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A Specialized ATMS for Equivalence Relations

Chapter 1

Introduction

1.1 Simple Equality Reasoning

Consider the following reasoning problem. Given equality assertions of the form

x = y, where x and y are either Skolem constantslor ordinary constants, compute

the symmetric and transitive closure of the equality relation, detect contradictions

among the assertions, and answer queries of the form "Is the equality x = y true?".

This problem has a long history in computer science, beginning with the need

to implement the EQUIVALENCE and COMMON declarations for a FORTRAN

compiler [Arden, Gal ler, & Graham, 1961]. An EQUIVALENCE or a COMMON

declaration in a FORTRAN program requires the compiler to form an equivalence

class among the variables given in the declaration. The best known solution to

this reasoning problem involves representing equivalence classes (sets of constants

known to be equal to one another) as trees spanning from a chosen variable (the

class representative) to the other members of the class by applying the UNION-

FIND algorithm [Gal ler & Fisher, 1964]. Then, to reduce the cost of the FIND

operation, the path compression algorithm is applied [Aho, Hoperoft, & Ullman,

1974].

1See Appendix A for definitions of all technical terms appearing in this thesis.



1.2 Equality Reasoning Under Multiple Contexts

In this thesis, we are interested in solving the more general problem of reasoning

with equality under multiple contexts. Informally, this problem is analogous to

compiling several FORTRAN programs simultaneously when these programs share

some EQUIVALENCE statements but not others. Each program corresponds to a

context, and the goal is to record all of the EQUIVALENCE statements in a single

database while keeping track of which statements belong together.

To define the problem formally, we must first introduce the concepts of as-

sumptions, environments, and contexts. In any problem solving system, there are

two kinds of facts that must be recorded: premises and derived facts. Premises are

given to the system from some external source, while derived facts are computed by

the system from the premises. For example, suppose an equality reasoning system

is given the premises x = 1 and y = x. By applying the axioms of equality, the

system might then infer that y = 1.

In the multiple-context reasoning problem, some of the premises can be de-

clared to be assumptions. Each assumption is assigned a unique atomic symbol

(usually an upper-case letter). For example, the premise x = 1 could be declared

to be an assumption and assigned the symbol A. Similarly, the premise y = x

could be declared to be an assumption and assigned the symbol B. The problem of

reasoning under multiple contexts is to maintain, for each derived fact, information

concerning the assumptions that it depends upon. In this case, the derived fact

y = 1 depends on assumptions A and B. In general, when a new fact is derived, the

assumptions that it depends upon ({A, B}) can be computed simply by taking the

set union of the assumptions of the facts from which it was derived ({A} U {B}).

Assumptions can be used to investigate alternative sets of beliefs. For exam-

ple, we can introduce a premise such as x = 2 and declare it as assumption C. Now

the reasoning system will infer that y = 2 under assumptions B and C. The reason-

ing system will also notice that assumptions A and C are mutually contradictory,

because x cannot simultaneously be equal to 1 and to 2.
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An environment is a set of assumption symbols, such as {A, B} . Another

way of describing the state of the reasoning system at this point would be to say

that the fact x = 1 is true in environment {A}, y = x is true in environment {B} ,

y = 1 is true in environment {A, B}, and so on. The environment {A, C} is said to

be a nogood environment, because it is contradictory.

A context is the set of all facts that are believed in a given environment. In

the environment {A, B}, for example, the facts believed include x = 1, y = x, and

y = 1. In the environment {B ,C}, the facts believed include x = 2, y = x, and

y = 2. Notice that these contexts include all facts believed in any subset of the

environment.

In general, it is possible for a fact to be believed in more than one environ-

ment. To continue our example, suppose that the reasoning system is given the

assumptions y = z (assumption D) and z = 1 (assumption E). Then the fact

y = 1 is believed in two separate environments, {A, B} and {D, E} . To store this

information, each fact in the reasoning system is assigned a label. The label is a set

of environments (i.e., a set of sets of assumption symbols). Hence, the fact y = 1

would be assigned the label {{A, B}, {D, E}} .

With this introduction, the multiple-context reasoning problem can now be

defined formally. Given equality assertions of the form x = y, where x and y

are either Skolem constants or ordinary constants and where each assertion has

an attached label, compute the symmetric and transitive closure of the equality

relation, detect contradictions among the assertions, and answer queries of the form

"Is x = y true in environment {A1, A2) Ak } ?".

Notice that if all equality assertions are assigned the same label, for example,

{{A}}, then all derived facts will also have this label, and the multiple-context rea-

soning problem reduces to the single-context reasoning problem that we described

at the start of this chapter. We will see below that the UNION-FIND algorithm

implicitly assumes that all assertions exist in a single context, and therefore, the

algorithm will not provide a solution to the multiple-context reasoning problem.

The multiple-context reasoning problem arises in any situation where equal-
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ity assertions are present and there is a need to investigate multiple contexts si-

multaneously. In particular, it arises in the FORLOG logic programming system

[Flann, Dietterich & Corpron, 1987]. FORLOG is a forward-chaining logic pro-

gramming language that employs Skolem constants in place of Prolog's "logical

variables" and performs equality reasoning instead of unification. It is implemented

using an extended version of de Kleer's [1986c] consumer architecture. We expect

that the same problem will arise in any parallel logic programming system. Let us

explore two forward chaining approaches to solving this equality reasoning problem.

1.3 Existing Approaches

There are two obvious methods for reasoning with equality in multiple contexts:

(a) employing a multiple-context version of the UNION-FIND algorithm and (b)

employing de Kleer's ATMS.

1.3.1 Extending UNION-FIND

The first approach is to employ some kind of an equivalence class tree data structure

by applying the UNION-FIND algorithm, where an equivalence class is a set of

constants and Skolem constants that are all equal to one another in a single context.

In single-context systems (like Prolog and RUP [McAllester, 1982]), the context in

question is implicit, and this is very efficient. However, when we move to multiple

contexts, the number of equivalence classes explodes. For example, suppose we

have the following three equality assertions constructed from four Skolem constants,

a, u, v, and w:

(a = u, {A}), (a = v, {B}), (a = w, {C}).

In this case, seven equivalence classes must be constructed:

{a, u} {A},

{a, v} {B},
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{a,w} {C},

{a, u, v} {A, B},

{a,u,w} {A,C},

{a,v,w} {B,C},

{a,u,v,w} {A,B,C}.

If only the last class were constructed, it would not be possible to answer the query

"Is u = v true in {A, B}?" correctly. So, every distinct context must have its own

equivalence class. Since there are 214 1 contexts for k assumptions, this results in

an exponential explosion, and hence it is an unacceptable solution.

1.3.2 Employing de Kleer's ATMS

The exponential explosion is not unique to the problem of equality reasoning under

multiple contexts. It exists in general when reasoning under multiple contexts.

De Kleer has designed an efficient solution to this problem by constructing

an architecture called the ATMS (assumption based truth maintenance system)

[de Kleer, 1986a]. In the ATMS, each fact is stored in a data structure called

an ATMS node. This data structure contains the fact itself (e.g., x = 1), which

is called the datum. It also contains the label for the fact (e.g., {{A}}), which

is computed as described above. Finally, it contains a set of justifications that

record how that fact was computed. We will employ a tuple notation of the form

nodeid: (datum,label,justifications) for each ATMS node.

