Marcelene Smith Ling	for the degree ofDoctor of Education in \quad Education
presented on May 10, 1976	

Title: A STUDY OF CLASSROOM BEHAVIORS CONTRASTING

THE BEHAVIOR OF CHILDR EN WITH AUDITORY AND

VISUAL SCREENING ABILITY WITH THE BEHAVIOR

OF CHILDREN WITH POOR SCREENING ABILITY IN

GR ADES ONE THROUGH SIX

Redacted for Privacy
 Dr. Anna R. Meeks

The purpose of this study was to compare classroom behaviors of students whose tests indicate high average or better figure-ground discrimination skills with those learners whose figure-ground discrimination skills were rated as low average or less. Auditory and/ or visual problem and non-problem groups were formed on the basis of scores on the Goldman, Fristoe, Woodcock Test of Auditory Discrimination and the Children's Embedded Figures Test. Behaviors were rated on the Devereux Elementary School Behavior Rating Scale.

One hundred ninety-six students were tested in this study. Ten teachers rated the classroom learning behaviors of each student in their respective classrooms.

Differences between problem and non-problem groups in the
auditory mode, the visual mode and a combined auditory and visual mode group were established by appropriate grouping of the raw data and the use of a "t-like" test. This procedure was also used to compare problem groups in the traditional classroom and problem groups in the open classroom.

Nine hypotheses were formed to test the significant differences between the problem and the non-problem groups at the .05 level or higher level of significance. Samples which were considered included each individual grade level, one through six, the total sample combining grades one through six as well as a comparison of problem groups in the open and traditional classrooms. Supplementary data was provided which compared problem and non-problem groups on the primary level (grades 1, 2, 3), the intermediate level (grades 4, 5, 6), in the traditional classrooms (grades $1,5,6$) and in the open classrooms (grades 2, 3, 4).

A number of significant differences were found and the following trends were noted:

1) The ability to screen visually greatly enhanced the acquisition of comprehension learning behaviors at grade levels 3, 4, 5 and 6.
2) Students who had visual screening problems relied on external factors for assistance significantly more often (. 05 level of significance) than did the non-problem group.
3) Intermediate level students who had auditory screening problems were significantly more often (. 05 level of significance) a part of classroom disturbance and of disrespect and defiance than the non-problem group.

Results and conclusions of this study clearly indicate a significant relationship between the screening ability of students and the classroom behaviors observed by teachers.

A Study of Classroom Behaviors Contrasting the Behavior of Children With Auditory and Visual Screening Ability With the Behavior of Children With
 Poor Screening Ability in Grades One Through Six

 by

 by
 Marcelene Smith Ling

A THESIS
submitted to
Oregon State University

in partial fulfillment of
the requirements for the
degree of

Doctor of Education

June 1976

Redacted for Privacy

Professor of Education

in charge of major

Redacted for Privacy

Dean of School of Education

Redacted for Privacy

Dean of Graduate School

Date thesis is presented

Typed by Opal Grossnicklaus for Marcelene Smith Ling

ACKNOWLEDGMENTS

Sincere appreciation is expresed to Dr. Anna Meeks whose friendly encouragement and gentle persistence have been a constant inspiration in my doctoral studies.

Special thanks to Dr. Mary Jane Wall who has greatly influenced the direction of my studies. To Dr. William Crooks and Dr. Ed Anderson who have lent the ir expertise grateful appreciation is also expressed.

For my family a most sincere thanks: to my parents, Nora and Hobson Smith for their thoughtful concern, to my children, Julie and David for their loving acceptance of my work and to my husband, Glenn for his presence and strength.

Acknowledgment is also expressed to the staff and students at Lincoln School; their co-operation and enthusiasm were gratefully accepted.

TABLE OF CONTENTS

Chapter Page
I INTRODUCTION 1
Purpose of the Study 3
Need for the Study 4
Significance of the Study 6
Definitions 9
Instruments of Measurement 10
Limitations 10
Summary 11
II REVIEW OF THE LITERATURE 12
Recognition and Description of the Discrimination of Figure-ground Perception 12
Behavioral Implications 19
Related Studies 22
Summary 25
III METHODS AND PROCEDURES 27
Locale 27
Design of the Study 27
Procedures 35
Hypotheses 37
Treatment of Data 39
Summary 40
IV PRESENTATION AND ANALYSIS OF DATA 42
Analysis Procedure 44
Hypothesis one 44
Hypothesis two 45
Hypothesis three 47
Hypothesis four 48
Hypothesis five 49
Hypothes is six 50
Hypothesis seven 51
Hypothesis eight 54
Hypothesis nine 57
Supplementary Data 58
Summary 64

Chapter

V. SUMMARY AND CONCLUSIONS
 67

Summary 67
Findings 68
Hypotheses 68
Conclusions 79
Recommendations 80
BIB LIOGRAPHY 82
APPENDICES 88
A - Elements of Informed Consent 88
B - Instruments 92
C - Raw Data Used for Grouping Procedures 103
D - Summary of Findings and Computer Output 114

LIST OF TABLES

Table
3. Numbers of Participants by Grade Level 28
4. $1 \quad$ Comparison of Means of Groups A_{p} and A_{n}
Using Whole Sample
4. 2 Comparisons of Means of Group V_{p} and V_{n} Using the Whole Sample

46
$\begin{array}{ll}\text { 4. } 3 & \text { Comparisons of Means of Groups } A_{p} V_{p} \text { and } A_{n} V_{n} \\ \text { Using the Whole Sample }\end{array}$
4. $4 \quad \begin{aligned} & \text { A Comparison of Means of the } A \text { Group of the } \\ & \text { Open Classroom and the Means of } A \text { Group of }\end{aligned}$
the Traditional Classroom
$\begin{array}{ll}\text { 4. } 5 & \text { Comparison of Group } V_{p} \text { in the Open Classroom } \\ & \text { With Group } V_{p} \text { in the } T \text { raditional Classroom Setting }\end{array}$
4.6 Comparison of Means of Group $A V$ in Open Class room With Means of $A_{p} V_{p}$ in Traditional Classroom50
4. 7 A Comparison of Means of Groups A_{p} and A_{n} at
Each Grade Level $1-6$
4. $8 \quad$ Comparison of Means of Groups V_{p} and V_{n} Grades
One Through Six
4.9 Comparison of Means of Groups $A_{p} V_{p_{~}}$ and $A_{n} V_{n}$ at Grade Level One and Grade Level Six57

4. 10 Supplementary Data on Primary and Intermediate
Grade Levels 60
5. 11 Supplementary Data on Open Classroom and
Traditional Classroom 62
6. 12 Numbers of Scores of Significant Differences of Means Within the Primary Grade Levels and Within the Intermediate Grade Levels

4. 13 Numbers of Scores of Significant Differences of Means Within the Traditional Classroom and Within the Open Classroom
 66

A STUDY OF CLASSROOM BEHAVIORS CONTRASTING THE BEHAVIOR OF CHILDREN WITH AUDITORY AND VISUAL SCREENING ABILITY WITH THE BEHAVIOR OF CHILDREN WITH POOR SCREENING ABILITY IN GRADES ONE THROUGH SIX

Chapter I

INTRODUCTION

The teacher faces the responsibility of reporting on the behavior of the students in his or her classroom. The report may be used in conferencing with parents, requesting referral for a special educational process, or in making a behavioral evaluation for the year. To accomplish this the teacher must be aware of how the child learns and must be able to communicate to others about the student's behaviors. In so far as they reflect the general attitudes and motivations of learning and achievement, these classroom behaviors may be specified as learning behaviors.

It is assumed that the teacher is vitally concerned with the learning behaviors exhibited by each student. The student, of apparently normal intelligence who may be quite capable in some areas of learning but appears absolutely incapable of learning specific skills in another area, has long puzzled the professional educator.

This child who has learning problems but no obvious specific disability, has been the target of a variety of descriptive labels.

Early studies of these children were often of a neurological nature, therefore, descriptors such as "brain-injured" and "neurologically disabled" were commonly used. Neurologists have utilized terms such as minimal cerebral dysfunction, neurological impairment and minimal brain damage. Behaviorally these children have been described as hyperactive, emotionally labile, perceptually disordered, impulsive, distractible, and perseverative. Birch cites two specific points of objection to the confusion created by these labels:

1) Evidence that children exhibiting the behavioral pattern described, do, in fact have damage to the brain is poor, and
2) many children with known and independently verified brain damage (i.e. non-behavioral neurologic or anatomic evidence) do not exhibit the patterns of behavior presumable characteristic of 'brain damage' (Birch, 1969, p. 4).

In the process of dealing with these disagreements the focus swung from etiology to behavior. The term "learning disability" came into use and by the early 1960's appeared regularly in the literature (McCarthy and McCarthy, 1969). Although the controversy over terms is yet in existence many authorities use either the behavioral term 'learning disability' or a neurological term that indicates nonfunctioning rather than damage, often'minimal cerebral dysfunction.

This study will contain the behavioral terminology since this is the focus of concern in the classroom. However, because of varied uses in the literature it should be understood that the
behavioral term and neurological term may be used interchangeably in direct quotations or in direct reference to such quotations.

