

AN ABSTRACT OF THE DISSERTATION OF

Kerry R. Poppa for the degree of Doctor of Philosophy in Mechanical

Engineering presented on August 22, 2001

Title: Theory and Application of Vector Space Similarity Measures in

Computer Assisted Conceptual Design

Abstract approved:

Robert B. Stone Irem Y. Tumer

A number of computational tools now exist to aid in developing conceptual

solutions based on a functional description of a design problem. A key

limitation of these tools is the way results are organized for presentation to the

user. In general, results are an undifferentiated mass of potential solutions.

Analysis using a novel concept clustering tool shows concept generator output

represents permutations of a set of a few solution archetypes. This provides an

initial solution to organizing and presenting the results. More efficient

solutions are sought by adopting a generate-evaluate-guide framework from

the computational design synthesis literature. Specifically, the concept

generation approach is altered so that each generated solution maximizes the

variety it adds to the set of solutions. To achieve this, suitable similarity

measures must first be developed.

Current techniques for similarity assessment in the design literature

tend to be ad hoc and highly specialized to particular tasks. Prior work from

the field of information retrieval is applied and extended to create a generalized

approach to similarity assessment for vector space design data. These

techniques are validated against an existing design by analogy methodology. A

new tool for locating functional analogies within a database of existing

products is developed as a result.

Improved similarity measures are combined with the proposed

computational synthesis framework from literature to modify an existing

concept generation tool. The resulting tool efficiently locates the few novel

solutions in the set of possible results, and is a key step in the continued

evolution of this class of computational design tools.

!Copyright by Kerry R. Poppa

August 22, 2011

All Rights Reserved

Theory and Application of Vector Space Similarity Measures in Computer

Assisted Conceptual Design

by

Kerry R. Poppa

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosopy

Presented August 22, 2011

Commencement June 2012

Doctor of Philosophy dissertation of Kerry R. Poppa

Presented on August 22, 2011.

APPROVED:

Co-Major Professor, representing Mechanical Engineering

Co-Major Professor, representing Mechanical Engineering

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection

of Oregon State University Libraries. My signature below authorizes release of

my dissertation to any reader upon request.

Kerry R. Poppa, Author

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my co-advisors Dr.

Rob Stone and Dr. Irem Tumer for their guidance, support, and advice during

my graduate studies. I am indebted to my committee for their time, patience,

and thoughtful feedback. This work has been influenced by collaborations

with kind and helpful colleagues from a number of other institutions. Their

feedback and insights have molded my thinking over the years, and I am in

their debt.

While working on this dissertation I was supported by funds from the

National Science Foundation (CMMI-0742677, IIS-0841379, and CMMI-

0927745), Oregon State University Mechanical Engineering Fellowships, and

the G&E Lundstrom Scholarship. Any opinions, findings and conclusions or

recommendations expressed are mine and do not reflect the views of any of

these funding sources.

TABLE OF CONTENTS
 Page

1! INTRODUCTION AND BACKGROUND .. 1!
1.1! INTRODUCTION .. 1!

1.1.1 Roadmap ... 1!
1.1.2 Contributions of This Chapter .. 2!

1.2! MOTIVATION AND RESEARCH QUESTIONS ... 2!
1.3! ORGANIZATION OF THIS DISSERTATION ... 4!
1.4! BACKGROUND .. 6!

1.4.1 Structured Design Methods ... 6!
1.4.2 Design Repositories ... 8!
1.4.3 Functional Basis and Component Taxonomies .. 9!
1.4.4 Computational Design Synthesis .. 11!

1.5! CONCLUSION .. 15!

2! SORTING AUTOMATED CONCEPT GENERATOR OUTPUT 16!
2.1! INTRODUCTION .. 16!

2.1.1 Roadmap ... 16!
2.1.2 Contributions of This Chapter .. 17!

2.2! CONCEPT PARAMETER BASED SORTING .. 17!
2.2.1 Outline of Proposed Method ... 18!
2.2.2 Estimating Concept Parameters from Repository Data 20!
2.2.3 Sample Implementation 1: Design for Manufacture and Assembly 23!
2.2.4 Sample Implementation 2: Estimating Data for Environmental Impact

Assessment .. 31!
2.2.5 Conclusions about Parameter Estimation Based Sorting 33!

2.3! SORTING BASED ON COMPONENT SELECTION .. 34!
2.3.1 Cluster Analysis ... 36!
2.3.2 Variable Reduction Via Principal Component Analysis 37!
2.3.3 Case Studies of Component Based Clustering .. 38!

TABLE OF CONTENTS (Continued)
Page

2.3.4 Conclusions on Component Based Sorting Through Clustering and PCA 47!
2.4! CONCLUSIONS .. 48!

3! FUNCTIONAL ANALOGY IN DESIGN ... 50!
3.1! INTRODUCTION .. 50!

3.1.1 Roadmap ... 50!
3.1.2 Contributions of this Chapter ... 51!

3.2! MEASURES OF ANALOGY IN DESIGN ... 51!
3.3! APPLICATION OF THE CURRENT MEASURE TO INTER- PRODUCT FUNCTIONAL

SIMILARITY .. 53!
3.3.1 The Method of McAdams and Wood .. 53!
Application to Data in the Design Repository .. 57!

3.4! CONCLUSION .. 67!

4! A UNIVERSAL APPROACH TO VECTOR SPACE SIMILARITY

MEASUREMENT IN ENGINEERING DESIGN ... 68!
4.1! INTRODUCTION .. 68!

4.1.1 Chapter Roadmap ... 68!
4.1.2 Contributions of this chapter .. 69!

4.2! VECTOR SPACE REPRESENTATIONS .. 69!
4.3! VECTOR SPACE TECHNIQUES IN INFORMATION RETRIEVAL 76!

4.3.1 History of Vector Space Models in Information Retrieval 76!
4.3.2 Latent Semantic Indexing and Rank Reduced Approximations 80!
4.3.3 Constructing the Vector Space Model ... 82!
4.3.4 Weighting Schemes ... 83!
4.3.5 Reduced Rank Approximations .. 86!
4.3.6 An Example: Text Book Title Similarity .. 96!

4.4! EXPLORING INTER-PRODUCT FUNCTIONAL SIMILARITY THROUGH THE

TECHNIQUES OF LSI ... 100!

TABLE OF CONTENTS (Continued)
Page

4.4.1 Constructing and Weighting a Vector Space Model of the Data 100!
4.4.2 Rank Reduction via Singular Value Decomposition 102!
4.4.3 Comparison With Existing Similarity Measure .. 103!

4.5! EFFICIENT COMPUTATION OF LSI BASED VECTOR SPACE SIMILARITY 114!
4.6! CONCLUSION .. 117!

5! A VARIETY MAXIMIZING CONCEPT GENERATOR 118!
5.1! INTRODUCTION .. 118!

5.1.1 Roadmap ... 118!
5.1.2 Contributions of This Chapter .. 119!

5.2! ADAPTING THE MEMIC ALGORITHM ... 119!
5.2.1 Overview of the Existing Algorithm ... 120!
5.2.2 Checking Compatibility ... 122!
5.2.3 Guiding Through Rank-Reduced Vector Space Similarity 122!

5.3! APPLYING THE NEW ALGORITHM TO SAMPLE PROBLEMS 127!
5.3.1 Peanut Sheller .. 127!
5.3.2 Water Lifter .. 131!
5.3.3 Spice Grinder ... 133!

5.4! CONCLUSION .. 137!

6! CONCLUSION .. 139!
6.1! PARAMETER ESTIMATION AND CONCEPT CLUSTERING 140!
6.2! INTER-PRODUCT SIMILARITY A FUNCTIONAL DESIGN BY ANALOGY

PERSPECTIVE ... 140!
6.3! A VECTOR SPACE SIMILARITY MEASURE FOR ENGINEERING DESIGN BASED ON

LATENT SEMANTIC INDEXING .. 141!
6.4! CLOSING THE CDS LOOP FOR MEMIC LIKE AUTOMATED CONCEPT

GENERATORS .. 142!
6.5! CONTRIBUTIONS OF THIS DISSERTATION .. 143!

TABLE OF CONTENTS (Continued)
Page

6.6! IMPACT ON DESIGNER PROCESS AND RESULTS ... 145!
6.7! FUTURE WORK ... 147!

REFERENCES 149!

APPENDICES 160!
APPENDIX A SQL QUERIES ... 161!
APPENDIX B RUBY SCRIPT ... 165!
APPENDIX C MATLAB" SOURCE ... 168!
APPENDIX D SAMPLE PROBLEMS .. 200!

LIST OF FIGURES
Figure Page

Figure 1.1 High Level Design Process ... 7!

Figure 1.2 Design Repository Web Interface ... 9!

Figure 1.3 Functional and Black Box Models of Sander 10!

Figure 1.4 MEMIC Software UI ... 13!

Figure 1.5 CDS Cycle adapted from [21] .. 14!

Figure 2.1 Outline of Proposed Method ... 19!

Figure 2.2 Functional Model for Case Study of Toy ... 28!

Figure 2.3 Sample Concept Generator Output .. 29!

Figure 2.4 Summary of Available Mass and Failure Data 33!

Figure 2.5 Proposed Component Based Sorting Method 38!

Figure 2.6 Scree Plot of Peanut Sheller Results .. 41!

Figure 2.7 Silhouette Plot of Peanut Sheller Concept in Two Clusters 42!

Figure 2.8 Scree Plot of Water Lifter Results ... 43!

Figure 2.9 Silhouette Plot of Water Lifter in Three Clusters 44!

Figure 2.10 Scree Plot of Spice Grinder Results ... 45!

Figure 2.11 Silhouette Plot of Spice Grinder in Six Clusters 46!

Figure 3.1 Example Product Function Vectors ... 54!

Figure 3.2 Plot of Product-Product Similarity Measures 60!

Figure 3.3 Histogram of Distance of Most Similar Product 61!

Figure 4.1 Vegetable Peeler DSM .. 71!

LIST OF FIGURES (Continued)
Figure Page

Figure 4.2 Ink Pen DSM .. 71!

Figure 4.3 Ink Pen and Vegetable Peeler Combined DSM 72!

Figure 4.4 Alternative Ink Pen DSM ... 73!

Figure 4.5 Criterion 7 Distributivity of Scalar Multiplication 73!

Figure 4.6 Criterion 8 Distributivity of Vector Addition with Scalar
Multiplication .. 74!

Figure 4.7 Criterion 9 Associative Property of Scalar Multiplication 74!

Figure 4.8 Example Term by Document Matrix ... 83!

Figure 4.9 Sample Grey Scale Image at Rank 940 .. 86!

Figure 4.10 Approximation of Image Reduced to Rank 470 and Rank 235 87!

Figure 4.11 Rank 94 and Rank 10 Approximation of Image 88!

Figure 4.12 A Noisy Image and its Rank Reduced Equivalent 89!

Figure 4.13 Example of Euclidean and Cosine Distance 96!

Figure 4.14 Percent Error for Rank Reduced Approximations of Weighted
Product Function Matrix ... 102!

Figure 4.15 Trends in Inter-Product Similarity Using Existing Measure 104!

Figure 4.16 Trends in Inter-product Similarity Using Proposed Measure 105!

Figure 4.17 Histogram of Distance to Next Most Similar Product 106!

Figure 5.1 Proposed Guided Concept Generator Algorithm 126!

LIST OF TABLES
Figure Page

Table 2.1 Parameter Vector for Sample Three Component Concept 28!

Table 2.3 Results for Toy Case Study .. 30!

Table 3.1 Similarity Metric Test Cases .. 59!

Table 3.2 Products with Low Similarity to Other Members of The Repository 62!

Table 3.3 Coffee Maker Similarity as Measured by McAdams and Wood
Method ... 63!

Table 3.4 Drill Similarity as Measured by McAdams and Wood Method 64!

Table 3.5 Similarity of Aerospace Failure Data as Measured by McAdams and
Wood Method ... 66!

Table 4.1 Example of Entropy Calculation ... 85!

Table 4.2 Weighted Text Book Title Vectors ... 97!

Table 4.3 Pairwise Cosine Distances of Text Book Titles 98!

Table 4.4 Pairwise Cosine Distances of Text Book Descriptions 98!

Table 4.5 Change in Most Dissimilar Artifacts Using New Measure 107!

Table 4.6 Products with Low Similarity to Other Members of the Repository
Based on New Measure .. 109!

Table 4.7 Summary of Test Cases .. 110!

Table 4.8 Coffee Maker Similarity as Measured Using Proposed Method 111!

Table 4.9 Aerospace Systems Similarity as Measured by LSI Based Method .. 112!

Table 4.10 Drill Similarity as Measured Using Proposed Method 113!

Table 5.1 Peanut Sheller Concepts Generated Using New Algorithm 128!

LIST OF TABLES (Continued)
Table Page

Table 5.2 Summary of Component Selection for Some Peanut Sheller
Functions .. 130!

Table 5.3 Water Lifter Concepts Generated Using New Algorithm 132!

Table 5.4 Component Selections for some Functions in Water Lifter Functional
Model .. 133!

Table 5.5 Spice Grinder Concepts Generated with New Algorithm 134!

Table 5.6 Summary of Component Selections for some Spice Grinder
Functions .. 135!

Table 5.7 Spice Grinder Concepts Using Modified Functional Model 137!

DEDICATION

I was blessed to have been born into a family that gave me a love of mechanical

things, and then tolerated by unending questions, and occasionally poor

assumptions, about how they worked. This dissertation is for them, and for A

and E who joined me on this misadventure.

1 Introduction and Background

1.1 Introduction

Automated concept generators, a class of computational design

synthesis tools aimed at aiding conceptualization in early design, have shown

great promise as aids to designers. However, the present generation of these

tools requires the designer to manually guide the exploration of the solution

space, severely limiting their utility. Present theory on computational design

synthesis posits a three-step loop of generation, evaluation, and guidance. At

present, the guidance step is off loaded to the user; this must be rectified before

these tools can move forward to wider adoption and use. This dissertation

applies vector space query matching techniques from information retrieval to

solve the problem of guidance in automated concept generation. This

dissertation closes the loop for automated concept generators by providing

evaluation of generated solutions and guidance in the generation of new

solutions. These tools are aimed at conceptual design so novelty is a primary

metric for evaluation concepts. What is needed is a method to automatically

assess the similarity of generated concepts.

1.1.1 Roadmap

The chapter begins by discussing opportunities for enhancing

automated concept generators. A key finding is that there is a need for widely

applicable techniques for assessing the similarity of engineering artifacts across

a variety of dimensions. A series of research questions that will be answered by

this dissertation is outlined. A brief synopsis of the organization of the

!

remainder of the dissertation is given. Finally background on key concepts and

tools is presented.

1.1.2 Contributions of This Chapter

1. Opportunities to contribute to the state of the art in automated concept

generation literature are identified

2. The need for universal approaches to design artifact similarity

measurement is established

3. The literature related to methods and tools relevant to this dissertation

is surveyed.

1.2 Motivation and Research Questions

Many engineering design activities require the practitioner to assess

qualitative or quantitative similarity between components, systems, and

phenomena, often across domains and disciplines. A task as simple as

catalogue design requires the designer to evaluate how closely an existing

component matches perceived requirements, while activities like design by

analogy and concept generation using morphological analysis require assessing

similarity at increasing levels of abstraction. Current techniques tend to be ad

hoc and highly specialized to particular tasks.

Deficiencies of current similarity measures tend to go unnoticed

because the human mind is adept at classification tasks, and can often correct

for errors or inconsistencies. Despite this advantage, measures are needed to

move this evaluation process towards a computational setting. Evolution may

have adapted the human mind to solve these problems, but we are not immune

to significant cognitive bias. The volume of data now readily available

compounds the problem. Given the many viable information sources available

"

to us, many problems may be intractable for the un-aided human mind. If the

computer is used as an aid, then it must be recognized that it shares none of

our innate ability to sort and categorize, but brings an objective lens to the

evaluation process. Thus, measures of similarity are needed which are

insensitive to our biases, able to handle meaningfully large sets of data, and

efficiently computable.

These issues are not unique to engineering design. Modern

information retrieval techniques locate documents most relevant to a given

query using matrix techniques that produce quantitative measures of

similarity. This dissertation addresses the need for quantitative similarity

measures in engineering design by answering three key questions.

1. Can automated information retrieval techniques be adapted

to provide similarity measures for engineering design

methods?

2. How does the performance of these adapted techniques

compare to existing methods?

3. If the proposed technique is suitable for similarity

assessments between existing products, can it be further

adapted to evaluate automatically generated design concepts

and guide automated concept generation?

Information retrieval posits a variety of techniques for query matching

that may be adapted as measures of similarity for engineering design. In

general these techniques begin by constructing a vector space model of the data

for comparison. While the appropriate data for comparison is largely

determined by the problem at hand, a contribution of this dissertation is to

demonstrate appropriate vector space representations of product function and

morphology. An existing repository of engineered products will be used as the

primary product data source for the proposed work. Once a vector space

model has been constructed a matrix approximation of it is calculated.

While there are many applications for a quantitative similarity measure

of engineered artifacts, answering the first two research questions requires a

more narrow scope. Though a number of useful engineering design activities

could be used to validate the application of information retrieval techniques,

this dissertation focuses on design by analogy for two reasons. First, there is

recent exploration of design by analogy in the literature suggesting that this is

an area of interest to the research community where there may still be room for

contributions. Second, the literature contains quantitative similarity measures

for design by analogy that can serve as benchmarks to assess the proposed

work.

The third research question turns the focus back to computational

design tools. This dissertation initially explores automatically clustering

concept generator results after generation. Rather than sorting a set of

generated concepts, the techniques developed are used to map each concept

into a reduced vector space representing relevant product knowledge as it’s

generated. This mapping guides a concept generation algorithm that seeks to

maximize the distance in the vector space between the previously generated

concepts and the next. This allows the most novel solutions to be generated

within the first few iterations of the concept generation algorithm, eliminating

the need for extensive post processing of large sets of generated concepts.

1.3 Organization of this Dissertation

This dissertation is organized into six chapters. Each begins with an

introduction, a roadmap of topics covered in the chapter and a summary of

$

contributions made. Each chapter ends with a conclusion briefly summarizing

key results. This section briefly describes the outline of this work to help the

reader jump directly to relevant chapters.

Chapter 1: Chapter one discusses the motivation of this work and lays

out a basic overview of the research presented. Key background

information relevant to the entire dissertation is presented here as well.

Where possible background specific to the content of each chapter is

presented just prior to new work

Chapter 2: Chapter two presents a first attempt at addressing the

problems inherent in the current generation of automated concept

generators. Rather than attempt to modify concept generation

algorithms, it sorts the results selecting the most useful or relevant to

present to the designer. Achieving this requires developing a scheme

for estimating concept parameters from a design repository and

employing techniques from exploratory data analysis.

Chapter 3: Chapter 3 reviews current work in function based analogical

design and applies current practice to compare inter-product similarity

among systems in a design repository. This provides the necessary

benchmark to tackle the first two main questions of this dissertation.

Chapter 4: Chapter four identifies and applies techniques from

information retrieval that can provide a universal approach to vector

space similarity measurement in engineering design. These tools are

applied to the functional analogy problem introduced in Chapter 3.

%

The new method of similarity measurement is shown to compare

favorably to the method of Chapter 3.

Chapter 5: Chapter five modifies the concept generation algorithm and

applies the techniques tested in chapter 4 to guide the generation of a

few novel solutions from the set. Some problems from Chapter 2 are

revisited with the new concept generation algorithm.

Chapter 6: Chapter 6 summarizes the conclusions of this dissertation.

Key contributions to the literature are highlighted. Future directions

for automated concept generation, computational design synthesis, and

analogical design are discussed.

1.4 Background

The following section reviews relevant background information on a

number of concepts relevant to this work as a whole. Other background a

literature review sections are spread throughout the text to keep important

prior work close at hand as new techniques are developed. The material in the

following sections is presented here, at the beginning of text, because it has

some bearing an all the work that follows.

1.4.1 Structured Design Methods

Significant effort has been devoted to studying and algorithmically

describing a systematic process for engineering design. Suh has developed

axiomatic design which provides a framework for transformations between

needs, functionality, physical embodiment, and manufacturing process, as well

as set of fundamental axioms by which the design activity can be judged [1, 2].

&

Altshuller advanced TRIZ, a design methodology concerned with overcoming

technical contradictions and emphasizing novel solutions [3], though often

confused with its central algorithm TRIZ attempts to present a complete design

methodology. The proposed work, most directly follows from the systematic

design methods originating in Europe in the last century[4, 5], and which have

been expanded on in a variety of design texts [6-9]. These approaches advocate

solutions driven by customer or societal needs, functional problem

decomposition and development of complete solutions by aggregating partial

solutions to product sub functions.

While there is still debate on its individual steps and boundaries, the

four broad activities of engineering design, shown in Figure 1.1, can be

identified: Preliminary design consists of exploration to understand a problem

or identify an opportunity; conceptual design consists of exploring the solution

space to propose conceptual solutions consisting of arrangements of

components that can be evaluated; embodiment design consists of defining

physical parameters of the selected concepts to initiate prototype development;

and detailed design consists of engineering analysis, manufacturing details,

and engineering drawings to support the final manufacture of the product or

system.. The proposed work is primarily concerned with enhancing and

augmenting the designer during the conceptual stage of design.

Figure 1.1 High Level Design Process

Understand
an Opportunity

Conceptualize
Solutions

Embody
a Solution

Detail
the Solution

'

1.4.2 Design Repositories

Beginning in the late 1990’s significant effort has been expended to

develop design repositories that facilitate knowledge capture and reuse [10]. A

design repository is a heterogeneous collection of product information that

includes designer intent, solution principals, physical parameters, and models

of products and their sub-artifacts. A design repository is distinct from more

traditional design databases in that it records not only what has been designed,

but also enough information to reason why and how the how artifact was

created [11]. A repository also differs from an ontology which is a formal and

explicit record of concepts and relationships [12]. Where the ontology records

fundamental properties of artifacts and domains, the repository records artifact

parameters necessary to reason about the underlying formal concepts.

Consequently conclusions drawn from the repository evolve as the database

grows. With an active and diverse group of contributors, a repository should

tend to avoid systematic bias and correct errors. The use of a design repository

as a data source distinguishes the proposed work from related efforts.

This work utilizes the prototype design repository maintained by the

Design Engineering Lab at Oregon State University

(http://repository.designengineeringlab.org). Figure 1.2 Design Repository

Web Interface, depicts the repository’s web interface. This repository was the

result of a multi-university collaborative effort and is based on a NIST

prototype [10, 13]. It is an artifact centric relational database populated with

information from the disassembly and reverse engineering of existing

products. The artifacts stored in the repository represent a diverse range of

products from consumer goods to sub-systems of NASA spacecraft and even

some biological systems. Data is input using a stand-alone entry application

(

available from the repository webpage and is retrievable via either an online

interface or via a direct query of the database [11, 14, 15].

Figure 1.2 Design Repository Web Interface

1.4.3 Functional Basis and Component Taxonomies

The importance of functional decomposition of the design problem is a

common theme across design methodologies and texts. The concept

generation methods considered and the proposed new work both rely on the

Functional Basis of Design [16, 17]. The Functional Basis defines a hierarchical

taxonomy of function and flow terms. These terms are used to construct a

black box model that represents the overall functionality of a product and its

inputs and outputs of matter, energy and information. This black box model is

subsequently decomposed into a series of sub-functions represented by a verb-

object pair of function and flow from the Functional Basis taxonomy. The

Functional Basis provides a systematic and repeatable framework for

constructing functional representations of engineered products. Figure

)*

1.3depicts a sample black box and functional model developed with the

functional basis for a hand held electrically powered sander.

Figure 1.3 Functional and Black Box Models of Sander

In addition to the fixed vocabulary of function and flow terms, this

work also relies on a fixed taxonomy of components. The need for such a

taxonomy is highlighted by efforts to construct ontologies of design knowledge

[18], but is also useful for computational design tasks. The taxonomy

employed in this dissertation uses the reconciled set of component terms was

put forward by Kurtoglu et al [19], and refined by Bryant [20]. The taxonomy

organizes a set of archetypes of common electromechanical components into a

hierarchy based on their typical functionality as described by the functional

basis. Within this taxonomy 179 possible component types are recognized.

Throughout this dissertation, the term component refers to one of these 179

recognized component archetypes.

Store EE Actuate EE

Import

Hand

Supply EE
Convert EE

to torque

Couple

Solid

Transfer

torque

Change

torque

Delta Sander

Functional Model

EE MEMEEEEE
EE

Import solid

Separate

Solid

Separate

Solid

Transfer

vibrational

energy

Convert torque

to vibrational

energy

Import

Solid

Hand

Hand

Sand

Paper

On/Off

import

hum.

f orce
transmit

f orce

human

f orce

weight

h.f . h.f .

weight
guide

weight
weight

h.f .

Sandpape

r

wood

heat

Hand

noi se

ME

ME

Sand

Paper

Sandpape

r

Sandpape

r

Hand

Sandpape

r

ME

Wood

ME

Wood
Sandpape

r

Separate Solid

Electrical Energy
Human Energy Mech. E.

Thermal E., Acoustic E.
Human E., Mech. E.

Solid Material
Human Material

Solid Material
Human Material

Control Signal

))

1.4.4 Computational Design Synthesis

The proposed work falls into the broad area of computational design

synthesis. This is an extensive and growing area of research, so a full review of

cannot be accomplished in a work of this length. Instead this section will

briefly outline the breadth of work in the field, establish a framework for

understanding computational synthesis efforts, and survey literature related to

the proposed work. Defined as “the algorithmic creation of designs [21]”, this

area of research emerged in the 1950’s with computational tools for the design

of electrical components including motors, generators, and transformers [22].

The goal of computational synthesis tools is to take advantage of the memory

and computational capabilities of the computer to assist designers. Schon

identifies four possible intents for computational design tools – functional

equivalence to the human designer, phenomenological equivalence to the

designer, aids to the designer, or as tools for design research [23]. It can be

shown that a tool that is functionally equivalent to the human designer is a true

artificial intelligence capable of passing the Turing test. Likewise, a

phenomenologically equivalent tool would have to mimic the processes of the

human designer; our understanding of these is so nascent that this too is

unrealistic. Thus we are confined to trying to aid designers and support

research efforts. Applications have been found in all stages of the design

process.

Much work in the area of computational design synthesis has been

devoted to the automated synthesis of product form by applying shape

grammars. In particular efforts have used shape grammar techniques to build

systems that automate architectural design work [24-26], and even mimicking

the style of popular architects [27] or styles [28]. A slightly older, but still very

)!

relevant survey of shape grammars was conducted by Cagan [29]. Other work

has applied the same kind of reasoning to automotive [30-32] and consumer

products [33]. In a similar vein, Stahovich explored interpreting and

modifying designer sketches to create new concepts [34-37]. Techniques

utilizing a catalogue design approach represent some of the earliest application

of computational synthesis techniques to conceptual design [38-40]. Other

researchers have applied agent-based approaches to the problem of design

synthesis seeking to computationally mimic the activities of a human designer.

Notable among these is Campbell’s A-Design which does an admirable job of

applying itself to conceptual design problems, but seems at present restricted to

problems defined by flows and transformations of energy [41, 42]. Others have

developed approaches that rely on case-based reasoning [36, 43-45]. Welch

developed a two step methodology which translates functional requirements to

behavior and then to sets of components [46]. Recent work has sought to apply

a grammar based approach to synthesize conceptual design solutions from

functional problem descriptions [47, 48]. This work has been expanded to

guide grammar rule selection based on designer preferences [49]. A potential

shortcoming of this approach to using designer preference to guide generation

is that it could lead to the very fixation problems that concept generation tools

should ideally help alleviate. A limitation of all grammar-based approaches is

the need to create grammar rules. Absent a method for discovering these

natural through analysis of existing products, these rules will always be a

snapshot of the experiences and biases of their authors. Finally, Bryant has

developed MEMIC, a tool for automated concept generation utilizing the

Functional Basis to create computable input functional models, a design

repository as a data source and a derived component taxonomy [19, 50-52].

MEMIC was selected as the initial concept generator tool for the proposed

)"

research because evidence suggests that it enhances exploration of alternatives

by novice designers, it is compatible with design repository data available to the

researcher, and its use of models constructed using the Functional Basis.

Figure 1.4 depicts the MEMIC tool.

Figure 1.4 MEMIC Software UI

To frame an analysis of the MEMIC algorithm, the framework

proposed by Cagan et al [21] and depicted in Figure 1.5 is adopted. This

framework posits that there are four steps to the computational design

synthesis task – representation, generation, evaluation and guidance.

Representation is the process of transforming the problem statement into a

format meaningful to the computer. Generation involves the computational

tool creating a potential solution or solutions. Evaluation is the mechanism by

which the computer determines if the generated solution meets the

requirements of the original statement, and finally guidance is the process of

directing the algorithm toward new solutions. These could either better meet

the requirements of the designer or further explore the solution space. This

)#

trade-off between breadth and depth searching, between exploring all solutions

and exploiting known solutions, is a key issue in all synthesis efforts.

Figure 1.5 CDS Cycle adapted from [21]

If we apply the represent, generate, evaluate and guide framework to

the MEMIC concept generator we find that it only partially completes the

cycle. Representation is accomplished by functionally modeling the system to

be designed and transforming this functional model into an adjacency matrix

that the computer can interpret. Solutions are generated using an approach

adapted from the morphological approach of Zwicky [53, 54] and the method

of partial solutions advocated by Pahl and Beitz [5]. Evaluation is performed

when the algorithm assesses component connection feasibility by consulting

data in the Design Repository. The final step, guidance, does not exist in the

current iteration of the tool. This requires the designer to handle the

difficulties inherent in the combinatorial explosion of solutions produced.

What is needed is an efficient way to assess concept similarity and guide the

Represent

Generate

Evaluate

Guide

Solution

)$

algorithm toward producing only the few novel variants in the set. The

proposed research seeks to rectify these difficulties.

1.5 Conclusion

This dissertation explores a series of issues related to automated

concept generation from functional descriptions of a design problem. Several

approach are demonstrated which can enhance the utility of these tools by

reducing the burden of evaluation and exploration placed on the user. These

approaches rely on vector space models of design artifacts. Techniques from

automated information retrieval are used to solve problems of similarity

measurement among these vector space models. An existing function based

design by analogy technique is used for benchmarking and validation. Guided

by the results of these previous steps, the proposed techniques are extended to

enable more intelligent automated concept generation that evaluates generated

concepts and guides the generator to produce novel solutions.

)%

2 Sorting Automated Concept Generator Output

2.1 Introduction

The following chapter attempts to improve the utility of automated

concept generators without altering the underlying concept generation

algorithm. This chapter begins by using the design repository data source,

which is already an input to the concept generation process, to predict

performance parameters of each concept. Designer workload while using the

concept generator is reduced by extracting and presenting only those concepts

with predicted performance above a given threshold. Noting that performance

parameter predictions are correlated with component selection, a more general

sorting approach is put forward based solely on the components of each

generated concept. The size of the data set necessitates the application of tools

for variable reduction to reduce the size of concept representations and

exploratory data analysis. The results of applying these techniques suggest the

direction taken in following chapters.

2.1.1 Roadmap

This chapter begins by introducing an approach to concept sorting

based on estimating concept parameters. To achieve this a method for

estimating the features of a concept from design repository data is put forward.

