnarsson and Lundqvist give, in atomic units:

r
exc(P) =

0.458 s
0.0666 G( ),

s

where rs is the radius of atomic Wigner-Seitz spheres and G(x) is defined as following:

1 3 x2
x
-2-

1
G(x) [(1+x ) log(l+x-1) - x + - -5 ].

2.1.3 E[pc,ps] Behavior in E-{pc,ps} Space

In a magnetic system the term "charge density" in the discussion above now

consists of two parts: the real electronic charge density and the spin density, which is the

difference between the charge density of spin-up and spin-down electrons. The potential

has to be modified to include the spin-spin interaction between electrons, since every

electron moves in an effective magnetic field due to other electrons in the system. Again,

the associated single particle problem has to be solved self-consistently and the

corresponding LDA applied to this spin-polarized system is now called the local spin

density approximation (LSDA). In our calculation, we use the following form of exchange-

correlation potential ( for spin-up electrons ) in a magnetic system, proposed by von Barth,

etc. and parametrized by anak:9-10

vxcu(r) = (i-LxP+ vc) (2PdPc)13 11,P - vc +tic f(pu/pc), for spin-up electrons;

where: pu is the spin-up charge density; for spin-down electrons, pu needs to be replaced

by pd pc=pu+pd is the total charge density. Other function are defined as:

1,x1)= -1.96949 pc1/3,1.tcP= -0.045 In (1+ 33.85183 NO );

vc = Y (EcF- EcP ), 7- 3 12-121_31/3
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F 0.045 4n
F[(2 i'x 33.85183 pc1/3 )-1], ecP= 0.045 FR33.85183 Pc1/3 )-1];ec 2

tic = 0-tcF gxP (ecs ex" ),

0.0245
In (1+ 2413x33.85183 pc1 ), exP = 41.1.1(P;

f(x) ( 1- 2-1/3 )-1 [ x4/3 + (1 -x)4/3 - 2-1/3},

F(x) = [(1+x3) log(1 +x-1) - x2 + .

Note that by definition the exchange-correlation energy is the difference between the

many body total energy of the ground state and the kinetic energy of a non-interacting

system + classical Coulomb interactions + external energy of the ground state of the

system. For ground state calculations, the LSDA is generally a good assumption since one

uses the ground state wave functions in the evaluation of the above formula. On the other

hand, for the calculation of excited states it is uncertain whether the LSDA is still good. If

the exchange-correlation functional is approximately the same for the ground and excited

states, it may be safe to use it; otherwise, it will introduce a large amount of error in the

results of the calculations due to a wrong model of the exchange and correlation. Whether

this is the case very often depends upon the characteristics of the electronic structure of the

system; for example, calculations of the optical gap in semiconductors give wrong results

using straightforward LSDA.

The task for total energy calculations in density functional theory is to minimize the

energy functional E[pc,ps]. The global minimum in this energy functional always

corresponds to the ground state of the system. In our case, the global minimum of the total

energy corresponds to one of several magnetic states of iron; in bcc iron, for example, the

ground state is ferromagnetic.11 On the other hand, this energy functional will also have a

number of local minima in density space which in most cases do not correspond to excited

states of the interacting electronic system; vice versa, the excited states of the system may
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not always correspond to local minima in the energy functional. In metallic systems,

fortunately, there are many excited states for which the correlation energy is very similar to

that in the ground state. In our calculations for bcc iron, for instance, we do find a number

of local minima which correspond to antiferromagnetic states and which are excited states

of the system. One must keep in mind, however, that not all antiferromagnetic states are

associated with a local minimum.

2.1.4 Self-Consistent Calculations

Self-consistent calculations are very frequently used methods in almost every

branch of physics, especially in computational physics, when general analytical results are

impossible to obtain and some numerical approaches have to be applied. In solid state

physics, this method is extremely effective, particularly when used with other

approximations; in our case, the latter are the density functional theory with the local

density approximation. Consider the following Schrodinger equation for a crystal structure:

(- + V(p) ) = E Iv;

where V=V(p) because in DFT, everything can be expressed as a functional of p; p should

now be considered as a generalization of total charge and spin density. We also have :

viz ,v12

u,d

then we will have the following loop to complete the self-consistent calculations:

pin --> V(p) --> Solving SchrOdinger Equation to get v > Pout ( E iv12 )-

pout can be used to improve the values of pin and to start the process again. We often use

the results of other calculations to make an initial guess of pin. The first step in the loop

may involve LSDA for the form of V(p). The self-consistent process can be stopped with

success if pin and pout are within a satisfactory range. In most cases the process is fairly
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efficient, and again, it will give good results about the ground state and excited states if the

local minima indeed correspond to physical states of the system.

In contrast to the simple theoretical formalism, the self-consistent process must be

performed very carefully, mainly because of the following two reasons. First, we have to

consider numerical stability and convergence. In any computation performed on a

computer, there will be round-off and truncation errors added into the final output

(numerical) results. Also, in our self-consistent process the charge density tries to

overcompensate the errors in the input charge density, resulting in a larger deviation (but in

the opposite direction) from the self-consistency in the output charge density. This is

related to the physical nature of the systems under investigation. As mentioned in the

previous sections, for calculations of an excited state, our goal is to find the corresponding

local minima of the system. In this case there is another instability, especially in the first

few iterations when the calculation is further away from the minimum, leading us either to

the ground state (global minimum) or to an unintended local minimum we are not interested

in.

Thus, if we take the output charge densities pout as input for the next iteration, all

these errors will introduce a great amount of instability, causing rapid divergence of the

total energy calculations in most cases. In fact, in all calculations we have to mix the input

and output charge densities to compose a new charge density for the input of the next

iteration, with a larger weight factor on the input side. It turns out that taking about 10-30%

of the output of charge and higher percentage of output spin densities is a good choice in

our calculations. If evidence shows that the calculation is still unstable, one can either

reduce this percentage, or mix the input and output densities with those of previous

iterations to increase the stability.
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In each of the iterations in our calculation, we calculated the difference in the charge

and spin densities, Apc and Aps, between the input and output. At small values of these

differences, the total energy behaves as a quadratic function of Apc and Aps:

E = E0 + a (Apd2 + b Apc Aps + c (Aps)2

After several iterations, we have enough data to determine the converged values of total

energy ( E0 in above equation ) using extrapolation. It is important to note that this

procedure is only valid when one uses a small mixing between input and output densities.

2.1.5 FLAPW Method

Consider the Schrodinger equation of the form:

( -A + V(p) ) Iyn = E

If we choose kpn> to be a set of basis functions, we have :

E <9,0 ( -A + V(p) )19m> <cihn I yr> = E <9n1 tp, for all possible n;

i.e., E Hnm m = E
m

where H is a matrix and it is a vector in the space of ( lyn>).

In the process of total energy calculations, we need to choose the right

approximation for the exchange-correlation potential, choose the appropriate set of basis

functions, then transfer the Schrodinger equation into a matrix problem as described above

which a computer can solve very effectively. We need to apply numerical techniques to

solve for the eigenvectors vn, and eigenvalues En(k), known as energy bands, which

depend on the wave vector k and band index n.

In our studies we use the Full-potential Linearized Augmented Plane Wave

(FLAPW) 12 method to obtain the kinetic energy of the non-interacting reference system. In
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a crystal, we expect the potentials to be rather spherical near the nuclei, and relatively flat in

the interstitial regions, due to the fact that the core electrons are dominant near the atomic

nuclei and the valence electrons are the most important in the interstitial region. So it is

natural that we can expand the potential by spherical functions inside a carefully chosen

sphere centered at each nucleus, with a radius large enough to contain most of the core

electrons but limited by requiring that the spheres do not overlap each other. On the other

hand, in the interstitial region between these spheres we approximate the potential by a set

of plane wave functions, expecting that this set will converge rather rapidly so we only

have to include the first few terms in the calculations. Note although the radius of the

sphere is usually called the "muffin -tin" radius of the muffin-tin sphere, our approximation

is different from the conventional muffin-tin approximation, in which, the potential is

purely spherical inside the sphere and is precisely constant between the spheres. Rather, in

our case, the potential will be expanded in l'im(13,(p) functions inside the sphere and in

exp(ikr) outside it:

V(r) = I Aim(r) ylm(0,9); l,m = 0, 1, 2, ... ( inside muffin-tin )
lm

V(r) = Bk exp(ikr); k = ( reciprocal lattice vectors ) ( outside muffin-tin )
k

On the muffin-tin boundary these potentials have to satisfy a continuity condition. The

approximation will be the same as the muffin-tin approximation only if we restrict the

summations to 1=m=0 and k=0 in the above equations. Although the muffin-tin

approximation gives reasonable results for close-packed metals, it results in a large error

for open structure and for materials with directed covalent bonds. Our full-potential

approach, on the other hand, does not contain any implicit numerical approximations and

gives very accurate results. In fact, the only influences on our final results are virtually

related to the effects caused by the application of the LDA.
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The augmented plane wave (APW) method suggests the following way to expand

the wave function: 1. In the interstitial region, choose plane waves Oek(r)=exp(ikr) as

basis functions; 2. Find the solutions of the following atomic Schrodinger equation and use

that as basis functions within muffin-tin radius rmf in the atomic region centered at R:

( + V(Ir-RI) ) Ock(r) = E Oek(r), for Ir-RI < rmf (V is the atomic potential);

3. The basis function is continous at the boundary between the interstitial and atomic

regions. This APW basis also has to satisfy the orthogonality and completeness conditions.

In order to perform the band calculations by using limited computing resources, in

practical, we must use energy-independent basis functions. Therefore, the linearized

augmented plane wave (LAPW) method was proposed to construct a basis from the partial

waves ( i.e., the plane waves in the interstitial region and the atomic wave functions within

the muffin-tin sphere ) in the above APW method and first energy derivatives at an energy

value El, known as energy parameter. This linearized method is only accurate within a

certain energy range, thus the values of E1 are always chosen at the center of the occupied

bands in our calculation to obtain the maximum accuracy.

In our full-potential linearized augmented-plane-wave (FLAPW) calculation, we go

a few steps further than the LAPW. The most important aspect of the FLAPW method is

the implementation of a second variation technique, which is within the framework of the

LAPW approach. For the valence electrons in a given potential, we first perform a semi-

relativistic "warped" muffin-tin calculation, in which we include the full-potential in the

interstitial region ( as stated above ), but only the spherical contribution to the potential

inside the muffin-tin spheres, as to solve the following semi-relativistic Dirac equation

where all semi-relativistic corrections are embodied in vmt (r):

{ - A + vmt(1.) Wnkint(r) Enkmt Ninknit(r)*
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In the above equation, IIIT nk Int(r) is the large component of the Dirac wave function and

"mt" indicates "warped muffin-tin" calculations. Note that the spin-orbit coupling is

excluded from the above calculation, due to the semi-relativistic treatment. In the second

step, we use the wave functions obtained from the first calculation as basis functions for

the second variation to bring back the contribution of all non-spherical terms we have left

out inside the muffin-tin sphere in the previous calculation. It is accomplished by the

following linear transformation, to the 1-m representation inside the muffin-tin spheres:

Vnk(r) f ank(1,m) Ri(Ebr) + bnk(1,m) R11(E1,r) } Yim(0,9),
lm

where R denotes the atomic site; R1 and R1' are the radial solutions to the above semi-

relativistic equation and its energy derivative; the coefficients a and b can be obtained from

their counter parts in the plane-wave expansion of the wave functions in the interstitial

region; ivnk(r) is our FLAPW basis function. Therefore, the matrix elements of our full-

potential Hamiltonian inside muffin-tin spheres will be:

Hmn = enmt Sinn + <wmk(r) I vns (r) I vnk(r) >.

The calculation of the last term is very time consuming. Since the second term, the non-

spherical contribution in a "spherical basis", is relatively small, it is expected that the

Hamiltonian is already close to diagonal, resulting in an enormous increase in speed for the

FLAPW process. Typically, one needs about 200 (atomic) basis functions per atom in the

first calculation but only about the order of 20 (warped-muffin-tin) basis in the second

variation. The whole process of second variation is equivalent to solving the following self-

consistent single-particle equations:

{ A + vmt(r) + vns (r) ) vi(r) = ei vi(r).

Two points need to be emphasized: First, the core and valence electrons are treated

separately and differently. While the valence electrons are treated semi-relativistically with a

second variation as described above, the core electrons are calculated fully relativistically to
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include spin-orbital coupling, but use only the spherical contribution as in an atomic

potential. The resulting core-valence overlap is usually very small and negligible in most

transition -metal systems.

2.1.6 Band Structure Fitting Procedures

As described in the last section, E(k) forms an energy band if we can obtain its

continuous behavior in k space. In numerical calculations we can only perform the tasks at

a number of discrete points of the energy band. Fortunately, theoretical methods of band

structure calculations provide us with many ways to interpolate our results in order to plot

the whole band structure over k space.13 The tight-binding method is one of the most

effective means for such an interpolation. Although such schemes are generally used for

insulators and impurity states, the application to a transition metal such as iron is also very

natural and useful, since it is simple and fast. It is only used as an interpolation method

rather than direct band structure calculation, so the bands will be pinned down by points

calculated using the FLAPW method. In most systems, the characteristics are determined

by only a few out of many bands. Band interpolation methods are based on the following

two facts: 1. In the interpolation process, we use only a small number as the size of the

secular Hamiltonian matrices, typically 9 x 9, including s, p, d orbitals, verses hundreds by

hundreds in a full band structure calculation; 2. By construction, the symmetry properties

of the interpolated energy bands and their corresponding wave functions will be exactly the

same as those of the direct band calculation.

Yet one has to pay a price in the following two aspects: first, one has to derive the

basic parameters in a fitting process, and the number of the parameters grows rapidly as the

order of fitting ( the number of neighbors included in the model ) increases; second,

although typically each matrix element depends linearly on the interpolation parameters, the



16

dependence of the bands on these parameters is in a very nonlinear fashion, which in turn

creates many local minima in the parameter space. One has to be careful not to be trapped in

those local minima during the fitting process.

Our basic purpose is to minimize the error functional in the equation:

tP (0, f) ":-." (yi f(xi,P))2

where in our case, ( yi) are the calculated points of an energy band, {f(xi,r3)) are the

eigenvalues of the model Hamiltonian, and [3 is the set of fitting parameters. In the vicinity

of the current value b of the parameter, we have :

f(xi,b+e) = f(xi,b) +
af(xi,b)

+
af3

The value of e is determined by minimizing 9(b+e, f), and this can be done easily by

substituting the above formula into (p. The solution is found by evaluating e from the matrix

equations:

af(x,b). af(x;,b) af(x.,b)
A e = g; Amn = I(yi-f(xi,b)) .

aRn

A modified version of the above equation, the Marquart algorithm, uses :

(Anm+ X8nm) em = gn; for n=1, 2, ...
m

The advantage of the modified form is that it can handle the case when b is far away from

the minima, by using the gradient ( down-hill ) method. One should increase X if 9 is

getting larger (closer to down-hill scheme), and decrease it when 9 is becoming smaller

(closer to Taylor expansion), respectively.

In our cases, the interpolations are performed in three steps. First of all, we apply

the tight-binding method to set up the model Hamiltonian. In the tight-binding method, a

matrix element has the following form which has to be restricted by symmetry:
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Hmn = 1 Amn(j) exp(ikRj)
j

where Amn(j) is our interpolation parameter set. We determine the order of fitting by the

number of neighbor "shells" included in the summation, starting from the 1st nearest and

truncating at a certain "order" of neighbor shell, based on the reasonable assumption that

the further away a pair of atoms are, the smaller the interaction will be between them.

Second, we have to look for a set of parameters as our initial guess of input, run

through a self-consistent process by evaluating E in each iteration, and stop when we end

up with a minimum ( within a satisfied error limit ). The easiest way for an initial guess is

just taking an existing set for the closest material, structure, etc., if that is available. For

example, we can take the results of bcc iron to fit the band of face-centered tetragonal iron

close to bcc structure. The final step is taking the calculated set of parameters to plot the

band structure along a particular direction in k space.

2.2 Specific Descriptions About the Material ( Iron )

2.2.1 Electronic Structure of Iron

The atomic configuration of iron is [Al] 3d64s2, in terms of the language of "atomic

orbitals". The band structure of bcc iron is shown is Figure 2.1. The solid lines show the

spin-up band and the dashed lines indicate the spin-down band. The magnetic phase of the

whole system is ferromagnetic, because the Fermi level in both spin-up and spin-down

states has to be the same. In a self-consistent calculation, on the other hand, one can start

with a nonmagnetic band structure with the same spin-up and -down band structure; in the

next step, one can shift the spin-down band upward relative to spin-up band by transferring

some spin-down electrons to spin-up states. The relative motion of the Fermi energies is

important for the stable magnetic phases: it shows the (meta)stability of the nonmagnetic
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phase. If the calculated spin-down Fermi level has shifted downwards, it is metastable;

otherwise, the nonmagnetic phase is a stable state. Both of them are self-consistent

solutions of the system. In bcc iron, the irregular density of states makes the ferromagnetic

phase more favorable.

