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FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS

ZACHARY A. GELBAUM

In loving memory of my grandfather, B.R. Gelbaum

Abstract. Extensions of the fractional Brownian fields are constructed over
a complete Riemannian manifold. This construction is carried out for the full
range of the Hurst parameter α ∈ (0, 1). In particular, we establish existence,
distributional scaling (self-similiarity), stationarity of the increments, and al-
most sure Hölder continuity of sample paths. Stationary counterparts to these
fields are also constructed.

1. Introduction

The fractional Brownian motions and their stationary counterparts are the basic
examples of Gaussian random fields over R, and it is natural to ask what the
corresponding examples are when R is replaced by a manifold. The first to do so
was Paul Lévy (see [25]), who extended the standard Brownian motion on R to the
standard Brownian field over Rd, now called Lévy’s Brownian motion. Lévy then
extended this field to the sphere Sd. Since then there have been a number of studies
aimed at extending both the Brownian motion and the fractional Brownian motion
to other manifolds. This is a natural step in the theory of Gaussian fields in general,
as one would like to understand how the structure of the index set determines the
kinds of fields that can be defined over it. The geometric and topological structure
of Riemannian manifolds make them a convenient and interesting setting for such
a study. When one extends the fractional Brownian motions from R to Rd the
resulting fields are called Euclidean fractional Brownian fields (some authors prefer
Lévy fractional Brownian motions). Our purpose in this article is to construct fields
over Riemannian manifolds that generalize the Euclidean fractional Brownian fields.

Much of the interest in the fractional Brownian fields (fBf ’s) over Rd stems
from their distributional invariance and scaling properties. In particular, if α ∈
(0, 1) denotes the Hurst index and the corresponding field is denoted by fBfα,
the increments of the fBfα are invariant under rotation and translation and the
distribution of the fBfα scales by a power cα when Rd is dilated by c > 0. Any
extension of the fBf ’s should possess these properties and also reflect the geometry
of the index set in question (for an introduction to Gaussian random fields over
manifolds focusing on smooth fields, see the recent work of Adler and Taylor [2]
and the lecture notes from the short course given at the 2012 joint meetings of the
AMS1).

As mentioned above the first attempt to extend Lévy’s Brownian motion, fBf
1
2 ,

from Rd to a manifold was by Lévy himself in [25]. There he constructed a field
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4782 ZACHARY A. GELBAUM

over Sd with covariance given by

d(x, o) + d(y, o)− d(x, y),

d(x, y) being the geodesic distance between x and y and o being a fixed origin point
on the sphere. Further progress in this direction was made in the work of Molchan
(see e.g. [28]) and Gangolli (see [16]), where the authors dealt with extensions of
Lévy’s Brownian motion to other manifolds including the sphere.

Most recently Istas in [21] studied fields over certain Riemannian manifolds with
covariance given by

(1.1)
1

2

(
d(x, o)2α + d(y, o)2α − d(x, y)2α

)
,

where d(x, y) is the metric of the manifold and o is a chosen point. In particu-
lar, Istas showed there that (1.1) defines a Gaussian field over compact rank one
symmetric spaces and hyperbolic space H

d if and only if α ∈ (0, 1/2].
A common feature of the above approaches is that they begin by looking for

covariances of the form f(x, o) + f(y, o) − f(x, y) for some symmetric function f ,
the idea being that over Rd, o = 0 and f(x, y) = ‖x − y‖Rd . The issue then is to
prove that the function so defined does, in fact, define a covariance, i.e., one must
establish positive definiteness. A necessary and sufficient condition for positive
definiteness is that f be of negative type; for example, one can take the above
approach on metric spaces (X, d) with a metric of negative type (e.g. [20, 22]). In
general if d(x, y) is the metric of a Riemannian manifold, establishing that d(x, y)2α

is of negative type for some α ∈ (0, 1) is non-trivial, and indeed, as in [21], it has
been shown that d(x, y)2α can fail to be of negative type. Moreover, in all the above
work this approach necessitates symmetry assumptions on the underlying manifold.

In the present article we take an essentially different approach inspired by the
work of Benassi, Jaffard, and Roux (see [4] and more recently [5]). In particular,
we extend a characterization of the fBfα in terms of the Laplacian on Rd to
the Riemannian setting via the Laplace-Beltrami operator and the associated heat
kernel. Using this approach we are able to extend the fBfα to a variety of both
compact and non-compact manifolds without any assumptions regarding symmetry
of the manifolds and for the full range of α ∈ (0, 1) (see Theorems 3.3, 3.4 and 3.9
below).

Broadly speaking, in order to build a Gaussian random field over a manifold (or
any index set) there are two things we must do: Determine a covariance function
and prove that this covariance determines a probability measure on a suitable space
of functions, e.g., some space of continuous functions. If we build our covariance
correctly, the resulting field will have the properties we would like, and we will be
able to use some theorems from probability to show that we get a good probabilistic
model, that is, a well-defined random element of an appropriate function space.

This article is structured as follows: in Section 2 we cover some preliminaries
regarding Gaussian random fields and analysis on manifolds, in particular the heat
kernel of a Riemannian manifold. In Section 3.1 we describe the motivation behind
our approach and define our candidate covariance functions before we study condi-
tions which ensure that these covariances exist for a given manifold in Section 3.2.
Section 3.3 deals with almost sure sample path regularity and in 3.4 we estab-
lish the appropriate distributional invariance properties. In Section 4 we construct
stationary counterparts to the fields of Section 3 and establish the corresponding
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FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS 4783

distributional and sample path properties. Section 5 contains some open questions
concerning geometry and probability encountered in the course of the article, and
in the appendix we collect some necessary results concerning sample path regularity
of Gaussian fields over manifolds.

2. Preliminaries

2.1. Gaussian random fields. Given a complete probability space (Ω,F , P ) and
some index set I we call a collection of random variables on Ω, {Xi(ω)}i∈I , a
Gaussian random field (GRF) over I if for any finite subset {ik}n1 ⊂ I the random
vector (Xik)

n
1 has a joint normal distribution. Then for each ω ∈ Ω, Xi(ω) defines

a real valued function on I called a sample path of the field {Xi}. We let E denote
the expectation operator,

E[Xi] ≡
∫
Ω

Xi(ω) dP (ω), i ∈ I,

and we call

E[(Xs − E[Xs])(Xt − E[Xt]) = E[XsXt]− E[Xs]E[Xt], s, t ∈ I,

the covariance of {Xi}. The covariance of a GRF over I defines a symmetric
positive definite function on I × I.

We say two GRF’s are equal in finite dimensional distribution or simply in

distribution, denoted
d
=, if their covariances are equal. We also say two GRF’s

defined on the same probability space are versions of each other if P (Xi = Yi) = 1
for all i ∈ I. The salient analytical feature of GRF’s is that for any set I the
collection of all GRF’s over I is in one-to-one correspondence up to equality in
distribution with the set of all symmetric, positive definite functions on I × I. In
other words a GRF is uniquely determined in distribution by its covariance and
every symmetric positive definite function K on I × I is the covariance of a GRF
over I, that is, there exists some complete probability space (Ω,F , P ) and a GRF
{Xi(ω)}I where for each i ∈ I Xi is a random variable on Ω.

We call a GRF centered if E[Xi] = 0 ∀i ∈ I, and in this case its covariance is
given by E[XtXs], s, t ∈ I. Throughout this article we will only consider centered
GRF’s.

2.1.1. The Euclidean fractional Brownian fields. The standard Brownian motion
Bt over [0,∞) is the centered GRF with covariance

E[BsBt] = s ∧ t =
|s|+ |t| − |t− s|

2
.

From this one generalizes to obtain the fractional Brownian motion fBmα for
α ∈ (0, 1):

E[fBmα
s fBmα

t ] =
|s|2α + |t|2α − |t− s|2α

2
.

We then have Bt = fBm
1
2 .

One then further generalizes to R
d, obtaining the fBfα as the centered GRF

over Rd with covariance

E[fBfα
x fBfα

y ] = ‖x‖2α
Rd + ‖y‖2α

Rd − ‖x− y‖2α
Rd

(note that some authors include the constant factor 1/2). We remark here that
throughout the article we will make a slight abuse of notation and use Rd to refer
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4784 ZACHARY A. GELBAUM

both to the usual vector space and to Euclidean space as a manifold, though we
doubt this will cause much confusion as the context will make clear what is meant.

One easily sees that the fBfα is self-similar of order α, i.e., if fBfα
c denotes

the field rescaled field {fBfα
cx}x∈Rd , then

fBfα
c

d
= cαfBfα ∀ c > 0,

and that it has stationary (or homogeneous) increments :

E[|fBfα
x − fBfα

y |2] = ‖x− y‖2α = ‖ι(x)− ι(y)‖2α = E[|fBfα
ι(x) − fBfα

ι(y)|2]

for any isometry ι on R
d. Moreover it is known that there exists a version Xx

of the fBfα such that with probability one the sample paths Xx(ω) are Hölder
continuous of any order γ < α and fail to be Hölder continuous of any order γ > α
at every point in Rd (see [1]).

2.1.2. White noise. The treatment here follows [23]. Given a probability space
(Ω,F , P ) we call a complete subspace G of L2(Ω,F , P ) a Gaussian Hilbert space
if every element of G is a centered Gaussian random variable. Note that the inner
product H inherits from L2(Ω,F , P ) is then

〈X,Y 〉G = E[XY ].

Given any (real) Hilbert space H there exists a Gaussian Hilbert space G and
a unitary map W : H → G called W the isonormal process or white noise process
on H (one can also consider complex white noises). If, as is the case below, H =
L2(M,S, dμ) for some measure space (M,S, dμ), then if B = {A ∈ S : μ(A) < ∞}
the map from B → G given by

W (A) ≡ W (χA)

determines a Gaussian random measure on M . The properties of such measures
will not be important for us here, but we mention them to motivate the notation
for W : H → G, given by

W (f) =

∫
M

f(z) dW (z),

which we refer to as a white noise integral (this is also commonly called a stochastic
integral). Starting from a random measure one can construct the integral

∫
M

dW
in close analogy with classical measure theory. All that will be important for us is
the property

〈f, g〉H = E

[∫
M

f dW,

∫
M

g dW

]
.