For example, given the premises x =1 (assumption A) and y = x (assump-

tion B), the ATMS would create three ATMS nodes: nodel : (x = 1, { {A } }, { }),

node2 : (y = x, {{B}},{}), and node3 : (y = 1, { {A, B } }, {( nodel, node2) }). No-

tice that each justification is itself a list of ATMS nodes that, taken together, are

sufficient to derive this node.

The solution (to the problem of equality reasoning under multiple contexts)

employing de Kleer's ATMS will consist of two parts: (a) the ATMS-based problem
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solver, which will be responsible for computing the symmetric and transitive clo-

sure of the equality assertions (plus detecting contradictions), and (b) the ATMS

database, which will efficiently represent the equality facts and update their labels

by applying de Kleer's label-update algorithm.

Encoding the Equality Axioms

Computing the symmetric and transitive closure of the equalities can be easily

accomplished by directly encoding the equality axioms to the ATMS-based problem

solver. Among the three equality axioms (reflexive, symmetric, and transitive), only

the transitive axiom need be represented directly. The reflexive axiom, x = x, can

be handled by the query routines, and the symmetry axiom, x = y D y= x, can

be handled by establishing a canonical ordering over the terms, and doing some

clever pattern matching on the left-hand-side of the transitivity axiom:

V x,y,z x=y A y=z D x=z. (1.1)

Here x, y, and z are either Skolem constants or ordinary constants. Whenever

the antecedent pattern of this axiom is satisfied by a set of facts in the ATMS

database during problem solving, a new equality assertion is derived and added to

the ATMS database as an ATMS node. For example, consider the following two

equality assertions, where skl, sk2, and sk3 are Skolem constants:

nodel : (ski = sk2, {{A}}, {}), (1.2)

node2 : (sk2 = sk3, {{B}}, {}). (1.3)

Here, the equality fact ski = sk2 of (1.2) is true in environment {A}, and has no

justifications because it is an assumption. Similarly for (1.3). The ATMS database

consisting of these two facts will allow the problem solver to satisfy the antecedents

of (1.1) and will produce the following derived ATMS node:

node3 : (skl = sk3, {{A,B}}, {(nodel,node2)}). (1.4)

Here, the fact ski = sk3 of (1.4) is true in environment {A, B}, and is justified by

the two ATMS nodes from which it was derived.
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nodel
skl=sk2 {{A}}

node3

node2
sk2=sk3 {{B}}

skl=sk3 {{A B}}

Figure 1.1: The dependency structure for the three equality assertions

Obviously, the equality fact in node3 is the only new equality information

derivable from the equality facts in nodel and node2. But by applying the symmetry

axiom, the newly derived equality in node3 will twice satisfy the antecedent of (1.1)

in conjunction with the equalities in nodel and node2 respectively, and rederive the

following two equalities:

nodel : (skl = sk2, {{A,B}}, {(node2,node3)}), (1.5)

node2 : (sk2 = sk3, {{A, B}} , {(nodel, node3)}). (1.6)

The equality assertions of (1.5) and (1.6) will result in attempting to add the newly

derived environment, {A, B}, to the existing labels of nodel and node2. However,

one of the requirements imposed on all labels by the ATMS is that they be kept in

minimal form (i.e., in most general form) by removing all subsumed environments

from a label. Therefore, since the newly derived environment, {A, B}, is subsumed

by the existing environments {A} of nodel and {B} of node2, it is not added to

the labels of the nodes nodel and node2. The final resulting dependency structure

constructed from these three ATMS nodes are shown in Figure 1.1. (Justifications

for each equality assertion are shown as two links merging to support that asser-

tion.) Since the newly derived environment, {A, B} , was not added to the labels

of the nodes nodel and node2, the equality derivations of (1.5) and (1.6) were re-

dundant. However these two redundant derivations allowed the problem solver to
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generate additional justifications: the justification that node2 and node3 together

can derive nodel, and the justification that nodel and node3 together can derive

node2. We will see next how these justifications become necessary for the ATMS to

correctly update the labels when an existing node label is given a new supporting

environment.

De Kleer's Label-Update Algorithm

When an ATMS node label is given a new supporting environment, a label update

process is performed to propagate this new environment to the rest of the ATMS

nodes' labels. De Kleer's label-update algorithm [de Kleer, 1986a] performs this

process by recursively updating the consequent node labels (the nodes justified by

the node which received the new supporting environment) by traversing the justi-

fication links. Although the algorithm guarantees that the labels will be consistent

and complete upon termination of the algorithm, each node's label may have been

updated more than once. By applying this algorithm to a collection of mutually-

supporting nodes, such as those shown in Figure 1.1, an alarming number of label

update attempts will occur due to the circular structure of the justification links.

For example, consider the following series of label update attempts made by the

algorithm after nodel has been updated to include the new environment {C} in

its label as a new support. First, the algorithm attempts to update the labels of

nodel's consequent nodes, node2 and node3:

For node2's label, the new environment of nodel, namely {C}, and the envi-

ronment of node3, namely {A, B}, are combined by taking the union to pro-

duce the new environment {A, B ,C}, which is subsumed by {B} and hence

not added to node2's label.

For node3's label, the new environment of nodel, namely {C}, and the envi-

ronment of node2, namely {B}, are combined to produce the new environment

{B, C} which is included in node3's label.
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Since node3's label has changed (i.e., actually updated), the algorithm will now

recur and attempt to update the labels of node3's consequent nodes, nodel and

node2:

For nodel's label, the new environment of node3, namely {B, C}, and the

environment of node2, namely {B}, are combined to produce the new envi-

ronment {B, C}, which is subsumed by {C} and hence not added to nodel's

label.

For node2's label, the new environment of node3, namely {B, C}, and the

environments of nodel, namely {A}, and {C}, are combined to produce the

new environments {A, B, C} and {B, C} both of which are subsumed by {B}

and hence not added to node2's label.

In this example, the label-update algorithm attempted to update four labels, out

of which three resulted in computing redundant environments.

The example given above does not demonstrate the worst case. The worst

case occurs when new support arrives on a derived ATMS node, such as node3the

(algorithm must traverse every justification of every node. Since there are n , or
2

717j211.1 equalities, where n is the number of terms in an equivalence class, and there2

are n 2 ways to justify an equality, the number of label update attempts made

by the algorithm is n(nl(n-2) or 0(n3). The best case occurs when the algorithm

terminates after attempting to update just one label upon either deriving a nogood

(an environment which supports a contradictory fact), or deriving an environment

which was subsumed by the node's original label.

One approach to reducing the generation of redundant equality assertions

is to employ typed consumers. The basic idea is to postpone construction of the

circular dependency links until they are needed to allow label propagation and

updating. The example used by de Kleer [1986c] is the relation plus(x, y, z). Such

relations are implemented by a set of constraint consumers, one for each variable

that computes its value from the values of the other variables. For example, when

x and y are known, a constraint consumer computes the value for z. However, this
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value for z will be used with x (or y) and another constraint consumer to recompute

y (or x). To avoid such redundancies, a special mechanism was proposed by de Kleer

that involved assigning a unique type to each constraint consumer of a relation and

barring the use of data derived from such consumers to satisfy other consumers of

the same type. This prevents the circular justifications and redundant assertions

from being created until additional support is given to the value for z. At that

point, the justifications will be created so that this new support can be propagated

to x and to y.