Although it is in general hard to distinguish the atomic orbitals in a band structure,

in iron such a characteristic is relatively easy to see. As indicated in the band plot, the major

spin ( spin-up ) partially occupies the s and d bands; the partially filled d-band plays a

significant role in magnetism in iron ( or in other transition metals). According to Hund's

rule, the occupation of atomic states with a particular L value will be such to make the net

spin maximal. In this case, the d-band only has 6 electrons out of 10 in a filled status. An

independent iron atom has a total angular momentum of 4.0 p.B. In the crystal structure, the

interactions between iron atoms will make that value much smaller ( 2.2 pB). Since in

ferromagnetic iron, the valence electrons are mainly s and d electrons, the interactions

among them are much larger than others. If we consider the problems in terms of atomic

orbitals, e.g., when we use the tight-binding method to fit the calculated band-structure, we

must first incorporate all interactions between s and d-electrons. For a complete

consideration, we can also include the p-electrons, because both the majority and minority

spin electrons also partially occupy the p-orbital. In the band fitting process using the tight-

binding method, for instance, the s-, d-electron-only consideration will result in a secular

problem of a 6 x 6 matrix ( s:1; d:5 ); in a complete calculation involving all the s, p, and d

electrons we need to solve a 9 x 9 matrix problem.

The density of states ( DOS ) is given by the following formula:

N(E) j---/, f 8(E-E(nka)) dk ,
(27)° 1

where S1 is the volume of the Wigner-Seitz cell. If N(E) is known, then many observable

quantities 0 can be calculated by:
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0.1dEN(E) 0(E) f(E),

where f(E) is the Fermi-Dirac distribution function. The DOS of iron at room temperature is

shown in Figure 2.2. An experimental measurement of the DOS can be obtained by X-ray

emission spectra. The upper part of the plot is the contribution of spin-up (majority spin)

electrons, and the lower part is that of minority spin electrons. Notably in the plot are two

peaks: A sharp peak near the Fermi level and a broader peak at lower energy. These

structures are important for the stability of the ferromagnetic phase of the material. Suppose

we are moving a portion of electrons from the majority spin state to the minority spin state.

Due to the low value of the DOS near the Fermi surface, one soon will be transferring the

electrons from well below the Fermi energy to high above the Fermi energy, resulting in a

sharp energy increase. The high energy cost of this process stabilizes the ferromagnetic

phases.

2.2.2 Magnetic Phases

In this section, we will describe some features which are common to most magnetic

materials, especially the transition metals. Among them are Fe, Ni, and Co, the most

common ferromagnetic materials. Cr is also a magnetic material; at room temperature, its

ground state is antiferromagnetic. Rare earth elements are other types of magnetic materials

often used in permanent magnets. We will concentrated our discussion on the transition

metals, but some of our remarks are also applicable to other systems.

As mentioned in the last section, the partially filled d-band is the basic cause of

magnetism in transition metals. The core electrons are all the same as Ar; the valence

electrons are, in Fe, 3d64s2; in Co, 3d74s2; in Ni, 3d84s2. Due to Hund's rule, there is net

spin ( local moment ) associated with each atom of these elements. At room temperature,

the crystal structures of these elements are different (Fe: bcc; Co: hcp; Ni: fcc), but they are
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all ferromagnetic in their ground states. For Cr, the magnetism is associated with the

detailed form of the Fermi surface. In a material like Cr, there is still a local moment linked

with each atom, but there is alternate long-range order in the crystal in such a way that the

macroscopic magnetism is totally lost. It is a so called spin-density-wave antiferromagnetic

state. If the macroscopic magnetism is not totally lost but the long range order is still

present, the material is in a "ferrimagnetic" phase. Another possibility, even when there is a

local moment associated with each atom, is that one sees no long-range ordering at all in the

crystal: we call it paramagnetic. Because the local spin in this case cannot be ignored, it is

quite different from the state of nonmagnetic materials. Although a particular material will

have a certain phase at room temperature, we can force it to adapt any magnetic phase

which we are interested to calculate. For instance, we can force the majority and minority

spin densities to be exactly the same for a nonmagnetic calculation, and we can also

exchange the majority and minority spins at certain atomic sites for an antiferro- or

ferrimagnetic state in our calculations. Because the spin-orbit coupling is small, both L and

S are good and independent quantum numbers, which allows us to consider only two

possible spin directions of electrons: spin-up and -down.

2.2.3 Heisenberg Hamiltonian

The Heisenberg Hamiltonian is known as the following form :

H = 2 I Jii SiSj + Ho
i<j

where Ho contains all non-magnetic contributions -- it can depend on the magnitudes of the

spin but not on its directions; Si indicates the magnetic moment at atomic site i. Jii, the

interaction parameters, represent the energy of magnetic interaction between atom i and j

per atom. There is an important assumption in our calculation: We assume that there are

only two possible directions for the spin of an iron atom, spin-up and spin-down. This
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would reduce the above Hamiltonian to an Ising-like model. However, there are two

reasons for us to keep the three dimensional nature of atomic spins: 1. In order to be able to

look at some spin waves and related properties; 2. Quantum mechanical corrections are

added later for the results to include three dimensional effects ( i.e. factors like S(S+1) ).

Although many attempts have been made, there are no analytical solutions available

for general cases, only for a few extreme cases ( e.g., under very low temperatures ).

Therefore, one has to apply some kind of approximations. Two possibilities lead to two

famous theories in this area: the theory of spin wave excitations, a quantum mechanical

treatment of the Heisenberg Hamiltonian, and the molecular field theory, a single-particle

statistical mechanical approach.

Ground State (T=0 K)

Let us consider the first nearest neighbor contribution only; later we can extend our

discussion to a general case by simply adding other neighbor "shells" one by one. We are

assuming that these different shells of neighbors can be considered separately, i.e., they are

only "two shell" interactions. Hence, we only consider one J instead of all Jils.

In the case of J>0, the ground state solution is obvious: all the spins will line up

along the same direction to get a ferromagnetic state. If there is no external field, the ground

state is infinitely degenerate, because the space is isotropic so that the direction of spins (the

same direction for all ! ) is arbitrary. Usually, this direction is affected by the shape, size,

and other geometrical aspects of the crystal.

In the case of J<O, the situation is more complicated. There will be no exact

solution for the ground state unless the crystal structure can be mapped onto a two sub-

lattice model. In this model, the whole crystal can be divided into two sub-lattices, which

are identical in geometry (not necessary in physics), but one is shifted from the other at
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some direction by an amount so that one atom's nearest neighbors belong to the other sub-

lattice, and 2nd nearest neighbors belong to the same sub-lattice. For example, in a unit

cell of the bcc structure the corner atoms belong to a different sub-lattice than the center

atoms. An antiferromagnetic state will exist for those crystals having RO, with each of the

two sub-lattices being ferromagnetic, but spins pointing in opposite directions on the two

sublattices.

Excitation of a spin wave mode (T>0 K)

J>0: At a low temperature TA, there will be a few spins excited to a different

orientation, creating pseudo particles called spin-wave modes, or magnons, an energy

eigenstate of such an excitation. Just as lattice waves ( phonons ) are the collective modes

pertaining to the motion of atoms in a crystal, spin waves ( magnons ) are a certain kind of

collective motion of spins in a magnetic material. A particular magnon is such a state in a

magnetic material that all neighboring spins have certain phase differences and each

individual spin is moving at a particular frequency, as indicates in Figure 2.3.

Some detailed calculations show that for small wave vector k, the dispersion

relation is w k2, corresponding to the acoustic branch of a spin wave. The gap between

ground and excited state of the system will be proportional to the external field present.

J<O: Under the two sub-lattice model, the dispersion relation is w k in contrary to

w k2 in the ferromagnetic case, and specific heat behaves as Cv T3, the same as in

phonon contribution. In this case, an external field called an "anisotropic field" is assumed

to be present in such a way that it stabilizes the crystal structure, since the interaction

beyond the nearest neighbors is unknown. Usually, the gap induced by this field is much

smaller than kT.
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2.2.4 Tc - Mean Field Approach

The previous discussion of the spin wave solution is a beautiful quantum

mechanical theory, but it is quite complicated and therefore not so easy to apply. For

instance, the quantum mechanical approach cannot give a direct relationship between total

energy and critical temperature, one of several basic quantities to describe a magnetic

material. A much simpler and more useful approach based on a semi-quantum-mechanical

approximation is mean field theory which was introduced many years ago by Pierre Weiss

et a1.8-14 By applying mean field theory and statistical mechanics, one can get some

physical quantities such as the critical temperature quite easily and directly.

The basic idea of mean field theory ( also known as molecular field theory) is that

each spin will behave exactly the same if all other atoms were replaced by an effective field

( mean field ), which is proportional to the magnetization of the crystal. Let us consider the

interaction between an atom and its neighbors. By using the Heisenberg Hamiltonian, atom

i interacts with its neighbors by a one-body Hamiltonian H1, which is :

2J
H1 = 2 J Si ISj gB Si He , He LS j ,

gB

where He is called the effective magnetic field, g is the gyromagnetic ratio ( g-factor ), and

B is the Bohr magneton. The mean field theory implies that, the effective field He can be

written as an expression related to the average value of Si , <Si>, rather than the value of

Sj itself:

2J 2J Z 2J Z
He =

g
- <Si> - Ng M = r M,

B

where N is the number of spins per unit volume. Using this form of one-body interaction,

we can apply statistical mechanics and compare the results with Curie-Weiss law ( X -

C/(T-Tc), describing the paramagnetic susceptibility of a ferromagnet when T is greater

than ; ( the critical temperature ), to get a formula for the transition temperature :
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2J ZS(S+1)

Note that here we just include the interaction with first nearest neighbors. A more

detailed calculation by W. Jones8 shows that Tc can be expressed in the following form:

2J(0)ZS(S+1)
3k '

where J(0) is the k-->0 limit of J(k) = JR exp(ikR). In this case J(0) includes any
R

order of neighbor interaction within the crystal.

For the case of an antiferromagnetic system, the basic idea is the same except that

once again we have to apply the two sub-lattice model to handle the crystal structure. Let

K to be the reciprocal primitive translation of the magnetic lattice ( which is one of the two

sub-lattices), because lt = 71 and KpR = 27r ( R is the primitive translation of the

magnetic lattice and t is a non-primitive translation between the two sub-lattices ), we only

need to modify the formulas of Tc for the ferromagnetic case by changing J(0) -> J(Kp).

Note at this time, Tc is the Neel temperature at which an antiferromagnetic (T<Td to

paramagnetic (T>Td phase transition will occur, when T>Te, the Curie-Weiss law for

antiferromagnets is X C/(T-Tc). We have then the following:

2J(Kp)ZS(S+ 1)
lc ,

I (JR+JR+t exp(ikt)) exp(ikR).
R

We can combine the formulas of Tc for either ferro- and antiferromagnetic cases, as:

2J(Km)ZS (S + 1 )
Tc 3k '

where J(Km) is the maximum value of J(k). We can see that if J(k) takes its maximum at

k=0, we will expect the system to be ferromagnetic below Tc; whereas if the maximum is

elsewhere, we will expect that some kind of antiferro- or ferri-magnetic states may exist.
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2.2.5 Spin Waves

Spin waves describe the collective motion of spins in a magnetic material. Figure

2.3 shows a classical picture associated with an array of precessing spins ( Ref.8, page 330

) in a ferromagnetic material. Like many other forms of waves, or collective motions, spin

waves will contribute to the internal energy, specific heat, and many other physical

quantities; they exist in any kind of magnetic materials. For convenience, the concept of its

own quasi-particles, magnons, was introduced; they can be created ( excitation of a spin

wave mode ) and annihilated ( broadening the spin wave mode to a resonance ), and these

quasi-particles will also have interactions between them. From the model for our total

energy calculation -- Heisenberg Hamiltonian, one can see very easily how the spin wave is

associated with an excitation mode of spin systems. Rewriting the Heisenberg Hamiltonian

by using the operators a and at, and only leaving the quadratic terms in these operators, we

will have:

H = 2JSZIantan 2JSE(anamt+ antam); where n denotes the atomic site.
IIM

1 1
Introducing: bq = E exp(-in)an, and bqt = wsTIexp(iqn)ant, the spin wave

behavior becomes clear in the following resulting equation:

v,
H = E(q)bqtbq, where E(q) = 2JSZ (1- yq) and yq =

1 2., exp(-iqR)
q R

As part of our result, we will show the behavior of the quantity L(q), the Fourier transform

of J's, which is also directly related to E(q):

L(q) = Do; (1- exp(- iqRni)), including up to j-th nearest neighbor "shell".
of

When q --> 0, it can be written as L(q) = D q2. The D is defined as spin-stiffness constant,

which often describes the behavior at q=o of the acoustic branch of a spin wave. Very
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similar to the calculation for phonons, we can also obtain the internal energy and then the

specific heat by applying Boson statistics as follows:

U=
huh,

[exp(111341)-1]
q

t> C T3/2 (FM) and Cv--T3 (AF).

The spin wave excitations relate to our calculation in a fashion that in the bcc

structure the total energy differences between the several antiferromagnetic configurations

and their ferromagnetic counter parts are assumed to be the corresponding spin wave

energies. We also assume in our calculations that the inter-atomic correlation energy is the

same for the ferromagnetic and anti-ferromagnetic states, meaning that there is no change in

many-body effects between the two cases: only the hybridization effects embodied in the

changes of the kinetic energy of the effective non-interacting reference system drive the

change of total energy. While practically the total charge density is about the same in both

ferro- and antiferro-magnetic iron, the spin density is very different: the regions of zero

spin density change their shape in the interstitial region, and on the atoms, the value of the

moment is reduced due to its antiferromagnetic environment in which the moment on a

number of atoms will point in the opposite direction to form an antiferromagnetic state.

This spin density change is the only important difference between the FM and AF cases.

2.2.6 Thin Films and FCT Iron

Thin films are of great interest both in theoretical importance and practical

applications.15-18 In two dimensional cases, e.g., thin films, surfaces, and interfaces,

some quantum-mechanical effects can be seen and explained easily by applying simple

quantum mechanical theory; this low-dimensional physics usually loses its characteristics

and becomes more complicated theoretically in a three dimensional crystal. On the other

hand, the term "crystal" we often see in a solid state book, meaning a lattice without limit in
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space, seems impractical. In the real world, any crystal has its own boundary; it is a

practical problem how to explain the associated low-dimensional phenomena. Moreover,

thin films are very interesting because of their own applications as new techniques develop,

although the complexity in making low-dimensional devices seems to be inversely

proportional to the complexity to analyze them in theory.

For instance, thin film technology is very important in magnetic recording media.

Due to the magnetic anisotropy, it is very likely that in a thin film the spins have a tendency

to be parallel to the surface, because the shape makes such a configuration more favorable

by reducing the magnetic dipole energy. In this case, we need a large in-plane magnetic

anisotropy for the recording media, to avoid the information stored in the media being

easily destroyed by a weak field. Current experimental investigations focus on obtaining

films with a perpendicular moment, which would allow for a larger density of bits on the

medium.

A thin film is typically grown on an appropriate substrate. Although such a

substrate is often chosen to match the lattice constant of the thin film, they will never fit

perfectly. Thus a distortion between the film and the substrate is present. In the case of an

iron thin film grown on copper, such a distortion is believed to be face-centered-tetragonal

(fct) like: the film will adopt the lattice constant in the surface because of the stress the

substrate applies on the film, and "eventually" will have its own lattice constant in the

direction perpendicular to the surface. By "eventually", we mean that after the transition

region, typically about 1-2 atomic layers, the vertical lattice constant will stabilize. The

transition region is determined by the screening length in iron: it is on the order of several

angstroms in a metal. An iron thin film is normally grown with a thickness up to 10

atomic layers. Except for the first few layers being distorted, the rest of the thin film is

similar to a bulk system of face-centered-tetragonal iron. In this sense, a calculation for the

bulk fct iron system will be very meaningful to investigate the electronic properties of iron
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thin films. Thick iron films all have defects near the interfaces in order to transform to the

bcc structure.

At room temperature, iron has a bcc structure ( a-Fe, from 0-1184 K) until at

higher temperature it becomes fcc ( TFe, from 1184-1664 K). At even higher temperatures

until the melting point, it is in a bcc structure again (S-Fe, from 1664-1809 K). At normal

pressure, iron is never in a fct structure unless it is grown on a proper substrate as

described in the last section. Fct is a fcc structure which has been stretched or squeezed

along the z direction, as shown in Figure 2.4. It has the same lattice constants in two

dimensions and a usually different lattice constant in the third. Bcc and fcc are just two

special cases of fct structures: when a=c, it becomes fcc; when a=12 c, it will be bcc. This

is why sometimes fct is also refereed as body-centered-tetragonal, since the two are

equivalent (just different choice of the unit cell). In our calculations, we cannot change the

pressure, but change the dimensions of the unit cell. All the values of the volume are

relative to the experimental value.

