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Coordination in large multiagent systems in order to achieve a system level goal
is a critical challenge. Given the agents’ intention to cooperate, there is no
guarantee that the agent actions will lead to good system objective especially
when the system becomes large. One of the primary difficulties in such
mulitagent systems is the slow learning process. Agents need to learn how to
interact with other agents in a complex and dynamic system while adapting in
the presence of other agents that are simultaneously learning. Presented in this
thesis is a unique multiagent learning approach that significantly improves both
learning speed and system level performance in multiagent systems by having an
agent update its estimate of the reward (e.g., value function in reinforcement
learning) for all its available actions, not just the action that was taken. This
method is based on the agent receiving the reward for the actions they do not

take by estimating the counterfactual reward it would have received had it taken



those actions. The experimental results illustrate that the rewards on such
“actions not taken” are helpful early in the learning process. The agents then use
their team members to estimate these rewards resulting in principally learning as
a team. Finally, it is shown that fast learning is essential in a dynamic
environment. The ANT reward with teams presents improvement in speed that

results in more stability in following the changes in such an environment.
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Chapter 1 — Introduction

Designing a controller for a distributed system is an important challenge. Exam-
ples of these types of engineering problems include scheduling in manufacturing
systems [5, 30, 43, 48], routing in data networks [6, 26, 49, 63, 71], as well as
command and control of networked forces in adversarial environments [61, 69, 70].

As the system becomes more complicated and is confronted with restricted
communication, local information and uncertainties, applying control methods be-
comes a difficult process. Both the complexity and dispersed nature of these prob-
lems bring about the appeal of multiagent approaches. In such an approach, the
decision-making is distributed among the connected agents, which offers potential
solutions for complex problems.

Multiagent systems have applications in a wide variety of domains. Several
successful applications include distributed control [28], robocup soccer [44], web
and data mining [29, 57|, and air traffic management [87]. In such multiagent
systems, an agent has to learn to acquire skills to interact with other agents in
typically complex, dynamic and possibly non-stationary environments.

What makes this problem particularly challenging is that the agents in the
system provide a constantly changing background in which each agent needs to
learn its task. As a consequence, the agents need to extract the underlying “signal”

(e.g., what the right action is) from the noise of the other agents acting within the



same environment.

In an environment where multiple agents coexist, evaluating the task of each
agent is difficult because an agent’s performance is dependent on the actions of all
the other agents in the system. To achieve the goal of maximizing the system level
global objective as well as its individual sub goals, each agent is required to take
into account the other learning agents.

A major topic of interest in this research is in developing methods that build
coordination among the different contributions of the agents to the system. In such
a cooperation manner, how to assign credit to the action of an agent to attain a
better system performance is an important problem. As with the basic requisite,
we need robust algorithms for learning in multiagent systems [37, 96]. Learning
sequences of actions for multiple agents has been widely studied [3, 39, 41, 78, 91,
93, 101]. The effort in multiagent learning is to respond to the system objective
while effectively considering the needs of individual agents.

Though these methods have yielded tremendous advances in multiagent learn-
ing, they are principally based on an agent trying an action, receiving an evaluation
of that action, and updating its own estimate on the “value” of taking that action
in a given state. Though effective, such an approach is generally slow to converge,
particularly in large and dynamic environments.

In this thesis, we explore the concept of agents learning from actions they do
not take by estimating the rewards they would have received had they taken those
actions. These counterfactual rewards are estimated using the theory developed for

structural credit assignment, and prove effective in congestion games. Furthermore,



a team structure can be used to provide the required information for the agents
to compute these reward estimates [67, 82]. A key benefit of this approach is that
an increase in the number of agents can be leveraged to improve the estimates of
actions not taken, turning a potential pitfall (e.g., how to extract useful information
from the actions of so many agents) into an asset (e.g., learn from the experiences
of other agents).

Chapter 2 provides a background on multiagent systems. It also provides an
overview of previous work and various studies in the area of learning in multiagent
systems. It describes mathematical models of learning for both single and multi-
agent systems as well as research in the area of learning where coordination and
communication are decisive factors that benefit performance.

Chapter 3 introduces congestion problems as a good domain for studying mul-
tiagent learning. The definition of the congestion problem is presented and utilizes
traffic as an illustration of the congestion concept. The chapter then discusses the
multi-day bar problem which is an abstraction of the congestion problem that is
used in the reported experiments. Finally, the basic agent learning architecture is
described in addition to exploring three base reward functions for each agent.

In Chapter 4, the basic Action Not Taken reward is introduced. Derivation of
the reward is described in detail along with the assessment of its performance in
comparison to the previous rewards. The results show that although ANT reward
learns faster than the preceding defined reward functions, it provides agents with
extra information that deteriorates agent performance. Two possible solutions are

presented: (i) use ANT reward early in the process, but stop and switch to a



basic reward after some stop week; (ii) and select only a subset of the actions to
receive the Action Not Taken reward. Experimental results for the first option are
provided in this chapter.

Chapter 5 focuses on the second alternative to improve the basic ANT reward.
In order to provide required knowledge and limit the actions explored by agents,
a team structure is used. The reward derivation is provided, followed by the
experimental results and conclusions. In addition, a combination of two concepts
of team formation and early stopping is developed along with an illustration of
its benefit to performance. Furthermore, the modified form of ANT reward with
weighted teams is presented and the experiments that are addressed show the
impact of congestion on system performance.

Chapter 6 explores the application of these rewards to dynamic domains where
the rapidly changing conditions put a premium on learning quickly. It describes
how to implement the proposed methods in two types of dynamic environments.
First, it examines the affect of random changes both in number of agents and
capacity, and then it explores periodic changes of both types.