Because redundant assertions and circular justifications are eventually cre-

ated, typed consumers do not improve the worst-case behavior of this approach to

equality reasoning.
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Chapter 2

A Specialized ATMS for Equivalence Relations

Both of the approaches given above for implementing equality reasoning under

multiple contexts are inefficient either because they use the implicit justification

structure of equivalence classes or because they construct explicit justification links.

For the remainder of this thesis, a new solution to the problem of equality reasoning

under multiple contexts is described. The new solution avoids both of the problems

stated above by using a weaker kind of equivalence class and exploiting special

properties of the ATMS labels. It does not construct any explicit justification

links. There are three components to this specialized ATMS: the equality database

(hereafter, ED), the problem solver, and the label-update algorithm.

2.1 The Equality Database

The equality database consists of equality nodes and equivalence class nodes. The

equality node is like the ATMS node, but it has no justifications, and its datum

is an equality assertion such as x = y. All equality assertions, whether given or

derived, are explicitly represented by equality nodes. Hence, in the worst case, we

will have 0(m2) equality nodes in ED, where m is the total number of terms known.

The equivalence class node lists the terms (and assertions) that belong to

that equivalence class. The notion of equivalence class employed for the remainder

of the paper is the following: a weak equivalence class is a maximal set of terms that

are weakly equivalent. Two terms tl and 12 are weakly equivalent if there exists an

environment under which 11 = 12 is true. Note that the environment in question
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{{A}}ski sk2

{{A,B}} {{B}}

sk3

Figure 2.1: The equivalence class of Figure 1.1

need not be the same for all pairs of terms in the class.

The terms of an equivalence class under this definition form the nodes of a

complete graph. The edges of the graph are equality assertions. The edge from node

tl to node t2 asserts that tl = t2. Figure 2.1 shows the equivalence class of Figure

1.1 using this notation. The edges are labeled with the labels for the corresponding

equality nodes. Since an equivalence class forms a complete graph, the number of

equality nodes in a class is 1"(Vi, where n is the number of terms in an equivalence

class.

2.2 The Problem Solver

The problem solver of the specialized ATMS is given equalities of the form tl = t2

with their corresponding labels. Its task is to create and maintain equivalence class

nodes by deriving all possible new equality nodes from the given assertion. To

differentiate the nodes derived by the problem solver from the nodes given to the

problem solver, we will call the latter the primitive equalities, and their environ-

ments, the primitive environments. Let us assume for now that each of the primitive

environments introduced to the problem solver is disjoint.

For the purpose of describing how the new equality nodes are derived, let eq

be the primitive equality tl = t2, with leq as its label consisting of only primitive

environments, and let EC1 and EC2 be two separate equivalence class nodes of

size n1 and n2 respectively. Let Label be a function which takes an equality and

returns its label. Let Combine-Labels be a function which takes two labels, 11 and

12, and produces a new label by putting in a minimal form the set of environments
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1new, where /new = { envli U env2; I envli E 11 A env2j E 12}.

The four cases that must be considered for deriving new equality nodes are

given below.

Case 1: If neither t1 nor t2 exist in any of the equivalence class nodes in ED, i.e.,

both t1 and t2 are new terms never before encountered, create and assert into ED

an equality node with eq and leq, and an equivalence class node listing tl and t2.

Case 2: Suppose t1 E EC1, but t2 does not exist in ED, that is, one of the terms

(in this case ti) has been previously encountered while the other is being introduced

for the first time. Let EC1' = EC1 {tl }. Then Vti E EC1', for i = 1... n1 1,

create and assert into ED an equality node with the equality t2 = ti, where its label

is computed as Combine-Labels(leq, Label(tl = ti)). Then, create and assert into ED

an equality node for eq and leq, and add t2 to EC1. Note that the number of new

equality nodes derived is n 1 since a term of an equivalence class, when viewed as

a vertex of a complete graph, has a degree of n 1.

Case 3: Suppose tl E EC1 and t2 E EC2, that is, both terms were previously

encountered but were never previously equated. Let EC1' = EC1 {t1}, and

EC2' = EC2 {t2 }. Then Vti E EC1', for i = 1... ni 1, and Vti E EC2', for

j = 1... n2 1, create and assert into ED the following:

An equality node with ti = tj and its label computed as:

Combine-Labels(leq, Combine- Labels(Label(tl = ti), Label(t2 = ti))).

An equality node with t2 = ti and its label computed as:

Combine-Labels(leq, Label(tl = ti)).

An equality node with n = t; and its label computed as:

Combine-Labels(leq, Label(t2 = ti)).

Hence, the number of new equalities derived from joining EC1 and EC2, is (n1

1) + (ni 1) + (n2 1) = n1n2 1. Then, create and assert into ED an

equality node for eq and leg, and update EC1 to be EC1 U EC2.

Case 4: When n, t2 E EC1, that is, both terms were previously encountered and

were also equated, the label-update procedure is called, since eq is providing new

environment(s) to be added to /eq.
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1{A}lski 10

{{B}} {{C}}
{{A,C}}

sk2

{{A,B}}

20
{{A,B,C}}

Figure 2.2: An equivalence class with a contradictory equality

While deriving new equality nodes, if the problem solver detects a derived

equality between two different (non-Skolem) constants this must be declared a con-

tradiction. The label for this equality is declared nogood. However, the equality

node must still be created so that the problem solver may properly derive new

equalities in the future. To illustrate this, consider the equivalence class shown in

Figure 2.2 constructed from asserting the following two equalities: skl = 10 with

{{A}}, and ski. = 20 with {{B}}. The equality node for 10 = 20 is created with

the label {{A, B}}. Now, suppose that a new equality sk2 = 10 with {{C}} is

given to the problem solver. Then, EC1 = {skl, 10, 20}, and EC1' = {sk1,20},

and the following are derived:

An equality node with sk2 = ski) and its label computed as:

Combine-Labels({{C}}, Label(skl =10)).

An equality node with sk2 = 20 and its label computed as:

Combine-Labels({{C}}, Labek10 = 20)).

If the equality node with 10 = 20 did not exist along with its nogood label, {{A, B}},

the equality node with sk2 = 20 would not have a correct label. Hence the contra-

dictory equality nodes are also maintained by the problem solver.
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2.3 The Label-Update Algorithm

2.3.1 The Algorithm

The label-update procedure is given an existing equality node, called the entry node,

along with a new primitive environment, envnew. Let /entry be the existing label of

the entry node, and let L- Updates be the set of all labels in the equivalence class

containing the entry node, but not including lentry Its task is to update all of the

labels in L-Updates, and then to add envneti, to /entry. The procedure is as follows:

For each /i E L-Updates do:

For each envid E do:

For each envk E lentry do:

1. If (envk fl envid) = 0, do nothing.

2. Else, compute a new environment to be added to i as:

(envk El) envij) U env.'