Since bcc and fcc are two major interesting structures in iron system, we choose

our calculated points in a way that these points will: 1. concentrate more or less on the bcc

and fcc region with a volume near the experimental thin film value; 2. they will also be

dispersed over the whole fct c-vs-a plane to expose any interesting behavior other than high

symmetry region, and concentrate our attention on regions with an extremum in the total

energy if any of them are found in the calculations. This way to locate the points for our ab

initio calculations is of course not optimal. The strategy to obtain the maximum amount of

information out of the minimum number of points is non-trivial in our case, since it has to

depend on the physical information involved. However, our method turns out to be

practically very feasible, economical, and effective. In iron, we will not expect many fast-

varying local structures in the total energy behavior on the c-vs-a plane; rather, it will be

quite smooth and insensitive to the changes of c and a values. It is because we expect that
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each of the matrix elements of the Hamiltonian will have rather smooth dependency on c

and a values.

2.2.7 NM vs FM, LS vs HS Phases

As we mentioned before, a ferromagnetic (FM) state is a state in which all spins are

aligned along the same direction. In iron, however, there exists evidence that these spins

could have different values. When the local moment is large it is called high-spin (HS) FM

state, or with a low local moment it is called a low-spin (LS) state. In the language of

density functional theory, if these spin states correspond to the global or local minima in E-

p space, they are relatively independent and well isolated. In other words, if one starts

from one particular FM state to calculate a neighboring structure in the c-a plane and

proceeds very carefully ( i.e, small mixing percentage and a small change in c and a

values), one is able to end up with the same type of FM state. Some of the local minima,

however, may be very shallow, and if one is not very careful in the calculations, it is

possible that the calculation ends up with the global minimum and transfers to a different

FM state; in some cases, the calculations do not converge at all. Therefore, we follow a

strategy that we used many times: first, we use an available FM charge density for iron,

perform the calculations for a fct structure, and obtain the ground state ( global ) total

energy and charge density of that structure, which could be in either a HS or LS phases.

This step does not have to be handled carefully, although one still has to ensure the

calculation does not diverge. Then in the next step, we expand the calculations

CAREFULLY to neighbor points, in order to guarantee that the calculation is for the same

FM state.

As we perform the calculations for the nonmagnetic (NM) phase, we force the

major and minor spins to be exactly the same so there is no net moment associated with

each atom and in the interstitial region, although that does not imply we totally ignore the
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spin freedom. In E-p space, NM could either correspond to a global or local minimum, or

even to a maximum, depending on its energy compared to other phases.

Along the boundary between the NM and FM region ( by which we mean the

regions where the NM or FM, respectively, is the ground state of the system ), there is a

phase transition from NM to FM. Yet there is also a phase transition from the HS-FM to

the LS-FM state. Because the spin wave contribution to the specific heat, C, = KT3/2 and

the constant K depends upon the values of S, both of these phase transition are first order

due to the discontinuity of S.

Most of the recent work on iron shows that the FM state is the ground state for bcc

iron and the NM ( or AF, being essentially degenerate with the NM ) state is more

favorable for the fcc structure ( Wang; Moruzzi; Hathaway )3-4,19. By using a general-

potential LAPW method which is very similar to ours, Wang, etc.3 also found the evidence

for the coexistence of two FM metastable states: a small-volume, low-spin, large-bulk-

modulus state, and a large-volume, high-spin, small-bulk-modulus state with higher total

energy values. In their work on transition metals, Moruzzi, etc.4 support the idea of the

coexistence of two spin states using a nonrelativistic augmented-spherical-wave calculation

and a fix spin- moment technique, in which dependence of the total energy on the moments

can be studied thoroughly. With increasing volume from the equilibrium value of the NM

state, the system undergoes two successive phase transitions, from NM to LS to HS. In

our calculation, we performed the calculation for the LS phase in the fcc region as well as a

few points for the HS phase, and the results are consistent with these previous studies.

2.2.8 AF vs. FM in FCT Structure

In antiferromagnetic calculations, the procedure is slightly different. In this case,

we always start with a FM calculation for a fct structure from an available charge density.
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Since the FM phase could now be either the ground or excited states ( in the latter case, it

then corresponds to a local minimum ), this step should be performed very carefully, i.e.,

the structure should be very close to the starting structure. In the second step, we flip the

spin to the opposite direction at some desired atomic sites by exchanging the major and

minor spins, to set up the initial charge/spin density for the antiferromagnetic calculation.

For a fct structure, the flipping is performed at the site of the center atom of the equivalent

bct structure, so that the two-sublattice model holds near the bcc region. The rest of the task

is to bring the AF calculation to self-consistency and calculate the total energy differences

between the FM and AF configurations. Unlike in the bcc structure, in general, the AF

phase can in this case be either the ground or an excited state ( corresponding to global or

local minimum respectively ) of the fct system.

The symmetry is an interesting point in the AF calculations. After spin flipping, the

original bct ( it is convenient to consider fct as bct in this discussion ) structure becomes a

tetragonal structure with two atoms in a unit cell, one is a spin-up atom and the other is a

spin-down atom. The crystal symmetry is exactly the same tetragonal group as in general

cases. However, it is interesting to see the situation in the cubic cases. For bcc ( when a =

c ), the symmetry is still the same cubic 03 for both the FM (bcc) and the AF ( simple

cubic ) phases. On the other hand, for fcc ( when a = c ), the situation is different: the

symmetry is still cubic in the FM phase (fcc), but is NOT cubic anymore for the AF phase

(still tetragonal), because the AF 'magnetic lattice' no longer has a cubic structure and

therefore the two-sublattice model no longer holds. In our calculations, we have indeed

seen features associated with a broken symmetry phenomenon.

There has been a lot of research on the exploration of the antiferromagnetic phases

in iron, although these studies are basically concentrated on the cubic structures
3,20 -22 In

the bcc case, all the calculations using different methods are quite consistent, confirming

that the antiferromagnetic state is unstable around the ferromagnetic equilibrium volume. In
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the fcc case, on the other hand, Wang, etc.3 found that the AF phase is nearly degenerate

with the NM phase, having almost the same equilibrium volume and bulk modulus. Their

calculation is in contrast to Kiibleris work2° using the ASW method, in which the AF total

energy of fcc iron is found lying 1183 K ( 7.5 mRy ) below the NM counterpart at zero

pressure.t However, by using the same ASW method, with the fixed spin moment

procedure, Moruzzi, etc.21 showed recently that the AF total energy is indeed essentially

degenerate with the NM phase at equilibrium, in agreement with Wang, etc.. Both

calculations imply that at larger volume the AF ordering is more favorable for fcc iron.

Some discrepancy between these studies stem from the use of different lattice constants,

different choice of exchange-correlation potential, or different use of the muffin-tin

approximation. Despite of these differences, most of these calculations are in agreement

with the recent experimental results22 showing that the fcc-Fe(100) films grown on

Cu(100) surfaces are antiferromagnetic.

2.3 Numerical Approaches

In our calculations, we perform some numerical tests to tune the parameters to

appropriate values. Among the most important are the test of kmax and nkpt as discussed

as follows, and we will give some examples for that in the chapter 3.

2.3.1 Test of kmax and nkpt

As seen in our theoretical formalism, the calculations involve the evaluation of

integrals in three dimensions over the Brillouin zone to obtain the total energy and other

physical quantities. One has to choose a number of discrete points in k-space to evaluate

t Computational errors were found later in this work, and after correction the results are

consistent with Moruzzi's.
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these integrals in a numerical computation. In principle, using more points yields more

precise results. For economical reasons, however, one cannot afford calculations with a

very large number of k-points ( nkpt ) since the computing time T is proportional to nkpt.

Hence we have to trade off between the two and find the minimum acceptable value of nkpt

to perform the calculation. This is the main reason we have tested our calculations with a

number of different values for nkpt. A second test one has to perform is changing the

number of basis functions used to describe the wave functions of the non-interacting

particles in the reference system. This number of basis functions is determined by the value

of a parameter called kmax, where kmax is the maximum value of the momentum of the

plane wave part of the basis function ( only in this reference system ). Obviously, for more

precise results one has to choose more basis functions and larger value of kmax. Again,

there is a limit due to numerical reasons, because the computer time increases like the ninth

power of kmax ( we are solving the eigenvalue problem of N x N matrices, where the

number of basis functions N is proportional to the third power of kmax).

When we choose the k-points to evaluate the integral, we followed a scheme called

maximization of the minimal distance, i.e., maximizing the distances to surrounding k-

points which are already there, to ensure that our chosen k-point are near-randomly, non-

discriminatively, and as completely as possible distributed to cover the whole Brillouin

zone. For related calculations, by which we mean those calculations for which we are only

interested in their total energy differences, such as FM calculations for fct structures, the

way to arrange these k-points must be in exactly the same relative locations within the

Brillouin zone to avoid any possible induced errors. The dimension of the Brillouin zone

might change, but its topology will remain the same.
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2.3.2 Convergence of E and 11

In §1.1.4, we have already mentioned some convergence properties on iterations of

self-consistent calculations, and how we can get converged total energy values from the last

few iterations. Now we will focus our attention to more physical convergence problems:

the total energy dependence on parameters nkpt and kmax.

In the last section, we explained why we should carry our calculations for a number

of nkpt and kmax values to see which value is sufficient for the calculation. Just as the

same idea as we used for the iterational convergence, we try the following formula for the

nkpt convergence:

E = E+ f ( nkpt ),

where f must be in the form of inverse polynomial of nkpt, as:

f (nkpt ) ( nIcpt )-1) ( 1 + ( nlcpt )-1 + ( alcpt )-2 + )

since when nkpt = oe, E should be equal to E,,. As nkpt is sufficient large, we can ignore

the higher order term, and p=2/3. Therefore:

E = E. + c * (nkpt )-2/3

if everything else remains the same. And similarly, we will have the following formula for

the kmax convergence, if everything other than the changes of kmax remains the same:

E = E. + c' * oanalo-12.

Although the above are very useful to obtain the converged values of total energy, one

should be very careful in using them, as they are not good at all if the nkpt / kmax

parameters are not large enough, and can introduce a large error or inaccuracy. If

necessary, the powers in the above equations could also serve as parameters rather than be

specified. The price one has to pay is the increase of the computational complexity, because

more data points are needed to determine these parameters.
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Chapter 3. Critical Temperature of Iron Derived
From Total Energy Calculations

3.1 Abstract

We have performed total energy calculations for iron in the ferromagnetic and in

several antiferromagnetic configurations. It is assumed that the functional describing

exchange and correlation is the same for the ferromagnetic ground state and the anti-

ferromagnetic states. The calculated total energies are used to obtain the interaction

parameters in a Heisenberg model. From this Heisenberg model we derive excited state

properties, where one has to keep in mind that the model parameters are directly based on

the ground state ab initio results. The nearest neighbor interaction is ferromagnetic and a

model which includes only nearest neighbor interactions yields a transition temperature of

1685 K. The next-nearest neighbor interaction, however, is anti-ferromagnetic and reduces

the critical temperature to 895 K. Several other physical quantities derived from our model

Heisenberg Hamiltonian are discussed.

3.2 Introduction

Although the basic mechanisms giving rise to magnetism in solids are well

understood, ab initio calculations of many important properties have not yet been

performed. Local spin-density functional calculations for iron show that the ground state of

bcc iron is indeed ferromagnetic and they yield values for the magnetic moment close to the

experimental values.11 These calculations do, however, not give any information about the

excited states in this system. An especially interesting question pertains to the nature of the

spin-waves in iron and nickel 23 Above Tc the atoms still have a local moment associated

with them, but these moments have lost their long range order. The amount of short range

order is unknown, and this is responsible for the current debate whether above Te spin
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waves still can be seen as collective excitations or if they have lost their identity and are

broadened into resonances. Also, the ab initio calculations themselves do not predict a

realistic value for the critical temperature. Several theoretical methods describing the

ferromagnetic phase transition in iron do exist,24 and parameter values can be derived from

band structure calculations. 25-27 These combined approaches give good results for the

transition temperature in iron and nickel. They rely, however, on the values of the band

energies, and interpret these energies as excitation energies. Although self energy effects in

metals are small, this still gives rise to questions. Therefore we follow a different approach

to obtain the parameters in a model Hamiltonian description of magnetism in iron and base

our results on total energies only, essentially constructing a magnetic alloy similar to the

chemical alloys in the work of Connolly and Williams.28 At this point we need to

emphasize that we are not attempting to improve the simple model description, but that we

only want to eliminate possible errors in the derivation of the values of the model

parameters. One has to keep in mind that only the total energy in density functional theory

incorporates many body effects! Obviously, in the local density approximation this is not

complete true anymore.

3.3 Total energy calculations of para-, ferro- and anti-ferromagnetic
iron

Ab initio total energies for the different spin structures of bcc iron are obtained

within density functional theory. We use the local approximation to the exchange and

correlation potential, as formulated by von Barth-Hedin and parametrized by ak.9-1 0

Total energy differences change only by about a mRy when we replace this functional with

a different local approximation.29 It is,'of course, unknown how these differences in total

energy would change using the real exchange-correlation functional. The total energy

calculations are performed using the Full potential Linearized Augmented Plane Wave

method.12 All calculations are performed for a value of the lattice constant of 5.40 a.u.,



39

which is close to the experimental value. Changing the value of the lattice constant will

affect the differences in total energy. The value of J1, for example, will change by about

30% when we perform the calculations at 5.25 a.u., which is close to the theoretical value

of the lattice constant.

The main objective in density functional calculations is to minimize the energy

functional E[p,r, NJ representing the total energy of the interacting electrons. The global

minimum corresponds to the ground state of the system, and the corresponding densities

are the ground state densities of the system. In general, this energy functional will have a

number of local minima which in most cases do not correspond to excited states of the

interacting electron system. In magnetic metallic systems, however, there are cases where

the energy differences between the local minima are small. In iron the global minimum of

the energy corresponds to the ferromagnetic state of iron. A local minimum is found for

antiferromagnetic iron, but the total charge density is almost the same in both cases. The

only important differences between ferro- and anti-ferromagnetic iron are seen in the spin-

density in the interstitial region, where the regions of zero spin density change shape, and

in the spin-density on the atoms, which is reduced from 2.30 gB to 1.93-1.91 p.B.

The basic crystal structure we are concerned with is a bcc lattice. The 'magnetic

lattice', however, can be different. This means that even though all iron atoms are located at

bcc lattice points, they can have different spin configurations. The two anti-ferromagnetic

structures we have considered so far are shown in Figs. 3.1(a) and 1(b). Our calculations

proceed in two steps. First, we perform a ferromagnetic calculation for the crystal

symmetry corresponding to the structures we try to obtain as local minima. In the next step,

we construct a trial spin-density by inverting the spin-density for the sites which have spin

down, and we average the interstitial spin-density in order to start with zero magnetization

in the interstitial region. For the two cases shown in Figs. 3.1(a) and 1(b) the calculations
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Figure 3.1 Spin structure for the first (a) and second (b) anti-ferromagnetic configuration

discussed in this paper.
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then converge to a local minimum, although one has to be very careful. The mixing

between input and output charge densities in the self-consistent cycle cannot be too large,

because it is very easy to set up oscillation in charge density between non-equivalent atoms.

In Table 3.1 we list our results of the total energy calculations. For the total energy

and the exchange-correlation energy we have chosen the energy of ferromagnetic iron as a

reference point. Additionally, we show in Table 3.1 the magnetic moments of the different

sublattices and the interstitial, indicated by ma, mb, and mint. The total energy difference

between the different spin configurations is smaller than the difference in exchange-

correlation energy ( Table 3.1 ), confirming that there is an opposite change in the kinetic

energy.

Table 3.1 Total energy per atom (mRy, with 1 mRy of error) relative to the ferromagnetic

state, exchange-correlation energy per atom (mRy) relative to the ferromagnetic state, and

spin magnetic moment on each site (Bohr magneton).

Etoti En/atom ma mb mint

Ferromag. 0 0 2.30 -0.04

Antiferro I 32 58 1.93 -1.93 0.00

Antiferro II 10 39 1.91 -1.91 0.00

Paramag. 34 140

3.4 Model Hamiltonian

We assume that our calculated total energies are the eigenvalues of a model

Hamiltonian of the form:

H = 2 SiSi + Ho
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where Ho contains all non-magnetic effects and Si pertains to the magnetic moment on site

i. We assume that the expectation value of Ho is the same for all three states we have

considered and further simplify our discussion by ignoring the change in magnitude of the

magnetic moment between the ferromagnetic and antiferromagnetic results. This reduces

the Hamiltonian to the form:

H = 2 / Jii i ai + Eo
i<j

where µ i is the direction of the local magnetic moment. By making these assumptions we

can directly compare our results with those of reference 25.

