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A number of computational tools now exist to aid in developing conceptual 

solutions based on a functional description of a design problem.  A key 

limitation of these tools is the way results are organized for presentation to the 

user.  In general, results are an undifferentiated mass of potential solutions.  

Analysis using a novel concept clustering tool shows concept generator output 

represents permutations of a set of a few solution archetypes.  This provides an 

initial solution to organizing and presenting the results.  More efficient 

solutions are sought by adopting a generate-evaluate-guide framework from 

the computational design synthesis literature.  Specifically, the concept 

generation approach is altered so that each generated solution maximizes the 

variety it adds to the set of solutions.  To achieve this, suitable similarity 

measures must first be developed. 

Current techniques for similarity assessment in the design literature 

tend to be ad hoc and highly specialized to particular tasks.  Prior work from 

the field of information retrieval is applied and extended to create a generalized 



 

approach to similarity assessment for vector space design data.  These 

techniques are validated against an existing design by analogy methodology.  A 

new tool for locating functional analogies within a database of existing 

products is developed as a result. 

Improved similarity measures are combined with the proposed 

computational synthesis framework from literature to modify an existing 

concept generation tool.  The resulting tool efficiently locates the few novel 

solutions in the set of possible results, and is a key step in the continued 

evolution of this class of computational design tools.  
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DEDICATION 

I was blessed to have been born into a family that gave me a love of mechanical 

things, and then tolerated by unending questions, and occasionally poor 

assumptions, about how they worked.  This dissertation is for them, and for A 

and E who joined me on this misadventure. 



 

1 Introduction and Background 

1.1 Introduction  

Automated concept generators, a class of computational design 

synthesis tools aimed at aiding conceptualization in early design, have shown 

great promise as aids to designers.  However, the present generation of these 

tools requires the designer to manually guide the exploration of the solution 

space, severely limiting their utility.  Present theory on computational design 

synthesis posits a three-step loop of generation, evaluation, and guidance.  At 

present, the guidance step is off loaded to the user; this must be rectified before 

these tools can move forward to wider adoption and use.  This dissertation 

applies vector space query matching techniques from information retrieval to 

solve the problem of guidance in automated concept generation. This 

dissertation closes the loop for automated concept generators by providing 

evaluation of generated solutions and guidance in the generation of new 

solutions.  These tools are aimed at conceptual design so novelty is a primary 

metric for evaluation concepts.  What is needed is a method to automatically 

assess the similarity of generated concepts.   

1.1.1 Roadmap 

The chapter begins by discussing opportunities for enhancing 

automated concept generators.  A key finding is that there is a need for widely 

applicable techniques for assessing the similarity of engineering artifacts across 

a variety of dimensions.  A series of research questions that will be answered by 

this dissertation is outlined.  A brief synopsis of the organization of the 
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remainder of the dissertation is given.  Finally background on key concepts and 

tools is presented.   

1.1.2 Contributions of This Chapter 

1. Opportunities to contribute to the state of the art in automated concept 

generation literature are identified 

2. The need for universal approaches to design artifact similarity 

measurement is established 

3. The literature related to methods and tools relevant to this dissertation 

is surveyed. 

1.2 Motivation and Research Questions 

Many engineering design activities require the practitioner to assess 

qualitative or quantitative similarity between components, systems, and 

phenomena, often across domains and disciplines.  A task as simple as 

catalogue design requires the designer to evaluate how closely an existing 

component matches perceived requirements, while activities like design by 

analogy and concept generation using morphological analysis require assessing 

similarity at increasing levels of abstraction.  Current techniques tend to be ad 

hoc and highly specialized to particular tasks.    

Deficiencies of current similarity measures tend to go unnoticed 

because the human mind is adept at classification tasks, and can often correct 

for errors or inconsistencies.  Despite this advantage, measures are needed to 

move this evaluation process towards a computational setting.  Evolution may 

have adapted the human mind to solve these problems, but we are not immune 

to significant cognitive bias.  The volume of data now readily available 

compounds the problem.  Given the many viable information sources available 
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to us, many problems may be intractable for the un-aided human mind.  If the 

computer is used as an aid, then it must be recognized that it shares none of 

our innate ability to sort and categorize, but brings an objective lens to the 

evaluation process.  Thus, measures of similarity are needed which are 

insensitive to our biases, able to handle meaningfully large sets of data, and 

efficiently computable.   

These issues are not unique to engineering design.  Modern 

information retrieval techniques locate documents most relevant to a given 

query using matrix techniques that produce quantitative measures of 

similarity.  This dissertation addresses the need for quantitative similarity 

measures in engineering design by answering three key questions. 

1. Can automated information retrieval techniques be adapted 

to provide similarity measures for engineering design 

methods?   

2. How does the performance of these adapted techniques 

compare to existing methods?  

3. If the proposed technique is suitable for similarity 

assessments between existing products, can it be further 

adapted to evaluate automatically generated design concepts 

and guide automated concept generation?  

Information retrieval posits a variety of techniques for query matching 

that may be adapted as measures of similarity for engineering design.  In 

general these techniques begin by constructing a vector space model of the data 

for comparison.  While the appropriate data for comparison is largely 

determined by the problem at hand, a contribution of this dissertation is to 

demonstrate appropriate vector space representations of product function and 

morphology.  An existing repository of engineered products will be used as the 



# 

primary product data source for the proposed work.  Once a vector space 

model has been constructed a matrix approximation of it is calculated.  

While there are many applications for a quantitative similarity measure 

of engineered artifacts, answering the first two research questions requires a 

more narrow scope.  Though a number of useful engineering design activities 

could be used to validate the application of information retrieval techniques, 

this dissertation focuses on design by analogy for two reasons.  First, there is 

recent exploration of design by analogy in the literature suggesting that this is 

an area of interest to the research community where there may still be room for 

contributions.  Second, the literature contains quantitative similarity measures 

for design by analogy that can serve as benchmarks to assess the proposed 

work.  

The third research question turns the focus back to computational 

design tools.  This dissertation initially explores automatically clustering 

concept generator results after generation.  Rather than sorting a set of 

generated concepts, the techniques developed are used to map each concept 

into a reduced vector space representing relevant product knowledge as it’s 

generated.  This mapping guides a concept generation algorithm that seeks to 

maximize the distance in the vector space between the previously generated 

concepts and the next.  This allows the most novel solutions to be generated 

within the first few iterations of the concept generation algorithm, eliminating 

the need for extensive post processing of large sets of generated concepts. 

 

1.3 Organization of this Dissertation 

This dissertation is organized into six chapters.  Each begins with an 

introduction, a roadmap of topics covered in the chapter and a summary of 
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contributions made.  Each chapter ends with a conclusion briefly summarizing 

key results.  This section briefly describes the outline of this work to help the 

reader jump directly to relevant chapters. 

Chapter 1:  Chapter one discusses the motivation of this work and lays 

out a basic overview of the research presented.  Key background 

information relevant to the entire dissertation is presented here as well.  

Where possible background specific to the content of each chapter is 

presented just prior to new work 

 

Chapter 2: Chapter two presents a first attempt at addressing the 

problems inherent in the current generation of automated concept 

generators.  Rather than attempt to modify concept generation 

algorithms, it sorts the results selecting the most useful or relevant to 

present to the designer.  Achieving this requires developing a scheme 

for estimating concept parameters from a design repository and 

employing techniques from exploratory data analysis. 

 

Chapter 3:  Chapter 3 reviews current work in function based analogical 

design and applies current practice to compare inter-product similarity 

among systems in a design repository.  This provides the necessary 

benchmark to tackle the first two main questions of this dissertation. 

 

Chapter 4: Chapter four identifies and applies techniques from 

information retrieval that can provide a universal approach to vector 

space similarity measurement in engineering design.  These tools are 

applied to the functional analogy problem introduced in Chapter 3.  
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The new method of similarity measurement is shown to compare 

favorably to the method of Chapter 3. 

 

Chapter 5: Chapter five modifies the concept generation algorithm and 

applies the techniques tested in chapter 4 to guide the generation of a 

few novel solutions from the set.  Some problems from Chapter 2 are 

revisited with the new concept generation algorithm. 

 

Chapter 6: Chapter 6 summarizes the conclusions of this dissertation.  

Key contributions to the literature are highlighted.  Future directions 

for automated concept generation, computational design synthesis, and 

analogical design are discussed.   

1.4 Background 

The following section reviews relevant background information on a 

number of concepts relevant to this work as a whole.  Other background a 

literature review sections are spread throughout the text to keep important 

prior work close at hand as new techniques are developed.  The material in the 

following sections is presented here, at the beginning of text, because it has 

some bearing an all the work that follows. 

1.4.1 Structured Design Methods 

Significant effort has been devoted to studying and algorithmically 

describing a systematic process for engineering design.  Suh has developed 

axiomatic design which provides a framework for transformations between 

needs, functionality, physical embodiment, and manufacturing process, as well 

as set of fundamental axioms by which the design activity can be judged [1, 2].  
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Altshuller advanced TRIZ, a design methodology concerned with overcoming 

technical contradictions and emphasizing novel solutions [3], though often 

confused with its central algorithm TRIZ attempts to present a complete design 

methodology.  The proposed work, most directly follows from the systematic 

design methods originating in Europe in the last century[4, 5], and which have 

been expanded on in a variety of design texts [6-9].  These approaches advocate 

solutions driven by customer or societal needs, functional problem 

decomposition and development of complete solutions by aggregating partial 

solutions to product sub functions.   

While there is still debate on its individual steps and boundaries, the 

four broad activities of engineering design, shown in Figure 1.1, can be 

identified: Preliminary design consists of exploration to understand a problem 

or identify an opportunity; conceptual design consists of exploring the solution 

space to propose conceptual solutions consisting of arrangements of 

components that can be evaluated; embodiment design consists of defining 

physical parameters of the selected concepts to initiate prototype development; 

and  detailed design consists of engineering analysis, manufacturing details, 

and engineering drawings to support the final manufacture of the product or 

system..  The proposed work is primarily concerned with enhancing and 

augmenting the designer during the conceptual stage of design. 

 

 
Figure 1.1 High Level Design Process 

Understand
an Opportunity

Conceptualize
Solutions

Embody 
a Solution

Detail 
the Solution
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1.4.2 Design Repositories 

Beginning in the late 1990’s significant effort has been expended to 

develop design repositories that facilitate knowledge capture and reuse [10].  A 

design repository is a heterogeneous collection of product information that 

includes designer intent, solution principals, physical parameters, and models 

of products and their sub-artifacts.  A design repository is distinct from more 

traditional design databases in that it records not only what has been designed, 

but also enough information to reason why and how the how artifact was 

created [11].  A repository also differs from an ontology which is a formal and 

explicit record of concepts and relationships [12].   Where the ontology records 

fundamental properties of artifacts and domains, the repository records artifact 

parameters necessary to reason about the underlying formal concepts.  

Consequently conclusions drawn from the repository evolve as the database 

grows.  With an active and diverse group of contributors, a repository should 

tend to avoid systematic bias and correct errors.  The use of a design repository 

as a data source distinguishes the proposed work from related efforts.   

This work utilizes the prototype design repository maintained by the 

Design Engineering Lab at Oregon State University 

(http://repository.designengineeringlab.org). Figure 1.2 Design Repository 

Web Interface, depicts the repository’s web interface.  This repository was the 

result of a multi-university collaborative effort and is based on a NIST 

prototype [10, 13].  It is an artifact centric relational database populated with 

information from the disassembly and reverse engineering of existing 

products.  The artifacts stored in the repository represent a diverse range of 

products from consumer goods to sub-systems of NASA spacecraft and even 

some biological systems.  Data is input using a stand-alone entry application 
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available from the repository webpage and is retrievable via either an online 

interface or via a direct query of the database [11, 14, 15]. 

 
Figure 1.2 Design Repository Web Interface 

1.4.3 Functional Basis and Component Taxonomies 

The importance of functional decomposition of the design problem is a 

common theme across design methodologies and texts.  The concept 

generation methods considered and the proposed new work both rely on the 

Functional Basis of Design [16, 17].  The Functional Basis defines a hierarchical 

taxonomy of function and flow terms.  These terms are used to construct a 

black box model that represents the overall functionality of a product and its 

inputs and outputs of matter, energy and information.  This black box model is 

subsequently decomposed into a series of sub-functions represented by a verb-

object pair of function and flow from the Functional Basis taxonomy.  The 

Functional Basis provides a systematic and repeatable framework for 

constructing functional representations of engineered products.  Figure 
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1.3depicts a sample black box and functional model developed with the 

functional basis for a hand held electrically powered sander.   

 
Figure 1.3 Functional and Black Box Models of Sander 

In addition to the fixed vocabulary of function and flow terms, this 

work also relies on a fixed taxonomy of components.  The need for such a 

taxonomy is highlighted by efforts to construct ontologies of design knowledge 
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organizes a set of archetypes of common electromechanical components into a 

hierarchy based on their typical functionality as described by the functional 

basis.  Within this taxonomy 179 possible component types are recognized.  

Throughout this dissertation, the term component refers to one of these 179 

recognized component archetypes. 
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1.4.4 Computational Design Synthesis 

The proposed work falls into the broad area of computational design 

synthesis.  This is an extensive and growing area of research, so a full review of 

cannot be accomplished in a work of this length.  Instead this section will 

briefly outline the breadth of work in the field, establish a framework for 

understanding computational synthesis efforts, and survey literature related to 

the proposed work.  Defined as “the algorithmic creation of designs [21]”, this 

area of research emerged in the 1950’s with computational tools for the design 

of electrical components including motors, generators, and transformers [22].  

The goal of computational synthesis tools is to take advantage of the memory 

and computational capabilities of the computer to assist designers.  Schon 

identifies four possible intents for computational design tools – functional 

equivalence to the human designer, phenomenological equivalence to the 

designer, aids to the designer, or as tools for design research [23].  It can be 

shown that a tool that is functionally equivalent to the human designer is a true 

artificial intelligence capable of passing the Turing test.  Likewise, a 

phenomenologically equivalent tool would have to mimic the processes of the 

human designer; our understanding of these is so nascent that this too is 

unrealistic.  Thus we are confined to trying to aid designers and support 

research efforts.  Applications have been found in all stages of the design 

process. 

Much work in the area of computational design synthesis has been 

devoted to the automated synthesis of product form by applying shape 

grammars.  In particular efforts have used shape grammar techniques to build 

systems that automate architectural design work [24-26], and even mimicking 

the style of popular architects [27] or styles [28].  A slightly older, but still very 
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relevant survey of shape grammars was conducted by Cagan [29].  Other work 

has applied the same kind of reasoning to automotive [30-32] and consumer 

products [33].  In a similar vein, Stahovich explored interpreting and 

modifying designer sketches to create new concepts [34-37].   Techniques 

utilizing a catalogue design approach represent some of the earliest application 

of computational synthesis techniques to conceptual design [38-40].  Other 

researchers have applied agent-based approaches to the problem of design 

synthesis seeking to computationally mimic the activities of a human designer.  

Notable among these is Campbell’s A-Design which does an admirable job of 

applying itself to conceptual design problems, but seems at present restricted to 

problems defined by flows and transformations of energy [41, 42].  Others have 

developed approaches that rely on case-based reasoning [36, 43-45]. Welch 

developed a two step methodology which translates functional requirements to 

behavior and then to sets of components [46]. Recent work has sought to apply 

a grammar based approach to synthesize conceptual design solutions from 

functional problem descriptions [47, 48].  This work has been expanded to 

guide grammar rule selection based on designer preferences [49].  A potential 

shortcoming of this approach to using designer preference to guide generation 

is that it could lead to the very fixation problems that concept generation tools 

should ideally help alleviate.  A limitation of all grammar-based approaches is 

the need to create grammar rules.  Absent a method for discovering these 

natural through analysis of existing products, these rules will always be a 

snapshot of the experiences and biases of their authors.  Finally, Bryant has 

developed MEMIC, a tool for automated concept generation utilizing the 

Functional Basis to create computable input functional models, a design 

repository as a data source and a derived component taxonomy [19, 50-52].  

MEMIC was selected as the initial concept generator tool for the proposed 
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research because evidence suggests that it enhances exploration of alternatives 

by novice designers, it is compatible with design repository data available to the 

researcher, and its use of models constructed using the Functional Basis.  

Figure 1.4 depicts the MEMIC tool. 

 
Figure 1.4 MEMIC Software UI 

 
To frame an analysis of the MEMIC algorithm, the framework 

proposed by Cagan et al [21] and depicted in Figure 1.5 is adopted.  This 

framework posits that there are four steps to the computational design 

synthesis task – representation, generation, evaluation and guidance.  

Representation is the process of transforming the problem statement into a 

format meaningful to the computer.  Generation involves the computational 

tool creating a potential solution or solutions.  Evaluation is the mechanism by 

which the computer determines if the generated solution meets the 

requirements of the original statement, and finally guidance is the process of 

directing the algorithm toward new solutions.  These could either better meet 

the requirements of the designer or further explore the solution space.  This 
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trade-off between breadth and depth searching, between exploring all solutions 

and exploiting known solutions, is a key issue in all synthesis efforts.   

 

 
Figure 1.5 CDS Cycle adapted from [21] 

If we apply the represent, generate, evaluate and guide framework to 

the MEMIC concept generator we find that it only partially completes the 

cycle.  Representation is accomplished by functionally modeling the system to 

be designed and transforming this functional model into an adjacency matrix 

that the computer can interpret.  Solutions are generated using an approach 

adapted from the morphological approach of Zwicky [53, 54] and the method 

of partial solutions advocated by Pahl and Beitz [5].  Evaluation is performed 

when the algorithm assesses component connection feasibility by consulting 

data in the Design Repository.  The final step, guidance, does not exist in the 

current iteration of the tool.  This requires the designer to handle the 

difficulties inherent in the combinatorial explosion of solutions produced.  

What is needed is an efficient way to assess concept similarity and guide the 

Represent

Generate

Evaluate

Guide

Solution
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algorithm toward producing only the few novel variants in the set.  The 

proposed research seeks to rectify these difficulties.   

1.5 Conclusion 

This dissertation explores a series of issues related to automated 

concept generation from functional descriptions of a design problem.  Several 

approach are demonstrated which can enhance the utility of these tools by 

reducing the burden of evaluation and exploration placed on the user.  These 

approaches rely on vector space models of design artifacts.  Techniques from 

automated information retrieval are used to solve problems of similarity 

measurement among these vector space models. An existing function based 

design by analogy technique is used for benchmarking and validation.  Guided 

by the results of these previous steps, the proposed techniques are extended to 

enable more intelligent automated concept generation that evaluates generated 

concepts and guides the generator to produce novel solutions.    
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2 Sorting Automated Concept Generator Output 

2.1 Introduction 

The following chapter attempts to improve the utility of automated 

concept generators without altering the underlying concept generation 

algorithm.  This chapter begins by using the design repository data source, 

which is already an input to the concept generation process, to predict 

performance parameters of each concept.  Designer workload while using the 

concept generator is reduced by extracting and presenting only those concepts 

with predicted performance above a given threshold.  Noting that performance 

parameter predictions are correlated with component selection, a more general 

sorting approach is put forward based solely on the components of each 

generated concept.  The size of the data set necessitates the application of tools 

for variable reduction to reduce the size of concept representations and 

exploratory data analysis.  The results of applying these techniques suggest the 

direction taken in following chapters. 

2.1.1 Roadmap 

This chapter begins by introducing an approach to concept sorting 

based on estimating concept parameters.  To achieve this a method for 

estimating the features of a concept from design repository data is put forward.  

The estimation method is demonstrated through two example 

implementations.  Conclusions are drawn about this approach to concept 

sorting, and the implications lead to a new but related approach.  Based on 

identified deficiencies of parameter based sorting, a new method which sorts 

based on component selection is put forward.  This approach requires the 

introduction of variable reduction techniques and a method for automatically 
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clustering data.  Component based clustering is examined through three 

example products.  Finally conclusions are drawn about this approach concept 

sorting.  

2.1.2  Contributions of This Chapter 

1. A method for estimating the parameters of conceptual products based 

on design repository data. 

2. An approach to concept sorting based on parameter estimates is 

investigated. 

3. A new method for concept sorting based on component choice is 

developed and applied. 

4. Preliminary evidence that concept generator output is a set of 

permutations on a few solution types is found. 

5. A first reduced vector space representation of automated concept 

generator output is introduced. 

2.2 Concept Parameter Based Sorting 

Chapter 1 introduced the notion of an automated concept generator 

and gave detailed background on a specific algorithm based on the 

morphological matrix.  An observed drawback of this tool, and others, is that 

while a concept generator can produces hundreds or thousands of unique 

concepts, ultimately the user must evaluate and select concepts.  Asking the 

designer to manually scan and parse thousands of concepts is an unreasonable 

expectation.  If we imagine the role of the computer becoming more of a team 

member in the design process, this is not a good framework for fruitful 

collaboration.  Currently, the problem is solved by asking the designer to 

interactively select components for each concept, which removes the need to 
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explore thousands of concepts, but does not promote a thorough exploration of 

the design process.  What is needed is a balanced approach which lets the 

concept generator do what it does best, generate many concepts, while freeing 

the designer to focus their energy on developing additional concepts and 

synthesizing the results into an outstanding product.  The proposed method 

leverages the speed of the computer to eliminate a large number of undesirable 

concepts.  A much smaller group of concepts can then be passed to the human 

designer whose reasoning and intuition can be employed to select from the 

reduced set. 

2.2.1 Outline of Proposed Method 

The output of the concept generator is a list of connected components, 

so a sensible approach to sorting concepts must be based at the component 

level.  Given this constraint, there are then two general approaches; group 

concepts either by components used or by projected performance.  It seems 

preferable to return concepts that will meet a designer’s performance 

expectations, so an initial approach should be to select from a sample of 

concept generator output those solutions that are likely to meet some 

predefined targets.   The variety in the set of solutions retained for presentation 

to the designer will depend on the number of different concepts with 

satisfactory components.  In terms of the spectrum between exploration and 

exploitation discussed in Chapter 1, this method strives to exploit obviously 

workable solutions rather than explore the full breadth of the solutions space. 

The general approach to sorting concepts will begin with selecting 

certain desirable or undesirable characteristics, determining the propensity for 

a particular component to have that characteristic, and then sorting concepts 
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into groups based on the properties of their constituent components. The 

following diagram, Figure 2.1, summarizes the proposed method.  

 

 

Figure 2.1 Outline of Proposed Method 

Functional Modeling and Automated Concept Generation were 

surveyed in the first chapter, so new work needed to implement this method 

begins with the third step, estimating component performance from historical 

data.  In the next section, an approach for constructing these estimates and 

aggregating them to form a reasonable representation of each concept is 

discussed.   
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2.2.2 Estimating Concept Parameters from Repository 

Data 

Each generated concept is represented as an adjacency matrix, 

essentially a graph of components and their connections that achieve the 

required input functionality.  The basic assumption underpinning the 

proposed method is that a meaningful estimate of the performance of each 

concept, if it were built, is a function of the expected parameters of its 

components.  A second basic assumption is that the parameters of the 

components that would make up the concept can be estimated by surveying 

components of the same type stored in a design repository.  A necessary 

precondition is a fixed component vocabulary like the one discussed in 

Chapter 1. 

Various earlier research efforts have used design repository data to 

estimate the behavior of products during conceptual design.  A significant 

body of work is centered on estimating the likely failure modes of a product 

and it’s reliability.  Some of this work has used data stored in a repository to 

discover links between product function and product failure that can be used 

to predict failure modes in future products [55, 56].  This work has been 

refined to focus on high-risk product domains like aircraft and spacecraft [57], 

and extended to include even software development [58].  Much of this work 

has been refined into a framework for understanding and predicting failure 

propagation in complex systems in early design [59].   A parallel effort has 

investigated predicting not just failure modes, but their corresponding 

likelihood and severity [60].  This failure estimation work inspired attempts to 

estimate other product parameters from repository data.  Parashar et al used 

this data to estimate the part count of a product in early design based on 



!) 

existing products [61], while Poppa attempted to estimate product 

manufacture and assembly costs [62].  A generalized version of that approach 

forms the basis of the following method. 

Estimating concept parameters begins with selecting a set of parameters 

to estimate.  While no formal rule can be devised for this, experience dictates 

some best practices.  First, parameters should be directly related to important 

product requirements, and should be directly related to the evaluation scheme 

that will be used for concept selections.  Thus parameters should be relatable to 

function or component type because repository data is keyed those values.  For 

example, estimating color would be fruitless because we have no reason to 

suspect that knowing a concept’s functionality or the parts that make it up will 

tell us what color it will be.  Finally, these parameters should be generalizable to 

all components, though the estimation scheme could be component or 

function specific.  For example, number of gear teeth, is data that can be 

extracted for particular instances of gears in the repository, but it’s not suitable 

for describing a variety of components.  A better choice might be the 

input/output ratio of components that transfer energy. 

To predict the parameters of an individual component in a concept, the 

design repository is queried for other representative components of the same 

type.  There two cases to consider.  In the first, the parameter of interest is part 

of the repository data schema and is potentially recorded for each component.  

In the second, the parameter of interest is not directly available.  If it is a 

function of parameters that are captured, then estimates can proceed as in the 

first case.  If it is not a suitable proxy must be found, more data must be 

collected, or a different parameter selected. 

Representative components of the same type are a somewhat nebulous 

concept, and as with selecting parameters, no single rule will suffice for all 
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cases.  Some important concerns are scale, product domain, operating 

environment, and function-component interactions.  Scale is an obvious issue.   

Most repository artifacts are small-scale consumer electromechanical products.  

A few are not, and those that are wildly different from the scale of the product 

being designed, should be excluded from estimates.  The same is true for 

product domain and operating environment.  Predictions about a prospective 

kitchen appliance should not utilize data from spacecraft subsystems as its 

requirements are so far afield that choices about materials, process, size, and 

other attributes are unlikely to be representative.  The reverse is probably also 

true.  Finally, there is the issue of whether components of the same type, but 

which were observed performing a different function should be included.  

Requiring both function and component to match will necessarily lead to 

smaller samples.  The specific application will dictate the appropriate course of 

action, but for some product parameters estimates based on both function and 

component may improve results.  Failure modes for example are related to 

both what a component is, and what it does.  On the other hand, for a 

particular class of components, we might conclude that material selection is 

primarily a function of component type irrespective of function. 

Once a sample of components has been found the properties of the 

components used in the generated concepts must be estimated.  For various 

problems these can be estimated as the mean of the samples, an extreme value, 

or a range of values.  Once this estimate is found at the component level, these 

values can be combined to estimate the parameters of the assembled concept.  

The parameter being estimated, the particulars of the design problem, and 

sound engineering judgment will determine the appropriate way to do this.  