Now suppose we have a function h(x, z) : M → L2(M,dμ), x �→ h(x, z) ∈
L2(M,dμ(z)). We can then define a centered GRF Yx over X by

Yx
d
=

∫
M

h(x, z) dW (z).

The covariance of Yx is then given by

E[YxYy] = 〈h(x, z), h(y, z)〉L2 =

∫
M

h(x, z)h(y, z) dμ(z).

Note that the last expression on the right is in fact positive definite and symmetric.
In this case we call h the integral kernel of Y .
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FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS 4785

2.2. Analysis on manifolds. In what follows we assume throughout that all Rie-
mannian manifolds are complete and of dimension d, with 2 ≤ d < ∞. For a
manifold M let Δ denote the Laplace-Beltrami operator, or simply the Laplacian
for short, on M . In any local coordinate system the action of Δ on C∞(M) is given
by

Δ =
1
√
g

∑
∂j

(
gij

√
g∂i

)
,

where (gij) is the matrix of the Riemannian metric in these coordinates, (gij) =

(gij)
−1, and

√
g = (det(gij))

1
2 . Because M is complete, Δ is essentially self-adjoint

(see e.g. [31]), and so we may consider from now on the unique minimal self-adjoint
extension of Δ, which we shall also write as Δ. Moreover the spectrum of Δ is
contained in (−∞, 0] (see e.g. [31]). By the spectral theorem we can define the
heat semigroup

etΔ =

∫ ∞

0

e−tλ dEλ,

where dEλ is the spectral measure of −Δ. The action of etΔ on L2(M,dVg), where
dVg denotes the measure derived from the metric g, is given by a kernel Ht(x, y):

etΔ(f)(x) =

∫
M

Ht(x, y)f(y) dVg(y).

Ht(x, y) is called the heat kernel of M . It is known that Ht is strictly positive,
symmetric, and contained in C∞(M×M×(0,∞)). Moreover we have the semigroup
property ∫

M

Ht(x, z)Hs(z, y) dVg(z) = Ht+s(x, y).

As a consequence Ht is positive definite for each t > 0. As its name suggests,
Ht(x, y) is a fundamental solution to the heat equation on M × (0,∞):{(

∂
∂t −Δx

)
Ht(x, y) = 0,

limt↓0
∫
M

Ht(x, y)f(x) dx = f(y) ∀ f ∈ C0(M).

There are various constructions of the heat kernel, with that given in [10] being
the most suited to our purposes. In particular if we let

Et(x, y) ≡
e−

d(x,y)2

4t√
(4πt)d

,

then there is an open neighborhood of the diagonal U ⊂ M ×M such that on U

(2.1)
Ht(x, y)

Et(x, y)
= Φ(t, x, y),

where Φ(t, x, y) is symmetric in x and y, Φ ∈ Ck([0, T ]× U) ∀ T > 0 where k can
be chosen arbitrarily large (see [7] and [6]), and

lim
t→0, x→y

Φ(t, x, y) = 1.
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4786 ZACHARY A. GELBAUM

In other words, for x and y close Ht ∼ Et as t → 0. Thus on any manifold heat
diffusion behaves locally for small times as in the Euclidean space.

If M is compact, then we also have the following eigenfunction expansion of Ht:

(2.2) Ht(x, y) =

∞∑
k=0

e−λktφk(x)φk(y),

where 0 = λ0 < λ1 ≤ ... ≤ λk ↑ ∞ and {φk} are the spectrum and orthonormalized
L2 eigenfunctions of −Δ respectively and where (2.2) converges absolutely and
uniformly for each t > 0 (see [7]).

Following [7] we define a regular domain to be an open, connected, relatively
compact subset D of a complete Riemannian manifold such that ∂D �= ∅ is smooth.
In what follows, when we refer to the Laplacian of a regular domain we mean the
Dirichlet Laplacian with the corresponding heat kernel (see [7], Chapter 7). As
in the compact case we have an eigenfunction expansion (2.2), the only difference
being that λ0 > 0. If (M, g) is a regular domain in manifold (N, g), then, as noted
in [8], (2.1) holds in this setting as well.

Now suppose M is complete and non-compact, {Dk}∞1 is any increasing exhaus-
tion of M by regular domains, and Hk

t (x, y) denotes the Dirichlet heat kernel of
Dk. Then if we extend each Hk to be zero outside D × D, {Hk

t (x, y)}∞1 forms a
pointwise increasing sequence on M ×M × (0,∞). It was shown in [14] that

lim
k→∞

Hk
t (x, y) = Ht(x, y),

where Ht(x, y) is the heat kernel defined above.

3. The Riesz fields

3.1. Motivation and definition. As mentioned in the introduction, our first task
is to write a candidate covariance for our fields. We could write all the properties we
want our field to have and see if this determines a covariance. However, even on R

d

this is non-trivial, and as we shall see below, on a general manifold the properties of
the Euclidean fractional Brownian fields described above do not uniquely determine
a GRF. The other strategy is to find a characterization of the Euclidean fields
that suggests a generalization to manifolds and then verify that this ansatz does
indeed yield a probability measure on a nice function space with the properties we
want. This is the strategy we will follow, and so our first task is to find a suitable
characterization of the Euclidean field fBfα.

In [4] the authors begin by defining a symbol class of pseudodifferential operators
over Rd. From such an operator A they define a Gaussian random field with covari-
ance given by the integral kernel of A−1. The authors are then able to derive all
the important properties of this field from properties of the symbol of the operator
A. This approach to constructing and studying GRF’s is a natural extension of the
classical spectral theory of Gaussian processes on R and demonstrates the power of
the spectral point of view.

The basic heuristic can be described as follows: Beginning with an unbounded
operator A on some L2 space, define and study the GRF determined by the integral
kernel of A−1. So in attempting to extend the fBfα to a Riemannian manifold,
we should first seek an operator A that determines the fBfα in the manner above.
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Our starting point is the well-known (e.g. [4] or [33]) spectral representation of
the fBfα,

(3.1) fBfα
x

d
= Cd,α

∫
Rd

ei〈x,ξ〉 − 1

‖ξ‖ d
2+α

dŴ (ξ),

where Ŵ is a complex white noise on L2(Rd, dx), dx is a Lebesgue measure, and Cd,α

is a constant. Examining (3.1) we see that, up to a constant, for f ∈ H−( d
4+

α
2 )
(Rd),∫

Rd

ei〈x,ξ〉 − 1

‖ξ‖ d
2+α

f̂(ξ) dξ = (−Δ)−( d
4+

α
2 )(f)(x)− (−Δ)−( d

4+
α
2 )(f)(0).

Thus if we denote this last operator above by A, then the fBfα is the unique
(in distribution) GRF with covariance given by the Schwarz kernel of the operator
A∗A,

E[fBfα
x fBfα

y ] = C

∫
Rd

ei〈x−y,ξ〉 − ei〈x,ξ〉 − ei〈y,ξ〉 + 1

‖ξ‖d+2α
dξ.

We now have a characterization that extends immediately to manifolds: Simply
replace the Laplacian on Rd by the Laplace-Beltrami operator of the manifold in
question and determine the kernel of the operator A∗A. Following [31] we arrive at
the following definitions:

Definition 3.1. For a complete Riemannian manifold M with heat kernel Ht(x, y)
define the Riesz field Rα to be the GRF with covariance given by
(3.2)

E[Rα
xR

α
y ] ≡

1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1 (Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)) dt,

where o ∈ M is a fixed “origin” and the stationary (or homogeneous) Riesz field
hRα the GRF with covariance

(3.3) E[hRα
xhR

α
y ] ≡

1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1Ht(x, y) dt.

Because Ht(x, y) is positive definite for each t > 0 and

Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)

=

∫
M

(
Ht/2(x, z)−Ht/2(o, z)

) (
Ht/2(y, z)−Ht/2(o, z)

)
dVg(z),

each of these expressions is symmetric and positive definite, and thus when the
integrals exist each determines a GRF over M . Of course the convergence of the
above integrals is by no means obvious, and our first task in Section 3.2 will be to
determine manifolds for which they do converge.

Remark 3.2. Wewill see shortly that if either (3.2) or (3.3) exist for some α0 ∈ (0, 1),
then it also exists for any α ∈ (0, α0). We say Rα (resp. hRα) exists for all α ∈ (0, b)
if (3.2) (resp. (3.3)) is finite for all α ∈ (0, b), b ≤ 1, and all x, y ∈ M .

It turns out (Proposition 3.10) that the Riesz field (3.2) extends the fBfα and
that they agree up to a constant in distribution over Rd. However we will also see
that the stationary Riesz field has some claim to be an extension of the fBfα, for
example over negatively curved manifolds, even though it does not exist on Rd.
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4788 ZACHARY A. GELBAUM

Now let W denote the white noise over L2(M,dVg). We will show that when
they exist the Riesz fields admit the following integral representations:

(3.4) Rα
x

d
=

1

Γ
(
d
4 + α

2

) ∫
M

∫ ∞

0

t
d
4+

α
2 −1 (Ht(x, z)−Ht(o, z)) dt dW (z)

and

(3.5) hRα
x

d
=

1

Γ
(
d
4 + α

2

) ∫
M

∫ ∞

0

t
d
4+

α
2 −1Ht(x, z) dt dW (z).