3.5 Discussion

Since at this time we have only three data points available, we can derive values for

Eo, the nearest neighbor coupling J1, and the next-nearest neighbor coupling J2. The

results are co= 8.5mRy, J1= 2.0mRy, and J2= -1.25mRy. Compared to the values in

reference 26 ( J1 = 1.65 mRy and J2 = -0.25 mRy ) we see that J2 is different by a factor of

5; it is important, however, that the sign is the same. They are very different from the

results in reference 25 ( J1 = 0.65 mRy and J2 = 0.71 mRy ). Within mean field theory one

is able to derive a value for the critical temperature of this model Hamiltonian from:

23

The conversion factor is lrnRyz---158K. Since this basically corresponds to an extrapolation

of our data, our values will be very sensitive to the inclusion of additional coupling

constants and our results at this point are only qualitative. Using only J1 we find a value

Tc= 1685K, but including J2 reduces this value to 895K. This result is consistent with the

calculations in reference 25 ( see Table 3.2 ). Additionally, one should add a factor (S+1)/S
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in a quantum mechanical treatment. This factor is 1.87 in our case; we did not include it in

order to be able to compare directly with reference 25.

Table 3.2 Transition temperature (K) and spin-wave stiffness constant (meVA2)

mfla mf2a al
Tcinfa Tc Tc Tc Teb

Teexp Da
Db DexP

1220 1420 1250 1051 895 1043 560 145 330

aReference 25; bPresent Work.

Once we know the values of the coupling constants J we can also derive a value for the

spin stiffness constant D.25 As can been seen in Table 3.2 our results again compares well

with the previous results and with experiment, but there is a clear need for including more

Jii values.

Finally, in Figure 3.2 we show our curve for the quantity

L(q) =I Joi ( 1 exp(igoi) ),
..i

which was also calculated in reference 25. We only show data along the [100] direction,

since we do not have sufficient information for all directions ( our spin structures are both

modulated along [100] ). The results are similar, the main difference arises from the value

of J2 which is negative ( anti-ferromagnetic coupling ) in our case but not in reference 25.

Again, including more data points might change this value.

3.6 Conclusion

From our results we conclude that obtaining the values of the parameters in a model

Hamiltonian, describing the magnetic order in solids, from ab initio total energy ground

state calculations is a feasible procedure. This offers a realistic approach to understand the

excited state properties of magnetic materials, ranging from the spin wave stiffness constant
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The dashed result is from reference 25.
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D and the spin wave dispersion relation to the critical temperature Tc and the susceptibility.

At this point our results are still very limited and the main conclusion is that we are in

agreement with some of the earlier work based on single-particle band-structure

calculations.

Our evaluation of the interaction parameters involves a large number of

configurations of ferrimagnetic and/or antiferromagnetic states and such calculations can be

quite tedious mainly for numerical reasons. At this moment we are extending our

calculations to include more configurations, which will allow us to study the convergence

of the results as a function of the number of neighbor shells. Obviously, this is very

important in order to determine whether our approach makes any sense at all.
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Chapter 4. Inter-atomic Magnetic Interactions in Iron

4.1 Abstract

We have performed total energy calculations for bcc iron in several magnetic

structures using density functional theory. The lattice constant was fixed at its experimental

value. We have considered the ferromagnetic and several anti-ferromagnetic configurations

and used the calculated total energies to obtain the interaction parameters up to sixth nearest

neighbors in a Heisenberg model. We assumed that the local density functional describing

exchange and correlation is the same for the ferromagnetic ground state and the

antiferromagnetic states, with the latter corresponding to local minima of the energy

functional. In this approach, the inter-atomic magnetic interactions are pure hybridization

effects, due to the kinetic energy term in the total energy. Our parametrized model

Heisenberg Hamiltonian yields realistic values of the spin stiffness constant and the critical

temperature.

4.2 Introduction

The theories of quantum mechanics and relativity, both essential for an explanation

of the basic mechanisms of magnetism in solids, are very old. A number of models

describing magnetic solids has been proposed since the development of these fundamental

theories and they can be found in several text books1-2. The Hubbard model, for example,

incorporates an intra-atomic Coulomb correlation and inter-atomic hopping terms. The

Stoner model, on the other hand, uses a molecular field approach to relate the magnetic

properties of the interacting many-body system to corresponding quantities of a non-

interacting system. Although our qualitative understanding of magnetic properties of solids

has increased dramatically, all quantative calculations always have to resort to some

approximations in order to be feasible.
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Density functional theory 5-7 offers a computationally efficient approach to obtain

the total energy of the ground state of an interacting electron gas. The total energy is the

sum of the many-body kinetic energy, the many-body Coulomb energy, and the external

energy (due to the atomic nuclei and external fields). In density functional theory, the first

term is approximated by the kinetic energy of a non-interacting reference system with the

same charge and spin density, and the second term is approximated by the classical

Coulomb energy due to the electronic charge density. The correction term is called the

exchange-correlation energy, which is a misnomer since this term also contains

contributions from the kinetic energy. This correction term certainly includes all many-body

effects and hence it is only possible to give approximate expressions for this term. The

standard Local Spin-Density Approximation (LSDA) is based on the results for a

homogeneous interacting electron gas. LSDA calculations show that the ground state of bcc

iron is ferromagnetic and that the calculated values of magnetic moment are close to the

experimental datal 1. These LSDA calculations, however, do not give any information

about the excited states in this system. A particularly interesting question concerns the spin

waves in a magnetic material. For T>Tc the atoms still have a local moment associated with

them, but these moments have lost their long-range order. The amount of short range order

is unIc.nown34, which makes it hard to answer the question whether above Te spin waves

can still be seen as collective excitations or if they have lost their identity and are broadened

into resonances.

The presence of spin waves breaks the translational symmetry of a solid. This effect

is very similar to the formation of random alloys. A standard computational technique to

investigate the electronic structure of alloys within the framework of density functional

theory uses the coherent potential approximation. This technique has been applied to the

problem of spin waves in iron27. In the calculations the directions of the moments on

individual atoms are constrained and the corresponding Lagrange multipliers are evaluated.
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The same functional form of the exchange-correlation potential is used for all

configurations and hence differences in the inter-atomic correlation effects are ignored. This

work yields good results for iron, and somewhat larger differences for nickel, which can

be explained.

The electronic structure of alloys can also be obtained from a series of simple

ordered alloys28. In that case the total energy is interpolated as a function of structure and

the parameters needed in the interpolating function are obtained by fitting this function to

the values of the total energy of the simple reference alloys. A similar technique can be

applied for spin waves in iron, where one treats different (anti)ferromagnetic structures in

the same way as different alloys31. A simple interpolation scheme is based on a

Heisenberg model Hamiltonian, and the interaction parameters can be obtained from

density functional calculations25-26. These latter calculations rely, however, on the

bandstructure of the non-interacting reference system and therefore possibly ignore many-

body effects. Although self energy effects in metals are small, this still remains a

questionable point. In this paper, in contrast to the previous work25-26 we derive the values

of the interaction parameters directly from our calculated total energy data, essentially

constructing a magnetic alloys similar to the chemical alloys in the work of Connolly and

Williams28. Because we only use the values of the total energy, we definitively stay within

the limits of validity of density functional theory. Preliminary results were published

before32. At this point we need to emphasize that we are not attempting to improve the

simple model description, but only want to eliminate possible errors in the derivation of the

values of the interaction parameters. Also, one has to keep in mind that only the total

energy in density functional theory incorporates many body effects and that this is only

approximately true in the LSDA theory.
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4.3 Details of the Total Energy Calculations

The main objective in density functional calculations is to minimize the energy

functional E[p.i, N], representing the total energy of the interacting electrons. The global

minimum corresponds to the ground state of the system, and the corresponding densities

are the ground state densities of the system. In general, this energy functional will also

have a number of local minima which in most cases do not correspond to excited states of

the interacting electron system. The exchange-correlation potential is defined as the

difference between the true ground state energy and the ground state kinetic energy of a

non-interacting system plus the Hartree Coulomb energy. If the electron correlation is very

different in the excited states, the exchange-correlation energy will be different too. A well-

known example is the calculation of the optical gap in semiconductors, where

straightforward LDA calculations give wrong results because of this difference in

correlation energy33. In metallic systems on the other hand there are many excited states for

which the correlation energy is very similar. In our case, the global minimum of the total

energy corresponds to the ferromagnetic state of iron. In our calculations, however, we do

find a number of local minima which correspond to antiferromagnetic states. Figure 4.1

represents this situation in a schematic way. On the other hand, not all antiferromagnetic

states are associated with a local minimum.

We use the total energies obtained in calculations for several antiferromagnetic

structures and assume that they are representative for the corresponding spin wave

energies. Therefore, in this paper we, too, ignore differences in inter-atomic correlation

energy and only take into account the changes in total energy due to hybridization effects,

embodied in the changes of the kinetic energy of the effective non-interacting reference

system. In other words, we assume that there is no change in many-body effects between

the ferromagnetic and anti-ferromagnetic states. The total charge density is almost the same



Charge Density

Figure 4.1 Global and local minima in E-p space, where the global minimum

corresponds to the FM state and local minima correspond to AF states.
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in both ferro- and antiferro-magnetic iron. The only important differences between the two

cases are seen in the spin-density in the interstitial region, where the regions of zero spin

density change shape, and in the spin-density on the atoms, of which the value is reduced

from 2.30 ps to 1.81-2.14 p,B. Obviously, the moment on a number of atoms will point in

the opposite direction to form an antiferromagnetic state.

The crystal structure of iron at room temperature is bcc. The 'magnetic lattice' ,

however, can be different. The 'magnetic lattice' is defined when we treat atoms with dif-

ferent spin directions as different types of atoms. The antiferromagnetic structures we have

considered are shown in Figure 4.2. In order to include more interaction parameters, one

has to find more anti-ferromagnetic configurations for which the calculations converge to a

local minimum. Additional configurations will give new information only under the

following two conditions: 1. the configuration must have an anti-ferromagnetic state as a

local minimum of the total energy (the self-consistent calculations have to converge); 2. the

energy of this configuration as a function of the parameters in the model Hamiltonian must

be linear independent of all existing configurations. Including a dependent configuration is

still useful, since it will reduce the error in the interaction parameters. In our calculations,

only 4 out of 5 configurations are independent when using the lowest order interactions and

fixed moments.

Our calculations proceed in two steps. First, we perform a ferro-magnetic

calculation for the crystal symmetry or the 'magnetic lattice' pertaining to the structure for

which we try to obtain a local minimum. The energy value of this calculation will serve as a

reference for the total energy of the anti-ferromagnetic state. By only calculating relative

energies this way, we reduce errors because systematic errors cancel. In the next step, we

construct a trial spin-density by inverting the spin-density for the sites which have spin

down, and we average the interstitial spin-density in order to start with zero magnetization

in the interstitial region. For all cases shown in Fig. 4.2 the calculations then converge to a
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AF III

AF 11

Figure 4.2 Antiferromagnetic configurations (AF-I to AF-V) calculated in this work
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local minimum, although one has to be very careful. The mixing between input and output

charge densities in the self-consistent cycle cannot be too large, because it is very easy to

start oscillations in charge density between non-equivalent atoms.

In our studies we use the Full-potential Linearized Augmented Plane Wave

method12 to obtain the kinetic energy of the non-interacting reference system. The

calculations involve the evaluation of integrals in three dimensions over the Brillouin zone

to get the total energy and other physical quantities. One has to choose a number of

discrete points in k-space to evaluate these integrals. In principle, using more points yields

more precise results. For economical reasons, however, one cannot afford calculations

with a very large number of k-points (nkpt) since the computing time T is proportional to

nkpt. Hence we have to find the minimum acceptable value of nkpt to perform the

calculation. This is the main reason we have tested our calculations with a number of

different values for nkpt. A second test one has to perform is changing the number of basis

functions used to describe the wave functions of the non-interacting particles in the

reference system. This number of basis functions is determined by the value of a parameter

kmax, where kmax is the maximum value of the momentum of the plane wave part of the

basis function. Obviously, for more precise results one has to choose more basis functions.

Again, there is a limit due to numerical reasons, because the computer time increases like

the ninth power of kmax ( we are solving the eigenvalue problem of NxN matrices, where

the number of basis functions N is proportional to the third power of kmax).

Table 4.1 Total energy for ferromagnetic and simple antiferromagnetic iron, per atom,

in mRy, as a function of kmax. A constant term of -2,541 Ry has been omitted.

kmax FM AF AF-FM

3.5 -83.48 -71.02 12.46
4.0 -91.60 -79.53 12.07
4.5 -92.70 -80.28 12.42
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Table 4.1 shows the results of the total energy for different choices of kmax for

configuration AF V ( at this point, nkpt=30 ). Table 4.2 shows the effect of changing nkpt

at different configurations. The numbers in these tables show that the calculations are

sufficiently precise only when nkpt is equal to 30 or more, because the differences between

30 and 60 nkpt are within the estimated error range of our calculations, which is about 1

mRy. Based on similar considerations, a sufficiently large value for kmax for AF V is

4.50. For structures with fewer atoms in the unit cell this value of kmax is also more than

sufficient.

Table 4.2 Total energy of the various antiferromagnetic configurations of bcc iron with

respect to the ferromagnetic configuration in mRy as a function of the number of k-points

in the Brillouin zone.

nkpt AF I AF II AF III AF IV AF V

10 31.2 10.9 10.2 25.0 8.4

20 29.4 10.6 11.6 14.6 11.1

30 30.8 10.2 14.0 7.1 12.4

60 29.8 12.0 13.0 6.6 12.4

There is one thing we would like to emphasize here. Although the absolute values

of total energy of ferro- and anti-ferromagnetic may be very different for different values of

nkpt or kmax, as shown above, we are only interested in the differences between these

energies rather than the absolute values. Structure dependent errors, mainly induced by the

different ways to divide the Brillouin zone into small tetrahedrons to evaluate the three

dimensional integrals or by differences in the basis functions, will cancel each other if we

only consider the differences between ferromagnetic and anti-ferromagnetic configurations.

The convergence of the iterations towards a self-consistent solution is not always

straightforward. For the anti-ferromagnetic calculations instabilities in this iteration towards
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self-consistency often prevent the use of a large mixing between input and output densities

used in the construction of the charge and spin densities for the next step in the iterations.

In each of iterations of our calculations, we calculated the difference of charge and spin

densities, AN and AN, between the current and previous iterations. At small values of

these differences, the total energy behaves as a quadratic function of Ape and Aps:

E = Eo + cool +13Apc APs YAPc2

After several iterations, it is possible to determine the converged values of total energy (E0)

using this extrapolation. This procedure is only valid when one uses a small mixing

between input and output densities.

4.4 Model Hamiltonian

Standard local density calculations only yield the total energy of a solid for a

relatively small number of geometries. An interpolation between these geometries in

necessary. If we only vary the volume of a solid, but keep the symmetry the same, this is

easy. Near the minimum of the total energy one can use an expansion in polynomials, or

for a larger range of volumes one can use some equation of state, like Murnaghan's

equation. Matters are more complicated when more degrees of freedom are involved,

especially when these degrees of freedom are related to the electrons, like in our case. One

important reason to perform density functional calculations is to improve upon simple

models, because the electronic effects can be very subtle! Nevertheless, simple models are

very useful since it is not feasible to perform calculations for large unit cells. Our situation

is completely analogues to that in alloy theory28, where an expansion of the total energy in

pair- and triplet-potentials is used in order to extrapolate to larger unit cells. These larger

cells are needed to reliably calculate the entropy and hence any thermodynamic quantity.
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A number of model Hamiltonians exist for magnetic systems. Here we assume that

our calculated total energies are the eigenvalues of a model Hamiltonian of the form:

H= 2 Iij S i.Sj +Ho
i<j

where Ho contains all non-magnetic effects and Si pertains to the magnetic moment on site

i. All magnetic effects are found in the first term and the expectation value of Ho is the same

for all (anti)-ferromagnetic states we have considered.

In a second model, we further simplify our discussion by ignoring the change in

magnitude of the magnetic moment between the ferromagnetic and antiferromagnetic

configurations. This reduces the Hamiltonian to the form

H = 2 1 +
i<j

where Ili is the direction of the local magnetic moment. By making these assumptions we

can directly compare our results with those of reference 25 and 26. The use of this

simplified model Hamiltonian is justified in reference 25. Although our data could also be

interpolated by an Ising like Hamiltonian, we prefer to keep the three dimensional nature of

Table 4.3 Contribution to total energy from different nearest neighbors

J1(111) J2(200) J3(220) J4(311) J5(222) J6(400)

FM -8 -6 -12 -24 -8 -6

AF I 8 -6 -12 24 -8 -6

AF II 0 6 -12 0 8 -6

AF III 0 -4 -4 0 0 -6

AF IV 0 2 4 0 -8 -6

AF V 0 -2 4 0 8 -6
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the spins in the model in order to be able to look at spin waves. The contributions to the

terms in the model Hamiltonian from the states we have considered are given in Table 4.3.