If the newly computed environment is not subsumed by

any environment in li then add it to 4.

Note that during label update, if an equality supported by 4 is a contradic-

tory equality (an equality between two different non-Skolem constants), the new

labels computed for it will be declared nogood.

2.3.2 An Example

Consider the equivalence class shown in Figure 2.3. Suppose a new environment

{D} arrives on the label for skl = sk2. The updated label for this equality is

{{A}, {D}}, and envk, for k = 1, is {A} and envnew is {D}. The other labels in the

equivalence class shown in Figure 2.3 are updated as prescribed by the label-update

algorithm given above. The results of applying the steps are summarized in Table

2.1. The updated equivalence class of Figure 2.3 is shown in Figure 2.4. Note that

in this example the algorithm did not compute any redundant environments.

le is the disjoint union operation defined as: A e B = (A B) U (B A).
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sk 1 {{A}} sk2

Figure 2.3: Before the label updates

ski {{A}, {D}}

{{A,B}, {B,D}}
{{C}}

sk3

{{B}}

sk4

sk2

{{A,C}, {C,D}}
{{B}}

sk4
{{A,B,C}, {B,C,D}}

Figure 2.4: After the label updates

Table 2.1: Summary of the label-update process

i j env;,

Result of (envk n envi,j),

where envk = {A}

Result of ((envk 1ED envi,i)U envnew),

where envk = {A}, and

envnew = {D}

1 1 {B} 0 not computed

2 1 {C} 0 not computed

3 1 {A, B} {A} {B, D}

4 1 {A, C} {A} {C,D}

5 1 {A, B, C} {A} {B, C, D}
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2.3.3 An Explanation

The algorithm succeeded in updating the labels correctly without explicitly travers-

ing the justification links, since the labels alone were able to provide the algorithm

with the necessary information to propagate the new support. This is due to the

fact that the labels implicitly hold the dependency structure. So, by performing

computations directly on the labels, the algorithm can easily determine which labels

to update and how to update them.

Determining which labels to update is based on the following observation.

When a new equality, eq, is asserted with a new primitive environment env., all

new equalities derived from this new assertion are supported by the environments

that contain envnew. Under such circumstances, for any two environments envl

(supporting eql) and env2 (supporting eq2), if they have a common assumption,

i.e., envl fl env2 = S (where S 0), then either eq2 was one of the equalities that

originally derived eql, or eql was one of the equalities that originally derived eq2,

or both eql and eq2 were originally derived from some equalities (or an equality)

that are supported by the individual assumptions in the set S. Hence, in general,

when an existing equality's label 1 is updated to include a new support, envnew, the

equality facts affected by envnew are the ones with labels that have assumptions in

common with /'s environments. For this reason, the algorithm performs intersection

operations to determine which labels to update.

Once the algorithm determines which labels to update, computing new en-

vironments to be added to them is based on the following observation. Consider

Figure 2.5, which shows a portion of an equivalence class. Let us focus on the two

derived equalities 21 = t2 and t5 = t6. The environment for t5 = t6 can be viewed

as a connected path from t5 to t6 containing only primitive environments. In this

case, the path is (25, 23, 24, 26), which gives us the environment {B, C, E }. Simi-

larly, the environment for 21 = t2 is the connected path (21, t3, t4, t2), which gives

us {A, C, E}. Second, the intersection of the environments for tl = t2 and t5 = t6,

{C}, is the shared environmentthat is, the shared path. Suppose that an environ-

ment, {F}, is given as new support for tl = t2. The label-update algorithm is now
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tl {A} t3 {B} t5

{A,C,D} {C} {B,C,E}

t2 {D} t4 {E} t6

Figure 2.5: A partial equivalence class with a shared support

expected to update t5 = t6's label (among other labels) to incorporate the new sup-

port {F}. However, that is analogous to finding a new connected path from t5 to t6

(besides (t5, t3, t4, t6)) that passes through the newly supported equality, tl = t2.

That new path is (t5, t3, tl, t2, t4, t6), and it can be computed by first subtracting

the path (from t3 to t4) shared by the two equalities tl = t2 and t5 = t6, and then

including the newly supported path (from t1 to t2). The label-update algorithm

does just that when it computes ( {A, C, D}e{B, C, E })U {F} = {A, B, D, E, F} for

the label of t5 = t6 equality. In effect, {F }, along with {A} and {D}, is substituted

for the old shared environment, {C }, to provide a new supporting environment for

t5 = t6. The entire calculation was performed without explicitly traversing paths

or justification links, since the labels implicitly hold the dependency structure.

The fact that we are using the labels to obtain the dependencies among

the equalities requires that we must retain the nogood environments within the

labels. In fact, a nogood environment cannot be removed from a label until it

can be replaced with a non-nogood environment that implicitly holds the same

dependency structure (see Chapter 3).

2.3.4 Computational Costs

Since there are 111i-1/ equalities in an equivalence class with n terms, and since the

algorithm always attempts to update all but one of the labels for those equalities,

the number of label update attempts is ®(n2). This figure is significantly better

than the 0(n3) label computations performed by de Kleer's algorithm. Moreover,
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note from the algorithm that not all label update attempts will result in a label

computation (since (envk n env;,) = 0 may be true). The number of actual label

computations depends on the number of environments that will intersect with the

entry node's existing environments, envk E lentry The worst case occurs when

envk is a derived environment that consists of every primitive environment of an

equivalence class. Such an environment will intersect with all 72(V/ equality labels'

environments, and hence will result in 0(n2) label computations.

The best case is obtained when envk is one of the primitive environments.

Recall from Section 2.2, that when a new equality, eq, is introduced to the problem

solver with a primitive label, deg, the problem solver derives exactly n1 1 new

equalities for an equivalence class with n1 terms and ""2 -1) equalities. The re-

sulting equivalence class will have n2 = ni -I- 1 terms and '(2-1) equalities. Next,

if eq is updated, an environment of /eq will intersect exactly n1 1 times, or will

intersect with n2 2 environments among the n2(2 -1) equality labels. (This can be

guaranteed since every primitive environment introduced to the equality database

is disjoint.) Hence, the cost of label computation for the best case is 0(n).

2.3.5 Proof of Correctness

We demonstrate the algorithm's correctness by an inductive proof.