The issue is whether or not the functions appearing in the above are in fact
square integrable for each x ∈ M . Let us consider this in detail, first for hRα:

Letting hhR(x, z) =
1

Γ( d
4+

α
2 )

∫∞
0

t
d
4+

α
2 −1Ht(x, z) dt we have

〈hhR(x, z), hhR(y, z)〉L2

=

∫
M

(
1

Γ
(
d
4 + α

2

) ∫ ∞

0

t
d
4+

α
2 −1Ht(x, z) dt

)

×
(

1

Γ
(
d
4 + α

2

) ∫ ∞

0

s
d
4+

α
2 −1Ht(y, z) ds

)
dVg(z)

=

∫
M

∫ ∞

0

∫ ∞

0

1

Γ
(
d
4 + α

2

)2 t d
4+

α
2 −1s

d
4+

α
2 −1Ht(x, z)Hs(y, z) dt ds dVg(z)

=

∫ ∞

0

∫ ∞

0

1

Γ
(
d
4 + α

2

)2 t d
4+

α
2 −1s

d
4+

α
2 −1

∫
M

Ht(x, z)Hs(y, z) dVg(z) dt ds

=

∫ ∞

0

∫ ∞

0

1

Γ
(
d
4 + α

2

)2 t d
4+

α
2 −1s

d
4+

α
2 −1Ht+s(x, y) dt ds

=

∫ ∞

0

∫ ∞

s

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4+

α
2 −1s

d
4+

α
2 −1Ht(x, y) dt ds

=

∫ ∞

0

∫ t

0

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4+

α
2 −1s

d
4+

α
2 −1 dsHt(x, y) dt

by the positivity of Ht(x, y) and the semigroup property.

Next note that if g(s) = 1

Γ( d
4+

α
2 )

s
d
4+

α
2 −1, then∫ t

0

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4+

α
2 −1s

d
4+

α
2 −1 ds = g ∗ g(t),

where ∗ denotes the finite convolution f ∗ g(t) ≡
∫ t

0
f(t − s)g(s) ds. If L denotes

the Laplace transform we have the well-known property L (f ∗ g) = L(f)L(g).
Applying this to g ∗ g above we have

L(g ∗ g)(s) = (L(g))2 (s) =
(
s−( d

4+
α
2 )
)2

= s−( d
2+α).

Then inverting L we obtain

1

Γ(d2 + α)
t
d
2+α−1 = L−1

(
s−( d

2+α)
)
=

∫ t

0

1

Γ
(
d
4 + α

2

)2 (t− s)
d
4+

α
2 −1s

d
4+

α
2 −1 ds.
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FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS 4789

Substituting this into the integral defining 〈hhR(x, z), hhR(y, z)〉L2 above yields

1

Γ(d2 + α)

∫ ∞

0

t
d
2+α−1Ht(x, y) dt.

Thus whenever hRα exists it is given by (3.5).
Turning now to (3.2), let

hR(x, z) =
1

Γ
(
d
4 + α

2

) ∫ ∞

0

t
d
4+

α
2 −1 (Ht(x, z)−Ht(o, z)) dt.

Then

‖hR(x, z)‖2L2

≤
∫
M

∫ ∞

0

∫ ∞

0

s
d
4+

α
2 −1t

d
4+

α
2 −1

× |Ht(x, z)−Ht(o, z)||Hs(x, z)−Hs(o, z)| ds dt dVg(z)

=

∫ ∞

0

∫ ∞

0

s
d
4+

α
2 −1t

d
4+

α
2 −1

∫
M

× |Ht(x, z)−Ht(o, z)||Hs(x, z)−Hs(o, z)| dVg(z) ds dt

≤
∫ ∞

0

∫ ∞

0

s
d
4+

α
2 −1t

d
4+

α
2 −1‖Ht(x, ·)−Ht(o, ·)‖2‖Hs(x, ·)−Hs(o, ·)‖2 ds dt

=

(∫ ∞

0

t
d
4+

α
2 −1‖Ht(x, ·)−Ht(o, ·)‖2 dt

)2

=

(∫ ∞

0

t
d
4+

α
2 −1

√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt

)2

.

Recall that if M is any Riemannian manifold, then from (2.1) for any x, y ∈ M

we have that Ht(x, y) = O(t−
d
2 ) as t → 0. So then∫ 1

0

t
d
4+

α
2 −1

√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt < ∞

and ∫ 1

0

t
d
2+α−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt < ∞

for all α ∈ (0, 1).
Next notice that if α+ ε < b,∫ ∞

1

t
d
4+

α
2 −1

√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt

=

∫ ∞

1

t
d
4+

α
2 +ε−(1+ε)

√
Ht(x, x)− 2Ht(x, o) +Ht(o, o) dt

≤
(∫ ∞

1

t−(1+ε) dt

) 1
2

×
(∫ ∞

1

t
d
2+α+ε−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt

) 1
2
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4790 ZACHARY A. GELBAUM

by Cauchy-Schwarz. Thus if Rα exists for all α ∈ (0, b) we may interchange the
order of integration as with hRα to obtain

〈hR(x, z), hR(y, z)〉L2

=
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1 (Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)) dt

= E[Rα
xR

α
y ]

for all such α.
In either case (3.2) or (3.3) we see that the integrands are continuous on (0,∞),

so by (2.1) convergence depends only on the behavior of the integrand at infinity.
Thus the existence of both Rα

x and hRα
x will depend on the large-time asymptotics

of Ht(x, y). These depend on the manifold in question and we will treat distinct
cases below.

3.2. Existence.

3.2.1. The compact case. We have the following:

Theorem 3.3. If M is a compact Riemannian manifold, then the Riesz field of
order α exists over M for any α ∈ (0, 1) and the stationary Riesz field does not
exist over M for any α ∈ (0, 1).

Proof. Recall (2.2):

Ht(x, y) =

∞∑
k=0

e−λktφk(x)φk(y).

We have

Ht(x, x)−2Ht(o, x)+Ht(o, o) =

∞∑
k=1

e−λkt|φk(x)−φk(o)|2 = O(e−λ1t) ∀x ∈ M

and λ1 > 0. Then (3.2) is clearly finite for any x ∈ M and all α ∈ (0, 1).
To see that hRα

x does not exist on M notice that limt→0 Ht(x, y) = Vol(M)−1 �=
0∀ x, y ∈ M . �

Theorem 3.4. If M is regular domain, then hRα, and thus by linearity Rα, exists
for any α ∈ (0, 1).

Proof. As above let

Ht(x, y) =
∞∑
k=0

e−λktφk(x)φk(y).

Then λ0 > 0 and Ht(x, y) = O(e−λ0t) for each x, y ∈ M . �

We note here that in either case above we may integrate term by term using the
eigenfunction expansions of Ht to obtain a series expression for the covariance of
Rα and hRα as follows:
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For Rα and M compact we have

E[Rα
xR

α
y ] =

1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o) dt

=
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1

∞∑
k=0

e−λkt(φk(x)− φk(o))(φk(y)− φk(o)) dt

=
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1

∞∑
k=1

e−λkt(φk(x)− φk(o))(φk(y)− φk(o)) dt

≤ 1

Γ
(
d
2 + α

) (∫ ∞

0

t
d
2+α−1

∞∑
k=1

e−λkt|φk(x)− φk(o)|2 dt
) 1

2

×
(∫ ∞

0

t
d
2+α−1

∞∑
k=1

e−λkt|φk(y)− φk(o)|2 dt
) 1

2

=
(
E[|Rα

x |2]E[|Rα
y |2]

) 1
2 ,

which we know from above to be finite.
Then by dominated convergence we may integrate term by term to obtain

E[Rα
xR

α
y ] =

1

Γ
(
d
2 + α

) ∞∑
k=1

Γ
(
d
2 + α

)
λ

d
2+α

k

(φk(x)− φk(o))(φk(y)− φk(o))

=

∞∑
k=1

(λk)
−( d

2+α)(φk(x)− φk(o))(φk(y)− φk(o)).

In particular,

Rα
x

d
=

∞∑
k=1

(λk)
−( d

4+
α
2 )(φk(x)− φk(o))ξk,

where {ξk} is an i.i.d. collection of standard normal random variables, the series
converging in L2(M) almost surely.

The same equality holds for M a regular domain if we number the spectrum as
{λk}∞1 . Similar arguments show that for M a regular domain

E[hRα
xhR

α
y ] =

∞∑
k=1

(λk)
−( d

2+α)φk(x)φk(y)

and

hRα
x

d
=

∞∑
k=1

(λk)
−( d

4+
α
2 )φk(x)ξk.

Example 3.5. Let M = S2. Then in terms of the spherical harmonics {Ykm} we
have

Ht(x, y) =
∞∑
k=0

e−k(k+1)t
k∑

m=−k

Ykm(x)Ykm(y).

Applying the harmonic addition formula we have

Ht(x, y) =
∞∑
k=0

e−k(k+1)t 2k + 1

4π
Pk(cos θxy),
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4792 ZACHARY A. GELBAUM

where Pk is the k-th Legendre Polynomial and 〈x, y〉 = cos θxy. Fixing an origin
point o ∈ S2 we then have

E[Rα
xR

α
y ] =

∞∑
k=1

(k(k + 1))−(
d
2+α) 2k + 1

4π

× (Pk(cos θxy)− Pk(cos θxo)− Pk(cos θyo) + Pk(1)) .

Example 3.6. Let M = D = {x ∈ R2 : |x| < 1} and Jk be the Bessel function
of the first kind of order k, k = 0, 1, 2 . . . . Then if λ1

k < λ2
k < ... are the positive

zeroes of Jk, using polar coordinates on D we have

E[hRα
(r,θ)hR

α
(R,φ)] =

√
2

π

∑
k,l

(λl
k)

−(d+2α)

|Jk+1(λl
k)|

× Jk(λ
l
kr)Jk(λ

l
kR) (cos(k(θ − φ)) + sin(k(θ + φ))) .

3.2.2. The non-compact case. For the case of M non-compact, first let us show by
example that we cannot establish existence in general.

Example 3.7. Let M = S1 × R. Then we have

HM
t ((θ, x), (φ, y)) = HS

t (θ, φ)H
R

t (x, y),

where HM is the heat kernel of M , HS is the heat kernel of S1, and HR is the usual
heat kernel on R (see [19], Theorem 9.11).

We then have that

HM
t ((θ, x), (θ, x))− 2HM

t ((θ, x), (φ, y)) +HM
t ((φ, y), (φ, y)) ∼ 1

π

1− e
−|x−y|2

4t√
(4πt)

= O(t
3
2 ) as t → ∞

for any (θ, x), (φ, y) ∈ M . So E[|Rα
p |2] = ∞ ∀ p ∈ M and α ≥ 1/2 and thus Rα

does not exist over M for this range of α. Using S
2 instead in the above we have

that Rα fails to exist for all α ∈ (0, 1).