Summing the components, taking an average or weighted average, and using 

the most extreme value have all been successful for various problems.  
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Combining estimates of several parameters introduces a vector space 

representation of a concept’s expected performance along dimensions the 

designer has declared important. 

Once the data and estimation procedure are in place, asking a computer 

to perform the necessary calculations for an available sample of concepts is 

straightforward.  Care should be taken in interpreting the results; there will 

necessarily be significant uncertainty in the results.  A direct rank ordering is 

both unreliable and misleading.  Instead, concepts with similar performance 

estimates can be grouped together and groups with poor performance can be 

rejected while those more likely to meet designer expectations can be passed to 

the designer for further evaluation.  

The following sections take this general template for concept 

performance parameter estimation from a repository of existing products and 

apply it two specific cases.  In the first, estimates are made to assess the 

manufacture and assembly cost of automatically generated concepts.  In the 

second an attempt is made to extract information necessary for product 

environmental impact estimates. 

2.2.3 Sample Implementation 1: Design for Manufacture 

and Assembly 

To better illustrate the proposed method, the following example is 

presented based on sorting for Design for Manufacture and Assembly 

(DFMA).  A set of sorting parameters could also be specified based on another 

set of design for “X” rules, from a set of customer needs, or from any 

combination of those.  The intent is simply to show what an actual 

implementation of the method might look like.  Four characteristics are 

identified based on DFMA concerns in consultation with the standard DFMA 
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literature [63]. It is assumed that the product being designed was a high 

volume small-scale consumer product.  Use of standard or OEM parts, use of 

low cost thin walled stamped and injection molded parts, and avoidance of 

machined components were selected as useful parameters for estimation. 

 It is assumed that concepts should be built from standard parts to the 

greatest extent possible.  Standard parts are common, standardized 

components that can be sourced from a variety of suppliers.  They might 

alternatively be referred to as off the shelf, or original equipment manufacturer 

(OEM) parts.  The basic assumption is that market forces will drive the price of 

these standard parts below the cost of the manufacturer to make a custom part 

[63].  

To estimate the degree to which a concept can be built using standard 

parts, it is first necessary to associate some measure of standardness with each 

term in the component taxonomy.  This is an example of a case where the 

necessary data is not directly stored as part of the repository schema.  However, 

it was concluded that standardness was a property that could be assessed 

visually, and artifacts do have images associated with them.  All artifacts tagged 

with a component taxonomy name were extracted from the repository.  Using 

artifact photos and other data the artifact was tagged as either standard or not 

standard. The binary nature of the data implied a Bernoulli distribution for 

each artifact, from which could be estimated a mean, variance, and confidence 

intervals for the mean.  The findings matched expectations.  Electric motors, 

which are almost universally standard parts, have a high average, while external 

housings, which tend to be custom parts to accommodate product architecture 

as well as branding and aesthetic concerns, have a very low average value.      

Once the expected standardness for each component is known, a 

measure of standardness for the concept as a whole could be generated. There 
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are two approaches to estimate component standardness.  The first would be to 

multiply together the standardness of each component in the concept to 

produce an estimate of the likelihood that the entire concept could be made 

from standard parts.  The likelihood that a concept made of components A and 

B is standard is the likelihood that A and B are standard parts.  This would be 

preferred because in reality all components should have some non-zero 

standardness, and the aggregate of these would be a reasonable representation 

of our ability to build the concept from standard parts.  In this case, due to 

small sample sizes of some components in the repository many of the current 

estimates of mean standardness are zero.  This would strongly penalize an 

otherwise desirable concept due to one non-standard component.  To mitigate 

this effect standardness of the concept was estimated by simply averaging the 

standardness of the components.  

Second, it is deemed desirable to use thin walled parts produced using 

stamping or injection molding.  These processes are common and relatively 

low cost for the high volume parts produced for consumer products.  These 

processes are likely to be selected, so concepts that include components which 

can be produced at a low cost with these methods are preferred [64]. 

It is also assumed that it is desirable to use thin walled parts produced 

using stamping or injection molding.  These processes are common and 

relatively low cost for high production volumes. To estimate the relative cost of 

these processes for each component taxonomy term, the database was queried 

to find all artifacts produced using one of these processes. Unfortunately, 

sample sizes were prohibitively small for stamped parts.  This highlights a 

disadvantage of the proposed method.  Sometimes necessary data will not be 

available for key parameters.  
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For each artifact a cost estimate is then calculated.  A method for cost 

estimates that relate the cost of the part to the cost of a standard unit washer is 

employed [63].  The cost becomes a product of several factors based on the 

parts features, parts, and materials.  Excluding factors related primarily to 

material or fit and finish, left basic and subsidiary part complexity to base a 

relative cost upon.  Using DFMA heuristics these factors were calculated for 

each artifact, and multiplied together for a total relative cost.  These costs were 

then averaged for each component within the taxonomy.  A thin walled part 

cost factor for each component was calculated by averaging the relative costs of 

its thin walled parts. 

Third, machining is a wasteful and costly process that should be 

avoided if possible.  Concepts built from components that are unlikely to 

require machining were preferred. Machining is a costly and undesirable 

process for components within the specified product domain [63, 64].  The 

likelihood that a particular component taxonomy term will have to be 

machined can be estimated by querying the database for all artifacts of a 

particular component basis type that are machined and dividing by the total 

instances of that component basis type that have any manufacturing process 

associated with them.  Dividing only by instances that have a specified 

manufacturing process prevents incompletely recorded artifacts from heavily 

swaying the results. The results conform to basic expectations about this 

domain; the likelihood that a part will be machined is low for all component 

taxonomy terms. 

Finally, a proxy for assembly cost is needed.  The form of the individual 

solutions and the way they are joined together embodies much of the assembly 

cost, but this is a relatively complex relationship.  As advocated in the previous 

section, a suitable proxy had to be found.  In this case, total part count was 
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selected because assembly cost is, all other things being equal related to the 

number of pieces that have to be joined together.   Parashar [61]has developed 

a part counting tool that interfaces with the design repository to produce an 

estimate of the number of parts necessary to complete the concept.  The 

counter is based on the average number of instances of a component found 

when that component is used to solve a specified function [61].  The count 

produced by Parashar’s tool became a fourth metric used to sort components.   

Once the characteristics of each concept have been found, they will be 

combined, following it prescribed method, into an parameter vector that 

suggests the manufacturability of the concepts.  Concepts can then be sorted 

into groups based on their similarity to one another.  

The four calculated product parameters are assembled into a vector 

representing the relative manufacturability of the concept.  The designer 

wishes to minimize three parameters: thin walled part cost, likelihood of 

machining, and part count.  The number of standard parts, on the other hand, 

should be maximized.  For convenience the standard part likelihood is 

transformed into a not standard part likelihood by subtracting it from one.  

Now all dimensions should be minimized.  A sample calculation of an 

parameter vector for a concept including a electric wire, an electric switch, and 

a battery is shown in Table 2.1.  To avoid undue weighting of a particular 

parameter all are normalized on a scale from 0 to 1.  The normalized product 

vectors can then be clustered using manual or automated clustering 

techniques.  A full discussion of automated clustering algorithms is reserved 

for latter in the chapter, but the approaches discussed there are also suitable for 

the product parameter vectors shown in this example. 
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Table 2.1 Parameter Vector for Sample Three Component Concept 

Sample Concept Parameter  
Vector 

Components Battery Electric 
switch 

Electric 
wire 

  

Standardness 0.6750 0.3874 0.8839 0.6488 
Machining 
Likelihood 

0.0000 0.0078 0.0051 0.0043 

Thin Wall Relative 
Cost 

na 2.0772 na 2.0772 

Part Count   7.3559 
 

To demonstrate concept variant sorting method, concepts for a 

children’s toy will be developed.   It is desired that the toy translate across a 

surface using stored electrical energy, and that it be very low cost to produce. A 

functional model for the toy generated is shown below in Figure 2.2. 

 

 
Figure 2.2 Functional Model for Case Study of Toy 

 

The functional model was input into the MEMIC concept generator 

along with a FCM and DSM Matrix from the design repository.  A sample of 



!( 

the results is shown below in Figure 2.3.  Many concepts are produced, but in 

the interest of producing an understandable set, twenty-five are selected at 

random for further review.  

 

 

Figure 2.3 Sample Concept Generator Output 

 

Parameter vectors for each component can be calculated by following 

the algorithm discussed at the beginning of the section. With only twenty-five 

concepts, it is possible with effort to identify preferred concepts.  If the set were 

larger the computer’s assistance would be needed.  The vectors are supplied to 

automated clustering algorithm that suggests dividing the results amongst four 

clusters.  Table 2.2, shows the parameter vector and cluster membership of 

each concept. 
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An examination shows that cluster three’s center is closest to the origin.  

Its members have relatively low combinations of costly parameters.  Concepts 

2, 5, 7, 19, 20, 21, and 24 likely merit further study based on DFMA concerns.   

A further examination of these concepts suggests that they fall into two 

general categories.  Given the very general approach used to model the 

problem some interpretation is required.  Concepts 2, 5, 7, and 21 imply a 

walking toy, like a toy robot.  Concepts 19, 20, and 24 suggest something more 

like a toy car.  Based on these results the designer would have a few concepts 

suggesting two different solution types to work with.   
 
Table 2.2 Results for Toy Case Study 

Concept 
Std 
Pts Machining 

Thin 
Wall 

Pt. 
Count Cluster 

Concept01 0.8240 0.9768 0.8089 0.6413 4 
Concept02 0.8012 0.9597 0.5250 0.5725 3 
Concept03 0.6587 0.9910 0.8621 0.7405 4 
Concept04 0.9337 0.9935 0.6385 0.7743 1 
Concept05 0.8253 1.0000 0.6037 0.5583 3 
Concept06 0.7309 0.9762 0.6230 1.0000 2 
Concept07 0.7430 0.9452 0.6400 0.6996 3 
Concept08 0.8912 0.9504 0.6083 0.7537 1 
Concept09 0.6449 0.9794 0.8063 0.7614 4 
Concept10 0.8086 0.9921 0.8357 0.8178 4 
Concept11 0.9691 0.9862 0.6258 0.6167 1 
Concept12 0.7795 0.9760 0.8521 0.7361 4 
Concept13 0.5976 0.9492 1.0000 0.8117 4 
Concept14 0.9123 0.9690 0.6292 0.7097 1 
Concept15 0.6792 0.9462 0.7389 0.7278 4 
Concept16 0.9739 0.9858 0.8253 0.8780 1 
Concept17 1.0000 0.9829 0.7858 0.7564 1 
Concept18 0.7210 0.9972 0.8164 0.5806 4 
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Concept19 0.8443 0.9953 0.7050 0.6192 3 
Concept20 0.7123 0.9512 0.6793 0.3992 3 
Concept21 0.7602 0.9637 0.6818 0.5926 3 
Concept22 0.6651 0.9955 0.8994 0.6376 4 
Concept23 0.5653 0.9668 0.8615 0.7006 4 
Concept24 0.7856 0.9645 0.6030 0.5794 3 
Concept25 0.6502 0.9835 0.8491 0.8394 4 

 
The results of the case study provide preliminary evidence supporting 

the hypothesis that product parameters can be estimated basted on data in a 

design repository and successfully used to pare down the set of results returned 

by an automate concept generator. 

2.2.4 Sample Implementation 2: Estimating Data for 

Environmental Impact Assessment 

Another potential application of the proposed sorting method is to 

select concepts that will have minimal environmental impact.  This approach 

has contributed to recent literature in artificial intelligence in sustainable 

design [65, 66]. In the previous sample implementation, estimates were made 

to predict manufacture and assembly cost for concept screening. In this effort, 

an estimate of environmental impact is needed.  This is not a value than can be 

directly predicted via past products; environmental impact estimates are not 

currently part of the repository data schema.  However an examination of a 

common environmental impact estimation tool, shows the that dominant 

factors in impact are material selected, mass of material, and manufacturing 

process employed [67].  The proposed method estimates these values necessary 

for estimating the cradle to gate life cycle impact of the generated concepts 

based on data stored in the repository.  
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Each component of products archived in the repository is tagged with 

the material or materials from which it was constructed.  The material of the 

component used to build the concept was predicted from this set.  Mass and 

volume data are recorded for artifacts in the repository, so an estimate of both 

the type and amount of material used is possible. A designer could specify, 

based on their application, whether to estimate the material based on a best, 

worst, or average case material, but experience has suggested that creating an 

estimate based on a hypothetical composite material that is a weighted average 

of the most common materials found for a given component gives good results 

[65].  For example if we found that 80% of instances of a particular component 

were brass and 20% were nylon, the hypothetical component impact would be 

estimated based on a part that was 80% brass and 20% nylon by mass. 

Estimation of manufacturing process proceeded in a similar fashion, 

but with a key added complications.  The estimated process must be 

appropriate for the material estimated in the previous step.  Thus, we estimate 

the likely manufacturing processes found for components of the specified type 

with the predicted material.  This process can also work in reverse.  The 

process can be predicted first, and then the material choice constrained 

accordingly.  In this case, the former was selected because of greater confidence 

in the material data within the repository than in the manufacturing process 

data.  This work contributes to environmental impact assessment in early 
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design by providing a method to extract needed data from a design repository. 

 
Figure 2.4 Summary of Available Mass and Failure Data 

2.2.5 Conclusions about Parameter Estimation Based 

Sorting 

Sorting concepts based on predicted concept parameters or 

performance clearly presents some challenges.  While it was possible to employ 

this approach in the two samples discussed in the preceding sections, a great 

deal of effort had to be extended at the beginning of each problem to obtain 
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and organize the data necessary to make meaningful estimates.  The quality 

and the reliability of the results are heavily dependent on the quality and 

quantity of data in the repository and on the estimation model constructed by 

the user.  To illustrate this point consider Figure 2.4 a plot that shows samples 

sizes for common components in the taxonomy for mass an failure data.  These 

are commonly relied upon results and yet all have very small samples.  This 

trend only gets worse for less common and less easily collected data.   

 

It is also inefficient to calculate estimates for many concepts that will 

ultimately be rejected.  While this is a partial solution to the difficulties of 

automated concept generators discussed in chapter one, an easier and less 

problem dependent approach is desirable.  In applying this approach to a 

variety of problems, an important trend emerges that perhaps should have 

been obvious from the beginning given the way parameter estimates are 

constructed: Concepts with similar estimated parameters tended to be 

composed of the same components.  Based on that observation, I hypothesized 

that those concepts could be meaningfully sorted into groups based solely on 

their components.  Then, if necessary, estimates could be made based on 

samples from each group.  The following section outlines this approach. 

2.3 Sorting Based on Component Selection 

The previous section notes that concept parameter estimates tended to 

lead to concepts constructed of similar components being grouped.  The logical 

step is to omit the estimation of parameters and simply group concepts 

together based on the components from which they’re assembled.   The 

ultimate goal is to construct an algorithm that can read a large number of 

automatically generated concepts and sort them into bins based on their 
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similarity to one another. If we consider that the concept generator is to a large 

extent a more advanced version of the morphological matrix, a logical 

hypothesis might be that the concept generator output is really many 

permutations on a few solution types.  The total number of solutions is 

constrained by the number of possible solutions to the products defining 

functions.  This is a hypothesis that will be evaluated through case studies later 

in this section. 

For an algorithm to sort concepts, they must be represented in a 

computable form.  In the previous section concepts were eventually 

represented as a vector of parameter estimates.  The component adjacency 

matrices, which are the output of the concept generator, can be thought of as 

comparable to these concept vectors.  However, in this case entries in the 

vector represent component choice rather than concept parameters.  Since we 

prefer to operate on concept vectors rather than concept matrices, each 

adjacency matrix can be converted to an adjacency list by simply appending 

successive columns below the first.  The result is vector whose elements 

represent the presence or absence of a particular component-to-component 

connection in the concept.  Though sparse, the length of these vectors is an 

issue.  Recall from Chapter 1 that the number of component types in the 

component taxonomy is 179.  So an adjacency matrix that includes all possible 

components would be 179x179, and a corresponding adjacency list could have 

up to 32,041 elements.   By omitting components that are not present in any of 

the generated concepts, the size of this list can be reduced, but in general it will 

still be large.  Techniques to reduce the size of this matrix will be discussed, but 

first a computational approach to grouping concepts is briefly reviewed. 
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2.3.1 Cluster Analysis 

Given a set of concepts represented as adjacency lists of components, 

the task is to sort concepts into groups based on component similarity.  

Measuring the distance between concepts is simple arithmetic, but 

automatically sorting them into groups based on their distance to one another 

requires the use of a set of techniques called clustering or cluster analysis.  

Clustering is the general term for a set of exploratory data analysis techniques 

used to solve grouping or classification problems [68].  Clustering methods 

tend to be heuristic in nature, and are most applicable when there is little 

information about the underlying structure of the data [69].  The objective of 

clustering analysis is to sort a set of data into groups, or clusters, such that each 

member of a cluster has a high degree of similarity with any other member of 

the cluster and a low degree of similarity with any non-member of the cluster 

[68].  There are two general types of clustering algorithms. Hierarchical 

clustering looks for a series of nested partitions in data.  Partitional clustering, 

as the name implies, calculates a single set of partitions.    In either case the 

fundamental problem is to sort n observations in d-dimensional space into K 

groups based on a specified similarity criterion [68]. 

In this work we utilize a variation of the K-means algorithm.  K-means 

is an iterative clustering algorithm that assigns observations to a specified 

number of clusters, K.  First K cluster centers that evenly span the space of 

observations are used to create an initial partition.  Each observation is then 

assigned to the closest cluster center and new cluster centers are calculated 

based on the centroid of each group.  This process is repeated until the square 

error is minimized and the cluster membership stabilizes [68].  Unfortunately, 

clustering is computationally expensive; we can make it more tractable if the 
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number of dimensions that represent each concept can be reduced.  The 

following section discusses an approach to variable reduction that can achieve 

this result. 

2.3.2 Variable Reduction Via Principal Component 

Analysis 

Principal component analysis (PCA) is a common method for 

dimensional simplification in multivariate data.  PCA forms a new set of 

variables, the principal components, which are linear combinations of the 

original variables. These new variables form an orthogonal basis for the 

original data.  Orthogonality is an important property; it ensures that no 

redundant information is created in the variable transformation.   

There are many ways to form an orthogonal basis of a data set.  In PCA 

each component represents an axis in the data space, and projecting the data 

onto this axis forms a new variable.  PCA repeatedly performs this 

transformation, at each turn selecting the axis that results in a new variable that 

explains as much of the variance in the original data as possible.  A key set in 

this process is the singular value decomposition of the original data matrix.  

Singular value decomposition is an important feature of a methodology that 

will be introduced in chapter 4, so a full discussion of it can be found there.  

For now, we will assume that PCA represents the best affine transformation of 

our original data matrix. 

Though the full set of principal components is as large as the set of 

variables in the original data, typically a few components account for the 

majority of variance observed in the original data.  It has been demonstrated 

that by representing the data set with this reduced set of components, which 

captures the majority of observed variaince, we can significantly reduce the 
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number of individual variables under consideration while still capturing 

sufficient design information [70]. 

2.3.3 Case Studies of Component Based Clustering 

The following section explores a component-based approach for 

automatically sorting the output of a concept generator into meaningful 

groups.  We investigate this technique through the use of three sample 

problems from prior work [71]: a product to automatically remove the shells 

from peanuts as an aid to farmers in the developing world; a device to move 

fluid from a reservoir at one elevation to another at a higher elevation; and a 

consumer product to grind and dispense whole spices. Figure 2.5 shows a 

graphical representation of the analysis procedure utilized. 

 

 
Figure 2.5 Proposed Component Based Sorting Method 
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A functional model was constructed for each of the three sample 

problems based on known requirements and customer needs input.  These 

functional models were then supplied to a concept generator.  For each 

problem the concept generator was asked to supply one thousand concepts at 

random.  Concepts were output in the form of 179x179 element component 

adjacency matrices representing all possible combinations of members of the 

component taxonomy.  

Each component adjacency matrix was then reformulated into a vector 

by appending each column of the matrix to the preceding column to produce 

an 18,496-element vector where each element represents a possible connection 

between component types.  These vectors are then aggregated into a matrix 

where each column represents a concept and each row a possible component 

interaction.  For the sake of efficiency, rows of the matrix that contain only 

zeroes were deleted; if a particular component to component connection is 

never present in any concept there is no value in retaining that variable in the 

model.   

PCA was applied by treating each concept as an observation and each 

component interaction as a variable. The number of principal components to 

retain was determined by producing a scree plot of the eigenvalues of the 

principal components and selecting components from the steepest portion of 

the curve.  The more precise Kaiser Criterion [72] was also investigated, but 

found to select too few principal components to adequately reproduce the 

original data.  Once the number of principal components is identified, the 

original data is transformed onto the principal component space, and a 

partitional clustering technique can be used to group concepts. 

Once the concepts have been reduced by PCA into vectors of a few 

components, a standard K-means clustering algorithm was employed. An 



#* 

initial partition was created by selecting K cluster centers that evenly spanned 

the space of observations.  Each observation was then assigned to the closest 

cluster center and new cluster centers were calculated based on the centroid of 

each group.  This process was repeated until the square error is minimized and 

the cluster membership stabilizes.  After a solution was found, the 

appropriateness of the number of clusters chosen was evaluated quantitatively 

by examining the mean square error between cluster centers and qualitatively 

by examining silhouette plots of the data.  A silhouette plot shows the ratio 

average distance between a point and the other members of its cluster to the 

average distance from the same point to the members of the next closest cluster 

[73].  High silhouette values indicate strong affinity for the current cluster, low 

values indicate the point has been misclassified.  The number of clusters K was 

iterated until silhouette plots show the clusters are well differentiated and the 

mean square error between cluster members and cluster centroids is acceptably 

low. 

The method was first applied the concepts generated for the nut 

shelling problem.  The 1000 concepts were supplied to the PCA algorithm.  

From the following scree plot, shown in Figure 2.6 Scree Plot of Peanut Sheller 

Results, it is apparent that the correct number of principal components to 

retain is approximately six.  The scree plot is used to graphically assess how 

many principal components should be retained and is related to the 

eigenvalues of the principal components. The number of components to retain 

is the location on the horizontal axis that corresponds to a leveling of the 

curve’s slope.  Six principal components are selected, but it is worthwhile to 

investigate neighboring values.  No significant difference in the results was 

found by increasing the number of principal components (PC) between six and 

ten.  However decreasing the number to five or fewer led to cluster instability 
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and suggested that there was too little differentiation between concepts. 

 
Figure 2.6 Scree Plot of Peanut Sheller Results 

Next, the raw data is transformed onto the PC space and is clustered 

using the Euclidian distance between concepts as a similarity metric.  Several 

possible numbers of clusters from two to fifteen were considered, but two 

clusters were found to minimize mean square error and give the most 

satisfactory silhouette plot as shown in Figure 2.7. 
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Figure 2.7 Silhouette Plot of Peanut Sheller Concept in Two Clusters 

An examination of the plot shows that both clusters have some 

members with low silhouette values, but experimentation showed that this 

could not be improved through increasing the number of clusters.  In general 

there appear to be two types of components that, by examination of individual 

concepts, could be broadly described as products that cut the shell and 

products that crush or grind the shell.  The low silhouette values appear to 

indicate concepts that do both but are similar enough to one or the other that 

they do not form a cluster of their own.  

Next the approach was applied to the water lifter functional model.  As 

with the previous problem the each of the automatically generated concepts are 

supplied to the PCA algorithm.  By examining the resultant scree plot, shown 

in Figure 2.8, the appropriate number of PCs to retain is found to be five.  
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However through investigating the results of selecting neighboring numbers of 

PCs it was found that results changed noticeably as the number of PC’s 

increased to ten.  In light of this ten components were retained.  This 

discrepancy is due to the imprecise nature of using the scree plot to select the 

number of principal components, and highlights why it is important to 

investigate values in the neighborhood number suggested by the plot. 

 

 
Figure 2.8 Scree Plot of Water Lifter Results 
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Figure 2.9 Silhouette Plot of Water Lifter in Three Clusters 

Using the selected number of principal components, the data is 

transformed onto the PC space, and as in the previous example, is clustered 

using distance as the similarity metric.  Again, a variety of possible divisions 

were investigated, but three was found to be the most appropriate number of 

partitions.  The following figure shows the silhouette plot of the results for 

three clusters. 

In this example, most concepts belonged to one large cluster with some 

concepts belonging to each of two smaller clusters.  The clusters were better 

differentiated, as indicated by higher average silhouette values.  However, when 

individual concepts were examined it was difficult to discern what the clusters 

represented.  In general it appeared that the big cluster represented concepts 
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that directly convert an energy input into the flow of water, while the other 

smaller clusters represented solutions with a number of intermediate energy 

conversion and transmission steps.   

 
Figure 2.10 Scree Plot of Spice Grinder Results 

Finally the suggested approach was applied to the spice grinder 

problem.  Figure 2.10, was used to select the appropriate number of clusters to 

retain. An examination of the plot indicated that the appropriate number of 

components to retain was between six and eight.  Investigating the choice in 

the neighborhood of each, eight was found to be the appropriate number of 

components to use. 
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After applying K-Means clustering iteratively to the variable reduced 

concepts six partitions were found. The following figure, Figure 2.11, is a 

silhouette plot of the results.   

 
Figure 2.11 Silhouette Plot of Spice Grinder in Six Clusters 

Four concepts were identified as outliers that did not appear to belong 

to any of the six clusters, as indicated by the negative values on the plot.  On 

further inspection these concepts were ill formed, and did not appear to 

represent workable solutions.  The results of this problem are the least useful, 

from a user standpoint, of the three.  Though concepts were grouped into six 

general types of solutions, further inspection showed that the six types of 

solutions were very similar.  All solutions were essentially a spinning blade and 



#& 

some kind of container; the different groups represented differing 

arrangements of the same basic sets of components.   

2.3.4 Conclusions on Component Based Sorting Through 

Clustering and PCA 

These test problems provide preliminary evidence that Principal 

Component Analysis can be used to effectively simplify the output of 

automated concept generators.  These simplified representations can then be 

used to efficiently cluster similar concepts using partitional clustering 

techniques such as K-Means.  This clustering organizes the large number of 

undifferentiated results into a small number of groups that can be more easily 

understood an evaluated by a human designer.   

The results support the assertion that the thousands of results produced 

represent permutations of only a few basic solution types.  Based on these 

results we can conclude that variable reduction followed by clustering is one 

possible means to improve the utility of automated concept generators.   

A significant drawback to the proposed approach is suggested by the 

third sample problem.  The method treats all function to component 

transformations as equivalent.  For example, converting chemical energy to 

mechanical energy with an internal combustion engine is just as important as 

coupling two solids with bolt.  If an automobile is the intended result of our 

design process, different approaches to energy conversion are much more 

interesting than exploring a variety of fasteners. This is a significant drawback 

to this approach, as is the need to generate a large sample of concepts, many of 

which will later be rejected. 
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2.4 Conclusions  

Chapter 2, discussed initial steps on the road to improving the 

automated concept generation user experience.   