The estimation method is demonstrated through two example

implementations. Conclusions are drawn about this approach to concept

sorting, and the implications lead to a new but related approach. Based on

identified deficiencies of parameter based sorting, a new method which sorts

based on component selection is put forward. This approach requires the

introduction of variable reduction techniques and a method for automatically

)&

clustering data. Component based clustering is examined through three

example products. Finally conclusions are drawn about this approach concept

sorting.

2.1.2 Contributions of This Chapter

1. A method for estimating the parameters of conceptual products based

on design repository data.

2. An approach to concept sorting based on parameter estimates is

investigated.

3. A new method for concept sorting based on component choice is

developed and applied.

4. Preliminary evidence that concept generator output is a set of

permutations on a few solution types is found.

5. A first reduced vector space representation of automated concept

generator output is introduced.

2.2 Concept Parameter Based Sorting

Chapter 1 introduced the notion of an automated concept generator

and gave detailed background on a specific algorithm based on the

morphological matrix. An observed drawback of this tool, and others, is that

while a concept generator can produces hundreds or thousands of unique

concepts, ultimately the user must evaluate and select concepts. Asking the

designer to manually scan and parse thousands of concepts is an unreasonable

expectation. If we imagine the role of the computer becoming more of a team

member in the design process, this is not a good framework for fruitful

collaboration. Currently, the problem is solved by asking the designer to

interactively select components for each concept, which removes the need to

)'

explore thousands of concepts, but does not promote a thorough exploration of

the design process. What is needed is a balanced approach which lets the

concept generator do what it does best, generate many concepts, while freeing

the designer to focus their energy on developing additional concepts and

synthesizing the results into an outstanding product. The proposed method

leverages the speed of the computer to eliminate a large number of undesirable

concepts. A much smaller group of concepts can then be passed to the human

designer whose reasoning and intuition can be employed to select from the

reduced set.

2.2.1 Outline of Proposed Method

The output of the concept generator is a list of connected components,

so a sensible approach to sorting concepts must be based at the component

level. Given this constraint, there are then two general approaches; group

concepts either by components used or by projected performance. It seems

preferable to return concepts that will meet a designer’s performance

expectations, so an initial approach should be to select from a sample of

concept generator output those solutions that are likely to meet some

predefined targets. The variety in the set of solutions retained for presentation

to the designer will depend on the number of different concepts with

satisfactory components. In terms of the spectrum between exploration and

exploitation discussed in Chapter 1, this method strives to exploit obviously

workable solutions rather than explore the full breadth of the solutions space.

The general approach to sorting concepts will begin with selecting

certain desirable or undesirable characteristics, determining the propensity for

a particular component to have that characteristic, and then sorting concepts

)(

into groups based on the properties of their constituent components. The

following diagram, Figure 2.1, summarizes the proposed method.

Figure 2.1 Outline of Proposed Method

Functional Modeling and Automated Concept Generation were

surveyed in the first chapter, so new work needed to implement this method

begins with the third step, estimating component performance from historical

data. In the next section, an approach for constructing these estimates and

aggregating them to form a reasonable representation of each concept is

discussed.

!*

2.2.2 Estimating Concept Parameters from Repository

Data

Each generated concept is represented as an adjacency matrix,

essentially a graph of components and their connections that achieve the

required input functionality. The basic assumption underpinning the

proposed method is that a meaningful estimate of the performance of each

concept, if it were built, is a function of the expected parameters of its

components. A second basic assumption is that the parameters of the

components that would make up the concept can be estimated by surveying

components of the same type stored in a design repository. A necessary

precondition is a fixed component vocabulary like the one discussed in

Chapter 1.

Various earlier research efforts have used design repository data to

estimate the behavior of products during conceptual design. A significant

body of work is centered on estimating the likely failure modes of a product

and it’s reliability. Some of this work has used data stored in a repository to

discover links between product function and product failure that can be used

to predict failure modes in future products [55, 56]. This work has been

refined to focus on high-risk product domains like aircraft and spacecraft [57],

and extended to include even software development [58]. Much of this work

has been refined into a framework for understanding and predicting failure

propagation in complex systems in early design [59]. A parallel effort has

investigated predicting not just failure modes, but their corresponding

likelihood and severity [60]. This failure estimation work inspired attempts to

estimate other product parameters from repository data. Parashar et al used

this data to estimate the part count of a product in early design based on

!)

existing products [61], while Poppa attempted to estimate product

manufacture and assembly costs [62]. A generalized version of that approach

forms the basis of the following method.

Estimating concept parameters begins with selecting a set of parameters

to estimate. While no formal rule can be devised for this, experience dictates

some best practices. First, parameters should be directly related to important

product requirements, and should be directly related to the evaluation scheme

that will be used for concept selections. Thus parameters should be relatable to

function or component type because repository data is keyed those values. For

example, estimating color would be fruitless because we have no reason to

suspect that knowing a concept’s functionality or the parts that make it up will

tell us what color it will be. Finally, these parameters should be generalizable to

all components, though the estimation scheme could be component or

function specific. For example, number of gear teeth, is data that can be

extracted for particular instances of gears in the repository, but it’s not suitable

for describing a variety of components. A better choice might be the

input/output ratio of components that transfer energy.

To predict the parameters of an individual component in a concept, the

design repository is queried for other representative components of the same

type. There two cases to consider. In the first, the parameter of interest is part

of the repository data schema and is potentially recorded for each component.

In the second, the parameter of interest is not directly available. If it is a

function of parameters that are captured, then estimates can proceed as in the

first case. If it is not a suitable proxy must be found, more data must be

collected, or a different parameter selected.

Representative components of the same type are a somewhat nebulous

concept, and as with selecting parameters, no single rule will suffice for all

!!

cases. Some important concerns are scale, product domain, operating

environment, and function-component interactions. Scale is an obvious issue.

Most repository artifacts are small-scale consumer electromechanical products.

A few are not, and those that are wildly different from the scale of the product

being designed, should be excluded from estimates. The same is true for

product domain and operating environment. Predictions about a prospective

kitchen appliance should not utilize data from spacecraft subsystems as its

requirements are so far afield that choices about materials, process, size, and

other attributes are unlikely to be representative. The reverse is probably also

true. Finally, there is the issue of whether components of the same type, but

which were observed performing a different function should be included.

Requiring both function and component to match will necessarily lead to

smaller samples. The specific application will dictate the appropriate course of

action, but for some product parameters estimates based on both function and

component may improve results. Failure modes for example are related to

both what a component is, and what it does. On the other hand, for a

particular class of components, we might conclude that material selection is

primarily a function of component type irrespective of function.

Once a sample of components has been found the properties of the

components used in the generated concepts must be estimated. For various

problems these can be estimated as the mean of the samples, an extreme value,

or a range of values. Once this estimate is found at the component level, these

values can be combined to estimate the parameters of the assembled concept.

The parameter being estimated, the particulars of the design problem, and

sound engineering judgment will determine the appropriate way to do this.

Summing the components, taking an average or weighted average, and using

the most extreme value have all been successful for various problems.

!"

Combining estimates of several parameters introduces a vector space

representation of a concept’s expected performance along dimensions the

designer has declared important.

Once the data and estimation procedure are in place, asking a computer

to perform the necessary calculations for an available sample of concepts is

straightforward. Care should be taken in interpreting the results; there will

necessarily be significant uncertainty in the results. A direct rank ordering is

both unreliable and misleading. Instead, concepts with similar performance

estimates can be grouped together and groups with poor performance can be

rejected while those more likely to meet designer expectations can be passed to

the designer for further evaluation.

The following sections take this general template for concept

performance parameter estimation from a repository of existing products and

apply it two specific cases. In the first, estimates are made to assess the

manufacture and assembly cost of automatically generated concepts. In the

second an attempt is made to extract information necessary for product

environmental impact estimates.

2.2.3 Sample Implementation 1: Design for Manufacture

and Assembly

To better illustrate the proposed method, the following example is

presented based on sorting for Design for Manufacture and Assembly

(DFMA). A set of sorting parameters could also be specified based on another

set of design for “X” rules, from a set of customer needs, or from any

combination of those. The intent is simply to show what an actual

implementation of the method might look like. Four characteristics are

identified based on DFMA concerns in consultation with the standard DFMA

!#

literature [63]. It is assumed that the product being designed was a high

volume small-scale consumer product. Use of standard or OEM parts, use of

low cost thin walled stamped and injection molded parts, and avoidance of

machined components were selected as useful parameters for estimation.

 It is assumed that concepts should be built from standard parts to the

greatest extent possible. Standard parts are common, standardized

components that can be sourced from a variety of suppliers. They might

alternatively be referred to as off the shelf, or original equipment manufacturer

(OEM) parts. The basic assumption is that market forces will drive the price of

these standard parts below the cost of the manufacturer to make a custom part

[63].

To estimate the degree to which a concept can be built using standard

parts, it is first necessary to associate some measure of standardness with each

term in the component taxonomy. This is an example of a case where the

necessary data is not directly stored as part of the repository schema. However,

it was concluded that standardness was a property that could be assessed

visually, and artifacts do have images associated with them. All artifacts tagged

with a component taxonomy name were extracted from the repository. Using

artifact photos and other data the artifact was tagged as either standard or not

standard. The binary nature of the data implied a Bernoulli distribution for

each artifact, from which could be estimated a mean, variance, and confidence

intervals for the mean. The findings matched expectations. Electric motors,

which are almost universally standard parts, have a high average, while external

housings, which tend to be custom parts to accommodate product architecture

as well as branding and aesthetic concerns, have a very low average value.

Once the expected standardness for each component is known, a

measure of standardness for the concept as a whole could be generated. There

!$

are two approaches to estimate component standardness. The first would be to

multiply together the standardness of each component in the concept to

produce an estimate of the likelihood that the entire concept could be made

from standard parts. The likelihood that a concept made of components A and

B is standard is the likelihood that A and B are standard parts. This would be

preferred because in reality all components should have some non-zero

standardness, and the aggregate of these would be a reasonable representation

of our ability to build the concept from standard parts. In this case, due to

small sample sizes of some components in the repository many of the current

estimates of mean standardness are zero. This would strongly penalize an

otherwise desirable concept due to one non-standard component. To mitigate

this effect standardness of the concept was estimated by simply averaging the

standardness of the components.

Second, it is deemed desirable to use thin walled parts produced using

stamping or injection molding. These processes are common and relatively

low cost for the high volume parts produced for consumer products. These

processes are likely to be selected, so concepts that include components which

can be produced at a low cost with these methods are preferred [64].

It is also assumed that it is desirable to use thin walled parts produced

using stamping or injection molding. These processes are common and

relatively low cost for high production volumes. To estimate the relative cost of

these processes for each component taxonomy term, the database was queried

to find all artifacts produced using one of these processes. Unfortunately,

sample sizes were prohibitively small for stamped parts. This highlights a

disadvantage of the proposed method. Sometimes necessary data will not be

available for key parameters.

!%

For each artifact a cost estimate is then calculated. A method for cost

estimates that relate the cost of the part to the cost of a standard unit washer is

employed [63]. The cost becomes a product of several factors based on the

parts features, parts, and materials. Excluding factors related primarily to

material or fit and finish, left basic and subsidiary part complexity to base a

relative cost upon. Using DFMA heuristics these factors were calculated for

each artifact, and multiplied together for a total relative cost. These costs were

then averaged for each component within the taxonomy. A thin walled part

cost factor for each component was calculated by averaging the relative costs of

its thin walled parts.

Third, machining is a wasteful and costly process that should be

avoided if possible. Concepts built from components that are unlikely to

require machining were preferred. Machining is a costly and undesirable

process for components within the specified product domain [63, 64]. The

likelihood that a particular component taxonomy term will have to be

machined can be estimated by querying the database for all artifacts of a

particular component basis type that are machined and dividing by the total

instances of that component basis type that have any manufacturing process

associated with them. Dividing only by instances that have a specified

manufacturing process prevents incompletely recorded artifacts from heavily

swaying the results. The results conform to basic expectations about this

domain; the likelihood that a part will be machined is low for all component

taxonomy terms.

Finally, a proxy for assembly cost is needed. The form of the individual

solutions and the way they are joined together embodies much of the assembly

cost, but this is a relatively complex relationship. As advocated in the previous

section, a suitable proxy had to be found. In this case, total part count was

!&

selected because assembly cost is, all other things being equal related to the

number of pieces that have to be joined together. Parashar [61]has developed

a part counting tool that interfaces with the design repository to produce an

estimate of the number of parts necessary to complete the concept. The

counter is based on the average number of instances of a component found

when that component is used to solve a specified function [61]. The count

produced by Parashar’s tool became a fourth metric used to sort components.

Once the characteristics of each concept have been found, they will be

combined, following it prescribed method, into an parameter vector that

suggests the manufacturability of the concepts. Concepts can then be sorted

into groups based on their similarity to one another.

The four calculated product parameters are assembled into a vector

representing the relative manufacturability of the concept. The designer

wishes to minimize three parameters: thin walled part cost, likelihood of

machining, and part count. The number of standard parts, on the other hand,

should be maximized. For convenience the standard part likelihood is

transformed into a not standard part likelihood by subtracting it from one.

Now all dimensions should be minimized. A sample calculation of an

parameter vector for a concept including a electric wire, an electric switch, and

a battery is shown in Table 2.1. To avoid undue weighting of a particular

parameter all are normalized on a scale from 0 to 1. The normalized product

vectors can then be clustered using manual or automated clustering

techniques. A full discussion of automated clustering algorithms is reserved

for latter in the chapter, but the approaches discussed there are also suitable for

the product parameter vectors shown in this example.

!'

Table 2.1 Parameter Vector for Sample Three Component Concept

Sample Concept Parameter
Vector

Components Battery Electric
switch

Electric
wire

Standardness 0.6750 0.3874 0.8839 0.6488
Machining
Likelihood

0.0000 0.0078 0.0051 0.0043

Thin Wall Relative
Cost

na 2.0772 na 2.0772

Part Count 7.3559

To demonstrate concept variant sorting method, concepts for a

children’s toy will be developed. It is desired that the toy translate across a

surface using stored electrical energy, and that it be very low cost to produce. A

functional model for the toy generated is shown below in Figure 2.2.

Figure 2.2 Functional Model for Case Study of Toy

The functional model was input into the MEMIC concept generator

along with a FCM and DSM Matrix from the design repository. A sample of

!(

the results is shown below in Figure 2.3. Many concepts are produced, but in

the interest of producing an understandable set, twenty-five are selected at

random for further review.

Figure 2.3 Sample Concept Generator Output

Parameter vectors for each component can be calculated by following

the algorithm discussed at the beginning of the section. With only twenty-five

concepts, it is possible with effort to identify preferred concepts. If the set were

larger the computer’s assistance would be needed. The vectors are supplied to

automated clustering algorithm that suggests dividing the results amongst four

clusters. Table 2.2, shows the parameter vector and cluster membership of

each concept.

"*

An examination shows that cluster three’s center is closest to the origin.

Its members have relatively low combinations of costly parameters. Concepts

2, 5, 7, 19, 20, 21, and 24 likely merit further study based on DFMA concerns.

A further examination of these concepts suggests that they fall into two

general categories. Given the very general approach used to model the

problem some interpretation is required. Concepts 2, 5, 7, and 21 imply a

walking toy, like a toy robot. Concepts 19, 20, and 24 suggest something more

like a toy car. Based on these results the designer would have a few concepts

suggesting two different solution types to work with.

Table 2.2 Results for Toy Case Study

Concept
Std
Pts Machining

Thin
Wall

Pt.
Count Cluster

Concept01 0.8240 0.9768 0.8089 0.6413 4
Concept02 0.8012 0.9597 0.5250 0.5725 3
Concept03 0.6587 0.9910 0.8621 0.7405 4
Concept04 0.9337 0.9935 0.6385 0.7743 1
Concept05 0.8253 1.0000 0.6037 0.5583 3
Concept06 0.7309 0.9762 0.6230 1.0000 2
Concept07 0.7430 0.9452 0.6400 0.6996 3
Concept08 0.8912 0.9504 0.6083 0.7537 1
Concept09 0.6449 0.9794 0.8063 0.7614 4
Concept10 0.8086 0.9921 0.8357 0.8178 4
Concept11 0.9691 0.9862 0.6258 0.6167 1
Concept12 0.7795 0.9760 0.8521 0.7361 4
Concept13 0.5976 0.9492 1.0000 0.8117 4
Concept14 0.9123 0.9690 0.6292 0.7097 1
Concept15 0.6792 0.9462 0.7389 0.7278 4
Concept16 0.9739 0.9858 0.8253 0.8780 1
Concept17 1.0000 0.9829 0.7858 0.7564 1
Concept18 0.7210 0.9972 0.8164 0.5806 4

")

Concept19 0.8443 0.9953 0.7050 0.6192 3
Concept20 0.7123 0.9512 0.6793 0.3992 3
Concept21 0.7602 0.9637 0.6818 0.5926 3
Concept22 0.6651 0.9955 0.8994 0.6376 4
Concept23 0.5653 0.9668 0.8615 0.7006 4
Concept24 0.7856 0.9645 0.6030 0.5794 3
Concept25 0.6502 0.9835 0.8491 0.8394 4

The results of the case study provide preliminary evidence supporting

the hypothesis that product parameters can be estimated basted on data in a

design repository and successfully used to pare down the set of results returned

by an automate concept generator.

2.2.4 Sample Implementation 2: Estimating Data for

Environmental Impact Assessment

Another potential application of the proposed sorting method is to

select concepts that will have minimal environmental impact. This approach

has contributed to recent literature in artificial intelligence in sustainable

design [65, 66]. In the previous sample implementation, estimates were made

to predict manufacture and assembly cost for concept screening. In this effort,

an estimate of environmental impact is needed. This is not a value than can be

directly predicted via past products; environmental impact estimates are not

currently part of the repository data schema. However an examination of a

common environmental impact estimation tool, shows the that dominant

factors in impact are material selected, mass of material, and manufacturing

process employed [67]. The proposed method estimates these values necessary

for estimating the cradle to gate life cycle impact of the generated concepts

based on data stored in the repository.

"!

Each component of products archived in the repository is tagged with

the material or materials from which it was constructed. The material of the

component used to build the concept was predicted from this set. Mass and

volume data are recorded for artifacts in the repository, so an estimate of both

the type and amount of material used is possible. A designer could specify,

based on their application, whether to estimate the material based on a best,

worst, or average case material, but experience has suggested that creating an

estimate based on a hypothetical composite material that is a weighted average

of the most common materials found for a given component gives good results

[65]. For example if we found that 80% of instances of a particular component

were brass and 20% were nylon, the hypothetical component impact would be

estimated based on a part that was 80% brass and 20% nylon by mass.

Estimation of manufacturing process proceeded in a similar fashion,

but with a key added complications. The estimated process must be

appropriate for the material estimated in the previous step. Thus, we estimate

the likely manufacturing processes found for components of the specified type

with the predicted material. This process can also work in reverse. The

process can be predicted first, and then the material choice constrained

accordingly. In this case, the former was selected because of greater confidence

in the material data within the repository than in the manufacturing process

data. This work contributes to environmental impact assessment in early

""

design by providing a method to extract needed data from a design repository.

Figure 2.4 Summary of Available Mass and Failure Data

2.2.5 Conclusions about Parameter Estimation Based

Sorting

Sorting concepts based on predicted concept parameters or

performance clearly presents some challenges. While it was possible to employ

this approach in the two samples discussed in the preceding sections, a great

deal of effort had to be extended at the beginning of each problem to obtain

! "! #! $! %!

!
"!

#!
$!

%!
&!

'()*(+,-./,0-1233-42,2

'
()
*(
+,
-.
/,0
-5
2/
67
)(
-4
2,
2

3*)(.

0873/+9

+7,:;86,

*8<()

37==8),

;)2*>(,

3=)/+9

302?, */)*7/,-;82)@

(6(*,)/*-3./,*0
6(<()

)(,2/+/+9-*6/=

>+8;

(6(*,)/*-A8,8)

9(2)

*62A=

36(@

3(26

97/@()3

?)/*,/8+-(+02+*()

(6(*,)/*-./)(

;(2)/+9

*2=

=83/,/8+()

6/+>

3,2;/6/B()

(6(*,)/*-*8)@

,7;(

3(*7)()

2/)?8/6
,)2+3/3,8)

?2+

=766(C

;(6,

;2,,()C /+@/*2,8)

>(C

*8+,2/+()

62,*0-)(6(23(

3*)((+ 3,8==()

)/<(,

3=(2>()

*730/8+

0(2,/+9-(6(A(+,

0/+9(

02+@6(

(6(*,)/*-=62,(

?73(

)(9762,8)

3=)8*>(,

2;)23/<(

*87=6()

(6(*,)/*-38*>(,
;62@(

)(3()<8/)

*02+9()

@/9/,26-@/3=62C

*67,*0

2=2/,8)

;)730

(6(*,)/*-*8+@7*,8)

6/90,-387)*(

(6(*,)/*-)(3/3,8)

+8BB6(

<26<(

)8,2,/8+26-*87=6()

/+@/*2,8)-6/90,

233(A;6C

3,8=

7+*6233/?/(@

*2)873(6

*02++(6()

8++(,8)

@/</@()

(6(*,)/*-=679

?23,(+()
0(2,-(D*02+9()

0C@)276/*-=/3,8+

/+3(),

A2,()/26-?/6,()

=)(337)(-<(33(6
=7+*0

3*)(.-=)8=(66()

386@()

37==8),()

E7AA2)C-8?-F(=83/,8)C-1233-2+@-52/67)(-42,2-;C-G8A=8+(+,-H23/3-I()A

#!

#!!

J!!

"#

and organize the data necessary to make meaningful estimates. The quality

and the reliability of the results are heavily dependent on the quality and

quantity of data in the repository and on the estimation model constructed by

the user. To illustrate this point consider Figure 2.4 a plot that shows samples

sizes for common components in the taxonomy for mass an failure data. These

are commonly relied upon results and yet all have very small samples. This

trend only gets worse for less common and less easily collected data.

It is also inefficient to calculate estimates for many concepts that will

ultimately be rejected. While this is a partial solution to the difficulties of

automated concept generators discussed in chapter one, an easier and less

problem dependent approach is desirable. In applying this approach to a

variety of problems, an important trend emerges that perhaps should have

been obvious from the beginning given the way parameter estimates are

constructed: Concepts with similar estimated parameters tended to be

composed of the same components. Based on that observation, I hypothesized

that those concepts could be meaningfully sorted into groups based solely on

their components. Then, if necessary, estimates could be made based on

samples from each group. The following section outlines this approach.

2.3 Sorting Based on Component Selection

The previous section notes that concept parameter estimates tended to

lead to concepts constructed of similar components being grouped. The logical

step is to omit the estimation of parameters and simply group concepts

together based on the components from which they’re assembled. The

ultimate goal is to construct an algorithm that can read a large number of

automatically generated concepts and sort them into bins based on their

"$

similarity to one another. If we consider that the concept generator is to a large

extent a more advanced version of the morphological matrix, a logical

hypothesis might be that the concept generator output is really many

permutations on a few solution types. The total number of solutions is

constrained by the number of possible solutions to the products defining

functions. This is a hypothesis that will be evaluated through case studies later

in this section.

For an algorithm to sort concepts, they must be represented in a

computable form. In the previous section concepts were eventually

represented as a vector of parameter estimates. The component adjacency

matrices, which are the output of the concept generator, can be thought of as

comparable to these concept vectors. However, in this case entries in the

vector represent component choice rather than concept parameters. Since we

prefer to operate on concept vectors rather than concept matrices, each

adjacency matrix can be converted to an adjacency list by simply appending

successive columns below the first. The result is vector whose elements

represent the presence or absence of a particular component-to-component

connection in the concept. Though sparse, the length of these vectors is an

issue. Recall from Chapter 1 that the number of component types in the

component taxonomy is 179. So an adjacency matrix that includes all possible

components would be 179x179, and a corresponding adjacency list could have

up to 32,041 elements. By omitting components that are not present in any of

the generated concepts, the size of this list can be reduced, but in general it will

still be large. Techniques to reduce the size of this matrix will be discussed, but

first a computational approach to grouping concepts is briefly reviewed.

"%

2.3.1 Cluster Analysis

Given a set of concepts represented as adjacency lists of components,

the task is to sort concepts into groups based on component similarity.

Measuring the distance between concepts is simple arithmetic, but

automatically sorting them into groups based on their distance to one another

requires the use of a set of techniques called clustering or cluster analysis.

Clustering is the general term for a set of exploratory data analysis techniques

used to solve grouping or classification problems [68]. Clustering methods

tend to be heuristic in nature, and are most applicable when there is little

information about the underlying structure of the data [69]. The objective of

clustering analysis is to sort a set of data into groups, or clusters, such that each

member of a cluster has a high degree of similarity with any other member of

the cluster and a low degree of similarity with any non-member of the cluster

[68]. There are two general types of clustering algorithms. Hierarchical

clustering looks for a series of nested partitions in data. Partitional clustering,

as the name implies, calculates a single set of partitions. In either case the

fundamental problem is to sort n observations in d-dimensional space into K

groups based on a specified similarity criterion [68].

In this work we utilize a variation of the K-means algorithm. K-means

is an iterative clustering algorithm that assigns observations to a specified

number of clusters, K. First K cluster centers that evenly span the space of

observations are used to create an initial partition. Each observation is then

assigned to the closest cluster center and new cluster centers are calculated

based on the centroid of each group. This process is repeated until the square

error is minimized and the cluster membership stabilizes [68]. Unfortunately,

clustering is computationally expensive; we can make it more tractable if the

"&

number of dimensions that represent each concept can be reduced. The

following section discusses an approach to variable reduction that can achieve

this result.

2.3.2 Variable Reduction Via Principal Component

Analysis

Principal component analysis (PCA) is a common method for

dimensional simplification in multivariate data. PCA forms a new set of

variables, the principal components, which are linear combinations of the

original variables. These new variables form an orthogonal basis for the

original data. Orthogonality is an important property; it ensures that no

redundant information is created in the variable transformation.

There are many ways to form an orthogonal basis of a data set. In PCA

each component represents an axis in the data space, and projecting the data

onto this axis forms a new variable. PCA repeatedly performs this

transformation, at each turn selecting the axis that results in a new variable that

explains as much of the variance in the original data as possible. A key set in

this process is the singular value decomposition of the original data matrix.

Singular value decomposition is an important feature of a methodology that

will be introduced in chapter 4, so a full discussion of it can be found there.

For now, we will assume that PCA represents the best affine transformation of

our original data matrix.

Though the full set of principal components is as large as the set of

variables in the original data, typically a few components account for the

majority of variance observed in the original data. It has been demonstrated

that by representing the data set with this reduced set of components, which

captures the majority of observed variaince, we can significantly reduce the

"'

number of individual variables under consideration while still capturing

sufficient design information [70].

2.3.3 Case Studies of Component Based Clustering

The following section explores a component-based approach for

automatically sorting the output of a concept generator into meaningful

groups. We investigate this technique through the use of three sample

problems from prior work [71]: a product to automatically remove the shells

from peanuts as an aid to farmers in the developing world; a device to move

fluid from a reservoir at one elevation to another at a higher elevation; and a

consumer product to grind and dispense whole spices. Figure 2.5 shows a

graphical representation of the analysis procedure utilized.

Figure 2.5 Proposed Component Based Sorting Method

"(

A functional model was constructed for each of the three sample

problems based on known requirements and customer needs input. These

functional models were then supplied to a concept generator. For each

problem the concept generator was asked to supply one thousand concepts at

random. Concepts were output in the form of 179x179 element component

adjacency matrices representing all possible combinations of members of the

component taxonomy.

Each component adjacency matrix was then reformulated into a vector

by appending each column of the matrix to the preceding column to produce

an 18,496-element vector where each element represents a possible connection

between component types. These vectors are then aggregated into a matrix

where each column represents a concept and each row a possible component

interaction. For the sake of efficiency, rows of the matrix that contain only

zeroes were deleted; if a particular component to component connection is

never present in any concept there is no value in retaining that variable in the

model.

PCA was applied by treating each concept as an observation and each

component interaction as a variable. The number of principal components to

retain was determined by producing a scree plot of the eigenvalues of the

principal components and selecting components from the steepest portion of

the curve. The more precise Kaiser Criterion [72] was also investigated, but

found to select too few principal components to adequately reproduce the

original data. Once the number of principal components is identified, the

original data is transformed onto the principal component space, and a

partitional clustering technique can be used to group concepts.

Once the concepts have been reduced by PCA into vectors of a few

components, a standard K-means clustering algorithm was employed. An

#*

initial partition was created by selecting K cluster centers that evenly spanned

the space of observations. Each observation was then assigned to the closest

cluster center and new cluster centers were calculated based on the centroid of

each group. This process was repeated until the square error is minimized and

the cluster membership stabilizes. After a solution was found, the

appropriateness of the number of clusters chosen was evaluated quantitatively

by examining the mean square error between cluster centers and qualitatively

by examining silhouette plots of the data. A silhouette plot shows the ratio

average distance between a point and the other members of its cluster to the

average distance from the same point to the members of the next closest cluster

[73]. High silhouette values indicate strong affinity for the current cluster, low

values indicate the point has been misclassified. The number of clusters K was

iterated until silhouette plots show the clusters are well differentiated and the

mean square error between cluster members and cluster centroids is acceptably

low.

The method was first applied the concepts generated for the nut

shelling problem. The 1000 concepts were supplied to the PCA algorithm.

From the following scree plot, shown in Figure 2.6 Scree Plot of Peanut Sheller

Results, it is apparent that the correct number of principal components to

retain is approximately six. The scree plot is used to graphically assess how

many principal components should be retained and is related to the

eigenvalues of the principal components. The number of components to retain

is the location on the horizontal axis that corresponds to a leveling of the

curve’s slope. Six principal components are selected, but it is worthwhile to

investigate neighboring values. No significant difference in the results was

found by increasing the number of principal components (PC) between six and

ten. However decreasing the number to five or fewer led to cluster instability

#)

and suggested that there was too little differentiation between concepts.

Figure 2.6 Scree Plot of Peanut Sheller Results

Next, the raw data is transformed onto the PC space and is clustered

using the Euclidian distance between concepts as a similarity metric. Several

possible numbers of clusters from two to fifteen were considered, but two

clusters were found to minimize mean square error and give the most

satisfactory silhouette plot as shown in Figure 2.7.

#!

Figure 2.7 Silhouette Plot of Peanut Sheller Concept in Two Clusters

An examination of the plot shows that both clusters have some

members with low silhouette values, but experimentation showed that this

could not be improved through increasing the number of clusters. In general

there appear to be two types of components that, by examination of individual

concepts, could be broadly described as products that cut the shell and

products that crush or grind the shell. The low silhouette values appear to

indicate concepts that do both but are similar enough to one or the other that

they do not form a cluster of their own.

Next the approach was applied to the water lifter functional model. As

with the previous problem the each of the automatically generated concepts are

supplied to the PCA algorithm. By examining the resultant scree plot, shown

in Figure 2.8, the appropriate number of PCs to retain is found to be five.

#"

However through investigating the results of selecting neighboring numbers of

PCs it was found that results changed noticeably as the number of PC’s

increased to ten. In light of this ten components were retained. This

discrepancy is due to the imprecise nature of using the scree plot to select the

number of principal components, and highlights why it is important to

investigate values in the neighborhood number suggested by the plot.

Figure 2.8 Scree Plot of Water Lifter Results

Figure 2.9 Silhouette Plot of Water Lifter in Three Clusters

Using the selected number of principal components, the data is

transformed onto the PC space, and as in the previous example, is clustered

using distance as the similarity metric. Again, a variety of possible divisions

were investigated, but three was found to be the most appropriate number of

partitions. The following figure shows the silhouette plot of the results for

three clusters.