Authorities such as Clements, Kirk, Bateman, National Advisory Committee on Handicapped Children, Kephart and Barsch have attempted definitive statements of a learning disability. Some of the common factors they discuss are:

1) the child is of near average, average or above average intelligence.
2) behavioral abnormalities range from mild to severe.
3) there is a specific significant deficit in one or more of the essential learning processes which may manifest itself in less than 'normal' ability to listen, think, speak, read, write, spell or to do mathematical calculations.
4) behavioral terms are usually quite descriptive as opposed to focusing on specific observable behaviors. The list of behaviors generally include: hyperactive, emotionally unpredictable, perceptually disordered, impulsive, distractible and perseverative.

Rubin and Hebb agree that figure-ground perception is a primitive or basic part of the structuring of the visual experience (Bartley, 1958). Solly (1960) indicates a similar structuring in the auditory figure-ground response or the learning to perceive. These responses seem to be reflected in the individual's behavior.

Purpose of the Study

The purpose of this study was to compare class room behaviors of students whose tests indicate high average or better figure-ground
discrimination skills with those learners whose figure-ground discrimination skills were rated as low average or less. Comparisons were made in the auditory and the visual modes as tested on the Goldman, Fristoe, Woodcock Test of Auditory Discrimination (1970) and the Children's Embedded Figures Test (1963).

Need for the Study

The writings of clinical authorities in the field were used to identify specific behaviors exhibited by students known to lack figureground perception of screening ability, auditorially or visually. While most educators could describe what is meant by clinical descriptions of behavior, it is quite another task, for example, to list observable classroom behaviors of an impulsive, distractible or a perseverative child.

A suggested approach is one in which teachers would observe classroom behaviors that seem to impede the learning of students. An examination must also be made of the specific behaviors that authorities would agree upon as typical of learning disabled children. More precisely, there is a need to look at behaviors typical of children who have a specific learning disability, not at the entire range of dysfunctions.

Two of the learning modalities or ways of learning that are most important in today's schools are those of audition and vision.

It seems appropriate to explore central processing dysfunctions within these areas. The process of figure-ground selection is an important function in both the auditory and visual mode. Chalfant and Scheffelin have reviewed more than 3,000 references in their research in the field. Following this review they note a lack of "detailed and comprehensive descriptions of the behavioral responses to stimulii which are characteristic of auditory dysfunction. " Chalfant and Scheffelin continue in reference to visual central process dysfunction:

If gross indicators of possible central visual disorders can be identified by simple behavioral tests, it may be possible to develop screening techniques for use by school personnel (Chalfant and Scheffelin, 1969, p. 137).

Figure-ground selection is listed by these authors as an essential area of exploration in both the visual and auditory modes.

The study involved a translation of these behavioral terms as they pertain to the inability of some children to auditorially or visually screen stimuli extraneous to the task at hand.

Specific behaviors were examined by the responses to the questions of the Devereux Elementary School Behavior Rating Scale.

Groupings as to poor or better than average auditory discrimination were done on the basis of score on the Goldman, Fristoe, Woodcock Test of Auditory Discrimination. Visual discrimination ability groupings were done on the basis of scores on the Children's

Embedded Figures Test. Of special interest were instances in which particular behaviors were found to; be exhibited significantly more or significantly less by students with poor auditory and/or visual screen ing ability than by students whose ability was average or better. Where a particular behavior pattern is exhibited the inference is that a screening problem exists (in a similar sampling of the population).

Significance of the Study

The ability to identify a screening problem because of a particular behavior pattern will be helpful in the field of education because:

1) The observation and recognition (or rejection) of specific behaviors exhibited by an individual child will assist the classroom teacher in better understanding the child and his learning needs.
2) Clarification is needed for the communication of information about that individual to any specialist who may become involved in the case (medical, speech pathologist, etc.).
3) In the absence of immediate, confirmatory diagnosis, the classroom teacher may alter input to the child and her immediate environment using the behavioral screening results as an aid to educational planning aimed at enhancing
the development of the child.
4) The use of the behavioral rating will assist in periodic evaluation of the child and his progress from the perspective of the individual's personal growth as well as movement toward the expectations of the peer group's development.
5) It will assist in determination of the most appropriate age for remediation efforts if the phenomenon appears to be developmental.

Whether the dysfunction exhibited by the individual child occurs as a result of brain damage or some sort of developmental arrest or delay is of little consequence to the educator. The educator assumes that the consequences of that dysfunction are of such permanence that the child must learn to cope with the environment in terms of the dysfunction. It is most advantageous to the child for the educator to look for observable behaviors and to evaluate the point of breakdown of learning abilities in light of the se behaviors.

Chalfant and Scheffelin indicate that in an education plan the observations at the point of learning failure occur immediately prior to a rearrangement of procedures and materials that are different to those of the child's experience. As to the responsibility for identifying these children and locating the points of learning failure, these authors comment:

In order to identify more clearly the children who have central processing dysfunctions, it will be necessary to identify the specific observable behaviors or clusters of behaviors which are symptomatic of these dysfunctions. When specified behaviors or behavioral syndromes have been identified, it will be possible to develop checklists and other recording systems for use by classroom teachers (Chalfant and Scheffelin, 1969, p. 137).

This study examines a pattern of behaviors specific to children who lack the ability to effectively screen extraneous stimuli. These behaviors will be examined in the context of the Devereux Elementary School Behavior Rating Scale (DE'SB).

Definitions

Visual figure-ground organization:

Consists of figures separated from their backgrounds. This is referred to as the figure-ground principle, and it is the simplest and most primitive form of perceptual organization (Sage, 1971, p. 153).

Auditory figure-ground:

Auditory figure-ground is similar to visual figureground in that we are able to perceive one specific tonal quality that exists within complex sounds (Sage, 1971, p. 190).

Perception: The activity of mediating processes which integrate present input with past input. It is one of the intervening variables between a stimulus and a response. Perception usually demands a sequence of stimulation; it is influenced by many factors, including learning, and its relation to stimulating events is variable.

Special definitions: This writing is not a discussion of classroom techniques of interaction between teacher and student. Two terms, open classroom and traditional classroom are used only to define the physical space involved. Thus, the open classroom indicates
a large space used by several teachers and their students, collectively: 'classroom instruction' being done by whatever method agreed upon.

The traditional classroom indicates a normal size classroom occupied by one teacher (and aides, interns and student teachers so assigned) and the students designated by the administration as that teacher's responsibility.

The primary classroom designates grade levels 1, 2 and 3.

The intermediate classroom designates grade levels 4, 5 and 6.

Instruments of Measurement

The Goldman, Fristoe, Woodcock Test of Auditory Discrimination, Noise Subtest was used to obtain an index of an individual's ability to discriminate speech sounds under noisy conditions.

The Children's Embedded Figures Test was used to determine the individual's ability to locate an embedded figure.

The Devereux Elementary School Behavior Rating Scale was used to record observable behaviors of students in the classroom.

Limitations

1) Though the school population used contained a cross-section of students with varied socio-economic background, conducting the study in a single location may limit the findings for the general population.
2) Students in the samples were members of regular classes; findings should be considered in light of this population rather than in terms of 'special education' classes.
3) Students selected by the testing process for grouping have not necessarily distributed themselves in a statistically convenient numerical pattern. There were a number of grade level groupings in which the population sample was so small as to be of little value in drawing conclusions for that particular grouping.
4) As required by HEW all subjects were volunteers; approximately ten (10) students declined to participate as a result of informed consent (Appendix A, p. 88).

Summary

Indicated in this chapter is the need for identifying behaviors typical of children who have poor auditory and/or visual figure-ground perception and to examine them in terms of whether those behaviors impede the learning process.

Literature related to this problem will be the focus of the following chapter.

Chapter II

REVIEW OF THE LITERATURE

The review of literature will encompass two related aspects of the study: 1) the recognition and description of the discrimination of figure-ground; and 2) the descriptions of behaviors, believed by clinicians to be typical of some portion of the population whose perceptual disorder is described as poor figure-ground discrimination. In addition it is the intention to review other writings and their implications for research appropriate to this study.

Recognition and Description of the Discrimination of Figure-ground Perception

Visual Discrimination

Edgar Rubin, a Danish psychologist is generally credited with the first description of the phenomenon of figure-ground. His research on this phenomenon started in 1912 and was first published in 1914. Zusne describes Rubin's analysis of visual perception as being "in terms of its two basic components, figure and ground. Figure is that which one pays attention to, which has a 'thingness' about it, while ground is that formless, less conspicuous extent upon which the figure is seen" (Zusne, 1970, p. 10). Rubin's description of figure-ground, his phenomenological analysis of figure-ground relationships, the role of attention in the perception of ambiguous,
figure-ground reversal pictures were described by Zusne as a "direct contribution to the raw material of which Gestalt psychology is made" (Zusne, 1970, p. 10).

Psychological Base. It is tempting at this point to digress to a more detailed historical discussion involving this school of thought. However, it is sufficient to say that a brief (and thus necessarily sketchy) summary of Gestalt evolution to more contemporary thought, as described by Zusne will be used.

Although it accepted experimentation, the Gestalt school was phenomenologically based. As one might thus expect, Gestaltists were somewhat ambiguous in their descriptions of such precise functions as form perception. Gestalt psychologists spoke of figural goodness'--the circle, square, equilateral triangle and other regular, symmetrical figures; but they were never able to find the common denominator of 'figural goodness'.