First we consider the base casea three term equivalence class. Given any

two equalities x = y (in environment envl) and y = z (in environment env2)

the third equality x = z can be derived using the transitivity axiom. (We will

refer to these simple three way equalities as 'triangles' since they form triangles

in the graphical notation introduced earlier.) Since x = z was derived from the

equalities supported with envl and env2, the derived environment env3, which

supports x = z, is defined as: env3 = env2 U envl. Since we have assumed that

envl and env2 are disjoint environments, the following relationships hold for the

three environments in a triangle:

env3 = envl ® env2 (2.7)
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env2 = envl env3 (2.8)

envl = env2 ED env3 (2.9)

We now prove that for any triangle in an equivalence class, equations (2.7),

(2.8) and (2.9) hold. The proof is by induction on n, the size of the equivalence

class. Consider the equivalence class of n terms illustrated in Figure 2.6. The new

equality added between t2 and the existing term tl will result in n-1 triangles being

added to the equivalence class. Since each new triangle is computed in exactly the

same way as the simple triangle above, and we assume that each new environment

envs is unique, then the relationships of (2.7), (2.8), and (2.9) must hold for each

new triangle added. Hence, by induction, the relationships of (2.7), (2.8), and (2.9)

hold for all triangles in an equivalence class.

t2

Figure 2.6: Incremental extension of an equivalence class

Suppose an equality eql is in an equivalence class of size n. Let eq2i and eq3i

be the equalities that form the n 1 triangles with eql. Now consider a new support

envinew arriving on eql. To update this equivalence class, the labels of eq2i and eq3i

for each of the triangles are updated. Let envl, env2, and env3 be the pre-existing

environments of eql, eq2i, and eq3i respectively. According to de Kleer, the new

environments to be added to the labels of eq2i and eq3i (referred to as env2new and

env3new respectively) are computed as follows:

env2new = env3 U envinew

env3new = env2 U envinew

(2.10)

(2.11)
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From (2.7) we can substitute into (2.10), and from (2.8) we can substitute into

(2.11) to obtain the following two equations:

env2new = (envl ® env2) U envinew

env3new = (envl env3) U envinetu

(2.12)

(2.13)

The equations (2.12) and (2.13) directly correspond to the disjoint union and union

step of the label-update algorithm. Hence, we have shown that the algorithm be-

haves correctly.
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Chapter 3

Extending the Method

It is clear from the proof given above that the label-update algorithm will behave

incorrectly if any of the primitive environments are not disjoint, since the rela-

tionships (given above) among the environments of a triangular equivalence class

will not hold. To accommodate non-disjoint primitive environments, the incoming

primitive environments are made disjoint by an equality token mechanism described

below.

3.1 Equality Tokens

The primitive environments can be guaranteed to be disjoint by assigning globally

unique names, which we will call equality tokens, to each and every environment

introduced to the equality database, either through new equality assertions or as

new support for an existing equality. This assignment of globally unique names can

be viewed as a substitution where each environment, {A1, A2, , Ai}, is replaced

with gib where each Ti is the globally unique equality token. Under this design,

label updates, as well as the computation of labels for the newly derived equalities,

will be done on labels containing equality tokens, not ATMS assumptions.

For example, suppose two equality assertions are given to the problem solver:

Assert skl = sk2 with {{A, B}},

Assert sk2 = sk3 with { {B, C}}.

(Notice that the environ ments of these two assertions are not disjoint.) Then, the

following renaming, denoted as will occur:
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{A, B} + {1} ,

{B ,C} {2}.

The newly derived equality node for the skl = sk3 equality will have {{1, 2}} as

its label instead of { {A, B, C } }. When a new support, say {D}, on skl = sk2 is

introduced, it will be renamed as {3}. The label-update algorithm will proceed as

usual, but using the equality tokens, and will cause {2, 3} to be included in the

skl = sk3 label. (One can see that this update is correct since {2, 3} maps to

{B, C, D }.)

The equality tokens must be translated back to their equivalent ATMS form

for the purposes of queries into the equality database' to determine if an environ-

ment consisting of equality tokens is a nogood. The mapping from the equality

tokens to their corresponding ATMS environments can be done efficiently by stor-

ing the mapping from the individual equality tokens to their corresponding ATMS

environments.

3.2 Optimization

A significant cost in both de Kleer's and the label-update algorithm of the spe-

cialized ATMS is the subsumption check that must be performed for each of the

newly derived environments. However, there are certain cases where the subsump-

tion checks can be skipped in the label-update algorithm of the specialized ATMS

because the derived environments are guaranteed to be non-redundant.

Suppose an entry node N which contains a primitive environment consisting

of single equality token, {Ltd}, within its existing label, is given a new supporta

new primitive environment, {Tnew}. All of the new environments to be added to

all other labels in the same equivalence class as N can be computed by simply

substituting Tnew in place of all occurrences of Told. This is because the inferences

performed when Told was propagated during previous updates will be exactly the

1The translation will also be necessary during label updates if the specialized ATMS is linked to

the standard ATMS.
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same inferences needed for Tnew to be propagated. Therefore Tneu, may simply

replace Told.

Consider the alternate case in which the entry node, N, contains only derived

environments within its label. Suppose it is given the environment {Tnew}, as a new

support. If, during the label update process, we encounter a node M whose label

contains a primitive environment {Told}, we can completely update M's label by

only considering {Tom} in combination with the existing tokens of N. We do not

need to consider the other tokens in M's label. Furthermore, the newly computed

environments for M do not need to be checked for subsumption.

The first optimization is applicable whenever an equality node receives mul-

tiple external supporting environments. When our specialized equality ATMS is

embedded within a de Kleer-style ATMS, this happens often, because each sup-

porting ATMS environment is mapped into a unique primitive equality token.

3.3 The Revised Label-Update Algorithm

The revised label-update algorithm with optimization is given in Figure 3.1.

The revised label-update algorithm is given an existing equality node, the entry

node, along with a new primitive environment, Penvnew, to be added to the entry

node's existing label, 'entry. But before updating the labels, Penvnew is made disjoint

by creating a new globally unique equality token for it. Then, the labels L-Updates,

which consist of all labels in the equivalence class containing the entry node, but

not including 'entry) are updated as prescribed by the revised algorithm. Finally,

Penvnew is included in lentry

3.4 Removing Inconsistencies from the Labels

As stated before, unlike de Kleer's ATMS, which removes inconsistent environments

(nogoods) from the labels, the label-update algorithm of the specialized ATMS must

retain them in order to encode the necessary dependency structure. However, as

the number of nogoods in the equality database increases, the efficiency of the spe-
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1. If there is a primitive environment Penvezist E 'entry do:

For each ti E L-Updates do:

For each derived environment Denvi,i E do:

a. If (Penvezio n Denvi,j) = 0, do nothing.

b. Else, compute a new environment to be added to 4 as:

(Penvezisi ED Denvid)U Penvnew

2. Else do:

For each i E L- Updates do:

a. If there is a primitive environment Penv3 E do:

For each derived environment Denvk E /entry do:

i. If (Penv3 fl Denvk) = 0, do nothing.

ii. Else, compute a new environment to be added to 4 as:

(Penv3 ® Denvk) U Penvnew.

b. Else do:

For each derived environment Denvid E 1i do:

For each derived environment Denvk E lentry do:

i. If (Denvi,i fl Denvk) = 0, do nothing.

ii. Else, compute a new environment to be added to 4 as:

(Denvid Denvk) U Penvnew

If the newly computed environment is not subsumed by

any environment in 4 then add it to 4.

Figure 3.1: The revised label-update algorithm
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cialized ATMS decreases (i.e., the more environments the labels have, the more

time will be required to construct new environmentsboth during label updates

and when deriving new equalities). Therefore, to retain the efficiency of this sys-

tem, we identify conditions that introduce nogoods, and those cases where nogood

environments can be removed, without loosing dependency structure information:

Nogoods are introduced in the following circumstances:

1. If equivalence classes have many non-Skolem constants, and hence consists of

contradictory equalities.