In this example, most concepts belonged to one large cluster with some

concepts belonging to each of two smaller clusters. The clusters were better

differentiated, as indicated by higher average silhouette values. However, when

individual concepts were examined it was difficult to discern what the clusters

represented. In general it appeared that the big cluster represented concepts

#$

that directly convert an energy input into the flow of water, while the other

smaller clusters represented solutions with a number of intermediate energy

conversion and transmission steps.

Figure 2.10 Scree Plot of Spice Grinder Results

Finally the suggested approach was applied to the spice grinder

problem. Figure 2.10, was used to select the appropriate number of clusters to

retain. An examination of the plot indicated that the appropriate number of

components to retain was between six and eight. Investigating the choice in

the neighborhood of each, eight was found to be the appropriate number of

components to use.

#%

After applying K-Means clustering iteratively to the variable reduced

concepts six partitions were found. The following figure, Figure 2.11, is a

silhouette plot of the results.

Figure 2.11 Silhouette Plot of Spice Grinder in Six Clusters

Four concepts were identified as outliers that did not appear to belong

to any of the six clusters, as indicated by the negative values on the plot. On

further inspection these concepts were ill formed, and did not appear to

represent workable solutions. The results of this problem are the least useful,

from a user standpoint, of the three. Though concepts were grouped into six

general types of solutions, further inspection showed that the six types of

solutions were very similar. All solutions were essentially a spinning blade and

#&

some kind of container; the different groups represented differing

arrangements of the same basic sets of components.

2.3.4 Conclusions on Component Based Sorting Through

Clustering and PCA

These test problems provide preliminary evidence that Principal

Component Analysis can be used to effectively simplify the output of

automated concept generators. These simplified representations can then be

used to efficiently cluster similar concepts using partitional clustering

techniques such as K-Means. This clustering organizes the large number of

undifferentiated results into a small number of groups that can be more easily

understood an evaluated by a human designer.

The results support the assertion that the thousands of results produced

represent permutations of only a few basic solution types. Based on these

results we can conclude that variable reduction followed by clustering is one

possible means to improve the utility of automated concept generators.

A significant drawback to the proposed approach is suggested by the

third sample problem. The method treats all function to component

transformations as equivalent. For example, converting chemical energy to

mechanical energy with an internal combustion engine is just as important as

coupling two solids with bolt. If an automobile is the intended result of our

design process, different approaches to energy conversion are much more

interesting than exploring a variety of fasteners. This is a significant drawback

to this approach, as is the need to generate a large sample of concepts, many of

which will later be rejected.

#'

2.4 Conclusions

Chapter 2, discussed initial steps on the road to improving the

automated concept generation user experience.

First, results were sorted based on predicted concept parameters.

While this approach yielded an estimation technique that has proven valuable

in other work, its value to the concept generation process his greatly

diminished by the high overhead associated with its application.

Patterns observed in concepts sorted through estimated parameters led

to the hypothesis that component based sorting could provide the same result

but with much less front-end work for the designer.

Practical application of a component based sorting scheme showed the

need for variable reduction and automated clustering. While initial results

were promising drawback remain. The approach requires a large sample of

concepts be generated and then sorted.

The results of clustering are not always meaningful because the

algorithm can group concepts based on variations that are inappropriate or

uninteresting given the problem at hand.

As suggested in Chapter 1, an ideal approach to concept generation

would produce just the most interesting members of the set of all possible

results. This chapter, in passing, noted the use of vectors to represent concepts

and variable reduction through matrix transformation. These tools can be

used in concert with data in a design repository and computational techniques

from other disciplines to arrive at that result. Ultimately success depends on

the ability of the computer to recognize salient differences in products and

concepts. Chapter 3 surveys concepts from design by analogy which lead to a

#(

better understanding of how concept similarity can be assessed and provide a

benchmark for new techniques developed in later chapters.

$*

3 Functional Analogy in Design

3.1 Introduction

The following chapter deals with measuring functional analogy in

design. Functional analogy is not a primary thrust of this work; instead, the

goal is to develop a universal approach to measuring similarity in vector space

representations of products in early design. Functional analogy measurement

is explored because it operates on a specific vector space representation,

namely a product-function vector and computes distances between these

vectors in an n-dimensional space of possible functions. While it is not

possible to directly formulate a universal similarity measure from current work

in the area, current approaches can provide a useful benchmark for techniques

this work will advance.

3.1.1 Roadmap

This chapter begins by exploring the role and importance of analogy in

design. A brief summary of the literature is presented. Then, a quantitative

measure of functional analogy is identified from the literature for further

exploration. The implementation of this measure is explored in detail. It is

applied to products in the design repository to measure their functional

similarity to one another. Test cases are developed based on an examination of

products in the repository to evaluate the measure’s results. The results form a

benchmark against which to test measurement methods developed later in this

work.

$)

3.1.2 Contributions of this Chapter

1. A review of the design literature and identification of a useful function

based analytical measure of similarity

2. Application of existing measure to products in a design repository

shows interesting relationships that can form the basis of future work

3. Development of four test cases for functional similarity assessment

from the design repository

4. Benchmark based on similarity assessments of current method for

evaluating tools that will be developed in the following chapters.

3.2 Measures of analogy in design

An analogy is “a thing that is comparable to something else in

significant respects [74].” Analogy can be a powerful tool during ideation and

problem solving. If the problem to be solved is like a problem that has already

been solved in another domain, then the solution to the out of domain

problem can likewise be adapted. Otto and Wood identify it has an intuitive

technique for idea generation and suggest looking for analogies in nature and

in other product domains based on function [75]. Ullman likewise

recommends functional analogies for generating concepts, but cautions that

they do not necessarily lead to good solutions by citing the example of aviation

pioneers who sought to emulate flapping flight in birds [7]. Ullrich and

Eppinger also cite analogies as a useful technique for generation solutions, and

imply that it is common amongst experienced designers[9]. It could be argued

that ARIZ and the contradiction matrix from TRIZ [3], are predominately an

analogy engine. A more extensive survey of introductory design texts would

$!

certainly turn up more references to design by analogy and analogical thinking

in design.

A significant fraction of recent effort in the area has been devoted to

analogies for bio-inspired or biomimetic design [76-79]. Beyond biological

analogies, researchers have sought to use visual or physical analogies to

stimulate ideation [80-82], while others have focused on textual or linguistic

analogies [83]. In all analogy based efforts, a key component of the process is a

similarity measure [84], lack of such a measure has long been a problem in

mechanical design [85]. This is a problem this dissertation seeks to rectify.

It is well documented that experts and novices use analogize in different

ways. Adelson found that expert programmers tended to form abstract

representations of problems, while novices preferred concrete representations.

The former were better able to see connections between problems and domains

and performed better in programming tasks as a result [86]. Later work by the

same author posited that analogies facilitated learning to program [87].

Hewett and Adelson in a study of design methods of human computer

interaction go so far as to suggest that analogical reasoning typifies an

engineering approach to problem solving in that field [88]. Linsey et al have

studied the effects of representation on analogizing, and have developed

techniques to help reformulate a design problem to facilitate retrieval of

analogies [83, 89-92]. The focus of this work is not design by analogy, so a

complete survey of the field will not be undertaken here. The above works

suggest the variety of research in the area and the importance of analogy in

design.

$"

3.3 Application of the Current Measure to Inter- Product

Functional Similarity

If analogy implies that two objects or ideas are comparable, it is

reasonable to ask how comparable they are. How much like my problem X are

already solved problems A,B, and C? It would be convenient to express this

measure of analogy or similarity as a quantitative measure. If we are seeking

functional analogies in product design amongst a set of existing products, i.e.,

already solved problems, such a method has been proposed and validated by

McAdams and Wood [93, 94]. The following sections will explore this

method, and will use it as a benchmark against which to test a more universally

applicable vector space similarity measure.

3.3.1 The Method of McAdams and Wood

McAdams and Wood have developed a quantitative analytical measure

of functional similarity between products[94]. Their approach is distinct from

other work in the field in that it is amenable to a fixed taxonomy of function

and flow, and that it bases its comparison on product sub-function. It is an

approach that is primarily focused on meeting the needs of engineers engaged

in the design of a new artifact. Given a functional description of the product

under development, the technique measures the degree of functional analogy

or similarity between it and a set of reference products from which analogies

are to be drawn. A necessary precursor to their approach is a set of reference

products, which have been functionally decomposed following the methods

discussed in Chapter 1.

This is a vector space representation of the data; each reference product

can be represented as vector whose elements indicate the importance of a

particular sub function as assessed by customers. As discussed in Chapter 2,

$#

this space can be quite large for the fixed taxonomy of function and flow

employed in this work. Figure 3.1 Example Product Function Vectors shows

examples of these vectors.

Figure 3.1 Example Product Function Vectors

For this trivial example, we could visually compare dimensions of

similarity between our problem, also expressed in this vector space and these

product function vectors. However, given that these vectors can be quite large,

and that we have access to a large reference set some analytical means of

comparison is required.

McAdams and Wood construct a product-function matrix # by

assembling the vectors of individual reference products. Their method of

measuring analogy proceeds by applying two key assumptions. First, all

reference products are equally important, or that the only interesting

dimension of difference is their relevance to the problem. Second, the number

of sub functions in a product is an indication of its complexity, and that this

variation in product complexity must be normalized to avoid impact on the

Function E 0

Function D 3

Function C 1

Function B 0

Function A 5

Product 1

Function E 2

Function D 3

Function C 1

Function B 4

Function A 0

Product 2

$$

similarity assessment. Finally, the measure takes into account customer needs

to assess the importance of individual functions. So if in the product to be

designed, transforming electrical to mechanical energy is deemed very

important based on customer requirements, the method will treat as more

similar reference products where this was an important function.

Employing these requirements and assumptions, the following step-by-

step process converts a product-function # into a normalized product function

matrix $ suitable for measuring functional similarity.

The elements of $ are simply the elements of # weighted by the

following function.

! ij = "ij
#
j

$

%&
'

()
µ j

µ
$
%&

'
()

The average customer rating ! is simply the sum of all elements in #

divided by the number of columns in #. If # is an mxn matrix, this can be

calculated using the following equation.

! =
1
n

"ij
j=1

n

#
i=1

m

While the total customer ratings for each product are merely the

column sums of #.

! j = "ij
i=1

m

The number of functions in each product and the average number of

functions per product are given in turn by the following equations.

µ j = H !ij()
i=1

m

"

$%

µ = H
j=1

n

! "ij()
i=1

m

!

H is a Heaviside function.

H x() = 1 when x ! 0
0 otherwise

"
#
$

%
&
'

Once the weighted product vectors have been calculated, the columns

of $ are renormalized so that their norm is unity to yield !!. In this form the

similarity between the product under design and any reference product is the

inner product of the vector space representations of each. The closer this value

is to 1, the more similar the two products.

To better illustrate this process, consider the following problem.

Imagine the following product-function matrix. Each column represents a

reference product, each column a distinct function, and each element an

integer representing the perceived importance of each function in each

product.

! =

1 0 0 1
3 3 6 5
5 0 4 2
2 0 7 1

"

#

$
$
$
$

%

&

'
'
'
'

Suppose a product must be designed to meet those four functions

where the importance of each is shown in vector s.

s =

5
3
8
1

!

"

#
#
#
#

$

%

&
&
&
&

Following the weighting scheme outlined above # is transformed to $.

$&

! =

1.2 0 0 1.5
3.6 3.3 3.5 7.4
6.1 0 2.4 3.0
2.4 0 4.1 1.5

"

#

$
$
$
$

%

&

'
'
'
'

Which when normalized becomes approximately:

!" =

0.2 0 0 0.2
0.5 1.0 0.6 0.9
0.8 0 0.4 0.4
0.3 0 0.7 0.2

#

$

%
%
%
%

&

'

(
(
(
(

The inner products of s and the columns of $ are then calculated.

! = 0.9 0.3 0.6 0.7()

From this analysis the designer would concluded that the first reference

product is most analogous followed closely by the fourth and third products.

The second product is a poor match, as would be concluded by inspection.

Application to Data in the Design Repository

The method outlined above, is not a suitable solution to measuring

concept similarity in automated concept generation because it was developed

to assess functional similarity. All automatically generated concepts should

have identical functionality. While the method could be modified, the goal of

this dissertation is to develop a universal approach to measuring similarity

amongst vector space representations in design. The method proposed by

McAdams and Wood is presented in detail here because it can serve as a

meaningful benchmark for techniques that will be developed. Toward that end

this section will explore the application of this method to the set of products

contained in the design repository. This will provided a benchmark of

$'

similarity measurements to test proposed techniques against. Similarity

measures developed later in this work should perform as well as, or improve

upon these benchmark measures.

Equivalence with the existing method is easy to establish, rank

orderings of product similarity should agree, or very nearly agree. To establish

that a measure improves on the current assessment, we can identify groups of

products in the repository that we assert are similar. If the current measure

categorizes any of these test cases incorrectly, it may be possible to construct a

measure that rectifies this error.

There are, at the time of writing, 167 products in the repository

including consumer scale electromechanical products, biological systems, and

spacecraft subsystems. Four subsets of products are identified that will serve as

test cases. First, there are 4 coffee makers in the repository. These products

should be, functionally speaking, more similar to each other than to any other

products. Second, there is a set of biological systems that were recorded as part

of a bio-inspired design investigation. Due to the unique flow types observed

in these systems, they should be more similar to each other than to any electro-

mechanical product. Third, there is a set of products related to product failure

reports. These, like the biological systems should be self-similar, but relatively

different from other artifacts. Finally there are four drills in the repository. As

with the coffee makers, it is assumed that these should be more similar to each

other than to any other product. Table 3.1 Similarity Metric Test Cases

summarizes the identified test cases.

$(

Table 3.1 Similarity Metric Test Cases

Test
Case

Description Products

1 Coffee Makers Black 12 cup deluxe, black 12 cup economy, black 4
cup regular, white 4 cup economy

2 Biological
Systems

Any artifact where system type is biological

3 Aerospace
Systems

A set of artifacts representing aerospace systems
recorded to capture failure data

4 Drills Skil drill, firestorm drill, delta drill, b and d drill
attachment

Use of the data in the repository presents a problem. At present, no

system in the repository has information about customer needs tied to product

functions. The method of McAdams and Wood will have to be applied by

treating the customer needs derived importance of each function as being

equivalent. Obviously, this diminishes some of the utility of their approach,

but making this assumption will still allow for useful results.

To assess the functional similarity amongst products in the repository,

the following procedure is employed. First, a product function matrix is f

retrieved by querying the design repository. The sequel query necessary to

retrieve this data is available in Appendix A. The results of the query must be

further processed to account for the hierarchy of functions and flows in the

Functional Basis. For example, if the database records that a particular product

includes the function of import liquid, it must also include the equivalent

parent function and flow, channel material. The generated product function

matrix then contains functions as entered, and at any appropriate higher levels

of generality. This compensates for the varying level of detail at which

products are recorded.

%*

The method presented above is then applied directly to the data. There

are many questions that can be asked of these data. First, what if any general

trends can be observed in the inter-product functional similarity measures?

The following plot Figure 3.2 shows a plot of the ordered measures of similarity

between products. Each line represents an individual product with each point

showing the measured similarity to the nth most similar product.

Figure 3.2 Plot of Product-Product Similarity Measures

An examination of this plot shows that there are, in general, three types

of products. The first is very similar to a few products, but then its degree of

similarity drops precipitously and the majority of other products in the

repository are dissimilar. The second also has strong similarity to a few

products, but the remainder of the set is at least weakly similar. The majority

of products fall into this category. Finally a third group has a weak but

%)

relatively homogenous degree of similarity with all products in the repository.

This is a relatively interesting group; its members are products that are

relatively unique amongst the set of products in the repository, so it merits

some additional study. The following plot Figure 3.3 Histogram of Distance of

Most Similar Product shows a histogram of the magnitude of the similarity

measure of the product most similar to each product in the repository.

Figure 3.3 Histogram of Distance of Most Similar Product

The histogram shows that there is a meaningful set of products for

which the most closely related product is not very similar. It is helpful to think

of the distance measure as a cosine distance, thus a value below 0.5 suggests

that the two products are not very similar at all. Table 3.2, presents a summary

of these products.

%!

Table 3.2 Products with Low Similarity to Other Members of The
Repository

Product Distance to Most Similar Product
dryer 0.54
component basis reference
artifacts

0.54

dishwasher 0.54
asm volume 2 0.53
cotton candy machine 0.51
nasa anomaly 0.50
hulk hands 0.50
alcohawk digital alcohol detector 0.49
coolit drink cooler 0.48
ub roller coaster 0.47
turtle 0.45
bolting 0.43
natural sensing 0.42
fly 0.42
lawn mower 0.42
dna 0.41
jar opener 0.40
john deere tractor gear 0.38
brake system 0.37
bat 0.36
two component regulatory system 0.35
lichen 0.30
heart 0.27

Many members of the table are biological systems or products that were

originally part of a failure dataset. Those electro-mechanical products which

are included in the table may represent unique functions or flows. They may

be unique or innovative, or the may simply be from categories of products that

%"

have not been sampled extensively in the repository. While this points toward

an interesting set of questions, answering them is beyond the scope of the

current work.

Instead, we will return to the four test cases identified above and assess

how well the current measure meets our expectations of product functional

similarity. First, the coffee makers: there are four coffee makers in the

repository. It is expected that they be more similar to one another than to any

other products. Applying the measure of McAdams and Wood, we find that

this is the case; the results for the four most similar products are presented in

Table 3.3 Coffee Maker Similarity as Measured by McAdams and Wood

Method.

Table 3.3 Coffee Maker Similarity as Measured by McAdams and Wood
Method

Reference
Product

Degree of Similarity
1st 2nd 3rd 4th

black 12 cup
deluxe

white 12 cup
regular

black 4 cup
regular

white 4 cup
economy

black 12 cup
economy

black 12 cup
economy

white 12 cup
regular

black 4 cup
regular

white 4 cup
economy

black 12 cup
deluxe

black 4 cup
regular

white 12 cup
regular

white 4 cup
economy

black 12 cup
economy

black 12 cup
deluxe

white 12 cup
regular

black 4 cup
regular

white 4 cup
economy

black 12 cup
economy

black 12 cup
deluxe

white 4 cup
economy

white 12 cup
regular

black 4 cup
regular

black 12 cup
economy

black 12 cup
deluxe

The method correctly groups the coffeemakers together, and it finds

that numerically they are more similar to one another than to any other

product. The measured similarities range form almost one to a low 0.77 in

%#

each case the fifth most similar product is significant less similar with values

one the order of 0.5. This suggests that the existing method handles the first

test case well.

Next, lets examine the drills. There are four drills in the repository, as

with the coffee makers we expect them to be more similar to one another than

any other products. The following table, Table 3.4, summarizes the results.

Table 3.4 Drill Similarity as Measured by McAdams and Wood Method

Reference
Product

Degree of Similarity
1st 2nd 3rd 4th

b and d drill
attachment

b and d sander
attachment

b and d mini
router
attachment

b and d
jigsaw

firestorm
circular saw

delta drill delta jigsaw delta sander firestorm
saber saw

b and d
screwdriver

firestorm
drill

delta circular
saw

firestorm saber
saw

delta drill delta nail
gun

skil drill skil flashlight skil jigsaw b and d
power
pack

b and d
screwdriver

Unlike the coffee makers, the drills are, according to the assumption

made earlier, entirely miscategorized. An examination of the calculated

similarity metrics for each product shows they range from 0.8-0.7, so the

identified products are, according to the measure, very similar. Either there is

a problem with the measure or with the assumption that the drills are similar. I

believe that the drills are, in fact, a poor test case. While they appear

superficially similar their actual functionality is quite different. The b and d

drill attachment is a drill head for a modular tool system while the other drills

are stand-alone products. The delta and firestorm drills are members of

%$

product families, and so it’s not entirely surprising that they appear more

similar to other members of their respective families. Finally, the drills are

frequently categorized as being similar to other power tools, which remove

material like saws, so perhaps in this regard the measure is going a good job.

For each entry in the table another drill is the 8th, 7th, 3rd,and 25th most similar

product, respectively. For the first three, the similarity metric remains between

0.75-0.65. What is so different about the skill drill? An examination of the

product shows that the Skil drill was a complex product with a great deal of

functionality above what is seen in the other drills. The added functionality

makes it similar to a large number of products. In fact the first drill on the list,

while the 25th most similar product, still has a similarity measure above 0.6.

This analysis suggests that while the rank ordering presented by McAdams and

Wood does not precisely conform to preconceptions about similarity it does a

good job of identifying products that are truly functionally similar. Even

though I’ve argued that the drills, while superficial similar, are in fact different,

I will retain this as a test case because of the interesting results found.

Next, the test case of biological systems is considered. There are currently 32

systems in the repository that are recorded as biological artifacts, or strategies.

Amongst this set there are several biological systems that are measured to be

most similar to electromechanical products. A closer examination of these

shows that in this set no element has a similarity measure to an

electromechanical product significantly greater than 0.5. By taking 0.5 as a

cutoff for similarity, as discussed above, it can be concluded that the existing

method correctly handles all biological systems in the repository.

Alternatively, we might conclude that this points to a deficiency in the current

measure. These systems are recorded using the same function and flow

taxonomy as electromechanically products, so it stands to reason that

%%

functionally some similarity is to be expected. This will be explored further by

applying a new candidate similarity measure in Chapter 4.

Finally, there are the products recorded from failure data sets. There

are five such systems that recorded data from ASM failure reports, Consumer

Product Safety Commission Reports, NASA Failure reports and NTSB

rotorcraft failure reports. These products should, in general be very different

from the consumer scale electromechanical products found elsewhere in the

repository, so they should have a higher degree of similarity with one another

than with other systems.

Table 3.5 Similarity of Aerospace Failure Data as Measured by McAdams
and Wood Method

Table 3.5 shows the results of the comparison for the set of failure data

products. If we apply as distance of 0.5 as a cutoff only the first two most

similar products remain relevant. From this set we see mixed results. All

products except asm volume two include another failure product, but it

typically is not the most similar product.

!"#"$"%&"'
($)*+&,'

-".$""')#'/01023$0,4'
56,' 7%*' 8$*' 9,:'

!"#"$"!%&"'($)"*")+$,%%*$
%-+!+*$)+!.+$

#/"*$#0"!!+*$ 1$ 1$

)"'.'+%$ *%/%*0*"2/$ "#&$3%'4&+$5$ 1$ 1$
0-#0$2".'4*+#$,"/#4!$/*406$ 7%&-%!+!/$

8"#.#$
1$ 1$

"#&$3%'4&+$5$ *%/%*0*"2/$)"'.'+%$ 1$ 1$
"#&$3%'4&+$9$)#+$#%'"*$-%:+*$

&%,4'+$;<$:"//$
0%*,'+##$6+//'+$ 1$ 1$

*%/%*0*"2/$ "#&$3%'4&+$5$)"'.'+%$ 1$ 1$

%&

3.4 Conclusion

Finding analogies can be a useful aid to ideation in design. The

preceding sections have discussed the role analogy in design and some results

from the design by analogy literature. While no universal quantitative measure

of analogical distance was identified, an approach was found in the literature

that meets many of the needs identified earlier in this work in the specific area

of function based design by analogy. The calculations necessary to construct

this measure were discussed in detail. Then the measure was applied to explore

inter-product similarity amongst products in the design repository. Four test

cases were identified and explored. For the biological system and coffee maker

test cases, we find that the measure performs as expected. For the failure

product and drill test cases, the results contradict initial expectations, but

further examination suggests that the expectation may have been incorrect.

Interesting behavior was still observed in these two cases, so they are retained

for use in evaluating the measures developed in subsequent chapters. The

justification for retaining them is that in these products is a set that confounds

expectations of functional similarity. These product sets seem like they should

be similar, but applying the current similarity measure suggests plausible

reasons why they are not. If a new measure can plausibly sort these in a way

that matches expectations, that would be an interesting result. These test cases

and the final rank ordered measures of product-to-product similarity form the

benchmark against which future work will be evaluated.

%'

4 A Universal Approach to Vector Space Similarity
Measurement in Engineering Design

4.1 Introduction

The following chapter deals with identifying and validating an

approach to vector space similarity measurement that, unlike the method

discussed in the prior chapter, is amenable to a wide variety of computational

design tasks. The results of the previous chapter form the basis for comparison

and analysis of the new method. This chapter is one of the primary

contributions of this dissertation. Identifying and verifying a method of vector

space similarity measurement that is not task specific can contribute to a

variety of design methods and tools, particularly analogical design tools. In

addition, the particular method explored in this chapter provides a bridge

between engineering design and information retrieval, a field with a rich body

of tools and methods that may be of use for a variety of problems in design.

4.1.1 Chapter Roadmap

This work has used and relied on vector space representations of design

data without explicitly defining what a vector space model is, so the chapter

begins with a more rigorous definition of vector space models. After arguing

that many of the data sets and product representations engineering design

research seek to manipulate are vector space models, specific results and

techniques from the field of information retrieval are introduced. A parallel

between the similarity measures needed in this work and the approach used to

find similar texts in a corpus with latent semantic indexing is drawn.

Recognizing that the problems are analogous, the solution presented by latent

semantic indexing is adapted to suit the vector space models for engineering

design. The new similarity measure is compared to the measure of functional

%(

analogy explored in chapter 3. Comparing and contrasting the new measure

with the old provides preliminary evidence to support its utility for engineering

design problems. Finally, the modifications necessary to the new method to

provide a replacement for the tool discussed in Chapter 3 are presented.

4.1.2 Contributions of this chapter

1. Verifies that important representations of engineering design data meet

the formal definition of a vector space model

2. Adapts and extends latent semantic indexing, an information retrieval

technique to formulate a new method for assessing similarity in vector

space engineering design data.

3. Applies the resulting similarity measure to the functional analogy

problems of previous chapter, and shows that the new measure meets

or exceeds the performance of the existing methods for the benchmark

problems

4. Identifies the steps needed to use the new similarity measure in a viable

function-based analogy search tool that can replace prior work.

4.2 Vector Space Representations

Within computational design tools, vector space representations are

common. Before delving into their applications in engineering design an

obvious question is, what are vector spaces? A simple definition of a vector

space is any collection of vectors where linear combinations make sense. More

specifically a vector space over the real numbers ! consists of a set ! and the

addition and multiplication operators subject to 10 conditions.

Sufficient conditions for the set ! to be a vector space are:

1. If !!! ! !then !!! ! !

&*

2. If !!!! ! ! ! then !!! ! ! ! !

3. !!! ! ! ! ! ! ! ! !

4. ! ! ! and ! ! ! ! ! for any ! ! !

5. For any !, -! exists and ! ! !! ! !

6. For scalars g and h in !, ! ! ! ! !

7. ! ! ! ! ! ! ! ! ! ! ! ! !

8. ! ! ! ! ! ! ! ! ! ! ! ! !

9. ! ! ! ! ! ! ! ! ! ! !

10. ! ! ! ! !
These definitions and conditions are adapted from[95] and [96]. While

it is typical to imagine vector spaces as columns or rows of real numbers, a

vector space is more correctly described as any collection where these linear

combinations work. Fortunately, in this work vector space representations will

generally be columns in !!, and most commonly in !!, the set of integers.

A common product representation in engineering design is a Design

Structure Matrix (DSM). The DSM is a matrix that describes connections and

dependencies among the sub-assemblies and components that make up a

product. There are a number of DSM variants today, but most are derived

from Steward’s design structure system [97]. Originally an attempt to manage

the iteration inherent in designing systems with complex interactions, DSMs

have evolved to serve a number of different requirements and as a result a

number of sub-types of DSM are now recognized[98].

One variant of the DSM is a component or product architecture type.

This is a matrix whose rows and columns represent components and whose

elements represent connections between those components. For example, if

&)

component ! connects to component ! then the !"!! element of the DSM is a

count of the number of times that connection is seen in the data. If they do not

connect then the !"!! element is 0. Such a DSM could be constructed to show

the interconnections of an individual product, or component-to-component

relationships in a dataset of many products.

It is relatively easy to show that a DSM constructed in this way is a

vector space. To validate this claim, consider two products: a vegetable peeler

and an ink pen. DSMs for both products are shown below.

 Blade Handle Blade Cover
Blade 1 1 1
Handle 1 1 0
Blade Cover 1 0 1
Figure 4.1 Vegetable Peeler DSM

 Barrel Cartridge Cap
Barrel 1 1 1
Cartridge 1 1 1
Cap 1 1 1
Figure 4.2 Ink Pen DSM

With these two example DSMs, it can be shown that the vector space

conditions outlined earlier in the section are met by DSMs. First, these two

matrices are in the set of all components. Their sum, shown below, is also in

that set, and addition is both transitive and commutative. An example of

addition is shown in Table 4.3.

&!

 Blade Handle Blade Cover Barrel Cartridge Cap
Blade 1 1 1 0 0 0
Handle 1 1 0 0 0 0
Blade Cover 1 0 1 0 0 0
Barrel 0 0 0 1 1 1
Cartridge 0 0 0 1 1 1
Cap 0 0 0 1 1 1
Figure 4.3 Ink Pen and Vegetable Peeler Combined DSM

It is useful that DSMs and other design representations exhibit this

property of vector space representations because it enables the construction of

matrices that incorporate knowledge about a body of products. A variety of

efforts have taken advantage of this property of DSM’s and other matrices in

engineering design. Aggregated vector space models of product functions and

component selection have been used as an aid in concept generation[99, 100],

and extended to build a functional automated concept generator [20]. Various

related efforts have explored predicting product failure [55, 57, 60], assessing

manufacturability [62, 101], and estimating environmental impact in early

design from similar datasets [66].

Returning to the question of whether the DSM and by extension

analogous representations are proper vector spaces, criteria four through ten

must still evaluated. The next three criteria can be checked by inspection.

Clearly addition of a zero vector will not change the result. Likewise,

inspection shows that the addition of the negative of one of these DSMs to

itself would result in an empty DSM. Finally, the multiplication of any of these

by a scalar will scale the data but it will still remain in the set.

The two example products used share no components in common.

They are orthogonal to one another, so their product should be a zero matrix.

They will not suffice to demonstrate any of the multiplicative criteria. An

&"

alternative pen design without a cap is introduced in the following DSM to

facilitate examples of multiplication.

 Barrel Cartridge Cap
Barrel 1 1 0
Cartridge 1 1 0
Cap 0 0 0

Figure 4.4 Alternative Ink Pen DSM

Let the first and second pens be ! and ! and let g and h be any scalars.

Then criteria 7 through 9 are satisfied as shown in the following figures. Figure

4.5 Criterion 7 shows that the sample DSM meets the seventh criteria; scalar

multiplication is distributive with respect to vector addition.

! ! ! ! ! ! ! ! ! ! ! ! !

! ! ! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

!
! ! !
! ! !
! ! !

!
! ! !
! ! !
! ! !

! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

!
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! !

Figure 4.5 Criterion 7 Distributivity of Scalar Multiplication

Figure 4.6 demonstrates the eighth criterion, distributivity of vector

sums with scalar multiplication.

&#

! ! ! ! ! ! ! ! ! ! ! ! !
! ! !
! ! !
! ! !

!
! ! !
! ! !
! ! !

! ! ! ! !

! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

!

! ! !
! ! !
! ! !

!! !! !
!! !! !
! ! !

!
!! !! !
!! !! !
! ! !

Figure 4.6 Criterion 8 Distributivity of Vector Addition with Scalar
Multiplication

Figure 4.7 Criterion 9 verifies the associative property of scalar multiplication.