In Chapter 7 we discuss the results and provide directions for future research.



Chapter 2 — Related Research and Contributions

Learning in large multiagent systems is a critical area of research with a broad
range of applications. Successful examples of application domains include network
routing [14, 25] sensor networks [52, 60|, robot soccer [44, 47, 75, 76] and addition-
ally, information retrieval and management [46], rover coordination [58], trading
agents [74, 100], and air traffic management [87]. Defining an appropriate algo-
rithm in multiagent domains is a key in the learning process. Properly determining
such a learning algorithm is required in order to obtain good coordinated behavior.

Various studies have investigated how to deal with the complexity of the learn-
ing problem. The feasibility to achieve the learning criteria by applying pure
single-agent learning has been shown in [77]. However, the fact that the environ-
ment is non-stationary is usually ignored. Even if an agent ignores the involvement
of other agents, its reward from the environment will be affected by their behaviors.

Typically, two learning problems are coupled where the agent needs to both
solve a temporal credit assignment problem (how to assign a reward received at
the end of sequence of actions to each action) and a structural credit assignment
problem (how to assign credit to a particular agent at the end of a multiagent
task) [3, 39, 41, 78, 91, 93, 101]. The temporal credit assignment problem has
been extensively studied [24, 41, 78, 83, 84, 92, 97|, and the structural credit

assignment problem has recently been investigated as well [7, 19, 34, 59, 65, 89].



The equivalence between the structural and temporal credit assignment was shown
in [1], and methods based on Bayesian analysis were shown to improve multiagent
learning by providing better exploration capabilities [17]. Furthermore, learning
sequences of actions for multiagent systems has blended structural and temporal
credit assignment and has led to key advances [17, 19, 35, 75, 94]. In these cases,
the learning needs of the agents are modified to account for their presence in a
larger system [4, 34, 36, 64, 89, 90]. We now review reinforcement learning and

multiagent learning, and then state the contribution of this thesis.

2.1 Reinforcement Learning

One of the popular approaches that has been developed is reinforcement learning.
Reinforcement learning techniques are model-free methods that have to learn based
on the feedback received while interacting with the environment. The agents learn
what to do by repeatedly modifying their behavior based on the reward of their
action while exploring the environment [12, 78]. At each step, an agent chooses
an action on its current state. It takes the action, resulting in a change of state,
and receives a subsequent reward. In reinforcement learning, it is required for an
agent to have a policy in order to operate in an environment. The policy defines

the probability of taking an action a when the agent is in state s (Equation 2.1).

7 (s,a) =p(a = als; = s) (2.1)

To achieve the optimal behavior, the agent needs to determine how to select



a strategy to be aligned with its prospects. The agent should behave in a way
that results in maximization of the sum of rewards it received during its entire

performance. Several models have been created to achieve this:

e The finite horizon model offers the action chosen by the agent in a direction
that maximizes its expected reward for the next h-steps. In the next step, the
model proposes the action resulting in an optimal (h — 1)-step reward, and

so on, until it selects the last and best action and terminates (Equation 2.2).

e The receding-horizon-control model, in which the agent always chooses the
h-step optimal action. In this approach, the agent elects how far it needs to

look ahead so as to make the best decision about how to perform at present.

R=>"n (2.2)
0

e The infinite-horizon discounted model which is more functional than the
finite-horizon model. Its desirability is due to the fact that agents’ lifetimes
in many cases are unknown. Therefore, the agent attempts to maximize the
discounted sum of its rewards where a reward received k steps in the future
is worth only 7*7! (0 < v < 1) times what it would be worth now because
there is more uncertainty. This concept is applied by considering a discount

factor v for the subsequent rewards.

R=>'r (2.3)
0



The basic algorithm for solving for the optimal policy, which is known as a
Markov Decision Process, returns for each state the best possible action [11, 66].
The model is Markov if the state transitions are independent of any previous
environment states and it retains all the information relevant to future actions and
rewards. MDPs are important in reinforcement learning because decisions and

values are based on agent observation of current state and new action. Formally

the MDP model is defined by:

o S set of states of the environment
° a: set of actions possible in state s € .S
o P, : probability of transition from s to s’ given a

s

Pl =p(sg1 =5 |5 =s,a,=a) (2.4)

a .
85’ .

expected reward on transition s to s’ given a

Rl =1 (r|si=sa,=a,s,:1=25) (2.5)

As we mentioned before, in multiagent learning the agent tries to maximize its
overall reward. Thus, throughout the reinforcement learning process, the agent
needs to assign an appropriate reward to each state. However, a reward measures
an instantaneous return from the recent state that may be proceeded by several

punishments which by considering subsequent reward does not define a good pol-



icy to follow. To consider these unpredictable alterations, the agent needs another
way of evaluating observed states. In other words, it has to estimate the value
of whichever state it is in. Given a state, the value function approximates the
expected reward for the agent to be in that state. Also, to evaluate the future
rewards there should be a previously defined map so that the agent can refer to
it when calculating the forthcoming rewards. Therefore, the value of each state is
dependent on a specified policy because the value is the expected future reward
when starting from s and following the given policy. The mathematical represen-
tation of the value function under policy m based on MDPs for any state is defined

as follows:

V™ (s) = Ex(Ry|st = s) (2.6)

Furthermore, the value function for each state-action pair is presented as fol-

lows:

Q" (s,a) = Ex(Ry|s; = s,a, = a) (2.7)

The values play an important role for determining the best possible policy.
The higher the values of chosen states, the better the task will be accomplished,
resulting in a more suitable policy. Determining a good policy is critical in rein-
forcement learning. It is an agents duty to find an optimal policy and map states
to best actions available to the agent. A policy m is better than a policy 7’ if its

expected future reward V7™ is greater than or equal to that of V™ for all states.