Pressures of World War II gave a strong impetus to the study of form perception--particularly to psychologists in the United States. During this period of time less work was done from the Gestalt viewpoint; the study of form perception became a part of general psychology and lost its specific "school" label. Quantified experimental tests of Gestalt concepts have resulted in the information theories and
thus given impetus to the attempt of quantification of visual form.
As Rock points out "to explain how a contour is perceived is not to explain why that contour yields a particular shape depending upon which region adjacent to it becomes 'figure' and, why the shapes thereby achieved are so different from one another for one and the same contour . . ." (Rock, 1975, p. 259).

Physiological Base. Dember notes that "figure formation is a process that depends on some rather complex relations among stimulus and receptor variables" (Dember, l960, p. 145). He goes on to indicate that figure formation and stability are closely related to stimulus change and the "emergence of a figure" is a process that is not instantaneous but one that takes "time to develop."

Rock argues the necessity of explaining how
. . . even a figure not ordinarily considered to be ambiguous, is . . . ambiguous in that its contour could be organized in such a way that the central region would appear as ground (i.e. a hole) and the surrounding region as figure. . . (Rock, 1975, p. 290).

Rock offers an explanation of the process of figure-ground discrimination. An object is perceived and stimulus information is flashed to the central nervous system; the image and alternates are 'tried' and the cognitive decision is made as to figure and ground. Admittedly this decision may be made somewhat on the basis of

Rubin's and the Gestaltists' theory of surroundedness. Rock theorizes that the cognitive decision is made on the basis of past experiences in which information about distance, difference in color, etc. is integrated. He continues:

The decision of what is to be 'figure' is described (neither consciously nor verbally); the region described becomes the figure. This is why the same contour can lead to different shapes depending upon the region to which it belongs; and this is why only one figure at a time can be perceived in such ambiguous patterns (can be switched rapidly, though). That black is favoured (as figure) may simply be a set developed on the basis of past experience with written and printed material (Rock, l975, p. 276).

Principles which affect figure-ground determination are identified as surroundedness, relative size, symmetry and differences in color or reflectance.

While further discussion by Z usne indicates a general theoretical agreement that the ability to see figure on ground appears to be innate, he states that the data indicates that:

- learning determines which portion of the visual field will be seen as figure and which as ground, especially when the stimulus characteristic of both figure and ground are such that a labile configuration results (Zusne, 1970, p. 355).

Developmental Base. Although the effect of motivational factors in figure-ground perception has been investigated by a number of reputable investigators (R. Schafer and G. Murphy in 1943,
C. M. Solly and G. Murphy in 1960, Jerome Bruner and Cecile Goodman, 1947) the results are inconclusive. This is not only because of varied results but because of suspected ineffective rewards and punishments used on the subjects.

Zusne explains these results--the decrease in the effect of punishment and reward upon perception--in terms of such developmental theorists as Piaget:
. . . namely that with increasing age the dominance of factors associated with the stimulus wanes while the influence of cognitive factors increases.

Developmental changes in the ability to alternate percepts in a labile figure-ground field are probably due to these same processes (Zusne, 1970, p. 356).

According to developmental theories, then, the choice of what is figure, is made as a result of influence of cognitive factors or of 'learning'. One must assume then that without this kind of learning or cognition the individual's figure-ground perception skills are necessarily ambiguous; (s)he cannot decide, or decides more slowly which is figure and which is ground.

Else Frenkel-Brunswik approaches the problem from the point of view of cognitive ambiugity. She states that ". . . ambiguity of cognitive responses must be seen as a reflection of the uncertainties existing in the environment. . . ." (Beardslee et al., 1958, p. 672). She further specifies:

Academic research on ambiguity and on probability of adjustment has discovered a number of important principles by which cognitive responses are linked to characteristics of stimulus-configurations and stimulus-combinations in the environment, such as the relative size of the figure vs. ground area. . . . (Beardslee et al. , 1958, p. 674).

Bruner (1958) argues that if intolerance of ambiguity is a lack of intelligence "it would seem to be a rather specific aspect of intelligence that may be involved." Specifically he wonders if those "who exhibit rigidity in the emotional and social field are generally less likely to shift back and forth between alternative interpretations of an ambiguous perceptual configuration" (Beardslee et al., 1958, p. 689).

Auditory Discrimination

To further understand the learner's situation, Kephart indicates that "many of the problems of form-perception and of figure-ground relationships, which have been investigated over a number of years in the field of visual perception, exist also in other areas" (Kephart, 1960, p. 235).

Developmental Base. By way of explanation of the auditory area Barsch details the necessity of attaining auditory screening (figureground) capability):

To acquire value to the organism, sound must be labeled in some manner. In a myriad of sounds the infant must select and ignore in a constant stream of decision. He cannot
manage every sound--although all sounds in his surround may enter. He must economically build two space fields for surround - a foreground and a background (Barsch, 1968, p. 232).

In a continuing discussion Barsch explains that the individual's attention will be determined by these two fields, that he may attend to only one field at a time. If the foreground receives attention the background becomes secondary and vice versa. Barsch sees these fields as terrains, each of which the organism must learn to operate upon. Efficiency will depend upon the ability to move "facilely from one ground to another."

According to the Barsch theory the child "tunes in" to the sounds in his environment and remains alert to them until (s)he can pick up or focus on a sound to act upon. Barsch pictures the confusion:

In a multiple auditory surround the sounds do not travel in nice, ne at serial rows. They scramble in a bombardment profusion, each at its own rate of speed and each from its own directional source converging upon a mobile organism (Barsch, 1968, p. 233).

Physiological. Joan Wilentz in her comments on various kinds of feedback between the brain and the ear itself gives a more physiological explanation of the auditory figure-ground phenomenon:

As for the other kind of feedback, the control over what your ears are picking up elsewhere, as opposed to the sounds you yourself make, the auditory system again excels. It appears now that paralleling auditory fibers at every stage of ascent in the brain (there) are descending tracts, fibers that can modify incoming activity (Wilentz, 1968, p. 184).

These fibers known as the olivocochlear bundle or tract of Rasmussen form an efferent system which arises in the vicinity of the superior olive in the medulla and terminates on the cochlea. This, as Wilentz says, ". . . may be the reason we have such sophisticated control over sound. We can inhibit the noise at a cocktail party. . . to pay attention to what we want to hear" (Wilentz, 1968, p. 184).

Behavioral Implications

The advantages of good screening or discrimination ability in both the auditory and visual modes must be obvious to even the most casual observer. The consequences of poor abilities to screen in these modes are much more subtle to attempt to assess. Richard Flower indicates that "many of the tasks that must be mastered before a child can read successfully rely heavily upon auditory processes (Smith, 1968, p. 24). Anne Morency after carefully defining auditory discrimination as the ability "to differentiate between closely related speech sound," seems adament as to its importance:

Auditory discrimination (and auditory memory) . . . are referred to as perceptual qualities and are regarded as a part of the sensory aural input pathway that contributes as a foundation for the conceptual level of learning and not to sensation plus meaning as is sometimes found in other contexts (Smith, 1968, p. 18).

Frostig reports that Piaget and his followers referred to figure-ground perception as decentration. They found two decentration
tasks, that of reversing figure and ground and finding hidden figures, "were more difficult for slow readers than for normal readers." In her clinical observations Frostig indicates that children with disabilities in visual figure ground perception:
. . . often have difficulty in scanning, finding their place on the page, tend to skip words and lines and leave out or substitute letters in words, locating specific information in reference books such as dictionaries or telephone director ies (Smith, 1968, p. 28).

Mykelbust and Johnson express their concern about children who "can see but who cannot differentiate, interpret, or remember words." They comment further:

Some fail to note internal detail and confuse words such as beg and bog; others cannot see the general configurations of words such as ship and snip. In learning to read, it is necessary to assimilate both the details and the general configuration, as well as the relation of the parts to the whole (Mykelbust and Johnson, 1959, p. 152).

These authors also discuss, in considerable detail, those children with severe auditory receptive disabilities. Some behaviors they have observed are listed here:

Since these children do not understand sounds, they often do not know which ones to ignore and thus overreact to extraneous noise. As they learn to associate sounds with experience, their responses become more suitable . . . until they are capable of coping with environmental sounds, they should not be placed in an overwhelming auditory world. It causes distraction and interferes with learning . . . they have considerable difficulty in listening, they fatigue easily . . . at times they become so frustrated and fatigued that they withdraw from the situation by covering their ears (Mykelbust and Johnson, 1959, p. 68).

Mykelbust and Johnson point out the bewilderment of parents when such a child responds inconsistently to sound--"they find it hard to discipline because of their uncertainty as to whether the child actually heard and understood."

Cruickshank adds to our list of clinical observations which contains implications for classroom behaviors. He says:
. . . these children may be extremely quiet and withdrawn . . . using the technique of withdrawal and retreat into seeming shyness as their method of control. They escape in this way from their perceptual problems . . . one child may strike out against his world in an uncontrolled and random fashion, another may find security from the confusion . . . by retreat, withdrawal and quiet (behavior) (Cruickshank, 1967, p. 48).

Cruickshank also comments on the seeming necessity for the child with poor visual screening abilities to touch the person to whom he speaks: he feels the child is trying to separate the person or figure from the background.

Sylvia Richardson seems to summarize rather succinctly the real difficulties facing children with poor auditory and visual screening ability:

Such a variety of symptoms and signs cannot be ascribed to the direct effect of brain 'injury', but abnormality of the brain in such patients may have contributed to the behavior abnormalities by damaging the infant's ability to adjust to the conditions in which he finds himself (Kirk et al., p. 35).