! ! ! ! ! ! ! ! ! ! !

! ! ! !
! ! !
! ! !
! ! !

! ! ! ! !
! ! !
! ! !
! ! !

!! !
! ! !
! ! !
! ! !

! ! !
! ! !
! ! !
! ! !

!! !! !!
!! !! !!
!! !! !!

!
!! !! !!
!! !! !!
!! !! !!

Figure 4.7 Criterion 9 Associative Property of Scalar Multiplication

Finally, by inspection we can see that the product of the DSM and one

is one, so criterion 10 is satisfied.

The proceeding discussion illustrates that DSM’s are vector spaces. A

similar approach could be used to show that many other matrix and vector

&$

data structures employed in the engineering design literature are also vector

spaces. Widely accepted representations like the morphological matrix as

described by Pahl and Beitz [5] and the design matrices of Suh [1, 2] meet the

definition of a vector space. Even graphs, which aren’t obviously vector space

models can be transformed into adjacency and incidence lists or matrices that

meet all the criteria of a vector space. So many important design

representations meet the definition of a vector space that the challenge would

be to find a numerical or categorical representation of product data that is not

a vector space model. Such a representation, by definition, would not have

useful linear combinations, and would likely be of limited utility, particularly in

computational design. If we accept that most representations are vector space

models, then this leads inevitably to the conclusion that the proper route to

resolving the difficulties in similarity measurement highlighted in preceding

chapters is to adapt vector space similarity measures. The following sections

will explore adapting some of these techniques from other domains.

It should be obvious that a vector space, as defined above, is a flexible

model that could reasonably apply to a variety of systems. When referring to

vector space models, it’s necessary to be more explicit about the level of

abstraction being applied. As suggested by Dubin [102], four levels of

abstraction can be recognized in a vector space model. First, there are

algebraic vector spaces. This is the most general category, and simply requires

that the linear algebraic axioms discussed at the beginning of the section hold.

These are outlined in standard linear algebra texts [95]. Second, there is the

measurement theory view of vector spaces. As described in Michell [103], this

view sees the vector space as defining quantitative, ordinal relationships

amongst variables such that the distance between observations is a function of

the differences between the vector elements. This is one view that we will

&%

exploit, particularly in assessing the similarity of automatically generated

concepts. A third view is the one that most engineers will be familiar with: the

vector space as a model of physical forces and relationships. This might

include the speed and direction of the particles of a body in motion [104], or

the state of stress inside an object [105]. Finally, there is a data-centric

interpretation. In this view data are represented in a matrix where items are

represented along one dimension of the matrix while observations about

particular features are recorded on the other [106]. Operations can be

understood to apply in the same way that they do in the more abstract

algebraic sense, but concepts like distance and orthogonality are necessarily

less well defined. This is the interpretation that will be used most heavily in

this work.

4.3 Vector Space Techniques in Information Retrieval

Setting aside, for the moment, the problem of measuring the similarity

of two design artifacts against some arbitrary criteria, consider another area

where measuring the similarity of two artifacts is important, information

retrieval. The field of information retrieval concerns itself with finding

relevant information in a document, article, book, or website based on a

particular query. Researchers in the field have necessarily had to confront the

problem of assessing the similarity of sets of complex artifacts

4.3.1 History of Vector Space Models in Information

Retrieval

The advent of computers, databases, and digital documents has

fundamentally alerted the challenges and opportunities in this area. On the

one hand the volume of content created on a daily basis is staggering. The

&&

barriers to creating and publishing a document, whether in print or

electronically, have never been lower. On the other, the same tools that allow

for the easy dissemination of information provide opportunities to

automatically parse, organization, and locate relevant works.

Traditional information retrieval is accomplished through some form

of indexing. In the early years of the written word, that index was often

contained solely in the head of the owner or curator of a particular library.

Eventually libraries grew too large and users would instead consult physical

catalogues to locate works by a particular author, about a particular subject, or

with a specified title. The first real changes to this arrangement followed the

rise of the personal computer. However, early generations of computational

tools simply replaced the physical catalogue with a database containing the

same information. The indexing of information remained a mostly human

driven process. This quickly became an untenable situation. There are

millions of books in print in the United States, and Google indexed its one

trillionth unique URL in 2008 [107]. It would be utterly infeasible for a small

team of curators or librarians to digest and index all this data. As the number

of people indexing the information grows, inconsistency is certain to creep into

the data set. Imagine two different indexers reading this dissertation. One

might index it using terms like engineering design and computation in design.

Another reader might choose different words like mechanical engineering and

vector space methods. If enough readers indexed the document, these

inconsistencies might cancel each other, but in the near term the random

assignment of a particular human indexer to a document could result in

important information being hidden from interested readers. A robust and

preferably automated indexing scheme is needed.

&'

Driven by the increased availability of networked computers, aggressive

development of modern automated information retrieval tools began in the

early 1990’s with the beginning of the Text Retrieval Conference (TREC) under

the auspices of the Defense Advanced Research Projects Agency (DARPA) and

the National Institute of Standards and Technology [108]. Meanwhile a

related, concurrent DARPA effort called TIPSTER sought to identify a

common set of protocols for automated document processing [109]. The

problems faced by the information retrieval community are similar to the

engineering design problems addressed by this dissertation. In both, the

similarity of individual members of a group of objects must be assessed

automatically. Singhal identifies three different approaches in the information

retrieval literature, vector space models, probabilistic models, and inference

networks [110]. The remainder of this chapter will examine vector space

methods in information retrieval and apply them to similar problems in

engineering design to evaluate their utility.

One avenue explored in information retrieval was to represent

documents as a vector of the frequency of term occurrence [111]. The

application of a vector space model to document classification and retrieval is

typically credited to Salton [112]. However recent research by Dubin,

ironically using methods dependent on vector space models, finds a more

complicated origin [102]. Switzer [113] and Sammon [114] also explored

vector space models at approximately the same time, and there were likely

other efforts that have been lost because of the large gap between the

theoretical exploration of vector space methods in the 1960s and their practical

implementations in the late 1980s. Since it was first described, the application

of vector space models to document indexing has been the subject of

continuous evolution and development.

&(

Tversky pointed out the limitations of a vector model to mimic human

judgments of similarity. The geometric interpretation of similarity in the

vector space model does a poor job of dealing with issues of context. For

example, a naïve vector space model would struggle to determine if Miami and

Havana are similar, or different. They have similar locations and climates, but

they’re quite different politically and economically. Without appropriate

structure the vector space model will miss these nuisances. Humans, unlike the

vector space model also respond to different stimuli in different ways. The

threshold of similarity for two things to sound alike is different that the

threshold for which the look alike [115]. This is an important issue in using

these tools in engineering design applications. The choice of a diesel engine

instead of a four-cycle engine in a car seems less dramatic than the choice of a

jet engine instead of an internal combustion engine for an airplane.

Approaches to deal with these context specific issues will be discussed in more

detail in later sections on term weighting.

Theophylactou and Lalmas extended the vector space model by

combining it with elements from theories of evidence to create a model better

equipped to deal with natural language [116, 117]. While Arampatzis et al

employed an indexing scheme derived from linguistics as the basis for indexing

documents [118], Jiang and Littman approximated high dimensional vector

space representations to make them more computationally feasible [119].

Meanwhile Salton and others continued to refine and implement vector space

tools [111, 120-125]. The direction in recent vector space information retrieval

research most relevant to the goals of this research is an approach called latent

semantic indexing.

'*

4.3.2 Latent Semantic Indexing and Rank Reduced

Approximations

Two key challenges in information retrieval are synonymy and

polysemy. Synonymy is the case where multiple words share exact or

overlapping meanings. For example, consider searching for work about the

properties of the normal or Gaussian distribution in statistics. Many works

will use the term normal distribution, others will describe the same distribution

as a Gaussian, and some subset of writings will use both names. How can an

automated indexing system determine that these works are all about the same

subject? How can it know, or at least make a reasonable guess, that if I search

for normal distribution, I should also see documents that discuss Gaussians?

Polysemy, words with many meanings, presents a related challenge. If an

engineer and a psychologist both search a library for articles related to stress

and fatigue, each expects an entirely different set of results. How can an

automated information retrieval system detect that one subset of results

matches the engineer’s view of the word stress, while another set matches the

psychologist’s?

Initially, synonymy and polysemy do not seem like issues that should

effect similarity measurement in vector space models in engineering design.

As has been discussed in earlier chapters, most product data can be, or has

been, encoded using fixed taxonomies of functions, components, and physical

parameters. Properly constructed taxonomies should avoid both assigning the

same meaning to multiple terms and using multiple terms to express the same

meaning. In practice, the results are not so clean. Currently, there are 46

examples of batteries in design repository. Among this set of artifacts, the

functionality of a battery is recorded in twelve different ways [15]. If a

')

component with relatively homogeneous functionality like a battery has this

many representations, more complicated artifacts are likely to diverge to an

even greater degree. Fixed taxonomies for capturing design information will

always walk a tightrope between being flexible enough to capture the breadth

of information needed to record an artifact and its design rationale and rigid

enough to avoid ambiguity. Even with ideal vocabularies to describe it,

recorded design information would always be subject to the fallibility of the

recorder. Even if information is recorded perfectly, much of that information

is the attempt of an outside party to capture the rational of a designer with

whom they have probably never communicated. Consequently, there will

always be some finite level of uncertainty about recorded design information.

It must be assumed that it contains some errors, and does not perfectly capture

reality. We can regard polysemy and synonymy as manifestations of

uncertainty that are particular to text documents. The approaches used to deal

with this particular type of uncertainty can be extended to deal with the various

uncertainties inherent in problems in engineering design.

Latent semantic indexing (LSI) begins with a vector space model of

information sources, in the case of information retrieval; this is a set of

documents encoded as vectors where each component represents the relative

importance of a particular term in representing or constructing that document.

The aggregation of these vectors into a term by document matrix creates a

vector space representation of a corpus of documents [126]. This approach

was pioneered by SMART (System for the Mechanical Analysis and Retrieval

of Text) [127].

Latent sematic indexing takes this representation a step further by

suggesting that these document vectors are a noisy representation of a hidden,

or latent, document vector that encodes it’s actual meaning [128].

'!

Constructing low rank approximations of the term by document matrix can

reduce the effect of this noise on the query process [129]. Rank reduced

representations are used in this context in a variety of applications including

mathematics [130], speech recognition [131], modeling noise in structures

[132, 133], computer security [134], and image processing [135-137]. This

approach has achieved good results for the TREC collections discussed earlier

[138], but is most successful when applied to focused collections where, in

general, documents are about related subjects [129]. There are a variety of

ways to construct rank reduced representations of a matrix including, QR

factorization, Principal Component Analysis, Singular Value Decomposition,

and Non-negative Matrix Factorization. Once documents have been

represented in this rank reduced space, their similarity to one another, or to a

query vector can be measured through a variety of methods including

Euclidean, Minokowsi, city block, Mahalanobis, or cosine distance, among

others.

4.3.3 Constructing the Vector Space Model

This section will illustrate the rank reduction and query matching

process as employed in LSI. The following summary will explore the approach

and mathematics behind it in sufficient detail to explain the analysis presented

later in this section, however LSI is an umbrella term for a complex and still

evolving set of techniques more complete surveys are presented by Berry [126,

139-141], Letsche [142], and Pauca [143]. An alternate derivation by Story

takes a Bayesian approach to the text classification problem that leads back to

LSI [144].

To illustrate the approach, let’s consider a particular term by document

matrix that represents the titles of several books on my shelf. These books are

'"

Advanced Engineering Dynamics (AED), Analytical Dynamics (AD),

Fundamentals of Aerodynamics (FA), Mechanical Engineering Design (MED),

and Product Design (PD). If we parsed these titles we can extract a series of

terms: advanced, engineering, dynamics, analytical, fundamentals, aero,

mechanical, design, and product. These terms describe, to a limited extent, the

contents of the document. A full term by document matrix would show the

frequency of all the important words in each document, and would give a

much more complete picture of the subject of each work. The corresponding

term by document matrix is illustrated in Figure 4.8.

Title AED AD FA MED PD
Term
Advanced 1 0 0 0 0
Aero 0 0 1 0 0
Analytical 0 1 0 0 0
Design 0 0 0 1 1
Dynamics 1 1 1 0 0
Engineering 1 0 0 1 0
Fundamentals 0 0 1 0 0
Mechanical 0 0 0 1 0
Product 0 0 0 0 1

Figure 4.8 Example Term by Document Matrix

4.3.4 Weighting Schemes

The first step in dealing with a term by document matrix is to apply

local, within document, weights and global, across all documents, weights to

compensate for the effect of things like document length on term frequency.

Each element of the weighted term by document matrix !!" is equal to

the product of a local weight !!" , a global weight !!, and the original frequency

!!" .
!!" ! !!!!"!!"

'#

A variety of weighting schemes have been proposed, but two popular

techniques are inverse frequency weighting, and log-norm weighting [145,

146]. In the inverse document weighting scheme the local weight is 1, while

the global weight is given by the following formula [145].

!! ! !"#!
!
!"!

! !

The document frequency !"! is the number of documents in the corpus

that contain term i and n is the total number of documents in the corpus.

Taking the base two logarithm of the frequency converts the weighting to bits,

a common practice in information theory.

Log-entropy weighting involves a more complex set of local and global

weights inspired by some results from information theory. Log-entropy

weighting begins with the Shannon information content which is traditionally

defined by the following equation [147].

! ! ! !"#!
!

! ! ! ! ! ! ! !
! ! ! ! !

 The purpose is to turn the probability of an event into a measure of the

information conveyed if we know the outcome of the event. When the

probability is zero or one, the outcome is certain and knowing that a particular

outcome happened tells us nothing; the information content of the outcome is

zero. Now, imagine a box filled with 10 colored balls. Imagine five are

orange, four are black, and 1 is white. So the respective probabilities of pulling

out an orange, black or white ball are 0.5, 0.4, and 0.1. The information

contents of each event are 1, 1.3, and 3.3 bits respectively. If we draw the white

ball, we get a lot of information. We know precisely which ball has been drawn

and we know that a subsequent draw without replacement will net an orange

'$

or black ball. Conversely, selecting an orange ball tells us much less. We know

the ball we’ve selected is one of 5 possible orange balls, and if we draw again the

next ball could be any of the three colors. This measure of information content

has applications from data compression to optimal measurement schemes, but

for the purpose of this work, it suggests how interesting any particular product

parameter in our vector space model is.

Table 4.1 Example of Entropy Calculation

 p(x) h(x)
Orange 5 0.5 1.0
Black 4 0.4 1.3
White 1 0.1 3.3
Total 10 H(x) 1.4

The entropy of an ensemble, or collection of events, is then defined as

the average Shannon information content of each outcome.

! ! ! ! ! ! !

So for the example above the entropy is 1.4 bits. Entropy, from a

thermodynamic prospective is the amount of energy unavailable to do work in

a heat engine, or the amount of energy required to move heat against a

temperature gradient. At the level of particles, this becomes a measure of the

order of the particles in the system. Energy is needed to put particles back in a

more ordered, colder state, or is lost, as the particles in the system become

more disordered with a rise in temperature. The concept of entropy as a

measure of order is what gives information entropy its name. Consider two

probability distributions, a uniform distribution and a normal distribution.

The uniform distribution has much higher entropy because significantly more

'%

effort, or sampling, would be needed to understand the structure of the data.

In fact, a uniformly distributed random variable has the highest possible

information entropy. Local and global weightings under this scheme are then

defined by the following equations, where tf is the term frequency, p is the term

frequency divided by total occurrence of the term, and n is the total number of

documents in the set [145]. Section 4.4 will explore the effects of different

weighting schemes on real product related vector space models.

! !! ! ! !"#! !" !! ! ! !

! ! ! ! ! !!" !"#! !!"
!"#! !

!

!!!

4.3.5 Reduced Rank Approximations

Figure 4.9 Sample Grey Scale Image at Rank 940

Once an appropriate weighting scheme has been applied, the next step

is to construct a rank reduced representation of the vector space. The rank of

the vector space model is the maximum number of linearly independent

vectors [95, 96]. Rank reduced approximations can be thought of as a form of

'&

lossy compression. As example, consider a gray scale image like the one in

Figure 4.9. The rank of this image is approximately 940. It has around 940

columns representing strips of pixels. Each element of the vector is an integer

indicating the value of that pixel on a scale from white to black. This image is

represented by a series of numeric vectors that are, conceptually, no different

than the data matrices that may be used by various engineering design tools.

To illustrate the effect of rank reduction graphically, a series of rank reduced

approximations are presented Figure 4.11 and Figure 4.12. The actual

mechanism for constructing low rank approximations will be discussed in

more detail later in this sections, but for now, this exercise demonstrates the

effect of these approximations on data that is readily visualized.

Figure 4.10 Approximation of Image Reduced to Rank 470 and Rank 235

The original image is a relatively clear image of a dog’s face. The next

figure shows the image constructed from rank 470 and rank 235

approximations of the original, or roughly half and one quarter the original

rank.

''

In the approximated images, it is still possible to clearly make out the

face of the dog, but some changes are evident in the background and in the

lighting. As the approximation gets bigger it looks like some detail is lost.

Clearly this is a lossy form of compression, not a good way to reduce the size of

an image as is clearly shown by much more aggressive approximations of rank

94 and rank 10, or reductions in rank of one and two orders of magnitude.

Figure 4.11 Rank 94 and Rank 10 Approximation of Image

The rank 94 approximation still does an acceptable job of representing

the original image. Rendered larger, it begins to look fuzzy and detail is clearly

lost, but in this case it’s possible to construct a rank 94 approximation of the

original image that is a reasonable stand in for the original while requiring

much less information to construct. The rank 10 approximation on the other

hand has clearly gone too far. Without having seen the original it would be

difficult to know what the original picture was.

This exercise shows what it means for rank reduced approximation to

be a form of lossy compression. It’s less clear why this is an appropriate

treatment for vector space data being compared for document retrieval in the

case of LSI or various applications in engineering design. After all, it seems

'(

undesirable to take our data and make it fuzzier. The difference is that an

image stores a relatively precise representation of the information we intended

to capture. A clear image has been made fuzzy. In LSI, or the engineering

applications proposed in this work, the starting point is not a clear image. In

LSI the inherent semantic content of the document is essentially hidden and is

only viewed through the lens of the specific words used to construct the

document. The first chapter of this dissertation attempted to show that the

data available to us for many computational design tasks is also a fuzzy and

incomplete picture. Consider then, the reduced rank approximation of a noisy

image. The following figure shows the original example image, but with

Gaussian noise applied. The image next to it is a rank 100 approximation of

the noisy original.

Figure 4.12 A Noisy Image and its Rank Reduced Equivalent

The picture on the left is noisy and grainy. The rank reduced

approximation on the right has had the noise smoothed out by the rank

reduction process. Reduced rank approximation is, in general not an efficient

way to de-noise an image, but researchers in information retrieval have shown

(*

that it is a suitable way to deal with the noise and uncertainty in their vector

space models. In section 4.4, the suitability of various reduced rank

approximations for engineering design data will be assesse, while the

remainder of this section will discuss how to calculate and utilize these

approximations.

The preceding example gives a qualitative feel for the effect of reduced

rank approximations of vector space data; now the actual mathematics can be

addressed. Consider the following 3x3 matrix as a motivating example.

! !
! ! !
! ! !
! ! !

The matrix is square, positive definite, non-symmetric, and non-sparse.

While that makes an initial explanation easier, none of these properties are

necessary, and they’ll be relaxed as the approach is developed. In fact it should

be expected that for realistic vector space models of design artifacts the

representations will be sparse, non-square, and symmetric, for certain kinds of

data. It’s well known that for a given matrix we can find a set of characteristic

values, or eigenvalues, and a corresponding set of vectors so that for any

eigenvalue ! and any eigenvector ! such that !! ! !"!. Using our example

matrix A, we can find a set of eigenvalues by solving the characteristic

equation.

! ! !" ! ! !
! ! ! ! !
! ! ! ! !
! ! !! !

! ! !

! ! ! ! !
! !! ! !
! ! ! ! !

! !

!!! ! !"!! ! !"#! ! !"# ! !

()

! ! !"!!! !!!! !!!

! !
!!!!
!!!!
!!!!

!
!!!!
!!!
!!!

!
!!!
!!
!!!

These values and corresponding vectors satisfy the eigenvalue equation

to with a tolerance for round off error. There are countless applications of this

type of analysis including vibration analysis, finding principal axis in dynamics,

principal stresses in solid mechanics, and even the principal component

analysis used earlier in this work. From these applications, and others, we

know that minor change in the contents of A can result in complex roots and

consequently results with complex roots. For many applications this is an

important and useful result, but in this case operating in the complex plane is

undesirable. The above equation is the most common expression for the

eigenvalue problem, but it technically defines only the right eigenvector. There

exists a corresponding left eigenvector ! such that !! ! !"!. These Eigen

decompositions are generally relevant when a matrix can be thought of as a

transformation or mapping of an n-dimensional space onto itself [148].

The notion that a matrix has both left and right eigenvectors can be

extended to create a matrix decomposition that is generalizable to non-square

matrices which are mappings from one space onto another [148]. This

technique, the Singular Value Decomposition (SVD) was first presented by

Beltrami and Jordan around the turn of the twentieth century [149]. Jordan

began by looking for minimums and maximums of a pseudo-similarity

transform of the matrix A.

!!!"
! ! ! ! ! ! !

(!

A necessary condition for an extreme value is that the determinant be zero.

! ! !!!!" ! !!!"#
A is non-zero so the following must be true.

!!!! ! !!!! ! !
Combing those two equations and introducing a scalar !, Jordan

obtained two equations.

!" ! !"

!!! ! !"

The sigma term is the maximum of the original system, so Jordon

observed that it was determined by the roots of the following determinant.
!!" !
!! !!"

The roots of this determinant can be organized into a diagonal matrix !

and two matrices U and V calculated from it such that A is decomposed as in

the following equation.

! ! !!!!
Calculating U and V is not a trivial process and they are non-unique,

but they can be constructed as orthogonal matrices whose columns are

normalized singular vectors. Unlike the eigenvalue decomposition, it can be

shown that for real A, all elements of the SVD are real. The decomposition can

be generalized to operate on complex matrices as well by replacing the

transpose of V with its Hermitian transform. Given the challenges in

calculating U and V that satisfy those criteria for non-trivial problems, many

years elapsed between the description of the SVD and initial practical

applications. In 1965 Golub and Kahan introduced a stable algorithm for

efficiently calculating the SVD that is the basis for most modern

("

implementations of the SVD [148-150]. Using an implementation of Golub

and Kahan’s algorithm we can calculate the SVD of the example matrix used to

demonstrate Eigen decomposition. That factorization is shown below.

! !
! ! !
! ! !
! ! !

! !!!! !

!!!!"!#! !!!"#$!!!"#$
!!!!"!# !!!!"## !!!!"#$
!!!!"#$!!!!"#! !!!"#$

!"!!"#$! !
! !!!!"! !
! ! !!!"#$

!

!
!!!!!"#! !!!!"#$!!!""#
!!!!!!"## !!!!"#$!!!!"!#
!!!!"#$!!!!"#$!!!"#$

!

The real utility of the SVD for the applications envisioned in this

dissertation is the ease with which rank reduced approximations can be

calculated using it. Eckart and Young argued, and Johnson later proved, that

computing the SVD of A and then retaining only the first k singular values

finds the best rank-k approximation of a matrix A.

!! ! !!!!!!!
! and !! are !!! matrices, !! is a !!! matrix formed from the first k

columns of U, !! is a !!! diagonal matrix with the first k singular values on

the diagonal, and !! is a !!! matrix of the fist k columns of V. They went on

to show that the norm of the difference between the original and rank k

approximation is exactly equal to the root of the sum of the squares of the

omitted singular values [151, 152].

! ! !! ! !!!!! ! !! !!!

With only a small change to this form, we can compute the percent

change due to the approximation.

(#

! ! !!
! ! !!!!! ! !! !!!

!

 If we look at our sample matrix A again, we can calculate its norm as

13.6159. The magnitude of the error introduced by a rank 2 approximation

would be about 40%, and a rank one approximation would be about 70%. For

this small example, any approximation introduces a large error. For larger

problems, significant rank reduction is often possible with minimal error. The

rank 94 approximation of a rank 940 gray scale image shown in Figure 4.11 has

only about 5% error compared to the original. Clearly this method of rank

reduced approximation has advantages over the principal component method

discussed in chapter 2 because we can now pick an approximation based on the

magnitude of the error it introduces. Though it should be noted that SVD and

PCA are ideas that are closely linked. A step in PCA is typically computing the

SVD after the matrix of observations has been centered. Thus SVD finds the

best linear subspace of a matrix, and PCA finds the best affine linear subspace.

Even thought the two are so closely linked, the rest of this document will focus

on rank reduction via SVD for two reasons. First, the components of the SVD

are typically useful on their own, rather than recombined as they are in PCA.

Query matching, in particular, can be accomplished using only a part of the

decomposition. Second, there are robust techniques for incorporating new

data into the SVD without computing the entire decomposition again. These

folding in operations are more complicated under PCA due to the additional

centering operation. Theoretically, there’s no justification for preferring SVD,

but in general, it will make practical implementation of the techniques

discussed easier and marginally more computationally efficient.

($

Finally, after weighting and calculating a rank reduced approximation,

we come to the question of actually measuring the distance between objects in

the vector space. There are a variety of possible distance measures, but the

word distance, for many people, immediately evokes the Euclidean distance,

the length of the path that connects two vectors as in Figure 4.13. In lower

dimensional spaces, like Cartesian coordinates, it is relatively easy to

understand the meaning of a Euclidean distance. However in higher

dimensional spaces, it becomes harder to visualize with each additional

dimensions. Another issue with standard Euclidean measures is the effect of

the magnitude of each vector on the distance. After applying the weighting

schemes and rank reduction introduced earlier, it is unclear what the real

significance of each elements magnitude. Instead, a measure that looks

primarily at the angular difference between vectors is preferable. We declare

two observations are the same if they are co-linear and completely different if

they are perpendicular, without regard to their relative magnitudes. The

simplest measure that meets the criteria is the cosine distance. The cosine

distance is the cosine of the angle between two vectors on the plane they define.

It is calculated by taking the dot product of the two vectors and dividing by the

product of their 2-norms.

!"#! ! ! ! ! !
! ! ! !

(%

Figure 4.13 Example of Euclidean and Cosine Distance

 All our observations will be positive, so cosine distance will be

measured on the interval between 0 and 1, where 1 indicates that two vectors

are collinear and 0 indicates they’re totally orthogonal. In principal any

threshold for similarity can be chosen, but in keeping with the precedent of

chapter 3, measures above 0.5 will indicate similarity between two objects.

4.3.6 An Example: Text Book Title Similarity

In section 4.3.3, a term by document matrix was introduced for the

titles form a set of textbooks on my bookshelf. Applying Log-entropy

weighting transforms that matrix into the one shown in Table 4.2.

5-5 -4 -3 -2 -1 1 2 3 4

5

-5

-4

-3

-2

-1

1

2

3

4

X Axis

Y
A

xi
s

A

B

Euclidean Distance
AB!6.6

Cosine Distance

AB!-0.85

C

Euclidean Distance
AC!2

Cosine Distance
AC!9.0

(&

Table 4.2 Weighted Text Book Title Vectors

Title AED AD FA MED PD
Term
Advanced 0.5571 0 0 0 0
Aero 0 0 0.7725 0 0
Analytical 0 0.7725 0 0 0
Design 0 0 0 0.5693 0.7847
Dynamics 0.5571 0.7725 0.7725 0 0
Engineering 0.5571 0 0 0.5693 0
Fundamentals 0 0 0.7725 0 0
Mechanical 0 0 0 0.5693 0
Product 0 0 0 0 0.7847

Following the methodology outlined above, the SVD of this term by

document matrix can be calculated. The singular values of that matrix are, to

two significant digits, 1.55, 1.26, 0.97, 0.87, and 0.63. The full matrix is rank 5;

using Eckart and Young’s formula we can find the error associated with

approximating by rank reduction. This is a small matrix, large errors should

result form any rank reduction. In fact we find that reducing from rank 6 to

rank 5 results in an error of about 40%. This is apparently a big error, but

upon actually calculating the rank 4 approximation of the term by document

matrix, it’s found that most of the difference occurs past the fourth significant

digit. Thus, for this example the original matrix and its rank 4 approximation

are essential the same. Using the cosine distance measure discussed above, the

pairwise distance between book titles can be calculated. The result is

summarized in the following table.

('

Table 4.3 Pairwise Cosine Distances of Text Book Titles

AED AD FA MED PD

AED 1.00 0.41 0.33 0.33 0.00
AD 0.41 1.00 0.41 0.00 0.00
FA 0.33 0.41 1.00 0.00 0.00
MED 0.33 0.00 0.00 1.00 0.41
PD 0.00 0.00 0.00 0.41 1.00

Examining the results, none of the books meet a 0.5 cutoff for

similarity. It seems that the first three titles Advanced Engineering Dynamics,

Analytical Dynamics, and Fundamentals of Aerodynamics form a set of

somewhat similar titles, and Mechanical Engineering Design and Product

Design form another. Obviously, a small set of titles is unlikely to correctly

group the results. Titles simply do not contain enough information. When we

read the titles we are able to guess, probably, correctly which are similar, but

that is because we have a large data set in memory to help us understand that

latent meaning the words carry. To show how the process is improved by

more data, I extracted the description of each book from amazon.com [153]. I

transformed the text into a vector space model using the text mining plugin for

R called tm [154, 155]. Using the same approach that was applied to the titles,

I calculated log-entropy weights for each term and constructed a low rank

approximation to the original data. A table of pairwise comparisons of cosine

distance is presented in Error! Reference source not found.

Table 4.4 Pairwise Cosine Distances of Text Book Descriptions

 AED AD FA MED PD
AED 1.00 0.17 0.17 0.09 0.01
AD 0.17 1.00 0.96 0.55 0.05

((

FA 0.17 0.96 1.00 0.56 0.06
MED 0.09 0.55 0.56 1.00 0.02
PD 0.01 0.05 0.06 0.02 1.00

From the results, it is clear that a comparison based on the titles alone

was not far off, even based on the descriptions the books are relatively

dissimilar. Analytical Dynamics and Fundamentals of Aerodynamics seem

closely related, and Mechanical Engineering Design is somewhat related. These

three books are applied mechanics texts, so they should be deemed similar to

one another, and Product Design focuses on the design process, so it should be

an outlier. However, seems like a failure of the approach that Advanced

Engineering Dynamics isn’t found similar to the other mechanics texts. This is

an artifact of the way the books’ publishers have written their descriptions.

The three mechanics texts that are found to be similar have descriptions that

emphasize their textbook features, examples, problem sets, and solution

manuals. Advanced Engineering Dynamics has a description that emphasizes

the topics covered like kinematics and ridged body motion. Without a larger

sample, the approach can’t reconcile these differences and sees the omitted

dynamics text as separate from the others.

This example obviously indicates that the suggested approach is not

beneficial, for small data sets or for objects that can are described with a few

possible parameters. Hopefully, it has shown how the basic approach

advocated in this work is implemented. The following sections will validate it

by tackling a series of more representative problems.

)**

4.4 Exploring Inter-Product Functional Similarity Through

the Techniques of LSI

In Chapter 3, an existing technique for finding functionally analogous

products to a reference functional model was discussed in detail. Clearly

finding analogies is one problem in engineering design where a vector space

similarity measure is potentially useful. A measure that is applicable to a wide

variety of models and encodings would be an especially useful contribution.