2. If equivalence classes have many equalities derived from one of the contradic-

tory equalities.

3. If the problem being solved by this system introduces many nogoods outside

of the nogoods introduced from the contradictory equalities.

The first circumstance poses no additional inefficiency to the system, since those

nogoods are required for the labels when deriving new equalities and hence do not

need to be removed. The second and third circumstances introduce the inefficiencies

that are completely avoided in de Kleer's system.

3.4.1 Removing Primitive Nogood Environments

From the first optimization method given in Section 3.2, we know that the label-

update algorithm can use just one of the primitive environments of the entry node's

label to update other labels correctlythe remaining primitive environments of such

labels are not necessary. Therefore, if any of the remaining primitive environments

are also known to be nogood, they can be removed from the label without affecting

the correctness of the label-update algorithm. Furthermore, any of the derived

nogood environments subsumed by a primitive nogood environment can be removed

from a label. For example, consider the equivalence class shown in Figure 3.2,

constructed from the following three equality assertions, and a nogood declaration

resulting from the third circumstance given above:
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Figure 3.2: An equivalence class with the nogood environments encircled

ski = sk2 with {{A}} {{1}}

sk2 = sk3 with {{B}} -4 {{2}}

ski = sk2 with {{C}} {{3}}

{A} is a nogood, so {1} is a nogood

Since the label with the primitive nogood environment {1} includes a non-nogood

primitive environment {3 }, both {1} (of the skl = sk2 equality) and {1, 2} (of the

ski = sk3 equality) can be removed from the labels.

3.4.2 Removing Derived Nogood Environments

Suppose a derived environment, Deny = {T1, T2, , Ti}, is declared to be a nogood

resulting from the third circumstance given above. Such an environment cannot be

removed from a label until all primitive environments consisting of one its individual

equality tokens, i.e., T1, T2, , have been intersected with other environments

(during label updates) due to the labels containing them receiving a new support.

That is, if each T.; E T2, , Ti} correspond to the primitive environment,

Penvexist of the (Penvexist fl Denyi,j) = 0 step of the algorithm given in Section 3.3,

then deny can be removed from a label.

For example, consider the equivalence class shown in Figure 3.3, constructed

under the following scenario:

Assert skl = sk2 with {{A}} {{1}}.
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ski W1' 1311 {5}} sk2

sk3
Figure 3.3: An equivalence class with the nogood environment encircled

Assert sk2 = sk3 with {{B}} > {{2}}.

Assert ski = sk2 with { {C }} > {{3}}.

Assert sk2 = sk3 with {{D}} {{4}}.

The last two assertions resulted in two label updates using the environments {1} and

{2}, respectively, as Penvexist Next, suppose {B, C} is declared nogood (due to the

third circumstance given above), and hence {2, 3} becomes a nogood. According

to the condition given above, this derived nogood environment, {2, 3}, cannot be

removed until both {2} and {3} have participated as Penvexist during label updates.

We know that {2} has been used as Penvexist but not {3}. Hence {2, 3} cannot be

removed yet. Later, if the label-update algorithm receive the following:

Assert skl = sk2 with {{E}} {{5}},

and uses {3} to compute two new environments, {2, 5} and {4, 5}, the derived no-

good environment, {2, 3}, can be removed from the label for the skl = sk3 equality.

The final resulting equivalence class is shown in Figure 3.4. However, now, the al-

gorithm (with the optimization) cannot arbitrarily choose any one of the primitive

environments of an entry node's label to be Penve.ist. For example, again consider

the equivalence class shown in Figure 3.4. Suppose another support, {F} {6},

arrives on the skl = sk2 equality. The correctly updated equivalence class is shown

in Figure 3.5. Notice that this label update introduced two new environments, {2, 6}

and {4, 6}, to the label for the ski = sk3 equality. These two new environments
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Figure 3.4: An equivalence class of Figure 3.3 with the derived nogood environment

removed

111,
,

3,4
2,5
2,6 , 4,6

{ill' igl}ski sk2

sk3
Figure 3.5: An equivalence class of Figure 3.4 with a new support

can only be produced by the algorithm if it chose either {1} or {5} (of the entry

node's label: {{1}, {3}, {5}}) to be Penvexi.t. If {3} were arbitrarily chosen to be

Penvexisi, only {4, 6} would have been produced. (This is because the label for

the skl = sk3 equality no longer has the nogood environment, {2, 3 }, to intersect

with {3}.) Hence, in order to update correctly, the algorithm must not choose a

primitive environment to be Penvezist if it subsumes any one of the derived nogood

environments which have been removed from a label. Implementing the restriction

on choosing an appropriate primitive environment to be Penve.ist (from an en-

try node's label) is easily accomplished by always choosing a primitive environment

most recently added to the entry node's label. This implementation suffices because

any primitive environment that subsumes a derived nogood environment cannot be

the most recently added primitive environment of a label, if it has participated as

P env exist.
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3.4.3 A Concluding Remark on Removing Inconsistencies

Although the cases where inconsistencies, or the nogood environments, can be re-

moved from labels have been identified, it is difficult to determine, without applying

the specialized ATMS to various problems, how often such cases will occur. Fur-

thermore, the environments consisting of equality tokens (primitive or derived) can

be recognized as nogoods only after mapping the equality tokens to their corre-

sponding ATMS forms. Hence, removing the inconsistencies from the labels will

not necessarily benefit the specialized ATMS.
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Chapter 4

Implementation Issues

4.1 The Equality Database Data Structure

The data structure of the equality database is designed so that the following tasks

can be performed efficiently:

1. Given an equality, determine if it already exists in the equality database.

2. Given an existing equality, retrieve the corresponding equality node.

3. Given an entry node, retrieve the set of labels of the equalities in the same

equivalence class as the entry node.

4. Given a new equality tl = t2, retrieve the set (or sets) of terms in the same

equivalence class (or classes) as tl or t2 to derive new equalities.

5. Join two equivalence class nodes into one when the terms in those classes are

equated.

The data structure that allows the problem solver to efficiently perform the

first two tasks classifies the equality nodes according to the terms they contain.

The resulting structure is a discrimination net, that can be efficiently implemented

using hash arrays. See Figure 4.1 for the structure created for the equivalence class

of Figure 2.3. (The hash arrays are the areas containing the terms, and the equality

nodes are the boxes with equal signs. The remaining structure, the equivalence

class node, is explained later.) Given an equality, determining if it exists is trivial:

hash on one of the terms of the equality and then on the other, in canonical order.
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ski =sk2 ski =ski ski =sk4 sk2=sk4

Equivalence Class Node
(ski, sk2, sk3, sk4)

sk3=sk4

Figure 4.1: A partial data structure for the equivalence class in Figure 2.3

Then, follow the pointer to retrieve the corresponding equality node. Giving this

equality node as an entry node, the label-update procedure must obtain the set of

labels of the equality nodes in the same equivalence class as the entry node. (This is

the third task given above.) Hence, it becomes necessary to link all equality nodes

to their equivalence class nodes. Note that all of the equality nodes in Figure 4.1

point to the equivalence class node.