With the exception of accidental injury, it would appear these screening problems are of a developmental nature; this will be of concern
in studies involving any type of remediation effect.

Related Studies

Muriel Beadle (1972) has presented an extensive review of studies concerning the way children learn, from birth to age five. One of the most pertinent studies she reviews is the work of Herman A. Witkin.
"The leading exponent of the theory that perception and personality are very closely related, " Beadle notes that Witkin and his associates have, since 1942, studied the ways in which individuals with different personality traits perceive the same thing. A number of tests have resulted from this work; among them the Embedded Figures Test.

Some of Witkin's most interesting observations come from his work with children. Beadle summarizes:
. . . in general children are far more influenced by the structure of the surrounding field than adults are. Around age ten, however, a sudden and dramatic change occurs, and between the ages of ten and thirteen children develop virtually the ir full adult capacity for separating an item from its context (if they are going to have it). Witkin suggests, therefore, that field-dependence is a developmental first atep, and that its persistence into adult life indicates an arrest in progress toward emotional maturity.

Many of the personality traits typical of the field dependent adult are echoed in the behavior of young chil-dren--submission to authority, for example, or difficulty in controlling impulses (Beadle, 1972, p. 151).

Much of the more recent research as described in Dissertation Abstracts appears to reflect a lack of attention to the problems of the time necessary to allow internalization and integration in order to "re-program" responses in light of the new or improved perceptual skills that have been gained.

Typical of this situation is the research by Brooks and Clarence (1975). Their treatment of an experimental group of first graders (whose visual figure-ground perception skills had been tested and scored "normal") consisted of training in these skills for 15 minutes per day for three months. The post test for word recognition as well as an assessment of visual figure-ground perceptual skills was given immediately following this three-month period. Not surprising was the result that low readers in the experimental or treatment group had significantly higher (.05) scores than the control group in visual figure-ground skills but "no similar higher gain in word recognition was found." The researchers recognized that the time period involved was inadequate.

Chalfant and Scheffelin in their review of the research regarding children with central processing dysfunctions emphasized the need for "improvement of diagnostic procedures for disorders of auditory processing" and to "develop more effective procedures for the screening and identification of visual processing dysfunctions." Among the specific dysfunctions they list are visual figure-ground
discrimination and auditory figure-ground selection (discrimination). They also point out:
. . central processing is not accessible for direct observations and must necessarily be inferred from behaviors which are accessible to observation (Chalfant and Scheffelin, 1969, p. 138).

Clinicians aware of auditory and visual screening problems have listed typical acting out behaviors which appear to be related to classroom behaviors and learning as summarized by Spivack and Swift (1967). Such a list could include:

C LASSROOM
AUTHORITY: BEHAVIOR:
OBSERVATION:

Educators may assume the stance of little concern about whether or not the child has central processing dysfunction. The educator instead focuses on behavior in the classroom, attempting to revise the situation for the individual child. Chalfant and Scheffelin encour age the educator to continue these efforts but to engage in interdisciplinary efforts with the medical profession in order to find the link between organic pathology and treatment (of learning problems). They further indicate:
. . . it will be necessary to identify the specific observable behaviors or clusters of behaviors which are symptomatic of these dysfunctions. These observable behaviors should eventually include the anatomical, neurological and physiological symptoms as well as the psychological and EDUCATIONAL symptoms related to difficulty in learning When specific behaviors or behavioral syndromes have been identified, it will be possible to develop checklists and other recording systems for use by classroom teachers (Chalfant and Scheffelin, 1969, p. 138).

Therefore the impetus of the study was to identify observable behaviors related to learning difficulties of those students identified as having poor visual and/or poor auditory figure-ground perceptual skills.

Summary

The review of the literature has established the figure-ground phenomenon as one of the skills involved in basic auditory and visual perception. Except for the possibility of accidental injury there
seems to be general agreement that figure-ground is a developmental phenomenon but one which can be improved with training. Figureground perception is believed to be an important part of cognitive development, forming, as some authorities state, the foundation to conceptual development. Other psychologists see the figure-ground phenomenon as significantly affecting the development of personality.

Researchers indicate there is a need to become aware those educational symptoms which relate to learning, pointing out that we need to know the specific behaviors typical of children with central processing dysfunctions. Further there is a need to specify, when possible, to which processing dysfunction these behaviors are typical.

This study is designed to compare learning behaviors of learners whose tests indicate high average or better figure-ground discrimination skills with those learners whose figure-ground discrimination skills were rated as low average or less. Comparisons will be made in the auditory and the visual modes.

In the next chapter there will be identification of tests and procedures used to organize the study as well as the method of analysis of the data obtained.

Chapter III

METHODS AND PROCEDURES

Locale

The participants in this study were members of the staff and student body at Lincoln School, an elementary school in District 509J, Corvallis, Oregon. Information supplied by the principal indicated that $15 \%-20 \%$ of the students came from homes where the parents are professional workers, doctors, dentists, educators, etc. About 15\% of the students were on the school's free lunch program. The intermediate $65 \%-70 \%$ was comprised of 'blue and white collar' workers, farmers, business people, etc. Lincoln School is located on the fringe of the city so that among the population the re are students from homes located in the city, in the surrounding suburban area and from farms well outside the city.

Design of the Study

Subject Eligibility

All students who had been at Lincoln School for at least four weeks by April 30, 1975 were considered eligible to become subjects. This amount of time was established in order to satisfy the Devereux Elementary School Behavior Scale (DESB) rating procedures.

Teacher Eligibility

All teachers were required to have been working with the students (prospective subjects) for a period of at least four weeks in order to be able to rate them on the DESB.

Participants

A summary of numbers of participants is presented in Table 3. 1. Grade levels are also noted.

Table 3. 1 Numbers of Participants by Grade Level.

Grade Level	Number of Teachers	Number of Subjects
First	2	43
Second	1	21
Third	1	27
Fourth	2	38
Fifth	2	31
Sixth	2	36
TOTAL	10	196

Assumptions

Maturation Levels. Since testing and teacher ratings were done within a period of eight weeks it is assumed this small time differential did not significantly affect maturation level within classes.

Expectations for Learning. Students who wore glasses or hearing-aids as a matter of course during the school day were asked to wear them during the testing process. The assumption was that sufficient correction had been made and those students operated under similar expectations for learning that the teacher held for other students.

Teacher Presence. Most teachers had been with their students for several months when the ratings were done. The exception was in the second grade where the teacher had only been in that classroom for about six weeks. Since this meets the minimal time requirement as stated in the Devereux, it is assumed that this teacher's input is as valid as that of each of the other teachers.

Conditions

Parental Information. Parents of each child at Lincoln School (an elementary school in Corvallis, Oregon) were notified by mail of the study. Procedures were outlined and parents who did not wish their child included were asked to so indicate. Questions were invited and the letter was signed by the researcher and the school principal. Some parents responded with questions but none of them denied permission for their child to be a part of the study (Appendix A).

School District Requirements. A research request was filed with the Corvallis District Administration Office. Permission for the
study was granted with the following conditions: 1) Teachers who participated would do so on a voluntary basis. 2) A minimum of classroom disruption would occur; careful scheduling was strongly encouraged. 3) Parents would be notified by mail of the study and a sufficient amount of time allowed for them to indicate disapproval of their child's participation in the study. 4) Teachers would have access to test information at the end of the study. 5) Parents of children whose screening skills were scored as poor would be notified.

Requirements of the Office of Health, Education and Welfare.
Each participant in the study was read a statement which indicated what the study was about and how the information obtained was to be used. Participation was offered as a choice. These requirements are administered by the Oregon State University Committee for the Protection of Human Subjects (Appendix A).

New Students. Students present at Lincoln School less than four weeks before the teacher scoring period were not included in the study.

Instruments

Goldman-Fristoe-Woodcock Test of Auditory Discrimination.

The GFW (1970) is published and distributed by the American Guidance Services, Incorporated (see Appendix B). Separate norms are provided for each subtest from ages 3 years, 8 months to 80^{+}years.

The GFW consists of three sections: training, quiet subtest and the noise subtest. The entire test, including the training section is administered by use of a tape recording and a series of plates which contain four simple line drawings of familiar objects. The subject hears a word, points to the proper drawing and the examiner records his response (see Appendix B).

All three sections were administered to each subject although only the noise subtest scores were utilized in this study. Since there are separate norms for each subtest this is an appropriate use of the data.

Pertinent statistical data is presented below:
The test-retest correlation as reported on the noise subtest was . 81. The time span between these tests for this type of reliability was two weeks.

The internal consistency reliabilities were calculated by the split-half and corrected by the Spearman-Brown formula. The inter-nal-consistency co-efficient obtained for the noise subtest was. 68 .

The discussion of validity includes comments on content validity, concurrent validity and construct validity. In the matter of content validity the authors compare the task in the GFW to the real-life task:

The GFW task requires the subject to make fine speechsound discriminations in the context of familiar language in a controlled-test situation closely duplicating the speechsound discrimination task in real life (Goldman et al., 1970, p. 20.

Concurrent validity of this instrument has been measured against expert clinical judgment. Eighteen (18) subjects were judged as "poor discriminators" and twelve (12) subjects were judged as "good discriminators" by expert clinicians. A point-biserial correlation coefficient of. 72 was obtained between clinical judgement and T-scores on the noise subtest. Evidence of construct validity is offered in three types of predictable functions:

1) Subjects errors decrease with age until about age 25. From age 25 to about age 40 performance stabilizes; at this point errors gradually increase with age.
2) Relative levels of performance among selected groups of subjects is predictable.
3) Correlations with the GFW and tests other than auditory discrimination are low.