Since there is already an approach in the literature specific to function based

analogy, there is an opportunity to benchmark the proposed techniques and

evaluate their appropriateness and effectiveness. The following section will

construct and manipulate a vector space model of a set of existing products and

their functionality following the approach outlined earlier in the chapter.

Then, inter-product similarity will be measured and compared against the

results of Chapter 3. The proposed method will be shown to meet or exceed

the performance of the existing technique.

4.4.1 Constructing and Weighting a Vector Space Model

of the Data

We begin exactly as in chapter 3 by querying the Design Repository

using the SQL query supplied in Appendix A to construct a vector space model

of the data. Each column represents one of the 167 products in the repository,

and each row a function-flow tuple from a fixed taxonomy of function and

flow. The value in each cell of the matrix represents the frequency with which

that function appears in the model of each product. Here we have already

begun to deviate from the approach in chapter 3. Rather than relying on our,

or others’, subjective judgments of importance, we are simply operating on

)*)

what the data tell us. A possible objection to the approach here is that

functional models are typically constructed as graphs, and by storing only the

frequency with which particular function flow pairs occur, some of the

interesting details about their interaction with one another is lost. The

approach outlined here, could work on a vectorized form of the adjacency

matrices of those graphs, but for the sake of more direct comparison with

existing methods, the approach of chapter 3 is mimicked exactly. A final

concern with product vectors is the inclusion of so called supporting functions.

These are elements in the database, which exist to capture the physical

interconnections between components, but are not part of the overall

functionality of the product. The intent, as discussed in Chapter 3, is to find

functional rather than structural analogies. To that end, these supporting

functions are explicitly omitted in product function matrix. Once the vector

space model of the data has been retrieved, it must be weighted appropriately.

For the remainder of this work, the log-entropy weighting scheme will

be used for its ability to bring forward the salient properties of each product in

the dataset. Proper weighting highlights elements in the data, which help to

distinguish products from one another while minimizing the impact of data

with little relevance. In the case of product-function vectors, heavy weight will

go to functions that occur in only a few products. So a function like import

solid that occurs in scores of products will get a small weight, while a function

like convert electrical energy to thermal energy that occurs in a smaller subset of

products will get a correspondingly higher weight. The weighted and

unweighted product function matrices are attached in Appendix D.

Examination of them shows that weighting worked as intended, rare

entries with low magnitude are given very high weights, while frequent entries

in the original set become small in the weighted matrix.

)*!

4.4.2 Rank Reduction via Singular Value Decomposition

Following the procedure outlined earlier in the chapter, a rank reduced

approximation of the original data is constructed using the singular value

decomposition of the weighted product function matrix. The original matrix

has rank 166, which corresponds to the number of products in the matrix.

Using Eckart and Young’s formula, the error introduced by each possible low

rank approximation can be calculated. Figure 4.14 shows a plot of the percent

error associated with approximations from rank 1 to rank 165.

Figure 4.14 Percent Error for Rank Reduced Approximations of Weighted
Product Function Matrix

From the plot, we see that the relative error between the original and

rank reduced approximations is low even for very large reduction in rank. An

error of 1% is acceptable, so a rank 46 approximation is used. For an error of

)*"

5% reduction to rank 12 is possible, but there’s not a compelling reason to

tolerate so high an error when a suitably low rank approximation can be had

with much less deviation from the original data. Recall that the purpose of

rank reduction is to reduce the impact of error and uncertainty in the data set.

It is necessary to make enough of an approximation to mask some of the noise

in the data, but not so great an approximation that useful signals in the data are

also hidden. Errors on the order of a few percent have worked well for the data

sets I’ve experimented with, though some references in the LSI literature accept

much higher relative error. A reasonable amount of error will be dictated by a

necessarily subjective assessment of the size and level of noise in the data set.

The more data, or the more noise, present the greater the acceptable error.

4.4.3 Comparison With Existing Similarity Measure

The inter-product similarity is determined by calculating the cosine

distance between each product and every other product in the dataset. As in

Chapter 3, several questions will be asked of the data. First, general trends in

inter-product functional similarity can be examined. In Figure 3.2, duplicated

as Figure 4.15 Trends in Inter-Product Similarity Using Existing Measure, the

old similarity measure found 3 types of products, a small set with few similar

products, a large set with few similar products and many somewhat similar

products, and a set with weak similarity to all products. Figure 4.16 is an

identical plot generated using the new measure.

)*#

Figure 4.15 Trends in Inter-Product Similarity Using Existing Measure

)*$

Figure 4.16 Trends in Inter-product Similarity Using Proposed Measure

The first obvious difference is the loss of the plateaus of similarity seen

in the existing measure. In general similarity between each product and others

in the set declines rapidly and steadily for all products, indicating that most

products have a few very near neighbors functionally speaking. Second, we see

that there are many more points in 0.8-1.0 range and in the 0-0.2 range. This

indicates that very similar products get much higher scores and dissimilar

products much lower scores using the new measure. This is desirable behavior;

in the old measure many products landed around the border between

similarity and dissimilarity. Under the new measure they tend to fall clearly on

one side of the line.

)*%

In Chapter 3, it was shown that the existing similarity measure found a

series of products that were relatively dissimilar from even their nearest

neighbors. Repeating that analysis using the proposed method yields the

following histogram for similarity between each product and its nearest

neighbor.

Figure 4.17 Histogram of Distance to Next Most Similar Product

Using the existing method in Chapter 3, the same histogram was

produced and similarity was distributed around a 0.7. We can see from this

plot that the new measure correctly assigns very high similarity to the next

most functionally similar neighbor. While using the old method 0.5 was taken

as a cutoff for similarity. With the new method, a much higher threshold is

needed. There are still a number of products whose nearest neighbor is not

)*&

very similar. We can check the results of the new method by comparing the list

of products with distant neighbors to the one found in Chapter 3.

Table 4.5 Change in Most Dissimilar Artifacts Using New Measure

System Original
Position

New
Position

Change

dryer 144 142 2
component basis 145 95 50
dishwasher 146 145 1
asm volume 2 147 151 -4
cotton candy machine 148 78 70
nasa anomaly 149 160 -11
hulk hands 150 21 129
alcohawk digital alcohol
detector

151 26 125

coolit drink cooler 152 115 37
ub roller coaster 153 149 4
turtle 154 153 1
bolting 155 44 111
natural sensing 156 165 -9
fly 157 133 24
lawn mower 158 155 3
dna 159 50 109
jar opener 160 164 -4
john deere tractor gear 161 158 3
brake system 162 147 15
bat 163 10 153
two component regulatory
system

164 140 24

lichen 165 137 28
heart 166 159 7

)*'

Table 4.5 shows the products with the most distant nearest neighbors

found in chapter three, their position on the old and new lists, and the distance

each moved by applying the new measure. While many of the products stay at

the bottoms of both lists of products rank ordered by distance to their closest

neighbor, many make significant jumps. The question now is does this

indicate that the proposed measurement method is better or worse than the

status quo. A reasonable conclusion is that it is an improvement specifically

because of the products that make big jumps in the list. Consider for example

the bat, this is a biological product that we would expect to have very low

similarity to other artifacts. It was not surprising that the old measure found

that it had no close functional neighbors. However the new measure finds that

functionally, it’s very similar to a stapler. A stapler and bat seem wholly

unrelated until we look into the database. If we look at the artifact called bat,

we find that it’s specifically focused on the functionality of the wings, which the

recorder has indicated have a function of transferring mechanical energy.

Whether we think that interpretation is correct or not, if that is its function, the

bat is like a stapler. We find similar rational for the big movers, the new

measure, in general, seems to do a better job of sorting biological and complex

systems.

If we look at a table of the products that, based on the proposed

measure, are distant from their nearest neighbors, we find some interesting

additions to the list.

)*(

Table 4.6 Products with Low Similarity to Other Members of the Repository
Based on New Measure

System Distance to
Nearest
Neighbor

game controller 0.480331623
john deere tractor gear 0.431422946
heart 0.42059038
nasa anomaly 0.416878109
iphone 3g s 0.396178105
camera 0.386033707
ge microwave 0.373093699
jar opener 0.370705683
natural sensing 0.307223227
walker 0.049976454

Recall that the distance is the cosine of the angle between the vectors

that represent two products, so values as values approach 0 the products

becoming increasingly different. This set of products can be said to be

different from even their closet neighbors. Some of these products are on the

preceding list, but some are new, and had close neighbors based on the old

measure. One product that appears on this list, but was deemed similar to

another product by the old measure was the iPhone. Under the previous

method, the iPhone was found to be similar to a digital scale, and essentially

nothing else. If we examine the data in the repository we can speculate that

their similarity in the old measurement method was based on the fact that both

are powered by electrical energy, and both measure some facet of the

environment. In reality, it is difficult to argue that a phone and a scale are

functionally similar in any real way. Based on an examination of the products

))*

at the low similarity end of the spectrum it seems that the LSI based measure

improves upon existing method, and does a better job of making comparisons

based on the primary functionality of each system.

In Chapter 3, four test cases were identified based on a priori beliefs

about which systems should be most similar to one another. We can revisit

these test cases using the new method to further compare it to the existing

measure. The following table summarizes the test cases used in Chapter 3.

Table 4.7 Summary of Test Cases

Test
Case

Description Products

1 Coffee Makers Black 12 cup deluxe, black 12 cup economy, black 4
cup regular, white 4 cup economy

2 Biological
Systems

Any artifact where system type is biological

3 Aerospace
Systems

A set of artifacts representing aerospace systems
recorded to capture failure data

4 Drills Skil drill, firestorm drill, delta drill, b and d drill
attachement

First, we can examine the four coffee makers. The prior measure found

that the four coffee makers where more similar to one another than any other

products. The following table shows the four most similar products to each of

the four coffee makers. This matches exactly what was found using the method

discussed in Chapter 3. We can conclude from this result, that the proposed

measure preforms as well as the existing method for the first test case.

)))

Table 4.8 Coffee Maker Similarity as Measured Using Proposed Method

Reference
Product

Similar Products
1st 2nd 3rd 4th

black 12 cup
deluxe coffee

white 4 cup
economy
coffee

white 12 cup
regular

black 12 cup
economy
coffee

black 4 cup
regular
coffee

black 12 cup
economy
coffee

white 12 cup
regular

white 4 cup
economy
coffee

black 4 cup
regular coffee

black 12 cup
deluxe coffee

black 4 cup
regular coffee

white 12 cup
regular

white 4 cup
economy
coffee

black 12 cup
economy
coffee

black 12 cup
deluxe coffee

white 12 cup
regular

white 4 cup
economy
coffee

black 4 cup
regular coffee

black 12 cup
economy
coffee

black 12 cup
deluxe coffee

white 4 cup
economy
coffee

white 12 cup
regular

black 12 cup
economy
coffee

black 4 cup
regular coffee

black 12 cup
deluxe coffee

Next, we can examine the set of biological products. In chapter 3, it was

found that the existing method had mixed performance for these systems. In

general it found some similarity amongst biological systems, and low similarity

between biological and electromechanical systems. In Chapter 3, this was seen

as a plausible result, but given that electromechanical and biological systems

were encoded using the same taxonomy of function and flow, the result seemed

dubious. Using the LSI based similarity measure, those biological systems that

were most similar to other biological systems are now seen as very similar, but

interestingly some electromechanical products have entered the list at

moderate to high levels of similarity. This division is based on differences in

the way biological systems were recorded. Biological systems that were

recorded using the flow biological energy tend to be similar to other similarly

))!

recorded biological systems, while those that were recorded using more

common terms like mechanical or electrical energy, tend to group with

electromechanical systems. Based on these results, for the second test case, the

proposed measure is as good as or better than the existing one.

Next, we consider the third test case, products recorded to capture

failure information. These systems recorded data from ASM failure reports,

Consumer Product Safety Commission Reports, and NASA and NTSB aircraft

failure reports. The expectation for this test case was that these products

should be relatively unique with few similar products because they represent a

domain of products that is quite different from the consumer scale electro

mechanical products that make up the bulk of the repository. In Chapter 3, the

existing similarity measure was found to contradict this assumption. High

degrees of similarity were found between some aerospace systems and

consumer products, and each failure product had at least one functionally

similar product. Table 4.9 shows the results of applying the proposed measure

to this test case.

Table 4.9 Aerospace Systems Similarity as Measured by LSI Based Method

Reference Product Similar Products
1st 2nd 3rd 4th

nasa anomaly - - - -
galileo asm volume 1 rotorcraft - -
cpsc - - - -
asm volume 1 rotorcraft galileo robotic arm -
asm volume 2 - - - -

The results more closely match our prior expectation. Some aerospace

systems have no functionally similar products in the repository as was

expected. Those that are similar to other products are from within the same

domain. For example Galileo systems are functionally most similar to the

))"

products extracted from ASM volume one and a set of rotorcraft. A similar

result was found for ASM volume one. The products identified would all fall

within the scope of large, aerospace products rather than the consumer scale

products found elsewhere in the repository as was expected. Based on the

results of this test case and the biological systems test case, there is preliminary

evidence to suggest the proposed measure outperform the exiting one for

systems which are very different from other members of the data set.

Finally, the fourth test case dealt with a set of drills. In Chapter 3, it was

suggested that this might be a poor test case, because while superficially

similar, when the selected products are examined closely there is not a great

deal of functional similarity. That test case, when repeated using the proposed

measure yields somewhat better results than were found with the existing

method. The results are summarized in Table 4.10.

Table 4.10 Drill Similarity as Measured Using Proposed Method

Reference
Product

Similar Products
1st 2nd 3rd 4th

b and d drill
attachment

b and d sander
attachment

b and d jigsaw
attachment

crest
toothbrush

bat

delta drill mac cordless
drill-driver

b and d
screwdriver

digger dog irobot
roomba

firestorm drill delta sander b and d jigsaw versapak
sander

delta
jigsaw

skil drill skil jigsaw delta nail gun presto salad
shooter

mini
bumble
ball

First, there is the Black and Decker, drill attachment. Instead of a

stand-alone drill, this product is a modular head that attaches to a rotary tool.

Interestingly, the proposed similarity measure indicates that is most similar

))#

functionally, to the two other modular heads for that tool. The next most

similar product is an electric toothbrush that is also based on a standard body

that provides rotation to a modular head. Finally there’s the bat, which as

discussed earlier is assigned a function of transferring mechanical energy, so

it’s position here is appropriate. The other drills are found to be similar,

primarily to other products for which operations on rotational mechanical

energy are major aspects of their functionality. This differs from the results of

Chapter 3, where power tools tended to be grouped with other power tools

related to cutting, or material removal. This is a manifestation of an important

difference between the current and proposed measures. These are all relatively

complex products and so a similarity measure could focus on various aspects of

each product’s functionality. The existing measure does not do a satisfactory

job of emphasizing the important elements of each product’s functionality.

The new measure specifically addresses the value of any function in

differencing a product from every other product through the log-entropy

approach to weighting the data. As a result, the new measure sees rotation as

being more salient that separating solid, and finds a more diverse set of related

products.

4.5 Efficient Computation of LSI Based Vector Space

Similarity

In the previous section, the functional similarity of products stored in a

design repository was assessed. Applying a series of test cases indicated that a

measure derived from adapting the methods of Latent Semantic Indexing

outperformed an existing functional analogy tool found in the literature and

discussed in detail in Chapter 3. While the preceding sections illustrate that

the proposed approach works well, there are some practical issues related to a

))$

real implementation of a functional analogy search tool that can further

increase its performance.

First, in Section 4.4, pairwise comparisons were made among artifacts

already in a design repository. In reality, an analogy search tool would expect

as an input the functional model of a product in the midst of the design

process. Then, the degree of functional similarity between that model and each

product in a repository would be measured to find appropriate analogous

products. A first step is to convert the user generated functional model into a

vector space representation suitable for comparison. Before the repository data

was weighted and approximated, it existed as a set of product function vectors.

A first step is to convert the user supplied functional model into a vector where

each row represents the presence or absence of one of the thousands of

function-flow tuples recognized by the taxonomy of function and flow used in

the data set.

The data set used for comparison will be the aggregated product-

function vectors for all, or perhaps a subset of, the products in a design

repository appropriately weighted and rank reduced. This is an expensive

computation, especially the singular value decomposition of the matrix, so;

practically speaking it should be done only when new products are added to

the data set and then stored for use whenever a user supplies a query.

With a query functional model, and an appropriately constructed and

stored dataset, all the pieces are in place, but some additional mathematical

manipulation allows us to fit everything together more efficiently. Recall that

the data set was rank reduced via SVD. Instead of multiplying the rank

reduced pieces back together, we can make use of some of the singular values

and left and right singular vectors to speed up computation. Recall that our

))%

data matrix a can be decomposed into it’s singular values and corresponding

left and right singular vectors.

! ! !!!!
The rank-k approximation is given by the first k singular values, and

the first k left and right singular vectors.

!! ! !!!!!!!
A query functional model q that is not explicitly in A is introduced.

The cosine distance between any column in !! and q is can be determined by

the cosine distance formula. The vector !!is the jth canonical vector; the jth

column of the identity matrix.

!"#!! !
!! !!!

! ! !
!! !!! ! ! !

Berry, in a 1999 summary of LSI techniques presents an useful

transformation of that equation[126].

!"#!! !
!! !!!

! ! !
!! !!! ! ! !

! !!!!!!! !!!
! ! !

!!!!!!! !!! ! ! !
! !!!!!!! ! !!!!

!!!!! !!! ! ! !

! !!!!!!!!
! ! !!!!

!!!!! !!! ! ! !

The left hand terms are the same for any q, so these can be pre-

computed and stored. This could result in significant reduction in run time for

large data sets.

))&

4.6 Conclusion

Techniques from information retrieval can be successfully adapted to

measure the distance between vector space representations of engineering

design data. The results of work in this chapter provide affirmative answers to

the first two research questions introduced in chapter 1. Techniques from

information retrieval can be utilized to meet the need for similarity measures in

engineering design, and those techniques compare favorably to existing

methods. The development of and calculations necessary to support this

similarity measure were discussed in detail. This approach was compared

against the quantitative measure of functional analogy discussed in Chapter 3,

and found to meet or exceed the performance of the of the existing measure.

The new measure handles odd cases like biological and aerospace systems in a

more logical and consistent manner, while mimicking the results of the

existing measure for easy systems like coffee makers. Having demonstrated

that the proposed measure outperforms prior work in assessing inter-product

functional similarity; the pieces necessary to build a viable function based

analogy search tool are introduced. The vector space similarity assessment

approach introduced and validated in this chapter can now be modified to

tackle the problem of guiding automated concept generation.

))'

5 A Variety Maximizing Concept Generator

5.1 Introduction

In the first chapter, key limitations of current implementations of

automated concept generators were discussed. Specifically we saw that the

computational design synthesis loop posited by Cagan et al [21] of generating,

evaluating, and finally guiding solutions was not closed. A way to guide the

direction of new concept generation was needed. If the purpose of the concept

generator is to guide the designer in their exploration of the solution space, the

tool be directed to find a set of solutions with significant variety. Each newly

generated concept should be as different as possible from the set already

produced. In chapter two it was demonstrated that though concepts could be

grouped after generation an appropriate distance measure for guiding

generation was lacking. Chapters 3 and 4 laid the groundwork for such a

measure by demonstrating that vector space similarity measures from

information retrieval were applicable to problems in engineering design.

Finally, with that work complete and two of the three original research

questions satisfactorily answered, this chapter develops an automated concept

generation algorithm which produces only a few distinct concept types and

stops when additional concepts are not sufficiently different from those already

generated. Once an improved concept generator algorithm is developed, it is

validated by applying it to the test problems at the end of Chapter 2.

5.1.1 Roadmap

This chapter begins by revisiting the MEMIC algorithm for automated

concept generation and explains its basic operation. Based on the results of

chapter 4, a modification to MEMIC is presented which will successfully guide

))(

it to identify and return a few novel solutions from the set of all possible

solutions. This eliminates the need for the complicated sampling and

clustering approach of Chapter 2. The modified algorithm is then applied to

the same three sample problems used for clustering in Chapter 2. The results

of applying the new algorithm to these problems demonstrate that this

approach can be successfully used to close the CDS loop for MEMIC like

automated concept generators.

5.1.2 Contributions of This Chapter

1. Applies the vector space similarity measure of Chapter 4 to

guide automated concept generation

2. Closes the CDS loop for a MEMIC like automated concept

generation algorithm

3. Identifies a product component matrix from the design

repository as a way to extract latent concept component

information

5.2 Adapting the MEMIC Algorithm

The concept generation algorithm developed in this chapter begins

with Bryant’s MEMIC algorithm [20]. There are a number of reasons to prefer

it as a starting point. The most obvious were that the source is readily available

and it relies on the same data source, the Design Repository used in the rest of

this dissertation. Beyond merely practical reasons, it’s a useful starting point

because its algorithm is similar to the procedure that a human designer would

employ while manually generating concepts from a morphological matrix [6,

53]. This yields results that are easily interpreted, and the rationale behind the

generator producing a particular concept is not hard to deduce after the fact.

)!*

Grammar based approaches, on the other hand, yield a potentially complex

recipe of steps that must be understood to follow the generators rationale.

Another benefit of a morphological rather than grammar based approach is the

ability to discover solutions based on a set of existing products rather than a set

of constructed rules. I believe there are benefits to both approaches. The best

solution to automated concept generation is probably an amalgam of both, but

for now MEMIC and the morphological approach to automated concept

generation present the most logical starting point for a proof of concept for

similarity based guidance of the concept generation process.

5.2.1 Overview of the Existing Algorithm

A full description of the MEMIC algorithm can be found by consulting

Bryant [20]. The following is a high level overview of the algorithm. The

process begins with the user generating a functional model, which we assume

follows the taxonomy and modeling procedure of the Functional Basis [16, 17].

The adjacency matrix of its graph, which I’ll call FM, can represent the

functional model. The following example is the adjacency matrix for a

hypothetical model with three functions.

!" !
!! !! !!

!! ! ! !
!!
!!

!
!

!
!

!
!

Given this set of functions, it is necessary to find a set of possible

components that could perform each function. Each concept will be an

ensemble of these components. This information can be found by querying the

design repository for a function-component matrix (FCM), this is a vector

space model of a set of existing products where each column represents one of

)!)

the 179 recognized component types, and each row represents a possible

function. The entries correspond to the frequency with which a given

component has solved particular functions. The SQL query and additional

code necessary to generate an FCM is included in Appendix A and Appendix

C. The following is an example FCM for the three functions in the example

functional model and three hypothetical components.

!"# !
!! !! !!

!! ! ! !
!!
!!

!
!

!
!

!
!

Possible components to insert into the adjacency matrix are calculated

by multiplying rows of the FCM to produce a matrix of possible solutions.

Finding a solution for the f1f2 element in the FM is possible with the following

expression. The only possible solution is the first component c1.

!!!!! ! ! ! ! ! ! ! ! !
! ! !
! ! !
! ! !

This can be repeated for each element in the adjacency matrix to

develop possible concepts. MEMIC further refines the output by admitting

only component chains that are feasible based on data in the design repository.

If two components have not been connected in an existing product, MEMIC

rejects any concept that connects them. A wrinkle for long chains is that slight

variations in component order may make a concept feasible again. For

example, if the chain of three components c1-c2-c3 has not been seen in an

existing product, but c1-c3-c2 has, the feasibility of the concept is unclear.

Bryant and others [20, 61], have proposed allowing some reordering to admit

additional concepts.

)!!

5.2.2 Checking Compatibility

This error checking and component reordering presents the first

problem in adapting the MEMIC algorithm. I would like to reject concepts

which are not sufficiently different from those already generated while MEMIC

will simultaneously reject concepts it deems infeasible. It’s important in this

initial validation that I know the algorithm has terminated because it’s run out

of novel solutions, not because it deems a particular type of solution feasible. I

have consequently, chose to remove the compatibility checks from MEMIC for

the purpose of this study. I justify this in a couple of ways. First, the ultimate

purpose of this exercise is to generate concepts in early design where the goal is

thorough exploration of the solution space. Rejecting a particular solution

because it includes component connections not seen in existing products limits

the variety of solutions that can be explored. Second, a reliable FCM should be

sufficient to handle most compatibility issues. When I say function, I really

mean a function flow pair. If a component solves a function then it admits the

requisite flow. Two functions are connected by their flows, so the components

that solve each operate on the same flow. They should, therefore, be

compatible with one another, though possibly through an intermediate

component. Based on this justification, I will omit compatibility checks form

this concept generator implementation.

5.2.3 Guiding Through Rank-Reduced Vector Space

Similarity

In chapter 4, it was shown that rank reduced vector space

representations of products could be used to assess inter-product functional

similarity in a way that emphasized the salient features of each product. My

modification to the concept generator algorithm is to guide the generation of

)!"

new concepts by maximizing the difference between each new concept and

those that have already been generated. The similarity measurement of

Chapter 4 is adapted to assess the difference between concepts based not on

functionality, which is the same for all concepts, but component selection.

The first issue then is how to construct a rank reduced vector space

representation of each concept’s components. A non-reduced vector space

model would simply be a 179-element vector where each entry indicates the

use of a particular component type in the taxonomy. A more refined model

would be based on component adjacency lists of each concept, but for now the

simpler model is used. In Chapter 4, rank reduction was achieved through

singular value decomposition of the matrix of product vectors. That is not

feasible here, the decomposition would have to be recomputed each time a new

concept was added, and the resultant approximations would be heavily biased

toward the first concepts generated. The features of the concept component

space must be captured before concepts are generated. Instead, product

component vectors from the design repository can form the necessary space.

Eventually, the concept will be a product; I hypothesize that reduction based on

the product component space will capture appropriate dimensions of concept

variation.

A product component matrix is created from the design repository

using the queries and scripts in Appendix A and Appendix C. The singular

value decomposition of this matrix is found by the algorithm of Golub and

Kahan [150], and the error associated with potential reduced rank

approximations is found using Eckhart and Young’s equation [152].

Experimentation with approximations of a variety of data matrices from the

Design Repository suggests that an acceptable error is between 1% and 5%.

Accepting a 1% error indicates that a rank 70 approximation of the data is

)!#

possible. At the end of chapter 4, it was shown that a new vector could be

transformed into the rank reduced space by multiplication with the rank

reduced left singular values. This property is used to construct rank reduced

approximation of each generated concept.

Concept generation begins by generating an initial concept by

randomly selecting a solution for each function. Next, a second concept is

generated at random. This concept is then modified to produce a concept as

different as possible from the first concept. For each function, a set of

intermediate concepts is created that represents each possible permutation of

the second concept by varying the solution to that function and holding all

others constant. The distance between reduced rank approximations of these

intermediate concepts and the first concept is measured following the method

discussed in Chapter 4. The variant with the greatest distance is retained as the

second concept and the process repeated for all the functions. The result

becomes the next concept sent to the user. Given the relatively naïve search

procedure, I cannot claim that this concept has the greatest possible distance

from the first concept, but it is sufficiently far away to explore the boundaries

of the solution space.

Each subsequent concept is generated following the same procedure as

the second but with one modification. Instead of finding the alterative with the

greatest distance to one concept, the alternative with the greatest distance to all

concepts is the target of the search. There are a variety of ways this could be

accomplished. Initially the average distance between the potential concept and

the already generated concepts was used, but it tended to admit too many

concepts that were neighbors of at least one other concept. Instead a metric

based on the square root of the sum of the squares of the distances between the

candidate concept and the already generated concept was adopted.

)!$

Finally, a termination condition was needed. The generation of new

concepts should stop when additional concepts that are far away from all

existing concepts cannot be generated. To achieve this, once a candidate

concept has been modified to be as different as possible, I compare the distance

between it the existing concepts. If the minimum distance between the

candidate and any existing concept is less than a cutoff value, that candidate is

rejected. Distances are cosine distances, so a minimum similarity should be

somewhere between 0, totally orthogonal, to 1 exactly the same. Higher

numbers will admit more concepts; lower cutoff values ensure separation

between concepts. In practice, cutoffs between 0.5 and 0.8 work well.

Concepts are initially generated at random, so finding one concept not

sufficiently far from existing concepts does not necessarily imply that one does

not exist. Instead, the algorithm is rerun with a new random seed. If it fails to

find a suitable concept after trying a number of random seeds, I conclude that

the algorithm is finished and a novel sample of the solution space has been

found. Experience suggests that 5 rejected concepts are sufficient to ensure

that a suitable concept is not overlooked. Figure 5.1 shows a schematic of the

proposed algorithm.

)!%

Figure 5.1 Proposed Guided Concept Generator Algorithm

Generate
Random Concept

Generate New
Concept

Compute Rank Reduced
Product Component

Space

Project Concepts
into Rank Reduced
Component Space

Permute Concept
to Maximize

Distance

Store in Set of
Finished Concepts

Is Concept Above
Distance Threshold to all

other Concepts

Have more than N
Concepts been

rejected?

Return
Concepts to

User

YES

NO

YES

NO

)!&

The result of applying this new algorithm is a set of conceptual

solutions to the design problem that are distinct from one another. This set

can be shown to the designer as inspiration for further concept development

and refinement. This is analogous to generating a large sample of concepts,

clustering, and retrieving an exemplar of each cluster, but without the need to

fully generate many concepts that will later be rejected. The following section

will apply the modified concept generator algorithm to the three design

problems used as test cases at the end of Chapter 2. Code that implements this

algorithm is available in Appendix C.

5.3 Applying the New Algorithm to Sample Problems

Recall that at the end of Chapter 2, component based clustering of

concept generator solutions was tested with three design problems. These were,

a product to automatically remove the shells from peanuts as an aid to farmers

in the developing world; a device to move fluid from a reservoir at one

elevation to another at a higher elevation; and a consumer product to grind

and dispense whole spices. For each of these problems, I review the results of

Chapter 2, apply the proposed concept generator algorithm, and compare the

results of both methods. In general more results should be expected due to the

removal of the compatibility checks that were applied to the test cases in

Chapter 2.

5.3.1 Peanut Sheller

The peanut sheller was estimated to have two unique solutions using

the concept clustering technique employed in chapter two. However, both

clusters had low silhouette values, based on concepts that mixed both slicing

and grinding elements. The peanut sheller’s functional model was input into

)!'

the modified concept generation algorithm discussed in the preceding section.

A similarity cutoff of 0.5 was used, any new concept that is not at a cosine

distance of at least 0.5 from another generated concept is rejected. Five

successive rejected components was selected as the termination condition for

the algorithm. The algorithm was run 10 times; in each case the number of

concepts returned was between 13 and 18 concepts. I attribute the difference

to beginning with different random seeds. Fifteen concepts occurred most

frequently, so the following table examines what those concepts look like.