However, for certain manifolds such that Vol(M) < ∞ we have a situation similar
to the compact case:

Theorem 3.8. Suppose M is non-compact with Ric(M) ≥ −κ2, κ ∈ R, and
Vol(M) < ∞. Let λ(M) = infΩ⊂M {λ1 : σ(Ω) = {λk}∞k=0}, where the infimum is
taken over regular domains Ω ⊂ M and σ(Ω) denotes the Dirichlet spectrum of Ω.
Then if λ(M) > 0, Rα exists over M for any α ∈ (0, 1) and hRα does not.

Proof. That hRα does not exist follows from the fact that on such M

lim
t→∞

Ht(x, y) =
1

Vol(M)
�= 0 ∀x, y ∈ M.

For Rα, under the hypothesis of the theorem it was shown in [24] that

Ht(x, y)−
1

Vol(M)
= O

(
e−

λ(M)
2 t

)
,

and so (3.2) converges ∀ α ∈ (0, 1). �

Licensed to Oregon St Univ. Prepared on Thu Dec 18 11:48:29 EST 2014 for download from IP 128.193.163.187.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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We now turn to our main existence theorem for the Riesz fields over non-compact
manifolds followed by some examples. Below we use the following notation:

Dp(r) ≡ {x ∈ M : d(x, p) < r}

and

Vp(r) ≡ Vol (Dp(r)) =

∫
Dp(r)

dVg.

We write Ht = O(t−
ν
2 ) if there exist two distinct points xk ∈ M , k = 1, 2, and

constants Ck > 0 such that

Ht(xk, xk) ≤ Ckt
− ν

2 ∀ t ≥ 1.

In that case using Theorem 1.1 of [18] we know that for any δ > 0 there exists a
constant Cδ > 0 such that for all t ≥ 1 and all x, y ∈ M ,

Ht(x, y) ≤ Cδt
− ν

2 e−
d(x,y)2

(4+δ)t .

Theorem 3.9. Let M be non-compact.
(1) Suppose Ric(M) ≥ 0. Then hRα does not exist for any α ∈ (0, 1). If

Ht = O
(
t−(

d
2−β)

)
and

lim
r→∞

Vx(r)

rd−2β
< ∞ ∀x ∈ M

for some β ∈ [0, 1), then Rα exists over M for any α ∈ (0, 1− β).
(2) Suppose that

Ht = O
(
t−(

d
2+β)

)
for some β > 0. Then hRα (and thus Rα also) exists for any α ∈ (0,min{β, 1}).

Proof. (1): To begin we note that our hypothesis Ht = O(t−(d/2−β)) implies the
following gradient bound for Ht (see [11]): For all x, y ∈ M and t ≥ 1,

(3.6) |∇xHt(x, y)| ≤ C ′
δt

−( d
2−β+ 1

2 )e−
d(x,y)2

(4+δ)t

for some constant C ′
δ > 0.

Recall that by Cauchy-Schwarz in order for (3.2) to converge it is sufficient to
show that ∫ ∞

1

t
d
2+α−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt < ∞

for the specified range of α. Moreover, by first restricting to a compact subset
K ⊂ M we may assume positive injectivity radius, i.e., ∃ r > 0 such that d(x, y) < r
implies that x, y belong to some normal neighborhood. By repeated use of the
triangle inequality we see that existence for all such x, y implies existence on all of
K, and since K was arbitrary, on all of M .
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To that end let D = Dp(r) be a normal neighborhood containing x and o. We
first apply the mean value theorem:∫ ∞

1

t
d
2+α−1 (Ht(x, x)− 2Ht(x, o) +Ht(o, o)) dt

=

∫ ∞

1

t
d
2+α−1

∫
M

|Ht(x, z)−Ht(o, z)|2 dVg(z) dt

≤ d(x, o)2
∫ ∞

1

t
d
2+α−1

∫
M

|∇xHt(ξz, z)|2 dVg(z) dt

for some ξz lying on some curve (parametrized to have unit velocity) contained in
Dp and joining x and o. We now apply (3.6),∫ ∞

1

t
d
2+α−1

∫
M

|∇xHt(ξz, z)|2 dVg(z) dt

≤C

∫ ∞

1

t−
d
2+α+2β−2

∫
M

e−
2d(ξz,z)2

(4+δ)t dVg(z) dt.

We have∫ ∞

1

t−
d
2+α+2β−2

∫
M

e−
2d(ξz,z)2

(4+δ)t dVg(z) dt

=

∫ ∞

1

t−
d
2+α+2β−2

∫
D

e−
2d(ξz,z)2

(4+δ)t dVg(z) dt

+

∫ ∞

1

t−
d
2+α+2β−2

∫
M\D

e−
2d(ξz,z)2

(4+δ)t dVg(z) dt

≤Vol(D)

∫ ∞

1

t−
d
2+α+2β−2 dt

+

∫
M\D

∫ ∞

0

t−
d
2+α+2β−2e−

2d(ξz,z)2

(4+δ)t dt dVg(z).

By hypothesis
∫∞
1

t−
d
2+α+2β−2 dt < ∞, so we only need to show∫

M\D

∫ ∞

0

t−
d
2+α+2β−2e−

2d(ξz,z)2

(4+δ)t dt dVg(z) < ∞.

We have∫
M\D

∫ ∞

0

t−
d
2+α+2β−2e−

2d(ξz,z)2

(4+δ)t dt dVg(z)

=

(
4 + δ

2

) d
2−α−2β+1

Γ

(
d

2
− α− 2β + 1

)∫
M\D

d(ξz, z)
−d+2α+4β−2 dVg(z).

Recall D = Dp(r) and let

Ak = Dp(r + k)\Dp(r + k − 1), k = 1, 2, 3... .

Licensed to Oregon St Univ. Prepared on Thu Dec 18 11:48:29 EST 2014 for download from IP 128.193.163.187.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS 4795

By monotone convergence∫
M\D

d(ξz, z)
−d+2α+4β−2 dVg(z) =

∞∑
k=1

∫
Ak

d(ξz, z)
−d+2α+4β−2 dVg(z)

≤
∞∑
k=1

Vol(Ak)

(r + k − 1)d−2α−4β+2

=

∞∑
k=1

Vp(r + k)− Vp(r + k − 1)

(r + k − 1)d−2α−4β+2
.

Because Ric(M) ≥ 0 we have (see [12] or [9])

Vp(cr) ≤ cdVp(r) ∀ r > 0, c ≥ 1.

Thus

∞∑
k=1

Vp(r + k)− Vp(r + k − 1)

(r + k − 1)d−2α−4β+2
≤

∞∑
k=1

Vp(r + k − 1)
(

(r+k)d−(r+k−1)d

(r+k−1)d

)
(r + k − 1)d−2α−4β+2

≤ C

∞∑
k=1

(r + k − 1)d−2β
(

(r+k)d−(r+k−1)d

(r+k−1)d

)
(r + k − 1)d−2α−4β+2

= C

∞∑
k=1

(r + k)d − (r + k − 1)d

(r + k − 1)d−2α−2β+2
.

The convergence of this last sum is equivalent to that of
∞∑
k=1

kd−1

kd−2α−2β+2
=

∞∑
k=1

k2α+2β−3.

By hypothesis α < 1− β, which implies
∞∑
k=1

k2α+2β−3 <
∞∑
k=1

k−(1+ε) < ∞

for some ε > 0.
To see that hRα does not exist on M for any α, we note that (see e.g. [12])

Ric(M) ≥ 0 ⇒ Ht(x, y) ≥ (4πt)−
d
2 e−

d(x,y)2

4t

for all x, y ∈ M and t > 0. Thus∫ ∞

0

t
d
2+α−1Ht(x, y) dt = ∞

for all x, y ∈ M and any α ∈ (0, 1).
To prove (2), simply write∫ ∞

1

t
d
2+α−1Ht(x, y) dt ≤ C

∫ ∞

1

tα−β−1 dt < ∞.

�

We are now in a position to show that, over Rd, Rα agrees up to a constant with
the fBfα in distribution. We could do this abstractly using arguments along the
lines of Section 3.1, however we can also make a simple explicit calculation. Note
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that Rd satisfies the first hypothesis of Theorem 3.9 with β = 0. Thus Rα exists
there and if we choose o = 0 has covariance

E[Rα
xR

α
y ] =

1

Γ(d2 + α)

∫ ∞

0

t
d
2+α−1(Ht(0, 0)−Ht(x, 0)−Ht(y, 0) +Ht(x, y)) dt.

Proposition 3.10. If M = R
d, then Ht(x, y) = 1√

(4πt)d
e

−‖x−y‖2
4t , and for all

x, y ∈ Rd and for α ∈ (0, 1),

E[Rα
xR

α
y ] = Cα

(
‖x‖2α + ‖y‖2α − ‖x− y‖2α

)
,

where Cα is the positive constant given by

Cα =
−Γ(−α)

4
d
2+α(π)

d
2 Γ(d2 + α)

.

Proof. First note that if either x = 0 or y = 0 the result is trivial; thus we assume
otherwise. The integral defining E[Rα

xR
α
y ] reduces to

1√
(4π)d

∫ ∞

0

tα−1(1− e
−‖x‖2

4t − e
−‖y‖2

4t + e
−‖x−y‖2

4t ) dt,

which we recognize as a Mellin transform. Let Fa(t) = χ[a,∞)(t)−e
−‖x‖2

4t −e
−‖y‖2

4t +

e
−‖x−y‖2

4t with a > 0. Then Fa(t) = O(t−1) as t → ∞ and Fa(t) = o(tN ) as t → 0
∀ N > 0. Thus ∫ ∞

0

ts−1Fa(t) dt

converges absolutely for all s ∈ C with �(s) < 1 and defines an analytic function
there.

On the other hand, for −1 < �(s) < 0 we have by direct calculation that

∫ ∞

0

ts−1Fa(t) dt =
as

s
+

−‖x‖2s − ‖y‖2s + ‖x− y‖2s
4s

Γ(−s).

By analytic continuation this last equality holds for 0 < �(s) < 1 as well. For
such s we have by dominated convergence

∫ 1

0

ts−1F0(t) dt = lim
a→0

∫ 1

0

ts−1Fa(t) dt.