In addition this instrument was chosen because of its several strengths, some of which are considered to be unique (Buros, 1972). The GFW:
a) has an extraordinary age range which is well normed;
b) requires a precise pointing response rather than a verbal response;
c) offers more than two possible choices for each item;
d) requires pretraining to introduce vocabulary;
e) may be administered using good quality monaural equipment.

Specific equipment used in this study is listed in Appendix B.
Children's Embedded Figures Test. The CEFT was developed by Stephen A. Karp and Norma Konstadt in 1963. It is published and distributed by Consulting Psychologists Press, Incorporated.

Pertinent statistical data is presented below.
a) Reliability:

Internal consistency reliability coefficient:
ages 7-8
ages 9-10
.88
ages 11-12
Test-retest conditions
ages 5-6
b) Validity:

Validity coefficients CEFT and EFT

Age	N	CEFT, EF T
$9-10$	40	.71
$11-12$	40	.85

The drop at 9-10 age level reflects lowered reliability of EFT at age 9 (. 75 as compared with. 9 at age ll).

In addition this instrument was chosen because:

1) Age range is appropriate to the sample in the study ($5-12$ years).
2) Responses required are not verbal.
3) Responses require only identification of a simple figure embedded in colorful drawings; thus it holds the subjects' attention but does not require a verbal description or placement of figure on another part of the plate.

Devereux Elementary School Behavior Rating Scale. The DESB was developed by George Spivack and Marshall Swift in 1967. It is published and distributed by the Devereux Foundation.

As development of this scale began, 24 teachers in regular public elementary school classes, 16 teachers of special public elementary school classes and 32 teachers of various resident treatment units met weekly. These teachers were encouraged by the authors to discuss those classroom behaviors which in the ir experience they would judge to interfere with student learning or which, they felt, from the ir experience, were related to academic achievement.

Behaviors were then specified. They covered a full range of behaviors existing in both special and regular classrooms--maladaptive behavior as well as adaptive behavior. Items referred to behaviors readily observable by any individual working with children in a classroom situation.

Items were constructed by the teachers in various groups but were refined by the group as a whole. Ambiguous items or debatable ones were either improved or omitted. When field testing began short training per iods were held for teachers who were raters.

The authors summarize their research:
Behaviors were selected out of teacher conferences, scale items constructed, ratings made by teachers, factor analyses performed, and behaviors related to age, sex, $I Q$, academic achievement, clinical diagnosis, academic subject, grade level, sex of teacher-rater, age and educational level of parents, sibling status, and race of child. Norms and test-retest data were obtained and comparisons were made between academic achievers and non-achievers, and between "normal" and "special" classes. In all, 147 teachers made 1719 ratings on a total of 1546 children (Spivack and Swift, MICRO FISH - Ed 012-545, 1967).

Test-retest correlations of the ratings of individual teachers is reported to be. 87 .

In addition, this instrument was chosen for use in this study

because:

1) Items to be rated are specific, observable behaviors which are typical of classroom behaviors, in grades l-6.
2) Items were especially constructed to indicate classroom behaviors that are directly related to learning as seen by the classroom teachers.
3) The DESB may be scored for each student without an undue investment of time on the part of the teacher.

Procedures

Teacher Training

Two short training sessions were held to acquaint the staff with the DESB. At the first meeting the study was explained and
student testing procedures described. The directions for scoring the DESB were carefully considered.

Teachers who wished to participate were given score sheets for each of their students. They were asked to score one test before the next meeting.

At the second meeting discussion centered around the test items. In most cases they resolved and clarified questions among themselves only occasionally requesting elaboration from the experimenter.

One teacher declined to participate; all other teachers scored a DESB for each student in their class. The tests were scored under blind conditions in that the teachers did not know the scores of the student testing until after they scored all students on the DESB; neither did they know which students declined to participate until all their DESB scores were completed.

When the entire class had been scored, the teacher returned all scored copies to the experimenter. They were then given access to information about their students' scores on the GFW and the CEFT.

Assistant Examiners

Two graduate students (Master's candidates) assisted in the CEFT testing process. These people underwent two training sessions. They administered the test to at least three subjects, independent of the study subjects, before beginning the study.

Grouping

As a result of their scores students were placed in the following groups:

Auditory screening problems $=A_{p}$ Those people who scored one-half standard deviation below or lower than their age group mean on the GFW.

Auditory screening non-problem $=A_{n}$ Those people who scored one-half standard deviation above or higher than their age group mean on the GFW.

Visual screening problem $=V_{p}$ Those people who scored onehalf standard deviation below or lower than their age mean on the CEFT.

Visual Screening non-problem $=V_{n}$ Those people who scored one-half standard deviation above or higher than their age group mean on the CEFT.

All groupings were done on the basis of these scores. A third set of groups was obtained by including those students who scored low on both tests (group $A_{p} V_{p}$) and those students who scored high on both tests (group $A_{n} V_{n}$).

It was then possible to compare these three sets of groups in various samples and settings.

Hypotheses

Hypothesis one: The mean of sample A_{n} and the mean of sample A_{p} on each behavioral item (1... 47) on the DESB shall not be significantly different at the .05 level of significance.

Hypothesis two: The mean of sample V_{n} and the mean of sample V_{p} on each behavioral item (1...47) on the DESB shall not be significantly different at the 05 level of significance.

Hypothesis three: The mean of sample $A_{n} V_{n}$ and the mean of sample $A_{p} V_{p}$ on each behavioral item (1.. . 47) on the DESB shall not be significantly different at the .05 level of significance.

Hypothesis four: The mean of sample A_{p} of students in the open classroom area (grades $2,3,4$) and the mean of sample A_{p} of students in the traditional classroom setting (grades $1,5,6$) on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the 05 level of significance.

Hypothes is five: The mean of sample V_{p} of students in the open classroom area (grades $2,3,4$) and the mean of sample V_{p} of students in the traditional setting (grades $1,5,6$) on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the. 05 level of significance.

Hypothes is six: The mean of sample $A_{p} V_{p}$ of students in the open classroom area (grades $2,3,4$) and the mean of sample $A_{p} V_{p}$ of students in the traditional classroom area (grades $1,5,6$) on each behavioral item (1...47) on the DESB shall not be significantly different at the .05 level of significance.

Hypothesis seven: The mean of sample A_{p} obtained at each grade level from one through six and the mean of sample A_{n} obtained
at each respective grade level on each behavior al item (1...47) on the DESB shall not be significantly different at the . 05 level of significance.

Hypothesis eight: The mean of sample V_{p} obtained at each grade level from one through six and the mean of sample V_{n} obtained at each respective grade level an each behavioral item (1. . . 47) on the DESB shall not be significantly different at the . 05 level of significance.

Hypothesis nine: The mean of sample $A_{p} V_{p}$ obtained at each grade level from one through six and the mean of sample $A_{n} V_{n}$ obtained at each respective grade level on each behavioral item (l. . . 47) on the DESB shall not be significantly different at the. 05 level of significance.

Treatment of Data

The Devereux Elementary School Behavior Rating Scale contains 47 items which focus on specific observable classroom behaviors. A test of significance of difference of the means of the independent samples was done for each of the 47 items.

The Welsch treatment of the Behrens-Fisher problem was used. The * is to indicate a slight variation of the true "t" test statistic. The point of departure occurs in the calculation of the degrees of freedom and is a treatment to solve the problem of unequal variances
of some samples in this study.

$$
\begin{aligned}
& t *=\sqrt{\left(\bar{x}_{1}-x_{2}\right)-\left(\mu_{1}-\mu_{2}\right)} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \\
& f=\frac{\left[\left(s_{1}^{2} / n_{1}\right)+\left(s_{2}^{2} / n_{2}\right)\right]^{2}}{\frac{\left(s_{1}^{2} / n_{1}\right)^{2}}{n_{1}-1}+\frac{\left(s_{2}^{2} / n_{2}\right)^{2}}{n_{2}-1}}
\end{aligned}
$$

Although this solution was designed to be used where variances were unequal, no problems were anticipated in using this treatment in a situation where the variances could be nearly equal. This approach is considered to produce a conservative estimate of significant difference between means (Snedecor and Cochran, 1973).

Summary

Both an auditory discrimination test (GFW) and a visual discrimination test (CEFT) were administered individually to each of 196 subjects. Subjects were distributed by grade level as shown in Table 3.l.

The GFW and the CEFT were used for the purpose of grouping the subjects according to their abilities of discrimination as indicated by the test scores.

Teachers were trained to score the Devereux Elementary School Behavior Rating Scale. They scored one DESB Scale for each student under blind conditions.

A comparison was then made between various sets of groups on each of 47 items of the DESB. A conservative "t" test was used to discover the significant differences at the .05 or higher level of significance.

In the next chapter the findings of this study will be presented.

CHAPTER IV

PRESENTATION AND ANALYSIS OF DATA

This study was conducted to investigate the relationship between auditory and visual screening abilities and learning behaviors. The sample for study was drawn from an elementary school setting.