First, results were sorted based on predicted concept parameters.  

While this approach yielded an estimation technique that has proven valuable 

in other work, its value to the concept generation process his greatly 

diminished by the high overhead associated with its application.   

Patterns observed in concepts sorted through estimated parameters led 

to the hypothesis that component based sorting could provide the same result 

but with much less front-end work for the designer.   

Practical application of a component based sorting scheme showed the 

need for variable reduction and automated clustering.  While initial results 

were promising drawback remain.  The approach requires a large sample of 

concepts be generated and then sorted.   

The results of clustering are not always meaningful because the 

algorithm can group concepts based on variations that are inappropriate or 

uninteresting given the problem at hand.   

As suggested in Chapter 1, an ideal approach to concept generation 

would produce just the most interesting members of the set of all possible 

results.  This chapter, in passing, noted the use of vectors to represent concepts 

and variable reduction through matrix transformation.  These tools can be 

used in concert with data in a design repository and computational techniques 

from other disciplines to arrive at that result.  Ultimately success depends on 

the ability of the computer to recognize salient differences in products and 

concepts.  Chapter 3 surveys concepts from design by analogy which lead to a 
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better understanding of how concept similarity can be assessed and provide a 

benchmark for new techniques developed in later chapters. 
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3 Functional Analogy in Design 

3.1 Introduction 

The following chapter deals with measuring functional analogy in 

design.  Functional analogy is not a primary thrust of this work; instead, the 

goal is to develop a universal approach to measuring similarity in vector space 

representations of products in early design.  Functional analogy measurement 

is explored because it operates on a specific vector space representation, 

namely a product-function vector and computes distances between these 

vectors in an n-dimensional space of possible functions.  While it is not 

possible to directly formulate a universal similarity measure from current work 

in the area, current approaches can provide a useful benchmark for techniques 

this work will advance.  

3.1.1 Roadmap 

This chapter begins by exploring the role and importance of analogy in 

design.  A brief summary of the literature is presented.  Then, a quantitative 

measure of functional analogy is identified from the literature for further 

exploration.  The implementation of this measure is explored in detail. It is 

applied to products in the design repository to measure their functional 

similarity to one another.  Test cases are developed based on an examination of 

products in the repository to evaluate the measure’s results.   The results form a 

benchmark against which to test measurement methods developed later in this 

work. 
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3.1.2  Contributions of this Chapter 

1. A review of the design literature and identification of a useful function 

based analytical measure of similarity 

2. Application of existing measure to products in a design repository 

shows interesting relationships that can form the basis of future work 

3. Development of four test cases for functional similarity assessment 

from the design repository 

4. Benchmark based on similarity assessments of current method for 

evaluating tools that will be developed in the following chapters. 

 

3.2 Measures of analogy in design 

An analogy is “a thing that is comparable to something else in 

significant respects [74].” Analogy can be a powerful tool during ideation and 

problem solving.  If the problem to be solved is like a problem that has already 

been solved in another domain, then the solution to the out of domain 

problem can likewise be adapted.  Otto and Wood identify it has an intuitive 

technique for idea generation and suggest looking for analogies in nature and 

in other product domains based on function [75].  Ullman likewise 

recommends functional analogies for generating concepts, but cautions that 

they do not necessarily lead to good solutions by citing the example of aviation 

pioneers who sought to emulate flapping flight in birds [7].   Ullrich and 

Eppinger also cite analogies as a useful technique for generation solutions, and 

imply that it is common amongst experienced designers[9].  It could be argued 

that ARIZ and the contradiction matrix from TRIZ [3], are predominately an 

analogy engine. A more extensive survey of introductory design texts would 
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certainly turn up more references to design by analogy and analogical thinking 

in design.  

A significant fraction of recent effort in the area has been devoted to 

analogies for bio-inspired or biomimetic design [76-79].  Beyond biological 

analogies, researchers have sought to use visual or physical analogies to 

stimulate ideation [80-82], while others have focused on textual or linguistic 

analogies [83].  In all analogy based efforts, a key component of the process is a 

similarity measure [84], lack of such a measure has long been a problem in 

mechanical design [85].  This is a problem this dissertation seeks to rectify. 

It is well documented that experts and novices use analogize in different 

ways.  Adelson found that expert programmers tended to form abstract 

representations of problems, while novices preferred concrete representations.  

The former were better able to see connections between problems and domains 

and performed better in programming tasks as a result [86].  Later work by the 

same author posited that analogies facilitated learning to program [87].  

Hewett and Adelson in a study of design methods of human computer 

interaction go so far as to suggest that analogical reasoning typifies an 

engineering approach to problem solving in that field [88].  Linsey et al have 

studied the effects of representation on analogizing, and have developed 

techniques to help reformulate a design problem to facilitate retrieval of 

analogies [83, 89-92].  The focus of this work is not design by analogy, so a 

complete survey of the field will not be undertaken here.  The above works 

suggest the variety of research in the area and the importance of analogy in 

design.   
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3.3 Application of the Current Measure to Inter- Product 

Functional Similarity 

If analogy implies that two objects or ideas are comparable, it is 

reasonable to ask how comparable they are.  How much like my problem X are 

already solved problems A,B, and C?  It would be convenient to express this 

measure of analogy or similarity as a quantitative measure.  If we are seeking 

functional analogies in product design amongst a set of existing products, i.e., 

already solved problems, such a method has been proposed and validated by 

McAdams and Wood [93, 94].   The following sections will explore this 

method, and will use it as a benchmark against which to test a more universally 

applicable vector space similarity measure. 

3.3.1 The Method of McAdams and Wood 

McAdams and Wood have developed a quantitative analytical measure 

of functional similarity between products[94].   Their approach is distinct from 

other work in the field in that it is amenable to a fixed taxonomy of function 

and flow, and that it bases its comparison on product sub-function.  It is an 

approach that is primarily focused on meeting the needs of engineers engaged 

in the design of a new artifact.  Given a functional description of the product 

under development, the technique measures the degree of functional analogy 

or similarity between it and a set of reference products from which analogies 

are to be drawn.  A necessary precursor to their approach is a set of reference 

products, which have been functionally decomposed following the methods 

discussed in Chapter 1.  

This is a vector space representation of the data; each reference product 

can be represented as vector whose elements indicate the importance of a 

particular sub function as assessed by customers.  As discussed in Chapter 2, 



$# 

this space can be quite large for the fixed taxonomy of function and flow 

employed in this work.  Figure 3.1 Example Product Function Vectors shows 

examples of these vectors. 

 
Figure 3.1 Example Product Function Vectors 

For this trivial example, we could visually compare dimensions of 

similarity between our problem, also expressed in this vector space and these 

product function vectors.  However, given that these vectors can be quite large, 

and that we have access to a large reference set some analytical means of 

comparison is required.   

McAdams and Wood construct a product-function matrix # by 

assembling the vectors of individual reference products.  Their method of 

measuring analogy proceeds by applying two key assumptions.  First, all 

reference products are equally important, or that the only interesting 

dimension of difference is their relevance to the problem.  Second, the number 

of sub functions in a product is an indication of its complexity, and that this 

variation in product complexity must be normalized to avoid impact on the 

Function E 0

Function D 3

Function C 1

Function B 0

Function A 5

Product 1

Function E 2

Function D 3

Function C 1

Function B 4

Function A 0

Product 2
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similarity assessment.  Finally, the measure takes into account customer needs 

to assess the importance of individual functions.  So if in the product to be 

designed, transforming electrical to mechanical energy is deemed very 

important based on customer requirements, the method will treat as more 

similar reference products where this was an important function.   

Employing these requirements and assumptions, the following step-by-

step process converts a product-function # into a normalized product function 

matrix $ suitable for measuring functional similarity.    

The elements of $ are simply the elements of # weighted by the 

following function. 

! ij = "ij
#
# j

$

%&
'

()
µ j

µ
$
%&

'
()

 

The average customer rating ! is simply the sum of all elements in # 

divided by the number of columns in #.  If # is an mxn matrix, this can be 

calculated using the following equation. 

! =
1
n

"ij
j=1

n

#
i=1

m

#  

While the total customer ratings for each product are merely the 

column sums of #. 

! j = "ij
i=1

m

#  

The number of functions in each product and the average number of 

functions per product are given in turn by the following equations. 

µ j = H !ij( )
i=1

m

"  
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µ = H
j=1

n

! "ij( )
i=1

m

!  

H is a Heaviside function. 

H x( ) = 1 when x ! 0
0 otherwise

"
#
$

%
&
'

 

Once the weighted product vectors have been calculated, the columns 

of $ are renormalized so that their norm is unity to yield !!.  In this form the 

similarity between the product under design and any reference product is the 

inner product of the vector space representations of each.  The closer this value 

is to 1, the more similar the two products. 

To better illustrate this process, consider the following problem.  

Imagine the following product-function matrix.  Each column represents a 

reference product, each column a distinct function, and each element an 

integer representing the perceived importance of each function in each 

product. 

! =

1 0 0 1
3 3 6 5
5 0 4 2
2 0 7 1

"

#

$
$
$
$

%

&

'
'
'
'

 

Suppose a product must be designed to meet those four functions 

where the importance of each is shown in vector s. 

s =

5
3
8
1

!

"

#
#
#
#

$

%

&
&
&
&

 

Following the weighting scheme outlined above # is transformed to $. 
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! =

1.2 0 0 1.5
3.6 3.3 3.5 7.4
6.1 0 2.4 3.0
2.4 0 4.1 1.5

"
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$
$
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%

&
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Which when normalized becomes approximately: 

!" =

0.2 0 0 0.2
0.5 1.0 0.6 0.9
0.8 0 0.4 0.4
0.3 0 0.7 0.2

#

$

%
%
%
%

&

'
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(

 

The inner products of s and the columns of $ are then calculated. 

! = 0.9 0.3 0.6 0.7( )  

From this analysis the designer would concluded that the first reference 

product is most analogous followed closely by the fourth and third products.  

The second product is a poor match, as would be concluded by inspection.   

 

Application to Data in the Design Repository 

The method outlined above, is not a suitable solution to measuring 

concept similarity in automated concept generation because it was developed 

to assess functional similarity.  All automatically generated concepts should 

have identical functionality.  While the method could be modified, the goal of 

this dissertation is to develop a universal approach to measuring similarity 

amongst vector space representations in design.  The method proposed by 

McAdams and Wood is presented in detail here because it can serve as a 

meaningful benchmark for techniques that will be developed.  Toward that end 

this section will explore the application of this method to the set of products 

contained in the design repository.  This will provided a benchmark of 
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similarity measurements to test proposed techniques against.  Similarity 

measures developed later in this work should perform as well as, or improve 

upon these benchmark measures.   

Equivalence with the existing method is easy to establish, rank 

orderings of product similarity should agree, or very nearly agree.  To establish 

that a measure improves on the current assessment, we can identify groups of 

products in the repository that we assert are similar.  If the current measure 

categorizes any of these test cases incorrectly, it may be possible to construct a 

measure that rectifies this error.   

There are, at the time of writing, 167 products in the repository 

including consumer scale electromechanical products, biological systems, and 

spacecraft subsystems.  Four subsets of products are identified that will serve as 

test cases.  First, there are 4 coffee makers in the repository.  These products 

should be, functionally speaking, more similar to each other than to any other 

products.  Second, there is a set of biological systems that were recorded as part 

of a bio-inspired design investigation.  Due to the unique flow types observed 

in these systems, they should be more similar to each other than to any electro-

mechanical product.  Third, there is a set of products related to product failure 

reports.  These, like the biological systems should be self-similar, but relatively 

different from other artifacts.  Finally there are four drills in the repository. As 

with the coffee makers, it is assumed that these should be more similar to each 

other than to any other product. Table 3.1 Similarity Metric Test Cases 

summarizes the identified test cases. 
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Table 3.1 Similarity Metric Test Cases 

Test 
Case 

Description Products 

1 Coffee Makers Black 12 cup deluxe, black 12 cup economy, black 4 
cup regular, white 4 cup economy 

2 Biological 
Systems 

Any artifact where system type is biological 

3 Aerospace 
Systems 

A set of artifacts representing aerospace systems 
recorded to capture failure data 

4 Drills Skil drill, firestorm drill, delta drill, b and d drill 
attachment 

 

Use of the data in the repository presents a problem.  At present, no 

system in the repository has information about customer needs tied to product 

functions.  The method of McAdams and Wood will have to be applied by 

treating the customer needs derived importance of each function as being 

equivalent.  Obviously, this diminishes some of the utility of their approach, 

but making this assumption will still allow for useful results.   

To assess the functional similarity amongst products in the repository, 

the following procedure is employed.  First, a product function matrix is f 

retrieved by querying the design repository.  The sequel query necessary to 

retrieve this data is available in Appendix A.  The results of the query must be 

further processed to account for the hierarchy of functions and flows in the 

Functional Basis.  For example, if the database records that a particular product 

includes the function of import liquid,  it must also include the equivalent 

parent function and flow, channel material.  The generated product function 

matrix then contains functions as entered, and at any appropriate higher levels 

of generality.  This compensates for the varying level of detail at which 

products are recorded.   
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The method presented above is then applied directly to the data.  There 

are many questions that can be asked of these data.  First, what if any general 

trends can be observed in the inter-product functional similarity measures?  

The following plot Figure 3.2 shows a plot of the ordered measures of similarity 

between products.  Each line represents an individual product with each point 

showing the measured similarity to the nth most similar product. 

 
Figure 3.2 Plot of Product-Product Similarity Measures 

An examination of this plot shows that there are, in general, three types 

of products.  The first is very similar to a few products, but then its degree of 

similarity drops precipitously and the majority of other products in the 

repository are dissimilar.  The second also has strong similarity to a few 

products, but the remainder of the set is at least weakly similar.  The majority 

of products fall into this category.  Finally a third group has a weak but 
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relatively homogenous degree of similarity with all products in the repository.  

This is a relatively interesting group; its members are products that are 

relatively unique amongst the set of products in the repository, so it merits 

some additional study.  The following plot Figure 3.3 Histogram of Distance of 

Most Similar Product shows a histogram of the magnitude of the similarity 

measure of the product most similar to each product in the repository.   

 

Figure 3.3 Histogram of Distance of Most Similar Product 

The histogram shows that there is a meaningful set of products for 

which the most closely related product is not very similar.  It is helpful to think 

of the distance measure as a cosine distance, thus a value below 0.5 suggests 

that the two products are not very similar at all.  Table 3.2, presents a summary 

of these products. 
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Table 3.2 Products with Low Similarity to Other Members of The 
Repository 

Product Distance to Most Similar Product 
dryer 0.54 
component basis reference 
artifacts 

0.54 

dishwasher 0.54 
asm volume 2 0.53 
cotton candy machine 0.51 
nasa anomaly 0.50 
hulk hands 0.50 
alcohawk digital alcohol detector 0.49 
coolit drink cooler 0.48 
ub roller coaster 0.47 
turtle 0.45 
bolting 0.43 
natural sensing 0.42 
fly 0.42 
lawn mower 0.42 
dna 0.41 
jar opener 0.40 
john deere tractor gear 0.38 
brake system 0.37 
bat 0.36 
two component regulatory system 0.35 
lichen 0.30 
heart 0.27 

 

Many members of the table are biological systems or products that were 

originally part of a failure dataset.  Those electro-mechanical products which 

are included in the table may represent unique functions or flows.  They may 

be unique or innovative, or the may simply be from categories of products that 



%" 

have not been sampled extensively in the repository.  While this points toward 

an interesting set of questions, answering them is beyond the scope of the 

current work. 

Instead, we will return to the four test cases identified above and assess 

how well the current measure meets our expectations of product functional 

similarity.  First, the coffee makers: there are four coffee makers in the 

repository.  It is expected that they be more similar to one another than to any 

other products.  Applying the measure of McAdams and Wood, we find that 

this is the case; the results for the four most similar products are presented in 

Table 3.3 Coffee Maker Similarity as Measured by McAdams and Wood 

Method. 

Table 3.3 Coffee Maker Similarity as Measured by McAdams and Wood 
Method 

Reference 
Product 

Degree of Similarity 
1st 2nd 3rd 4th 

black 12 cup 
deluxe  

white 12 cup 
regular 

black 4 cup 
regular  

white 4 cup 
economy  

black 12 cup 
economy  

black 12 cup 
economy  

white 12 cup 
regular 

black 4 cup 
regular  

white 4 cup 
economy  

black 12 cup 
deluxe  

black 4 cup 
regular  

white 12 cup 
regular 

white 4 cup 
economy  

black 12 cup 
economy  

black 12 cup 
deluxe  

white 12 cup 
regular 

black 4 cup 
regular  

white 4 cup 
economy  

black 12 cup 
economy  

black 12 cup 
deluxe  

white 4 cup 
economy  

white 12 cup 
regular 

black 4 cup 
regular  

black 12 cup 
economy  

black 12 cup 
deluxe  

 

The method correctly groups the coffeemakers together, and it finds 

that numerically they are more similar to one another than to any other 

product.  The measured similarities range form almost one to a low 0.77 in 
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each case the fifth most similar product is significant less similar with values 

one the order of 0.5.  This suggests that the existing method handles the first 

test case well. 

Next, lets examine the drills.  There are four drills in the repository, as 

with the coffee makers we expect them to be more similar to one another than 

any other products.  The following table, Table 3.4, summarizes the results. 

Table 3.4 Drill Similarity as Measured by McAdams and Wood Method 

Reference 
Product 

Degree of Similarity 
1st 2nd 3rd 4th 

b and d drill 
attachment 

b and d sander 
attachment 

b and d mini 
router 
attachment 

b and d 
jigsaw 

firestorm 
circular saw 

delta drill delta jigsaw delta sander firestorm 
saber saw 

b and d 
screwdriver 

firestorm 
drill 

delta circular 
saw 

firestorm saber 
saw 

delta drill delta nail 
gun 

skil drill skil flashlight skil jigsaw b and d 
power 
pack 

b and d 
screwdriver 

 

Unlike the coffee makers, the drills are, according to the assumption 

made earlier, entirely miscategorized.  An examination of the calculated 

similarity metrics for each product shows they range from 0.8-0.7, so the 

identified products are, according to the measure, very similar.  Either there is 

a problem with the measure or with the assumption that the drills are similar.  I 

believe that the drills are, in fact, a poor test case.  While they appear 

superficially similar their actual functionality is quite different.  The b and d 

drill attachment is a drill head for a modular tool system while the other drills 

are stand-alone products.  The delta and firestorm drills are members of 
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product families, and so it’s not entirely surprising that they appear more 

similar to other members of their respective families.  Finally, the drills are 

frequently categorized as being similar to other power tools, which remove 

material like saws, so perhaps in this regard the measure is going a good job.  

For each entry in the table another drill is the 8th, 7th, 3rd,and 25th most similar 

product, respectively.  For the first three, the similarity metric remains between 

0.75-0.65.  What is so different about the skill drill?  An examination of the 

product shows that the Skil drill was a complex product with a great deal of 

functionality above what is seen in the other drills.   The added functionality 

makes it similar to a large number of products.  In fact the first drill on the list, 

while the 25th most similar product, still has a similarity measure above 0.6.  

This analysis suggests that while the rank ordering presented by McAdams and 

Wood does not precisely conform to preconceptions about similarity it does a 

good job of identifying products that are truly functionally similar.  Even 

though I’ve argued that the drills, while superficial similar, are in fact different, 

I will retain this as a test case because of the interesting results found.   

Next, the test case of biological systems is considered.  There are currently 32 

systems in the repository that are recorded as biological artifacts, or strategies.     

Amongst this set there are several biological systems that are measured to be 

most similar to electromechanical products.  A closer examination of these 

shows that in this set no element has a similarity measure to an 

electromechanical product significantly greater than 0.5.  By taking 0.5 as a 

cutoff for similarity, as discussed above, it can be concluded that the existing 

method correctly handles all biological systems in the repository.  

Alternatively, we might conclude that this points to a deficiency in the current 

measure.  These systems are recorded using the same function and flow 

taxonomy as electromechanically products, so it stands to reason that 
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functionally some similarity is to be expected.  This will be explored further by 

applying a new candidate similarity measure in Chapter 4. 

Finally, there are the products recorded from failure data sets.  There 

are five such systems that recorded data from ASM failure reports, Consumer 

Product Safety Commission Reports, NASA Failure reports and NTSB 

rotorcraft failure reports.  These products should, in general be very different 

from the consumer scale electromechanical products found elsewhere in the 

repository, so they should have a higher degree of similarity with one another 

than with other systems. 

Table 3.5 Similarity of Aerospace Failure Data  as Measured by McAdams 
and Wood Method 

 

Table 3.5 shows the results of the comparison for the set of failure data 

products.  If we apply as distance of 0.5 as a cutoff only the first two most 

similar products remain relevant.  From this set we see mixed results.  All 

products except asm volume two include another failure product, but it 

typically is not the most similar product.   
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3.4 Conclusion 

Finding analogies can be a useful aid to ideation in design.  The 

preceding sections have discussed the role analogy in design and some results 

from the design by analogy literature.  While no universal quantitative measure 

of analogical distance was identified, an approach was found in the literature 

that meets many of the needs identified earlier in this work in the specific area 

of function based design by analogy.  The calculations necessary to construct 

this measure were discussed in detail.  Then the measure was applied to explore 

inter-product similarity amongst products in the design repository.  Four test 

cases were identified and explored.  For the biological system and coffee maker 

test cases, we find that the measure performs as expected.  For the failure 

product and drill test cases, the results contradict initial expectations, but 

further examination suggests that the expectation may have been incorrect.  

Interesting behavior was still observed in these two cases, so they are retained 

for use in evaluating the measures developed in subsequent chapters.  The 

justification for retaining them is that in these products is a set that confounds 

expectations of functional similarity.  These product sets seem like they should 

be similar, but applying the current similarity measure suggests plausible 

reasons why they are not.  If a new measure can plausibly sort these in a way 

that matches expectations, that would be an interesting result.  These test cases 

and the final rank ordered measures of product-to-product similarity form the 

benchmark against which future work will be evaluated. 
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4 A Universal Approach to Vector Space Similarity 
Measurement in Engineering Design 

4.1 Introduction 

The following chapter deals with identifying and validating an 

approach to vector space similarity measurement that, unlike the method 

discussed in the prior chapter, is amenable to a wide variety of computational 

design tasks.  The results of the previous chapter form the basis for comparison 

and analysis of the new method.  This chapter is one of the primary 

contributions of this dissertation.  Identifying and verifying a method of vector 

space similarity measurement that is not task specific can contribute to a 

variety of design methods and tools, particularly analogical design tools.  In 

addition, the particular method explored in this chapter provides a bridge 

between engineering design and information retrieval, a field with a rich body 

of tools and methods that may be of use for a variety of problems in design.  

4.1.1 Chapter Roadmap 

This work has used and relied on vector space representations of design 

data without explicitly defining what a vector space model is, so the chapter 

begins with a more rigorous definition of vector space models.  After arguing 

that many of the data sets and product representations engineering design 

research seek to manipulate are vector space models, specific results and 

techniques from the field of information retrieval are introduced.  A parallel 

between the similarity measures needed in this work and the approach used to 

find similar texts in a corpus with latent semantic indexing is drawn.  

Recognizing that the problems are analogous, the solution presented by latent 

semantic indexing is adapted to suit the vector space models for engineering 

design.  The new similarity measure is compared to the measure of functional 
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analogy explored in chapter 3.  Comparing and contrasting the new measure 

with the old provides preliminary evidence to support its utility for engineering 

design problems.  Finally, the modifications necessary to the new method to 

provide a replacement for the tool discussed in Chapter 3 are presented. 

4.1.2 Contributions of this chapter 

1. Verifies that important representations of engineering design data meet 

the formal definition of a vector space model  

2. Adapts and extends latent semantic indexing, an information retrieval 

technique to formulate a new method for assessing similarity in vector 

space engineering design data. 

3. Applies the resulting similarity measure to the functional analogy 

problems of previous chapter, and shows that the new measure meets 

or exceeds the performance of the existing methods for the benchmark 

problems 

4. Identifies the steps needed to use the new similarity measure in a viable 

function-based analogy search tool that can replace prior work.  

4.2 Vector Space Representations  

Within computational design tools, vector space representations are 

common.  Before delving into their applications in engineering design an 

obvious question is, what are vector spaces?  A simple definition of a vector 

space is any collection of vectors where linear combinations make sense.  More 

specifically a vector space over the real numbers ! consists of a set ! and the 

addition and multiplication operators subject to 10 conditions. 

Sufficient conditions for the set ! to be a vector space are: 

1. If !!! ! !then !!! ! ! 
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2. If !!!! ! ! ! then !!! ! ! ! ! 

3. !!! ! ! ! ! ! ! ! !  

4. ! ! ! and ! ! ! ! ! for any ! ! ! 

5. For any !, -! exists and ! ! !! ! ! 

6. For scalars g and h in !, ! ! ! ! ! 

7. ! ! ! ! ! ! ! ! ! ! ! ! ! 

8. ! ! ! ! ! ! ! ! ! ! ! ! ! 

9. ! ! ! ! ! ! ! ! ! ! !  

10. ! ! ! ! ! 
These definitions and conditions are adapted from[95] and [96].  While 

it is typical to imagine vector spaces as columns or rows of real numbers, a 

vector space is more correctly described as any collection where these linear 

combinations work.  Fortunately, in this work vector space representations will 

generally be columns in !!, and most commonly in !!, the set of integers.     

A common product representation in engineering design is a Design 

Structure Matrix (DSM).  The DSM is a matrix that describes connections and 

dependencies among the sub-assemblies and components that make up a 

product.  There are a number of DSM variants today, but most are derived 

from Steward’s design structure system [97].  Originally an attempt to manage 

the iteration inherent in designing systems with complex interactions, DSMs 

have evolved to serve a number of different requirements and as a result a 

number of sub-types of DSM are now recognized[98].   

One variant of the DSM is a component or product architecture type.  

This is a matrix whose rows and columns represent components and whose 

elements represent connections between those components.  For example, if 
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component ! connects to component ! then the !"!! element of the DSM is a 

count of the number of times that connection is seen in the data.  If they do not 

connect then the !"!! element is 0.  Such a DSM could be constructed to show 

the interconnections of an individual product, or component-to-component 

relationships in a dataset of many products.   

It is relatively easy to show that a DSM constructed in this way is a 

vector space.  To validate this claim, consider two products: a vegetable peeler 

and an ink pen.  DSMs for both products are shown below. 