Now for a < 1 ∫ ∞

1

ts−1Fa(t) dt =

∫ ∞

1

ts−1F0(t) dt,
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and so, noting F0(t) ≥ 0, we have using dominated convergence∫ ∞

0

ts−1F0(t) dt =

∫ 1

0

ts−1F0(t) dt+

∫ ∞

1

ts−1F0(t) dt

=

(
lim

a→0+

∫ 1

0

ts−1Fa(t) dt

)
+

∫ ∞

1

ts−1F0(t) dt

= lim
a→0+

(∫ 1

0

ts−1Fa(t) dt+

∫ ∞

1

ts−1F0(t) dt

)
= lim

a→0+

∫ ∞

0

ts−1Fa(t) dt

=
−‖x‖2s − ‖y‖2s + ‖x− y‖2s

4s
Γ(−s).

�

Example 3.11. Suppose M is non-compact with Ric(M) ≥ 0 and

lim
R→∞

Vp(R)

Rd
= θ ∈ (0, 1)

for some p ∈ M (cf. the Bishop-Gromov comparison theorem). Then Rα exists
over M for any α ∈ (0, 1) and hRα does not. Indeed, in [26] it is shown that

Ht(x, y) = O(t−
d
2 ) for every x, y ∈ M . Theorem 3.9 applies once we note that for

all p ∈ M

Ric(M) ≥ 0 ⇒ Vp(R) ≤ ωdR
d ∀R ≥ 0,

ωd being the volume of the unit ball in Rd.

Example 3.12. If M is simply connected with all sectional curvatures K ≤ k for
some k < 0 and Ric(M) ≥ −κ2 > −∞, then hRα exists over M for any α > 0. For
example this holds if M = Hd, a d-dimensional hyperbolic space. This follows from

[27] in which it is shown that σ(−Δ)) ⊂ [(d− 1)2 |k|
4 ,∞), which in turn implies the

following upper bound on Ht (see [13]):

Ht(x, y) ≤ Ce
(d−1)2kt

4 ∀ t ≥ 1

for some C > 0 and all x, y ∈ M . Theorem 3.9 then applies.
In particular for M = H2, letting ρ = d(x, y), we have the well-known formula

Ht(x, y) =

√
2

(4πt)
3
2

e−
1
4 t

∫ ∞

ρ

se−
s2

4t

cosh(s)− cosh(ρ)
ds.

Then

E[hRα
xhR

α
y ] =

√
2

(4π)
3
2Γ (1 + α)

∫ ∞

0

∫ ∞

ρ

tα−
3
2

se−
1+s2

4t

cosh(s)− cosh(ρ)
ds dt.

Remark 3.13. On negatively curved manifolds, hRα can also be viewed as an ex-
tension of fBfα in the following way: In Section 3.1 we saw how the covariance of
fBfα is the integral kernel of the operator A∗A where

A(f) = (−Δ)−( d
4+

α
2 )(f)(x)− (−Δ)−( d

4+
α
2 )(f)(0),

which can be seen as a correction to (−Δ)−( d
4+

α
2 ) when this operator does not

have an integral kernel. However, on manifolds with spectrum as in Example 3.12
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(−Δ)−( d
4+

α
2 ) does have an integral kernel and no correction is needed. So if we

view fBfα as the GRF with covariance that is the kernel of the minimal correction

to (−Δ)−( d
4+

α
2 ) that yields an integral operator, then on such manifolds as above

we obtain hRα.

3.3. Hölder regularity. Having done the analytical work to build our covariances
and check when they exist, we now turn to verifying that these covariances do in fact
define random fields with the desired properties. The first of those properties is in
some ways the most fundamental: Do the corresponding GRF’s define probability
measures on nice function spaces? What we shall see is that if M is compact or a
compact subset of a regular domain or non-compact manifold over which the Riesz
fields exist, then with probability one they have continuous sample paths and thus
they determine probability measures on C(M).

If M is any Riemannian manifold or regular domain with heat kernel Ht(x, y),
then the maximum principle implies

Ht(x, y) ≤ Ht(x, x) ∀x, y ∈ M

with equality if and only if y = x. We then have that

Ht(x, x)− 2Ht(x, y) +Ht(y, y) > 0 ∀ y �= x.

In particular, E[|Rα
x −Rα

y |2] and E[|hRα
x − hRα

y |2] both define metrics on M when
they exist.

Note also that

E[|Rα
x −Rα

y |2] = E[|hRα
x − hRα

y |2]
when both exist. In particular, in the proof below we will not distinguish these two
metrics as the context of the theorem will make clear which is being discussed.

We are now in a position to prove the following:

Theorem 3.14. Let M be a compact Riemannian manifold, a regular domain, or
non-compact under the hypothesis of Theorem 3.4. We then have the following:

(1) If M is compact, then there exists a version, R̃α, of Rα such that with

probability 1 the sample paths of R̃α are uniformly Hölder continuous of
any order γ < α on M , and there exists a dense subset of M such that with
probability 1 the sample paths of R̃α fail to be Hölder continuous at these
points for any γ > α.

(2) If M is a regular domain or non-compact under the hypothesis of Theorem

3.9, then for any compact set K ⊂ M there exists a version, R̃α, of Rα

such that with probability 1 the sample paths of R̃α are uniformly Hölder
continuous of any order γ < α on K, and there exists a dense subset of
K such that with probability 1 the sample paths of R̃α fail to be Hölder
continuous at these points for any γ > α.

Proof. In order to apply Theorem A.4 in the appendix we need to compare the
metric E[|Rα

x − Rα
y |2] (resp. E[|hRα

x − hRα
y |2]) on (M, g) with the metric d(x, y)

derived from g, in particular study the boundedness of

(3.7)
E[|Rα

x −Rα
y |2]

(d(x, y))2γ

for d(x, y) small and γ ∈ (0, 1). What we will show is that this ratio is unbounded
if γ > α and approaches zero if γ < α.
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Our approach to controlling (3.7) will be to split the integral defining
E[|Rα

x −Rα
y |2] into two parts:∫ ∞

0

t
d
2+α−1(Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

=

∫ 1

0

t
d
2+α−1(Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt(3.8)

+

∫ ∞

1

t
d
2+α−1(Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt.(3.9)

We start with (3.8). Recall that in any case around any point p there is a closed
disk Dp such that (2.1) holds with Φ ∈ Ck(Dp ×Dp × [0, T ]) where we can choose
k > 2 and T > 0.

As a consequence we have, denoting the integral (3.8) by I1 and d(x, y) by ρ,

(3.10) I1 = (4π)−
d
2

∫ 1

0

tα−1(Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y)e−
ρ2

4t ) dt.

Because Φ ∈ Ck(Dp ×Dp × [0, T ]) with k > 2 and is symmetric, by Lemma A.1 in
the appendix,

Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y) = O(ρ2) as ρ → 0

uniformly for t ∈ [0, 1]. Thus we have∫ 1

0

tα−1(Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y)e−
ρ2

4t ) dt

= 2

∫ 1

0

tα−1Φ(t, x, y)(1− e−
ρ2

4t ) dt

+

∫ 1

0

tα−1(Φ(t, x, x) + Φ(t, y, y)− 2Φ(t, x, y)) dt

= 2

∫ 1

0

tα−1Φ(t, x, y)(1− e−
ρ2

4t ) dt+O(ρ2).

Because

lim
x→y

∫ 1

0

tα−1Φ(t, x, y)(1− e−
ρ2

4t ) dt = lim
x→y

ρ2α
∫ ρ−2

0

tα−1Φ(ρ2t, x, y)(1− e−
1
4t ) dt

and

lim
x→y

∫ ρ−2

0

tα−1Φ(ρ2t, x, y)(1− e−
1
4t ) dt < ∞,

(3.11) I1 = O(ρ2α) = O(d(x, y)2α) as d(x, y) → 0

for x, y ∈ Dp.
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For (3.9), which we denote I2, we first deal with the case of M compact. Using
(2.2) we have for t ≥ 1

Ht(x, x)− 2Ht(x, y) +Ht(y, y) =
∞∑
k=0

e−λkt|φk(x)− φk(y)|2

=
∞∑
k=1

e−λkt|φk(x)− φk(y)|2

≤ d(x, y)2
∞∑
k=1

e−λkt‖∇φk‖∞.

Now we apply the following bound on ‖∇φk‖∞ (see [30]):

‖∇φk‖∞ ≤ CMλ
d+1
4

k ,

where CM is a constant depending only on M . We then have

Ht(x, x)−2Ht(x, y)+Ht(y, y) ≤ CMd(x, y)2
∞∑
k=1

e−λktλ
d+1
4

k = CMd(x, y)2O
(
e−λ1t

)
,

which yields

(3.12) I2 ≤ CMd(x, y)2
∫ ∞

1

t
d
2+α−1O

(
e−λ1t

)
dt = Cd(x, y)2

as λ1 > 0.
If M is a regular domain, then by a similar argument using the corresponding

bound (see [32])

‖∇φk‖∞ ≤ CMλ
d+1
4

k

for the Dirichlet eigenfunctions on M we obtain (3.13) in this case as well. Thus
for either M compact or a regular domain

I2 = O
(
d(x, y)2

)
as d(x, y) → 0.

Turning now to the case ofM non-compact, first suppose that the first hypothesis
of Theorem 3.9 is in force. As in that proof we have, for x, y contained in a
sufficiently small geodesic disc,∫ ∞

1

t
d
2+α−1 (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

=

∫ ∞

1

t
d
2+α−1

∫
M

|Ht(x, z)−Ht(y, z)|2 dVg(z) dt

≤ d(x, y)2
∫ ∞

1

t
d
2+α−1

∫
M

|∇xHt(ξz, z)|2 dVg(z) dt,

which was shown to be finite.
Next suppose the second hypothesis holds. For this case we will use a Schauder

estimate and Lemma A.1: We choose a geodesic disc Dp and let L be Δ in geodesic
normal coordinates on Dp, D = exp−1(Dp), P = ∂t − L on C∞(D × (0, 1)), and
u(x′, y′, t) ∈ C∞(D × D × (0, 1)) be Ht(x, y) in our chosen coordinates. For any
T > 0 we then have

Pu(x′, y′, t+ T ) = ∂tu(x
′, y′, t+ T )− Lx′u(x′, y′, t+ T ) = 0
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FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS 4801

for all x′, y′, t ∈ D × D × (0, 1/2). In other words, u satisfies Pu(x′, y′, t) = 0 on
D× (T, T + 1/2) for each y′ ∈ D and T > 0.