The student's ability to screen extraneous auditory stimuli was evaluated on the basis of scores from the Goldman, Fristoe, Woodcock Test of Auditory Discrimination (noise subtest). The visual screening ability was judged on the bas is of scores obtained from the Children's Embedded Figures Test. Classroom learning behaviors were rated by the teachers on the Devereux Elementary School Behavior Rating Scale.

Statistics on the GFW were extensive. The norm tables offered a variety of choices; the table entitled "Percentile Scores to Middle of Score Intervals (For Research Use)" was the choice of the investigator for this study (Goldman et al., 1970).

Norms on the CEFT were offered as 'tentative' by the authors. More recent research, however, upholds the original data when subjects are of the white, middle-class (Witkin et al., 1963).

The grouping process was designed to eliminate those scores clustering around the mean--the one-half standard deviation immediately above and immediately below the mean of the appropriate age
group norms. Thus the groups are on opposite ends of the 'normal' or bell curve. The CEFT means and standard deviations table was used to calculate the scores equal to $1 / 2$ standard deviation above the mean and $1 / 2$ standard deviation below the mean. The percentile scores of the GFW norms were converted on the z table to obtain the percentage of area between the mean and $1 / 2$ standard deviation above the mean and $1 / 2$ standard deviation below the mean.

The Devereux Elementary School Behavior Rating Scale was used as the focus for observation of learning behaviors by the classroom teacher. This scale consists of 47 items, seven of which are positive behaviors, four that may be considered either depending on the age of the subject and the remaining 36 which are negative behaviors. To assist in meaningful interpretation Spivack and Swift (1970) have subjected the scale to a number of statistical refinements. The result of this work was to group these 47 items into 11 behavior factors of three to five highly related items. Three items did not fit into the factors and so are listed separately on the protocol sheet of the DESB. A carefully detailed description of each factor and the items it contains may be found in the manual accompanying the test.

The investigator has chosen to examine the data obtained in this study under the general topics of the behavior factors. The tables used to illustrate results of the study have been adapted from the protocol sheet of the DESB.

Analysis Procedure

The null hypothesis of no significant difference was tested between the groups designated by the testing process to be of nonproblem auditory and/or visual screening ability and the groups, which by the same testing process were designated to have problem auditory and/or visual screening ability. The statistic chosen was a conservative "t-like" test designed to solve the anticipated problem of unequal variances between groups. The computer print-out lists the mean for each group on each item as well as the degrees of freedom and the "t" value for each item (Appendix D).

Rejection of the null hypothesis on the basis of the standard Student's t-Distribution table supports the alternative hypothesis that a significant difference does exist. There are negative and positive learning behaviors in this scale so it is important to be able to indicate which group has the higher mean on each item of significant difference.

Hypothes is one: The mean of sample A_{n} (auditory non-problem) and the mean of sample A_{p} (auditory problem) on each behavioral item (l. . . 47) on the DESB shall not be significantly different at the . 05 level of significance.

Table 4.1 Comparison of Means of Groups A_{p} and A_{n} using Whole Sample.

ITEM	No.	$\begin{gathered} \text { AUDITORY } \\ A_{n} \\ \hline \end{gathered}$	BEHAVIORS RESULTING IN:
teacher help	2		Extermal
called on	25		Blame
blames	34		
too hard	38	*	
test scores	22		Achievement-
right answ.	23	**	Anxiety
testing	31		
sensitive	33		

[^0]As indicated in Table 4.1 the hypothesis is rejected in the case of two items. Both items are negative learning behaviors and the significant difference is in "favor" of the non-problem sample. This information indicates that it is likely to be a student of non-problem auditory screening ability who complains "the work is too hard." It is also more likely to be a student of non-problem screening ability who expresses anxiety about knowing the right answers. Hypothesis two: The mean of sample V_{n} (visual non-problem) and the mean of sample V_{p} (visual problem) on each behavioral item (1... 47) on the DESB shall not be significantly different at the .05 level of significance.

Table 4.2 Comparison of Means of Groups V_{p} and V_{n} using the Whole Sample.

ITEM	No.	VISUAL V_{n}	BEHAVIOR RESULTING IN:
understands	10	$* *$	Comprehension
applies	35	$*$	
recites	37	$* *$	Creative Initiative
brings in	3	$*$	
act. imag.	4	$*$	
start disc.	6	$*$	
talk exper.	21		

*. 05 level of significance
**. 01 level of significance

The hypothesis is rejected for items 3, 4, 6, 10, 21, 35 and 37.
Table 4. 2 reveals the pattern established as a result of these tests of significance. All of the positive learning behaviors show a significant difference in 'favor' of students of apparently non-problem visual screening ability. According to teacher ratings it is more likely to be the student of normal or better screening ability who gets the point of what he hears or reads in class (item l0), is able to apply what he has learned to a new situation (item 35) and is likely to know the material when called upon in class (item 37). In addition this student is more likely to demonstrate creative initiative (bring relevant materials to class, reveal an active imagination, start class discussion and/or introduce relevant experiences).

Hypothesis three: The mean of sample $A_{n} V_{n}$ (auditory non-problem, visual non-problem) and the mean of sample $A_{p} V_{p}$ (auditory problem, visual problem) on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the 05 level of significance.

Table 4. 3 Comparisons of Means of Groups $A_{p} V_{p}$ and $A_{n} V_{n}$ using the Whole Sample.

ITEM	No.	COMBINED $A V_{n}$	BEHAVIORS RESULTING IN:
understands applies recites	10	$*$	Comprehension
	35		
*. 05 level of significance			

The hypothesis is rejected in the case of item 10 . In this test of significant differences of the means only one item (10) is significantly different. Indications are that the student whose auditory and visual screening skills are normal or better will be most likely to get the point of what (s)he reads or hears in class.

Hypothesis four: The mean of sample A_{p} (auditory problem) of students in the open classroom area (grades 2, 3, 4)
and the mean of sample A_{p} (auditory problem) of students in the traditional classroom setting (grades $1,5,6$) on each behavioral item (1. . . 47)
on the DESB shall not be significantly different at the. 05 level of significance.

Table 4.4 A Comparison of Means of the A_{p} Group of the Open Classroom and the Means of A_{p} Group of the Traditional Classroom.

ITEM	No.	AUDITORY		BEHAVIORS
		$A_{p} O C$	${ }^{A_{p}} \mathrm{TC}$	RESULTING IN:
needs control	11			Classroom
teases	12			Disturbance
interfere	13			
drawn in	30		**	
starts	1		**	Impatience
sloppy	36			
go back	44			
rushes	47			
see others	24		**	External
rely on $\mathrm{t}^{\prime} \mathrm{ch}^{\prime} \mathrm{r}$	29		**	Reliance
directions	32		**	
swayed	42			
choices	46			
exagg. story	14			Irrelevant-
answers	15		**	Responsiveness
interrupt	17		**	
irrel. talk	26			
seeks t'ch'r	8			Needs Closeness
helps	19	*		to Teacher
friendly	39			
phys. close	45			
unable change	27		*	Additional Items
quits	40			
slow work	41			

*. 05 level of significance
**. 01 level of significance

The hypothesis is rejected on the nine items where there is a significant difference. Of these nine items seven of them are significantly different at the .01 level. Eight of the nine items are significantly different in 'favor' of the traditional classroom. The significant differences occur on negative learning behaviors with the exception of item 19 which is seen by the test developers as negative only in the upper grades.

Since the actual scores on the DESB are the teacher's comparis on of that student with the average student at that grade level, in this test of difference of the means we are attempting to compare teacher perceptions of the students in the traditional classroom and in the open classroom.

Hypothesis five: The mean of sample V_{p} (visual problem) of students in the open classroom area (grades $2,3,4$) and the mean of sample V_{p} (visual problem) of students in the traditional setting (grades $1,5,6$) on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the 05 level of significance.

Table 4.5 Comparison of Group V_{p} in the Open Classroom with Group V_{p} in the Traditional
Classroom Setting.

ITEM	No.	$\begin{aligned} & \text { VISUAL } \\ & \mathrm{V}_{\mathrm{p}} \mathrm{TC} \end{aligned}$	BEHAVIORS RESULTING IN:
see others	24	*	External
rely on t'ch'r	29		Reliance
directions	32	*	
swayed	42		
choices			

[^1]The hypothesis is rejected in the case of two items which show a significant difference. Both items are negative learning behaviors. They are in the same behavior factor, external reliance. Both involve understanding directions: item 24 asks how often the student looks to see what others are doing before proceeding in class and item 32 inquires as to whether a student is often unable to follow directions given in class. These items indicate that the traditional classroom student with visual screening problems is more often seen by the teacher to demonstrate these negative classroom behaviors than would the open classroom student with visual screening problems be seen by that teacher to demonstrate such behaviors.

Hypothesis six: The mean sample $A_{p} V_{p}$ auditory problem, visual problem) of students in the open classroom area (grades 2, 3, 4) and the mean of sample $A_{p} V_{p}$ (auditory problem, visual problem) of students in the traditional classroom area (grades $1,5,6$) on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the .05 level of significance.

Table 4.6 Comparison of Means of Group $A_{p} V_{p}$ in Open Classroom with Means of $A_{p} V_{p}$ in
Traditional Classroom.