The linear dependence of J1 and J4 is clearly seen, and we only determine the combination

J1+3J4 from our calculations.

4.5 Discussion

Table 4.4 Total Energy in mRy, and exchange correlation energy in mRy for the
antiferromagnetic states, with respect to the corresponding value for ferromagnetic iron.
ma, mb and me denote the integrated value of the magnetic moment in a value of radius 2.25

a.u. around each atom. mint is the corresponding value in the remainder of the unit cell.

nlqx Etot/atom En/atom ma Int) Inc mint

Ferromag. 30 0 0 2.25 -0.06

60 0 0 2.30 -0.04

AF I 30 31 58 1.93 -1.93 0.00

60 30. 56 1.81 -1.81 0.00

AF II 30 10 39 1.91 -1.91 0.00

60 12 38 1.95 -1.95 0.00

AF III (Ferri) 30 14 5 2.31 -2.01 1.99 0.03

60 13 19 2.37 -1.99 1.95 -0.05

AF IV 30 7 11 2.06 -2.06 0.00

60 7 27 2.08 -2.08 0.00

AF V 30 12 5 2.17 -2.17 0.00

60 12 15 2.14 -2.14 0.00

Paramag. 30 34 140 / / / /

The results of our calculations are summarized in Table 4.4. The total energy of the

ferromagnetic state is taken as a reference and all other states have a higher value of the

energy. The magnetic moments at the different atomic sites refer to the values integrated

over muffin tin spheres of radius 2.25 a.u. and the interstitial moment pertains to the
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remaining region in the unit cell. The exchange-correlation energy also shows the

difference of this quantity with that in the ferromagnetic state. Unfortunately, for the more

complicated systems this difference depends on the convergence in reciprocal space and on

the convergence to self-consistency and has larger errors (only the total energy is

variational). The only conclusion we can draw from this entry is that the change in

exchange-correlation energy is large enough to drive the differences in total energy, but that

the system also shields these changes, which leads to a reduced value of the change in total

energy as compared to the change in exchange-correlation energy. The values of the

magnetic moments are generally reduced in the anti-ferromagnetic structures. In the ferri-

magnetic structure AF III we find a moment close to that in the ferromagnetic state for the

central layer which has nearest neighbors with the same spin direction.

Table 4.5 Interaction parameters with different nkpt ( using fixed magnetic moments ), in

mRy.

nkpt E. Ji+3J4 J2 J3 J5 J6

10 16.14 1.95 0.75 0.22 -0.85 0.05

20 13.01 1.84 -0.03 0.01 -0.23 0.03

30 10.51 1.93 -0.66 -0.19 0.17 -0.00

60 10.60 1.86 -0.54 -0.25 0.22 0.02

In Table 4.5 we present our results for the interaction parameters up to the sixth

neighbor shell for the model in which the changes in the magnetic moments are ignored.

Using 30 points in the Brillouin zone gives an acceptable coverage of the Fermi surface,

and we expect that the difference between the values based on 30 and on 60 points gives a

measure of the error in the derived values of the parameters. Using less than 30 points is

clearly insufficient. Since calculating six parameters based on six data points is not very

satisfactory in terms of error propagation, we have also fitted our data to the model
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Hamiltonian with a fewer number of nearest neighbors. The results of this procedure are

given in Table 4.6 for 30 and 60 points in the Brillouin zone. As we see, adding more

parameters does not alter the values of the old parameters significantly.

Table 4.6 Interaction parameters with different nearest neighbors (nkpt=30,60),using

fixed values of the moment, in mRy.
nkpt E.
30
30

12.43
12.43

30 11.47
30 10.62

10.54
30 10.51
60 12.31
60 12.31
60 11.63
60 10.50
60 10.39

60 10.60

J1 +3J4 J5

1.93
1.93
1.93

-0.58
-0.52 -0.18

1.86
1.86 -0.41
1.86 -0.34 -0.23
1.86 -0.52 -0.25 0.21

1.86 -0.54 -0.25 0.22 0.02

In Tables 4.7 and 4.8 we show our results using the Heisenberg Hamiltonian

including the changes in the size of the magnetic moments. In order to be able to compare

with our previous results, we have divided I by <S>(<S>+1), with the average magnetic

moment <S>=2.30. The results are slightly different, in large part due to a rather arbitrary

choice of the scaling with <S>.

Table 4.7 Interaction parameters with different nkpt ( using variable magnetic moments ),

in mRy.

nkpt E. J1-1-3J4 32 J3 35 36

10 16.59 2.26 0.62 0.23 -1.04 0.06

20 13.09 2.19 -0.27 -0.07 -0.28 0.04

30 10.71 2.36 -0.94 -0.31 0.15 -0.01

60 10.82 2.27 -0.78 -0.38 0.22 0.02
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Table 4.8 Interaction parameters with different nearest neighbors (nkpt=30,60), using

variable magnetic moments, in mRy.

nkpt E. J1 +3J4 J3 J 5 J6

30 12.43
30 13.28 2.11
30 11.82 2.30 -0.97
30 10.87 2.37 -0.84 -0.28
30
30

10.80
10.71

2.36
2.36

.96
-0.94

-0.30
-0.31

0.15
0.15 -0.01

60 12.31
60 13.15 2.05
60 12.00 2.20 -0.77
60 10.79 2.29 -0.60 -0.35
60 10.69 2.27 -0.77 -0.39 0.22

60 10.82 2.27 -0.78 -0.38 0.22 0.02

Our result for J1+3J4 is similar to the value found in reference 26 for J1

(1.65mRy), but the value of J2 is different by a factor of 2 (reference 26 gives J2=-0.25

mRy). It is important, however, that the sign is the same, which means both calculations

indicate that the second-nearest-neighbor interaction is anti-ferromagnetic. On the other

hand, our results are very different from reference 25, which gives J1+3J4=2.71 mRy,

J2=0.71 mRy, J3=-0.4mRy, J5=-0.17mRy, and J6=0.07mRy. The signs of J2 and J5

are opposite, and the value of J 1+3J4 is somewhat larger. It remains questionable whether

such a comparison makes sense, since we only use the model Hamiltonian to interpolate

our total energy data, and since the other papers derive the interaction parameters from a

different type of calculation. Another interesting point is that the values of interaction

parameter decrease quite rapidly as a function of the neighbor distance. The exact

dependency of these parameters on the distance R-vector is not known, and can probably

only be interpolated by a simple formula at large distances. We did therefore not attempt to

fit our data for J i to such a formula.
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Within mean field theory one is able to derive a value for the Curie temperature of

this model Hamiltonian. If we take the magnetic moments fixed, the following formula

holds:

2
2.,kTc = Joj

Note that in this formula only the combination J1+3J4 appears, and that there are no

ambiguities due to the fact that we cannot separate these terms. If we include the variation

of the magnetic moments this formula is modified and includes <S>, the average magnetic

moment:

kTe =
2

2, 10i <S>(<S>+1)
3 j*0

The conversion factor is 1mRy=158 K. Since in this situation we basically

extrapolate our data away from zero temperature properties, we expect inaccuracies due to

the small number of configurations we could include. Also, we neglect changes in the

exchange-correlation energy as a function of temperature. We find that the value of Tc is

very sensitive to the inclusion of additional coupling constants and that a precise prediction

is impossible. Table 4.9 summarizes our results for different choices of number of k-points

and number of parameters. We find a value for Te of about 1100K, which is close to the

experimental value. Without a model for the dependency of J (R) on the distance R it is not

possible to give an error for this result and therefore one cannot draw any firm conclusions.

The best one can say is that our results are consistent with experiment, which in itself not

something to be expected on obvious grounds. Our results are very similar to those of

reference 25, indicating that it is very hard to determine the interaction parameters in an

absolute way. They are constructed in a different context in reference 25, but do give

similar results for the critical temperature.
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Table 4.9 Results for the critical temperature and spin stiffness constant for 30 and 60 k-

points, including different number of parameters J i .

Results with fixed moments
Tc(K) D(meV A2)nkpt parameter

30 1 1624.2 372.0

30 2 1260.4 260.9

30 3 1072.2 135.8

30 4 1108.5 228.0

30 5 1107.3 225.5

60 1 1572.1 360.1

60 2 1312.6 280.8

60 3 1060.6 113.3

60 4 1107.2 231.5

60 5 1116.1 250.0
Results with variable moments

nkpt parameter TaK) D(mev A2)

30 1 1780.6 407.8

30

30

2

3

1322.2

1111.8

255.9

79.5

30

30

4

5

1129.9

1127.8

155.8

148.8

60 1 1731.2 396.5

60

60

2

3

1369.9

1104.2

276.8

54.0

60 4 1130.5 164.8

60 5 1139.8 180.3
Results of Reference 25

Method TaK) D(mev A2)
mfa 1220

mfla 1420

mf2a 1250

Gfa 1051

exp. 1043

560
330
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L(q) =I, Joi 1 exp(iciroi) ),
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which was also calculated in reference 25 is a useful quantity to analyze, since it can be

related to Te in various approximations. The curvature of this function near q=0 is related to

the spin-wave stiffness. Obviously, in this formula one has to separate the contributions

from J1 and J4. At first we will assume J4=0. In Figure 4.3 we show how L(q) along a

<100> direction changes by including more k-points in the Brillouin zone integration.

Figure 4.4 depicts how L(q) changes when including more interaction parameters. The

dominant shape of this curve is determined by the nearest neighbor interaction J1, and

subsequent parameters mainly change the features on a more local scale. The previous

figures are based on our results for fixed magnitudes of the magnetic moments. In Figures

4.5, 4.6, and 4.7 we compare the results for fixed and variable moments along <100>,

<110>, and <111>; the change in J1 gives a slightly different shape of L(q).

The spin-wave stiffness constant D can be derived from the curvature of L(q) near

the origin and the values we found, assuming J4=0, are given in Table 4.9. They vary

dramatically, because the effects of higher order neighbors are multiplied by the square of

the distance. In order to determine this parameter better, we need the coefficients Ii up to a

much higher order. Nevertheless, our results do have the correct order of magnitude,

which again is not an obvious result.
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Finally, we investigate the effects of including non-zero values of J4. A reasonable

range for J4 is [-0.2, 0.2], and we have chosen five values in this range. J1 is then

determined from the fitted value of J1+3J4 for fixed moments. Figure 4.8 shows the

results. It is clear that the curvature near the origin varies dramatically, and the

corresponding results are given in Table 4.10.

Table 4.10 J4's Contribution to Spin-Stiffness Constant (using fixed magnetic moments)

J4 = -0.2 J4=-0.1 J4=0.0 J4=0.1 J4 =0.2

D(mev A2) -58.8 95.6 250.0 404.4 558.8

4.6 Conclusion

From our results we conclude that obtaining the values of the parameters in a model

Hamiltonian, describing the magnetic order in solids, from ab initio total energy ground

state calculations is a feasible and promising procedure, leading to realistic predictions of

experimental quantities. This offers a realistic approach to understand some excited state

properties of magnetic materials, ranging from the spin wave stiffness constant D to the

critical temperature Tc.

These calculations do depend on the specific form of the model Hamiltonian,

however, and have to be taken in the context of such a model Hamiltonian. This situation is

the same as that in attempts to calculate phase diagrams from first principles and our work

is an extension of these schemes to magnetic properties. These calculations of the

interaction parameters involve a large number of configurations of ferri-magnetic and/or

antiferromagnetic states and are naturally limited to relatively small unit cells, since a high

precision of the total energy is needed. It will require a large amount of computer time to

include a substantially larger number of interaction parameters in the type of calculation we
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have performed, and therefore the errors in the theoretical predictions will remain large. But

it is very important that the approach to study low temperature excitations we followed in

this paper leads to qualitatively correct results. Therefore, local density calculations along

these lines are very meaningful.
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Chapter 5. Electronic Structure of Face-Centered Tetragonal Iron

5.1 Abstract

Thin films of iron can be grown in either the bcc or fcc structure when using an

appropriate substrate. Since the two lattices never match perfectly, it is to be expected that

tetragonal distortions are present. Therefore, we have performed total energy calculations

for face-centered tetragonal iron in both the ferromagnetic and para-magnetic states. The

standard bcc and fcc structures are two special cases of the face-centered tetragonal space

group. There are two minima in the total energy, one near the bcc line and one near the fcc

line. The fcc minimum has the lowest total energy. Near the fcc minimum we find a region

in the c vs. a plane where our calculations have trouble converging. We associate it with the

existence of a low-spin metastable state in this region. We also study the values of the

magnetic moments as a function of crystal structure.

5.2 Introduction

The motivation for total energy calculations of face centered tetragonal ( fct ) iron

stems from thin film growth of iron on different substrates. Results of the first experiment

in which fcc iron was grown on copper were reported a long time ago34. Recent

investigations focus on the structural and magnetic properties of such films
15. Although

these studies increased our understanding of the properties of the thin films, there are still

questions pertaining to the lattice constant misfit between the film and the substrate. This

misfit is believed to produce a fct type of distortion of iron15. Thus, a calculation of the

electronic structure and total energy of bulk fct iron will give useful information to assist

the interpretation of the experimental results.
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5.3 Total Energy Calculations of FCT iron

Our total energy calculations are based on density functional theory. In this theory,

the energy functional, including exchange and correlation, is used to construct an effective

potential in an equivalent set of non-interacting Schrodinger equations. We used the local

density approximation, as formulated by von Barth-Hedin and parametrized by Janak9-1°,

for the exchange-correlation potential. The semi-relativistic Schrodinger equations are

solved using the full potential linearized augmented plane wave method ( FLAPW )12.

The main task in total energy density functional calculations is to minimize the

energy functional ( E[pT,p.11 in the FM-phase or E[p] in the NM phase) representing the

total energy of the whole electronic system. The global minimum corresponds to the

ground state of the system, and it's corresponding densities are the ground-state densities.

Local minima of the total energy functional do exist and correspond to metastable states of

the system. If the correlation in such a metastable state is very different from the ground

state, the local densities approximation will give rise to large relative errors between these

states. For fct iron this is fortunately not the case.

In iron, two ferromagnetic phases appear, i.e., a high spin phase ( HS, with a high

net moment ) and a low spin phase ( LS, with a low net moment )4. In other words, the

two ferromagnetic minima, corresponding to the two ferromagnetic phases, are

independent ( or well isolated ) in E-p space in terms of the density functional language.

Which one is the global minimum of the system depends on the values of c and a. This

gives rise to the following interesting situation. If one has the charge and spin densities for

a given state of a certain geometry, one can use these densities to start a calculation at

neighboring values of c and a. In this new geometry this spin state might not be the ground

state, but if one carefully proceeds to self-consistency, it is possible to converge to a

metastable state at higher energy! This does not always work, however, because the
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metastable minimum might become very shallow (or disappear completely) . For example,

using the densities of the low-spin phase for c=4.0 A and a=3.2 A to start the calculations

for a low spin phase at c=4.2 A and a=3.4 A, our calculations did not converge. Going in

the opposite direction ( from high c,a to low c,a ) to perform calculations for the high spin

phase did not give any trouble.

Table 5.1 Dependence of the results on nkpt (kmax -4.5) for the reference and point B.

nkpt E (Ry) EB (Ry) EB-E (mRy) g P.B

30 -2541.0675 -2541.0420 25.5 2.181 2.540

60 -2541.0823 -2541.0556 26.7 2.164 2.621

90 -2541.0794 -2541.0531 26.3 2.118 2.658

120 -2541.0808 -2541.0543 26.5 2.115 2.660

150 -2541.0819 -2541.0554 26.5 2.121 2.674

We have tested our calculations for a number of different values of the number of k-

points in the Brillouin zone integrations, as shown in Table 5.1. From Table 5.1 we can

conclude that the calculations are good enough only when nkpt is larger than 90, since the

differences between 90 and 120 nkpt are within the estimated error range of our

calculations, which is about 1 mRy. We can also extrapolate our data to get the values of

total energies corresponding to infinite number of k-points, using the fact that the total

energy is proportional to (nkpt) -2/3 when nkpt is large enough. The next test we have

performed is to investigate the dependency of the total energy on kmax ( Table 5.2 ), where

kmax determines the number of APW basis functions. Based on the data shown in Table

5.2, we conclude that a value of 4.5 for kmax will be sufficient.
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Table 5.2 Dependence of the results on kmax (nkpt =30) for the reference and point B.

kmax E (Ry) EB (Ry) EB-E (mRy) g gB

3.5 -2541.0586 -2541.0322 26.4 2.180 2.541

4.0 -2541.0664 -2541.0407 25.7 2.183 2.542

4.5 -2541.0675 -2541.0420 25.5 2.181 2.540

We are not interested in the absolute values of total energies, but only in the energy

differences with respect to a reference point ( point 0 ). Many systematic errors will cancel

if we only consider energy differences. One important source of random errors is the

Brillouin zone integration. The way to divide the Brillouin-zone into small tetrahedrons to

evaluate these integrals should be the same for all values of c and a.