Because L is uniformly elliptic on D and its coefficients are all C∞ (and indepen-
dent of T , t), using the Schauder estimate (Theorem 5, p. 64 in [15] and choosing
α = 1) we obtain for each closed disk Dr contained in D a constant Kr > 0 such
that

sup
(x′,t)∈Dr×(0,1/2)

∣∣∣∣∣ ∂2u

∂x′
ix

′
j

(x′, y′, t+ T )

∣∣∣∣∣ ≤ Kr sup
(x′,t)∈Dr×(0,1/2)

|u(x′, y′, t+ T )|

for each i, j and y′ ∈ Dr. We then have

sup
(x′,y′,t)∈Dr×Dr×(0,1/2)

∣∣∣∣∣ ∂2u

∂x′
ix

′
j

(x′, y′, t+ T )

∣∣∣∣∣
≤ Kr sup

(x′,y′,t)∈Dr×Dr×(0,1/2)

|u(x′, y′, t+ T )|.

We note that Kr is independent of T and by our hypothesis sup(x,y)∈Dp×Dp
Ht(x, y)

≤ Ct−( d
2+β), β > 0. Thus, returning to Dr = exp (Dr), for all T > 1

sup
(x,y,t)∈Dr×Dr×(0,1/2)

∣∣∣∣ ∂2H

∂xixj
(x, y, t+ T )

∣∣∣∣ ≤ CKrT
−( d

2+β).

Then applying Lemma A.1 and assuming without loss of generality that we have
chosen our disc Dp such that the above estimates hold, we have∫ ∞

1

t
d
2+α−1 (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

≤ Cd(x, y)2
∫ ∞

1

t
d
2+α−1 sup

Dp×Dp

∣∣∣∣∣∣
d∑

i,j=1

∂2H

∂xi∂xj
(t, x, y)

∣∣∣∣∣∣ dt
≤ Cd(x, y)2

∫ ∞

1

t
d
2+α−1(t− 1/2)−( d

2+β) dt

for some C > 0. By hypothesis β > 0, so
∫∞
1

t
d
2+α−1(t−1/2)−( d

2+β) dt < ∞. Lastly
recall that when hRα exists for α ∈ (0, b) for some b > 0, then Rα does as well.
Moreover in that case

E[|Rα
x −Rα

y |2] = E[|hRα
x − hRα

y |2],
so in the second case of Theorem 3.9 the arguments above apply to Rα as well.

Thus in each case from the preceeding discussion we know that for each p ∈ M
there exists a closed disc Dp centered at p such that for all γ ≤ α,

E[|Rα
x −Rα

y |2] ≤ Cp(d(x, y)
2γ)

for some constant Cp > 0 and all x, y ∈ Dp and that such a condition fails for any
γ > α in light of (3.11). Then if M is compact or K is a compact subset of M ,
there exists a constant C > 0 such that for all γ ≤ α,

E[|Rα
x −Rα

y |2] ≤ Cd(x, y)2γ

for all x, y ∈ M (resp. x, y ∈ K). Then by Theorem A.4 in the appendix there is
a version of Rα that is almost surely uniformly Hölder continuous over M (resp.
K) of order γ for any γ < α. Moreover, from the discussion following Theorem
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4802 ZACHARY A. GELBAUM

A.4 there is a dense subset of M (resp. K) on which Rα fails to satisfy any Hölder
condition of order γ for any γ > α with probability 1. By the remarks preceding
the theorem the same holds for hRα, when it exists. �

Remark 3.15. From the proof above we see that

lim
x→y

E[|Rα
x −Rα

y |2]
d(x, y)2α

= lim
x→y

∫ d(x,y)−2

0

tα−1Φ(d(x, y)2t, x, y)(1− e−
1
4t ) dt,

and thus the exact comparison between the Riemannian metric of M and the metric
induced by Rα depends on the local geometry of M , in particular on the comparison
with the Euclidean heat kernel contained in Φ(t, x, y).

Remark 3.16. It would be desirable in the case of regular domains to extend con-
tinuity to the closure of M . However the local Euclidean approximation of the
heat kernel is not uniform near the boundary of M and so some other method of
proof seems necessary. On the other hand it is easy to show that for any sequence

(xk
1 , . . . , x

k
n) that approaches the boundary of M , P (‖(hRα

xk
1
, . . . , hRα

xk
n
)‖ > ε)

k→ 0

for any ε > 0. This combined with the existence of a continuous version as close
as we like to the boundary seems sufficient for most applications, at least from the
point of view of simulation.

3.4. Distributional scaling and invariance.

3.4.1. Stationarity.

Definition 3.17. Let (M, g) be a complete Riemannian manifold and I(M) the
group of isometries of (M, g). If Yx is a centered GRF over (M, g) we say that Yx

is stationary (or homogeneous) if

E[Yι(x)Yι(y)] = E[YxYy]

for any ι ∈ I(M) and all x, y ∈ M . We say Yx has stationary (or homogeneous)
increments if

E[|Yι(x) − Yι(y)|2] = E[|Yx − Yy|2]

for any ι ∈ I(M) and all x, y ∈ M .

Because for any manifold (M, g) we have Ht(ι(x), ι(y)) = Ht(x, y) for any ι ∈
I(M) (see [19], Theorem 9.12), it is clear from the definitions,

E[Rα
xR

α
y ] =

1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1 (Ht(x, y)−Ht(x, o)−Ht(y, o) +Ht(o, o)) dt

and

E[hRα
xhR

α
y ] =

1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1Ht(x, y) dt,

that when they exist, Rα and hRα have stationary increments and are stationary
respectively.
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3.4.2. Self-similarity. Turning to self-similarity, let us first recall how this property
is defined for random fields on Euclidean space: If Yx is a random field over Rd,

then Yx is self-similar of order α > 0 if cαY 1
cx

d
= Yx. The Euclidean fractional

Brownian field fBfα is self-similar of order α, and we want to extend this property
to manifolds. To do this we must define an operation that extends the scaling
operation on Rd, x �→ cx. This operation scales the distance between any two
points by c > 0:

‖x− y‖ �→ ‖cx− cy‖ = c‖x− y‖,
or written another way,

d(x, y) �→ cd(x, y).

Viewing R
d as a manifold, we see that this is equivalent to scaling the Riemannian

metric (gij) = (δij) of R
d by c2:

d∑
i,j=1

xixjgij =
d∑

i=1

x2
i = ‖x‖2 �→ c2‖x‖2 =

d∑
i,j=1

xixjc
2gij .

Thus a natural definition of scaling for a manifold M is to simply scale the metric
as above. Indeed, if M is an embedded submanifold of Rd with induced metric gM ,
then scaling the ambient space R

d results in the induced scaling on M :

gM �→ c2gM .

Of course, we’d like a definition of scaling that is intrinsic to the manifold in ques-
tion, i.e., independent of any ambient Euclidean space, but that also agrees with
the scaling induced by scaling any ambient space. If we take the above operation
as the definition of scaling for a general manifold M , we achieve this goal.

We are thus ready to prove that the Riesz fields are self-similar.

Proposition 3.18. Let (M, g) be a complete Riemannian manifold or regular do-
main. Both the Riesz field Rα and the stationary Riesz field hRα over (M, g) are
self-similar of order α (if they exist on M) in the sense that if R̄α and hR̄α are the
Riesz fields over (M, c2g), then

cαRα
x

d
= R̄α

x

and

cαhRα
x

d
= hR̄α

x

for any c > 0.

Proof. First we note from the coordinate expression for Δ, if we denote by Δg the
Laplacian of (M, g) and Hg

t (x, y) the corresponding heat kernel, we have Δc2g =
1
c2Δg. But then because L2(M,dVg) = L2(M,dVc2g) we can write∫

M

cdHc2g
t (x, y)f(y) dVg(y) =

∫
M

Hc2g
t (x, y)f(y) dVc2g(y)

= e−tΔc2g(f)

= e−
t
c2

Δg (f)

=

∫
M

Hg
t
c2
(x, y)f(y) dVg(y)
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for any f ∈ L2(M,dVg). Thus by symmetry

1

cd
Hg

t
c2
(x, y) = Hc2g

t (x, y) ∀x, y ∈ M.

We then have

c2αE[Rα
xR

α
y ] =

c2α

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1

× (Hg
t (x, y)−Hg

t (o, x)−Hg
t (o, y) +Hg

t (o, o)) dt

=
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1 1

cd

×
(
Hg

t
c2
(x, y)−Hg

t
c2
(o, x)−Hg

t
c2
(o, y) +Hg

t
c2
(o, o)

)
dt

=
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1

×
(
Hc2g

t (x, y)−Hc2g
t (o, x)−Hc2g

t (o, y) +Hc2g
t (o, o)

)
dt

= E[R̄α
x R̄

α
y ],

and similarly for hRα. �

Remark 3.19. Here we see that hRα exhibits essentially non-Euclidean phenomena;
on R

d there cannot exist a GRF that is both stationary and self-similar (see e.g.
[3]). We will return to the questions that this raises in Section 5.

3.4.3. Uniqueness. We now come to a natural question: Are the Riesz fields the
only fields with stationary increments that are also self-similar? In other words,
does requiring stationarity and self-similarity as above uniquely determine a GRF
over a given manifold M? To answer this we examine an example, M = S

1, which
we normalize to have total volume 2π. Using the expansion of Section 3.2.1 we have

Rα(x)
d
=

∑
k∈Z\{0}

1√
2π

|k|− 1
2−α(eikx − 1)ξk.

In [21] the author constructs a GRF, denoted Rα, with the covariance

1

2
(d(x, 0)2α + d(y, 0)2α − d(x, y)2α).