 

 Blade Handle Blade Cover 
Blade 1 1 1 
Handle 1 1 0 
Blade Cover 1 0 1 
Figure 4.1 Vegetable Peeler DSM 

 

 Barrel Cartridge Cap 
Barrel 1 1 1 
Cartridge 1 1 1 
Cap 1 1 1 
Figure 4.2 Ink Pen DSM 

With these two example DSMs, it can be shown that the vector space 

conditions outlined earlier in the section are met by DSMs.  First, these two 

matrices are in the set of all components.  Their sum, shown below, is also in 

that set, and addition is both transitive and commutative.  An example of 

addition is shown in Table 4.3.  
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 Blade Handle Blade Cover Barrel Cartridge Cap 
Blade 1 1 1 0 0 0 
Handle 1 1 0 0 0 0 
Blade Cover 1 0 1 0 0 0 
Barrel 0 0 0 1 1 1 
Cartridge 0 0 0 1 1 1 
Cap 0 0 0 1 1 1 
Figure 4.3 Ink Pen and Vegetable Peeler Combined DSM 

It is useful that DSMs and other design representations exhibit this 

property of vector space representations because it enables the construction of 

matrices that incorporate knowledge about a body of products.  A variety of 

efforts have taken advantage of this property of DSM’s and other matrices in 

engineering design.   Aggregated vector space models of product functions and 

component selection have been used as an aid in concept generation[99, 100], 

and extended to build a functional automated concept generator [20].   Various 

related efforts have explored predicting product failure [55, 57, 60], assessing 

manufacturability [62, 101], and estimating environmental impact in early 

design from similar datasets [66]. 

Returning to the question of whether the DSM and by extension 

analogous representations are proper vector spaces, criteria four through ten 

must still evaluated.  The next three criteria can be checked by inspection.  

Clearly addition of a zero vector will not change the result.  Likewise, 

inspection shows that the addition of the negative of one of these DSMs to 

itself would result in an empty DSM.  Finally, the multiplication of any of these 

by a scalar will scale the data but it will still remain in the set. 

The two example products used share no components in common.  

They are orthogonal to one another, so their product should be a zero matrix.  

They will not suffice to demonstrate any of the multiplicative criteria.  An 
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alternative pen design without a cap is introduced in the following DSM to 

facilitate examples of multiplication.  

 Barrel Cartridge Cap 
Barrel 1 1 0 
Cartridge 1 1 0 
Cap 0 0 0 

Figure 4.4 Alternative Ink Pen DSM 

Let the first and second pens be ! and ! and let g and h be any scalars.  

Then criteria 7 through 9 are satisfied as shown in the following figures. Figure 

4.5 Criterion 7 shows that the sample DSM meets the seventh criteria; scalar 

multiplication is distributive with respect to vector addition.  

 

! ! ! ! ! ! ! ! ! ! ! ! ! 

! ! ! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

 

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

!
! ! !
! ! !
! ! !

!
! ! !
! ! !
! ! !

 

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

!
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

  

Figure 4.5 Criterion 7 Distributivity of Scalar Multiplication 

 

Figure 4.6 demonstrates the eighth criterion, distributivity of vector 

sums with scalar multiplication. 
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! ! ! ! ! ! ! ! ! ! ! ! ! 
! ! !
! ! !
! ! !

!
! ! !
! ! !
! ! !

! ! ! ! !

! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

 
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

!

! ! !
! ! !
! ! !

 

!! !! !
!! !! !
! ! !

!
!! !! !
!! !! !
! ! !

 

Figure 4.6 Criterion 8 Distributivity of Vector Addition with Scalar 
Multiplication 

Figure 4.7 Criterion 9 verifies the associative property of scalar multiplication.   

! ! ! ! ! ! ! ! ! ! !  

! ! ! !
! ! !
! ! !
! ! !

! ! ! ! !
! ! !
! ! !
! ! !

 

!! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

 

!! !! !!
!! !! !!
!! !! !!

!
!! !! !!
!! !! !!
!! !! !!

 

Figure 4.7 Criterion 9 Associative Property of Scalar Multiplication 

Finally, by inspection we can see that the product of the DSM and one 

is one, so criterion 10 is satisfied. 

The proceeding discussion illustrates that DSM’s are vector spaces.  A 

similar approach could be used to show that many other matrix and vector 
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data structures employed in the engineering design literature are also vector 

spaces.  Widely accepted representations like the morphological matrix as 

described by Pahl and Beitz [5]  and the design matrices of Suh [1, 2] meet the 

definition of a vector space.  Even graphs, which aren’t obviously vector space 

models can be transformed into adjacency and incidence lists or matrices that 

meet all the criteria of a vector space.  So many important design 

representations meet the definition of a vector space that the challenge would 

be to find a numerical or categorical representation of product data that is not 

a vector space model.  Such a representation, by definition, would not have 

useful linear combinations, and would likely be of limited utility, particularly in 

computational design.  If we accept that most representations are vector space 

models, then this leads inevitably to the conclusion that the proper route to 

resolving the difficulties in similarity measurement highlighted in preceding 

chapters is to adapt vector space similarity measures.  The following sections 

will explore adapting some of these techniques from other domains.   

It should be obvious that a vector space, as defined above, is a flexible 

model that could reasonably apply to a variety of systems.  When referring to 

vector space models, it’s necessary to be more explicit about the level of 

abstraction being applied.  As suggested by Dubin [102], four levels of 

abstraction can be recognized in a vector space model.  First, there are 

algebraic vector spaces.  This is the most general category, and simply requires 

that the linear algebraic axioms discussed at the beginning of the section hold.  

These are outlined in standard linear algebra texts [95].  Second, there is the 

measurement theory view of vector spaces.  As described in Michell [103], this 

view sees the vector space as defining quantitative, ordinal relationships 

amongst variables such that the distance between observations is a function of 

the differences between the vector elements.  This is one view that we will 
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exploit, particularly in assessing the similarity of automatically generated 

concepts.  A third view is the one that most engineers will be familiar with: the 

vector space as a model of physical forces and relationships.  This might 

include the speed and direction of the particles of a body in motion [104], or 

the state of stress inside an object [105].  Finally, there is a data-centric 

interpretation.  In this view data are represented in a matrix where items are 

represented along one dimension of the matrix while observations about 

particular features are recorded on the other [106].  Operations can be 

understood to apply in the same way that they do in the more abstract 

algebraic sense, but concepts like distance and orthogonality are necessarily 

less well defined.  This is the interpretation that will be used most heavily in 

this work.  

4.3 Vector Space Techniques in Information Retrieval 

Setting aside, for the moment, the problem of measuring the similarity 

of two design artifacts against some arbitrary criteria, consider another area 

where measuring the similarity of two artifacts is important, information 

retrieval.  The field of information retrieval concerns itself with finding 

relevant information in a document, article, book, or website based on a 

particular query.  Researchers in the field have necessarily had to confront the 

problem of assessing the similarity of sets of complex artifacts 

4.3.1 History of Vector Space Models in Information 

Retrieval 

The advent of computers, databases, and digital documents has 

fundamentally alerted the challenges and opportunities in this area.  On the 

one hand the volume of content created on a daily basis is staggering.  The 
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barriers to creating and publishing a document, whether in print or 

electronically, have never been lower.  On the other, the same tools that allow 

for the easy dissemination of information provide opportunities to 

automatically parse, organization, and locate relevant works. 

Traditional information retrieval is accomplished through some form 

of indexing.  In the early years of the written word, that index was often 

contained solely in the head of the owner or curator of a particular library.  

Eventually libraries grew too large and users would instead consult physical 

catalogues to locate works by a particular author, about a particular subject, or 

with a specified title.  The first real changes to this arrangement followed the 

rise of the personal computer.  However, early generations of computational 

tools simply replaced the physical catalogue with a database containing the 

same information.  The indexing of information remained a mostly human 

driven process.  This quickly became an untenable situation.  There are 

millions of books in print in the United States, and Google indexed its one 

trillionth unique URL in 2008 [107].  It would be utterly infeasible for a small 

team of curators or librarians to digest and index all this data.  As the number 

of people indexing the information grows, inconsistency is certain to creep into 

the data set.  Imagine two different indexers reading this dissertation.  One 

might index it using terms like engineering design and computation in design.  

Another reader might choose different words like mechanical engineering and 

vector space methods.  If enough readers indexed the document, these 

inconsistencies might cancel each other, but in the near term the random 

assignment of a particular human indexer to a document could result in 

important information being hidden from interested readers.  A robust and 

preferably automated indexing scheme is needed.   
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Driven by the increased availability of networked computers, aggressive 

development of modern automated information retrieval tools began in the 

early 1990’s with the beginning of the Text Retrieval Conference (TREC) under 

the auspices of the Defense Advanced Research Projects Agency (DARPA) and 

the National Institute of Standards and Technology [108].  Meanwhile a 

related, concurrent DARPA effort called TIPSTER sought to identify a 

common set of protocols for automated document processing [109].  The 

problems faced by the information retrieval community are similar to the 

engineering design problems addressed by this dissertation.  In both, the 

similarity of individual members of a group of objects must be assessed 

automatically.  Singhal identifies three different approaches in the information 

retrieval literature, vector space models, probabilistic models, and inference 

networks [110].   The remainder of this chapter will examine vector space 

methods in information retrieval and apply them to similar problems in 

engineering design to evaluate their utility. 

One avenue explored in information retrieval was to represent 

documents as a vector of the frequency of term occurrence [111].   The 

application of a vector space model to document classification and retrieval is 

typically credited to Salton [112].  However recent research by Dubin, 

ironically using methods dependent on vector space models, finds a more 

complicated origin [102]. Switzer [113] and Sammon [114] also explored 

vector space models at approximately the same time, and there were likely 

other efforts that have been lost because of the large gap between the 

theoretical exploration of vector space methods in the 1960s and their practical 

implementations in the late 1980s.  Since it was first described, the application 

of vector space models to document indexing has been the subject of 

continuous evolution and development.   
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Tversky pointed out the limitations of a vector model to mimic human 

judgments of similarity.  The geometric interpretation of similarity in the 

vector space model does a poor job of dealing with issues of context.  For 

example, a naïve vector space model would struggle to determine if Miami and 

Havana are similar, or different.  They have similar locations and climates, but 

they’re quite different politically and economically.   Without appropriate 

structure the vector space model will miss these nuisances.  Humans, unlike the 

vector space model also respond to different stimuli in different ways.  The 

threshold of similarity for two things to sound alike is different that the 

threshold for which the look alike [115].  This is an important issue in using 

these tools in engineering design applications.  The choice of a diesel engine 

instead of a four-cycle engine in a car seems less dramatic than the choice of a 

jet engine instead of an internal combustion engine for an airplane.  

Approaches to deal with these context specific issues will be discussed in more 

detail in later sections on term weighting.   

Theophylactou and Lalmas extended the vector space model by 

combining it with elements from theories of evidence to create a model better 

equipped to deal with natural language [116, 117].  While Arampatzis et al 

employed an indexing scheme derived from linguistics as the basis for indexing 

documents [118], Jiang and Littman approximated high dimensional vector 

space representations to make them more computationally feasible [119].  

Meanwhile Salton and others continued to refine and implement vector space 

tools [111, 120-125].  The direction in recent vector space information retrieval 

research most relevant to the goals of this research is an approach called latent 

semantic indexing. 
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4.3.2 Latent Semantic Indexing and Rank Reduced 

Approximations 

Two key challenges in information retrieval are synonymy and 

polysemy.  Synonymy is the case where multiple words share exact or 

overlapping meanings.   For example, consider searching for work about the 

properties of the normal or Gaussian distribution in statistics.  Many works 

will use the term normal distribution, others will describe the same distribution 

as a Gaussian, and some subset of writings will use both names.  How can an 

automated indexing system determine that these works are all about the same 

subject?  How can it know, or at least make a reasonable guess, that if I search 

for normal distribution, I should also see documents that discuss Gaussians?  

Polysemy, words with many meanings, presents a related challenge.  If an 

engineer and a psychologist both search a library for articles related to stress 

and fatigue, each expects an entirely different set of results.  How can an 

automated information retrieval system detect that one subset of results 

matches the engineer’s view of the word stress, while another set matches the 

psychologist’s? 

Initially, synonymy and polysemy do not seem like issues that should 

effect similarity measurement in vector space models in engineering design.  

As has been discussed in earlier chapters, most product data can be, or has 

been, encoded using fixed taxonomies of functions, components, and physical 

parameters.  Properly constructed taxonomies should avoid both assigning the 

same meaning to multiple terms and using multiple terms to express the same 

meaning.  In practice, the results are not so clean.  Currently, there are 46 

examples of batteries in design repository.  Among this set of artifacts, the 

functionality of a battery is recorded in twelve different ways [15].   If a 
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component with relatively homogeneous functionality like a battery has this 

many representations, more complicated artifacts are likely to diverge to an 

even greater degree.  Fixed taxonomies for capturing design information will 

always walk a tightrope between being flexible enough to capture the breadth 

of information needed to record an artifact and its design rationale and rigid 

enough to avoid ambiguity.  Even with ideal vocabularies to describe it, 

recorded design information would always be subject to the fallibility of the 

recorder.  Even if information is recorded perfectly, much of that information 

is the attempt of an outside party to capture the rational of a designer with 

whom they have probably never communicated.  Consequently, there will 

always be some finite level of uncertainty about recorded design information.  

It must be assumed that it contains some errors, and does not perfectly capture 

reality.  We can regard polysemy and synonymy as manifestations of 

uncertainty that are particular to text documents.  The approaches used to deal 

with this particular type of uncertainty can be extended to deal with the various 

uncertainties inherent in problems in engineering design. 

Latent semantic indexing (LSI) begins with a vector space model of 

information sources, in the case of information retrieval; this is a set of 

documents encoded as vectors where each component represents the relative 

importance of a particular term in representing or constructing that document.  

The aggregation of these vectors into a term by document matrix creates a 

vector space representation of a corpus of documents [126].  This approach 

was pioneered by SMART (System for the Mechanical Analysis and Retrieval 

of Text) [127].    

Latent sematic indexing takes this representation a step further by 

suggesting that these document vectors are a noisy representation of a hidden, 

or latent, document vector that encodes it’s actual meaning [128].  
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Constructing low rank approximations of the term by document matrix can 

reduce the effect of this noise on the query process [129].  Rank reduced 

representations are used in this context in a variety of applications including 

mathematics [130], speech recognition [131],  modeling noise in structures 

[132, 133],  computer security [134], and image processing [135-137].  This 

approach has achieved good results for the TREC collections discussed earlier 

[138], but is most successful when applied to focused collections where, in 

general, documents are about related subjects [129].   There are a variety of 

ways to construct rank reduced representations of a matrix including, QR 

factorization, Principal Component Analysis, Singular Value Decomposition, 

and Non-negative Matrix Factorization.  Once documents have been 

represented in this rank reduced space, their similarity to one another, or to a 

query vector can be measured through a variety of methods including 

Euclidean, Minokowsi, city block, Mahalanobis, or cosine distance, among 

others.   

4.3.3 Constructing the Vector Space Model 

This section will illustrate the rank reduction and query matching 

process as employed in LSI.  The following summary will explore the approach 

and mathematics behind it in sufficient detail to explain the analysis presented 

later in this section, however LSI is an umbrella term for a complex and still 

evolving set of techniques more complete surveys are presented by Berry [126, 

139-141], Letsche [142],  and Pauca [143].  An alternate derivation by Story 

takes a Bayesian approach to the text classification problem that leads back to 

LSI [144].   

To illustrate the approach, let’s consider a particular term by document 

matrix that represents the titles of several books on my shelf.  These books are 
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Advanced Engineering Dynamics (AED), Analytical Dynamics (AD), 

Fundamentals of Aerodynamics (FA), Mechanical Engineering Design (MED), 

and Product Design (PD).  If we parsed these titles we can extract a series of 

terms: advanced, engineering, dynamics, analytical, fundamentals, aero, 

mechanical, design, and product.  These terms describe, to a limited extent, the 

contents of the document.  A full term by document matrix would show the 

frequency of all the important words in each document, and would give a 

much more complete picture of the subject of each work.  The corresponding 

term by document matrix is illustrated in Figure 4.8.   

Title AED AD FA MED PD 
Term 
Advanced 1 0 0 0 0 
Aero 0 0 1 0 0 
Analytical 0 1 0 0 0 
Design 0 0 0 1 1 
Dynamics 1 1 1 0 0 
Engineering 1 0 0 1 0 
Fundamentals 0 0 1 0 0 
Mechanical 0 0 0 1 0 
Product 0 0 0 0 1 

Figure 4.8 Example Term by Document Matrix 

4.3.4 Weighting Schemes 

The first step in dealing with a term by document matrix is to apply 

local, within document, weights and global, across all documents, weights to 

compensate for the effect of things like document length on term frequency.   

Each element of the weighted term by document matrix !!"  is equal to 

the product of a local weight !!" , a global weight !!, and the original frequency 

!!" .  
!!" ! !!!!"!!"  
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A variety of weighting schemes have been proposed, but two popular 

techniques are inverse frequency weighting, and log-norm weighting [145, 

146].  In the inverse document weighting scheme the local weight is 1, while 

the global weight is given by the following formula [145]. 

!! ! !"#!
!
!"!

! !  

The document frequency !"!  is the number of documents in the corpus 

that contain term i and n is the total number of documents in the corpus.  

Taking the base two logarithm of the frequency converts the weighting to bits, 

a common practice in information theory.  

Log-entropy weighting involves a more complex set of local and global 

weights inspired by some results from information theory.  Log-entropy 

weighting begins with the Shannon information content which is traditionally 

defined by the following equation [147].  

! ! ! !"#!
!

! ! ! ! ! ! ! !
! ! ! ! !

 

 The purpose is to turn the probability of an event into a measure of the 

information conveyed if we know the outcome of the event.  When the 

probability is zero or one, the outcome is certain and knowing that a particular 

outcome happened tells us nothing; the information content of the outcome is 

zero.   Now, imagine a box filled with 10 colored balls.   Imagine five are 

orange, four are black, and 1 is white.  So the respective probabilities of pulling 

out an orange, black or white ball are 0.5, 0.4, and 0.1.   The information 

contents of each event are 1, 1.3, and 3.3 bits respectively.  If we draw the white 

ball, we get a lot of information.  We know precisely which ball has been drawn 

and we know that a subsequent draw without replacement will net an orange 
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or black ball.  Conversely, selecting an orange ball tells us much less.  We know 

the ball we’ve selected is one of 5 possible orange balls, and if we draw again the 

next ball could be any of the three colors.  This measure of information content 

has applications from data compression to optimal measurement schemes, but 

for the purpose of this work, it suggests how interesting any particular product 

parameter in our vector space model is. 

 

Table 4.1 Example of Entropy Calculation 

  p(x) h(x) 
Orange 5 0.5 1.0 
Black 4 0.4 1.3 
White 1 0.1 3.3 
Total 10 H(x) 1.4 

 

The entropy of an ensemble, or collection of events, is then defined as 

the average Shannon information content of each outcome.  

! ! ! ! ! ! !  

So for the example above the entropy is 1.4 bits.  Entropy, from a 

thermodynamic prospective is the amount of energy unavailable to do work in 

a heat engine, or the amount of energy required to move heat against a 

temperature gradient.  At the level of particles, this becomes a measure of the 

order of the particles in the system.  Energy is needed to put particles back in a 

more ordered, colder state, or is lost, as the particles in the system become 

more disordered with a rise in temperature.  The concept of entropy as a 

measure of order is what gives information entropy its name.  Consider two 

probability distributions, a uniform distribution and a normal distribution.  

The uniform distribution has much higher entropy because significantly more 
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effort, or sampling, would be needed to understand the structure of the data.  

In fact, a uniformly distributed random variable has the highest possible 

information entropy.    Local and global weightings under this scheme are then 

defined by the following equations, where tf is the term frequency, p is the term 

frequency divided by total occurrence of the term, and n is the total number of 

documents in the set  [145].  Section 4.4 will explore the effects of different 

weighting schemes on real product related vector space models.   

! !! ! ! !"#! !" !! ! ! !  

! ! ! ! ! !!" !"#! !!"
!"#! !

!

!!!
 

4.3.5 Reduced Rank Approximations 

 

Figure 4.9 Sample Grey Scale Image at Rank 940 

Once an appropriate weighting scheme has been applied, the next step 

is to construct a rank reduced representation of the vector space.  The rank of 

the vector space model is the maximum number of linearly independent 

vectors [95, 96].   Rank reduced approximations can be thought of as a form of 
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lossy compression.  As example, consider a gray scale image like the one in 

Figure 4.9.  The rank of this image is approximately 940.  It has around 940 

columns representing strips of pixels.  Each element of the vector is an integer 

indicating the value of that pixel on a scale from white to black.  This image is 

represented by a series of numeric vectors that are, conceptually, no different 

than the data matrices that may be used by various engineering design tools.  

To illustrate the effect of rank reduction graphically, a series of rank reduced 

approximations are presented Figure 4.11 and Figure 4.12.  The actual 

mechanism for constructing low rank approximations will be discussed in 

more detail later in this sections, but for now, this exercise demonstrates the 

effect of these approximations on data that is readily visualized.   

 

 
Figure 4.10 Approximation of Image Reduced to Rank 470 and Rank 235 

The original image is a relatively clear image of a dog’s face.  The next 

figure shows the image constructed from rank 470 and rank 235 

approximations of the original, or roughly half and one quarter the original 

rank. 
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In the approximated images, it is still possible to clearly make out the 

face of the dog, but some changes are evident in the background and in the 

lighting.  As the approximation gets bigger it looks like some detail is lost.  

Clearly this is a lossy form of compression, not a good way to reduce the size of 

an image as is clearly shown by much more aggressive approximations of rank 

94 and rank 10, or reductions in rank of one and two orders of magnitude.   

 
Figure 4.11 Rank 94 and Rank 10 Approximation of Image 

The rank 94 approximation still does an acceptable job of representing 

the original image.  Rendered larger, it begins to look fuzzy and detail is clearly 

lost, but in this case it’s possible to construct a rank 94 approximation of the 

original image that is a reasonable stand in for the original while requiring 

much less information to construct.  The rank 10 approximation on the other 

hand has clearly gone too far.  Without having seen the original it would be 

difficult to know what the original picture was.   

This exercise shows what it means for rank reduced approximation to 

be a form of lossy compression.  It’s less clear why this is an appropriate 

treatment for vector space data being compared for document retrieval in the 

case of LSI or various applications in engineering design.  After all, it seems 
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undesirable to take our data and make it fuzzier.  The difference is that an 

image stores a relatively precise representation of the information we intended 

to capture.  A clear image has been made fuzzy.  In LSI, or the engineering 

applications proposed in this work, the starting point is not a clear image.  In 

LSI the inherent semantic content of the document is essentially hidden and is 

only viewed through the lens of the specific words used to construct the 

document.  The first chapter of this dissertation attempted to show that the 

data available to us for many computational design tasks is also a fuzzy and 

incomplete picture.  Consider then, the reduced rank approximation of a noisy 

image.   The following figure shows the original example image, but with 

Gaussian noise applied.  The image next to it is a rank 100 approximation of 

the noisy original. 

 
Figure 4.12 A Noisy Image and its Rank Reduced Equivalent 

The picture on the left is noisy and grainy.  The rank reduced 

approximation on the right has had the noise smoothed out by the rank 

reduction process.  Reduced rank approximation is, in general not an efficient 

way to de-noise an image, but researchers in information retrieval have shown 
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that it is a suitable way to deal with the noise and uncertainty in their vector 

space models.  In section 4.4, the suitability of various reduced rank 

approximations for engineering design data will be assesse, while the 

remainder of this section will discuss how to calculate and utilize these 

approximations.   

The preceding example gives a qualitative feel for the effect of reduced 

rank approximations of vector space data; now the actual mathematics can be 

addressed.  Consider the following 3x3 matrix as a motivating example. 

! !
! ! !
! ! !
! ! !

 

The matrix is square, positive definite, non-symmetric, and non-sparse.  

While that makes an initial explanation easier, none of these properties are 

necessary, and they’ll be relaxed as the approach is developed.  In fact it should 

be expected that for realistic vector space models of design artifacts the 

representations will be sparse, non-square, and symmetric, for certain kinds of 

data.    It’s well known that for a given matrix we can find a set of characteristic 

values, or eigenvalues, and a corresponding set of vectors so that for any 

eigenvalue ! and any eigenvector ! such that !! ! !"!.  Using our example 

matrix A, we can find a set of eigenvalues by solving the characteristic 

equation. 

! ! !" ! ! ! 
! ! ! ! !
! ! ! ! !
! ! !! !

! ! ! 

! ! ! ! !
! !! ! !
! ! ! ! !

! ! 

!!! ! !"!! ! !"#! ! !"# ! ! 
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! ! !"!!! !!!! !!!  

! !
!!!!
!!!!
!!!!

!
!!!!
!!!
!!!

!
!!!
!!
!!!

 

These values and corresponding vectors satisfy the eigenvalue equation 

to with a tolerance for round off error.  There are countless applications of this 

type of analysis including vibration analysis, finding principal axis in dynamics, 

principal stresses in solid mechanics, and even the principal component 

analysis used earlier in this work.  From these applications, and others, we 

know that minor change in the contents of A can result in complex roots and 

consequently results with complex roots.  For many applications this is an 

important and useful result, but in this case operating in the complex plane is 

undesirable.  The above equation is the most common expression for the 

eigenvalue problem, but it technically defines only the right eigenvector.  There 

exists a corresponding left eigenvector ! such that !! ! !"!.  These Eigen 

decompositions are generally relevant when a matrix can be thought of as a 

transformation or mapping of an n-dimensional space onto itself [148]. 

The notion that a matrix has both left and right eigenvectors can be 

extended to create a matrix decomposition that is generalizable to non-square 

matrices which are mappings from one space onto another [148].    This 

technique, the Singular Value Decomposition (SVD) was first presented by 

Beltrami and Jordan around the turn of the twentieth century [149].  Jordan 

began by looking for minimums and maximums of a pseudo-similarity 

transform of the matrix A.  

 

!!!" 
! ! ! ! ! ! ! 



(! 

A necessary condition for an extreme value is that the determinant be zero.   

! ! !!!!" ! !!!"# 
A is non-zero so the following must be true. 

!!!! ! !!!! ! ! 
Combing those two equations and introducing a scalar !, Jordan 

obtained two equations. 

!" ! !" 

!!! ! !" 
 

The sigma term is the maximum of the original system, so Jordon 

observed that it was determined by the roots of the following determinant. 
!!" !
!! !!"  

The roots of this determinant can be organized into a diagonal matrix ! 

and two matrices U and V calculated from it such that A is decomposed as in 

the following equation. 