Finally, we also investigated the convergence of the iterations to self-consistency.

Our programs calculate the norm of the difference between the input and output charge and

spin densities ( AN and Aps, respectively). Near self-consistency, for small values of

these differences, the total energy behaves as a quadratic function of Opp and Aps, which

looks like:

E=E0+ccoo+1ApcAps+yo.pt

This is only a good approach if one uses some mixing of input and output densities to start

the next iteration. After several iterations, one has enough data to determine the converged

values of total energy (E0) through extrapolation. This technique is important when one can

only use small values of the mixing parameter. Most of our results in this paper, however,

are well converged.
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5.4 Results and Discussions

The lattice constants of the fct structures at which we performed our calculations are

shown in Figure 5.1. We also draw the fcc line, on which a=c, the bcc line, on which

a=42 c, and the equal-volume line corresponding to the experimental value. We performed

a calculation of the total energy and the magnetic moment for at least one ferromagnetic

phase at every point on this plane; also we performed calculations in the non-magnetic

phase for a few points with small volumes.

Figure 5.2 shows contours of constant energy in the plane defined by the volume

and the c/a ratio. These contours are constructed from our data points using the Kriging

fitting method. As one can see, there are two minima: one is near the fcc line and the other

is near the bcc line. The fcc minimum has the lowest total energy, which is consistent with

reference 3. These two minima correspond to two (meta) stable states of the ferromagnetic

face-centered tetragonal system. At T=0 K, the system will occupy the lowest energy state;

at high temperatures, entropy will play a role. The energy barrier between the two minima

corresponds to about 1200 K per atom, but this number cannot be related directly to the

fcc-bcc transition. Without considering entropy (and phonons) at high temperature the

system would have the opportunity to jump back and forth between the two states, making

the system unstable.

At present, we do not have enough data points near these minima for the precise

locations of them. Therefore, we can only state that our data are consistent with the cubic

fcc and bcc phases being (meta) stable. More calculations are needed in order to find

possible tetragonal distortions at these minima.

Figure 5.3 shows contours of constant magnetic moment in the same plane. There

is a clear separation of the non-magnetic and ferromagnetic region. The transition region is

broad because of two reasons: (a) we do not have enough data points to pin down this
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Figure 5.2 Contours of constant energy differences with respect to the reference point ( 0 in Fig.1)
on the volume (relative to the experimental value) vs. c/a plane. Data points are indicated by stars.
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Figure 5.3 Contours of constant magnetic moment on the same plane as in Fig.2.
Calculated points are: (*) high spin phase; (x) low spin phase; (A) non-magnetic phase (
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sharp transition; (b) the error range of 1 mRy for the total energy values will also smooth

this transition in a numerical sense. It is possible that near point V the stable state of the

system is a low spin state. The difference in energy between this state and the non-magnetic

state is very small, however, and calculations with many k-points have to decide which

state is stable. Also note that the fcc minimum is near the dividing line between the non-

magnetic and ferromagnetic states, again consistent with reference 3.

Because we do not have enough data near the minima, we cannot make quantitative

comparisons with earlier work3'19. It is important, however, that the locations of the

minima are consistent: in Wang's results3, the fcc minimum is at a=c=3.39 A, the bcc

minimum is at a=3.90 A, c=2.76 A; in Hathaway's results19, the minimum is at a=3.91 A,

c=2.77 A; both of them are very close to ours, within an error range of about 1 mRy. Also,

our results for the magnetic moments. are consistent with the results of these two references:

in the fcc case we found the same transition behavior from LS to HS as found in reference

3. Our values ( p.=2.05 ) at the bcc minimum compares well with Wang's p=2.08 and

Hathaway's p=2.07.

Two interesting phenomena are found in our calculations: (a) a phase transition of

non-magnetic to ferromagnetic iron, and (b) a transition from a low spin to high spin

phase. The non-magnetic to ferromagnetic phase transition line lies close to the

experimental equal-volume line at large values of the c/a ratio. Since the total energy

differences between two phases at the same structure is often very small and does not

change much when the structure changes, it is difficult to precisely determine the position

of this transition line. Our results indicate, however, that one could probably not only grow

thin films of ferromagnetic iron but also of non-magnetic iron on a proper substrate.
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5.5 Conclusion

Based on our preliminary results we can conclude that calculations of total energies

and magnetic properties of bulk face-centered tetragonal iron are helpful in understanding

the nature of these magnetic materials and the physics of thin film growth. In these

calculations, we found two total energy minima ( near the fcc and the bcc line), non-

magnetic to ferromagnetic, and low-spin to high-spin phase transitions. At this point the

calculations are still incomplete, but it is important that we are in good agreement with

earlier work for the locations of the two total energy minima, the values of magnetic

moments, and the phase transition behavior.

So far the choice of points in the c vs. a plane is more or less arbitrary, based on

considerations of physical importance or interest. We fit our results by the Kriging method,

which is, of course, not a satisfactory fitting function based on physics. Possible further

work includes a more careful choice of structure points which can give maximal

information of the system, and a realistic fitting function to the total energy data points. The

latter may not be easy. Also, and more importantly, we should have more physical

understanding of the results, in relation to questions like whether the minima are exactly (

or should be ) on the fcc/bcc lines.
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Chapter 6. Antiferromagnetism in Face-Centered-Tetragonal Iron

6.1 Abstract

The total energy of face-centered-tetragonal iron is calculated within density

functional theory. We have obtained results for nonmagnetic, ferromagnetic, and

antiferromagnetic iron. In the range of tetragonal structures we have studied our total

energy calculations for the ferromagnetic phase give just two minima: one is nearly bcc

(c/a=0.71) and one is nearly fcc (c/a=1). The antiferromagnetic phase yields only one

minimum near the fcc structure, but is unstable near the bcc structure. The global minimum

in total energy is antiferromagnetic. The difference in total energy between ferromagnetic

and antiferromagnetic iron shows an oscillatory behavior as a function of c/a. Our results

show that it might be possible to grow iron films with a large in-plane lattice constant that

have an antiferromagnetic ordering.

6.2 Introduction

A study of thin films of iron grown on appropriate substrates is very meaningful,

both experimentally and theoretically, to understand the nature of magnetism in this old

materia134. Recent research has focussed on structural and magnetic properties of these thin

films15-17. Very thick films of iron grown this way are bcc with many defects near the

interface. For films of about ten monolayers, however, there is not enough energy available

to create these defects and the in-plane lattice constants of the film are determined by the

substrate. Ideally, one would be able to grow fcc iron, but due to the mismatch between

film and substrate there is always a face-centered-tetragonal (fct) type of distortion in the

iron films. The screening length in iron is rather short and beyond the first two interface

layers the iron film can be considered as bulk iron. Hence total energy calculations for bulk

iron will be very helpful because they predict the perpendicular lattice constant as a function
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of the in-plane lattice constant, and the energy difference between this strained structure and

the ground state.

Our preliminary results for ferromagnetic fct iron have been reported earlier35.

Since then we completed our ferromagnetic calculations by carefully choosing more points

in the c vs.a plane and, more importantly, we also calculated the total energy of a number

of points in the antiferromagnetic phase. We found evidence of interesting phenomena we

believe are useful in obtaining more knowledge about the magnetic properties of these thin

films. Our results are consistent with the work done earlier by V. L. Moruzzi et al for

antiferromagnetic cubic iron21,36.

6.3 Theory

Our total energy calculations are based on density functional theory in the local-

density approximation9-1°. We use the full-potential linearized augmented-plane-wave

method12 to calculate the total energy of fct iron. In total energy density functional

calculations, the essential task is to minimize the energy functional (E[p.r,p1] in the

(anti)ferromagnetic phase or E[p] in nonmagnetic phase) describing the total energy of the

interacting electronic system. Here pi, and psi, are the charge densities of spin-up

electrons and spin-down electrons; in the nonmagnetic calculations they are forced to be the

same. The global minimum corresponds to the ground state energy of the system at the

corresponding ground-state densities. In general, this total energy functional will have a

number of local minima. In our calculations these local minima correspond to metastable

states. In the case of bcc iron near the experimental volume the global minimum

corresponds to the ferromagnetic ground state but the antiferromagnetic state is associated

with a local minimum in electron-density space. If the correlation in a metastable (excited)

state is very different from the ground state, the exchange-correlation functional will be also

very different. In that case, a straightforward local-density approximation will give fairly
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large relative errors between the energy of the ground state and the excited state. For fct

iron this is fortunately not the case because the difference between the ferromagnetic and

antiferromagnetic state is mainly due to a difference in hybridization between the electrons

on neighboring atoms.

Our calculations are accomplished in two steps: first, we perform a calculation for

the ferromagnetic state, which will later serve as a reference point for the total energy of the

antiferromagnetic state. In the second step, we construct an initial spin density for the

antiferromagnetic calculation by inverting the spin density for the sites which are spin

down, and by averaging the interstitial spin density in order to start with zero magnetization

in the interstitial region. The calculations then converge to an antiferromagnetic minimum,

although one has to be very careful. The mixing between input and output charge densities

in each self-consistent cycle cannot be too large, since it is very easy to start oscillations in

charge density between non-equivalent atoms.

6.4 Review of our previous work.

We have performed a calculation of the total energy and magnetic moment for at

least one ferromagnetic phase at a large number of points in the c/a versus volume plane35.

We also performed calculations for the nonmagnetic phase for a few points with small

volumes. For small volumes near the fcc structure the nonmagnetic phase has a lower

energy than the metastable low spin ferromagnetic phase. Figure 6.1 shows that there are

two minima in the total energy for the ferromagnetic phase, one is near the fcc line and the

other is near the bcc line. The fcc minimum has the lowest total energy, which is consistent

with reference 3. These two minima correspond to two (meta)stable structures of the

ferromagnetic fct system. At T=0 K, the system will occupy the lowest energy state; at
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high temperatures, entropy will play a role. The energy barrier between the two minima

corresponds to about 1200 K per atom, but this number cannot be related directly to the

fcc-bcc transition. Without considering entropy and phonon contributions, however, the

phase transition at finite temperature cannot be determined.

6.5 Antiferromagnetic calculations.

The results for the total energy of the antiferromagnetic phase are presented in Table

6.1. At present, the amount of information obtained in our calculations is still too limited to

give a complete picture of antiferromagnetism for the whole fct structure. We are, however,

able to compare the data for the antiferromagnetic phase with our previous results near the

fcc and bcc minima as well as along the equal-volume line corresponding to the

experimental volume for the fct iron films15-17. Around the fcc minimum the total energy of

the antiferromagnetic phase is 1 mRy below that of the nonmagnetic phase; our relative

error is also 1mRy. This fact implies that near the fcc minimum the electronic structure of

iron is very likely to favor a phase without a net macroscopic moment, either with or

without local ordering, and not a ferromagnetic phase. Hence our calculations still find fcc

iron to have a lower energy ( by about 4 mRy/atom ) than bcc iron, as found in earlier full-

potential calculations3. In the bcc region, on the other hand, the total energy of the

antiferromagnetic phase is far above that of the ferromagnetic state. The difference is about

30 mRy/atom. This result is consistent with our earlier work on total energy calculations

for cubic iron32.

In Figure 6.2 we show the total energy of both the ferromagnetic and the anti-

ferromagnetic phase as a function of the c/a ratio for the experimental volume of the fct

films. The lines in this figure are just guides for the eye obtained from polynomial fits to

the data. At this volume, the total energy of ferromagnetic iron has a minimum for the bcc
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Table 6.1 Total energy results (in mRy/atom) for ferromagnetic, anti-ferromagnetic, and
nonmagnetic iron as a function of a and c. The values of the magnetic moments (in gEt) are

integrated within a muffin radius Rpnt =2.10 a.u. around the atoms.

a(A) c(A) EFm EAF
sp

MAFsP

4.00 4.20 67.1 79.8 2.84 2.73

3.81 3.89 29.5 38.4 2.70 2.39

4.01 3.54 29.1 47.7 2.68 2.40

4.40 3.00 28.4 58.4 2.64 2.51

3.20 4.40 6.6 15.0 2.22 1.98

3.44 3.89 -3.0 -5.8 4.7 2.31 1.80

3.61 3.54 0.0 -2.8 0.8 2.13 1.82

3.81 3.19 -6.6 11.8 2.26 1.59

4.01 2.88 -10.3 22.0 2.27 1.60

4.21 2.60 -5.9 13.1 2.26 1.55

4.40 2.38 3.7 12.6 2.15 1.68

3.61 3.19 -4.1 -7.2 -7.2 2.00 0.97

3.95 2.60 -11.7 4.6 2.01 0.83

3.30 3.37 -16.4 -16.4 0.10 0.28

3.41 3.19 -14.6 -15.6 -14.6 0.58 0.46

3.56 2.92 0.1 -2.8 -2.2 0.21 0.40

3.80 2.50 3.8 10.9 1.74 0.52

structure, a maximum for the fcc structure, and a second, local, minimum at a larger value

of c/a. This is consistent with the data in Figure 6.1. The bcc minimum occurs at a volume

closer to the experimental value than the fcc minimum, and as a result at the experimental

volume the bcc phase has the lowest energy. In addition, the structure around the fcc

minimum is not elliptic, and the minimum as a function of c/a is pushed to larger values.

Between these two minima there has to be a maximum, but it is remarkable that in Figure

6.2 this maximum occurs at the fcc structure. Figure 6.1 shows that this is probably the
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case for a larger range of volumes. Therefore, if one would modify the exchange-

correlation potential to include a stronger internal magnetic pressure, pushing the volume to

a larger value, one would also obtain the correct ground state for iron.

The total energy of antiferromagnetic iron shows the opposite behavior. In this case

there is a minimum near the fcc structure and a maximum for bcc iron. As a result, the

difference in energy between the ferromagnetic and the antiferromagnetic structure shows

oscillations as a function of c/a. The antiferromagnetic phase has a lower energy than the

ferromagnetic phase in the fcc structure. These calculated results are in agreement with the

fact that films of Fe grown on Cu(001) are antiferromagnetic 15 -18,22

When the c/a ratio is very large, the crystal consists of two-dimensional atomic

layers with a very small inter-layer interaction. On the other hand, if the c/a ratio is very

small, the system is one-dimensional with a very small inter-chain interaction. In both

cases, the electron density near the atoms is very high, and both systems will be

nonmagnetic. This means that in Figure 6.2 at small and large values of the c/a ratio the two

curves will merge together into a single curve representing nonmagnetic iron.