10

There always exists a policy that is higher or at least equal to all other policies in

respect of overall expected rewards, which is called an optimal policy.

> = V(s)>V"(s) VYseS (2.8)

As mentioned before, the optimal value function is based on an optimal policy.

Hence, the optimal state-value function is defined as:

V*(s) = max V7™(s) (2.9)

Consequently, optimal action-value function is described as:

Q*(s,a) = mgx@”(s,a) (2.10)

One way to learn the state-value function is the Monte Carlo method which
utilizes experiments to estimate the expected total future discounted outcome.
Each agent averages the reward it received after any observation of a particular
state. Through these experiences and by visiting the state more than one time,
the agent makes better sense of the actual reward of that specific state. The value

of a state is updated using Equation 2.11:

Vi(sy) «— V(s) + a(r(sy) — V(sy)) (2.11)

where « is a discount factor introduced to prevent value from diverging and to

promote considering the recent rewards more than the previous ones to calculate
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and attain the value. Normally « is set between 0 and 1.

Temporal difference learning is introduced to eliminate several deficiencies as-
sociated with Monte Carlo policy evaluation. One of the many concerns about
Monte Carlo is the delay in receiving the reward in addition to ignoring the value

of subsequent states:

V(s) «— V(se) +a((r(sy) + 7V (se1) — V(st)) (2.12)

The SARSA algorithm [78], which is an extended temporal difference algorithm,
considers a state-action function estimator rather than a state-value function. This
method tries to converge to optimal function values of the policy currently being

executed; (Q(sy, a;) gives the value of taking action a from state s at time ¢)

Q(8t, 1) +— Q(s¢,ar) + a(r(sy, ar) + YQ(8141, ar1) — Qs ar)) (2.13)

Another method that considers transitions from a state-action pair to another
state-action pair and that yields a breakthrough in reinforcement learning is Q-
learning [78, 98]. It approximates the optimal state-action function independent
of the policy implemented. This algorithm for two-player zero-sum games is first
introduced in [54]. Hu and Wellman developed an algorithm for two-player general-
sum games [35]. The convergence proof is presented in [53, 55, 80]. Q-learning is
policy-independent because it uses the best possible action after the current state.

Q values are updated as follows:
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Q(s¢,a1) —— Q(5¢,ar) + a(r(se, ap) + 7y max Q(st41,a) — Q(8t,ar)) (2.14)

The main difference between SARSA and Q-learning is that to update the Q-
values it is not necessary to use the maximum reward for the next state. Instead,
SARSA follows the existing policy that determines which action to take, leading
to attain a certain reward. However, in Q-learning, the value of the next state is
independent of the policy and is based on searching through all the subsequent
states to find the state possessing highest value.

Furthermore, in many applications in the real world, providing the agents with
full information about their environment is impractical. Since an agent’s observa-
tions from the world are neither complete nor adequate and provide only partial
information about the current state, it makes it harder for the agent to come up
with an appropriate decision. Moreover, full observation is essential for learning
methods based on MDP. Therefore, an extension to the basic MDP framework,
called a Partially Observable Markov Decision Process or POMDP, has been de-
veloped to solve this deficiency. A factored MDP also developed in [15, 16] is an
MDP in which the transition functions are factorized by using a dynamic Bayesian

network.
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2.2 Multiagent Learning

From the single-agent perspective, existing learning techniques have proven to be
powerful tools that can discover the dynamics of the environment and accomplish
the established goal [21, 62, 85]. Most of the single-agent models for sequential
decision making are derived from [41, 66, 78]. These learning models focus on
how one agent improves its individual skills by repeatedly interacting with its
environment. The decision of the agent is solely affected by its sequence of actions
and the dynamics of its environments. However, existence of multiple agents in
a system generates serious consequences and complexity to the solution of the
learning problems. The behavior of each agent affects other agents either directly
or indirectly. Thus for the agents to suitably function in a shared atmosphere,
extensively modified methods need to be developed [79, 95, 99].

An extension of an MDP to multiple agents is a Multiagent Markov Decision
Process (MMDP) [13]. This model considers two assumptions: first, each agent
completely observes its state at any given time. Second, each agent receives the
same global reward. Furthermore, the modified form of the single-agent POMDP
for multiagent learning is a decentralized POMDP (DEC-POMDP) [10]. Agents
observations are doubtful and given by a probability which depends on the previous
state, current state, and previous action.

In terms of knowledge in multiagent systems, storing a separate array for each
possible action is intractable. Thus, Dynamic Decision Network (DDN) [23, 33|

was presented that also considers actions of the agents in the system.
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The Q-learning algorithm also can be applied to each agent in multiagent sys-
tems by having each agent simply disregard the other agents. Alternatively, not
being explicitly aware of other agents builds an uncertainty about achieving the
optimal performance. This led to work on learning where coordination and com-
munication is needed.

The distributed Q-learning algorithm [50] solves the cooperative task that is
only suitable in the deterministic setting. Each agent sustains an explicit policy
h(a), and a local Q-function. These parameters are updated only in the aim of

increasing the estimate of Q function.

Qi1 = maz{Qy(st, ar), (81, ar) + 7y max Q(st+1, 1)} (2.15)
t if Qrv1(se, t(St, @t
hr(s) =1 ° if Qu1(st; ar) # Qulse, ar) (2.16)
hi(sq) otherwise

A common method to solve the coordination problem is to promote an agent
to make their selected action more aligned with the preference of other agents.
Coordination can be simplified by simply allocating the local Q-functions which
only process the small set of agents and have all the Q-functions form a global Q-
function [34, 47]. Communication is used to negotiate action choices and exchange
memories of observed strategies by other agents, as in [40, 68, 95].