! ! !!!!  
Calculating U and V is not a trivial process and they are non-unique, 

but they can be constructed as orthogonal matrices whose columns are 

normalized singular vectors.  Unlike the eigenvalue decomposition, it can be 

shown that for real A, all elements of the SVD are real.  The decomposition can 

be generalized to operate on complex matrices as well by replacing the 

transpose of V with its Hermitian transform.  Given the challenges in 

calculating U and V that satisfy those criteria for non-trivial problems, many 

years elapsed between the description of the SVD and initial practical 

applications.  In 1965 Golub and Kahan introduced a stable algorithm for 

efficiently calculating the SVD that is the basis for most modern 
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implementations of the SVD [148-150].  Using an implementation of Golub 

and Kahan’s algorithm we can calculate the SVD of the example matrix used to 

demonstrate Eigen decomposition. That factorization is shown below. 

! !
! ! !
! ! !
! ! !

! !!!! ! 

!!!!"!#! !!!"#$ !!!"#$
!!!!"!# !!!!"## !!!!"#$
!!!!"#$ !!!!"#! !!!"#$

!"!!"#$ ! !
! !!!!"! !
! ! !!!"#$

! 

!
!!!!!"#! !!!!"#$ !!!""#
!!!!!!"## !!!!"#$ !!!!"!#
!!!!"#$ !!!!"#$ !!!"#$

!

 

The real utility of the SVD for the applications envisioned in this 

dissertation is the ease with which rank reduced approximations can be 

calculated using it.  Eckart and Young argued, and Johnson later proved, that 

computing the SVD of A and then retaining only the first k singular values 

finds the best rank-k approximation of a matrix A.   

!! ! !!!!!!!  
! and !! are !!! matrices, !! is a !!! matrix formed from the first k 

columns of U, !! is a !!! diagonal matrix with the first k singular values on 

the diagonal, and !! is a !!! matrix of the fist k columns of V.  They went on 

to show that the norm of the difference between the original and rank k 

approximation is exactly equal to the root of the sum of the squares of the 

omitted singular values [151, 152]. 

! ! !! ! !!!!! ! !! !!! 

With only a small change to this form, we can compute the percent 

change due to the approximation. 
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! ! !!
! ! !!!!! ! !! !!!

!  

 

 If we look at our sample matrix A again, we can calculate its norm as 

13.6159.  The magnitude of the error introduced by a rank 2 approximation 

would be about 40%, and a rank one approximation would be about 70%.  For 

this small example, any approximation introduces a large error.  For larger 

problems, significant rank reduction is often possible with minimal error.   The 

rank 94 approximation of a rank 940 gray scale image shown in Figure 4.11 has 

only about 5% error compared to the original.  Clearly this method of rank 

reduced approximation has advantages over the principal component method 

discussed in chapter 2 because we can now pick an approximation based on the 

magnitude of the error it introduces.  Though it should be noted that SVD and 

PCA are ideas that are closely linked.  A step in PCA is typically computing the 

SVD after the matrix of observations has been centered.  Thus SVD finds the 

best linear subspace of a matrix, and PCA finds the best affine linear subspace.  

Even thought the two are so closely linked, the rest of this document will focus 

on rank reduction via SVD for two reasons.  First, the components of the SVD 

are typically useful on their own, rather than recombined as they are in PCA.  

Query matching, in particular, can be accomplished using only a part of the 

decomposition.  Second, there are robust techniques for incorporating new 

data into the SVD without computing the entire decomposition again.  These 

folding in operations are more complicated under PCA due to the additional 

centering operation.  Theoretically, there’s no justification for preferring SVD, 

but in general, it will make practical implementation of the techniques 

discussed easier and marginally more computationally efficient.   
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Finally, after weighting and calculating a rank reduced approximation, 

we come to the question of actually measuring the distance between objects in 

the vector space.  There are a variety of possible distance measures, but the 

word distance, for many people, immediately evokes the Euclidean distance, 

the length of the path that connects two vectors as in Figure 4.13.  In lower 

dimensional spaces, like Cartesian coordinates, it is relatively easy to 

understand the meaning of a Euclidean distance.  However in higher 

dimensional spaces, it becomes harder to visualize with each additional 

dimensions.  Another issue with standard Euclidean measures is the effect of 

the magnitude of each vector on the distance.  After applying the weighting 

schemes and rank reduction introduced earlier, it is unclear what the real 

significance of each elements magnitude.   Instead, a measure that looks 

primarily at the angular difference between vectors is preferable.   We declare 

two observations are the same if they are co-linear and completely different if 

they are perpendicular, without regard to their relative magnitudes.  The 

simplest measure that meets the criteria is the cosine distance. The cosine 

distance is the cosine of the angle between two vectors on the plane they define.  

It is calculated by taking the dot product of the two vectors and dividing by the 

product of their 2-norms. 

 

!"#! ! ! ! ! !
! ! ! !
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Figure 4.13 Example of Euclidean and Cosine Distance 

 All our observations will be positive, so cosine distance will be 

measured on the interval between 0 and 1, where 1 indicates that two vectors 

are collinear and 0 indicates they’re totally orthogonal.  In principal any 

threshold for similarity can be chosen, but in keeping with the precedent of 

chapter 3, measures above 0.5 will indicate similarity between two objects. 

4.3.6  An Example: Text Book Title Similarity 

In section 4.3.3, a term by document matrix was introduced for the 

titles form a set of textbooks on my bookshelf.  Applying Log-entropy 

weighting transforms that matrix into the one shown in Table 4.2. 
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Table 4.2 Weighted Text Book Title Vectors 

Title AED AD FA MED PD 
Term 
Advanced 0.5571 0 0 0 0 
Aero 0 0 0.7725 0 0 
Analytical 0 0.7725 0 0 0 
Design 0 0 0 0.5693 0.7847 
Dynamics 0.5571 0.7725 0.7725 0 0 
Engineering 0.5571 0 0 0.5693 0 
Fundamentals 0 0 0.7725 0 0 
Mechanical 0 0 0 0.5693 0 
Product 0 0 0 0 0.7847 

 

Following the methodology outlined above, the SVD of this term by 

document matrix can be calculated.  The singular values of that matrix are, to 

two significant digits, 1.55, 1.26, 0.97, 0.87, and 0.63.  The full matrix is rank 5; 

using Eckart and Young’s formula we can find the error associated with 

approximating by rank reduction.  This is a small matrix, large errors should 

result form any rank reduction.  In fact we find that reducing from rank 6 to 

rank 5 results in an error of about 40%.  This is apparently a big error, but 

upon actually calculating the rank 4 approximation of the term by document 

matrix, it’s found that most of the difference occurs past the fourth significant 

digit.  Thus, for this example the original matrix and its rank 4 approximation 

are essential the same.  Using the cosine distance measure discussed above, the 

pairwise distance between book titles can be calculated.  The result is 

summarized in the following table. 
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Table 4.3 Pairwise Cosine Distances of Text Book Titles 

 
AED AD FA MED PD 

AED 1.00 0.41 0.33 0.33 0.00 
AD 0.41 1.00 0.41 0.00 0.00 
FA 0.33 0.41 1.00 0.00 0.00 
MED 0.33 0.00 0.00 1.00 0.41 
PD 0.00 0.00 0.00 0.41 1.00 

 

Examining the results, none of the books meet a 0.5 cutoff for 

similarity.  It seems that the first three titles Advanced Engineering Dynamics, 

Analytical Dynamics, and Fundamentals of Aerodynamics form a set of 

somewhat similar titles, and Mechanical Engineering Design and Product 

Design form another.  Obviously, a small set of titles is unlikely to correctly 

group the results.  Titles simply do not contain enough information.  When we 

read the titles we are able to guess, probably, correctly which are similar, but 

that is because we have a large data set in memory to help us understand that 

latent meaning the words carry.  To show how the process is improved by 

more data, I extracted the description of each book from amazon.com [153].  I 

transformed the text into a vector space model using the text mining plugin for 

R called tm [154, 155].   Using the same approach that was applied to the titles, 

I calculated log-entropy weights for each term and constructed a low rank 

approximation to the original data.  A table of pairwise comparisons of cosine 

distance is presented in Error! Reference source not found. 
 

Table 4.4 Pairwise Cosine Distances of Text Book Descriptions 

 AED AD FA MED PD 
AED 1.00 0.17 0.17 0.09 0.01 
AD 0.17 1.00 0.96 0.55 0.05 
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FA 0.17 0.96 1.00 0.56 0.06 
MED 0.09 0.55 0.56 1.00 0.02 
PD 0.01 0.05 0.06 0.02 1.00 

 

From the results, it is clear that a comparison based on the titles alone 

was not far off, even based on the descriptions the books are relatively 

dissimilar.  Analytical Dynamics and Fundamentals of Aerodynamics seem 

closely related, and Mechanical Engineering Design is somewhat related.  These 

three books are applied mechanics texts, so they should be deemed similar to 

one another, and Product Design focuses on the design process, so it should be 

an outlier.  However, seems like a failure of the approach that Advanced 

Engineering Dynamics isn’t found similar to the other mechanics texts.  This is 

an artifact of the way the books’ publishers have written their descriptions.  

The three mechanics texts that are found to be similar have descriptions that 

emphasize their textbook features, examples, problem sets, and solution 

manuals.  Advanced Engineering Dynamics has a description that emphasizes 

the topics covered like kinematics and ridged body motion.  Without a larger 

sample, the approach can’t reconcile these differences and sees the omitted 

dynamics text as separate from the others.   

This example obviously indicates that the suggested approach is not 

beneficial, for small data sets or for objects that can are described with a few 

possible parameters.  Hopefully, it has shown how the basic approach 

advocated in this work is implemented.  The following sections will validate it 

by tackling a series of more representative problems. 



)** 

4.4 Exploring Inter-Product Functional Similarity Through 

the Techniques of LSI 

In Chapter 3, an existing technique for finding functionally analogous 

products to a reference functional model was discussed in detail.  Clearly 

finding analogies is one problem in engineering design where a vector space 

similarity measure is potentially useful.  A measure that is applicable to a wide 

variety of models and encodings would be an especially useful contribution.  

Since there is already an approach in the literature specific to function based 

analogy, there is an opportunity to benchmark the proposed techniques and 

evaluate their appropriateness and effectiveness.  The following section will 

construct and manipulate a vector space model of a set of existing products and 

their functionality following the approach outlined earlier in the chapter.   

Then, inter-product similarity will be measured and compared against the 

results of Chapter 3.  The proposed method will be shown to meet or exceed 

the performance of the existing technique.   

4.4.1 Constructing and Weighting a Vector Space Model 

of the Data 

We begin exactly as in chapter 3 by querying the Design Repository 

using the SQL query supplied in Appendix A to construct a vector space model 

of the data.  Each column represents one of the 167 products in the repository, 

and each row a function-flow tuple from a fixed taxonomy of function and 

flow.    The value in each cell of the matrix represents the frequency with which 

that function appears in the model of each product.  Here we have already 

begun to deviate from the approach in chapter 3.  Rather than relying on our, 

or others’, subjective judgments of importance, we are simply operating on 
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what the data tell us.  A possible objection to the approach here is that 

functional models are typically constructed as graphs, and by storing only the 

frequency with which particular function flow pairs occur, some of the 

interesting details about their interaction with one another is lost.  The 

approach outlined here, could work on a vectorized form of the adjacency 

matrices of those graphs, but for the sake of more direct comparison with 

existing methods, the approach of chapter 3 is mimicked exactly.  A final 

concern with product vectors is the inclusion of so called supporting functions.  

These are elements in the database, which exist to capture the physical 

interconnections between components, but are not part of the overall 

functionality of the product.  The intent, as discussed in Chapter 3, is to find 

functional rather than structural analogies.  To that end, these supporting 

functions are explicitly omitted in product function matrix.  Once the vector 

space model of the data has been retrieved, it must be weighted appropriately.   

For the remainder of this work, the log-entropy weighting scheme will 

be used for its ability to bring forward the salient properties of each product in 

the dataset.  Proper weighting highlights elements in the data, which help to 

distinguish products from one another while minimizing the impact of data 

with little relevance.  In the case of product-function vectors, heavy weight will 

go to functions that occur in only a few products.  So a function like import 

solid that occurs in scores of products will get a small weight, while a function 

like convert electrical energy to thermal energy that occurs in a smaller subset of 

products will get a correspondingly higher weight. The weighted and 

unweighted product function matrices are attached in Appendix D. 

Examination of them shows that weighting worked as intended, rare 

entries with low magnitude are given very high weights, while frequent entries 

in the original set become small in the weighted matrix. 
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4.4.2 Rank Reduction via Singular Value Decomposition 

Following the procedure outlined earlier in the chapter, a rank reduced 

approximation of the original data is constructed using the singular value 

decomposition of the weighted product function matrix.  The original matrix 

has rank 166, which corresponds to the number of products in the matrix.  

Using Eckart and Young’s formula, the error introduced by each possible low 

rank approximation can be calculated.  Figure 4.14 shows a plot of the percent 

error associated with approximations from rank 1 to rank 165. 

 
Figure 4.14 Percent Error for Rank Reduced Approximations of Weighted 
Product Function Matrix 

From the plot, we see that the relative error between the original and 

rank reduced approximations is low even for very large reduction in rank.   An 

error of 1% is acceptable, so a rank 46 approximation is used.  For an error of 
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5% reduction to rank 12 is possible, but there’s not a compelling reason to 

tolerate so high an error when a suitably low rank approximation can be had 

with much less deviation from the original data.  Recall that the purpose of 

rank reduction is to reduce the impact of error and uncertainty in the data set.  

It is necessary to make enough of an approximation to mask some of the noise 

in the data, but not so great an approximation that useful signals in the data are 

also hidden.  Errors on the order of a few percent have worked well for the data 

sets I’ve experimented with, though some references in the LSI literature accept 

much higher relative error.  A reasonable amount of error will be dictated by a 

necessarily subjective assessment of the size and level of noise in the data set.  

The more data, or the more noise, present the greater the acceptable error. 

4.4.3 Comparison With Existing Similarity Measure 

The inter-product similarity is determined by calculating the cosine 

distance between each product and every other product in the dataset.  As in 

Chapter 3, several questions will be asked of the data.  First, general trends in 

inter-product functional similarity can be examined.  In Figure 3.2, duplicated 

as Figure 4.15 Trends in Inter-Product Similarity Using Existing Measure, the 

old similarity measure found 3 types of products, a small set with few similar 

products, a large set with few similar products and many somewhat similar 

products, and a set with weak similarity to all products.  Figure 4.16 is an 

identical plot generated using the new measure.  
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Figure 4.15 Trends in Inter-Product Similarity Using Existing Measure 
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Figure 4.16 Trends in Inter-product Similarity Using Proposed Measure 

 

The first obvious difference is the loss of the plateaus of similarity seen 

in the existing measure.  In general similarity between each product and others 

in the set declines rapidly and steadily for all products, indicating that most 

products have a few very near neighbors functionally speaking.  Second, we see 

that there are many more points in 0.8-1.0 range and in the 0-0.2 range.  This 

indicates that very similar products get much higher scores and dissimilar 

products much lower scores using the new measure.  This is desirable behavior; 

in the old measure many products landed around the border between 

similarity and dissimilarity.  Under the new measure they tend to fall clearly on 

one side of the line.   
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In Chapter 3, it was shown that the existing similarity measure found a 

series of products that were relatively dissimilar from even their nearest 

neighbors.  Repeating that analysis using the proposed method yields the 

following histogram for similarity between each product and its nearest 

neighbor. 

 
Figure 4.17 Histogram of Distance to Next Most Similar Product 

Using the existing method in Chapter 3, the same histogram was 

produced and similarity was distributed around a 0.7.  We can see from this 

plot that the new measure correctly assigns very high similarity to the next 

most functionally similar neighbor.  While using the old method 0.5 was taken 

as a cutoff for similarity.  With the new method, a much higher threshold is 

needed.  There are still a number of products whose nearest neighbor is not 
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very similar.  We can check the results of the new method by comparing the list 

of products with distant neighbors to the one found in Chapter 3. 

 

Table 4.5 Change in Most Dissimilar Artifacts Using New Measure 

System Original 
Position 

New 
Position 

Change 

dryer 144 142 2 
component basis 145 95 50 
dishwasher 146 145 1 
asm volume 2 147 151 -4 
cotton candy machine 148 78 70 
nasa anomaly 149 160 -11 
hulk hands 150 21 129 
alcohawk digital alcohol 
detector 

151 26 125 

coolit drink cooler 152 115 37 
ub roller coaster 153 149 4 
turtle 154 153 1 
bolting 155 44 111 
natural sensing 156 165 -9 
fly 157 133 24 
lawn mower 158 155 3 
dna 159 50 109 
jar opener 160 164 -4 
john deere tractor gear 161 158 3 
brake system 162 147 15 
bat 163 10 153 
two component regulatory 
system 

164 140 24 

lichen 165 137 28 
heart 166 159 7 
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Table 4.5 shows the products with the most distant nearest neighbors 

found in chapter three, their position on the old and new lists, and the distance 

each moved by applying the new measure.  While many of the products stay at 

the bottoms of both lists of products rank ordered by distance to their closest 

neighbor, many make significant jumps.  The question now is does this 

indicate that the proposed measurement method is better or worse than the 

status quo.  A reasonable conclusion is that it is an improvement specifically 

because of the products that make big jumps in the list.  Consider for example 

the bat, this is a biological product that we would expect to have very low 

similarity to other artifacts.  It was not surprising that the old measure found 

that it had no close functional neighbors.  However the new measure finds that 

functionally, it’s very similar to a stapler.  A stapler and bat seem wholly 

unrelated until we look into the database.  If we look at the artifact called bat, 

we find that it’s specifically focused on the functionality of the wings, which the 

recorder has indicated have a function of transferring mechanical energy.  

Whether we think that interpretation is correct or not, if that is its function, the 

bat is like a stapler.  We find similar rational for the big movers, the new 

measure, in general, seems to do a better job of sorting biological and complex 

systems. 

If we look at a table of the products that, based on the proposed 

measure, are distant from their nearest neighbors, we find some interesting 

additions to the list. 
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Table 4.6 Products with Low Similarity to Other Members of the Repository 
Based on New Measure 

System Distance to 
Nearest 
Neighbor 

game controller 0.480331623 
john deere tractor gear 0.431422946 
heart 0.42059038 
nasa anomaly 0.416878109 
iphone 3g s 0.396178105 
camera 0.386033707 
ge microwave 0.373093699 
jar opener 0.370705683 
natural sensing 0.307223227 
walker 0.049976454 

 

Recall that the distance is the cosine of the angle between the vectors 

that represent two products, so values as values approach 0 the products 

becoming increasingly different.  This set of products can be said to be 

different from even their closet neighbors.  Some of these products are on the 

preceding list, but some are new, and had close neighbors based on the old 

measure.  One product that appears on this list, but was deemed similar to 

another product by the old measure was the iPhone.  Under the previous 

method, the iPhone was found to be similar to a digital scale, and essentially 

nothing else.  If we examine the data in the repository we can speculate that 

their similarity in the old measurement method was based on the fact that both 

are powered by electrical energy, and both measure some facet of the 

environment.  In reality, it is difficult to argue that a phone and a scale are 

functionally similar in any real way.  Based on an examination of the products 
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at the low similarity end of the spectrum it seems that the LSI based measure 

improves upon existing method, and does a better job of making comparisons 

based on the primary functionality of each system.  

In Chapter 3, four test cases were identified based on a priori beliefs 

about which systems should be most similar to one another.  We can revisit 

these test cases using the new method to further compare it to the existing 

measure.  The following table summarizes the test cases used in Chapter 3. 

 

Table 4.7 Summary of Test Cases 

Test 
Case 

Description Products 

1 Coffee Makers Black 12 cup deluxe, black 12 cup economy, black 4 
cup regular, white 4 cup economy 

2 Biological 
Systems 

Any artifact where system type is biological 

3 Aerospace 
Systems 

A set of artifacts representing aerospace systems 
recorded to capture failure data 

4 Drills Skil drill, firestorm drill, delta drill, b and d drill 
attachement 

 

First, we can examine the four coffee makers.  The prior measure found 

that the four coffee makers where more similar to one another than any other 

products.  The following table shows the four most similar products to each of 

the four coffee makers.  This matches exactly what was found using the method 

discussed in Chapter 3.  We can conclude from this result, that the proposed 

measure preforms as well as the existing method for the first test case. 
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Table 4.8 Coffee Maker Similarity as Measured Using Proposed Method 

Reference 
Product 

Similar Products 
1st 2nd 3rd 4th 

black 12 cup 
deluxe coffee 

white 4 cup 
economy 
coffee 

white 12 cup 
regular 

black 12 cup 
economy 
coffee 

black 4 cup 
regular 
coffee 

black 12 cup 
economy 
coffee 

white 12 cup 
regular 

white 4 cup 
economy 
coffee 

black 4 cup 
regular coffee 

black 12 cup 
deluxe coffee 

black 4 cup 
regular coffee 

white 12 cup 
regular 

white 4 cup 
economy 
coffee 

black 12 cup 
economy 
coffee 

black 12 cup 
deluxe coffee 

white 12 cup 
regular 

white 4 cup 
economy 
coffee 

black 4 cup 
regular coffee 

black 12 cup 
economy 
coffee 

black 12 cup 
deluxe coffee 

white 4 cup 
economy 
coffee 

white 12 cup 
regular 

black 12 cup 
economy 
coffee 

black 4 cup 
regular coffee 

black 12 cup 
deluxe coffee 

 

Next, we can examine the set of biological products.  In chapter 3, it was 

found that the existing method had mixed performance for these systems.  In 

general it found some similarity amongst biological systems, and low similarity 

between biological and electromechanical systems.  In Chapter 3, this was seen 

as a plausible result, but given that electromechanical and biological systems 

were encoded using the same taxonomy of function and flow, the result seemed 

dubious.  Using the LSI based similarity measure, those biological systems that 

were most similar to other biological systems are now seen as very similar, but 

interestingly some electromechanical products have entered the list at 

moderate to high levels of similarity.  This division is based on differences in 

the way biological systems were recorded. Biological systems that were 

recorded using the flow biological energy tend to be similar to other similarly 
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recorded biological systems, while those that were recorded using more 

common terms like mechanical or electrical energy, tend to group with 

electromechanical systems.  Based on these results, for the second test case, the 

proposed measure is as good as or better than the existing one. 

Next, we consider the third test case, products recorded to capture 

failure information.  These systems recorded data from ASM failure reports, 

Consumer Product Safety Commission Reports, and NASA and NTSB aircraft 

failure reports.  The expectation for this test case was that these products 

should be relatively unique with few similar products because they represent a 

domain of products that is quite different from the consumer scale electro 

mechanical products that make up the bulk of the repository.  In Chapter 3, the 

existing similarity measure was found to contradict this assumption.  High 

degrees of similarity were found between some aerospace systems and 

consumer products, and each failure product had at least one functionally 

similar product.  Table 4.9 shows the results of applying the proposed measure 

to this test case.    

Table 4.9 Aerospace Systems Similarity as Measured by LSI Based Method 

Reference Product Similar Products 
1st 2nd 3rd 4th 

nasa anomaly - - - - 
galileo asm volume 1 rotorcraft - - 
cpsc - - - - 
asm volume 1 rotorcraft galileo robotic arm - 
asm volume 2 - - - - 

The results more closely match our prior expectation.  Some aerospace 

systems have no functionally similar products in the repository as was 

expected.  Those that are similar to other products are from within the same 

domain.  For example Galileo systems are functionally most similar to the 
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products extracted from ASM volume one and a set of rotorcraft.  A similar 

result was found for ASM volume one.  The products identified would all fall 

within the scope of large, aerospace products rather than the consumer scale 

products found elsewhere in the repository as was expected.  Based on the 

results of this test case and the biological systems test case, there is preliminary 

evidence to suggest the proposed measure outperform the exiting one for 

systems which are very different from other members of the data set. 

Finally, the fourth test case dealt with a set of drills.  In Chapter 3, it was 

suggested that this might be a poor test case, because while superficially 

similar, when the selected products are examined closely there is not a great 

deal of functional similarity.  That test case, when repeated using the proposed 

measure yields somewhat better results than were found with the existing 

method.  The results are summarized in Table 4.10. 

Table 4.10 Drill Similarity as Measured Using Proposed Method 

Reference 
Product 

Similar Products 
1st 2nd 3rd 4th 

b and d drill 
attachment 

b and d sander 
attachment 

b and d jigsaw 
attachment 

crest 
toothbrush 

bat 

delta drill mac cordless 
drill-driver 

b and d 
screwdriver 

digger dog irobot 
roomba 

firestorm drill delta sander b and d jigsaw versapak 
sander 

delta 
jigsaw 

skil drill skil jigsaw delta nail gun presto salad 
shooter 

mini 
bumble 
ball 

 

First, there is the Black and Decker, drill attachment.  Instead of a 

stand-alone drill, this product is a modular head that attaches to a rotary tool.  

Interestingly, the proposed similarity measure indicates that is most similar 
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functionally, to the two other modular heads for that tool.  The next most 

similar product is an electric toothbrush that is also based on a standard body 

that provides rotation to a modular head.  Finally there’s the bat, which as 

discussed earlier is assigned a function of transferring mechanical energy, so 

it’s position here is appropriate.  The other drills are found to be similar, 

primarily to other products for which operations on rotational mechanical 

energy are major aspects of their functionality.  This differs from the results of 

Chapter 3, where power tools tended to be grouped with other power tools 

related to cutting, or material removal.  This is a manifestation of an important 

difference between the current and proposed measures.  These are all relatively 

complex products and so a similarity measure could focus on various aspects of 

each product’s functionality.  The existing measure does not do a satisfactory 

job of emphasizing the important elements of each product’s functionality.  

The new measure specifically addresses the value of any function in 

differencing a product from every other product through the log-entropy 

approach to weighting the data.  As a result, the new measure sees rotation as 

being more salient that separating solid, and finds a more diverse set of related 

products.   

4.5 Efficient Computation of LSI Based Vector Space 

Similarity  

In the previous section, the functional similarity of products stored in a 

design repository was assessed.  Applying a series of test cases indicated that a 

measure derived from adapting the methods of Latent Semantic Indexing 

outperformed an existing functional analogy tool found in the literature and 

discussed in detail in Chapter 3.  While the preceding sections illustrate that 

the proposed approach works well, there are some practical issues related to a 
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real implementation of a functional analogy search tool that can further 

increase its performance. 

First, in Section 4.4, pairwise comparisons were made among artifacts 

already in a design repository.  In reality, an analogy search tool would expect 

as an input the functional model of a product in the midst of the design 

process.  Then, the degree of functional similarity between that model and each 

product in a repository would be measured to find appropriate analogous 

products.  A first step is to convert the user generated functional model into a 

vector space representation suitable for comparison.  Before the repository data 

was weighted and approximated, it existed as a set of product function vectors.  

A first step is to convert the user supplied functional model into a vector where 

each row represents the presence or absence of one of the thousands of 

function-flow tuples recognized by the taxonomy of function and flow used in 

the data set.  