The fourth task requires that the set of terms in an equivalence class be

accessible given any one of the terms in that set. Ideally, such a set can be efficiently

accessed if there is a link from each term to its equivalence class node (since it lists

the complete set of terms belonging to that class). However, since the links to

and from the equivalence class nodes are modified whenever two equivalence classes

are joined, it is recommended that such links be minimized. Therefore, instead of

linking a term directly to its equivalence class node, it is linked to any one of the

equality nodes that involves that term, allowing the equivalence class node to be

accessed via the equality node. See Figure 4.2 for the data structure resulting from

incorporating the links from the terms to the equality nodes.

Joining the two equivalence class nodes into one class node (the fifth task)

can become time consuming if the individual equivalence classes become very large.
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ski =sk4

Equivalence Class Node
(ski, sk2, sk3, sk4)

Figure 4.2: A complete data structure for the equivalence class in Figure 2.3

Hence, to minimize the re-linking of the pointers to and from the equivalence

class nodes, the UNION-FIND algorithm is applied to the equivalence class nodes.

UNION(EC1, EC2, EC3) will join two equivalence class nodes, EC1 and EC2,

by creating a new equivalence class node, EC3, which will have pointers to EC1

and EC2. This will result in constructing a tree of equivalence class nodes. Next,

FIND(term) will locate an equivalence class that contains term. Finally, to reduce

the cost during the FIND operation, the path compression algorithm is applied on

the equivalence class tree [Aho, Hoperoft, & Ullman, 1974].

4.1.1 The Equality Node Data Structure

The equality nodes of the equality database consist of the following fields: the

equality datum, the label, and an equivalence class node that the equality belongs

to. Furthermore, the label must be separated into two types of environments:

primitive and derived, so that the revised label-update procedure may perform

label updates using just primitive environments or just derived environments. Note

that no distinction is made between the equality nodes that represent contradictory

equalities and the ones that do not.
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4.1.2 The Equivalence Class Node Data Structure

The equivalence class nodes consist of two fields: the list of terms in the equivalence

class and the list of equality nodes that represent the equalities among the terms

of the class. The list of equality nodes is separated into two types of lists: the

contradictory equality node list and the non-contradictory equality node list, so that

when updating both types of equality node labels, the new environments computed

for the contradictory equality node labels can be declared nogood directly.

4.2 Interfacing the Specialized ATMS with a de Kleer-
style ATMS

Some of the techniques for interfacing the specialized ATMS with a de Kleer-style

ATMS are discussed here.

The equality nodes in the equality database can be interfaced with the ATMS

dependency structure through ATMS nodes that have equality nodes as their con-

sequences or as their justifications. Under this combined structure, de Kleer's label-

update algorithm is applied just to the ATMS nodes by traversing the justification

links until it reaches an equality nodeupon which the control is given to the spe-

cialized ATMS's label-update procedure to update the equality nodes. The control

is returned when any of the equality nodes being updated have an ATMS node as

one of their consequences.

The links from the ATMS nodes to the equality nodes are constructed when-

ever the antecedent of a rule that has an equality fact as its consequence is satisfied.

The links to the ATMS nodes from the equality nodes are constructed whenever

the antecedent of a rule is satisfied by an equality fact in the equality database.
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Chapter 5

Summary

5.1 Advantages and Disadvantages

The advantages of the specialized ATMS are summarized by comparing it to the

approach of incorporating the transitivity axiom into de Kleer's ATMS (described

in Section 1.1.1):

The worst case time complexity of the label-update algorithm has been re-

duced from 0(n3) to 0(n2) label update attempts. In addition, since not all

of these attempts result in label computations, the actual number of these

label computations can be significantly lower.

Through optimization techniques, the label-update algorithm can skip sub-

sumption checks in many cases.

The problem solver that derived two redundant equalities for every new equal-

ity derived has been replaced by one that derives only the necessary equalities.

The space required to store the justification links is eliminated.

The disadvantages of the extended version of the specialized ATMS, are

summarized as follows:

Nogood environments can be removed from the labels only under a few specific

conditions.

Each environment consisting of equality tokens must be translated to its cor-

responding ATMS form before it can be determined to be a nogood.
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5.2 Future Research Issues

There are several issues that can be pursued from the results of this thesis.

First of all, the apparent tradeoff between the performance of de Kleer's

ATMS and the specialized ATMS when applied to non-trivial problems needs to be

explored: the label-update algorithm of the specialized ATMS performs efficiently

when the problem produces few nogoods and many disjoint primitive environments.

In contrast, de Kleer's label-update algorithm performs efficiently when the problem

produces many nogoods or if it produces very few disjoint primitive environments.

This tradeoff can be explored by empirically studying the performance of

both methods when applied to a variety of problems that vary the following problem

characteristics: the ratio of non-nogoods to nogoods, the ratio of internal nogoods

(i.e., those found through contradictory equalities) to external nogoods, and the

distribution of primitive to derived environments.

Other issues to be explored include:

Extending the equivalence relations to include equalities among constructors

(lists) and functions. Such equality relations complicate the problem solver's

task by requiring it to derive new equality nodes from two or more constructors

that are equal to one another. (I.e., if the two constructors C(skl, 10, sk2)

and C(5, sk3, sk4) are equal to one another, then the problem solver must

derive the following three equalities: skl = 5, sk3 = 10, sk2 = sk4.)

Investigating an alternative approach to equality tokens so that all nogood

environments can be safely removed from the labels.

Finding a method that will eliminate the remaining subsumption checks dur-

ing label updates, which occur when two derived environments are intersected.

Designing efficient interface techniques between the specialized ATMS and

de Kleer-style ATMS.
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Appendix A

Glossary of Terms

Assumed ATMS node. An ATMS node representing an assumed premise. The
label will contain an environment which in turn contains only one assumption
symbol.

Assumption. A symbol that is associated with a premise that is declared to be an
assumed fact. Normally each premise is assigned a unique assumption symbol.
A set of assumptions is an ATMS environment.

ATMS. Stands for an assumption-based truth maintenance system. Developed by
de Kleer. Its key feature is that it is a truth maintenance system that allows
problem solving to take place efficiently under multiple contexts simultane-
ously.

ATMS database. A database for the ATMS nodes.

ATMS node. A data structure used by the ATMS to represent data asserted into
the ATMS database. It consists of three components: datum, label, and
justifications.

Complete labels. See Label completeness.

Consistent environment. An environment that does not contain any contradic-
tory facts. A non-nogood environment.

Consistent labels. See Label consistency.

Consumer, and the consumer architecture. The consumer architecture is the
problem solver of de Kleer's ATMS. It allows problem solving to take place
in small inference steps. When an antecedent of an implication is satisfied
by a set of facts in the database, a job called a consumer is placed on the
problem solver's global agenda. Each consumer is assigned an ATMS node
that is justified by the ATMS nodes of the facts that satisfied the antecedent
pattern. A consumer contains the detached consequent of the implication
formed by instantiating the consequent of the implication with the bindings
generated form the antecedents. Problem solving is done by picking consumers
off the agenda and running them. Running a consumer, in turn, triggers the
creation of other consumersand so on.
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Context. The set of all facts that are true in given environment. Computed by
finding all ATMS nodes whose label contain an environment that is a subset
of the given environment.