These methods have proven to be effective in multiagent learning. Generally
exploring large areas, receiving incomplete information, having limited commu-

nication and making noisy observations make the learning problem more com-
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plex [31, 32, 67]. As a consequence, with these restrictions the learning methods
are slow to converge, leading to poor performance in static environments, and

worse performance in dynamic environments.

2.3  Contributions of this Thesis

In this thesis, we present a theoretical result that signicantly improves the learning
speed of the agents by allowing the agent to receive rewards based on Actions Not
Taken (ANT). This increase in speed is based on the agent receiving a counterfac-
tual reward that estimates the reward an agent would have received had it taken

a particular action. In particular, we:

e Derive an implementable ANT reward for agents.
e Demonstrate the applicability of this method in a generic congestion problem.
e Provide improvements to the ANT reward based on

— Farly stopping and switching to basic reward.
— Selecting only a subset of the actions to compute the ANT reward.

— Using weighted teams to improve the ANT reward.

e Demonstrate the application of weighted team rewards to dynamic domains

with:

— Random changes
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— Periodic changes

As mentioned, processing all the information about the environment while all
the agents influence others, as well as generating adequate performance especially
in large and dynamic environment is hard to accomplish. Learning methods, even
if effective, are required to have rapid responses when applied to real world appli-
cations in order to result in good behavior. One of the well-known examples of
these applications, where faster convergence can be important, is robot navigation
in which a learning algorithm is used for path planning purposes [20, 78]. More-
over, increasing aircraft performance through better segmented surfaces controlled
by applying theory of collectives [89, 102] presented in [73] is another example.
We propose a method to modify a standard difference reward function leading to

progress in both the learning speed and the quality of the solution reached.
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Chapter 3 — Problem Definition and Learning

3.1 Congestion Problems

An interesting domain in which to study the behavior of cooperative multiagent
systems is congestion problems where system performance depends on the number
of agents taking a particular action [9, 27, 56].

When the demand for a particular resource is more than the capacity of that
resource, congestion occurs. Various types of congestion problems have been intro-
duced such as computer networks, traffic, event-driven sensor networks, etc [72].
In computer networks, there are a large number of resources, such as buffers, link
bandwidths, processor times, servers, and so forth. At the time the queue lines be-
come very long and exceed the capacity, the system becomes a congestion problem.
The transport of event impulses in event-driven sensor networks is likely to lead to
congestion in the network [22]. Congestion as a traffic problem affects the sched-
ule of people, human life, transportation, and economy and business activities. It
influences air pollution, gas consumption and the environment [51, 81].

In congestion problems, agents need to learn how to synchronize (or not syn-
chronize) their actions, rather than learn to take particular actions. The agents
do not reach good rewards simultaneously, but since the actions of other agents

are unpredictable, finding the best solution is challenging. This type of problem is
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ubiquitous in routing domains (e.g., on a highway, a particular lane is not prefer-
able to any other lane, but what matters is how many others are using a particular
lane) [45, 88|.

The multi-day bar problem is an abstraction of congestion games (and a variant
of the El Farol bar problem [8]) and has been extensively studied [3, 8, 18, 38]. In
this version of the congestion problem, each agent has to determine which day in
the week to attend a bar. The problem is set up so that if either too few agents
attend (boring evening) or too many people attend (crowded evening), the total
enjoyment of the attending agents drop.

The system performance is quantified by a system reward function G. This
reward is a function of the full system state z (e.g., the joint action of all agents

in the system), and is given by:

Giz)= Y zgye € (3.1)

day=1

where:
n is the number of actions (for example n = 7 if actions are days).
Tdey 1s the total attendance on a particular day, and

C' is a real-valued parameter that represents the capacity of the resource

(e.g., the capacity of the bar).

What is interesting about this problem is that selfish behavior by the agents

tends to lead the system to undesirable states. For example, if all agents predict
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an empty bar, they will all attend (poor reward) or if they predict a crowded bar,
none will attend (poor reward). This aspect of the bar problem is what makes this
a “congestion game” and an abstract model of many real world problems ranging

from lane selection in traffic to job scheduling across servers to data routing.

3.2 Agent Learning Algorithms

The agent action in this problem is to select a resource (day on which to attend
the bar). The learning algorithm for each agent is a simple reinforcement learner
(action value). Each agent keeps an n-dimensional vector providing its estimates of
the reward it would receive for taking each possible action. The system dynamics

are given by:

Initialize: week 0
Repeat until week > Max week

1. Agents choose actions

2. Agents’ joint action leads to an overall system state

3. The system state results in a system reward

4. BEach agent receives a reward

5. Each agent updates its action selection procedure (i.e., learning)

6. week «— week + 1

Figure 3.1: The structure of the learning algorithm for each agent which is a simple
reinforcement learner.



20

In any week, an agent estimates its expected reward for attending a specific
day based on action values it has developed in previous weeks. At the beginning
of each training run, each agent has an equal probability of choosing each action
in the first week, resulting in a uniformly random distribution across actions. At
the beginning of each training week, each agent picks a day to attend based on
sampling this probability vector using a Gibbs distribution. Each agent has n

actions and a value V}, associated with each action ay:

Fe= 3 agent €50

(3.2)

where (3 is a temperature term that determines the amount of exploration (low
values of 3 mean most actions have similar probabilities of being selected, whereas
high values of 3 increase the probability that the best action will be selected).
Each agent receives reward R and updates the action value vector using a value

function Vj:

Vi=(l—a) - Vi+a-R (3.3)

3.3 Agent Rewards

In this thesis, we look at three “base” reward functions for the agents: Local,
System and Difference. The first option for agent rewards is the local reward
that focuses on an agent’s selfish objectives. For each agent, the local reward

function must reflect the reward for the action that it took on each day. This leads
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to:

L = xgqy,e ? . (3.4)

where day; is the day agent ¢ has chosen to attend, and w4, is the attendance on
that day.