The data set used for comparison will be the aggregated product-

function vectors for all, or perhaps a subset of, the products in a design 

repository appropriately weighted and rank reduced.  This is an expensive 

computation, especially the singular value decomposition of the matrix, so; 

practically speaking it should be done only when new products are added to 

the data set and then stored for use whenever a user supplies a query. 

With a query functional model, and an appropriately constructed and 

stored dataset, all the pieces are in place, but some additional mathematical 

manipulation allows us to fit everything together more efficiently.  Recall that 

the data set was rank reduced via SVD.  Instead of multiplying the rank 

reduced pieces back together, we can make use of some of the singular values 

and left and right singular vectors to speed up computation.  Recall that our 
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data matrix a can be decomposed into it’s singular values and corresponding 

left and right singular vectors.      

! ! !!!!  
The rank-k approximation is given by the first k singular values, and 

the first k left and right singular vectors. 

!! ! !!!!!!!  
A query functional model q that is not explicitly in A is introduced.  

The cosine distance between any column in !! and q is can be determined by 

the cosine distance formula. The vector !!is the jth canonical vector; the jth 

column of the identity matrix. 

 

!"#!! !
!! !!!

! ! !
!! !!! ! ! !

 

 

Berry, in a 1999 summary of LSI techniques presents an useful 

transformation of that equation[126]. 

 

!"#!! !
!! !!!

! ! !
!! !!! ! ! !

! !!!!!!! !!!
! ! !

!!!!!!! !!! ! ! !
! !!!!!!! ! !!!!

!!!!! !!! ! ! !

! !!!!!!!!
! ! !!!!

!!!!! !!! ! ! !
 

 

The left hand terms are the same for any q, so these can be pre-

computed and stored.  This could result in significant reduction in run time for 

large data sets. 
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4.6 Conclusion 

Techniques from information retrieval can be successfully adapted to 

measure the distance between vector space representations of engineering 

design data.  The results of work in this chapter provide affirmative answers to 

the first two research questions introduced in chapter 1.  Techniques from 

information retrieval can be utilized to meet the need for similarity measures in 

engineering design, and those techniques compare favorably to existing 

methods.  The development of and calculations necessary to support this 

similarity measure were discussed in detail.  This approach was compared 

against the quantitative measure of functional analogy discussed in Chapter 3, 

and found to meet or exceed the performance of the of the existing measure.  

The new measure handles odd cases like biological and aerospace systems in a 

more logical and consistent manner, while mimicking the results of the 

existing measure for easy systems like coffee makers.  Having demonstrated 

that the proposed measure outperforms prior work in assessing inter-product 

functional similarity; the pieces necessary to build a viable function based 

analogy search tool are introduced.  The vector space similarity assessment 

approach introduced and validated in this chapter can now be modified to 

tackle the problem of guiding automated concept generation.    
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5 A Variety Maximizing Concept Generator 

5.1 Introduction  

In the first chapter, key limitations of current implementations of 

automated concept generators were discussed.  Specifically we saw that the 

computational design synthesis loop posited by Cagan et al [21] of generating, 

evaluating, and finally guiding solutions was not closed.  A way to guide the 

direction of new concept generation was needed.  If the purpose of the concept 

generator is to guide the designer in their exploration of the solution space, the 

tool be directed to find a set of solutions with significant variety.  Each newly 

generated concept should be as different as possible from the set already 

produced.  In chapter two it was demonstrated that though concepts could be 

grouped after generation an appropriate distance measure for guiding 

generation was lacking.  Chapters 3 and 4 laid the groundwork for such a 

measure by demonstrating that vector space similarity measures from 

information retrieval were applicable to problems in engineering design.  

Finally, with that work complete and two of the three original research 

questions satisfactorily answered, this chapter develops an automated concept 

generation algorithm which produces only a few distinct concept types and 

stops when additional concepts are not sufficiently different from those already 

generated.  Once an improved concept generator algorithm is developed, it is 

validated by applying it to the test problems at the end of Chapter 2.  

5.1.1 Roadmap 

This chapter begins by revisiting the MEMIC algorithm for automated 

concept generation and explains its basic operation.  Based on the results of 

chapter 4, a modification to MEMIC is presented which will successfully guide 
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it to identify and return a few novel solutions from the set of all possible 

solutions.  This eliminates the need for the complicated sampling and 

clustering approach of Chapter 2.  The modified algorithm is then applied to 

the same three sample problems used for clustering in Chapter 2.  The results 

of applying the new algorithm to these problems demonstrate that this 

approach can be successfully used to close the CDS loop for MEMIC like 

automated concept generators. 

5.1.2 Contributions of This Chapter 

1. Applies the vector space similarity measure of Chapter 4 to 

guide automated concept generation 

2. Closes the CDS loop for a MEMIC like automated concept 

generation algorithm 

3. Identifies a product component matrix from the design 

repository as a way to extract latent concept component 

information 

5.2 Adapting the MEMIC Algorithm 

The concept generation algorithm developed in this chapter begins 

with Bryant’s MEMIC algorithm [20].  There are a number of reasons to prefer 

it as a starting point.  The most obvious were that the source is readily available 

and it relies on the same data source, the Design Repository used in the rest of 

this dissertation.  Beyond merely practical reasons, it’s a useful starting point 

because its algorithm is similar to the procedure that a human designer would 

employ while manually generating concepts from a morphological matrix [6, 

53].  This yields results that are easily interpreted, and the rationale behind the 

generator producing a particular concept is not hard to deduce after the fact.  
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Grammar based approaches, on the other hand, yield a potentially complex 

recipe of steps that must be understood to follow the generators rationale.  

Another benefit of a morphological rather than grammar based approach is the 

ability to discover solutions based on a set of existing products rather than a set 

of constructed rules.  I believe there are benefits to both approaches.  The best 

solution to automated concept generation is probably an amalgam of both, but 

for now MEMIC and the morphological approach to automated concept 

generation present the most logical starting point for a proof of concept for 

similarity based guidance of the concept generation process. 

5.2.1 Overview of the Existing Algorithm 

A full description of the MEMIC algorithm can be found by consulting 

Bryant [20].  The following is a high level overview of the algorithm.  The 

process begins with the user generating a functional model, which we assume 

follows the taxonomy and modeling procedure of the Functional Basis [16, 17].  

The adjacency matrix of its graph, which I’ll call FM, can represent the 

functional model.  The following example is the adjacency matrix for a 

hypothetical model with three functions. 

!" !
!! !! !!

!! ! ! !
!!
!!

!
!

!
!

!
!

   

 

Given this set of functions, it is necessary to find a set of possible 

components that could perform each function.  Each concept will be an 

ensemble of these components.  This information can be found by querying the 

design repository for a function-component matrix (FCM), this is a vector 

space model of a set of existing products where each column represents one of 
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the 179 recognized component types, and each row represents a possible 

function.  The entries correspond to the frequency with which a given 

component has solved particular functions.  The SQL query and additional 

code necessary to generate an FCM is included in Appendix A and Appendix 

C.  The following is an example FCM for the three functions in the example 

functional model and three hypothetical components. 

!"# !
!! !! !!

!! ! ! !
!!
!!

!
!

!
!

!
!

   

 

Possible components to insert into the adjacency matrix are calculated 

by multiplying rows of the FCM to produce a matrix of possible solutions.  

Finding a solution for the f1f2 element in the FM is possible with the following 

expression.  The only possible solution is the first component c1.   

!!!!! ! ! ! ! ! ! ! ! !
! ! !
! ! !
! ! !

 

This can be repeated for each element in the adjacency matrix to 

develop possible concepts.  MEMIC further refines the output by admitting 

only component chains that are feasible based on data in the design repository.  

If two components have not been connected in an existing product, MEMIC 

rejects any concept that connects them.  A wrinkle for long chains is that slight 

variations in component order may make a concept feasible again.  For 

example, if the chain of three components c1-c2-c3 has not been seen in an 

existing product, but c1-c3-c2 has, the feasibility of the concept is unclear.  

Bryant and others [20, 61], have proposed allowing some reordering to admit 

additional concepts. 
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5.2.2 Checking Compatibility 

This error checking and component reordering presents the first 

problem in adapting the MEMIC algorithm.  I would like to reject concepts 

which are not sufficiently different from those already generated while MEMIC 

will simultaneously reject concepts it deems infeasible.  It’s important in this 

initial validation that I know the algorithm has terminated because it’s run out 

of novel solutions, not because it deems a particular type of solution feasible.  I 

have consequently, chose to remove the compatibility checks from MEMIC for 

the purpose of this study.  I justify this in a couple of ways.  First, the ultimate 

purpose of this exercise is to generate concepts in early design where the goal is 

thorough exploration of the solution space.  Rejecting a particular solution 

because it includes component connections not seen in existing products limits 

the variety of solutions that can be explored.  Second, a reliable FCM should be 

sufficient to handle most compatibility issues.  When I say function, I really 

mean a function flow pair.  If a component solves a function then it admits the 

requisite flow.  Two functions are connected by their flows, so the components 

that solve each operate on the same flow.  They should, therefore, be 

compatible with one another, though possibly through an intermediate 

component.  Based on this justification, I will omit compatibility checks form 

this concept generator implementation.   

5.2.3 Guiding Through Rank-Reduced Vector Space 

Similarity 

In chapter 4, it was shown that rank reduced vector space 

representations of products could be used to assess inter-product functional 

similarity in a way that emphasized the salient features of each product.  My 

modification to the concept generator algorithm is to guide the generation of 
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new concepts by maximizing the difference between each new concept and 

those that have already been generated.  The similarity measurement of 

Chapter 4 is adapted to assess the difference between concepts based not on 

functionality, which is the same for all concepts, but component selection. 

The first issue then is how to construct a rank reduced vector space 

representation of each concept’s components.  A non-reduced vector space 

model would simply be a 179-element vector where each entry indicates the 

use of a particular component type in the taxonomy.  A more refined model 

would be based on component adjacency lists of each concept, but for now the 

simpler model is used.  In Chapter 4, rank reduction was achieved through 

singular value decomposition of the matrix of product vectors.  That is not 

feasible here, the decomposition would have to be recomputed each time a new 

concept was added, and the resultant approximations would be heavily biased 

toward the first concepts generated.  The features of the concept component 

space must be captured before concepts are generated.  Instead, product 

component vectors from the design repository can form the necessary space.  

Eventually, the concept will be a product; I hypothesize that reduction based on 

the product component space will capture appropriate dimensions of concept 

variation. 

A product component matrix is created from the design repository 

using the queries and scripts in Appendix A and Appendix C.  The singular 

value decomposition of this matrix is found by the algorithm of Golub and 

Kahan [150], and the error associated with potential reduced rank 

approximations is found using Eckhart and Young’s equation [152].  

Experimentation with approximations of a variety of data matrices from the 

Design Repository suggests that an acceptable error is between 1% and 5%.  

Accepting a 1% error indicates that a rank 70 approximation of the data is 
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possible.  At the end of chapter 4, it was shown that a new vector could be 

transformed into the rank reduced space by multiplication with the rank 

reduced left singular values.  This property is used to construct rank reduced 

approximation of each generated concept. 

Concept generation begins by generating an initial concept by 

randomly selecting a solution for each function.  Next, a second concept is 

generated at random.  This concept is then modified to produce a concept as 

different as possible from the first concept.  For each function, a set of 

intermediate concepts is created that represents each possible permutation of 

the second concept by varying the solution to that function and holding all 

others constant.  The distance between reduced rank approximations of these 

intermediate concepts and the first concept is measured following the method 

discussed in Chapter 4.  The variant with the greatest distance is retained as the 

second concept and the process repeated for all the functions.  The result 

becomes the next concept sent to the user.  Given the relatively naïve search 

procedure, I cannot claim that this concept has the greatest possible distance 

from the first concept, but it is sufficiently far away to explore the boundaries 

of the solution space.   

Each subsequent concept is generated following the same procedure as 

the second but with one modification.  Instead of finding the alterative with the 

greatest distance to one concept, the alternative with the greatest distance to all 

concepts is the target of the search.  There are a variety of ways this could be 

accomplished.  Initially the average distance between the potential concept and 

the already generated concepts was used, but it tended to admit too many 

concepts that were neighbors of at least one other concept.  Instead a metric 

based on the square root of the sum of the squares of the distances between the 

candidate concept and the already generated concept was adopted. 
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Finally, a termination condition was needed.  The generation of new 

concepts should stop when additional concepts that are far away from all 

existing concepts cannot be generated.  To achieve this, once a candidate 

concept has been modified to be as different as possible, I compare the distance 

between it the existing concepts.  If the minimum distance between the 

candidate and any existing concept is less than a cutoff value, that candidate is 

rejected.  Distances are cosine distances, so a minimum similarity should be 

somewhere between 0, totally orthogonal, to 1 exactly the same.  Higher 

numbers will admit more concepts; lower cutoff values ensure separation 

between concepts.  In practice, cutoffs between 0.5 and 0.8 work well.  

Concepts are initially generated at random, so finding one concept not 

sufficiently far from existing concepts does not necessarily imply that one does 

not exist.  Instead, the algorithm is rerun with a new random seed.  If it fails to 

find a suitable concept after trying a number of random seeds, I conclude that 

the algorithm is finished and a novel sample of the solution space has been 

found.  Experience suggests that 5 rejected concepts are sufficient to ensure 

that a suitable concept is not overlooked.  Figure 5.1 shows a schematic of the 

proposed algorithm. 



)!% 

 
Figure 5.1 Proposed Guided Concept Generator Algorithm 
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The result of applying this new algorithm is a set of conceptual 

solutions to the design problem that are distinct from one another.  This set 

can be shown to the designer as inspiration for further concept development 

and refinement.  This is analogous to generating a large sample of concepts, 

clustering, and retrieving an exemplar of each cluster, but without the need to 

fully generate many concepts that will later be rejected.    The following section 

will apply the modified concept generator algorithm to the three design 

problems used as test cases at the end of Chapter 2.  Code that implements this 

algorithm is available in Appendix C.   

5.3 Applying the New Algorithm to Sample Problems 

Recall that at the end of Chapter 2, component based clustering of 

concept generator solutions was tested with three design problems. These were, 

a product to automatically remove the shells from peanuts as an aid to farmers 

in the developing world; a device to move fluid from a reservoir at one 

elevation to another at a higher elevation; and a consumer product to grind 

and dispense whole spices.  For each of these problems, I review the results of 

Chapter 2, apply the proposed concept generator algorithm, and compare the 

results of both methods.  In general more results should be expected due to the 

removal of the compatibility checks that were applied to the test cases in 

Chapter 2. 

5.3.1 Peanut Sheller 

The peanut sheller was estimated to have two unique solutions using 

the concept clustering technique employed in chapter two.  However, both 

clusters had low silhouette values, based on concepts that mixed both slicing 

and grinding elements.  The peanut sheller’s functional model was input into 
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the modified concept generation algorithm discussed in the preceding section. 

A similarity cutoff of 0.5 was used, any new concept that is not at a cosine 

distance of at least 0.5 from another generated concept is rejected.  Five 

successive rejected components was selected as the termination condition for 

the algorithm.  The algorithm was run 10 times; in each case the number of 

concepts returned was between 13 and 18 concepts.  I attribute the difference 

to beginning with different random seeds.  Fifteen concepts occurred most 

frequently, so the following table examines what those concepts look like. 

Table 5.1 Peanut Sheller Concepts Generated Using New Algorithm 

concept 1 concept 2 concept 3 concept 4 concept 5 
belt blade material filter divider abrasive 
shaft shaft nozzle nozzle material filter 
fastener bearing carousel electric 

conductor 
nozzle 

mechanical 
transformer 

cam shaft shaft housing 

lever knob needle sled belt 
needle reservoir cover clamp rotational 

coupler 
cap  cam needle shaft 
wheel container cushion hinge 
fan  cam needle 
support flywheel cam 
gear support  
sprocket handle 
 
concept 6 concept 7 concept 8 concept 9 concept 10 
blade nozzle blade brush nozzle 
carousel electric plug electric 

conductor 
nozzle electric plug 

electric plug belt shaft conveyer shaft 
shaft shaft link shaft lever 
fastener lever stop mechanical 

transformer 
seal 
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needle cover cam stop cushion 
cap seal knob cam friction 

enhancer 
cam cam  fan cam 
knob  handle knob 
 sprocket support 
 
concept 11 concept 12 concept 13 concept 14 concept 15 
blade blade nozzle blade blade 
brush carousel electric plug carousel material filter 
shaft shaft shaft shaft brush 
hinge fastener clamp tube conveyer 
bearing cam mechanical 

transformer 
link rotational 

coupler 
mechanical 
transformer 

reservoir cam cam shaft 

cap flywheel handle knob needle 
cam pulley sprocket screw hydraulic 

piston 
insert    cam 
screw knob 
pulley screw 

 

The concepts derive power from human, mechanical, electrical, or 

hydraulic energy, and peanut shell is separated by cutting, pressure, or 

abrasion.  While these concepts need refinement, and some of them likely 

could benefit from the compatibility filter typically applied by MEMIC, this 

approach gives a better idea of the breadth of solutions available based on 

repository data. A set of fifteen concepts is small enough that it can reasonably 

be used as a source of inspiration to the designer during concept generation.  A 

summary of some function component replacements for this set is given in 

Table 5.2.   
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Table 5.2 Summary of Component Selection for Some Peanut Sheller 
Functions 

Functions concept 1 concept 2 concept 3 concept 4 concept 5 
import solid 
material 

cap reservoir cover cushion hinge 

separate solid 
material 

needle blade material 
filter 

divider abrasive 

transfer solid 
material 

lever bearing carousel sled nozzle 

change 
rotational 
energy 

gear cam shaft flywheel belt 

convert 
rotational 
energy to 
mechanical 
energy 

mech. 
Trans. 

cam cam cam cam 

 
 concept 6 concept 7 concept 8 concept 9 concept 10 
import solid 
material 

cap cover knob conveyer seal 

separate solid 
material 

blade lever blade brush friction 
enhancer 

transfer solid 
material 

carousel nozzle shaft nozzle nozzle 

change 
rotational 
energy 

shaft shaft link sprocket shaft 

convert 
rotational 
energy to 
mechanical 
energy 

cam cam cam cam cam 

 
 
 concept 

11 
concept 12 concept 13 concept 14 concept 15 

import solid 
material 

cap reservoir nozzle tube conveyer 
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separate solid 
material 

blade blade clamp blade blade 

transfer solid 
material 

pulley carousel shaft shaft hydraulic 
piston 

change 
rotational 
energy 

Mech. 
Trans. 

flywheel sprocket cam rotational 
coupler 

convert 
rotational 
energy to 
mechanical 
energy 

cam cam cam cam cam 

5.3.2 Water Lifter 

In Chapter 2, concept clustering found three possible solutions to the 

water lifter problem.  It appeared that the primary difference between concepts 

was the energy source employed.  To compare this result to the proposed 

algorithm, the water lifters functional model was input as discussed in the 

previous section.  A similarity cutoff of 0.5 and termination condition of 5 

successive rejections was used again.  Ten runs of the problem on the 

algorithm were used to counter the effects of random seed concepts.  Five to 

eight concepts were returned each time.  The difference can be attributed to 

beginning with different random seeds.  Seven concepts occurred most 

frequently, so the following table examines what those concepts look like. 
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Table 5.3  Water Lifter Concepts Generated Using New Algorithm 

concept 1 concept 2 concept 3 concept 4 
material filter divider abrasive housing 
housing blade material filter bearing 
fan mechanical transformer nozzle fastener 
reservoir lever carousel cap 
pressure vessel light source cushion screw propeller 
 cam electromagnet pressure vessel 

container reservoir spring 
support pressure vessel  
 insert 

 
concept 5 concept 6 concept 7  
housing belt blade 
rotational coupler mechanical transformer nozzle 
shaft cover electric cord 
tube cushion electric conductor 
seal friction enhancer fan 
cam hydraulic pump pressure vessel 
pressure vessel container solder 
indicator light support sprocket 
 solder  

 

Clearly these concepts do not reflect immediately buildable solutions, 

but they do a reasonable job of capturing the solution possibilities.  Power 

comes from a variety of sources including electricity, mechanical energy, and 

fluid power.  Water is moved though airfoils and fluid pressure.  The new 

algorithm has generated a set of concepts that adequately capture the possible 

solution types based on function component data in the repository.  These 

solutions can be presented to the designer as a source of inspiration and are 

much easier to interpret and act on than three large clusters of concepts.  Table 
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5.4 shows some components selected for a few functions from the model for 

these seven concepts. 

Table 5.4 Component Selections for some Functions in Water Lifter 
Functional Model 

Functions concept 1 concept 2 concept 3 concept 4 
convert mechanical 
energy to rotational 
energy 

fan cam carousel spring 

transfer liquid 
material 

fan blade nozzle screw 
propeller 

store liquid 
material 

reservoir container reservoir pressure 
vessel 

export signal housing light source electroma
gnet 

housing 

 
 concept 5 concept 6 concept 7 
convert mechanical 
energy to rotational 
energy 

cam mechanical 
transformer 

fan 

transfer liquid 
material 

tube hydraulic 
pump 

pressure vessel 

store liquid 
material 

pressure vessel container pressure vessel 

export signal indicator light cover electric conductor 
 

5.3.3 Spice Grinder 

Finally, the spice grinder yielded poorly differentiated results when 

clustered with the method employed in Chapter 2.  Using the same settings as 

the previous two problems its functional model is input into the modified 

concept generator algorithm.  Ten runs of the algorithm yielded between 18 

and 20 distinct concepts.  The first ten results are shown in Table 5.5, and a 

summary of components selected for a subset of functions is shown in Table 

5.6. 
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Table 5.5 Spice Grinder Concepts Generated with New Algorithm 

concept 1 concept 2 concept 3 concept 4 concept 5 
nozzle brush transistor blade divider 
electric cord housing mechanical 

transformer 
electric conductor housing 

electric plug electric 
switch 

cap hydraulic pump belt 

latch release wheel electric motor airfoil link 
inductor battery insert knob lever 
seal support screen pulley cover 
electric 
insulator 

solder nut-bolt  hydraulic 
pump 

screw 
propeller 

    

pneumatic 
piston 
fan 
pressure 
vessel 
spring 
insert 
key 
screw 
 
concept 6 concept 7 concept 8 concept 9 concept 10 
material 
filter 

rotational 
coupler 

housing electric plug sled 

electric plug tube hinge mechanical 
transformer 

fuse 

inductor fuse hydraulic pump lever battery 
fan hydraulic 

pump 
knob hydraulic pump visual 

indicator 
visual 
indicator 

wheel spring wheel screen 

handle support screen heating element electric wire 
key handle screw reservoir pulley 
pulley electric plate pulley pulley  
 pulley   
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Table 5.6 Summary of Component Selections for some Spice Grinder 
Functions 

Function concept 1 concept 2 concept 3 concept 4 concept 5 
actuate 
electrical 
energy 

inductor electric 
switch 

transistor knob housing 

store 
solid 
material 

pressure 
vessel 

housing cap hydraulic 
pump 

cover 

separate 
solid 
material 

screw 
propeller 

brush screen blade divider 

export 
solid 
material 

nozzle wheel screen blade belt 

      
 concept 6 concept 7 concept 8 concept 9 concept 

10 
actuate 
electrical 
energy 

inductor fuse knob lever fuse 

store 
solid 
material 

material filter tube housing reservoir sled 

separate 
solid 
material 

key wheel screen wheel screen 

export 
solid 
material 

pulley wheel screen wheel screen 

 

It is not as clear with this example what general solution types these 

concepts represent, but that same trend was observed with clustered concepts 

in Chapter 2.  This is a difficult problem for the current data set.  The reason 

why is that the core functionality of the spice grinder is to turn a monolithic 
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solid into a set of particles.  In the functional model used this functionality is 

represented as convert solid material to solid material.  It’s debatable whether 

or not this is a proper application of the functional basis taxonomy.  Among 

other products in the repository this functionality is typically called “change 

solid” or “shape solid”.  The defining functionality of the proposed product is 

poorly captured, so the results are unfocused.  This is actually a good result.  If 

the algorithm magically changed a bad input into seemingly sensible output, 

something would likely be amiss.  Instead we see that garbage in results in 

garbage out.  The allegedly incorrect function is replaced with “change solid” 

and the results are recomputed.  The number of concepts found is between 10 

and 15 and variation is based on different components that change solids like 

blades, brushes and abrasives, and different energy sources like human, 

mechanical, and electrical energy.   The following table summarizes the first 

five results from one set run using the updated functional model. 
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Table 5.7 Spice Grinder Concepts Using Modified Functional Model 

concept 1 concept 2 concept 3 concept 4 concept 5 
housing electric cord vibrator blade divider 
electric 
conductor 

electric plug fastener vibrator vibrator 

belt shaft mechanical 
transformer 

belt brush 

rotational 
coupler 

electric 
switch 

lever link electric 
socket 

hinge cap cover transistor thermostat 
bearing hydraulic 

pump 
seal inductor lens 

sled airfoil stop cushion cap 
latch release knob hydraulic pump friction 

enhancer 
stop 

electric 
resistor 

spring screen reservoir hydraulic 
pump 

light source support  circuit board flywheel 
electric motor handle screen screen 
wheel screen electric plate key 
fan   pulley 
battery  
visual 
indicator 
insert 

 

 

 

5.4 Conclusion 

These examples show that the vector space similarity measure 

introduced in chapter 4 can be used to guide automated concept generation, 

and answers the third research question of this dissertation.  The algorithm 

introduced in this chapter successful closes the computational design synthesis 
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loop for a MEMIC-like morphological matrix based automated concept 

generator.  In contrast to the methods of chapter two, this approach rapidly 

identifies a set of solutions that represent the breadth of possibilities based on 

data in the Design Repository.  The rank reduced approximation of concept 

vectors based on the product component space derived from the repository 

ensures that salient features of each concept are emphasized and variation due 

to uninteresting component options is minimized.  While the method of 

clustering in Chapter 2 could occasionally amplify noisy variation amongst 

concepts, like the choice of a screw or a bolt to couple two pieces together, this 

approach buries that noise and emphasizes more meaningful variation in the 

set of solutions.   

The proposed algorithm, while successful is only a prototype.  There are 

many opportunities to improve its performance.  Now that the approach has 

proven successful, compatibility checks should be reinstated.  It was also noted 

that the number of concepts returned was not the same for multiple runs on 

the same problem.  While the variation in number of results was small, usually 

one to two additional concepts, an improved algorithm would run the problem 

multiple times to ensure that proper number of components was returned.  