Contradictory equality. An equality between two distinct non-Skolem constants.

Datum. A fact stored in an ATMS node or an equality node.

Dependency structure. A structure formed by the ATMS nodes that describes
the dependencies among the data of the ATMS nodes. Pictorially, it forms
a directed graph where the vertices of the graph correspond to the ATMS
nodes, and the edges correspond to the justifications to and from the nodes.

Derived ATMS node. An ATMS node that is derived from other ATMS nodes,
or justified by some other ATMS nodes.

Derived environment. An environment derived from two or more primitive en-
vironments. It is a set which consists of more than one assumption symbol or
equality token. It is created when deriving new equalities and when updating
labels.

Derived equality. An equality derived from two or more primitive equalities. It
is created by the problem solver.

Entry node. An equality node of an existing equality fact that receives a new
primitive environment as a new support. It is an input to the specialized
ATMS's label-update algorithm that triggers the updating of the labels of
other equality nodes in the same equivalence class.

Environment. A set of assumption symbols in de Kleer's ATMS or a set of equality
tokens in the specialized ATMS.

Equality database. A database that stores equality nodes and equivalence class
nodes of the specialized ATMS. It is maintained by the specialized ATMS's
problem solver and by the label-update algorithm.

Equality node. A data structure used by the specialized ATMS to represent the
equality fact asserted into the equality database. It consists of two compo-
nents: datum and label.

Equality token. A globally unique name given to each and every ATMS envi-
ronment introduced into the specialized ATMS's equality databaseeither
through new equality assertions or as new support for an existing equality
node label.

Equivalence class. A set of terms equal to one another in a single context. See
also Weak equivalence class.
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Equivalence class node. A data structure used by the specialized ATMS to rep-
resent the equivalence classes formed from the equality nodes. Its primary
purpose is to let the problem solver and the label-update algorithm easily
access the equality nodes in the equality database. An equivalence class node
contains pointers to the terms and equality nodes that belong to that equiv-
alence class.

Extended version of the specialized ATMS. The specialized ATMS with all
of its features, plus the equality tokens and the optimization techniques.

Hash array. An Inter lisp data structure that allows arbitrary lisp objects, the hash
key, to be associated with other values, such that the value associated with a
particular hash key can be quickly obtained.

Inconsistent environment. An environment that contains a contradictory fact.
An environment subsumed by any nogood environment is also nogood, and
therefore is inconsistent.

Inconsistent label. A label that contains an inconsistent environment. See Label
consistency.

Justification. One of the three components of an ATMS node. Describes how an
ATMS node is derivable from other ATMS nodes. Represented as a list of
ATMS nodes.

Label. A set of environments associated with every ATMS node, as with well as
the equality nodes. The label describes the assumptions the datum ultimately
depends on.

Label completeness. Guarantees that every context will contain every datum it
should.

Label computation. A label computation occurs when a new environment is de-
rived for a label through a disjoint union and the union steps of the specialized
ATMS's label-update algorithm. In de Kleer's label-update algorithm, a label
computation occurs for each label update attempt.

Label consistency. One of the four requirements imposed on the labels of the
ATMS nodes. A label is consistent if it does not contain any nogood environ-
ments.

Label minimality. One of the four requirements imposed on the labels of the
ATMS nodes. A label is minimal if none of the environments of the label is
a superset of another environment of the label. A label is made minimal by
performing a subsumption check during the label update process.

Label-update algorithm. An algorithm applied by both ATMSs when a label of
an existing node is updated to include a new environment.
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Label update attempt. A label update attempt occurs when an environment is
taken intersection with one of the environments of an entry node label by the
label-update algorithm of the specialized ATMS. In de Kleer's label-update
algorithm, a label update attempt occurs when the newly derived environment
of a label is discarded because it is subsumed by one of the label's existing
environments.

Minimal form. See Label minimality.

Multiple contexts. A fact (or datum) exists under multiple contexts if it can be
believed to be true under more than one set of assumptions. I.e., an ATMS
node or an equality node with a label containing more than one environment.

New support. When a label of an existing ATMS node or equality node is given
a new environment to be added to the label (since the fact of that node is
now believed to be true under another environment), the new environment
is called a new support. Adding a new support on a label initiates the label
update process,

Nogood. An environment that supports a contradictory fact (or datum).

Nogood database. A special database used by de Kleer's ATMS to store the
nogood environments.

Ordinary constant. Non-Skolem constants, such as numbers, atoms, and strings.

Primitive environment. An environment of a new equality fact given to the
problem solver of both de Kleer's and the specialized ATMS, or a new sup-
porting environment given to the label-update algorithm of both ATMSs.

Primitive equality. An equality fact given to the problem solver of both de Kleer's
and specialized ATMSs.

Problem solver. The problem solver of de Kleer's ATMS (and for most truth
maintenance systems) is the component that makes inferences about the do-
main. The consumer architecture is a problem solver for de Kleer's ATMS. In
the specialized ATMS, the problem solver has a specialized task: to maintain
the equivalence class nodes and derive new equality nodes.

Reflexive axiom. One of the three equality axioms: V x x = x.

Skolem constant. A logical symbol denoting a constant value. Skolem constants
are usually introduced to stand for unknown, but, constant values. For exam-
ple, in the equation x2 + 4 = 4, x is a Skolem constant. Subsequent reasoning
can determine that either x = 2 or x = 2. Technically, a Skolem constant
is a zero-argument Skolem function created when the existentially quantified
variables are removed from a well-formed formula. Operationally, the differ-
ence between Skolem constants and ordinary constants is the following. When
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two distinct ordinary constants are equated (e.g., 2 = 4), we have a contra-
diction. When two distinct Skolem constants are equated (e.g., x = y), they
are now constrained to denote the same constant value.

Subsumed environment. An environment of a label, 1, is subsumed if it is a
superset of any one of the other environments in 1. See Subsumption check.

Subsumption check. A procedure that takes place during label update by the
label-update algorithm of both ATMSs. When a new environment is computed
for a label, if it is subsumed by the label's existing environment(s), the new
environment is discarded. It is performed so that the labels can be kept in
minimal form.

Symmetry axiom. One of the three equality axioms: V x, y x = y D y = x.

Triangular equivalence class. A weak equivalence class constructed from three
terms and the equalities between those three terms. It is called such since
it forms a triangular shape when the equivalence class is represented as a
complete graph.

Transitive axiom. One of the three equality axioms: Vx, y, z x=y A y = z D
x=z.

Transitive closure. Given a set of equivalence relations, S, a transitive closure
of S is the set, S+, that consists of all possible equivalence relations between
each of the terms given in S. In the specialized ATMS, a transitive closure
is computed by constructing a complete graph among the equalities, where
the terms of the equalities correspond to the vertices of the graph, and the
equalities correspond to the edges of the graph.

Weak equivalence class. A special kind of equivalence class employed by the
specialized ATMS. It forms a maximal set of terms that are weakly equivalent.
Two terms, tl and t2, are weakly equivalent if there exists an environment
under which tl = t2 is true.