ITEM	No.	OPEN AV p	TRADITIONAL AV $_{p}$	BEHAVIORS RESULTING IN:
needs control	11			Classroom
teases	12			Disturbance
interfere	13		$*$	
drawn in	30			

[^2]The hypothesis is rejected in the case of item 30 . This item has to do with whether the student is quickly drawn into the talking or noisemaking of others. These findings indicate the student who has both auditory and visual screening problems and is in a traditional classroom setting will be more likely to be "drawn in" to classroom disturbance than will a student who has both auditory and visual screening problems and is in the open classroom area. Hypothesis seven: The mean of sample A_{p} (auditory problem) obtained at each grade level from one through six and the mean of sample A_{n} (auditory non-problem) obtained at each respective grade level on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the .05 level of significance.

The null hypothesis seven is accepted at the grade one level. It is rejected at grade levels two, three, four, five and six as indicated on Table 4.7 which specifies items showing a significant difference between the means of A_{p} and A_{n} at each grade level.

Generally it can be said that negative behaviors are demonstrated significantly more often by the A_{p} group and positive behaviors significantly more often by the A_{n} group. Two exceptions are noteworthy. Item 3 was significantly higher in the fifth grade A_{p} than in the fifth grade A_{n} group. Item 8 was significantly higher in the fourth grade A_{n} group than in the A_{p} group.

Table 4.7 A Comparison of Means of Groups A_{p} and A_{n} at Each Grade Level 1-6.

ITEM	No.	AUDITORY		BEHAVIORS	
		A_{p}	A_{n}	RESULTING IN:	
needs control	11	6**4*		Classroom	1
teases	12	6*		Disturbance	
interfere	13	6**4**			
drawn in	30	6*			
starts	1			Impatience	2
sloppy	36				
go back	44				
rushes	47	4**			
disrespect	5	5*4*		Disrespect- Defiance	3
defy teacher	7				
subject	9	4*			
rules	16	$6 *$			
teacher help	2	4*		External Blame	4
called on	25				
blames	34	4*			
too hard	38				
test scores	22			Achievement-	5
right answ.	23			Anxiety	
testing	31	4*			
sensitive	33	2**4*			
see others	24	3*4**		External Reliance	6
rely on $\mathrm{t}^{\prime} \mathrm{ch}^{\prime} \mathrm{r}$	29				
directions	32	2**4*			
swayed	42				
choices	46				
understands	10			Comprehension	7
applies	35	$2 * * 4 * *$			
recites	$\underline{3}$				
lose attn.	18	4*		In attentiveWithdrawn	8
not attnd.	20				
oblivious	28	2*			
reachable	43				
exagg. story	14	4**		Irrelevant- Responsiveness	9
answers	15				
interrupt	17				
irrel. talk	26				
brings in	3	5**	4**	Creative Initiative	10
act. imag.	4		4*		
start disc.	6		2**		
talk exper.	21				
seeks t'ch'r	8		4*	Needs Closeness to Teacher	11
helps	19				
friendly	39				
phys. close	45				
unable change	27	6*4**		Additional Items	
quits	40				
slow work	41				

*. 05 level of significance; **. 01 level of significance; Digit entry = equivalent grade level.

At least one item in each behavior factor shows a significant difference between means.

Grades six and four group A_{p} are heavily grouped in the class room disturbance behavior factor. Impatience is indicated by fourth grade A_{p} group which more often rushes through work. Another clustering occurs in the third behavior factor of disrespect-defiance. Grades four, five and six, group A_{p} are all represented. Behavior factor four, external blame, shows two items (2, complains teacher doesn't help enough and 34, blames external circumstances) that were significantly different between the fourth grade A_{p} and A_{n} groups.

Primary grades along with grade four appear in small clusters in behavior factor five (achievement-anxiety) and again at factor six (external reliance). In grades two and four the A_{n} group significantly more often (. 01 level of significance) is able to apply what has been learned to a new situation (item 35).

Grade four A_{p} is significantly more likely to tell exaggerated and untruthful stories (item 14) and to not attend to what goes on in class (item 20). Grade two, group A_{p} is significantly more often oblivious to classroom activities (item 28).

The positive behavior factor which is creative initiative contains significant differences from grade four and grade two "auditory nonproblem" groups. Under additional items it is the A_{p} group in grade
six and grade four which is significantly more likely to quit or give up when something is difficult (item 40).

Hypothes is eight: The mean of sample V_{p} (visual problem) obtained at each grade level from one through six and the mean of sample V_{n} (visual non-problem) obtained at each respective grade level on each behavioral item (1...47) on the DESB shall not be significantly different at the .05 level of significance.

Table 4.8 Comparison of Means of Groups V_{p} and V_{n} Grades One through Six.

ITEM	No.	VISUAL		BEHAVIORS	
		V_{p}	V_{n}	RESULTING IN:	
needs control	11			Classroom	1
teases	12			Disturbance	
interfere	13				
drawn in	30				
starts	1	1*	5**	Impatience	2
sloppy	36				
go back	44				
rushes	47	3**			
disrespect	5			Disrespect-	3
defy te acher	7			Defiance	
subject	9				
rules	16				
teacher help	2	1*	5**	External	4
called on	25			Blame	
blames	34				
too hard	$\underline{38}$				
test scores	22			Achievement-	5
right answ.	23			Anxiety	
testing	31				
sensitive	33				
see others	24	2*4*		External	6
rely on $\mathrm{t}^{\prime} \mathrm{ch}^{\prime} \mathrm{r}$	29	2*4*		Reliance	
directions	32	5**			
swayed	42				
choices	46				
understands	10		$3 * * 4 * * 5 *$	Comprehension	7
applies	35		$3 * * 4 * * 5 * * 6 *$		
recites	-37		3* 4 ** $5 *$		
lose attn.	18	4**		Inattentive-	8
not attnd.	20			Withdrawn	
oblivious	28				
reachable	$\underline{4} 3$				
exagg. story	14		5*	Irrelevant-	9
answers	15	1*4*		Responsiveness	
Interrupt	17		5*		
Irrel. talk	26	1*			
brings in	3			Creative	10
act. imag.	4		3*	Initiative	
start disc.	6				
talk exper.	21				
seeks t'ch'r	8	6*		Needs Closeness	11
helps	19	6*		to Teacher	
friendly	39				
phys. close	45	4*			
unable change	27			Additional Items	
quits	40				
slow work	41				

[^3]The hypothesis is rejected at all grade levels one through six. In Table 4.8 a much more pronounced clustering is noted than has been previously apparent.

Some item means are significantly different but are scattered with one or two items appearing in the behavior factor. On item two the grade one V_{p} group and the grade five V_{n} group significantly more often than their opposites claim the teacher won't help them enough. Grade four V_{p} group significantly more often loses attention when the teacher explains something (item 18). Grade three V_{n} group significantly more often demonstrates an active imagination.

Behavior factor two, impatience, contains three significantly different means; they are grade one V_{p} and grade five V_{n} on item 1 and grade three V_{p} on item 47. Irrelevant responsiveness, factor nine has grade five group V_{n} and grade one and grade four V_{p} groups showing significantly different means on those items. Factor eleven, needs closeness to teacher, has entries from grade six group V_{p} and grade four group V_{p}.

The two strongest clusters occur in factors six and seven. Factor six is external reliance. A total of eight entries occur on items 24, 29 and 32; all are from the V_{p} groups in grades two, four, five and six.

A total of ten entries occur in three items in behavior factor seven, comprehension. They are all from the V_{n} groupings in grades
three, four, five and six.
Hypothesis nine: The mean of sample $A_{p} V_{p}$ (auditory problem, visual problem) obtained at each grade level from one through six and the mean of sample $A_{n} V_{n}$ (auditory non-problem, visual non-problem) obtained at each respective grade level on each behavioral item (1. . . 47) on the DESB shall not be significantly different at the 05 level of significance.

Table 4.9 Comparison of Means of Groups $A_{p} V_{P}$ and $A_{n} V_{n}$ at Grade Level One and Grade Level Six.

=. 05 level of significance; $ *=.01$ level of significance; $1=$ grade one; $6=$ grade six

This hypothesis was difficult to test because the groupings were so poor in numbers. Grades two, three and five each had one student who scored in the non-problem range on both the auditory and visual screening tests; grade four had NO student who scored in the nonproblem range on both tests. In grade one the distribution was $A_{p} V_{p}=6$; $A_{n} V_{n}=2$. In grade six it was $A_{p} V_{p}=3 ; A_{n} V_{n}=2$. These groups
are also, of course suspect. The tests were run, however and the results presented.

The hypothesis is rejected at grade level one and at grade level six. In grade one group $A_{p} V_{p}$ significantly more often rushed through their work and were significantly more often swayed by the opinion of their peers. In this grade, group $A_{n} V_{n}$ would significantly more often be likely to be ready to recite when called upon.

In grade six, group $A_{p} V_{p}$ was significantly more often unable to follow directions g iven in class while group $A_{n} V_{n}$ in that grade was significantly more often able to understand what they hear or read in the classroom.

Supplementary Data

As patterns began to emerge, two questions became quite obvious. The first question was in terms of whether the pattern that seemed unique to the upper grades and another pattern that seemed unique to the lower grades could be made more visible. A test of significant difference of the means between the three screening groups was made using a primary sample. The same situaation was created using an intermediate sample.

The second question concerned the open classroom and the traditional class room. The completed tests of significant difference of the means were between the problem screening groups of these two
samples. It seemed necessary to check the non-problem group against the problem group within the same setting. Thus these tests of significant differences of the means were made within the open classroom setting and within the traditional classroom setting.