Table 5.1 Peanut Sheller Concepts Generated Using New Algorithm

concept 1 concept 2 concept 3 concept 4 concept 5
belt blade material filter divider abrasive
shaft shaft nozzle nozzle material filter
fastener bearing carousel electric

conductor
nozzle

mechanical
transformer

cam shaft shaft housing

lever knob needle sled belt
needle reservoir cover clamp rotational

coupler
cap cam needle shaft
wheel container cushion hinge
fan cam needle
support flywheel cam
gear support
sprocket handle

concept 6 concept 7 concept 8 concept 9 concept 10
blade nozzle blade brush nozzle
carousel electric plug electric

conductor
nozzle electric plug

electric plug belt shaft conveyer shaft
shaft shaft link shaft lever
fastener lever stop mechanical

transformer
seal

)!(

needle cover cam stop cushion
cap seal knob cam friction

enhancer
cam cam fan cam
knob handle knob
 sprocket support

concept 11 concept 12 concept 13 concept 14 concept 15
blade blade nozzle blade blade
brush carousel electric plug carousel material filter
shaft shaft shaft shaft brush
hinge fastener clamp tube conveyer
bearing cam mechanical

transformer
link rotational

coupler
mechanical
transformer

reservoir cam cam shaft

cap flywheel handle knob needle
cam pulley sprocket screw hydraulic

piston
insert cam
screw knob
pulley screw

The concepts derive power from human, mechanical, electrical, or

hydraulic energy, and peanut shell is separated by cutting, pressure, or

abrasion. While these concepts need refinement, and some of them likely

could benefit from the compatibility filter typically applied by MEMIC, this

approach gives a better idea of the breadth of solutions available based on

repository data. A set of fifteen concepts is small enough that it can reasonably

be used as a source of inspiration to the designer during concept generation. A

summary of some function component replacements for this set is given in

Table 5.2.

)"*

Table 5.2 Summary of Component Selection for Some Peanut Sheller
Functions

Functions concept 1 concept 2 concept 3 concept 4 concept 5
import solid
material

cap reservoir cover cushion hinge

separate solid
material

needle blade material
filter

divider abrasive

transfer solid
material

lever bearing carousel sled nozzle

change
rotational
energy

gear cam shaft flywheel belt

convert
rotational
energy to
mechanical
energy

mech.
Trans.

cam cam cam cam

 concept 6 concept 7 concept 8 concept 9 concept 10
import solid
material

cap cover knob conveyer seal

separate solid
material

blade lever blade brush friction
enhancer

transfer solid
material

carousel nozzle shaft nozzle nozzle

change
rotational
energy

shaft shaft link sprocket shaft

convert
rotational
energy to
mechanical
energy

cam cam cam cam cam

 concept

11
concept 12 concept 13 concept 14 concept 15

import solid
material

cap reservoir nozzle tube conveyer

)")

separate solid
material

blade blade clamp blade blade

transfer solid
material

pulley carousel shaft shaft hydraulic
piston

change
rotational
energy

Mech.
Trans.

flywheel sprocket cam rotational
coupler

convert
rotational
energy to
mechanical
energy

cam cam cam cam cam

5.3.2 Water Lifter

In Chapter 2, concept clustering found three possible solutions to the

water lifter problem. It appeared that the primary difference between concepts

was the energy source employed. To compare this result to the proposed

algorithm, the water lifters functional model was input as discussed in the

previous section. A similarity cutoff of 0.5 and termination condition of 5

successive rejections was used again. Ten runs of the problem on the

algorithm were used to counter the effects of random seed concepts. Five to

eight concepts were returned each time. The difference can be attributed to

beginning with different random seeds. Seven concepts occurred most

frequently, so the following table examines what those concepts look like.

)"!

Table 5.3 Water Lifter Concepts Generated Using New Algorithm

concept 1 concept 2 concept 3 concept 4
material filter divider abrasive housing
housing blade material filter bearing
fan mechanical transformer nozzle fastener
reservoir lever carousel cap
pressure vessel light source cushion screw propeller
 cam electromagnet pressure vessel

container reservoir spring
support pressure vessel
 insert

concept 5 concept 6 concept 7
housing belt blade
rotational coupler mechanical transformer nozzle
shaft cover electric cord
tube cushion electric conductor
seal friction enhancer fan
cam hydraulic pump pressure vessel
pressure vessel container solder
indicator light support sprocket
 solder

Clearly these concepts do not reflect immediately buildable solutions,

but they do a reasonable job of capturing the solution possibilities. Power

comes from a variety of sources including electricity, mechanical energy, and

fluid power. Water is moved though airfoils and fluid pressure. The new

algorithm has generated a set of concepts that adequately capture the possible

solution types based on function component data in the repository. These

solutions can be presented to the designer as a source of inspiration and are

much easier to interpret and act on than three large clusters of concepts. Table

)""

5.4 shows some components selected for a few functions from the model for

these seven concepts.

Table 5.4 Component Selections for some Functions in Water Lifter
Functional Model

Functions concept 1 concept 2 concept 3 concept 4
convert mechanical
energy to rotational
energy

fan cam carousel spring

transfer liquid
material

fan blade nozzle screw
propeller

store liquid
material

reservoir container reservoir pressure
vessel

export signal housing light source electroma
gnet

housing

 concept 5 concept 6 concept 7
convert mechanical
energy to rotational
energy

cam mechanical
transformer

fan

transfer liquid
material

tube hydraulic
pump

pressure vessel

store liquid
material

pressure vessel container pressure vessel

export signal indicator light cover electric conductor

5.3.3 Spice Grinder

Finally, the spice grinder yielded poorly differentiated results when

clustered with the method employed in Chapter 2. Using the same settings as

the previous two problems its functional model is input into the modified

concept generator algorithm. Ten runs of the algorithm yielded between 18

and 20 distinct concepts. The first ten results are shown in Table 5.5, and a

summary of components selected for a subset of functions is shown in Table

5.6.

)"#

Table 5.5 Spice Grinder Concepts Generated with New Algorithm

concept 1 concept 2 concept 3 concept 4 concept 5
nozzle brush transistor blade divider
electric cord housing mechanical

transformer
electric conductor housing

electric plug electric
switch

cap hydraulic pump belt

latch release wheel electric motor airfoil link
inductor battery insert knob lever
seal support screen pulley cover
electric
insulator

solder nut-bolt hydraulic
pump

screw
propeller

pneumatic
piston
fan
pressure
vessel
spring
insert
key
screw

concept 6 concept 7 concept 8 concept 9 concept 10
material
filter

rotational
coupler

housing electric plug sled

electric plug tube hinge mechanical
transformer

fuse

inductor fuse hydraulic pump lever battery
fan hydraulic

pump
knob hydraulic pump visual

indicator
visual
indicator

wheel spring wheel screen

handle support screen heating element electric wire
key handle screw reservoir pulley
pulley electric plate pulley pulley
 pulley

)"$

Table 5.6 Summary of Component Selections for some Spice Grinder
Functions

Function concept 1 concept 2 concept 3 concept 4 concept 5
actuate
electrical
energy

inductor electric
switch

transistor knob housing

store
solid
material

pressure
vessel

housing cap hydraulic
pump

cover

separate
solid
material

screw
propeller

brush screen blade divider

export
solid
material

nozzle wheel screen blade belt

 concept 6 concept 7 concept 8 concept 9 concept

10
actuate
electrical
energy

inductor fuse knob lever fuse

store
solid
material

material filter tube housing reservoir sled

separate
solid
material

key wheel screen wheel screen

export
solid
material

pulley wheel screen wheel screen

It is not as clear with this example what general solution types these

concepts represent, but that same trend was observed with clustered concepts

in Chapter 2. This is a difficult problem for the current data set. The reason

why is that the core functionality of the spice grinder is to turn a monolithic

)"%

solid into a set of particles. In the functional model used this functionality is

represented as convert solid material to solid material. It’s debatable whether

or not this is a proper application of the functional basis taxonomy. Among

other products in the repository this functionality is typically called “change

solid” or “shape solid”. The defining functionality of the proposed product is

poorly captured, so the results are unfocused. This is actually a good result. If

the algorithm magically changed a bad input into seemingly sensible output,

something would likely be amiss. Instead we see that garbage in results in

garbage out. The allegedly incorrect function is replaced with “change solid”

and the results are recomputed. The number of concepts found is between 10

and 15 and variation is based on different components that change solids like

blades, brushes and abrasives, and different energy sources like human,

mechanical, and electrical energy. The following table summarizes the first

five results from one set run using the updated functional model.

)"&

Table 5.7 Spice Grinder Concepts Using Modified Functional Model

concept 1 concept 2 concept 3 concept 4 concept 5
housing electric cord vibrator blade divider
electric
conductor

electric plug fastener vibrator vibrator

belt shaft mechanical
transformer

belt brush

rotational
coupler

electric
switch

lever link electric
socket

hinge cap cover transistor thermostat
bearing hydraulic

pump
seal inductor lens

sled airfoil stop cushion cap
latch release knob hydraulic pump friction

enhancer
stop

electric
resistor

spring screen reservoir hydraulic
pump

light source support circuit board flywheel
electric motor handle screen screen
wheel screen electric plate key
fan pulley
battery
visual
indicator
insert

5.4 Conclusion

These examples show that the vector space similarity measure

introduced in chapter 4 can be used to guide automated concept generation,

and answers the third research question of this dissertation. The algorithm

introduced in this chapter successful closes the computational design synthesis

)"'

loop for a MEMIC-like morphological matrix based automated concept

generator. In contrast to the methods of chapter two, this approach rapidly

identifies a set of solutions that represent the breadth of possibilities based on

data in the Design Repository. The rank reduced approximation of concept

vectors based on the product component space derived from the repository

ensures that salient features of each concept are emphasized and variation due

to uninteresting component options is minimized. While the method of

clustering in Chapter 2 could occasionally amplify noisy variation amongst

concepts, like the choice of a screw or a bolt to couple two pieces together, this

approach buries that noise and emphasizes more meaningful variation in the

set of solutions.

The proposed algorithm, while successful is only a prototype. There are

many opportunities to improve its performance. Now that the approach has

proven successful, compatibility checks should be reinstated. It was also noted

that the number of concepts returned was not the same for multiple runs on

the same problem. While the variation in number of results was small, usually

one to two additional concepts, an improved algorithm would run the problem

multiple times to ensure that proper number of components was returned.

Finally, this algorithm needs to be combined with recent related work in the

field on improving the way a MEMIC style algorithm handles functional

models whose graphs have high degrees of branching [156]. These two

components are major steps towards truly useful and usable automated

concept generators.

)"(

6 Conclusion

This dissertation began by observing a number of limitations in current

automated concept generators. The most immediate and notably of these is

that they do a poor job of promoting a thorough exploration of the solutions

space. Results are either a huge undifferentiated mass, or the result of the users

manual exploration of the space. To realize the full potential of these tools

additional work was needed. Initially, the problem was tackled by generating

many concepts and clustering them into groups based on either concept

parameters or the components that made up each concept. While this yielded

a technique for parameter estimation that has proven useful in other work, the

result was ultimately unsatisfying.

This led to the three main research questions of this work. First could a

useful, widely applicable similarity measure for computational design problems

be found? Second was the measure competitive with an existing ad hoc

measure in its own domain? Finally, could this measure be applied to assessing

concept similarity, and could concept similarity guide the generation of new

concepts? Chapter 4 answered the first two questions in concert with the

results of Chapter 3, while the final question is addressed by the work

presented in Chapter 5.

By successfully answering these questions, a new set of beneficial tools

for computational engineering design is introduced. The results bridge the cap

between computational design and other information retrieval efforts. They

close the computational design synthesis loop for a class of automated concept

generators. Finally, they introduce an approach to extracting information from

a body of existing design artifacts that can be applied to a wide variety of

applications, especially analogical design and case-based reasoning.

)#*

6.1 Parameter Estimation and Concept Clustering

An initial step in improving automated concept generation was simply

to take a large set of generated concepts and sort them for easier access by the

user. Sorting results based on predicted concept parameters was tried initially,

but was found to require a great deal of overhead work on the part of the

designer as no problem independent approach could be identified. This

approach yielded an estimation technique that has proven valuable in other

work, and can be used by many efforts related to estimating the parameters of

proposed products based on data in a design repository. Patterns observed in

concepts sorted through estimated parameters suggested that component

based sorting could provide the same result with less effort from the designer.

Practical application of a component based sorting scheme showed the need

for variable reduction and automated clustering. Unfortunately, the approach

required a large sample of concepts to be generated and sorted only to discard

most of the generated results. Furthermore, the algorithm can group concepts

based on variations that are inappropriate or uninteresting given the problem

at hand-leading to questionable results. An ideal approach to concept

generation would produce just the most interesting members of the set of all

possible results. Ultimately success depends on the ability of the computer to

recognize salient differences in products and concepts these clustering

approaches advance our ability to do that, but more work is needed.

6.2 Inter-Product Similarity a Functional Design by Analogy

Perspective

Finding analogies is a useful aid to ideation in design. Currently no

universal quantitative measure of analogical distance exists, but an approach

)#)

was found in the literature specific to the area of function-based design by

analogy. As a similarity metric was sought for the concept generation problem,

it was hypothesized that this could be a useful benchmark against which future

work could be tested. The measure was applied to explore inter-product

similarity amongst products in the design repository. Four test cases were

identified and explored. These included biological systems, coffee makers,

drills, and aerospace products. For the biological system and coffee maker test

cases, the measure performed as expected. For the aerospace system and drill

test cases, the results contradicted initial expectations, but further examination

suggests that the expectation may have been incorrect. Consequently, these

presented an interesting test case. Their result defied expectation, but on later

examination seemed plausible. If a new measure could handle these cases in a

way that plausibly conformed to expectations that would be an interesting

result. Test cases and a final rank ordered measures of product-to-product

similarity formed a benchmark against which future similarity measures could

be measured.

6.3 A Vector Space Similarity Measure for Engineering

Design Based on Latent Semantic Indexing

It was shown that a number of useful engineering design data sources

either are or can be represented as vector space models. Techniques from

information retrieval were successfully adapted to measure the distance

between vector space representations of engineering design data. The results

provided affirmative answers to the first two research questions. A similarity

measure could be adapted from information retrieval, and that measure

compared very favorably to existing methods. This new approach was

compared against the quantitative measure of functional analogy and met or

)#!

exceeded its performance. The new measure handled odd cases like biological

and aerospace systems in a more logical and consistent manner, but mimicked

the results of the existing measure for common systems like coffee makers.

The resulting similarity measure has a variety of applications, but this

dissertation adapts it to serve as a guide in automated concept generation.

6.4 Closing the CDS Loop for MEMIC like Automated

Concept Generators

A new concept generator algorithm that generates concepts

representative of each major category of possible solutions was developed. The

vector space similarity measures developed in this dissertation were used to

guide automated concept generation. This answered the third research

question of this dissertation. The computational design synthesis loop can be

closed for the selected concept generator type. Unlike the sampling and

clustering technique developed early in this dissertation, this algorithm rapidly

identified a set of solutions that represented the breadth of possibilities based

on data in the Design Repository. The rank reduced approximation of concept

vectors based on the product component space derived from the repository

ensured that salient features of each concept were emphasized. The focus on

uninteresting component variation that plagued the earlier clustering effort is

eliminated. A prototype automated concept generated based on the new

algorithm was developed and tested against a set of example problems used for

earlier efforts. The results show great promise in solving the problem of

information overload in automated concept generation.

)#"

6.5 Contributions of this Dissertation

The following section briefly summarizes key contributions of this

dissertation. I believe the following contributions represent new work with

significant intellectual merit in the field of engineering design..

1. Opportunities to contribute to the state of the art in automated

concept generation literature are identified

2. The need for universal approaches to design artifact similarity

measurement is established

3. A method for estimating the parameters of conceptual products based

on design repository data is developed

4. An approach to concept sorting based on parameter estimates is

demonstrated

5. A new method for concept sorting based on component choice is

developed and applied

6. Preliminary evidence that concept generator output is a set of

permutations on a few solution types is found

7. An first reduced vector space representation of automated concept

generator output is introduced

8. Development of four test cases for functional similarity assessment

from the design repository based on current functional similarity

measures

9. Construction of a benchmark for similarity assessments measures using

current functional design by analogy methods and a design repository

10. Verification that many important representations of engineering design

data meet the formal definition of a vector space model

)##

11. Identification of techniques from information retrieval literature \for

assessing the similarity of vector space data.

12. Application of LSI based similarity measure to functional analogy

problems shows that the LSI based measure meets or exceeds the

performance of the existing methods for the benchmark problems

13. Identification of the steps needed to use the LSI based similarity

measure in a viable function-based analogy search tool that could

replace prior work.

14. Application of an LSI based vector space similarity measure to guide

automated concept generation

15. Closed the CDS loop for a MEMIC-like automated concept generation

algorithm

16. Identified a product component matrix from the design repository as a

way to extract latent concept component information

The chief intellectual merits of this dissertation are four fold:

1. A method for estimating parameters during conceptual design based on

existing artifacts in a design repository is developed. This has already

found application in other work.

2. The gulf between computational design and information retrieval is

bridged. There are number of techniques in IR that may be applicable

to design problems beyond those discussed in this dissertation, and this

work can serve as a connection between the two fields. In collaborating

with others who use repository data, we are frequently confronted with

questions about how to handle noise, outliers and infrequent but

important data points. The data weighting and approximation schemes

of information retrieval can be an important tool to handling those

problems, and this dissertation includes a first attempt at that.

)#$

3. An efficient vector space similarity measure is constructed. While this

dissertation explored similarity measures primarily to advance

automated concept generation, it can have other applications as well.

In particular, it can be an important tool for analogical design from

archives of existing products and systems, including biological systems.

4. The computational design synthesis loop is closed for at least one type

of automated concept generator. This solves the problem of concept

overload and allows a designer to see only a few possible solutions that

represent the breadth of solutions known to the concept generator.

This significantly improves the utility of automated concept generators

and promotes thorough exploration of the solution space.

6.6 Impact on Designer Process and Results

Before moving on, it is important to put this body of work in

perspective, and to show how it will impact the practicing design engineer. To

illustrate how the results of this dissertation will improve design practice,

consider a hypothetical engineer, Wallace, who has a challenging design

problem to solve. Wallace’s company is heavily engaged in the area of pest

control, and their customers demand a new humane method for controlling

infestations of small mammals, like moles and rabbits, in lawns and gardens.

Wallace has some training in structured design methods, and given his

understanding of his customers’ needs and requirements, he develops a variety

of concepts. Unfortunately, Wallace has a great deal of experience with

pneumatic systems, and he fixates on pneumatic solutions to some of the key

functions in his device. This leads him to select, develop, and produce a

vermin vacuum system that is complex, expensive, and prone to malfunction

)#%

in ways that seriously damage his customers’ property. The product is a

disaster and Wallace has to take a job shearing sheep to support himself.

Now, imagine that Wallace had access to the concept generation tools

presented in this dissertation. In addition to his own manual concept

generation efforts, Wallace inputs a functional model of his pest-capturing

device into the concept generation algorithm described in Chapter 5. The

computer returns a variety of concepts showcasing the solution types known to

the concept generator. By analyzing this list, Wallace sees that in addition to

his pneumatic concepts, there are alternatives that use bait to attract the animal

and a container to hold it safely until it can be released in the wild. These

results inspire Wallace to produce an entire set of alternative, non-pneumatic

concepts. In concept selection he determines that these will be simpler,

cheaper, and more effective than his complex vermin-vacuum. The final

version of his simplified system of humane traps is a tremendous success. The

more complete exploration of the design space facilitated by the tools of this

dissertation helped Wallace fully explore the design space, and inspired a more

optimal solution than he would have developed alone. Disaster is averted, and

Wallace is handsomely rewarded.

While this is an imaginary scenario, and a tongue in cheek reference to

the collected works of Aardman animation, it reflects how the tools of this

dissertation can be used to improve the practice of engineering design. The

tools of this dissertation enable concept generation algorithms to produce

results allow the designer to see if important solution types that have been

overlooked. These automatically generated solutions can inspire new concepts

that would have been overlooked. Concept generation is enhanced without

significant additional effort by the designer.

)#&

6.7 Future Work

The work presented in this dissertation only scratches the surface of

work still to be done in the development of automated concept generators and

in the other fields that this dissertation touches. There are main three areas

where significant contributions can be made through continuations of this

work.

First in sorting and clustering of automatically generated concepts.

This work should be revisited so that it combines some of the features of the

LSI based similarity tool developed later in the dissertation. Rank reduced

representation of concepts instead of PCA may yield better results. K-Means

clustering while widely used will increasingly be replaced by new techniques

which require much less iteration and exploration to identify the actual

number of clusters in the data. In particular the associative clustering of Frey

and Dueck [157] is potentially very applicable to these problems and should be

investigated.

Next, the similarity measures developed in this dissertation can be a

useful contribution to the design by analogy literature in their own right. A

more complete study should be undertaken using these methods to derive

analogies to original design problems. It would be interesting to attempt to

extend these methods to many dimensions of analogy beyond merely

functional. In particular, it would be interesting to explore representations of

product form that could be stored as vector space models and subject to this

sort of analysis.

Finally, there is significant work to do to provide truly viable automated

concept generators that can act as aids to ideation in the design problem. This

dissertation solves one significant problem, how to identify and report a set of

)#'

concepts which represent the breadth of possible solutions without

overwhelming the user. The next great problem in automated concept

generation is one of representation. At present, the tool returns chains or lists

of components. This is not how designers communicate concepts to one

another, and if the computer is to be a helpful collaborator in the design

process, it has to do so on the designer’s terms. Designers communicate with

drawings, sketches, and other visual representations of a proposed design. The

next goal for automated concept generator development should be to produce

output which is more inline with this type of communication. Ideally the

computer-generated concepts could be passed around the table with a concept

generated by any other team member. When the research community is able

to achieve this, designers will be able to move from the paradigm of computer

as design aid to computer as participant in the design process. Until then, the

work continues.

)#(

REFERENCES

[1] Suh, N. P., 2001, Axiomatic Design Advances and Applications, Oxford
University Press, New York.
[2] Suh, N., 1998, The Principles of Design, Oxford University Press, New
York.
[3] Altshuller, G., 1984, Creativity as an exact science, Gorden and Breach,
Luxembourg.
[4] Hubka, V., and Ernst Eder, W., 1984, Theory of Technical Systems,
Springer-Verlag, Berlin.
[5] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K. H., 2007, Engineering
Design a Systematic Approach, Springer-Verlag, London.
[6] Otto, K., and Wood, K. L., 2001, Product Design: Techniques in Reverse
Engineering Design and New Product Development, Prentice Hall, New York.
[7] Ullman, D. G., 2010, The Mechanical Design Process, McGraw-Hill,
Boston.
[8] Dym, C. L., and Little, P., 2004, Engineering Design: A Project-based
Introduction, Wiley.
[9] Ulrich, K. T., and Eppinger, S. D., 2008, Product Design and Development,
McGraw-Hill, New York.
[10] Szykman, S., Sriram, R. D., Bochenek, C., and Racz, J. W., 1999, "The NIST
Design Repository Project," Advances in Soft Computing - Engineering Design
and Manufacturing, R. Roy, T. Furuhashi, and P. K. Chawdhry, eds., Springer-
Verlag, London, pp. 5-19.
[11] Bohm, M. R., Stone, R. B., and Szykman, S., 2005, "Enhancing Virtual
Product Representations for Advanced Design Repository Systems," Journal of
Computing and Information Science in Engineering, 5(4), pp. 360-372.
[12] Nanda, J., Simpson, T. W., Kumara, S. R. T., and Shooter, S. B., 2006, "A
Methodology for Product Family Ontology Development Using Formal
Concept Analysis and Web Ontology Language," Journal of Computing and
Information Science in Engineering, 6(2), pp. 103-113.
[13] Szykman, S., "Architecture and Implementation of a Design Repository
System," Proc. Proceedings of DETC2002.
[14] Bohm, M. R., Stone, R. B., Simpson, T. W., and Steva, E. D., "Introduction
of a Data Schema: The Inner Workings of a Design Repository," Proc. ASME
International Design Engineering Technical Conferences, ASME.
[15] "Design Repository," http://www.designengineeringlab.org/repository.
[16] Stone, R., and Wood, K., 2000, "Development of a Functional Basis for
Design," Journal of Mechanical Design, 122(4), pp. 359-370.

)$*

[17] Hirtz, J., Stone, R., McAdams, D., Szykman, S., and Wood, K., 2002, "A
Functional Basis for Engineering Design: Reconciling and Evolving Previous
Efforts," Research in Engineering Design, 13(2), pp. 65-82.
[18] Kitamura, Y., and Mizoguchi, R., 2003, "Ontology-based Description of
Functional Design Knowledge and its Use in a Functional Way Server," Expert
Systems with Application, 24(2), pp. 153-166.
[19] Kurtoglu, T., Campbell, M., Bryant, C., Stone, R., and McAdams, D.,
"Deriving a Component Basis for Computational Functional Synthesis," Proc.
International Conference on Engineering Design, ICED'05.
[20] Bryant, C. R., 2007, "A Computational Theory for the Generation of
Solutions During Early Conceptual Design," Doctor of Philosophy, University
of Missouri-Rolla, Rolla.
[21] Cagan, J., Campbell, M. I., Finger, S., and Tomiyama, T., 2005, "A
Framework for Computational Design Synthesis: Model and Applications,"
Journal of Computing and Information Science in Engineering, 5(3), pp. 171-
181.
[22] Simon, H., 1993, "Anecdotes-a very early expert system," Annals of the
History of Computing, IEEE, 15(3), pp. 64-68.
[23] Schon, D. A., 1992, "Designing as reflective conversation with the
materials of a design situation," Research in Engineering Design, 3(3), pp. 131-
147.
[24] Stiny, G., 1977, ""Ice-Ray: A Note on the Generation of Chinese Lattice
Desings"," Environment and Planning B, 4, pp. 5-18.
[25] Stiny, G., and Gips, J., 1980, "Production Systems and Grammars: a
Uniform Characterization," Environment and Planning B, 8, pp. 295-323.
[26] Stiny, G., and Mitchell, W. J., 1978, "The Palladian Grammar,"
Environment and Planning B, 7, pp. 399-408.
[27] Konig, H., and Eizenberg, J., 1981, "The Language of the Praire: Frank
Lloyd Wright's Praire Houses," Environment and Planning B, 8, pp. 295-323.
[28] Stiny, G., and Mitchell, W. J., 1980, "The Grammar of Paradise: on the
Generation of Mughul Gardens," Environment and Planning B, 7, pp. 209-226.
[29] Cagan, J., 2001, "Engineering Shape Grammars: Where Have We Been and
Where are We Going?," Formal Engineering Design Synthesis, J. Cagan, and E.
K. Antonsson, eds., Cambridge University Press, Cambridge UK.
[30] McCormack, J. P., Cagan, J., and Vogel, C. M., 2004, "Speaking the Buick
language: capturing, understanding, and exploring brand identity with shape
grammars," Design Studies, 25(1), pp. 1-29.
[31] McCormack, J. P., and Cagan, J., 2002, "Designing inner hood panels
through a shape grammar based framework," AI EDAM, 16(04), pp. 273-290.

)$)

[32] Pugliese, M. J., and Cagan, J., 2002, "Capturing a rebel: modeling the
Harley-Davidson brand through a motorcycle shape grammar," Research in
Engineering Design, 13(3), pp. 139-156.
[33] Agarwal, M., and Cagan, J., 1998, "A Blend of Different Tastes: The
Language of Coffee Makers," Environment and Planning B, 25, pp. 205-226.
[34] Stahovich, T. F., and Laboratory, M. I. o. T. A. I., 1995, SketchIT: A sketch
interpretation tool for conceptual mechanical design, Citeseer.
[35] Stahovich, T. F., and Raghavan, A., 2000, "Computing Design Rationales
by Interpreting Simulations," Journal of Mechanical Design, 122(1), pp. 77-82.
[36] Goel, A., Bhatta, S., and Stroulia, E., 1997, "Kritik: An early case-based
design system," Issues and applications of case-based reasoning in design, p.
87ñ132.
[37] Stahovich, T. F., Davis, R., and Shrobe, H., 1998, "Generating multiple new
designs from a sketch," Artificial Intelligence, 104(1-2), pp. 211-264.
[38] Ward, A., 1989, "A Theory of Quantitative Inference Applied to a
Mechanical Design Compiler,"Doctoral, Massachusetts Institute of
Technology.
[39] Ward, A. C., and Seering, W. P., 1989, "The Performance of a Mechanical
Design "Compiler"," Artificial Intelligence Laboratory Massachusetts Institute
of Technology, Cambridge, MA.
[40] Carlson-Skalak, S., White, M. D., and Teng, Y., 1998, "Using an
evolutionary algorithm for catalog design," Research in Engineering Design,
10(2), pp. 63-83.
[41] Campbell, M. I., Cagan, J., and Kotovsky, K., 2003, "The A-Design
approach to managing automated design synthesis," Research in Engineering
Design, 14(1), pp. 12-24.
[42] Campbell, M., Cagan, J., and Kotovsky, K., 2003, "The A-Design approach
to managing automated design synthesis," Research in Engineering Design,
14(1), pp. 12-24.
[43] Navinchandra, D., Sycara, K. P., and Narasimhan, S., 1991, "A
transformational approach to case-based synthesis," Ai Edam, 5(01), pp. 31-45.
[44] Han, Y. H., and Lee, K., 2006, "A case-based framework for reuse of
previous design concepts in conceptual synthesis of mechanisms," Computers
in Industry, 57(4), pp. 305-318.
[45] Sycara, K., Chandra, D. N., Guttal, R., Koning, J., and Narasimhan, S.,
1991, "CADET: a case-based synthesis tool for engineering design,"
International Journal of Expert Systems, 4(2), pp. 157-188.
[46] Welch, R. V., and Dixon, J. R., 1994, "Guiding conceptual design through
behavioral reasoning," Research in Engineering Design, 6(3), pp. 169-188.

)$!