This reward function is highly sensitive to the actions of the agent, as it is
based only on the action that the agent chooses and observations the agent makes
regarding the attendance once the action has been taken. However, it is not aligned
with the system reward as for each week it does not reflect the actions that other
agents made and the impact of those actions on the agents’ reward.

The second option is to provide each agent with the full system reward for
each week. This leads to each agent receiving the reward given in Equation 3.1,
and using that reward to update its value estimates for each action. Though this
reward is by definition aligned with the system reward (it is in fact the same
reward), it is not particularly sensitive to an agent’s actions and may therefore be
difficult to directly optimize.

The third option is to provide each agent with a difference reward that
reflects its contribution to the overall system reward. The difference reward is

given by:

D'(z) = G(z) — G(z — z) (3.5)

To specify the part of the system state controlled by agent ¢ and agents —i, we
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use the notation z; and z — z; respectively, where z— z; contains all the variables not
affected by agent 7, in other words it specifies the state of the system without agent
i'. Difference rewards are aligned with the system reward because the second term
on the right hand side of Equation 3.5 does not depend on agent i’s actions [87, 89).
Furthermore, it is more sensitive to the actions of agent i, reflected in the second
term of D, which removes the effects of other agents (i.e., noise) from agent i’s
reward function.

Intuitively, this causes the second term of the difference reward function to
evaluate the performance of the system without ¢, and therefore D measures the
agent’s contribution to the system reward directly. For the difference reward in
the congestion problem, this amounts to having each agent estimate the system
reward it would receive were it to take or not take a particular action. In this
thesis, agents do not explicitly communicate with one another, and therefore, the
only effect each agent has on the system is to increase the attendance, x4, for

day k by 1. This leads to the following difference reward:

Di(z) = G(2)—G(z—z)

_mdayi _(zdayi -1)
Lday,€ <  — (xdayi - 1)6 ¢ (36)

where 44, is the total attendance on the day selected by agent 7.

As a consequence, we use the difference reward as a starting point for the

'In this thesis, we will use zero padded vector addition and subtraction to specify the state
dependence on specific components of the system.



23

reward an agent receives after each step. Earlier works have shown that the differ-
ence reward significantly outperforms both agents receiving a purely local reward

and all agents receiving the same system reward (2, 3, 86].
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Chapter 4 — Action Not Taken (ANT) Rewards

Though the difference reward given in Equation 3.6, provides a reward tuned to
an agent’s actions, it is still based on an agent sampling each of its actions a
(potentially large) number of times. In this thesis, in order to increase the learning
speed, we introduce the concept of Action Not Taken rewards, or ANT rewards.
The goal with ANT rewards is to provide estimates of how the system would have
turned out had an agent taken a particular action. The mathematics that allows
the computation of the difference reward can be used to compute this type of
reward.

In this thesis, rather than have a separate results section, we provide experimen-
tal results directly alongside the reward descriptions to motivate the improvements
to the rewards and the derivation of new rewards. All results are based on 20 in-
dependent runs with the standard error plotted when large enough to be relevant.
Unless otherwise specified (as with the scaling runs or congestion dependent runs),
the number of agents in the system was set to 120, with C' = 6 (capacity) and

n =5 (number of actions, or days).
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4.1 ANT Reward Derivation

In many multiagent domains, the learning agent does not have a complete obser-
vation of the whole world. Normally agents do not have the rigorous analysis of
the impact of other agents on the environment in which the agent is embedded.
Accordingly, unawareness of the other agents involved with changes in the environ-
ment creates problems. Moreover, the learning process is based on an agent trying
an action, receiving an evaluation of that action numerous times up to the point
that agent can get a better sense of the response of its environment to a specific
action, which causes the learning to be slow. We introduce a new approach to
speed up the learning by having an agent gain benefit from the outcome of other
agents operating in the same environment. The direct application of this concept
is to have agents update their reward estimate based on the reward they would
have received had they taken other actions.

Therefore, at each time step, agents perform a mathematical operation that
simulates their taking a different action and compute the counterfactual reward
that would have resulted from that action. For an agent ¢ who selected action a
at this step, the counterfactual reward for action b is given by:

D™2) =Gz — 28+ 22) — G(z — 22) (4.1)

)

where

D= is the reward for agent i taking action b;
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2% is the state component where agent 7 has taken action a;
2% is the state component where agent i has taken action b.

The second term of Equation 4.1, G(z — z¢), is the same as the second term of
Equation 3.5. Namely the reward for the state where agent ¢ has not taken the
particular action that it took. The first term though is the key to the ANT reward.
In this case, we compute the reward that would have resulted had agent i taken
action b rather than action a.
Utilizing this structure, D% v, can then be formulated as follows:
: G(z) — G(z — 2) fori —a
Diynr = (4.2)
Glz—20+22) -Gz —22) fori —b#a

where ¢ — a means that agent ¢ has taken action a. Note, the removal of the state
in which agent ¢ has taken action a in the second term represents the system state
without agent 7. Because agent ¢ had taken action a, this removal results in a state
where agent i has taken neither action a nor action b (which it has never taken).

Hence the second term is the same for both conditions of Equation 4.2.

4.2 Basic ANT Reward Performance

Figure 4.1 shows the learning curves for D and Djyr along with results where
agents directly use the system reward G and a local reward L to learn. The local
reward L is based on the agents simply receiving the reward for the action they

took; in this instance, it is the component of Equation 3.1 corresponding to the
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Figure 4.1: System performance versus training weeks.