In particular it is shown that

Rα(x)
d
=

∑
k∈Z\{0}

dk(e
ikx − 1)ξk,

where

dk =

√
−
∫ |k|π
0

u2α cos(u)du
√
2π|k| 12+α

.

Note however that for α = 1
2 ,

dk =

{
0 k even,

(
√
π|k|)−1 k odd.
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Thus

R 1
2
(x) =

∑
k∈Z\{0}

1√
π
|2k + 1|−1(ei(2k+1)x − 1)ξk

and √
2R

1
2 (x) =

∑
k∈Z\{0}

1√
π
|k|−1(eikx − 1)ξk.

We then find that

E[|
√
2R

1
2 (x)|2]− E[|R 1

2
(x)|2] =

∞∑
k=−∞

1

π
|2k|−2|ei2kx − 1|2,

which is not identically zero. As their variances are not identical, these two fields are
not equal in distribution. However it is easy to see that both fields have stationary
increments and are self-similar of order 1/2.

Thus even in the simple case of S1 we do not have uniqueness, and so in general
the Riesz fields are not the only GRF’s that are self-similar with stationary incre-
ments over a given manifold M . It then remains an open question to determine
the general form of the covariance of a GRF with stationary increments that is also
self-similar over a given manifold other than Rd.

4. The Bessel field

We now turn to constructing stationary counterparts to Rα by analogy with the
Brownian motion and Ornstein-Uhlenbeck processes on R. We define the Bessel
Field of order α ∈ (0, 1) by

(4.1) Bα
x

d
=

1

Γ
(
d
4 + α

2

) ∫
M

∫ ∞

0

t
d
4+

α
2 −1e−tHt(x, z) dt dW (z),

which extends the Ornstien-Uhlenbeck fields with covariance given (up to a con-
stant) by ∫

Rd

ei〈x,y〉

(1 + |ξ|2) d
2+α

dξ.

These fields are altogether more well behaved than the Riesz fields, which is not
surprising in light of the analogy with the Riesz and Bessel potentials.

Theorem 4.1. The Bessel field exists over any complete Riemannian manifold or
regular domain M for all α ∈ (0, 1).

Proof. Proceeding as for hRα, for each x, y ∈ M ,

E[Bα
xB

α
y ] =

(
1

Γ
(
d
4 + α

2

))2 ∫
M

∫ ∞

0

t
d
4+

α
2 −1e−tHt(x, z) dt

×
∫ ∞

0

s
d
4+

α
2 −1e−sHs(y, z) ds dVg(z)

=

(
1

Γ
(
d
4 + α

2

))2 ∫ ∞

0

∫ ∞

0

t
d
4+

α
2 −1s

d
4+

α
2 −1e−(t+s)Ht+s(x, y) dt ds

=
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α−1e−tHt(x, y) dt.(4.2)
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4806 ZACHARY A. GELBAUM

From the fact that the heat kernel always satisfies limt→∞ Ht(x, y) < ∞ for any x
and y, we see that (4.2) converges everywhere on M ×M . �

Clearly Bα
x is stationary and we can see that it does not possess the scaling prop-

erties of the Riesz fields. Turning to sample path regularity we have the following
result.

Theorem 4.2. The Bessel field Bα has a version with sample paths almost surely
uniformly Hölder continuous of order γ for any γ < α and almost surely failing to
satisfy a Hölder condition of order γ for any γ > α on a dense subset of M .

Proof. Split the integral

E[|Bα
x −Bα

y |2] =
1

Γ
(
d
2 + α

) ∫ ∞

0

t
d
2+α2−1e−t (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

=
1

Γ
(
d
2 + α

) (I1 + I2),

where

I1 =

∫ 1

0

t
d
2+α2−1e−t (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt

and

I2 =

∫ ∞

1

t
d
2+α2−1e−t (Ht(x, x)− 2Ht(x, y) +Ht(y, y)) dt,

and argue as in Theorem 3.14. �

5. Conclusion and further work

5.1. Existence and uniqueness. Using a spectral theoretic approach we have
constructed analogues of the fractional Brownian fields over arbitrary compact man-
ifolds and a wide class of non-compact manifolds. There are still many questions
remaining. For example, in light of the non-uniqueness result in Section 3.4.3, one
could ask how many different such fields there are over any given manifold. One
could also attempt to determine the general form the covariance of such objects
must take.

We also saw in Example 3.7 that Rα does not exist on S
1 ×R (with the product

metric) for α > 1/2. This raises the following question: Does there exist any
Gaussian field over S1 × R with stationary increments that is also self-similar of
order α for some α ∈ (1/2, 1)? More generally, are there geometric conditions that
ensure a given manifold can have such a field defined over it?

We conjecture that it is possible to construct such fields over any manifold M
in the following way: Somewhat informally, the Riesz fields are solutions to the
stochastic equation

(−Δ)
d
4+

α
2 X = W,

where W is Gaussian white noise over M and Δ is the Laplacian of M with certain
“boundary conditions”, i.e., with its domain restricted to include only functions f
such that f(o) = 0 for some fixed point o ∈ M . As we saw, for example, in the
case of compact manifolds, this restriction of the domain led to the existence of a
continuous integral kernel for the corresponding inverse, and it seems plausible that
in general we could always obtain such a kernel through restricting the domain of
Δ by determining a sufficient number of derivatives of f ∈ Dom(Δ) at the point o.
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FRACTIONAL BROWNIAN FIELDS OVER MANIFOLDS 4807

Of course finding an explicit expression for such a kernel may be very difficult in
general.

5.2. Restriction to submanifolds. There is one aspect of this theory we did not
touch upon, that being the behavior of our fields when restricted to geodesics and
more general submanifolds. One thing we can say is that for a given manifold M ,
following the discussion of self-similarity and dilation in Section 3.4, the Riesz fields
over M when restricted to an embedded submanifold N determine self-similar fields
over N . Also, being embedded, the isometry group of N determines a (possibly
trivial) subgroup of the general isometry group of the M . However, the result-
ing restricted field may be stationary or have stationary increments (for example,
consider the fBfα over Rd restricted to Sd−1). Moreover, as we already saw, sta-
tionarity and self-similarity alone do not uniquely determine a GRF in general, and
so we cannot say that Rα over M when restricted to a submanifold N agrees with
Rα over N .

While we have avoided symmetry hypothesis in our treatment, when dealing with
invariance properties involving isometry groups one is naturally led towards general
harmonic analysis, and it would be interesting to study GRF’s over manifolds from
this point of view. For example, one could consider GRF’s that are only stationary
with respect to a subgroup of the entire isometry group, analogous to GRF’s over
Rd that are only rotationally invariant (so-called isotropic random fields).

One property of the Euclidean fractional Brownian fields (or more generally
any GRF that is self-similar with translation invariant increments) is that when
restricted to lines through the origin they agree with the usual fractional Brownian
motion, up to a constant. One could then ask if this holds more generally. For
example one could require that a field over M when restricted to infinite geodesics
becomes a fractional Brownian motion. This would require a subgroup of the
isometry group of M that is restricted to translation of the given geodesic. Of
course, in general geodesics may be closed or infinite. Again, one could study such
questions from a general harmonic analytic point of view.

5.3. Hyperbolic GRF’s. We also mentioned above that the existence of hRα

raises interesting questions regarding negatively curved manifolds and what we
could loosely call hyperbolic Gaussian random fields. For example, although the
proof of existence of hRα over Hd uses properties of the heat kernel, one can ask if
there are more geometric or topological conditions one can put on a manifold M to
ensure the existence of some self-similar and stationary GRF. Conversely, one can
ask what are the implications of such a field existing over M . Is hRα the only such
field or are there others?

The above is only a first attempt to state some questions at the intersection of
geometry and probability that, at least on the face of it, seem novel and interesting;
doubtless there are others. The study of random fields over manifolds, although its
history is not short, seems to the author to still be wide open. It is our hope that
the work here and the questions raised above will be of interest to both researchers
in geometry or geometric analysis and probabilists and lead to further interaction
between the two.

Appendix A

First we record the following lemma involving Taylor approximation.

Licensed to Oregon St Univ. Prepared on Thu Dec 18 11:48:29 EST 2014 for download from IP 128.193.163.187.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4808 ZACHARY A. GELBAUM

Lemma A.1. Let M be complete and suppose f ∈ C∞(M × M) is symmetric.
Around any point p ∈ M there exists a closed geodesic disk Dp centered at p and a
constant Cp > 0 such that

|f(x, x)− 2f(x, y) + f(y, y)| ≤ Cpd(x, y)
2 sup
Dp×Dp

∣∣∣∣∣∣
d∑

i,j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣
for all x, y ∈ Dp.

Proof. Let F ∈ C2(Rd) and recall Taylor’s Theorem: for each p ∈ Rd and all
x ∈ Rd,

F (x) = F (p) +
d∑

i=1

∂F

∂xi
(p)(xi − pi)

+
d∑

i,j=1

(xi − pi)(xj − pj)
2

1 + δij

∫ 1

0

(1− t)
∂2F

∂xi∂xj
(p+ t(x− p))dt.

Now let f ∈ C2(Rd × Rd) and f(x, y) = f(y, x). Fix x, y ∈ Rd. Then letting
p = (x, y), from the symmetry of f we have

f(x, x)−2f(x, y) + f(y, y)

=
d∑

i,j=1

(xi − yi)(xj − yj)

∫ 1

0

(1− t)
∂2f

∂xi∂xj
(x+ t(y − x), x)dt

+

d∑
i,j=1

(xi − yi)(xj − yj)

∫ 1

0

(1− t)
∂2f

∂xi∂xj
(y + t(x− y), y)dt

=

∫ 1

0

d∑
i,j=1

(xi − yi)(xj − yj)(1− t)

(
∂2f

∂xi∂xj
(x+ t(y − x), x)

+
∂2f

∂xi∂xj
(y + t(x− y), y)

)
dt

= c

d∑
i,j=1

(xi − yi)(xj − yj)

(
∂2f

∂xixj
(x+ θ1, x) +

∂2f

∂xixj
(y + θ2, y)

)
for some constant c > 0 and θk ∈ R

d with ‖θk‖Rd < ‖x − y‖Rd . In particular, for
x, y in a closed disk Dε of radius ε > 0 we have

|f(x, x)− 2f(x, y) + f(y, y)| ≤ C1‖x− y‖2
Rd sup

Dε×Dε

∣∣∣∣∣∣
d∑

i,j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣
for some C1 > 0.