Finally, this algorithm needs to be combined with recent related work in the 

field on improving the way a MEMIC style algorithm handles functional 

models whose graphs have high degrees of branching [156].  These two 

components are major steps towards truly useful and usable automated 

concept generators. 
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6 Conclusion 

This dissertation began by observing a number of limitations in current 

automated concept generators.  The most immediate and notably of these is 

that they do a poor job of promoting a thorough exploration of the solutions 

space.  Results are either a huge undifferentiated mass, or the result of the users 

manual exploration of the space.  To realize the full potential of these tools 

additional work was needed.  Initially, the problem was tackled by generating 

many concepts and clustering them into groups based on either concept 

parameters or the components that made up each concept.  While this yielded  

a technique for parameter estimation that has proven useful in other work, the 

result was ultimately unsatisfying.  

This led to the three main research questions of this work.  First could a 

useful, widely applicable similarity measure for computational design problems 

be found?   Second was the measure competitive with an existing ad hoc 

measure in its own domain?  Finally, could this measure be applied to assessing 

concept similarity, and could concept similarity guide the generation of new 

concepts?  Chapter 4 answered the first two questions in concert with the 

results of Chapter 3, while the final question is addressed by the work 

presented in Chapter 5. 

By successfully answering these questions, a new set of beneficial tools 

for computational engineering design is introduced.  The results bridge the cap 

between computational design and other information retrieval efforts.  They 

close the computational design synthesis loop for a class of automated concept 

generators.  Finally, they introduce an approach to extracting information from 

a body of existing design artifacts that can be applied to a wide variety of 

applications, especially analogical design and case-based reasoning. 
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6.1 Parameter Estimation and Concept Clustering 

An initial step in improving automated concept generation was simply 

to take a large set of generated concepts and sort them for easier access by the 

user.  Sorting results based on predicted concept parameters was tried initially, 

but was found to require a great deal of overhead work on the part of the 

designer as no problem independent approach could be identified.   This 

approach yielded an estimation technique that has proven valuable in other 

work, and can be used by many efforts related to estimating the parameters of 

proposed products based on data in a design repository.  Patterns observed in 

concepts sorted through estimated parameters suggested that component 

based sorting could provide the same result with less effort from the designer.  

Practical application of a component based sorting scheme showed the need 

for variable reduction and automated clustering.  Unfortunately, the approach 

required a large sample of concepts to be generated and sorted only to discard 

most of the generated results. Furthermore, the algorithm can group concepts 

based on variations that are inappropriate or uninteresting given the problem 

at hand-leading to questionable results.  An ideal approach to concept 

generation would produce just the most interesting members of the set of all 

possible results. Ultimately success depends on the ability of the computer to 

recognize salient differences in products and concepts these clustering 

approaches advance our ability to do that, but more work is needed. 

 

6.2 Inter-Product Similarity a Functional Design by Analogy 

Perspective 

Finding analogies is a useful aid to ideation in design.  Currently no 

universal quantitative measure of analogical distance exists, but an approach 
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was found in the literature specific to the area of function-based design by 

analogy.  As a similarity metric was sought for the concept generation problem, 

it was hypothesized that this could be a useful benchmark against which future 

work could be tested.  The measure was applied to explore inter-product 

similarity amongst products in the design repository.  Four test cases were 

identified and explored.  These included biological systems, coffee makers, 

drills, and aerospace products.  For the biological system and coffee maker test 

cases, the measure performed as expected.  For the aerospace system and drill 

test cases, the results contradicted initial expectations, but further examination 

suggests that the expectation may have been incorrect.  Consequently, these 

presented an interesting test case.  Their result defied expectation, but on later 

examination seemed plausible.  If a new measure could handle these cases in a 

way that plausibly conformed to expectations that would be an interesting 

result.   Test cases and a final rank ordered measures of product-to-product 

similarity formed a benchmark against which future similarity measures could 

be measured. 

6.3 A Vector Space Similarity Measure for Engineering 

Design Based on Latent Semantic Indexing 

It was shown that a number of useful engineering design data sources 

either are or can be represented as vector space models.  Techniques from 

information retrieval were successfully adapted to measure the distance 

between vector space representations of engineering design data.  The results 

provided affirmative answers to the first two research questions.  A similarity 

measure could be adapted from information retrieval, and that measure 

compared very favorably to existing methods. This new approach was 

compared against the quantitative measure of functional analogy and met or 
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exceeded its performance.  The new measure handled odd cases like biological 

and aerospace systems in a more logical and consistent manner, but mimicked 

the results of the existing measure for common systems like coffee makers.  

The resulting similarity measure has a variety of applications, but this 

dissertation adapts it to serve as a guide in automated concept generation. 

 

6.4 Closing the CDS Loop for MEMIC like Automated 

Concept Generators 

A new concept generator algorithm that generates concepts 

representative of each major category of possible solutions was developed.  The 

vector space similarity measures developed in this dissertation were used to 

guide automated concept generation.  This answered the third research 

question of this dissertation.  The computational design synthesis loop can be 

closed for the selected concept generator type.  Unlike the sampling and 

clustering technique developed early in this dissertation, this algorithm rapidly 

identified a set of solutions that represented the breadth of possibilities based 

on data in the Design Repository.  The rank reduced approximation of concept 

vectors based on the product component space derived from the repository 

ensured that salient features of each concept were emphasized.  The focus on 

uninteresting component variation that plagued the earlier clustering effort is 

eliminated.   A prototype automated concept generated based on the new 

algorithm was developed and tested against a set of example problems used for 

earlier efforts.  The results show great promise in solving the problem of 

information overload in automated concept generation. 
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6.5 Contributions of this Dissertation 

The following section briefly summarizes key contributions of this 

dissertation.  I believe the following contributions represent new work with 

significant intellectual merit in the field of engineering design.. 

1.  Opportunities to contribute to the state of the art in automated 

concept generation literature are identified 

2. The need for universal approaches to design artifact similarity 

measurement is established 

3. A method for estimating the parameters of conceptual products based 

on design repository data is developed 

4. An approach to concept sorting based on parameter estimates is 

demonstrated 

5. A new method for concept sorting based on component choice is 

developed and applied 

6. Preliminary evidence that concept generator output is a set of 

permutations on a few solution types is found 

7. An first reduced vector space representation of automated concept 

generator output is introduced 

8. Development of four test cases for functional similarity assessment 

from the design repository based on current functional similarity 

measures 

9. Construction of a benchmark for similarity assessments measures using 

current functional design by analogy methods and a design repository 

10. Verification that many important representations of engineering design 

data meet the formal definition of a vector space model  
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11. Identification of techniques from information retrieval literature \for 

assessing the similarity of vector space data. 

12. Application of LSI based similarity measure to functional analogy 

problems shows that the LSI based measure meets or exceeds the 

performance of the existing methods for the benchmark problems 

13. Identification of the steps needed to use the LSI based similarity 

measure in a viable function-based analogy search tool that could 

replace prior work.  

14. Application of an LSI based vector space similarity measure to guide 

automated concept generation 

15. Closed the CDS loop for a MEMIC-like automated concept generation 

algorithm 

16. Identified a product component matrix from the design repository as a 

way to extract latent concept component information 

The chief intellectual merits of this dissertation are four fold: 

1. A method for estimating parameters during conceptual design based on 

existing artifacts in a design repository is developed.  This has already 

found application in other work.   

2. The gulf between computational design and information retrieval is 

bridged.  There are number of techniques in IR that may be applicable 

to design problems beyond those discussed in this dissertation, and this 

work can serve as a connection between the two fields.  In collaborating 

with others who use repository data, we are frequently confronted with 

questions about how to handle noise, outliers and infrequent but 

important data points.  The data weighting and approximation schemes 

of information retrieval can be an important tool to handling those 

problems, and this dissertation includes a first attempt at that.  
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3.  An efficient vector space similarity measure is constructed.  While this 

dissertation explored similarity measures primarily to advance 

automated concept generation, it can have other applications as well.  

In particular, it can be an important tool for analogical design from 

archives of existing products and systems, including biological systems.   

4. The computational design synthesis loop is closed for at least one type 

of automated concept generator.  This solves the problem of concept 

overload and allows a designer to see only a few possible solutions that 

represent the breadth of solutions known to the concept generator.  

This significantly improves the utility of automated concept generators 

and promotes thorough exploration of the solution space. 

6.6 Impact on Designer Process and Results 

Before moving on, it is important to put this body of work in 

perspective, and to show how it will impact the practicing design engineer.  To 

illustrate how the results of this dissertation will improve design practice, 

consider a hypothetical engineer, Wallace, who has a challenging design 

problem to solve.  Wallace’s company is heavily engaged in the area of pest 

control, and their customers demand a new humane method for controlling 

infestations of small mammals, like moles and rabbits, in lawns and gardens.  

Wallace has some training in structured design methods, and given his 

understanding of his customers’ needs and requirements, he develops a variety 

of concepts.  Unfortunately, Wallace has a great deal of experience with 

pneumatic systems, and he fixates on pneumatic solutions to some of the key 

functions in his device.  This leads him to select, develop, and produce a 

vermin vacuum system that is complex, expensive, and prone to malfunction 
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in ways that seriously damage his customers’ property.  The product is a 

disaster and Wallace has to take a job shearing sheep to support himself.     

Now, imagine that Wallace had access to the concept generation tools 

presented in this dissertation.  In addition to his own manual concept 

generation efforts, Wallace inputs a functional model of his pest-capturing 

device into the concept generation algorithm described in Chapter 5.  The 

computer returns a variety of concepts showcasing the solution types known to 

the concept generator.  By analyzing this list, Wallace sees that in addition to 

his pneumatic concepts, there are alternatives that use bait to attract the animal 

and a container to hold it safely until it can be released in the wild.  These 

results inspire Wallace to produce an entire set of alternative, non-pneumatic 

concepts.  In concept selection he determines that these will be simpler, 

cheaper, and more effective than his complex vermin-vacuum.   The final 

version of his simplified system of humane traps is a tremendous success.  The 

more complete exploration of the design space facilitated by the tools of this 

dissertation helped Wallace fully explore the design space, and inspired a more 

optimal solution than he would have developed alone.  Disaster is averted, and 

Wallace is handsomely rewarded. 

While this is an imaginary scenario, and a tongue in cheek reference to 

the collected works of Aardman animation, it reflects how the tools of this 

dissertation can be used to improve the practice of engineering design.  The 

tools of this dissertation enable concept generation algorithms to produce 

results allow the designer to see if important solution types that have been 

overlooked.  These automatically generated solutions can inspire new concepts 

that would have been overlooked.  Concept generation is enhanced without 

significant additional effort by the designer. 
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6.7 Future Work 

The work presented in this dissertation only scratches the surface of 

work still to be done in the development of automated concept generators and 

in the other fields that this dissertation touches.  There are main three areas 

where significant contributions can be made through continuations of this 

work.  

First in sorting and clustering of automatically generated concepts.  

This work should be revisited so that it combines some of the features of the 

LSI based similarity tool developed later in the dissertation.   Rank reduced 

representation of concepts instead of PCA may yield better results.  K-Means 

clustering while widely used will increasingly be replaced by new techniques 

which require much less iteration and exploration to identify the actual 

number of clusters in the data.  In particular the associative clustering of Frey 

and Dueck [157]  is potentially very applicable to these problems and should be 

investigated.  

Next, the similarity measures developed in this dissertation can be a 

useful contribution to the design by analogy literature in their own right.  A 

more complete study should be undertaken using these methods to derive 

analogies to original design problems.  It would be interesting to attempt to 

extend these methods to many dimensions of analogy beyond merely 

functional.  In particular, it would be interesting to explore representations of 

product form that could be stored as vector space models and subject to this 

sort of analysis. 

Finally, there is significant work to do to provide truly viable automated 

concept generators that can act as aids to ideation in the design problem. This 

dissertation solves one significant problem, how to identify and report a set of 
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concepts which represent the breadth of possible solutions without 

overwhelming the user.  The next great problem in automated concept 

generation is one of representation.  At present, the tool returns chains or lists 

of components.  This is not how designers communicate concepts to one 

another, and if the computer is to be a helpful collaborator in the design 

process, it has to do so on the designer’s terms.   Designers communicate with 

drawings, sketches, and other visual representations of a proposed design.  The 

next goal for automated concept generator development should be to produce 

output which is more inline with this type of communication.  Ideally the 

computer-generated concepts could be passed around the table with a concept 

generated by any other team member.  When the research community is able 

to achieve this, designers will be able to move from the paradigm of computer 

as design aid to computer as participant in the design process.  Until then, the 

work continues. 
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APPENDIX A SQL QUERIES 
The following appendix includes the SQL queries necessary to extract 

the data used in this dissertation from the Design Repository.  These queries 

reflect the schema at the time this document was written, but could be easily be 

made obsolete by changes to the repository’s structure.  Access to the database 

may be requested by contacting a current repository administrator at 

http://repository.designengineeringlab.org. 

 
//--pcm_data.sql— 
-- a SQL query to retrieve data needed to build a product 
component Matrix 
SELECT 
    public.artifact.system, 
    public.artifact.basis_name 
FROM 
    public.artifact; 
 
 
//--function_hash.sql 
-- a SQL query to retrieve data needed to build a hash of 
function ids and function names 
SELECT 
    public.subfunction_type.id, 
    public.subfunction_type.subfunction, 
    public.subfunction_type.tier, 
    public.subfunction_type.child_of_subfunction 
FROM 
    public.subfunction_type 
ORDER BY 
    public.subfunction_type.id ASC ; 
 
//--flow_hash.sql 
-- a SQL query to retrieve data needed to build a hash of flow 
ids and function names 
SELECT 
    public.flow_type.id, 
    public.flow_type.flow, 
    public.flow_type.tier, 
    public.flow_type.child_of_flow 
FROM 
    public.flow_type 
ORDER BY 
    public.flow_type.id ASC ; 
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//--component_hash.sql 
-- a SQL query to retrieve data needed to build a hash of 
component ids and function names 
SELECT 
    public.comp_basis_type.id, 
    public.comp_basis_type.component, 
    public.comp_basis_type.tier, 
    public.comp_basis_type.child_of_component 
FROM 
    public.comp_basis_type 
ORDER BY 
    public.comp_basis_type.id ASC ; 
 
 
//--fcm_data.sql 
-- a SQL query to retrieve data needed to build a Function 
Component Matrix 
 
SELECT 
    public.artifact.basis_name, 
    public.comp_basis_type.component, 
    public.function.subfunction_type, 
    public.subfunction_type.subfunction, 
    public.flow.input_flow, 
    in_flow_type.flow, 
    public.flow.output_flow, 
    out_flow_type.flow, 
    SUM(public.artifact.quantity) 
FROM 
    public.function 
INNER JOIN public.artifact 
ON 
    ( 
        public.function.describes_artifact = public.artifact.id 
    ) 
INNER JOIN public.flow 
ON 
    ( 
        public.function.id = public.flow.describes_function 
    ) 
INNER JOIN public.comp_basis_type 
ON 
    ( 
        public.artifact.basis_name = public.comp_basis_type.id 
    ) 
INNER JOIN public.subfunction_type 
ON 
    ( 
        public.function.subfunction_type = 
public.subfunction_type.id 
    ) 
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INNER JOIN public.flow_type in_flow_type 
ON 
    ( 
        public.flow.input_flow = in_flow_type.id 
    ) 
INNER JOIN public.flow_type out_flow_type 
ON 
    ( 
        public.flow.output_flow = out_flow_type.id 
    ) 
WHERE 
    public.function.supporting = false 
GROUP BY 
    public.artifact.basis_name, 
    public.comp_basis_type.component, 
    public.function.subfunction_type, 
    public.subfunction_type.subfunction, 
    public.flow.input_flow, 
    in_flow_type.flow, 
    public.flow.output_flow, 
    out_flow_type.flow ; 
 
 
//--dsm.sql 
-- a SQL query to retrieve data needed to build a Design 
Structure Matrix 
SELECT DISTINCT 
    public.artifact.basis_name, 
    in_artifact.basis_name  AS inart, 
    out_artifact.basis_name AS outart 
FROM 
    public.function 
INNER JOIN public.artifact 
ON 
    ( 
        public.function.describes_artifact = public.artifact.id 
    ) 
INNER JOIN public.flow 
ON 
    ( 
        public.function.id = public.flow.describes_function 
    ) 
INNER JOIN public.artifact in_artifact 
ON 
    ( 
        public.flow.input_artifact = in_artifact.id 
    ) 
INNER JOIN public.artifact out_artifact 
ON 
    ( 
        public.flow.output_artifact = out_artifact.id 
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APPENDIX B RUBY SCRIPT 
The following appendix includes ruby scripts that were used to run 

queries on and return their results.  This was an ugly workaround of difficulties 

in establishing a connection between the design repository and MATLAB". I 

provide it here strictly to enable by work to be duplicated exactly, but no real 

implementation of these tools should rely on this approach. This script 

requires the rubygems add on and the sequel gem for database connection.  I’ve 

sanitized connection information.  Credentials can be requested through the 

contacts at http://repository.designengineeringlab.org . 
 

#!/usr/local/bin/ruby  
# query.rb - simple ruby program to read a prepared SQL query, 
execute it, and write the results to a file 
  
require "rubygems"   
require "sequel"    # sequel gem handles database connection 
  
  
# some details about the repository I include them here, but 
they're not used until later when DBI is called 
database="repository" 
host="function2.mime.oregonstate.edu" 
username=”*******” 
password="*******" 
  
  
# query is read from a text file helpfully named "query" for 
now 
query_file="query.txt" 
  
#first check to see if the file exists and and is readable if 
either fails the program quits 
if File.exists?(query_file) 
    if File.readable?(query_file) 
         
    else 
        puts("Query file is unreadable") 
        Process.exit 
    end  
  
else 
    puts("No query file available in working directory") 



)%% 

    Process.exit 
end 
  
#if above checks pass then open the query  
input=File.open(query_file)  
query=input.read 
  
#connect to the repository 
DB = Sequel.connect(:adapter=>'postgres', :host=>host, 
:database=>database, :user=>username, :password=>password) 
  
# test that the connection works 
begin 
    DB.test_connection 
rescue Exception => error_msg 
    puts error_msg 
    Process.exit 
end 
     
  
# run query 
  
begin 
  
ds=DB.fetch(query)   
     
rescue Exception => error_msg 
    puts 'query failed' 
    puts error_msg 
     
  
end 
  
  
#write out a text file with the results of the query 
# the file is returned as "result.txt"  
out_file_name="result.txt" 
  
# first check to see if that file exists and if it does erase 
it just to be safe 
  
if File.exists?(out_file_name) 
    File.delete(out_file_name) 
    puts("A previous output file was found.  It will be 
overwritten") 
end 
  
#now create or recreate the file 
out_file=File.new(out_file_name,"w+") 
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# now writes the data set as a csv string 
out_file.puts(ds.to_csv) 
  
  
#writing's done close file 
out_file.close 
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APPENDIX C MATLAB" SOURCE 
This appendix contains the mat lab files used in this dissertation 

MATLAB".  Most of this work was done in MATLAB" for two reasons.  First, 

it is an easy and accessible environment to prototype in, and includes built in 

libraries and functions that made some of the work much easier.  The second 

reason, is that I hope by using what has become the de facto language taught to 

mechanical engineering students, it will be easier for those who come after me 

to pick up where I left off.  This work was done in the version 64-bit Mac 

version of R2010B.  The appendix is organized so that each new page is a 

function or script.  Scripts are organized to roughly correspond to the outline 

of the dissertation.  
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Chapter 2 Scripts and Functions 

%% cluster_memic.m 
% A script to cluster automated concept generator output based 
on component choice 
% by Kerry Poppa 
  
clear all; close all; 
%% 
%read files 
files = dir('*.csv'); 
A=zeros(76,76,25); 
for i=1:length(files) 
  A(:,:,i)=csvread(files(i).name); 
  i 
end 
clear i; 
%% aggregate all concepts to indentify the part of the design 
space actually 
%used 
B=sum(A,3); 
[row,col]=find(B); 
indx=[row col]; 
clear B; 
  
%% Reformulate A to C such that each row of c represents a 
concepts as a 
%vector of the desing space found above 
C=zeros(size(A,3),length(indx)); 
for i=1:size(A,3) 
    for j=1:length(indx) 
        C(i,j)=A(indx(j,1),indx(j,2),i); 
    end 
end 
%% Reduce dimensions with PCA on C 
[COEFF,SCORE,latent] = princomp(C); 
PctExplained = latent' ./ sum(latent); 
pctExplained= cumsum(PctExplained); 
  
%% Scree Plot 
plot(latent,'DisplayName','Scree Plot'); 
hold on 
  
%% eliminate unnecessary PC's 
  
%pick one of the next two comment the other out! 
%cutoff=find(latent>=1,1,'last'); %Takes only components that 
satisfy Kaiser Criterion ie Eigval>1 
cutoff = input('how many principal components?'); %lets user 
pick cutoff based on scree 
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coeff=COEFF(:,1:cutoff); 
score=SCORE(:,1:cutoff); 
  
%% cluster 
k=15; %#of clusters 
[IDX,clust,sumd] = kmeans(score,k); 
% silhouette plot of clusters 
silhouette(score,IDX); 
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Chapter 3 Scripts and Functions 

 
%% mcadams_method.m 
% by Kerry Poppa 
% calculates similarity between systems using method of McAdams 
et all 
  
% begin with a product function matrix assume all functions are 
equally 
% important...ergo no weighting effect from customer needs 
  
[pf_mat,~,~,sys_hash ]=pf_assembler; 
  
mean_functions_per_product=sum(logical(pf_mat),1); 
  
mean_functions=mean(mean_functions_per_product); 
  
weights=mean_functions_per_product/mean_functions; 
  
pf_weighted=pf_mat; 
pf_weighted(logical(pf_weighted))=1; 
pf_binary=pf_weighted; 
for i=1:length(weights) 
    pf_weighted(:,i)=pf_weighted(:,i)*weights(i); 
end 
  
  
% now norm the columns 
pf_weighted_normed=pf_weighted; 
for i=1:size(pf_weighted,2) 
    
pf_weighted_normed(:,i)=pf_weighted(:,i)./norm(pf_weighted(:,i)
); 
end 
  
%now calculate inter product similarity 
dim=size(pf_weighted_normed,2); 
  
similarity=zeros(dim); 
for i=1:dim 
    ref_prod=pf_binary(:,i); 
    ref_prod=ref_prod./norm(ref_prod); 
    ref_prod=ref_prod'; 
    for j=1:dim 
        similarity(i,j)=ref_prod*pf_weighted_normed(:,j); 
    end 
end 
  



)&! 

%% need to get a system hash to get meaningful results 
  
query_file='query.txt'; 
  
copyfile('query_systems.txt',query_file); 
  
!/usr/local/bin/ruby query.rb 
  
% result should have been written to result.txt 
if exist('result.txt','file')~=2 
    error('no query result') 
end 
  
% now read the file should have one header line and be an int, 
a string, an 
% int and an int 
fid=fopen('result.txt'); 
system_hash=textscan(fid,'%d 
%s','HeaderLines',1,'Delimiter',','); 
fclose(fid); 
  
%% now set up output matrix of rank order lists of similarity 
  
dim=size(similarity,1); 
similar_products=zeros(dim); 
  
for i=1:length(similarity) 
    similarity_vector=[similarity(i,:);sys_hash']; 
    similarity_vector=sortrows(similarity_vector'); 
    similarity_vector=flipdim(similarity_vector,1)'; 
     
    similar_products(i,:)=similarity_vector(2,:); 
end 
  
%% and repeat to replace with labels 
  
similar_labeled=cell(dim,dim); 
  
for i=1:dim 
    for j=1:dim 
        indx=find(system_hash{1,1}==similar_products(i,j)); 
        similar_labeled{i,j}=system_hash{1,2}{indx}; 
    end 
end 
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function [pf_mat, function_hash, flow_hash, system_hash] = 
pf_assembler() 
  
%% assembles a product function matrix  
  
%% get names of unique functions and hashes of function and 
flow names and ids 
  
[unique_funcs,function_hash,flow_hash]=function_flow_set; 
  
pf_data=pf_data_query(); 
  
%% find the children of each function and flow...this will make 
things easier later 
  
% function 
function_parent=[function_hash{1,1},function_hash{1,4}]; 
function_descendents={}; 
  
for i=1:length(function_parent) 
    
children=function_parent(function_parent(:,2)==function_parent(
i,1),1); 
    grandchildren=[]; 
    for j=1:length(children) 
        
grandchildren=[grandchildren;function_parent(function_parent(:,
2)==children(j))]; 
    end 
    function_descendents{i}=[children;grandchildren]; 
end 
  
%flow 
flow_parent=[flow_hash{1,1},flow_hash{1,4}]; 
flow_descendents={}; 
  
for i=1:length(flow_parent) 
    children=flow_parent(flow_parent(:,2)==flow_parent(i,1),1); 
    grandchildren=[]; 
    for j=1:length(children) 
        
grandchildren=[grandchildren;flow_parent(flow_parent(:,2)==chil
dren(j))]; 
    end 
    flow_descendents{i}=[children;grandchildren]; 
end 
  
  
%% create a system hash 
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system_hash=unique(sort(pf_data(:,1))); 
  
%% populate data 
  
% this is a pretty naive way to solve this problem...will try 
to improve 
% later 
pf_mat=zeros(length(unique_funcs),length(system_hash)); 
for i=1:length(unique_funcs) 
     
    
function_set=[unique_funcs(i,1)];%;function_descendents{unique_
funcs(i,1)}]; 
    
in_flow_set=[unique_funcs(i,2)];%;flow_descendents{unique_funcs
(i,2)}]; 
    
out_flow_set=[unique_funcs(i,3)];%;flow_descendents{unique_func
s(i,3)}]; 
     
    rows_to_keep=pf_data((ismember(pf_data(:,2),function_set) & 
... 
        ismember(pf_data(:,3),in_flow_set) & 
ismember(pf_data(:,4),out_flow_set)),:); 
    for j=1:length(system_hash) 
        
pf_mat(i,j)=sum(rows_to_keep(rows_to_keep(:,1)==system_hash(j),
5)); 
    end 
end 
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function [file_exists]=existence_check(files_to_check) 
  
% function accepts cell array of file_names and returns a 
logical aray by 
% checking to see if they exist 
  
  
  
file_exists=zeros(1,max(size(files_to_check))); 
  
for i=1:max(size(files_to_check)) 
    if exist(files_to_check{1,i},'file')==2 
        file_exists(i)=1; 
    end 
end 
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function 
[unique_funcs,function_hash,flow_hash]=function_flow_set() 
  
%% function flow query  this file gets a list of distinct 
functions and flows 
  
%% first check to verify that the expected query files are 
availabe 
  
distinct_functions='query_distinct_functions.txt'; 
function_list='query_function_list.txt'; 
flow_list='query_flow_list.txt'; 
  
files_to_check={distinct_functions,function_list,flow_list}; 
indxs=find(~existence_check(files_to_check)); 
  
if indxs 
    missing_file_string=''; 
    for i=1:length(indxs) 
        missing_file_string=[missing_file_string,' 
',files_to_check{indxs(i)}]; 
    end 
     
    error(['Missing the following files',' 
',missing_file_string]); 
     
end 
%% query for function hash 
  
query_file='query.txt'; 
  
copyfile(function_list,query_file); 
  