“Tday

day they attended the bar (L = zge < ).

In all the experiments, the system performance is measured with respect to
G, regardless of how the agents were trained. As previously noted, these results
confirm that agents using D significantly outperform agents using G or L in this
domain. G learns little, and L learns to do the wrong thing: The agent rewards
are not aligned; agents aiming to maximize their own reward lead to poor system
states. We include the results for agents using G and L here for completeness, but
we will omit them in subsequent figures.

The results here show that although D4n7 learns faster than D, it struggles
to reach good solutions and shows a lower and noisier performance. This shows

that the Action Not Taken reward has a difficult time estimating the reward for
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most actions once those actions have been sampled. In spite of being beneficial
to learning speed, informing the agents about other available actions and related
rewards turns out to be more confusing. Even though the agents take advantage
of such rewards and learn faster in the first weeks of training, there is a time after
which these additional rewards become detrimental to the learning process. This
problem is due to the fact that agents do not always need to be aware of estimate
of all actions; however, they need to get assistance from other agents to light the
road ahead. On the other hand, if all the roads become lit, finding the best way
will turn into an annoying concern for the agent and will add to complexity to
learning procedure. This suggests two possible solutions, which we explore in the

next two sections:

1. Use the ANT-reward early in the process, but stopping and switching to

basic D after a “stop week” (described in section 4.3).

2. Select only a subset of the actions to receive the Action Not Taken reward

(described in chapter 5).

4.3 ANT Reward with Early Stopping

First, let us consider the early stopping concept to mitigate the noisy feedback
agents receive for their actions. This modification is based on the observation
that the Action Not Taken rewards are better than random rewards, but not as

good as rewards that have been updated by actually taking the actions. As shown
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in Figure 4.2, having agents use ANT-rewards early significantly speeds up the

learning process, though does not result in agents reaching higher performance.

System Reward (3)

i I ] i
0 200 400 600 8§00 1000
Training Week

Figure 4.2: System performance when actions not taken are stopped after week 6.

Figure 4.3 shows the dependence of the system performance on the length of
time the Action Not Taken reward is used. The learning speed is stable for small
values of the stop week, but starts to drop slowly as the actions not taken are used
more extensively. There is a steady rightward shift as the stop week moves from 6

to 100, at which point, the system learns more slowly than D alone.
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Figure 4.3: The impact of the stop week on system performance. The learning

speed is directly related to the length of time the Action Not Taken reward is
used.
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Chapter 5 — Computing ANT Rewards using Team Information

As discussed before, the first approach to using the rewards of other agents was to
stop early, before the reward become noisy. Now we investigate the second option,

which is to include only some agents in the computation of the ANT rewards.

51 ANT Rewards with Teams

In this section we limit the actions that an agent updates based on counterfactual
rewards to reliable actions sampled by agent i’s team members (some subset of

agents form a team). This formulation is given by:

G(z) — G(z —z) fori —a
Dinror, = Gz — 28+ 20) — G(z — 29%) fori - beT; (5.1)
0 otherwise

Where ¢ — b € T; means agent ¢ selects actions b that are sampled by agent i’s
teammates T;. As previously, the removal of agent ¢ in the second term represents
the system state without agent ¢ having taken either action a (which it had taken)
or action b (which it had not taken), leading to the term being the same in both
cases.

Furthermore, instead of using the team members as information sources only,
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we increase the connections among team members by providing them all with the
same reward. That is, all team members attending a particular day will receive
the same reward. The learning strategy is to use team information only during
the first weeks (3 in the reported results, but the performance is similar for minor
changes to this parameter) of learning and switch to the regular difference reward
(Equation 3.6) for the rest of the training period.

The key aspect of this approach is that the team members measure the impact
of a team not taking a particular action, rather than an individual agent. As a
result, agents learn with their team in a smaller state space defined by the world
minus their team space instead of the entire world. This is conceptually similar
to the reward described in Equation 5.1 but where the impact of the whole team,

rather than agent ¢ is removed, leading to:

G(z) = G(z — 2%,) for T; — a
Team= Glz— 2t +25) -Gz — 25, — 20) fori —beT (5.2)
0 otherwise

Where 27, is the state component of team members of agent i taking action a.
In this formulation, the impact of all of agent i’s teammates are removed before
the reward is calculated. Note in this case, unlike in Equations 4.2 and 5.1, the
second term is different for the two actions. This is because this term estimates
the impact of removing all team members of ¢ that had taken a particular action.
When agent ¢ changes its action, this also changes the team members taking the

same action as ¢. For the action a selected by agent ¢, we only need to remove
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all its team members who took that action. But to find the counterfactual reward
for action b, we need to remove the actual action of agent ¢ (action a) and then
remove the team members who had taken action . Though conceptually similar
to previous rewards, the presence of team members leads to this subtle difference
in the computation of the team Action Not Taken reward.