In Figure 6.3 we present preliminary results on the difference in total energy

between ferromagnetic and antiferromagnetic iron as a function of c/a and volume (

normalized with respect to the experimental value of the equilibrium volume of the fct films

). The contour lines have only a qualitative meaning and should be considered guides to the

eye only. When the relative volume is very small, iron is nonmagnetic and the difference

shown in Figure 6.3 is zero. At smaller values of c/a the oscillatory pattern of the contour

lines indicates that an antiferromagnetic state is possibly more favorable again at normal

volumes. It would be interesting to grow films of iron with a large in-plane lattice constant

and to see whether these films are antiferromagnetic. Whether the antiferromagnetism in

this case comes from the in-chain or inter-chain interaction is not clear.
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Figure 6.3 shows an oscillatory pattern, which one would like to understand in

terms of a Heisenberg model with exchange parameters that depend on distance like

J (R)
cos (, a R)

R-'

The nearest-neighbor distance of the iron atoms is approximately the same in the bcc and

the fcc structure at the same value of the volume. Our work on antiferromagnetic bcc iron32

has shown that the exchange parameter corresponding to the nearest neighbors is large and

positive, favoring ferromagnetism. Since we expect this parameter to have the same value

in the fcc structure, this argument shows that fcc iron at the experimental volume is

expected to be ferromagnetic if the exchange parameters are only a function of distance. It

is, of course, possible that the values of the exchange parameter for further neighbors

become negative and positive in just the right way to make fcc iron antiferromagnetic, but

this is unlikely. At this point we conclude that a formula of the exchange parameter which

depends only on the distance between the atoms is too simple, and that it also has to depend

on the direction of the vectors R.
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Appendix

A.1 Iterational Total Energy Convergence for Tc Calculations

A.1.1 Simple Cubic Structure

Table I. (a) nkpt=10, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotai(-5082RY-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

3.64 4.50 .1667929 4.69 5.17 .1131413

7.37 6.65 .1362751 4.45 4.68 .1132780

8.11 5.78 .1296836 4.22 4.25 .1133777

8.08 6.72 .1287166

Table I. (b) nkpt=20, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotai(-5082Ry-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

1.17 1.03 .1754821 0.54 5.41 .1167127

2.33 1.71 .1727081 0.49 5.17 .1167922

2.77 1.95 .1710202 0.44 4.93 .1168608

2.90 2.00 .1705954 0.40 4.71 .1169242

Table I. (c) nkpt=30, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotag-5082RY-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

1.79 2.20 .1832 5.68 10.8 .1227

.862 2.06 .1852 5.42 10.1 .1234

.814 1.99 .1853 5.29 9.02 .1236

.802 1.91 .18533 4.99 8.82 .1240

1.98 1.59 .18534 4.13 8.40 .1239

1.32 1.17 .1854 4.27 7.89 .1194

.840 .705 .1871

.728 .575 .1880
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Table I. (d) nkpt=60, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotai(-5082Ry-) APc(a.u.) APs(a.u.) Etotag-5082Ry-)

0.52 0.39 .1871384 2.52 6.29 .1260946

0.47 0.36 .1871452 2.31 5.87 .1262642

0.43 0.34 .1871485 2.11 5.49 .1264117

0.41 0.33 .1871494 1.92 5.14 .1265438

0.39 0.32 .1871499

A.1.2 Diamond Structure

Table II. (a) nkpt=10, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.11-) Ecotag-10164RY-) APc(a.u.) 'Ps(a.u.) Etotal(-10164RY-)

3.27 0.20 .3581116 2.59 4.63 .3158607

3.02 0.15 .3591'135 2.45 4.21 .3150089

2.86 0.14 .3592526 2.32 3.84 .3151361

2.71 0.10 .3593669 2.20 3.50 .3152479

Table II. (b) nkpt=20, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a-u.) Etotag-10164RY-) APc(a.u.) APs(a.11.) Etotag-10164RY-)

2.41 1.40 .3674619 3.13 2.71 .3247652

2.18 1.35 .3679038 2.87 2.40 .3253374

1.99 1.30 .3682131 2.65 2.13 .3257198

1.83 1.24 .3684346 2.46 1.90 .3259790

Table II. (c) nkpt=30, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etccal(-10164Ry-) APc(a.u.) APs(a.u.) E total,'( 10164Ry-)

4.64 7.53 .3534 4.18 6.03 .3109

4.11 .655 .3547 .3.65 3.96 .3121

3.70 .158 .3552 3.22 2.70 .3126

3.30 .139 .3555 2.85 1.89 .3130
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Table II. (d) nkpt=60, kmax=4.5, Rmf=2.25 a.u.
Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotai(-10164Ry-) epc(a.u.) APs(a.u.) Etotag-10164Ry-)

1.63 3.08 .3747265 3.06 1.52 .3263396

1.52 2.86 .3749126 2.86 1.35 .3265578

1.42 2.65 .3750528 2.68 1.20 .3267063

1.34 2.46 .3751681 2.52 1.08 .3268098

A.1.3 The First Tetragonal Structure

Table HI. (a) nkpt=10, kmax=4.5, Rmf=2.25 a.u.
Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotal(- 10164Ry-) APc(a.u.) APs(a.u.) Etc, . 1(-10164RY-)

2.25 1.70 .3258993 2.17 2.47 .2926473

2.36 1.70 .3249331 2.05 2.23 .2926677

3.41 3.43 .3157452 1.93 2.03 .2926922

3.66 2.09 .3136979 1.81 1.84 .2927107

3.66 3.51 .3130029

Table III. (b) nkpt=20, kmax=4.5, Rmf=2.25 a.u.
Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotag-10164Ry-) APc(a.u.) APs(a.u.) Etotag-10164Ry-)

1.94 2.83 .3507690 2.76 1.78 .3058080

1.81 2.63 .3511086 2.54 1.69 .3060384

1.70 2.46 .3512584 2.44 1.52 .3060770

1.41 2.37 .3513525 2.15 1.70 .3061595

Table III. (c) nkpt=30, max=4.5, Rmf=2.25 a.u.
Ferromagnetic Antiferromagnetic

APc(a.u.) 'Ps(a.u.) Etotal(-10164RY-) APc(a.u.) APs(au) Etotag-10164Ry-)

2.72 2.81 .3682 2.48 4.65 .31718

2.46 2.51 .3693 2.34 4.56 .31722

2.31 2.45 .36940 2.19 4.42 .31724

2.18 2.35 .36945 2.03 4.35 .31728

2.06 2.26 .36950 1.91 4.26 .31731

1.80 4.14 .31732
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Table III. (d) nkpt=60, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotag-10164Ry-) APc(a.u.) APs(a.u.) Etotal(- 10164Ry-)

1.60 3.20 .3720812 2.09 2.07 .3189196

1.50 2.94 .3722388 1.87 1.89 .3193354

1.39 2.73 .3723551 1.76 1.87 .3194160

1.32 2.54 .3724695

A.1.4 The Second Tetragonal Structure

Table IV. (a) nkpt=10, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotag-5082Ry-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

3.84 2.49 .1291442 3.34 4.66 .0806015

3.68 2.34 .1292547 3.14 4.12 .0805428

3.53 2.27 .1293615 2.96 3.65 .0804988

3.38 2.13 .1294639 2.80 3.24 .0804709

Table IV. (b) nkpt=20, max=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u-) Etotag-5082RY-) epc(a.u.) APs(a.u.) Etow(-5082RY-)

2.86 2.79 .1651943 4.38 7.35 .1321472

2.69 2.50 .1652026 3.87 6.32 .1335135

2.51 2.23 .1653829 3.48 5.47 .1344693

2.38 2.00 .1654795 3.17 4.75 .1351601

Table IV. (c) nkpt=30, max=4.5, Rmr=2.25 a.u.

Ferromagnetic Antiferromagnetic

'Pc(a.u.) APs(a.u.) Etomi(-5082RY-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

5.08 10.3 .17140 3.67 5.35 .1531470

4.88 9.83 .17143 3.41 4.55 .1536290

4.67 4.83 .17168 3.20 3.88 .1540231

3.02 3.32 .1543652

2.81 2.85 .1548113
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Table IV. (d) nkpt=60, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etot31(-5082Ry-) APc(a.u.) 'Ps(a.u.) Etotai(-5082Ry-)

3.18 2.29 .178905 5.20 3.50 .154812

3.07 2.17 .178940 5.00 3.36 .155256

2.97 2.11 .178970 4.82 3.23 .155699

2.87 2.00 .178998 4.64 3.11 .156135

4.48 2.99 .156569

A.1.5 The Third Tetragonal Structure

Table V. (a) nkpt=10, kmax=4.5 Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotai(-10164RY-) APc(a.u.) APs(a.u.) Etotai(-5082RY-)

3.13 5.05 .327656 2.64 3.92 .295070

2.99 4.83 .327681 2.54 3.81 .295117

2.86 4.63 .327704 2.45 3.71 .295155

2.73 4.42 .327726 2.37 3.61 .295184

2.61 4.24 .327745 2.29 3.51 .295190

2.50 4.05 .327768 2.21 3.42 .295207

2.39 3.89 .327787

Table V. (b) nkpt=20, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

APc(a.u.) APs(a.u.) Etotai(-10164Ry-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

.928 2.06 .351951 1.63 2.89 .308344

.910 1.92 .351945 1.53 2.77 .3083563

.894 1.79 .351941 1.44 2.65 .3083560

.878 1.67 .351934 1.35 2.55 .308347

.863 1.55 .351927
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Table V. (c) nkpt=30, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

'Pc(a.u.) APs(a.u.) Etotag-10164RY-) APc(a.u.) APs(a.u.) Etotai(-5082Ry-)

3.99 12.0 .36814 3.48 4.67 .320836

3.79 11.4 .36843 3.30 4.47 .320856

3.60 10.9 .36858 3.12 4.29 .320864

3.32 10.5 .36894 2.95 4.11 .320867

3.18 9.13 .36912 2.80 3.95 .320865

3.05 7.91 .36925 2.65 3.79 .320858

2.90 6.88 .36933

Table V. (d) nkpt=60, kmax=4.5, Rmf=2.25 a.u.

Ferromagnetic Antiferromagnetic

epc(a.u.) APs(a.u.) Etotal(-10164RY-) APc(a.u.) APs(a.u.) Etotai(-5082RY-)

2.75

2.61

5.79

5.52

.373090

.373126

2.96

2.81

4.48

4.30

.3235942

.3235935

A.2 Overall Results for FCT Structures ( Updated )

Table VI. Total energy results (in mRy/atom) for ferromagnetic, anti-ferromagnetic, and
nonmagnetic iron as a function of a and c. The values of the magnetic moments (in gB) are

integrated within a muffin radius Rmt=2.10 a.u. around the atoms.

a(A) c(A) EFm(mRy) EAF(mRy) ENm(mRy) MF1vt(1-143) MAF(P-B)

3.80 4.40 51.4 63.2 2.77 2.64

J 4.00 4.20 67.1 79.8 2.84 2.73

P 3.40 4.60 19.8 30.6 2.44 2.33

B 3.81 3.89 29.5 38.4 2.70 2.39

A 4.01 3.54 29.1 47.7 2.68 2.40

AA 4.40 3.00 28.4 58.4 2.64 2.51

X 3.10

3.20

4.80

4.40 6.6

38.6

15.0 2.22

1.96

1.98

C 3.44 3.89 -3.0 -5.8 4.7 2.31 1.80



( Table VI continued. )

100

0 3.61 3.54 0.0 -2.8 0.8 2.13 1.82

F 3.81 3.19 -6.6 11.8 2.26 1.59

L 4.01 2.88 -10.3 22.0 2.27 1.60

LB 4.21 2.60 -5.9 13.1 2.26 1.55

LC 4.40 2.38 3.7 12.6 2.15 1.68

LCD' 4.40 2.38 -0.2 8.6 2.16 1.72

ID 4.60 2.18 17.9 29.2 2.11 1.85

GA 3.10 4.20 7.3 9.0 2.06 1.61

E 3.61 3.19 -4.1 -7.2 -7.2 2.00 0.97

HA 3.95 2.60 -11.7 4.6 2.01 0.83

Y 3.30 3.37 -16.4 -16.4 0.10 0.28

V 3.41 3.19 -14.6 -15.6 -14.6 0.58 0.46

S 3.56 2.92 0.1 -2.8 -2.2 0.21 0.40

TA 3.80 2.50 3.8 10.9 1.74 0.52

A.3 Total Energy Calculations for FCT Structures

A.3.1 Ferromagnetic Calculations

Table VII. (a) Total Energy (Ry) nkpt (kmax=4.5, Rmf=2.25)

nkpt 30 60 90 110 150

0 -2541.0

675

0'(LF) 664

A (=o1- o) 1.1

-2541.0

14.8 823

14.1

2.2

-2541.0

2.9 794

805

-1.1

-2541.0

1.4 808

2.5

0.0

-2541.0

1.1 819

830

-1.1

B

A

N

R

C

F

424

437

637

667

707

751

13.2

13.3

556

10.1

11.1

10.8

11.7

884

2.5

1.5

531

538

748

775

824

869

1.2

0.9

543

2.0

2.3

1.8

2.5

878

1.1

0.7

554

558

771

793

849

885
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( Table V1I(a) continued. )

L

D

E

774

/
724

13.4

14.5

908

933

869

1.4

3.1

2.1

922

964

890

B-0

A-0
N-0
R-0
C-0
F-0
L-0
D-0
E-0

25.1

23.8

3.8

0.8

-3.2

-7.6

-9.9

-4.9

1.6

1.5

26.7

1.8

0.8

0.9

0.2

-6.1

1.5

-2.6

0.4

1.4

26.3

25.6

4.6

1.9

-3.0

-7.5

-11.4

-13.9

-7.5

0.2

$3.5

26.5

0.5

0.2

0.7

0.0

-7.0

1.1

0.6

0.4

0.0

0.4

26.5

26.1

4.8

2.6

-3.0

-6.6

-10.3

-14.5

-7.1

Note: Small characters indicates differences between nearest nkpt's.

Table VII. (b) Total Energy (Ry) nkpt (kmax=45, Rmf=2.10)

nkpt 30 90 150

o -2541.0701 11.9 -2541.0820 2.4 -2541.0844

O'(LF) 667 14.3 810 2.7 837

A (=o'-o) 3.4 2.4 1.0 0.3 0.7

Q 208 9.9 307 2.3 330

.1 054 10.2 156 2.2 178

P 516 10.2 618 2.8 646

AA 447 10.5 552 1.3 565

I 609 10.8 717 2.4 741

IA 636 10.9 745 1.3 758

M 682 11.4 796 2.7 823

K 720 12.3 843 1.2 855

w 646 10.4 750 2.8 778

LA 791 13.9 930 1.4 944

LB 748 4.0 888 1.5 903

111 825 15.0 975 1.6 991

HL 818 15.4 972 1.5 987

H2 819 15.9 978 1.6 994
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( Table VII(b) continued. )

G 679 11.3 792 2.6 818

G'(HF) 709 12.1 830 2.8 858

A (---o'-o) -3.0 0.8 -3.8 0.2 -4.0

U3 810 15.1 961 3.1 992

DA 812 16.2 974 3.0 1004

DA'(HF) / 960 2.9 989

A (=o'-o) / 1.4 0.1 1.5

H5 827 14.1 968 1.4 982

H 805 16.7 972 1.6 988

H3 798 16.9 967 1.6 983

HA 777 17.3 950 1.6 966

HB 700 19.0 890 1.8 908

U2 787 18.2 969 2.1 990

UA 812 16.2 974 3.9 1013

UB 826 16.6 992 3.3 1025

UC 825 17.2 997 3.3 1030

H4 780 17.1 951 1.6 967

U1 693 17.9 872 3.0 902

U 745 17.3 918 3.5 953

Y 787 18.1 968 3.5 1003

v 764 19.5 959 3.6 995

S 656 17.3 829 1.9 848

S'(LF) 682 16.9 851 2.0 871

A (=-o'-o) -2.6 0.4 -2.2 0.1 -2.3

T 634 18.9 823 1.9 842

TA 594 19.9 793 1.8 811

Z 527 21.1 738 4.1 779

Q-0 49.3 2.0 51.3 0.1 51.4

J-0 64.7 1.7 66.4 0.2 66.6

P-0 18.5 1.7 20.2 0.4 19.8

AA-0 25.4 1.4 26.8 1.1 27.9

1-0 9.2 1.1 10.3 0.0 10.3
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( Table VTI(b) continued. )

IA-0 6.5 1.0 7.5 1.1 8.6

Nt-o 1.9 0.5 2.4 0.3 2.1

K-0 -1.9 0.4 -2.3 1.2 -1.1

W-0 5.5 1.5 7.0 0.4 6.6

LA-0 -9.0 2.0 -11.0 1.0 -10.0

LB-0 -4.7 2.1 -6.8 0.9 -5.9

H1-0 -12.4 3.1 -15.5 0.8 -14.7

HL-0 -11.7 3.5 -15.2 0.9 -14.3

H2-0 -11.8 4.0 -15.8 0.8 -15.0

G-0 2.2 0.6 2.8 0.2 2.6

U3-0 10.9 3.2 -14.1 0.7 -14.8

DA-0 -11.1 4.3 -15.4 0.6 -16.0

H5-0 -12.6 2.2 -14.8 1.0 -13.8

H-0 -10.4 4.8 -15.2 0.8 -14.4

H3-0 -9.7 5.0 -14.7 0.8 -13.9

HA-0 -7.6 5.4 -13.0 0.8 -12.2

HB -O 0.1 7.1 -7.0 0.6 -6.4

U2-0 -8.6 6.3 -14.9 0.3 -14.6

UA -O -11.1 4.3 -15.4 1.5 -16.9

UB -O -12.5 4.7 -17.2 0.9 -18.1

UC-0 -12.4 5.3 -17.7 0.9 -18.6

H4-0 -7.9 5.2 -13.1 0.8 -12.3

U1-0 0.8 6.0 -5.2 0.6 -5.8

u-o -4.4 5.4 -9.8 1.1 -10.9

Y-0 -8.6 6.2 -14.8 1.1 -15.9

v-0 -6.3 7.6 -13.9 1.2 -15.1

S-0 4.5 5.4 -0.9 0.5 -0.4

T-0 6.7 7.0 -0.3 0.5 0.2

TA-0 10.7 8.0 2.7 0.6 3.3

Z-0 17.4 9.2 8.2 1.7 6.5

Table VII. (c) Total Energy (Ry) nkpt (kmax=4.5, Rmf=2.00)

nkpt 30 90 150

0 -2541.0730 11.8 -2541.0848 2.6 -2541.0874
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( Table V11(c) continued. )

zi 471 19.6 667 3.0 697

Z2 305 22.2 527 3.2 495*

Z2'(HS) 312 21.4 526 2.0 546

A (=o'-o) -0.7 0.8 0.1 5.2 -5.1

Z3 0.9936 23.7 173 4.3 216

Z4 0.9750 19.1 0.9941 2.4 0.9965

z1-0 25.9 7.8 18.1 0.4 17.7

Z2-0 42.5 10.4 32.1 5.8 37.9*

Z3-0 79.4 11.9 67.5 1.7 65.8

Z4-0 98.0 7.3 90.7 0.2 90.9

*: not well converged

A.3.2 Nonmagnetic Calculations

Table VIII. Total Energy (Ry) nkpt (kmax=4.5, NM)
0: Rmf=2.25; Z1-Z4: Rmf=2.00; Other: Rmf=2.10

nkpt 30 60 90 110 150

O -2541.0 -2541.0 -2541.0 -2541.0 -2541.0

675 14.8 823 2.9 794 1.4 808 1.1 819

0* 640 14.4 784 2.7 811

A (=NM -FM) 3.5 2.5 1.0 0.2 0.8

X(F) 476 4.4 554 2.6 580

x* 282 5.4 336 2.0 356

A 19.4 2.4 21.8 0.6 22.4

w 646 10.4 750 2.8 778

w* 465 8.0 545 1.9 564

A 18.1 2.4 20.5 0.9 21.4

C 707 11.7 824 2.5 849

C* 614 13.2 746 2.6 772

A 9.3 1.5 7.8 0.1 7.7
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( Table VIII continued. )