[47] Kurtoglu, T., and Campbell, M., 2009, "Automated Synthesis of
Electromechanical Design Configurations from Empirical Analysis of Function
to Form Mapping," Journal of Engineering Design, 20(1), pp. 83-104.
[48] Sridharan, P., and Campbell, M. l., 2005, "A study on the grammatical
construction of function structures," Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, 19, pp. 139-160.
[49] Campbell, M. I., Rai, R., and Kurtoglu, T., "A Stochastic Graph Grammar
Algorithm for Interactive Search," ASME.
[50] Bryant, C. R., McAdams, D. A., Stone, R. B., Kurtoglu, T., and Campbell,
M., "A Validation Study of an Automated Concept Generator Design Tool,"
Proc. ASME International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, ASME.
[51] Bryant, C., McAdams, D., Stone, R., Kurtoglu, T., and Campbell, M., "A
Computational Technique for Concept Generation," Proc. Proceedings of
IDETC/CIE 2005, ASME.
[52] Bryant, C., Stone, R., McAdams, D., Kurtoglu, T., and Campbell, M.,
"Concept Generation from the Functional Basis of Design," Proc. International
Conference on Engineering Design, ICED 05.
[53] Zwicky, F., 1969, Discovery, Invention, Research - Through the
Morphological Approach, The Macmillian Company, Toronto.
[54] Ritchey, T., 1998, "General morphological analysis," A general method for
non-quantified modeling, 16th EURO.
[55] Stone, R. B., Tumer, I. Y., and Van Wie, M., 2005, "The Function-Failure
Design Method," Journal of Mechanical Design, 127(3), pp. 397-407.
[56] Stone, R., Tumer, I., and Stock, M., 2005, "Linking Product Functionality
to Historic Failures to Improve Failure Analysis in Design," Research in
Engineering Design.
[57] Tumer, I. Y., and Stone, R. B., 2003, "Analytical Methods for Mapping
Function to Failure During High-Risk Component Development," Research in
Engineering Design, 14(1), pp. 25-33.
[58] Vucovich, J., 2006, "The development of a functionality-centric approach
to software early risk assessment," MS, University of Missouri-Rolla, Rolla,
MO.
[59] Kurtoglu, T., Tumer, I.Y., 2007, "A graph based fault identification and
propagation framework for functional design of complex systems," ASME
Journal of Mechanical Design, 130(5), p. 8.
[60] Grantham Lough, K., Stone, R., and Tumer, I., 2009, "The risk in early
design method," Journal of Engineering Design, 20(2), pp. 155-173.
[61] Parashar, T., Grantham Lough, K., and Stone, R., 2009, "The Part Count
Tool (PACT) for Concept Selection," ASME 2009 International Design

)$"

Engineering Technical Conferences and Computers and Information in
Engineering ConferenceSan Diego, California.
[62] Poppa, K., and Stone, R., 2009, "Sorting Results of Automated Concept
Generators Based on Design for Manufacture and Assembly," ASME 2009
Internation Design Engineering Technical Converences and Computers and
Information in Engineering ConferenceSan Diego, California.
[63] Boothroyd, G., Dewhurst, P., and Knight, W., 2002, Product Design for
Manufacture and Assembly, Taylor and Francis.
[64] Ashby, M. F., 2005, Material Selection in Mechancial Design, Elsevier,
Oxford, UK.
[65] Haapala, K. R., Poppa, K. R., Stone, R. B., and Tumer, I. Y., 2011,
"Automating Environmental Impact Assessment during the Conceptual Phase
of Product Design," AAAI Spring SymposieumPalo Alto, CA.
[66] Bohm, M., Haapala, K., Poppa, K., Stone, R., and Tumer, I., 2010,
"Integrating Life Cycle Assessment into the Conceptual Phase of Design Using
a Design Repository," Journal of Mechanical Design, 132(9).
[67] 2000, "Eco-indicator 99 Manual for Designers," S. P. a. t. E. Ministry of
Housing, ed.The Hague, The Netherlands.
[68] Backer, E., 1995, Computer-Assited Reasoning in Cluster Analysis,
Prentice Hall, New York.
[69] Anderberg, M., 1973, Cluster Analysis for Applications, Academic Press,
New York.
[70] Orsborn, S., Boatwright, P., and Cagan, J., 2008, "Identifigying Product
Shape Relationships Using Principal Component Analysis," Research in
Engineering Design, 18(4), pp. 163-180.
[71] English, K., Naim, A., Lewis, K., Schmidt, S., Viswanathan, V., Linsey, J.,
Bishop, B., Campbell, M. I., Poppa, K., and Stone, R. B., 2010, "Impacting
Designer Creativity Through IT-Enabled Concept Generation," Journal of
Computing and Information Science in Engineering, 10(3).
[72] H.F., K., and Rice, J., 1974, "Little Jiffy. Mark Iv," Educational and
Psychological Measurement, 34, pp. 111-117.
[73] Kaufman, L., and Rousseeuw, P. J., 1990, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, Hoboken, NJ.
[74] 2005, "The new Oxford American dictionary," Oxford University Press,
New York.
[75] Otto, K., and Wood, K., 2001, Product Design: Techniques in Reverse
Engineering, Systematic Design, and New Product Development, Prentice-
Hall, New York.
[76] Chakrabarti, A., Sarkar, P., Leelavathamma, B., and Nataraju, B. S., 2005,
"A functional representation for aiding biomimetic and artificial inspiration of

)$#

new ideas," Ai Edam-Artificial Intelligence for Engineering Design Analysis
and Manufacturing, 19(2), pp. 113-132.
[77] Chiu, I., and Shu, L. H., 2007, "Biomimetic design through natural
language analysis to facilitate cross-domain information retrieval," Ai Edam-
Artificial Intelligence for Engineering Design Analysis and Manufacturing,
21(1), pp. 45-59.
[78] Wilson, J. O., Rosen, D., Nelson, B. A., and Yen, J., 2010, "The effects of
biological examples in idea generation," Design Studies, 31(2), pp. 169-186.
[79] Sarkar, P., Phaneendra, S., and Chakrabarti, A., 2008, "Developing
engineering products using inspiration from nature," Journal of Computing
and Information Science in Engineering, 8(3).
[80] Casakin, H., and Goldschmidt, G., 1999, "Expertise and the use of visual
analogy: Implications for design education," Design Studies, 20(2), pp. 153-175.
[81] Davies, J., Goel, A. K., and Nersessian, N. J., 2009, "A computational
model of visual analogies in design," Cognitive Systems Research, 10(3), pp.
204-215.
[82] Yaner, P. W., and Goel, A. K., 2008, "Analogical recognition of shape and
structure in design drawings," Artificial Intelligence for Engineering Design,
Analysis and Manufacturing: AIEDAM, 22(2), pp. 117-128.
[83] Linsey, J., Wood, K., and Markman, A., "Wordtrees: A method for design-
by-analogy," American Society for Engineering Education.
[84] Christensen, B. T., and Schunn, C. D., 2007, "The relationship of
analogical distance to analogical function and preinventive structure: The case
of engineering design," Memory & Cognition, 35(1), pp. 29-38.
[85] Huhns, M. N., and Acosta, R. D., 1998, "ARGO: A system for design by
analogy," IEEE Expert, 3(3), pp. 53-68.
[86] Adelson, B., 1984, "When Novices Surpass Experts - the Difficulty of a
Task May Increase with Expertise," Journal of Experimental Psychology-
Learning Memory and Cognition, 10(3), pp. 483-495.
[87] Adelson, B., 1989, "Cognitive research: Uncovering how designers design;
cognitive modeling: Explaining and predicting how designers design," Research
in Engineering Design, 1(1), pp. 35-42.
[88] Hewett, T. T., and Adelson, B., 1998, "Psychological science and analogical
reminding in the design of artifacts," Behavior Research Methods Instruments
& Computers, 30(2), pp. 314-319.
[89] Linsey, J. S., Murphy, J.T., Markman, A.B., Wood, K.L., Kurtogula, T.,
2006, "Representing Analogies: Increasing the Probability of Innovation,"
IDETC/CIE, ASME, Philadelpia, PA.

)$$

[90] Linsey, J. S., Clauss, E., Wood, K. L., Laux, J. P., and Markman, A. B.,
"Increasing innovation: A trilogy of experiments towards a design-by-analogy
method," American Society of Mechanical Engineers, pp. 145-159.
[91] Linsey, J. S., Wood, K. L., and Markman, A. B., 2008, "Modality and
representation in analogy," Ai Edam-Artificial Intelligence for Engineering
Design Analysis and Manufacturing, 22(2), pp. 85-100.
[92] Linsey, J. S., Wood, K. L., and Markman, A. B., "Increasing innovation:
Presentation and evaluation of the WordTree Design-by-analogy method,"
ASME, pp. 21-32.
[93] McAdams, D., and Wood, K., "Quantitative Measures For Design By
Analogy," Proc. Proceedings of DETC2000.
[94] McAdams, D. A., and Wood, K. L., 2002, "A quantitative similarity metric
for design-by-analogy," Journal of Mechanical Design, Transactions of the
ASME, 124(2), pp. 173-182.
[95] Lay, D. C., 2006, Linear algebra and it's applications, Pearson/Addison-
Wesley, Boston.
[96] Hefferon, J., 2011, "Linear Algebra."
[97] Steward, D., 1981, "Design Structure System: A Method for Managing the
Design of Complex Systems," IEEE Transactions on Engineering Management,
EM-28(3), pp. 71-74.
[98] Browning, T., 2001, "Applying the Design Structure Matrix to System
Decomposition and Integration Problems: A Review and New Directions,"
IEEE Transactions on Engineering Management, 48(3), pp. 292-306.
[99] Strawbridge, Z., McAdams, D. A., and Stone, R. B., "A Computational
Approach to Conceptual Design," Proc. ASME Design Engineering Technical
Conference, Design Theory and Methodology Conference, ASME, ed., ASME.
[100] Bryant, C. R., Bohm, M. R., Stone, R. B., and McAdams, D. A., "An
Interactive Morphological Matrix Computational Design Tool: A Hybrid of
Two Methods," Proc. ASME International Design Engineering Technical
Conferences & Computers and Information in Engineering Conference,
ASME.
[101] Poppa, K. R., Stone, R. B., and Orsborn, S., 2010, "Exploring Automated
Concept Generator Output Through Principal Component Analysis," ASME
2010 International Design Engineering Technical Conferences &
Computers and Information in Engineering ConferenceMontreal, Quebec,
Canada.
[102] Dubin, D., 2004, "The most influential paper Gerard Salton never wrote,"
Library Trends, 52(4), p. 748(717).
[103] Michell, J., 1990, An Introduction to the Logic of Psychological
Measurement, Lawerence Erlbaum, Hillsdale, NJ.

)$%

[104] Ginsberg, J., 2007, Advanced Engineering Dynamics, Cambridge
University Press, New York.
[105] P., B. F., Johnston, E. R., and Dewolf, J. T., 2002, "Mechanics of
Materials," McGraw Hill, New York.
[106] Johnson, R. A., and Wichern, D. W., 2007, Applied Multivariate
Statistical Analysis, Pearson, Upper Saddle River, NJ.
[107] Alpert, J., and Hajaj, N., 2008, "We knew the web was big..." Official
Google Blog.
[108] Harman, D., "Overview of the first text retrieval conference (TREC-1)."
[109] Harman, D., 1992, "The DARPA TIPSTER project," SIGIR Forum, 26(2),
pp. 26-28.
[110] Singhal, A., 2001, "Modern information retrieval: A brief overview," IEEE
Data Engineering Bulletin, 24(4), pp. 35-43.
[111] Salton, G., and McGill, M., 1983, Introduction to Modern Information
Retrieval, McGraw Hill, New York.
[112] Salton, G., 1968, Automatic Information Organization and Retrieal,
McGraw Hill, New York.
[113] Switzer, P., 1965, "Vector images in document retrieval," Statistical
association methods for mechanized documentation, pp. 163–171.
[114] Sammon Jr, J. W., 1968, "Some mathematics of information storage and
retrieval," DTIC Document.
[115] Tversky, A., 1977, "Features of similarity," Psychological Review, 84(4),
pp. 327-352.
[116] Lalmas, M., 1999, "A model for representing and retrieving
heterogeneous structured documents based on evidential reasoning," The
Computer Journal, 42(7), p. 547.
[117] Theophylactou, M., and Lalmas, M., "A Dempster-Shafer model for
document retrieval using noun phrases," Citeseer.
[118] Arampatzis, A., van der Weide, T. P., Koster, C., and Van Bommel, P.,
"An evaluation of linguistically-motivated indexing schemes," Citeseer.
[119] Jiang, F., and Littman, M. L., "Approximate dimension equalization in
vector-based information retrieval," Citeseer, pp. 423-430.
[120] Salton, G., 1993, "Mathematics and information retrieval," Journal of
Documentation, 35(1), pp. 1-29.
[121] Salton, G., 1989, "Automatic text processing: the transformation,"
Analysis and Retrieval of Information by Computer.
[122] Salton, G., Buckley, C., and Yu, C., 1983, "An evaluation of term
dependence models in information retrieval," Research and Development in
Information Retrieval, pp. 151-173.

)$&

[123] Salton, G., 1975, A theory of indexing, Society for Industrial
Mathematics.
[124] Salton, G., Wong, A., and Yang, C. S., 1975, "A vector space model for
automatic indexing," Communications of the ACM, 18(11), pp. 613-620.
[125] Salton, G., 1971, "The SMART retrieval system—experiments in
automatic document processing."
[126] Berry, M. W., Drmac, Z., and Jessup, E. R., 1999, "Matrices, Vector
Spaces, and Information Retrieval," SIAM Review, 41(2), pp. 335-362.
[127] Salton, G., 1971, "The SMART retrieval system—experiments in
automatic document processing."
[128] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and
Harshman, R., 1990, "Indexing by latent semantic analysis," Journal of the
American society for information science, 41(6), pp. 391-407.
[129] Papadimitriou, C. H., Raghavan, P., Tamaki, H., and Vempala, S., 2000,
"Latent Semantic Indexing: A Probabilistic Analysis," Journal of Computer and
System Sciences, 61(2), pp. 217-235.
[130] Björck, Å., 1996, Numerical methods for least squares problems, Society
for Industrial Mathematics.
[131] Chakroborty, S., and Saha, G., 2010, "Feature selection using singular
value decomposition and QR factorization with column pivoting for text-
independent speaker identification," Speech Communication, 52(9), pp. 693-
709.
[132] Liu, K., 1997, "Application of SVD in optimization of structural modal
test," Computers & Structures, 63(1), pp. 51-59.
[133] Navarro-EsbrÌ, J., Verd˙, G., Ginestar, D., and MuÒoz-Cobo, J. L., 1998,
"Reactor noise analysis based on the singular value decomposition (SVD),"
Annals of Nuclear Energy, 25(12), pp. 907-921.
[134] Rawat, S., Pujari, A. K., and Gulati, V. P., 2006, "On the Use of Singular
Value Decomposition for a Fast Intrusion Detection System," Electronic Notes
in Theoretical Computer Science, 142, pp. 215-228.
[135] Sonka, M., Hlavac, V., and Boyle, R., 1999, "Image processing, analysis,
and machine vision second edition," International Thomson.
[136] Cichocki, A., and Amari, S., 2002, Blind Signal and Image Processing,
Wiley Online Library.
[137] Andrews, H., and Patterson, C., 1976, "Singular value decompositions
and digital image processing," Acoustics, Speech and Signal Processing, IEEE
Transactions on, 24(1), pp. 26-53.
[138] Dumais, S., 1994, "Latent semantic indexing (LSI) and TREC-2," NIST
SPECIAL PUBLICATION SP, pp. 105-105.

)$'

[139] Berry, M. W., Gillis, N., and Glineur, F., "Document classification using
nonnegative matrix factorization and underapproximation," Institute of
Electrical and Electronics Engineers Inc., pp. 2782-2785.
[140] Berry, M. W., Dumais, S. T., and Letsche, T. A., "Computational methods
for intelligent information access," IEEE, pp. 390-430.
[141] Berry, M. W., Dumais, S. T., and O'Brien, G. W., 1995, "Using linear
algebra for intelligent information retrieval," SIAM Review, 37(4), pp. 573-595.
[142] Letsche, T. A., and Berry, M. W., 1997, "Large-scale information retrieval
with latent semantic indexing," Information sciences, 100(1-4), pp. 105-137.
[143] Pauca, V. P., Shahnaz, F., Berry, M. W., and Plemmons, R. J., "Text
mining using non-negative matrix factorizations," Society for Industrial and
Applied Mathematics Publications, pp. 452-456.
[144] Story, R. E., 1996, "An explanation of the effectiveness of latent semantic
indexing by means of a Bayesian regression model," Information Processing &
Management, 32(3), pp. 329-344.
[145] Husbands, P., Simon, H., and Ding, C., 2005, "Term norm distribution
and its effects on Latent Semantic Indexing," Information Processing &
Management, 41(4), pp. 777-787.
[146] Dumais, S. T., 1991, "Improving the retrieval of information from
external sources," Behavior Research Methods, 23(2), pp. 229-236.
[147] MacKay, D. J. C., 2003, Information theory, inference, and learning
algorithms, Cambridge Univ Pr.
[148] Moler, C. B., 2004, Numerical computing with MATLAB, Society for
Industrial Mathematics.
[149] Stewart, G., 1993, "On the early history of the singular value
decomposition," SIAM review, pp. 551-566.
[150] Golub, G., and Kahan, W., 1965, "Calculating the singular values and
pseudo-inverse of a matrix," Journal of the Society for Industrial and Applied
Mathematics: Series B, Numerical Analysis, pp. 205-224.
[151] Johnson, R. M., 1963, "On a theorem stated by Eckart and Young,"
Psychometrika, 28(3), pp. 259-263.
[152] Eckart, C., and Young, G., 1936, "The approximation of one matrix by
another of lower rank," Psychometrika, 1(3), pp. 211-218.
[153] "Amazon.com," http://www.amazon.com.
[154] Team, R. D. C., 2011, "R: A Language and Environment for Statistical
Computing," R Foundation for Statistical Computing, Vienna, Austria.
[155] Feinerer, I., Hornik, K., and Meyer, D., 2008, "Text Mining Infrastructure
in R " Journal of Statistical Software, 25(5).
[156] Choudhary, A. K., and Bryant, C. A., 2010, "Automated Concept
Generation Using Branched Functional Models," International Design

)$(

Engineering and Computers Conferences and Information in Engineering
ConferenceMontreal Quebec.
[157] Frey, B. J., and Dueck, D., 2007, "Clustering by Passing Messages
Between Data Points," Science, 315(5814), pp. 972-976.

)%*

APPENDICES

)%)

APPENDIX A SQL QUERIES
The following appendix includes the SQL queries necessary to extract

the data used in this dissertation from the Design Repository. These queries

reflect the schema at the time this document was written, but could be easily be

made obsolete by changes to the repository’s structure. Access to the database

may be requested by contacting a current repository administrator at

http://repository.designengineeringlab.org.

//--pcm_data.sql—
-- a SQL query to retrieve data needed to build a product
component Matrix
SELECT
 public.artifact.system,
 public.artifact.basis_name
FROM
 public.artifact;

//--function_hash.sql
-- a SQL query to retrieve data needed to build a hash of
function ids and function names
SELECT
 public.subfunction_type.id,
 public.subfunction_type.subfunction,
 public.subfunction_type.tier,
 public.subfunction_type.child_of_subfunction
FROM
 public.subfunction_type
ORDER BY
 public.subfunction_type.id ASC ;

//--flow_hash.sql
-- a SQL query to retrieve data needed to build a hash of flow
ids and function names
SELECT
 public.flow_type.id,
 public.flow_type.flow,
 public.flow_type.tier,
 public.flow_type.child_of_flow
FROM
 public.flow_type
ORDER BY
 public.flow_type.id ASC ;

)%!

//--component_hash.sql
-- a SQL query to retrieve data needed to build a hash of
component ids and function names
SELECT
 public.comp_basis_type.id,
 public.comp_basis_type.component,
 public.comp_basis_type.tier,
 public.comp_basis_type.child_of_component
FROM
 public.comp_basis_type
ORDER BY
 public.comp_basis_type.id ASC ;

//--fcm_data.sql
-- a SQL query to retrieve data needed to build a Function
Component Matrix

SELECT
 public.artifact.basis_name,
 public.comp_basis_type.component,
 public.function.subfunction_type,
 public.subfunction_type.subfunction,
 public.flow.input_flow,
 in_flow_type.flow,
 public.flow.output_flow,
 out_flow_type.flow,
 SUM(public.artifact.quantity)
FROM
 public.function
INNER JOIN public.artifact
ON
 (
 public.function.describes_artifact = public.artifact.id
)
INNER JOIN public.flow
ON
 (
 public.function.id = public.flow.describes_function
)
INNER JOIN public.comp_basis_type
ON
 (
 public.artifact.basis_name = public.comp_basis_type.id
)
INNER JOIN public.subfunction_type
ON
 (
 public.function.subfunction_type =
public.subfunction_type.id
)

)%"

INNER JOIN public.flow_type in_flow_type
ON
 (
 public.flow.input_flow = in_flow_type.id
)
INNER JOIN public.flow_type out_flow_type
ON
 (
 public.flow.output_flow = out_flow_type.id
)
WHERE
 public.function.supporting = false
GROUP BY
 public.artifact.basis_name,
 public.comp_basis_type.component,
 public.function.subfunction_type,
 public.subfunction_type.subfunction,
 public.flow.input_flow,
 in_flow_type.flow,
 public.flow.output_flow,
 out_flow_type.flow ;

//--dsm.sql
-- a SQL query to retrieve data needed to build a Design
Structure Matrix
SELECT DISTINCT
 public.artifact.basis_name,
 in_artifact.basis_name AS inart,
 out_artifact.basis_name AS outart
FROM
 public.function
INNER JOIN public.artifact
ON
 (
 public.function.describes_artifact = public.artifact.id
)
INNER JOIN public.flow
ON
 (
 public.function.id = public.flow.describes_function
)
INNER JOIN public.artifact in_artifact
ON
 (
 public.flow.input_artifact = in_artifact.id
)
INNER JOIN public.artifact out_artifact
ON
 (
 public.flow.output_artifact = out_artifact.id

)%#

) ;

)%$

APPENDIX B RUBY SCRIPT
The following appendix includes ruby scripts that were used to run

queries on and return their results. This was an ugly workaround of difficulties

in establishing a connection between the design repository and MATLAB". I

provide it here strictly to enable by work to be duplicated exactly, but no real

implementation of these tools should rely on this approach. This script

requires the rubygems add on and the sequel gem for database connection. I’ve

sanitized connection information. Credentials can be requested through the

contacts at http://repository.designengineeringlab.org .

#!/usr/local/bin/ruby
query.rb - simple ruby program to read a prepared SQL query,
execute it, and write the results to a file

require "rubygems"
require "sequel" # sequel gem handles database connection

some details about the repository I include them here, but
they're not used until later when DBI is called
database="repository"
host="function2.mime.oregonstate.edu"
username=”*******”
password="*******"

query is read from a text file helpfully named "query" for
now
query_file="query.txt"

#first check to see if the file exists and and is readable if
either fails the program quits
if File.exists?(query_file)
 if File.readable?(query_file)

 else
 puts("Query file is unreadable")
 Process.exit
 end

else
 puts("No query file available in working directory")

)%%

 Process.exit
end

#if above checks pass then open the query
input=File.open(query_file)
query=input.read

#connect to the repository
DB = Sequel.connect(:adapter=>'postgres', :host=>host,
:database=>database, :user=>username, :password=>password)

test that the connection works
begin
 DB.test_connection
rescue Exception => error_msg
 puts error_msg
 Process.exit
end

run query

begin

ds=DB.fetch(query)

rescue Exception => error_msg
 puts 'query failed'
 puts error_msg

end

#write out a text file with the results of the query
the file is returned as "result.txt"
out_file_name="result.txt"

first check to see if that file exists and if it does erase
it just to be safe

if File.exists?(out_file_name)
 File.delete(out_file_name)
 puts("A previous output file was found. It will be
overwritten")
end

#now create or recreate the file
out_file=File.new(out_file_name,"w+")

)%&

now writes the data set as a csv string
out_file.puts(ds.to_csv)

#writing's done close file
out_file.close

)%'

APPENDIX C MATLAB" SOURCE
This appendix contains the mat lab files used in this dissertation

MATLAB". Most of this work was done in MATLAB" for two reasons. First,

it is an easy and accessible environment to prototype in, and includes built in

libraries and functions that made some of the work much easier. The second

reason, is that I hope by using what has become the de facto language taught to

mechanical engineering students, it will be easier for those who come after me

to pick up where I left off. This work was done in the version 64-bit Mac

version of R2010B. The appendix is organized so that each new page is a

function or script. Scripts are organized to roughly correspond to the outline

of the dissertation.

)%(

Chapter 2 Scripts and Functions

%% cluster_memic.m
% A script to cluster automated concept generator output based
on component choice
% by Kerry Poppa

clear all; close all;
%%
%read files
files = dir('*.csv');
A=zeros(76,76,25);
for i=1:length(files)
 A(:,:,i)=csvread(files(i).name);
 i
end
clear i;
%% aggregate all concepts to indentify the part of the design
space actually
%used
B=sum(A,3);
[row,col]=find(B);
indx=[row col];
clear B;

%% Reformulate A to C such that each row of c represents a
concepts as a
%vector of the desing space found above
C=zeros(size(A,3),length(indx));
for i=1:size(A,3)
 for j=1:length(indx)
 C(i,j)=A(indx(j,1),indx(j,2),i);
 end
end
%% Reduce dimensions with PCA on C
[COEFF,SCORE,latent] = princomp(C);
PctExplained = latent' ./ sum(latent);
pctExplained= cumsum(PctExplained);

%% Scree Plot
plot(latent,'DisplayName','Scree Plot');
hold on

%% eliminate unnecessary PC's

%pick one of the next two comment the other out!
%cutoff=find(latent>=1,1,'last'); %Takes only components that
satisfy Kaiser Criterion ie Eigval>1
cutoff = input('how many principal components?'); %lets user
pick cutoff based on scree

)&*

coeff=COEFF(:,1:cutoff);
score=SCORE(:,1:cutoff);

%% cluster
k=15; %#of clusters
[IDX,clust,sumd] = kmeans(score,k);
% silhouette plot of clusters
silhouette(score,IDX);

)&)

Chapter 3 Scripts and Functions

%% mcadams_method.m
% by Kerry Poppa
% calculates similarity between systems using method of McAdams
et all

% begin with a product function matrix assume all functions are
equally
% important...ergo no weighting effect from customer needs

[pf_mat,~,~,sys_hash]=pf_assembler;

mean_functions_per_product=sum(logical(pf_mat),1);

mean_functions=mean(mean_functions_per_product);

weights=mean_functions_per_product/mean_functions;

pf_weighted=pf_mat;
pf_weighted(logical(pf_weighted))=1;
pf_binary=pf_weighted;
for i=1:length(weights)
 pf_weighted(:,i)=pf_weighted(:,i)*weights(i);
end

% now norm the columns
pf_weighted_normed=pf_weighted;
for i=1:size(pf_weighted,2)

pf_weighted_normed(:,i)=pf_weighted(:,i)./norm(pf_weighted(:,i)
);
end

%now calculate inter product similarity
dim=size(pf_weighted_normed,2);

similarity=zeros(dim);
for i=1:dim
 ref_prod=pf_binary(:,i);
 ref_prod=ref_prod./norm(ref_prod);
 ref_prod=ref_prod';
 for j=1:dim
 similarity(i,j)=ref_prod*pf_weighted_normed(:,j);
 end
end

)&!

%% need to get a system hash to get meaningful results

query_file='query.txt';

copyfile('query_systems.txt',query_file);

!/usr/local/bin/ruby query.rb

% result should have been written to result.txt
if exist('result.txt','file')~=2
 error('no query result')
end

% now read the file should have one header line and be an int,
a string, an
% int and an int
fid=fopen('result.txt');
system_hash=textscan(fid,'%d
%s','HeaderLines',1,'Delimiter',',');
fclose(fid);

%% now set up output matrix of rank order lists of similarity

dim=size(similarity,1);
similar_products=zeros(dim);

for i=1:length(similarity)
 similarity_vector=[similarity(i,:);sys_hash'];
 similarity_vector=sortrows(similarity_vector');
 similarity_vector=flipdim(similarity_vector,1)';

 similar_products(i,:)=similarity_vector(2,:);
end

%% and repeat to replace with labels

similar_labeled=cell(dim,dim);

for i=1:dim
 for j=1:dim
 indx=find(system_hash{1,1}==similar_products(i,j));
 similar_labeled{i,j}=system_hash{1,2}{indx};
 end
end

)&"

function [pf_mat, function_hash, flow_hash, system_hash] =
pf_assembler()

%% assembles a product function matrix

%% get names of unique functions and hashes of function and
flow names and ids

[unique_funcs,function_hash,flow_hash]=function_flow_set;

pf_data=pf_data_query();

%% find the children of each function and flow...this will make
things easier later

% function
function_parent=[function_hash{1,1},function_hash{1,4}];
function_descendents={};

for i=1:length(function_parent)

children=function_parent(function_parent(:,2)==function_parent(
i,1),1);
 grandchildren=[];
 for j=1:length(children)

grandchildren=[grandchildren;function_parent(function_parent(:,
2)==children(j))];
 end
 function_descendents{i}=[children;grandchildren];
end

%flow
flow_parent=[flow_hash{1,1},flow_hash{1,4}];
flow_descendents={};

for i=1:length(flow_parent)
 children=flow_parent(flow_parent(:,2)==flow_parent(i,1),1);
 grandchildren=[];
 for j=1:length(children)

grandchildren=[grandchildren;flow_parent(flow_parent(:,2)==chil
dren(j))];
 end
 flow_descendents{i}=[children;grandchildren];
end

%% create a system hash

)&#

system_hash=unique(sort(pf_data(:,1)));

%% populate data

% this is a pretty naive way to solve this problem...will try
to improve
% later
pf_mat=zeros(length(unique_funcs),length(system_hash));
for i=1:length(unique_funcs)

function_set=[unique_funcs(i,1)];%;function_descendents{unique_
funcs(i,1)}];

in_flow_set=[unique_funcs(i,2)];%;flow_descendents{unique_funcs
(i,2)}];

out_flow_set=[unique_funcs(i,3)];%;flow_descendents{unique_func
s(i,3)}];

 rows_to_keep=pf_data((ismember(pf_data(:,2),function_set) &
...
 ismember(pf_data(:,3),in_flow_set) &
ismember(pf_data(:,4),out_flow_set)),:);
 for j=1:length(system_hash)

pf_mat(i,j)=sum(rows_to_keep(rows_to_keep(:,1)==system_hash(j),
5));
 end
end

)&$

function [file_exists]=existence_check(files_to_check)

% function accepts cell array of file_names and returns a
logical aray by
% checking to see if they exist

file_exists=zeros(1,max(size(files_to_check)));

for i=1:max(size(files_to_check))
 if exist(files_to_check{1,i},'file')==2
 file_exists(i)=1;
 end
end

)&%

function
[unique_funcs,function_hash,flow_hash]=function_flow_set()

%% function flow query this file gets a list of distinct
functions and flows

%% first check to verify that the expected query files are
availabe

distinct_functions='query_distinct_functions.txt';
function_list='query_function_list.txt';
flow_list='query_flow_list.txt';

files_to_check={distinct_functions,function_list,flow_list};
indxs=find(~existence_check(files_to_check));

if indxs
 missing_file_string='';
 for i=1:length(indxs)
 missing_file_string=[missing_file_string,'
',files_to_check{indxs(i)}];
 end

 error(['Missing the following files','
',missing_file_string]);

end
%% query for function hash

query_file='query.txt';

copyfile(function_list,query_file);

!/usr/local/bin/ruby query.rb

% result should have been written to result.txt
if exist('result.txt','file')~=2
 error('no query result')
end

% now read the file should have one header line and be an int,
a string, an
% int and an int
fid=fopen('result.txt');
function_hash=textscan(fid,'%d %s %d
%d','HeaderLines',1,'Delimiter',',');
fclose(fid);

%% query for flow hash

)&&

query_file='query.txt';

copyfile(flow_list,query_file);

!/usr/local/bin/ruby query.rb

% result should have been written to result.txt
if exist('result.txt','file')~=2
 error('no query result')
end

% now read the file should have one header line and be an int,
a string, an
% int and an int
fid=fopen('result.txt');
flow_hash=textscan(fid,'%d %s %d
%d','HeaderLines',1,'Delimiter',',');
fclose(fid);

%% now get distinct function flow set
query_file='query.txt';

copyfile(distinct_functions,query_file);

!/usr/local/bin/ruby query.rb

% result should have been written to result.txt
if exist('result.txt','file')~=2
 error('no query result')
end

% now read the file should have one header line and be 3
columns of
% integers
fid=fopen('result.txt');
funcs=cell2mat(textscan(fid,'%d %d
%d','HeaderLines',1,'Delimiter',',')); %cell2mat is because
textscan reads as cell array
fclose(fid);

%% now handle aggregating up functions and flows

%separate cases 1st where inflow=outflow

two_tuple=funcs(funcs(:,2)==funcs(:,3),1:2);

%2nd where flows don't match

)&'

three_tuple=funcs(funcs(:,2)~=funcs(:,3),:);

%need parent child relationships
funct_parent=[function_hash{1,1},function_hash{1,4}];
flow_parent=[flow_hash{1,1},flow_hash{1,4}];
%% aggregate the flow matching case

%assign data to temp variable
agg=two_tuple;

while find(agg)
 funct_up=agg;
 flow_up=agg;

 for i=1:length(agg)

funct_up(i,1)=funct_parent((funct_parent(:,1)==funct_up(i,1)),2
);

flow_up(i,2)=flow_parent((flow_parent(:,1)==flow_up(i,2)),2);
 end
 both_up=[funct_up(:,1),flow_up(:,2)];

 agg=[funct_up; flow_up; both_up];

 %get rid of zeros...i.e. flow with no agg up
 agg(agg(:,1)==0,:)=[];
 agg(agg(:,2)==0,:)=[];
 agg=unique(agg,'rows');

 two_tuple=[two_tuple; agg];
end

two_tuple=unique(two_tuple,'rows'); %get rid of any duplicates
that may have crept in

%% now the case where flows don't match
agg=three_tuple;

while find(agg)
 funct_up=agg;
 in_up=agg;
 out_up=agg;

 for i=1:length(agg)

funct_up(i,1)=funct_parent((funct_parent(:,1)==funct_up(i,1)),2
);
 in_up(i,2)=flow_parent((flow_parent(:,1)==in_up(i,2)),2);

)&(

 out_up(i,3)=flow_parent((flow_parent(:,1)==out_up(i,3)),2);
 end

 func_in_up=[funct_up(:,1), in_up(:,2), agg(:,3)];
 func_out_up=[funct_up(:,1), agg(:,2), out_up(:,3)];
 flows_up=[agg(:,1), in_up(:,2), out_up(:,3)];
 all_up=[funct_up(:,1), in_up(:,2), out_up(:,3)];

 agg=[funct_up; in_up; out_up; func_in_up; func_out_up;
flows_up; all_up];

 %get rid of zeros...i.e. aggs that spilled over the top of
the
 %heirarchy and duplicates
 agg(agg(:,1)==0,:)=[];
 agg(agg(:,2)==0,:)=[];
 agg(agg(:,3)==0,:)=[];
 agg=unique(agg,'rows');

 three_tuple=[three_tuple; agg];
end

three_tuple=unique(three_tuple,'rows'); % gets rid of
duplicates that may have crept in

%% now stitch back together

unique_funcs=unique([[two_tuple,two_tuple(:,2)];three_tuple],'r
ows');

)'*

function [pf_data]=pf_data_query(excluded_systems)

%validate inputs
if nargin<1
 excluded_systems=false;
else

 if ~isrow(excluded_systems) %ensure row vector
 error('expected a row vector of excluded systems')
 end

end

% return Product function list based on user parameters

% define the output file
output_file='query.txt';
%% first establish if the query is restricted to a number of
systems

if excluded_systems
 restricted=true;
else
 restricted=false;
end

%% handle the restricted vs unrestricted cases

switch restricted
 case true
 query_file_name='query_with_restriction.txt'; %specify of
restricted query file

 % check to make sure this file still exists in the
directory (exist
 % should report 2 if it does)
 if exist(query_file_name,'file')~=2
 error('query file not found');
 end

 %list the ids of systems (products) to include
 systems=excluded_systems;

 % convert that list to a string (matlab converts the array
with a
 % double space between numbers...so the regexp is to make a
comma separated list)

)')

system_string=['[',regexprep(num2str(systems),'\s\s',','),']'];

 %now open the file...and rewrite the query to retrieve only
the listed systems
 fid=fopen(query_file_name);
 query_string=fread(fid,'*char')';
 fclose(fid);

 %add in system string
 query=regexprep(query_string,'{}',system_string);

 %write out to query file
 fid=fopen(output_file,'w+');
 fprintf(fid,query);
 fclose(fid);

 otherwise
 query_file_name='query_unrestricted.txt';
 %check to make sure this file still exists in the directory
(exist
 % should report 2 if it does)
 if exist(query_file_name,'file')~=2
 error('query file not found');
 end
 copyfile(query_file_name,output_file);

end

%% now execute the query

%check to make sure query file exist
if exist('query.rb','file')~=2
 error('query script missing');
end
%execute the query
!/usr/local/bin/ruby query.rb

%% result should have been written to result to txt
if exist('result.txt','file')~=2
 error('no query result')
end

pf_data=importdata('result.txt',',');

pf_data=pf_data.data;

)'!