%

Team fOT the congestion problem considered in

Now, let us explicitly compute D
this thesis. First, for the action taken by agent ¢ (first line of Equation 5.2), the

reward becomes:

Dicam = G(2) = G(z — 27, (5.3)
= Z.’L’daye_zgay — Z l‘daye_zgay
day day#day;

7
- (l‘dﬂyi - Tday,b-

)e

i
+ (:Edayi - ’ Tday,-

)

z — 27, is the state component in which agent ¢ and its teammate taking

where:

action a have no effect;
day; is the day agent i selects to attend;
Tday, 15 the attendance on the day agent i selects to attend; and

‘Tjayi‘ is the number of agent i’s teammates that choose day; to attend.
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Second, let us focus on the actions not taken by agent ¢ (second line of Equa-
tion 5.2). This is the reward agent ¢ would have received had it taken the actions

b chosen by some of its teammates, leading to:

Team 7

day ~Tday ~(@day, 1
= Z Tgaye ©  + (Tday; ., — L)€ c
day#day;—a.b

~(@gday, ,+1)

+ (xdayiﬂb + 1>€ ¢

~Tda
i ( Z TdayC © ’ + (xdayiaa - 1)6

day7édayi—>a,b

—(@day, ., 1)

_ i
(zd‘lyi—»b Tdayiﬂb)

)-e c (5.4)

7
+ (xdayiﬂb - ‘Tdayiab

where:
2 — 28+ 20 is the state component in which agent 4 takes action b rather than
action a;
z— zf}z — 2" is the state component on which agent ¢ (taking action a) and

its teammates taking action b are removed from the state;

x;_yp is the attendance resulting from agent ¢ taking action b;

’Téaypb is the number of agent ¢’s teammates that choose to attend on day

resulting from action b.
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In this formulation, if agent i’s team members have taken all the possible ac-
tions, each action that agent ¢ had not taken will still be updated. Otherwise,
only actions taken by i’s teammates will be available for reward information and

therefore updated.

Team ANT Reward Performance:

Figure 5.1 shows the results when an agent randomly selects team members. By
limiting the number of actions that are updated, the variability of the reward is
reduced, but there is no discernable improvement in the quality of the solution.
However, from a computational and communication perspective, this is an inter-
esting result, which points to a significant reduction in the need for counterfactual
reward computation without loss of convergence speed.

Figure 5.2 shows the learning curves for D and Drgap;. Agents using Drgang
not only learn faster, but also reach higher system rewards than agents using the
baseline D. In this instance, not only information from team members was used,
but the reward of each team member was the same, resulting in a larger “block”
of agents receiving a reward, and removing a significant amount of noise from the

rewards.

5.2 ANT Rewards with Weighted Teams

The use of team rewards provided tangible benefits, though all information received

from team members was treated equally. Yet, one can consider that the more team
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Figure 5.1: System performance when only a subset of actions are explored by an
agent.

members take a particular action, the more reliable the estimate for the reward of
that action would become. This becomes particularly relevant when the congestion
in the system increases.

A simple solution to this problem is to use a weighting factor for the second
term of the counterfactual reward function. In this thesis, we use the average
number of team members selecting particular actions, though more sophisticated
methods can also be used. This leads to modifying Equation 5.2, that for agent ¢

and action b leads to a weighted team reward Dy p:

Digh=Glz—zt+2) —p, |- Clz—2h—2) (5.5)

)

dayi—»b
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Figure 5.2: System performance versus training weeks.

where p is the average number of team members taking action b.

i
day;_.p

Weighted Team ANT Reward Performance:

Figure 5.3 explores this idea for 280 agents in a system with 5 actions and
a capacity of 6. Because the optimal capacity in this case is 6 x 5 = 30, this
creates significant congestion. The results show that traditional D starts to suffer
in this case, and that the weighted Dy, outperforms Drgaps. Figure 5.4 shows
the impact of congestion directly as the number of agents in the system increases

from 120 to 280. Dy handles the increased congestion better than D.
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Figure 5.3: System performance for the weighted team rewards.
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Figure 5.4: The impact of congestion on system performance for the weighted team
rewards.
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Chapter 6 — Dynamic Environment

One of the key advantages to rapid learning is the ability to adapt to dynamic
environments where the conditions may change faster than a traditional learner
can adapt. In this chapter, we test the performance of the Action Not Taken
rewards with weighted team reward on two types of dynamic environments. First,
we explore seemingly random changes in agent numbers and capacities, and then
we explore faster, but periodic changes of both types.

Throughout the learning process, all the agents coherently pick their actions
and their desire is to accomplish their contribution to the system to the maximum.
Such mentioned learning process compels the agents to adjust to the changes in the
environment. As a consequence, the average range of time for agents to learn the
model of its changing environment increases and learning process raises a robust
strategy to interact with other agents. The problem becomes more complicated
when in addition to the changes of the action of other agents, the environment itself
changes. In this section, we explore the ability of Dy to adjust to unexpected

changes in the system.
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6.1 Unpredictable Changes to the Environment

Figure 6.1 shows the system response to changes in the number of agents. In this
case, the number of agents changed every 40 weeks from 280, to 140, to 180, to 100.
As demonstrated at week 120, Dy not only recovers rapidly, but learns to exploit
the new condition: after the initial drop caused by the change, agents using D
return to their previous state, but agents using Dy 1 reach a higher system reward

value.

System Reward (G)

St i i
0 50 100 150 200
Training Week

Figure 6.1: System performance when the number of agents in the system changed
from 280, 140, 180, 100 each 40 time steps, for 7 actions and a capacity of 4.

Figure 6.2 shows the system response to the capacity changing from 3 to 7 every
70 weeks. Dy learns faster early on and reaches slightly higher performance, but

this experiment shows that D also can track slow changes in the environment.
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Figure 6.2: System performance when the capacity of the system changes from 3
to 7 and back randomly every 70 time steps for 4 actions and 120 agents.

6.2 Periodic Changes to the Environment

In this section we explore rapid periodic changes to the environment. Figure 6.3
shows the performance of Dy versus difference reward D when the number of
agents is changing rapidly. Unlike in the results of the previous section (Figure 6.1),
D has a hard time tracking these changes. Dy on the other hand converges to
a good solution despite the fact that the number of agents in the system changes
the optimal solution for each agent.