F 751 11.8 869 1.6 885

F* 570 12.8 698 1.8 716

A 18.1 1.0 17.1 0.2 16.9

L 774 13.4 908 1.4 922

L* 461 12.6 587 1.2 599

A 11.3 0.8 12.1 0.2 12.3

LA 791 13.9 930 1.4 944

LA* 493 13.9 632 1.3 645

A 29.8 0.0 29.8 0.1 29.9

LB 748 14.0 888 1.5 903

LB* 509 14.0 649 1.3 662

A 23.9 0.0 23.9 0.2 24.1

LC(FM) 1517 12.2 1639 2.1 1660

(LC(F)/2-8) 664 11.6 780 3.2 812

LC* 468 12.4 592 1.8 610

A 19.6 0.8 18.8 0.4 20.2

LD(FM)t 1207 14.8 1355 2.1 1376

(ID(F)/2-6) 510 14.4 654 1.6 670

LD* 354 5.5 409 2.3 432

A 15.6 8.9 24.5 0.7 23.8

G 679 11.3 792 2.6 818

G* 671 12.2 793 2.7 820

A 0.8 0.9 -0.1 0.1 -0.2

U 3 810 15.1 961 3.1 992

U3* 812 15.2 964 3.0 994

A -0.2 0.1 -0.3 0.1 -0.2

D / 933 3.1 964

D* 791 15.6 947 3.1 978

A / -1.4 0.0 -1.4

D A 812 16.2 974 3.0 1004

DA* 812 16.2 974 3.0 1004

A 0.0 0.0 0.0 0.0 0.0



( Table VIII continued. )

E 724 14.5 869 2.1 890

E* 732 16.4 896 2.5 921

A -0.8 3.5 -2.7 0.4 -3.1

Y2 787 18.2 969 2.1 990

Y2* 790 16.4 954 3.1 985

A -0.3 1.8 1.5 1.0 0.5

UA 812 16.2 974 3.9 1013

UA* 819 16.4 983 3.2 1015

A -0.7 0.2 -0.9 0.7 -0.2

UB 826 16.6 992 3.3 1025

UB* 829 16.8 997 3.3 1030

A -0.3 0.2 -0.5 0.0 -0.5

UC 825 17.2 997 3.3 1030

UC* 826 17.2 998 3.3 1031

A -0.1 0.0 -0.1 0.0 -0.1

U 1 693 17.9 872 3.0 902

Ul* 697 17.0 867 3.3 900

A -0.4 0.9 0.5 0.3 0.2

U 745 17.3 918 3.5 953

U* 753 17.5 928 3.2 960

A -0.8 0.2 -1.0 0.3 -0.7

Y 787 18.1 968 3.5 1003

Y* 791 18.1 972 3.4 1006

A -0.4 0.0 -0.4 0.1 -0.3

v 764 19.5 959 3.6 995

V* 770 19.2 962 3.3 995

A -0.6 0.3 -0.3 0.3 0.0

S 656 17.3 829 1.9 848

S* 682 16.9 851 2.1 872

A -2.6 0.4 -2.2 0.1 -2.3
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( Table VIII continued. )

T 634 18.9 823 1.9 842

T* 539 16.8 707 1.8 725

A 9.5 2.1 11.6 0.1 11.7

Z 527 21.1 738 4.1 779

z* 532 21.4 746 4.0 786

A -0.5 0.3 -0.8 0.1 -0.7

zi 471 19.6 667 3.0 697

Zr" 475 0.0 475 1.8 697

A -0.5 19.7 19.2 19.2 0.0

Z2 305 22.2 527 3.2 495t

Z2* 292 18.7 479 2.0 499

A 1.3 3.5 4.8 5.2 -0.4t

Z3 0.9936 23.7 173 4.3 216

Z3* 0.9940 24.2 182 4.1 223

O -0.4 0.5 -0.9 0.2 -0.7

Z 4 0.9750 19.1 0.9941 2.4 0.9965

Z4* 0.9760 19.1 0.9951 2.1 0.9972

A -1.0 0.0 -1.0 0.2 -0.7

*: The configuration is non-magnetic under the choice of "non -polarized".
t: The result cannot be well converged.

A.3.3 Antiferromagnetic Calculations

Table IX. Total Energy (Ry) nkpt (kmax=4.5, Rmf=2.10)

nkpt 30 90 150

8(=FM-F) -9.4 -2.4 -1.8

0(FM) -5082.1602 9.8 -5082.1700 3.4 -5082.1734

0'(AF) 1655 11.3 1768 2.3 1791

A a (o'-o)/atom -2.6 1.2 -3.4 0.6 -2.8

Q(F) 208 9.9 307 2.3 330

(Q(F) +6) *2 0604 5.8 0662 3.4 0696



( Table IX continued. )

Qs (AF) 0412 4.2 0454 1.6 0470

A 9.6 0.8 10.4 0.9 11.3

J(F) 0054 10.2 0156 2.2 0178

(J(F)+8)*2 0296 6.4 0360 3.2 0392

r(AF) 0083 3.9 0122 1.5 0137

A 10.6 1.3 11.9 0.9 12.8

P(F) 516 10.2 618 2.8 646

(P(F)+8)*2 1220 6.4 1284 4.4 1328

P'(AF) 1052 5.2 1104 1.9 1123

A 8.4 0.6 9.0 1.2 10.2

B 424 10.7 531 2.3 554

(B(F)+6)*2 1036 7.4 1110 3.4 1144

B'(AF) 0880 6.6 0946 2.0 0966

A 7.8 0.5 8.2 0.7 8.9

A 437 10.1 538 2.0 558

(A(F) +6) *2 1062 6.2 1124 2.8 1152

A'(AF) 0683 7.9 0762 1.8 0780

A 19.0 0.9 18.1 0.5 18.6

AA 447 10.5 552 1.3 565

(AA(F)+8)*2 1082 7.0 1152 1.4 1166

AA'(AF) 0465 9.5 0560 0.6 0566

A 30.8 1.2 29.6 0.4 30.0

X(F) 0476 4.4 0554 2.6 0580

(X(F)+3)*2 1140 1.6 1156 3.0 1196

X'(AF) 0891 4.4 0935 2.6 0961

A 12.4 1.4 11.0 0.8 11.8

W(FM) 1410 11.1 1521 4.6 1567

W'(AF) 1334 7.0 1404 3.0 1434

A 3.8 2.0 5.8 0.8 6.6

W(F) -2541.0646 10.4 0750 2.8 0778

w(F)t -2541.0693 10.2 0795 2.7 0822

A =(o'-o) -4.7 0.2 -4.5 0.1 -4.4
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( Table IX continued. )

c(FM) 1653 8.3 1736 4.2 1778

C'(AF) 1714 10.1 1815 3.0 1849

A= (Y-o) /atom -3.0 1.0 -4.0 0.4 -3.6

F 751 11.8 869 1.6 885

(F(F)+S) *2 1690 9.6 1786 2.0 1806

F'(AF) 1360 11.8 1478 2.0 1498

A 16.5 1.1 15.4 0.0 15.4

L 774 13.4 908 1.4 922

(L(F)+5)*2 1736 12.8 1864 1.6 1880

L'(AF) 1165 11.8 1283 1.2 1295

A 28.6 0.4 29.0 0.2 29.2

LB 748 14.0 888 1.5 903

(LB(F)+8)*2 1684 14.0 1824 1.8 1842

LC'(AF) 1318 13.4 1452 2.0 1472

A 18.3 0.3 18.6 0.1 18.5

LC(FM) 1517 12.2 1639 2.1 1660

LC'(AF) 1338 12.6 1464 1.9 1483

9.0 0.2 8.8 0.0 8.8

LC(FM)t 1596 12.1 1717 2.1 1738

LC'(AF)t 1415 12.7 1542 2.0 1562

At 9.0 0.2 8.8 0.0 8.8

LD(FM)t 1207 14.8 1355 2.1 1376

LD.(AF)t 1046 8.9 1135 1.4 1149

At 8.0 3.0 11.0 0.4 11.4

GA (FM) 1428 11.5 1543 4.5 1588

GA'(AF) 1432 9.4 1526 2.7 1553

-0.2 1.0 0.8 L 0 1.8

E 724 14.5 869 2.1 890

E(FM)*2+8 1636 15.0 1786 3.0 1816

E'(AF) 1672 16.5 1837 4.1 1878

-1.8 0.8 -2.6 0.5 -3.1
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( Table IX continued. )

HA 777 17.3 950 1.6 966

HA(FM)*2+S 1742 20.6 1948 2.0 1968

HA'(AF) 1463 16.2 1625 1.7 1642

A 14.0 2.2 16.2 0.1 16.3

Y(FM) 1821 19.2 2013 4.8 2061

Y'(AF) 1824 19.0 2014 4.7 2061

A -0.2 1.2 0.0 0.0 0.0

v 764 19.5 959 3.6 995

V(FM)*2+8 1716 25.0 1966 6.0 2026

v (AF) 1795 20.1 1996 4.9 2045

A -4.0 2.5 -1.5 0.5 -1.0

S 656 17.3 829 1.9 848

S(FM)*2+8 1500 20.6 1706 2.6 1732

S'(AF) 1553 21.1 1764 2.7 1791

A -2.6 0.5 -3.1 0.1 -3.0

TA 594 19.9 793 1.8 811

TA(FM)*2+8 1376 25.8 1634 2.4 1658

TA'(AF) 1318 18.2 1500 1.6 1516

A 2.9 3.8 6.7 0.4 7.1

t: Rmt = 1.978; nrd = 359. Normally, Rmt = 2.100; nrd = 361.

A.4 Magnetic Moment Calculations

A.4.1 Ferromagnetic Calculations

Table X. (a) Magnetic Moment nkpt (kmax=4.5, Rmf=2.25)

nkpt 30 60 90 110 150

o

0'(LS)

B

A

2.181

1.298

2.582

2.589

-17

39

2.164

6

2.621

42

-46

37

2.118

1.292

2.658

2.631

-3

2

2.115

10

2.660

15

6

14

2.121

1.282

2.674

2.646
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( Table X(a) continued. )

N

R

c
F

L

D

E

2.433

2.440

2.334

2.304

2.360

/
2.121

-44

32

-8

-33

2.260

-85

-88

-30

2.465

2.432

2.301

2.230 2
2.275

1.245

2.033

13

8

2

2.232

-27

-96

- 33

3

2.478

2.440

2.303

2.235

2.248

1.149

2.000

Note: Small characters indicates differences between nearest kpt's.

Table X. (b) Magnetic Moment Li nkpt (kmax=4.5, Rmf=2.10)

nkpt 30 90 150

o 2.171 48 2.123 18 2.141

0'(LS) 0.240 31 0.271 22 0.293

Q 2.722 28 2.750 21 2.771

J 2.716 82 2.798 30 2.828

P 2.396 29 2.425 18 2.443

AA 2.586 10 2.596 14 2.610

1 2.532 23 2.555 1 2.556

IA 2.462 7 2.455 26 2.481

M 2.346 7 2.353 2 2.355

K 2.412 73 2.339 9 2.348

w 2.145 69 2.214 13 2.227

LA 2.312 100 2.212 5 2.207

LB 2.372 111 2.261 10 2.251

H1 2.204 78 2.126 0 2.126

HL 2.248 102 2.146 7 2.139

H2 2.172 81 2.091 2 2.089

G 0.702 30 0.672 4 0.676

G'(HS) 2.049 35 2.084 19 2.103

U3 0.366 31 0.335 18 0.317

DA 0.195 11 0.184 4 0.180

DA'(HS) / 1.230 87 1.143

HS 2.189 56 2.133 1 2.134
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( Table X(b) continued. )

H 2.088 64 2.024 3 2.021

H3 2.102 69 2.033 8 2.025

HA 2.067 59 2.008 8 2.000

HB 2.090 137 1.953 45 1.908

u 2 0.291 48 0.243 27 0.216

UA 0.445 53 0.402 34 0.368

u B 0.325 43 0.282 23 0.259

uc 0.238 28 0.210 14 0.196

H 4 2.020 53 1.967 11 1.956

u 1 0.213 68 0.145 26 0.119

u 0.690 98 0.592 62 0.530

Y 0.126 13 0.113 9 0.104

v 0.758 no 0.648 69 0.579

s 1.699 53 1.646 44 1.602

S'(LS) 0.273 51 0.222 14 0.208

T 1.829 6 1.823 16 1.807

T A 1.830 63 1.767 22 1.745

z 0.324 84 0.240 48 0.192

Table X. (c) Magnetic Moment y.§. nkpt (kmax=4.5, Rmf=2.00)

nkpt 30 90 150

o 2.269 40 2.229 2 2.231

zi 0.582 145 0.437 76 0.361

Z2 0.519 110 0.629 5 0.634

Z2(HS) 1.466 32 1.434 4 1.438

Z3 0.183 99 0.084 32 0.052

Z4 0.282 2 0.280 23 0.303

A.5 Elastic Constants and Bulk Modulus
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For a orthorhombic structure, one would use the following quadratic function to fit

a minimum in the total energy calculations:

u = v = c1(a-a0)2 + c2(b-b0)2 + c3(c-c0)2

+ c4(a-ao)(b-b0)+ c5(b-bo)(c-c0) + c6(c-c0)(a-ao)

where u is the total energy per volume; a, b, c are lattice constants ( 0 denotes the lattice

constants at the minimum ); c1.6 indicate the fitting parameters.

From the definition of elastic constants { Cij ), we can calculate C11, C12, and C33

as follows, where eij are fractional strain components:

a2E 2 a2E
2

C11 = ao aa2 2ciao

a2E A
C12 aobo aobo-- (2c2(1)-b0)+c4(a-a0)+c5(c-c0)) = coobo;

aexxaeyy aaab Da

a2E a2E
C13 ape() aocoa (2c3(c-co-i-co-boi-c6(a-ao) = c6a0c0;

DexDezz aaac Da

a2E a2E
C33 =

ae zz2
c02 = 2c3c02'

act

In our calculations, we use the following formula to fit the minimum for a face-

centered-tetragonal structure ( therefore a=b and a0 =b0) :

u = a(a-a0)2 + [3(a-a0)(c-co) + y(c-c0)2

Compare the above formula with that of orthorhombic structure, we have:

a = ci+ c2+ c4 = 2c1+ c4 ; ( because c1=c2, by symmetry )

13 = c5+ c6 = 2c6 ; ( because c5=c6, by symmetry )

y= c3;
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Using the Cif results for orthorhombic structure, Cif for FCT can be written as:

C11 + C12 = a a02; Ci3 . -1 R a,,c ! r 2 -yr2 ,_ _v_0, _33 = _ , _02.

Similarly, we can calculate bulk modulus for FCT structure.

In cubic case, by symmetry, C11 = C33, C12 = C13, and

U = V (a(a-a43)2 + 13(a-a43)(c-c0) + y(c-c0)2 ) = V(a+(3+y) (a-a0)2,

where V=a3. Then after some simple algebra, the formula of bulk modulus for cubic

structure is:

B E V E V V V
ddE

'
1 I

cubic

2
(a+(3-f-i) ao2

2 , 1 , , 1 , 2 ,
( Cu+ Ci2+ 2k-i3 + "2" t-33 ) = 3 %-ii+ 1-129