Now suppose f ∈ C∞(M × M) is symmetric and let Dp be a geodesic disk
centered at p ∈ M . Then the above implies

(A.1) |f(x, x)− 2f(x, y) + f(y, y)| ≤ C2d(x, y)
2 sup
Dp×Dp

∣∣∣∣∣∣
d∑

i,j=1

∂2f

∂xi∂xj

∣∣∣∣∣∣
for all x, y ∈ Dp. �
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A.1. Continuity of Gaussian random fields. Here we provide analogues of
results given for Gaussian fields over Rd in the setting of manifolds. These proofs
are simple modifications of the originals and we include them for convenience. The
first result is an analytical lemma, given for hypercubes in Rd. We will replace the
cubes with metric disks and Rd by a d-dimensional manifold M . Let p be even and
continuous on [−1, 1], p(|x|) monotone increasing, and satisfy limx→0 p(x) = 0.

Lemma A.2 (Manifold version of Lemma 1 in [17]). Let f ∈ C(I0) where I0 ⊂ M
is compact, has non-empty interior, and has no isolated points. Suppose that∫

D

∫
D

exp

(
f(x)− f(y)

p(diam(D))

)2

dx dy ≤ B

for all closed metric disks D ⊂ I0. Then for some C > 0

|f(x)− f(y)| ≤ 8

∫ d(x,y)

0

√
log(BCu−2d) dp(u)

for all x, y ∈ I0.

Proof. Fix x, y ∈ I0. Then choose a sequence of disks Dk = {z ∈ M : d(z, x) < rk}
such that Dk ⊂ I0, 2r1 ≤ d(x, y), rk → 0, and if dk = 2rk we have

p(dk) =
1

2
p(dk−1).

Let fDk
= Vol(Dk)

−1
∫
Dk

f dV . We apply Jensen’s inequality to obtain

exp

(
fDk

− fDk−1

p(dk−1)

)2

≤ [Vol(Dk)Vol(Dk−1)]
−1

∫
Dk

∫
Dk−1

exp

(
f(x)− f(y)

p(dk−1)

)2

dV (x) dV (y)

≤ B[Vol(Dk)Vol(Dk−1)]
−1.

We then have

(A.2) |fDk
− fDk−1

| ≤ p(dk−1)
√
log(B[Vol(Dk)Vol(Dk−1)]−1).

By the definition of Dk we have

p(dk−1) = 4[p(dk)− p(dk+1)].

Then because

Vol(Dk) = O
(
(dk)

d
)

as k → ∞,

∃ C > 0 such that

Vol(Dk) ≥ C(dk)
d

so that dk+1 ≤ u ≤ dk ⇒ u−2d ≤ C[Vol(Dk)Vol(Dk−1)]
−1. Then we can write

(4.1) as

|fDk
− fDk−1

| ≤ 4

∫ dk

dk+1

√
log(BCu−2d) dp(u).

Summing these and using continuity of f we get

|f(x)− fD1
| = lim

k→∞
|fDk

− fD1
| ≤ 4

∫ d2

0

√
log(BCu−2d) dp(u).

Licensed to Oregon St Univ. Prepared on Thu Dec 18 11:48:29 EST 2014 for download from IP 128.193.163.187.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4810 ZACHARY A. GELBAUM

Now d2 < d(x, y), so if we need to we can replace B by a larger bound to ensure
that the integrand is defined, and after doing so we have

|f(x)− fD1
| ≤ 4

∫ d(x,y)

0

√
log(BCu−2d) dp(u).

The argument is symmetric in x and y, so an application of the triangle inequality
yields the conclusion. �

Suppose now we are given a (centered) Gaussian random field Xx over (M, g)
and consider its restriction to a compact set I0 as above. Suppose further that the
function K(x, y) = E[XxXy] is continuous on I0 × I0. Then K(x, y) determines a
positive trace class integral operator on L2(I0, dVg), and by Mercer’s theorem we
have

K(x, y) =

∞∑
k=0

λkφk(x)φk(y)

uniformly on I0 × I0, where λk and φk are the eigenvalues and eigenfunctions of K
respectively.

Let p(u) = sup{
√
E[|Xx −Xy|2] : d(x, y) ≤ |u|} and Xn

x =
∑n

k=0

√
λkφk(x)θk

where the θk are independent standard normal random variables.
We then have the following adaptation of Garsia’s theorem to the manifold set-

ting:

Theorem A.3 (Manifold version of Theorem 1 in [17]). Suppose that for x, y ∈ I0
as above, ∫ diam(I0)∧1

0

√
− log(u) dp(u) < ∞.

Then with probability 1

|Xm
x −Xm

y | ≤ 1

8

∫ d(x,y)

0

√
log(BCu−2d) dp(u),

where C > 0 and

sup
m

∫
I0

∫
I0

exp
1

4

(
Xm

x −Xm
y

p(d(x, y))

)2

dV (x) dV (y) ≤ B < ∞

almost surely. In particular, the partial sums Xm
x are almost-surely equicontinuous

and uniformly convergent on I0.

Proof. Let

Pn = exp
1

8

(
Xn

x −Xn
y

p(d(x, y))

)2

= Pn−1exp
1

8

(
(Y n(x, y))2 − 2Y n(x, y)(Xn−1

x −Xn−1(y))

p(d(x, y))

)2

,
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where Y k(x, y) =
√
λk(φk(x) − φk(y))θk. Then by independence of the θk and

Jensen’s inequality for conditional expectation,

E[Pn+1 |Pn, ..., P1 ]

= Pn

⎛⎝E

⎡⎣exp
1

8

(
Xn+1

x −Xn+1
y

p(d(x, y))

)2
∣∣∣∣∣∣Pn, ..., P1

⎤⎦⎞⎠
≥ Pnexp

1

8

(
E

[(
(Y n+1(x, y))2 − 2Y n+1(x, y)(Xn−1

x −Xn−1(y))

p(d(x, y))

)∣∣∣∣Pn, ..., P1

])2

= Pnexp
1

8

(
E

[(
(Y n+1(x, y))2

p(d(x, y))

)∣∣∣∣Pn, ..., P1

])2

≥ Pn a.s.

Thus {Pn} is a submartingale. Next note that E[P 2
n ] ≤

√
2, as

Xn
x −Xn

y

p(d(x, y))

is centered, Gaussian, and has variance less than or equal to one. Then applying
the classical submartingale inequalities we have

E[max
m≤n

P 2
m] ≤ 4E[P 2

n ] ≤ 4
√
2.

Applying the Fubini-Tonelli theorem we then have

E

(∫
I0

∫
I0

max
m≤n

exp
1

4

(
Xn

x −Xn
y

p(d(x, y))

)2

dV (x) dV (y)

)
≤ 4

√
2 (V (I0))

2 .

Letting n tend to infinity and applying monotone converge yields

E[B] ≤ 4
√
2 (V (I0))

2 < ∞.

We then have that almost surely∫
I0

∫
I0

exp
1

4

(
Xn

x −Xn
y

p(d(x, y))

)2

dV (x) dV (y) ≤ B < ∞ ∀n

so that Lemma A.2 applies.
Lastly, note that from

E

[ ∞∑
k=0

λkθ
2
k

]
=

∞∑
k=0

λk =

∫
I0

K(x, x) dV (x) < ∞

we obtain with probability one

∞∑
k=0

λkθ
2
k < ∞,

which together with the conclusion of Lemma A.2 implies the almost sure uniform
convergence of {Xn

x } on I0. �

As remarked in [17] this result gives a sufficient condition for the existence of
an almost surely continuous version of Xx. The next result establishes Hölder
continuity.
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4812 ZACHARY A. GELBAUM

Theorem A.4 (Manifold version of Thm 8.3.2 in [1]). Let the field X over I0 ⊂ M
be as above and let γ = sup{β : E[|Xx − Xy|2] = o(d(x, y)2β) uniformly on I0}.
Then there exists a version of X with sample paths that are almost surely uniformly
Hölder continuous over I0 of any order β < γ.

Proof. Let ρ = d(x, y). First note that, with p(u) as above, we have for any L > 0∫ ∞

L

p(e−x2

) dx ≤ cε

∫ ∞

L

e−(γ−ε)x2

dx < ∞

for any 0 < ε < γ and some constant cε. But this is equivalent to∫ diam(I0)∧1

0

√
− log(u) dp(u) < ∞.

Thus by the previous result we have a version (which we also denote by X) for
which

|Xx −Xy| ≤ Bp(ρ) + C

∫ ρ

0

√
− log(u) dp(u) a.s.

for some constant C > 0 and some positive random variable B almost surely finite.
Now for any 0 < ε < γ we have some constant Cε > 0 such that p(ρ) < Cερ

γ−ε,

and similarly
∫ ρ

0

√
− log(u) dp(u) < C ′

ερ
γ−ε for some C ′

ε > 0. Thus, with probability
1, for each ε > 0 there is an almost surely finite positive random variable Aε such
that

|Xx −Xy| ≤ Aεd(x, y)
γ−ε ∀x, y ∈ I0.

�

Note that we can also show under the hypotheses of the theorem that in any
disk of positive radius in I0 the sample paths of X fail to be uniformly Hölder of
any order greater than γ. Indeed,

Xx −Xy

d(x, y)γ+ε

is a centered Gaussian random variable with variance O(d(x, y)−
ε
2 ) and thus be-

comes almost surely unbounded as x → y. For example, we can pick any countable
dense subset of I0 and modify X on a set of measure zero to obtain the failure of
Hölder continuity at each point in the set. Any stronger converse statement will
require more refined tools, i.e., local times, which we will not attempt to develop
here.

Remark A.5. We mention here that the results in [29], of which the author became
aware after submission of the present article, may be an alternative to the results
above for establishing sample path continuity in Theorem 3.14.
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