For this experiment, we modified the value update function to account for the
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periodicity of the system, and allowed the value update to be:

Vi=(1—a)-(3-V'+(1=0)-V)+a-R (6.1)

where t' corresponds to the last time in which the capacity was the same as cur-
rently. This value can be estimated in practice, though in this instance, in order
to remove the impact of such estimation on the reward analysis, we applied it to

both reward functions.
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Figure 6.3: System performance versus training weeks. There were 8 actions with
a capacity of 5. The standard difference reward D and Dy, are plotted with
variations of 90 to 150 in the number of agents.

Finally, we explore the impact of rapid changes to the system capacity. Fig-
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ure 6.4 shows the system performance when the capacity oscillates between 2 and
5. Unlike in Figure 6.2, D cannot track this continuous change as it does not get
sufficient time to learn the system before the environment changes. Dy, how-
ever, tracks the changes. Even though it has difficulties with the rapid changes, it

reaches higher system level performance for both C' = 2 and C' = 5.
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Figure 6.4: System performance when the number of agents changes periodically.
There were 8 actions and 120 agents and capacity changed from 2 to 5 every 50
weeks.



44

Chapter 7 — Conclusion

Designing a controller for a large distributed system, containing many complex
tasks to be accomplished, is a critical challenge. There are various types of en-
gineering problems struggling with this issue. As the system is not determined
involving restricted and local information, applying control methods in such a
complicated system is not easy to achieve. The use of multiagent approaches is
helpful in these domains where it provides an improved ability to better handle

the complexity of large distributed systems.

7.1 Summary

In large complex and dynamic multiagent systems, the actions taken by the agents
produce significant levels of noise to each agent trying to learn how its own actions
affect the system objective. The agents are simultaneously acting in a shared
environment while lacking information about what other agents are aiming to do.
As a result, their actions must be combined with actions of all agents and the
environment before leading to a reward. Although the reward provides each agent
with feedback about a specific action, it also indirectly reflects other agents actions.
As a consequence, an agent has a lengthy period where actions need to be sampled a

large number of times to extract the “signal” from the “noise.” Therefore defining
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an adequate reward function plays an important role in learning performance.
Traditional learning functions used for providing action rewards and subsequent
selection values, such as using only locally available information or features of the
entire system break down in large systems. The difference reward was shown to
signicantly outperform these local and system objectives. The use of a difference
reward was shown to successfully recover the performance of agent learning in large
complex systems by providing more useful and distinguished information about the
reaction of the environment to an action through the benefit of utilizing the direct
effect of agents individual actions on the system.

For very large systems however, a standard difference reward function, while
effective, is still based on an agent taking an action and receiving the subsequent
reward to maintain alignment with the system objective as a whole. In this thesis,
we present a modification to previously utilized difference reward functions, called
the Action Not Taken reward. It provides the agents with rewards on actions that
were not taken by the agent. To demonstrate the result of this new approach we
chose an abstract of congestion problems known as the“Bar Problem,” in which
agents need to collaborate with each other to reach the desired system objective.

In order to improve the performance of the basic ANT reward, we investigated
two possible solutions: First, taking advantage of the ANT reward early in the
process and then using previous difference reward for the rest of the learning pro-
cedure. The second proposed method is to only consider a subset of actions for
each agent, to be updated at each time step to develop a model of team formation.

Applying these modifications provides moderate improvement on the basic
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ANT reward. In addition, we provided modified versions of the ANT reward that
combined the two mentioned theories, early stopping and team structures, which
provided further improvements in both the learning speed and the quality of the
solution reached. We also provided theoretical results showing that utilization of
this modified difference function significantly improves the learning speed of the
agents. This increase in speed is based on the agent receiving a counterfactual
reward that estimates the reward an agent would have received had it taken a
particular action.

The use of team rewards proved to be beneficial for learning. However, it
evaluates the extra information received from team members in the same way.
We present a last modification to the ANT reward in which the reward received
from team members varies based on the number of team members performing the
same action. The improvements due to the proposed method are significantly more
pronounced in the presence of a large number of agents.

In multiagent learning, particularly in dynamic environments, each agents ac-
tion indirectly affects the reward and indeed the behavior of other agents. One
can think of the existence of other agents as the internal (or external) actuator
that results in a changing environment. In this thesis, we explore the new con-
dition where, beside the fact that all the agents are in some way changing the
environment, the environment itself is changing. We show that the performance
improvements are significantly more pronounced in dynamic environments where
the conditions change either randomly or with high periodicity. In both cases, the

rapid learning allows the agents to track a highly dynamic environment.
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7.2 Future Work

Though the result of applying the ANT reward is encouraging, there are multi-
ple areas for future exploration within this domain. For example, additional im-
provement may be obtained by investigating different methods where we consider
other agent’s rewards within the system. Specifically, investigation of the effect of
utilizing an estimated, rather than directly calculated, difference reward function.
Moreover, modifying the way in which agents estimate their ANT rewards can lead
to substantial computational gains in addition to the already achieved increase in
speed in the number of iterations required for convergence.

In addition, communication and observation requirements of the agents can
be explicitly explored and connected to system performance. Techniques which
provide agents with more intelligent reaction to changing of environment as well
as more suitably choosing the team members can be beneficial. In such a method,
agents can even take advantage of dynamic selection of other agents.

Finally, having agents adopt particular roles within a team can potentially
provide further improvement in the learning speed. Defining an innovative rela-
tionship between team members or even distinctive teams with the intention of
being more aligned with a system objective may lead to significant progress in the
learning process.

Efficient learning in multiagent systems is an intricate and challenging problem.
As this thesis suggests, there are successful methods for addressing the challenges

in order to improve the system performance in addition to the speed of learning,



as are there many areas for further research.
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