Chapter 4 Scripts and Functions

function [similar_labeled, similar_products,
similarity]=Vector_Space_method(weighting)

%% calculates similarity between systems using my method
adapted from IR

% begin with a product function matrix assume all functions are
equally
% important...ergo no weighting effect from customer needs

[pf_mat,~,~,sys_hash]=pf_assembler;

%% pick weighting scheme and caculate weighted matrix

switch weighting
 case {'none'}
 disp('Local and Global Weights were not applied')

 %Local weight
 % non-local weight

 %Global weight
 % just one for this case

 pf_weighted=(pf_mat);

 case {'log'}
 disp('Local and global weights calculated as log of
frequency and log entropy')

 %Local weight
 local_weight=log2(1+pf_mat);
 %Global weight
 p=pf_mat./repmat(sum(pf_mat,2),1,size(pf_mat,2));

 p_log=p.*log2(p);
 p_log(isnan(p_log))=0; % have to do this because log
blows up for terms with 0 frequency

 global_weight=1+(sum(p_log,2)./log2(size(pf_mat,2)));
 global_weight=repmat(global_weight,1,size(pf_mat,2));

)'"

 pf_weighted=pf_mat.*local_weight.*global_weight;

 otherwise
 error('weighting scheme not recoginized try "none"
or "log"')
end

%% now perfrom queries

similarity=zeros(size(pf_mat,2));
%will pre_calculate 2 norm of columns of data matrix

col_norms=sqrt(sum((pf_weighted.^2),1));

for i=1:size(pf_mat,2)

 query_vector=pf_mat(:,i);
 query_vector_norm=sqrt(query_vector'*query_vector);

 for j=1:size(pf_mat,2)

similarity(i,j)=pf_weighted(:,j)'*query_vector/(col_norms(j)*qu
ery_vector_norm);
 end

end

%% need to get a system hash to get meaningful results

query_file='query.txt';

copyfile('query_systems.txt',query_file);

!/usr/local/bin/ruby query.rb

% result should have been written to result.txt
if exist('result.txt','file')~=2
 error('no query result')
end

% now read the file should have one header line and be an int,
a string, an
% int and an int
fid=fopen('result.txt');
system_hash=textscan(fid,'%d
%s','HeaderLines',1,'Delimiter',',');
fclose(fid);

)'#

%% now set up output matrix of rank order lists of similarity

dim=size(similarity,1);
similar_products=zeros(dim);

for i=1:length(similarity)
 similarity_vector=[similarity(i,:);sys_hash'];
 similarity_vector=sortrows(similarity_vector');
 similarity_vector=flipdim(similarity_vector,1)';

 similar_products(i,:)=similarity_vector(2,:);
end

%% and repeat to replace with labels

similar_labeled=cell(dim,dim);

for i=1:dim
 for j=1:dim
 indx=find(system_hash{1,1}==similar_products(i,j));
 similar_labeled{i,j}=system_hash{1,2}{indx};
 end
end

)'$

Chapter 5 Scripts and Functions

%%FM_processor.m
%modified concept generator algorithm
%by Kerry Poppa

%% start out with a fixed file for now
fm_file='spices2.txt';

%% call FM_reader to process function adjaceny matrix
[names, FM]=FM_reader(fm_file);

%% need to reformat individual functions to make it easier to
sort fcm

names=lower(names); %ensure everything is lower case
names=regexprep(names,'\s{2,}',' '); % and single spaced

%% generate an FCM and a set of text function labels

[fcm_mat,labels,components]=new_FCM();

%% find rows of FCM that correspond to parts of functional
model

matches=[];
for i=1:length(names)
 row=find(strcmpi(names(i),labels));
 if isempty(row)
 row=0;
 end
 matches=[matches;row];
end

fcm_keep=[];

for i=1:length(matches)
 if matches(i)~=0
 fcm_keep(i,:)=fcm_mat(matches(i),:);
 elseif matches(i)==0;
 fcm_keep(i,1)=47;
 end

end

)'%

%% now find columns....these will be components

comp_ids={};

for i=1:size(fcm_keep,1)

 comp_ids{i}=find(fcm_keep(i,:));
end

%% excluded components
exclude=[1:39,175:179]; %set the components to exclude...could
be done programmatically later

for i=1:length(comp_ids)
 comp_ids{i}(ismember(comp_ids{i},exclude))=[];
end

%% if any function has no solution include unknown
for i=1:length(comp_ids)
 if isempty(comp_ids{i})
 comp_ids{i}=1;
 end
end

%% get an intial concept

[first_concept, first_cv]=solveit(comp_ids);

%% retrieve repository product component matrix for creating
reduced approximations
pcm=PCM();
[U,S,~]=svd(pcm);

error=fliplr(sum(S));
error=(sqrt(cumsum(error.^2)))./norm(pcm);
error=100*fliplr(error);

indx=find(error<1,1,'first'); %allow 1% error % find first
instance of this

Uk=U(:,1:indx);

%% create a container for finished concepts

finished_vectors=first_cv;
finished_vectors_k=Uk'*first_cv;

)'&

finished_concepts=first_concept;

%% create additional concepts
repeat=1; %will keep going until 5 concepts in a row are non
unique
while repeat<25;
[next_concept,next_cv]=solveit(comp_ids);

%now choose a concept that maximizes distance to first

for i=1:length(next_concept)

%for each row of the fcm create a new concept with each
alternate component
%keep the one that is furthes away
original_comp=next_concept(i);
concept_mod=next_cv;
concept_mod(original_comp)=concept_mod(original_comp)-1;
possible_concepts=repmat(concept_mod,1,length(comp_ids{i}));

 for k=1:size(possible_concepts,2)

possible_concepts(comp_ids{i}(k),k)=possible_concepts(comp_ids{
i}(k),k)+1;

 end
 possible_concepts_k=[];
 for j=1:size(possible_concepts,2)
 possible_concepts_k=[possible_concepts_k,
Uk'*possible_concepts(:,j)];
 end

distances=squareform(pdist([possible_concepts_k,finished_vector
s_k]','cosine'));
 cols=size(finished_vectors_k,2);
 rows=size(possible_concepts_k,2);
 distances=distances(1:rows,size(distances,2)-cols:end);
 dist_metric=sqrt(sum(distances.^2,2));
 [~,keep_index]=max(dist_metric);
 concept_to_keep=possible_concepts(:,keep_index);
next_cv=concept_to_keep;
end

check=1-squareform(pdist([finished_vectors_k,
Uk'*next_cv]','cosine'));
check=abs(check)>0.5; %cutoff for similarity
check=sum(check);

if max(check)>1;

)''

next_cv=[];
repeat=repeat+1;
else
finished_vectors=[finished_vectors, next_cv];
finished_vectors_k=[finished_vectors_k, Uk'*next_cv];
end
end

)'(

function [func_names, connections]= FM_reader(file_name)
%% reads a functional model adjacency matrix from FunctionCAD

file_struct=importdata(file_name);

%if importdata succeds it will put the function adjacency
matrix into a
%struct of a char array of names and a matrix of conncetions

func_names=file_struct.textdata(:,1);
% there will be one emptycell
func_names=func_names(2:end);

%the actual adjacency matrix
connections=file_struct.data;

end

)(*

function [fcm_mat,row_labels,col_labels] = new_FCM()

%% this script prepares an FCM from queries of the repository

%% locate query files

%file to look in for FCM data query
%format should be component ID, component name, function,
function name
%input flow, flow name, output flow, flow name count
fcm_query='fcm_data.sql';

%files to look in for function hash, flow hash, and component
hash
%format should be id, name, tier, child of

function_hash_query='function_hash.sql';

flow_hash_query='flow_hash.sql';

component_hash_query='component_hash.sql';

%create cell array of names
file_names={fcm_query; function_hash_query; flow_hash_query;
component_hash_query};

%check to verify that these files exist
existence_check=cellfun(@exist,file_names);

%throw an error if any of the files don't exist - would be nice
to be
%specific about which one, but for now let's just throw the
error (we know
%an error exists returns comethign other than 2).

assert(isequal(existence_check,2*ones(size(existence_check))),.
..
 'one of the query files was missing');

%% execute queries

%create an function that is a composite of our query and reader
functions

hash_query = @(query_file) hash_reader(db_query(query_file));

)()

%run the hash queries
function_hash=hash_query(function_hash_query);
flow_hash=hash_query(flow_hash_query);
component_hash=hash_query(component_hash_query);

%run the data query

data_file=db_query(fcm_query);

%open the file
fid=fopen(data_file);

%read the file
fcm_data=textscan(fid,'%f %s %f %s %f %s %f %s
%f','HeaderLines',1, 'Delimiter', ',');

%close the file
fclose(fid);

%turn data matrix into an array for easier manipulation cols
are: function,
%inflow, outflow, comp, count

datamat=cell2mat(fcm_data(:,[3; 5; 7; 1; 9]));

%% aggregation
% the following is probably the most naive way I can imagine
doing this,
% but it works...

%first find the unique functions in the data set

unique_functions=unique(datamat(:,1:3),'rows');

%two cases flows match or they don't

two_tuple=unique_functions(unique_functions(:,2)==unique_functi
ons(:,3),:);
three_tuple=unique_functions(unique_functions(:,2)~=unique_func
tions(:,3),:);

%% two tuple case is easiest, do it first three options
function_up, flow_up both up

up_once=(two_tuple(:,1:2)); %matrix to hold aggretion up one
level
up_twice=zeros(size(up_once)); %matrix to hold aggregation up
two levels

)(!

%find each function and flows parents
function_parent=function_hash{4};
flow_parent=flow_hash{4};

%do the aggregation cases
for i=1:length(up_once)

 up_once(i,1)=function_parent(up_once(i,1));
 up_once(i,2)=flow_parent(up_once(i,2));

 if up_once(i,1)~=0
 up_twice(i,1)=function_parent(up_once(i,1));
 end

 if up_once(i,2)~=0
 up_twice(i,2)=flow_parent(up_once(i,2));
 end
end

%aggregate scenarios - will define some intermediate variables
to make it
%less confusing - this is a terrible way to do this, but I
needed the
%book keeping to make sure everything is included

func=two_tuple(:,1); flow=two_tuple(:,2); func_u=up_once(:,1);
flow_u=up_once(:,2);
func_uu=up_twice(:,1); flow_uu=up_twice(:,2);

agged_two_tuple=[func, flow;
 func, flow_u;
 func, flow_uu;
 func_u, flow;
 func_u, flow_u;
 func_u, flow_uu;
 func_uu, flow;
 func_uu, flow_u;
 func_uu, flow_uu];

%get rid of duplicates
agged_two_tuple=unique(agged_two_tuple,'rows');

%get rid of zeros

agged_two_tuple(agged_two_tuple(:,1)==0 |

)("

agged_two_tuple(:,2)==0, :)=[];

%% now do three tuple case

up_once=(three_tuple(:,1:3)); %matrix to hold aggretion up one
level
up_twice=zeros(size(up_once)); %matrix to hold aggregation up
two levels

%do the aggregation cases
for i=1:length(up_once)

 up_once(i,1)=function_parent(up_once(i,1));
 up_once(i,2)=flow_parent(up_once(i,2));
 up_once(i,3)=flow_parent(up_once(i,3));

 if up_once(i,1)~=0
 up_twice(i,1)=function_parent(up_once(i,1));
 end

 if up_once(i,2)~=0
 up_twice(i,2)=flow_parent(up_once(i,2));
 end

 if up_once(i,3)~=0
 up_twice(i,3)=flow_parent(up_once(i,3));
 end
end

%aggregate
func=three_tuple(:,1); inflow=three_tuple(:,2);
func_u=up_once(:,1); inflow_u=up_once(:,2);
func_uu=up_twice(:,1); inflow_uu=up_twice(:,2);
outflow=three_tuple(:,3); outflow_u=up_once(:,3);
outflow_uu=up_twice(:,3);

col1=[repmat(func,9,1);repmat(func_u,9,1);repmat(func_uu,9,1)];
col2=repmat([repmat(inflow,3,1);repmat(inflow_u,3,1);repmat(inf
low_uu,3,1)],3,1);
col3=repmat([outflow;outflow_u;outflow_uu],9,1);

agged_three_tuple=[col1,col2,col3];

%get rid of duplicates
agged_three_tuple=unique(agged_three_tuple,'rows');

%get rid of zeros
agged_three_tuple(agged_three_tuple(:,1)==0 |
agged_three_tuple(:,2)==0 | agged_three_tuple(:,3)==0, :)=[];

)(#

%% put everything back together

unique_functions=[agged_two_tuple,
agged_two_tuple(:,2);agged_three_tuple];

%may still be some duplicates
unique_functions=unique(unique_functions,'rows');

%get rid of some of the temp variables created along the way to
avoid
%confusion

clear col1 col2 col3 flow flow_u flow_uu func funch_u func_uu
inflow inflow_uu inflow_u
clear outflow outflow_u outflow_uu agged_three_tuple
agged_two_tuple two_tuple three_tuple
clear up_once up_twice
%% now have a list of known functions from the repository can
deal out values to an fcm

fcm_mat=zeros(length(unique_functions),length(component_hash{1}
));

for i=1:length(unique_functions)

funcs=[unique_functions(i,1);children_finder(unique_functions(i
,1),function_hash{4})];

inflows=[unique_functions(i,2);children_finder(unique_functions
(i,2),flow_hash{4})];

outflows=[unique_functions(i,3);children_finder(unique_function
s(i,3),flow_hash{4})];

rows_to_keep=datamat(ismember(datamat(:,1),funcs) &
ismember(datamat(:,2),inflows)...
 & ismember(datamat(:,3),outflows),4:5);

 for j=1:size(rows_to_keep,1)
 row=i; col=rows_to_keep(j,1);

 fcm_mat(row,col)=fcm_mat(row,col)+rows_to_keep(j,2);
 end
end

%% one more aggregation is needed b/c of component hierarchy

)($

for i=1:size(fcm_mat,2)
 comp_children=children_finder(i,component_hash{4});

 for j=1:size(comp_children,1)
 fcm_mat(:,i)=fcm_mat(:,i)+fcm_mat(:,comp_children(j));
 end
end

%% now we need to develop text lables for the functions

function_labels=cell(size(unique_functions,1));

%there's a problem in the flow labels, for whatever reason
human energy and
%material don't follow the same convention as other flows, so
we need to
%strip their qualifiers

flow_hash{2}=regexpi(flow_hash{2}, '^(\S+)','match'); %this
keeps only the first word in each string

% now run through the list and add the appropriate labels

top_level_indxs=find(flow_hash{4}==0);

for i=1:length(top_level_indxs)

descendents=children_finder(top_level_indxs(i),flow_hash{4});
 append=top_level_indxs(i);
 for j=1:length(descendents)
 indx=descendents(j);
 flow_hash{2}{indx}=[cell2mat(flow_hash{2}{indx}), ' ',
cell2mat(flow_hash{2}{append})];
 end
end

%% we have the right set of labels just need to compose row and
column labels
labels={};
for i=1:length(unique_functions)
 func=(function_hash{2}{unique_functions(i,1)});
 if unique_functions(i,2)==unique_functions(i,3)
 flow=(flow_hash{2}{unique_functions(i,2)});
 label=[func,' ',flow];
 else
 inflow=(flow_hash{2}{unique_functions(i,2)});
 outflow=(flow_hash{2}{unique_functions(i,3)});

)(%

 label=[func,' ',inflow,' to ',outflow];
 end

 if iscell(label)
 label=cell2mat(label);
 end
 labels{i}=label;

end

row_labels=labels';
col_labels=component_hash{2}';

)(&

function [hash]=hash_reader(data_file)
% parses the results of database querys to return hashes of
taxonomies in
% the repository

%% open the file
fid=fopen(data_file);

%% read the data (will be id, name, tier, child of)
hash=textscan(fid,'%f %s %f
%f','HeaderLines',1,'Delimiter',',');

%deal with Nan's in cols 3 and 4
hash{3}(isnan(hash{3}))=0;
hash{4}(isnan(hash{4}))=0;
%%close the file
fclose(fid);

)('

function [result_file]=db_query(query_file)
%this function calls a ruby script to query the database

%% first check to ensure the needed ruby script is missing
assert(exist('query.rb')==2,'query script is missing');

%% copy the specified query file to the file expected by the
ruby script
output_file='query.txt';
copyfile(query_file,output_file);

%% run the query
!/usr/local/bin/ruby query.rb

%% tell matlab where to read the result
result_file='result.txt';

)((

%% generate solutions
function [concept,concept_vector]=solveit(comp_ids)
solution=zeros(length(comp_ids),1); % pre-allocate an array to
hold the solution

% check to see if any function has a single solution

for i=1:length(comp_ids)
 if length(comp_ids{i})==1
 solution(i)=comp_ids{i}(1);
 end
end

% now go through and populate the solution

while prod(solution)==0 %while there's still a zero in the set

 % pick a function at random function to start with
 already_solved=1;

 while already_solved==1

 funct=random('unid',length(solution));
 if solution(funct)==0
 already_solved=0;
 end

 end
 %pick a solution from that function

solution(funct)=comp_ids{i}(random('unid',length(comp_ids{i})))
;

end

%% reformat into concept component matrix

soln=zeros(179,1);
for i=1:length(solution)

 soln(solution(i))=soln(solution(i))+1;
end
concept=solution;
concept_vector=soln;
end

!**

APPENDIX D SAMPLE PROBLEMS
The following appendix includes adjacency matrices of the functional

models used to generate concepts for the Peanut Sheller, Water Lifter, and

Spice Grinder in Chapter 2 and Chapter 5. These models have some

imperfections as discussed in Chapter 5, but they should enable the work in

this dissertation to be duplicated.

!*)

Peanut Sheller Functional Model

!"
#$%&'

($)!*'
"
+&,%!+)

!"
#$%&'

-."
+/'

,/,%01
,2#$%&'($)!*'
"
+&,%!+)

,2#$%&'($)!*'
"
+&,%!+)

(,#+%+&,'
($)!*'
"
+&,%!+)

3$/4,%&'($)!*'
"
+&,%!+)'&$'

($)!*'"
+&,%!+)

&%+/(5,%'
($)!*'
"
+&,%!+)

0.!*,'($)!*'
"
+&,%!+)

(&$%,'($)!*'
"
+&,%!+)

*!(&%!6.&,'
($)!*'
"
+&,%!+)

(&$%,'($)!*'
"
+&,%!+)

0.!*,'($)!*'
"
+&,%!+)

(&$%,'($)!*'
"
+&,%!+)

&%+/(5,%'
($)!*'
"
+&,%!+)

3$/4,%&'
-."

+/'
,/,%01'&$'
%$&+&!$/+)'
,/,%01

*!(&%!6.&,'
%$&+&!$/+)'
,/,%01

3$/4,%&'
%$&+&!$/+)'
,/,%01'&$'
&%+/()+&!$/+)'
,/,%01

3-+/0,'
%$&+&!$/+)'
,/,%01

3-+/0,'
%$&+&!$/+)'
,/,%01

3-+/0,'
%$&+&!$/+)'
,/,%01

3$/4,%&'
%$&+&!$/+)'
,/,%01'&$'
"
,3-+/!3+)'

,/,%01

!"
#$%&'($)!*'"

+&,%!+)
7

7
7

7
7

7
7

7
8

7
7

7
7

7
7

7
7

7
7

7
7

!"
#$%&'-."

+/',/,%01
7

7
7

7
7

7
7

7
7

7
7

7
7

7
8

7
7

7
7

7
7

,2#$%&'($)!*'"
+&,%!+)

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
,2#$%&'($)!*'"

+&,%!+)
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

(,#+%+&,'($)!*'
"
+&,%!+)

7
7

7
7

7
7

7
7

7
7

7
7

7
8

7
7

7
7

7
7

7

3$/4,%&'($)!*'"
+&,%!+)'

&$'($)!*'"
+&,%!+)

7
7

7
7

7
7

8
7

7
7

7
7

7
7

7
7

7
7

7
7

7
&%+/(5,%'($)!*'
"
+&,%!+)

7
7

7
7

8
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
0.!*,'($)!*'"

+&,%!+)
7

7
7

7
7

8
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

(&$%,'($)!*'"
+&,%!+)

7
7

7
7

7
7

7
7

7
8

7
7

7
7

7
7

7
7

7
7

7
!(&%!6.&,'($)!'
"
+&,%!+)

7
7

7
7

7
7

7
8

7
7

7
7

7
7

7
7

7
7

7
7

7
(&$%,'($)!*'"

+&,%!+)
7

7
7

8
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

0.!*,'($)!*'"
+&,%!+)

7
7

7
7

7
7

7
7

7
7

7
7

8
7

7
7

7
7

7
7

7
(&$%,'($)!*'"

+&,%!+)
7

7
8

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

&%+/(5,%'($)!*'
"
+&,%!+)

7
7

7
7

7
7

7
7

7
7

8
7

7
7

7
7

7
7

7
7

7
3$/4,%&'-."

+/'
,/,%01'&$'%$&+&!$/+)'
,/,%01

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
8

7
7

7
7

7
*!(&%!6.&,'%$&+&!$/+)'
,/,%01

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
8

8
8

7
3$/4,%&'%$&+&!$/+)'
,/,%01'&$'
&%+/()+&!$/+)',/,%01

7
7

7
7

7
7

8
7

7
7

7
7

7
7

7
7

7
7

7
7

7
3-+/0,'%$&+&!$/+)'
,/,%01

7
7

7
7

7
8

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
3-+/0,'%$&+&!$/+)'
,/,%01

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

8
7

7
7

7
3-+/0,'%$&+&!$/+)'
,/,%01

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

8
3$/4,%&'%$&+&!$/+)'
,/,%01'&$'"

,3-+/!3+)'
,/,%01

7
7

7
7

8
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7

!*!

Water Lifter Functional Model

!"
#$%&'

()(%*+

,$)-(%&'"
(,./)!,/0'

()(%*+'&$'''%$&/&!$)/0'
()(%*+

,./)*('
%$&/&!$)/0'
()(%*+

&%/)12(%'0!34!5'
"
/&(%!/0

/,&4/&('''
%$&/&!$)/0'
()(%*+

!"
#$%&'6789

:;
(<#$%&'6789

:;
5!1&%!=4&('0!34!5'
"
/&(%!/0

&%/)12(%'0!34!5'
"
/&(%!/0

#$1!&!$)'0!34!5'
"
/&(%!/0

14##0+'0!34!5'
"
/&(%!/0

(<#$%&'0!34!5'
"
/&(%!/0

(<#$%&'/,$41&!,'
()(%*+

(<#$%&'&.(%"
/0'

()(%*+

(<#$%&'
"
(,./)!,/0'

()(%*+

,$)-(%&'()(%*+'
&$'"

(,./)!,/0'
()(%*+

1&$%('0!34!5'
"
/&(%!/0

!"
#$%&'0!34!5'

"
/&(%!/0

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
!"

#$%&'0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

>
>

>
?

>
>

>
>

>
!"

#$%&'()(%*+
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
?

,$)-(%&'
"
(,./)!,/0'

()(%*+'&$'''
%$&/&!$)/0'()(%*+

>
>

>
>

>
?

>
>

>
>

>
>

>
>

>
>

>
,./)*('%$&/&!$)/0'
()(%*+

>
>

>
>

?
>

>
>

>
>

>
>

>
>

>
>

>
&%/)12(%'0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

?
>

>
>

>
>

>
>

>
/,&4/&('''
%$&/&!$)/0'()(%*+

>
>

>
?

>
>

>
>

>
>

>
>

>
>

>
>

>
!"

#$%&'6789
:;

>
>

>
>

>
?

>
?

>
>

>
>

>
>

>
>

>
(<#$%&'6789

:;
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

5!1&%!=4&('0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

>
>

>
>

>
>

?
?

>
&%/)12(%'0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

>
>

?
>

>
>

>
>

>
#$1!&!$)'0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

>
>

>
>

?
?

>
>

>
14##0+'0!34!5'
"
/&(%!/0

>
>

>
>

?
>

>
>

>
>

>
>

>
>

>
>

>
(<#$%&'0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
(<#$%&'/,$41&!,'
()(%*+

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
(<#$%&'&.(%"

/0'
()(%*+

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
(<#$%&'
"
(,./)!,/0'

()(%*+
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

>
>

,$)-(%&'()(%*+'&$'
"
(,./)!,/0'

()(%*+
>

>
?

>
>

>
>

>
>

>
>

>
>

>
>

>
>

1&$%('0!34!5'
"
/&(%!/0

>
>

>
>

>
>

>
>

>
?

>
>

>
>

>
>

>

!*"

Spice Grinder Functional Model

!"#$!#%&
%'%"#()"!'&
%*%(+,

-#.(%&-.')/&
0
!#%()!'

)0
1.(#&-.')/&

0
!#%()!'

-%"$(%&-.')/&
0
!#%()!'

(%+$'!#%&
%'%"#()"!'&
%*%(+,

)0
1.(#&".*#(.'&

-)+*!'

".*2%(#&
%'%"#()"!'&
%*%(+,&#.&
0
%"3!*)"!'&

%*%(+,

".*2%(#&
%'%"#()"!'&
%*%(+,&#.&
0
%"3!*)"!'&

%*%(+,
#(!*-1.(#&-.')/&
0
!#%()!'

-%1!(!#%&-.')/&
0
!#%()!'

-#.(%&-.')/&
0
!#%()!'

".*2%(#&-.')/&
0
!#%()!'&#.&

-.')/&0
!#%()!'

0
)4&-.')/&

0
!#%()!'

-%*-%&-.')/&
0
!#%()!'

)*/)"!#%&-#!#$-&
-)+*!'

%41.(#&-.')/&
0
!#%()!'

+$)/%&-.')/&
0
!#%()!'

%41.(#&%*%(+,
)0

1.(#&
%'%"#()"!'&
%*%(+,

5
6

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

)0
1.(#&

%'%"#()"!'&
%*%(+,

5
5

5
5

5
6

5
5

5
5

5
5

5
5

5
5

5
5

!"#$!#%&
%'%"#()"!'&
%*%(+,

5
5

5
5

6
5

5
5

5
5

5
5

5
5

5
5

5
5

-#.(%&-.')/&
0
!#%()!'

5
5

6
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

)0
1.(#&-.')/&

0
!#%()!'

5
5

5
5

5
5

5
5

5
5

6
5

5
5

5
5

5
5

-%"$(%&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
6

6
5

5
5

5
5

5
5

5
5

(%+$'!#%&
%'%"#()"!'&
%*%(+,

5
6

5
5

5
5

5
5

5
5

6
5

5
5

5
5

5
5

)0
1.(#&".*#(.'&

-)+*!'
5

5
5

5
5

5
5

5
5

6
5

5
5

5
5

5
5

5
".*2%(#&
%'%"#()"!'&
%*%(+,&#.&
0
%"3!*)"!'&

%*%(+,
5

5
5

5
5

5
5

5
5

5
5

5
6

5
5

5
5

5
".*2%(#&
%'%"#()"!'&
%*%(+,&#.&
0
%"3!*)"!'&

%*%(+,
5

5
5

5
6

5
5

5
5

5
5

5
6

5
5

5
5

5
#(!*-1.(#&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
5

5
6

5
5

5
5

5
5

5
5

-%1!(!#%&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
5

5
6

5
5

5
5

-#.(%&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
5

5
5

6
5

5
5

".*2%(#&-.')/&
0
!#%()!'&#.&

-.')/&0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
6

6
5

0
)4&-.')/&

0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
5

6
5

5
5

5
6

-%*-%&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

)*/)"!#%&-#!#$-&
-)+*!'

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

%41.(#&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
6

5
5

5
5

5
5

+$)/%&-.')/&
0
!#%()!'

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

%41.(#&%*%(+,
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5
5

5