!/usr/local/bin/ruby query.rb 
  
% result should have been written to result.txt 
if exist('result.txt','file')~=2 
    error('no query result') 
end 
  
% now read the file should have one header line and be an int, 
a string, an 
% int and an int 
fid=fopen('result.txt'); 
function_hash=textscan(fid,'%d %s %d 
%d','HeaderLines',1,'Delimiter',','); 
fclose(fid); 
  
%% query for flow hash 
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query_file='query.txt'; 
  
copyfile(flow_list,query_file); 
  
!/usr/local/bin/ruby query.rb 
  
% result should have been written to result.txt 
if exist('result.txt','file')~=2 
    error('no query result') 
end 
  
% now read the file should have one header line and be an int, 
a string, an 
% int and an int 
fid=fopen('result.txt'); 
flow_hash=textscan(fid,'%d %s %d 
%d','HeaderLines',1,'Delimiter',','); 
fclose(fid); 
  
%% now get distinct function flow set 
query_file='query.txt'; 
  
copyfile(distinct_functions,query_file); 
  
!/usr/local/bin/ruby query.rb 
  
% result should have been written to result.txt 
if exist('result.txt','file')~=2 
    error('no query result') 
end 
  
% now read the file should have one header line and be 3 
columns of 
% integers 
fid=fopen('result.txt'); 
funcs=cell2mat(textscan(fid,'%d  %d 
%d','HeaderLines',1,'Delimiter',',')); %cell2mat is because 
textscan reads as cell array 
fclose(fid); 
  
  
%% now handle aggregating up functions and flows 
  
%separate cases 1st where inflow=outflow 
  
two_tuple=funcs(funcs(:,2)==funcs(:,3),1:2); 
  
%2nd where flows don't match 
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three_tuple=funcs(funcs(:,2)~=funcs(:,3),:); 
  
%need parent child relationships 
funct_parent=[function_hash{1,1},function_hash{1,4}]; 
flow_parent=[flow_hash{1,1},flow_hash{1,4}]; 
%% aggregate the flow matching case  
  
%assign data to temp variable 
agg=two_tuple; 
  
while find(agg) 
    funct_up=agg; 
    flow_up=agg; 
     
  for i=1:length(agg) 
    
funct_up(i,1)=funct_parent((funct_parent(:,1)==funct_up(i,1)),2
); 
    
flow_up(i,2)=flow_parent((flow_parent(:,1)==flow_up(i,2)),2); 
  end 
  both_up=[funct_up(:,1),flow_up(:,2)]; 
   
  agg=[funct_up; flow_up; both_up]; 
   
  %get rid of zeros...i.e. flow with no agg up 
  agg(agg(:,1)==0,:)=[]; 
  agg(agg(:,2)==0,:)=[]; 
  agg=unique(agg,'rows'); 
   
  two_tuple=[two_tuple; agg]; 
end 
  
two_tuple=unique(two_tuple,'rows'); %get rid of any duplicates 
that may have crept in 
  
%% now the case where flows don't match 
agg=three_tuple; 
  
while find(agg) 
    funct_up=agg; 
    in_up=agg; 
    out_up=agg; 
     
    for i=1:length(agg) 
    
funct_up(i,1)=funct_parent((funct_parent(:,1)==funct_up(i,1)),2
); 
    in_up(i,2)=flow_parent((flow_parent(:,1)==in_up(i,2)),2); 
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    out_up(i,3)=flow_parent((flow_parent(:,1)==out_up(i,3)),2); 
    end 
     
    func_in_up=[funct_up(:,1), in_up(:,2), agg(:,3)]; 
    func_out_up=[funct_up(:,1), agg(:,2), out_up(:,3)]; 
    flows_up=[agg(:,1), in_up(:,2), out_up(:,3)]; 
    all_up=[funct_up(:,1), in_up(:,2), out_up(:,3)]; 
     
    agg=[funct_up; in_up; out_up; func_in_up; func_out_up; 
flows_up; all_up]; 
     
    %get rid of zeros...i.e. aggs that spilled over the top of 
the 
    %heirarchy and duplicates 
    agg(agg(:,1)==0,:)=[]; 
    agg(agg(:,2)==0,:)=[]; 
    agg(agg(:,3)==0,:)=[]; 
    agg=unique(agg,'rows'); 
     
    three_tuple=[three_tuple; agg]; 
end 
  
three_tuple=unique(three_tuple,'rows'); % gets rid of 
duplicates that may have crept in 
  
%% now stitch back together 
  
unique_funcs=unique([[two_tuple,two_tuple(:,2)];three_tuple],'r
ows'); 
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function [pf_data]=pf_data_query(excluded_systems) 
  
%validate inputs 
if nargin<1 
    excluded_systems=false; 
else 
     
    if ~isrow(excluded_systems) %ensure row vector 
        error('expected a row vector of excluded systems') 
    end 
     
    
end 
  
% return Product function list based on user parameters 
  
  
% define the output file 
output_file='query.txt'; 
%% first establish if the query is restricted to a number of 
systems 
  
if excluded_systems 
    restricted=true; 
else 
    restricted=false; 
end 
  
%% handle the restricted vs unrestricted cases 
  
switch restricted 
    case true 
    query_file_name='query_with_restriction.txt'; %specify of 
restricted query file 
     
    % check to make sure this file still exists in the 
directory (exist 
    % should report 2 if it does) 
        if exist(query_file_name,'file')~=2 
        error('query file not found'); 
        end 
     
    %list the ids of systems (products) to include 
    systems=excluded_systems; 
     
    % convert that list to a string (matlab converts the array 
with a 
    % double space between numbers...so the regexp is to make a 
comma separated list) 
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system_string=['[',regexprep(num2str(systems),'\s\s',','),']']; 
     
    %now open the file...and rewrite the query to retrieve only 
the listed systems  
    fid=fopen(query_file_name); 
    query_string=fread(fid,'*char')'; 
    fclose(fid); 
     
    %add in system string 
    query=regexprep(query_string,'{}',system_string); 
     
    %write out to query file 
    fid=fopen(output_file,'w+'); 
    fprintf(fid,query); 
    fclose(fid); 
     
    otherwise 
    query_file_name='query_unrestricted.txt'; 
    %check to make sure this file still exists in the directory 
(exist 
    % should report 2 if it does) 
        if exist(query_file_name,'file')~=2 
            error('query file not found'); 
        end 
    copyfile(query_file_name,output_file); 
     
end 
  
%% now execute the query 
  
%check to make sure query file exist 
if exist('query.rb','file')~=2 
   error('query script missing'); 
end 
%execute the query 
!/usr/local/bin/ruby query.rb 
  
%% result should have been written to result to txt 
if exist('result.txt','file')~=2 
    error('no query result') 
end 
  
pf_data=importdata('result.txt',','); 
  
pf_data=pf_data.data; 
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Chapter 4 Scripts and Functions 

 
function [similar_labeled, similar_products, 
similarity]=Vector_Space_method(weighting) 
  
  
%% calculates similarity between systems using my method 
adapted from IR 
  
% begin with a product function matrix assume all functions are 
equally 
% important...ergo no weighting effect from customer needs 
  
[pf_mat,~,~,sys_hash ]=pf_assembler; 
  
  
%% pick weighting scheme and caculate weighted matrix 
  
  
switch weighting 
    case {'none'} 
        disp('Local and Global Weights were not applied') 
         
        %Local weight 
        % non-local weight 
         
        %Global weight 
        % just one for this case 
         
        pf_weighted=(pf_mat); 
         
    case {'log'} 
        disp('Local and global weights calculated as log of 
frequency and log entropy') 
         
        %Local weight 
        local_weight=log2(1+pf_mat); 
        %Global weight 
        p=pf_mat./repmat(sum(pf_mat,2),1,size(pf_mat,2)); 
         
        p_log=p.*log2(p); 
        p_log(isnan(p_log))=0; % have to do this because log 
blows up for terms with 0 frequency 
         
        global_weight=1+(sum(p_log,2)./log2(size(pf_mat,2))); 
        global_weight=repmat(global_weight,1,size(pf_mat,2)); 
         



)'" 

        pf_weighted=pf_mat.*local_weight.*global_weight; 
         
    otherwise 
            error('weighting scheme not recoginized try "none" 
or "log"') 
end 
    
  
%% now perfrom queries 
  
similarity=zeros(size(pf_mat,2)); 
%will pre_calculate 2 norm of columns of data matrix 
  
col_norms=sqrt(sum((pf_weighted.^2),1)); 
  
for i=1:size(pf_mat,2) 
     
    query_vector=pf_mat(:,i); 
    query_vector_norm=sqrt(query_vector'*query_vector); 
     
    for j=1:size(pf_mat,2) 
        
similarity(i,j)=pf_weighted(:,j)'*query_vector/(col_norms(j)*qu
ery_vector_norm); 
    end 
     
end 
  
%% need to get a system hash to get meaningful results 
  
query_file='query.txt'; 
  
copyfile('query_systems.txt',query_file); 
  
!/usr/local/bin/ruby query.rb 
  
% result should have been written to result.txt 
if exist('result.txt','file')~=2 
    error('no query result') 
end 
  
% now read the file should have one header line and be an int, 
a string, an 
% int and an int 
fid=fopen('result.txt'); 
system_hash=textscan(fid,'%d 
%s','HeaderLines',1,'Delimiter',','); 
fclose(fid); 
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%% now set up output matrix of rank order lists of similarity 
  
dim=size(similarity,1); 
similar_products=zeros(dim); 
  
for i=1:length(similarity) 
    similarity_vector=[similarity(i,:);sys_hash']; 
    similarity_vector=sortrows(similarity_vector'); 
    similarity_vector=flipdim(similarity_vector,1)'; 
     
    similar_products(i,:)=similarity_vector(2,:); 
end 
  
%% and repeat to replace with labels 
  
similar_labeled=cell(dim,dim); 
  
for i=1:dim 
    for j=1:dim 
        indx=find(system_hash{1,1}==similar_products(i,j)); 
        similar_labeled{i,j}=system_hash{1,2}{indx}; 
    end 
end 
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Chapter 5 Scripts and Functions 

%%FM_processor.m 
%modified concept generator algorithm 
%by Kerry Poppa 
  
%% start out with a fixed file for now 
fm_file='spices2.txt'; 
  
  
%% call FM_reader to process function adjaceny matrix 
[names, FM]=FM_reader(fm_file); 
  
%% need to reformat individual functions to make it easier to 
sort fcm 
  
names=lower(names); %ensure everything is lower case 
names=regexprep(names,'\s{2,}',' '); % and single spaced 
  
  
  
%% generate an FCM and a set of text function labels 
  
[fcm_mat,labels,components]=new_FCM(); 
  
%% find rows of FCM that correspond to parts of functional 
model 
  
matches=[]; 
for i=1:length(names) 
    row=find(strcmpi(names(i),labels)); 
    if isempty(row) 
        row=0; 
    end 
    matches=[matches;row]; 
end 
  
fcm_keep=[]; 
  
for i=1:length(matches) 
    if matches(i)~=0 
       fcm_keep(i,:)=fcm_mat(matches(i),:);  
    elseif matches(i)==0; 
        fcm_keep(i,1)=47; 
    end 
     
end 
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%% now find columns....these will be components 
  
comp_ids={}; 
  
for i=1:size(fcm_keep,1) 
     
    comp_ids{i}=find(fcm_keep(i,:)); 
end 
  
%% excluded components 
exclude=[1:39,175:179]; %set the components to exclude...could 
be done programmatically later 
  
for i=1:length(comp_ids) 
    comp_ids{i}(ismember(comp_ids{i},exclude))=[]; 
end 
  
%% if any function has no solution include unknown 
for i=1:length(comp_ids) 
    if isempty(comp_ids{i}) 
        comp_ids{i}=1; 
    end 
end 
  
%% get an intial concept 
  
[first_concept, first_cv]=solveit(comp_ids); 
  
%% retrieve repository product component matrix for creating 
reduced approximations 
pcm=PCM(); 
[U,S,~]=svd(pcm); 
  
error=fliplr(sum(S)); 
error=(sqrt(cumsum(error.^2)))./norm(pcm); 
error=100*fliplr(error); 
  
indx=find(error<1,1,'first'); %allow 1% error % find first 
instance of this 
  
Uk=U(:,1:indx); 
  
%% create a container for finished concepts 
  
finished_vectors=first_cv; 
finished_vectors_k=Uk'*first_cv; 
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finished_concepts=first_concept; 
  
%% create additional concepts 
repeat=1;  %will keep going until 5 concepts in a row are non 
unique 
while repeat<25; 
[next_concept,next_cv]=solveit(comp_ids); 
  
%now choose a concept that maximizes distance to first 
  
for i=1:length(next_concept) 
  
%for each row of the fcm create a new concept with each 
alternate component 
%keep the one that is furthes away 
original_comp=next_concept(i); 
concept_mod=next_cv; 
concept_mod(original_comp)=concept_mod(original_comp)-1; 
possible_concepts=repmat(concept_mod,1,length(comp_ids{i})); 
  
  for k=1:size(possible_concepts,2) 
      
possible_concepts(comp_ids{i}(k),k)=possible_concepts(comp_ids{
i}(k),k)+1; 
  
  end 
  possible_concepts_k=[]; 
  for j=1:size(possible_concepts,2) 
      possible_concepts_k=[possible_concepts_k, 
Uk'*possible_concepts(:,j)]; 
  end 
  
distances=squareform(pdist([possible_concepts_k,finished_vector
s_k]','cosine')); 
  cols=size(finished_vectors_k,2); 
  rows=size(possible_concepts_k,2); 
  distances=distances(1:rows,size(distances,2)-cols:end); 
  dist_metric=sqrt(sum(distances.^2,2)); 
  [~,keep_index]=max(dist_metric); 
  concept_to_keep=possible_concepts(:,keep_index); 
next_cv=concept_to_keep; 
end 
  
  
check=1-squareform(pdist([finished_vectors_k, 
Uk'*next_cv]','cosine')); 
check=abs(check)>0.5; %cutoff for similarity 
check=sum(check); 
  
if max(check)>1; 
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next_cv=[]; 
repeat=repeat+1; 
else 
finished_vectors=[finished_vectors, next_cv]; 
finished_vectors_k=[finished_vectors_k, Uk'*next_cv]; 
end 
end 
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function [func_names, connections]= FM_reader(file_name) 
%% reads a functional model adjacency matrix from FunctionCAD 
  
  
file_struct=importdata(file_name); 
  
%if importdata succeds it will put the function adjacency 
matrix into a 
%struct of a char array of names and a matrix of conncetions 
  
func_names=file_struct.textdata(:,1); 
% there will be one emptycell 
func_names=func_names(2:end); 
  
%the actual adjacency matrix 
connections=file_struct.data; 
  
end 
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function [fcm_mat,row_labels,col_labels] =  new_FCM() 
  
%% this script prepares an FCM from queries of the repository 
  
  
  
%% locate query files 
  
%file to look in for FCM data query  
%format should be component ID, component name, function, 
function name 
%input flow, flow name, output flow, flow name count 
fcm_query='fcm_data.sql'; 
  
%files to look in for function hash, flow hash, and component 
hash 
%format should be id, name, tier, child of 
  
function_hash_query='function_hash.sql'; 
  
flow_hash_query='flow_hash.sql'; 
  
component_hash_query='component_hash.sql'; 
  
%create cell array of names 
file_names={fcm_query; function_hash_query; flow_hash_query; 
component_hash_query}; 
  
%check to verify that these files exist 
existence_check=cellfun(@exist,file_names); 
  
%throw an error if any of the files don't exist - would be nice 
to be 
%specific about which one, but for now let's just throw the 
error  (we know 
%an error exists returns comethign other than 2). 
  
assert(isequal(existence_check,2*ones(size(existence_check))),.
.. 
    'one of the query files was missing'); 
  
%% execute queries 
  
%create an function that is a composite of our query and reader 
functions 
  
hash_query = @(query_file) hash_reader(db_query(query_file)); 
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%run the hash queries 
function_hash=hash_query(function_hash_query); 
flow_hash=hash_query(flow_hash_query); 
component_hash=hash_query(component_hash_query); 
  
%run the data query 
  
data_file=db_query(fcm_query); 
  
%open the file 
fid=fopen(data_file); 
  
%read the file 
fcm_data=textscan(fid,'%f %s %f %s %f %s %f %s 
%f','HeaderLines',1, 'Delimiter', ','); 
  
%close the file 
fclose(fid); 
  
%turn data matrix into an array for easier manipulation cols 
are: function, 
%inflow, outflow, comp, count 
  
datamat=cell2mat(fcm_data(:,[3; 5; 7; 1; 9])); 
  
%% aggregation 
% the following is probably the most naive way I can imagine 
doing this, 
% but it works... 
  
%first find the unique functions in the data set 
  
unique_functions=unique(datamat(:,1:3),'rows'); 
  
%two cases flows match or they don't 
  
two_tuple=unique_functions(unique_functions(:,2)==unique_functi
ons(:,3),:); 
three_tuple=unique_functions(unique_functions(:,2)~=unique_func
tions(:,3),:); 
  
%% two tuple case is easiest, do it first  three options 
function_up, flow_up both up 
  
up_once=(two_tuple(:,1:2)); %matrix to hold aggretion up one 
level 
up_twice=zeros(size(up_once)); %matrix to hold aggregation up 
two levels 
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%find each function and flows parents 
function_parent=function_hash{4}; 
flow_parent=flow_hash{4}; 
  
%do the aggregation cases 
for i=1:length(up_once) 
    
   up_once(i,1)=function_parent(up_once(i,1)); 
   up_once(i,2)=flow_parent(up_once(i,2)); 
    
   if up_once(i,1)~=0 
   up_twice(i,1)=function_parent(up_once(i,1)); 
   end 
    
   if up_once(i,2)~=0 
   up_twice(i,2)=flow_parent(up_once(i,2)); 
   end 
end 
  
%aggregate  scenarios - will define some intermediate variables 
to make it 
%less confusing - this is a terrible way to do this, but I 
needed the 
%book keeping to make sure everything is included 
  
func=two_tuple(:,1); flow=two_tuple(:,2); func_u=up_once(:,1); 
flow_u=up_once(:,2); 
func_uu=up_twice(:,1); flow_uu=up_twice(:,2); 
  
agged_two_tuple=[func, flow; 
                 func, flow_u; 
                 func, flow_uu; 
                 func_u, flow; 
                 func_u, flow_u; 
                 func_u, flow_uu; 
                 func_uu, flow; 
                 func_uu, flow_u; 
                 func_uu, flow_uu]; 
  
  
                     
  
         
%get rid of duplicates 
agged_two_tuple=unique(agged_two_tuple,'rows'); 
  
%get rid of zeros 
  
agged_two_tuple(agged_two_tuple(:,1)==0 | 
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agged_two_tuple(:,2)==0, :)=[]; 
  
%% now do three tuple case 
  
up_once=(three_tuple(:,1:3)); %matrix to hold aggretion up one 
level 
up_twice=zeros(size(up_once)); %matrix to hold aggregation up 
two levels 
  
%do the aggregation cases 
for i=1:length(up_once) 
    
   up_once(i,1)=function_parent(up_once(i,1)); 
   up_once(i,2)=flow_parent(up_once(i,2)); 
   up_once(i,3)=flow_parent(up_once(i,3)); 
    
   if up_once(i,1)~=0 
   up_twice(i,1)=function_parent(up_once(i,1)); 
   end 
    
   if up_once(i,2)~=0 
   up_twice(i,2)=flow_parent(up_once(i,2)); 
   end 
    
   if up_once(i,3)~=0 
   up_twice(i,3)=flow_parent(up_once(i,3)); 
   end 
end 
  
%aggregate  
func=three_tuple(:,1); inflow=three_tuple(:,2); 
func_u=up_once(:,1); inflow_u=up_once(:,2); 
func_uu=up_twice(:,1); inflow_uu=up_twice(:,2); 
outflow=three_tuple(:,3); outflow_u=up_once(:,3);  
outflow_uu=up_twice(:,3); 
  
col1=[repmat(func,9,1);repmat(func_u,9,1);repmat(func_uu,9,1)]; 
col2=repmat([repmat(inflow,3,1);repmat(inflow_u,3,1);repmat(inf
low_uu,3,1)],3,1); 
col3=repmat([outflow;outflow_u;outflow_uu],9,1); 
  
agged_three_tuple=[col1,col2,col3]; 
  
%get rid of duplicates 
agged_three_tuple=unique(agged_three_tuple,'rows'); 
  
%get rid of zeros 
agged_three_tuple(agged_three_tuple(:,1)==0 | 
agged_three_tuple(:,2)==0 | agged_three_tuple(:,3)==0, :)=[]; 
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%% put everything back together 
  
unique_functions=[agged_two_tuple, 
agged_two_tuple(:,2);agged_three_tuple]; 
  
%may still be some duplicates 
unique_functions=unique(unique_functions,'rows'); 
  
%get rid of some of the temp variables created along the way to 
avoid 
%confusion 
  
clear col1 col2 col3 flow flow_u flow_uu func funch_u func_uu 
inflow inflow_uu inflow_u  
clear outflow outflow_u outflow_uu agged_three_tuple 
agged_two_tuple two_tuple three_tuple 
clear up_once up_twice 
%% now have a list of known functions from the repository can 
deal out values to an fcm 
  
fcm_mat=zeros(length(unique_functions),length(component_hash{1}
)); 
  
for i=1:length(unique_functions) 
     
         
    
funcs=[unique_functions(i,1);children_finder(unique_functions(i
,1),function_hash{4})]; 
    
inflows=[unique_functions(i,2);children_finder(unique_functions
(i,2),flow_hash{4})]; 
    
outflows=[unique_functions(i,3);children_finder(unique_function
s(i,3),flow_hash{4})]; 
     
rows_to_keep=datamat(ismember(datamat(:,1),funcs) & 
ismember(datamat(:,2),inflows)... 
    & ismember(datamat(:,3),outflows),4:5); 
  
    for j=1:size(rows_to_keep,1) 
        row=i; col=rows_to_keep(j,1); 
         
        fcm_mat(row,col)=fcm_mat(row,col)+rows_to_keep(j,2); 
    end 
end 
  
%% one more aggregation is needed b/c of component hierarchy 
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for i=1:size(fcm_mat,2) 
    comp_children=children_finder(i,component_hash{4}); 
     
    for j=1:size(comp_children,1) 
        fcm_mat(:,i)=fcm_mat(:,i)+fcm_mat(:,comp_children(j)); 
    end 
end 
  
  
%% now we need to develop text lables for the functions 
  
function_labels=cell(size(unique_functions,1)); 
  
%there's a problem in the flow labels, for whatever reason 
human energy and 
%material don't follow the same convention as other flows, so 
we need to 
%strip their qualifiers 
  
flow_hash{2}=regexpi(flow_hash{2}, '^(\S+)','match');  %this 
keeps only the first word in each string 
  
% now run through the list and add the appropriate labels 
  
top_level_indxs=find(flow_hash{4}==0); 
  
for i=1:length(top_level_indxs) 
    
descendents=children_finder(top_level_indxs(i),flow_hash{4}); 
    append=top_level_indxs(i); 
    for j=1:length(descendents) 
        indx=descendents(j); 
        flow_hash{2}{indx}=[cell2mat(flow_hash{2}{indx}), ' ', 
cell2mat(flow_hash{2}{append})]; 
    end 
end 
  
%% we have the right set of labels just need to compose row and 
column labels 
labels={}; 
for i=1:length(unique_functions) 
    func=(function_hash{2}{unique_functions(i,1)}); 
    if unique_functions(i,2)==unique_functions(i,3) 
          flow=(flow_hash{2}{unique_functions(i,2)}); 
          label=[func,' ',flow]; 
    else 
        inflow=(flow_hash{2}{unique_functions(i,2)}); 
        outflow=(flow_hash{2}{unique_functions(i,3)}); 
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          label=[func,' ',inflow,' to ',outflow]; 
    end 
     
    if iscell(label) 
        label=cell2mat(label); 
    end 
    labels{i}=label; 
     
end 
  
row_labels=labels'; 
col_labels=component_hash{2}'; 
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function [hash]=hash_reader(data_file) 
% parses the results of database querys to return hashes of 
taxonomies in 
% the repository 
  
%% open the file 
fid=fopen(data_file); 
  
%% read the data (will be id, name, tier, child of) 
hash=textscan(fid,'%f %s %f 
%f','HeaderLines',1,'Delimiter',','); 
  
%deal with Nan's in cols 3 and 4 
hash{3}(isnan(hash{3}))=0; 
hash{4}(isnan(hash{4}))=0; 
%%close the file 
fclose(fid); 
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function [result_file]=db_query(query_file) 
%this function calls a ruby script to query the database 
  
%% first check to ensure the needed ruby script is missing 
assert(exist('query.rb')==2,'query script is missing'); 
  
%% copy the specified query file to the file expected by the 
ruby script 
output_file='query.txt'; 
copyfile(query_file,output_file); 
  
%% run the query 
!/usr/local/bin/ruby query.rb 
  
%% tell matlab where to read the result 
result_file='result.txt'; 
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%% generate solutions 
function [concept,concept_vector]=solveit(comp_ids) 
solution=zeros(length(comp_ids),1); % pre-allocate an array to 
hold the solution 
  
% check to see if any function has a single solution  
  
for i=1:length(comp_ids) 
    if length(comp_ids{i})==1 
        solution(i)=comp_ids{i}(1); 
    end 
end 
  
% now go through and populate the solution 
  
while prod(solution)==0 %while there's still a zero in the set 
     
    % pick a function at random function to start with 
    already_solved=1; 
     
    while already_solved==1 
         
        funct=random('unid',length(solution)); 
        if solution(funct)==0 
           already_solved=0;  
        end 
             
    end 
    %pick a solution from that function 
    
solution(funct)=comp_ids{i}(random('unid',length(comp_ids{i})))
; 
     
     
     
end 
  
  
%% reformat into concept component matrix 
  
soln=zeros(179,1); 
for i=1:length(solution) 
    
    soln(solution(i))=soln(solution(i))+1; 
end 
concept=solution; 
concept_vector=soln; 
end 



!** 

APPENDIX D SAMPLE PROBLEMS 
The following appendix includes adjacency matrices of the functional 

models used to generate concepts for the Peanut Sheller, Water Lifter, and 

Spice Grinder in Chapter 2 and Chapter 5.  These models have some 

imperfections as discussed in Chapter 5, but they should enable the work in 

this dissertation to be duplicated. 

  



!*) 

Peanut Sheller Functional Model 
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Water Lifter Functional Model 
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