The primary and intermediate sample test results are combined on Table 4.10. Behavior factors are a convenient way of viewing these scores. Intermediate student scores, especially those students who have auditory screening problems cluster in the factor labeled classroom disturbance.

Both primary and intermediate scores are found in the impatience factor. Primary visual screening problem students and those with both visual and auditory problems are seen as tending to rush through their work and not wanting to go back over work to correct mistakes. Intermediates, on the other hand are visually non-problem or both auditorily and visually non-problem students who indicate their impatience by starting too soon. Neither sample scored significant differences in the area of disrespect-defiance.

Students in both the primary and intermediate samples and in the auditory non-problem and the visual problem groups scored significant differences in the achievement anxiety factor.

External reliance, factor six contains a score from each sample. Intermediate students who have visual screening problems are likely to see how others follow directions in class before they

Table 4. 10 Supplementary Data on Primary and Intermediate Grade Levels.

ITEM	No.	AUDITORY		VISUAL		COMBINED		BEHAVIORS	
		${ }^{A} p$	A_{n}	V_{p}	V_{n}	$A_{p} V_{p}$	$\mathrm{A}_{\mathrm{n}} \mathrm{V}_{\mathrm{n}}$	RESULTING IN:	
needs control	11							Classroom	1
teases	12	I			I			Disturbance	
interfere	13	I							
drawn in	30	$\underline{1}$							
starts	1				I*		I	Impatience	2
sloppy	36								
go back	44					P*			
rushes	47			P		P*			
disrespect	5							Disrespect-	3
defy teacher	7							Defiance	
subject	9								
rules	16								
teacher help	2							External	4
called on	25							Blame	
blames	34								
too hard	38		P						
test scores	22			I				Achievement-	5
right answ.	23		PI					Anxiety	
testing	31			P					
sensitive	33								
see others	24			I*				External	6
rely on t'ch'r	29							Reliance	
directions	32								
sw ayed	42					P*			
choices	46								
understands	10				PI*			Comprehension	7
applies	35				I				
recites	37				PI*				
lose attm.	18					P*		Inattentive-	8
not attnd.	20							Withdrawn	
oblivious	28					P			
reachable	$\underline{43}$					P			
exagg. story	14							Irrelevant-	9
answers	15			P		P		Responsiveness	
interrupt	17	I							
irrel. talk	26								
brings in	3				P*	I		Creative	10
act imag.	4				P			Initiative	
start disc.	6				I				
talk exper.	21								
seeks t'ch'r	8							Needs Closeness	11
helps	19			I*				to Teacher	
friendly	39								
phys. close	45								
unable change	27							Additional Items	
quits	40								
slow work	41			I					

Entry $=.05$ level of significance; $*=.01$ level of significance
do so. Primary students with both auditory and visual screening problems are more likely to be swayed by the opinions of others.

The primary student with auditory and visual screening problems according to the GFW and the CEFT are scored by the teachers as inattentive and withdrawn. More specifically they are often oblivious to the ir surroundings, unreachable in their own world and lose attention easily. This same group as well as the students with only visual screening problems will give answers that are irrelevant to the discussion in the classroom. The visually non-problem primary student and to some extent the V_{n} intermediate student demonstrates creative initiative. In this same factor it is the intermediate $A V_{p}$ student also who brings relevant items to the classroom.

Intermediates with visual screening problems often offer to help the teacher and are slow to complete the ir work.

It is the child of non-problem visual screening ability both in the primary and in the intermediate sample who is scored as able to understand what he hears or reads in class, who is able to recite in class and in the case of the intermediate sample able to apply what (s) he has learned to a new situation.

Table 4. ll contains a combination of items which scored a significant difference of means for the traditional classroom sample and for the open classroom sample. In this test the groups were compared within the same setting ($A_{p} T C$ to $A_{n} T C$).

Table 4. 11 Supplementary Data on Open Classroom and Traditional Classroom.

ITEM		AUDITORY		VISUAL		COMBINED		BEHAVIORS RESULTING IN:
		A_{p}	A_{n}	V_{p}	V_{n}	AV_{p}	AV_{n}	
needs control	11							Classroom
teases	12				T	O*		Disturbance
interfere	13					O*		
drawn in	30							
starts	1							Impatience
sloppy	36					O*		
go back	44					O*		
rushes	47					O*		
disrespect	5							Disrespect-
defy teacher	7					O*		Defiance
subject	9					O*		
rules	16							
te acher help	2					O*		External
called on	25					\bigcirc		Blame
blames	34					\bigcirc		
too hard	38							
test scores	22							Achievement -
right answ.	23		T					Anxiety
testing	31							
sensitive	33					O*		
see others	24	O**		0		O*		External
rely on t'ch'r	29			0		O*		Blame
directions	32					O*		
swayed	42			T		\bigcirc		
choices	46							
understands	10						0	Comprehension
applies	35		0		O		0	
recites	37							
lose attn.	18			T		O*		Inattentive-
not attnd.	20					O*		Withdrawn
oblivious	28					O*		
reachable	43					O*		
exagg. story	14					\bigcirc		
answers	15					O*		Responsiveness
interrupt	17					O*		
irrel. talk	26					ㅇ**		
brings in	3				T			Creative
act. imag.	4							Initiative
start disc.	6				T			
talk exper.	21							
unable change	27					O*		Additional Items
quits	40					O*		
slow work	41					O*		

[^4]In the open classroom setting both students of the A_{p} group and the V_{p} group were scored as waiting to see how others followed directions before they did so. The V_{p} group also relied heavily on the teacher for especially specific directions. The A_{n} group and the V_{n} group were able to apply what they had learned and in the case of the V_{n} group were more likely to understand what was heard or read and to be able to recite.

In the traditional classroom sample the A_{n} group showed anxiety about having correct answers. The V_{p} group was scored as more often being swayed by the opinion of others and of losing attention easily. The V_{n} group teased their classmates more but also were thought more likely to recite in class, understand what he read or heard in class (comprehension) but were also more likely to bring in relevant items and to start class discussions (creative initiative).

In the open classroom sample and the comparison between groups $A_{p} V_{p}$ and $A_{n} V_{n}$, the non-problem group again scored significantly higher in two items in the comprehension factor--ability to understand what is seen or heard in the classroom and to apply what has been learned to a new situation. Of the 36 negative learning behaviors the $A_{p} V_{p}$ group scored a significantly higher mean (than the $A_{n} V_{n}$ group) on 26 of them.

Summary

The data obtained in this study has been reviewed and analyzed in this chapter. A score was obtained for each subject on each item of the DESB by teacher ratings. Samples within the elementary school setting were selected for examination. The samples were grouped according to their scores on the GFW and the CEFT.

Students whose scores were high on the GFW, noise subtest were said to be of non-problem auditory screening ability (A_{n}) and students whose scores were low were said to be of poor auditory screening ability (A_{p}). Students whose scores were high on the CEFT were said to be of non-problem visual screening ability $\left(V_{n}\right)$ and students whose scores were low were said to be of poor visual screening ability (V_{p}). Students who scored high on both tests were also in group $A_{n} V_{n}$ and those who scored low on both tests were labeled $A_{p} V_{p}$.

Hypotheses one, two and three, which examined the entire sample were rejected (at the .05 level of significance or higher) on those items specified in Tables 4.1, 4. 2 and 4.3.

Hypotheses three, four and five were also rejected (at the 05 level of significance or higher) on those items specified in Tables 4. 4, 4.5 and 4.6. These hypotheses compared the problem groups in the open classroom to the problem groups in the traditional classroom. Students in the traditional classrooms had significantly higher scores on various negative learning behaviors.

Hypotheses seven, eight and nine examined groups at individual
grade levels. Hypothes is seven ($A_{p}-A_{n}$) was accepted at the first grade level. It was rejected at grade levels two, three, four, five and six. Hypothesis eight ($V_{p}-V_{n}$) was rejected at all six grade levels. Hypothesis nine ($A_{p} V_{p}-A_{n} V_{n}$) could be tested only at grade levels one and six. It was rejected at both these levels.

Supplementary data reviewed included a sample of primary grades (1, 2, 3), and a sample of intermediate grades (4, 5, 6). The number of significant differences found are indicated in Table 4. 12.

Table 4. 12 Numbers of Scores of Significant Differences of Means Within the Primary Grade Levels and Within the Intermediate Grade Levels.

Sample	Number of Scores Found	
$A_{p}-A_{n}$	Pri.	2
$A_{p}-A_{n}$	Int.	5
$V_{p}-V_{n}$	Pri.	7
$V_{p}-V_{n}$	Int.	10
$A_{p} V_{p}-A_{n} V_{n}$	Pri.	7
$A_{p} V_{p}-A_{n} V_{n}$	Int.	2

Samples obtained from the traditional classroom and the open classroom were also presented in the supplementary data. The number of significant differences found are indicated in Table 4. 13.

Table 4. 13 Numbers of Scores of Significant Differences of Means Within the Traditional Classroom and Within the Open Classroom.

Sample	Number of Scores Found	
$A_{p}-A_{n}$	T.C.	1
$A_{p}-A_{n}$	O.C	2
$V_{p}-V_{n}$	T.C.	7
$V_{p}-V_{n}$	O.C.	5
$A_{p} V_{p}-A_{n} V_{n}$	T.C.	0
$A_{p} V_{p}-A_{n} V_{n}$	O.C.	28

Scores of significant differences of the non-problem groups (A_{n} and/or V_{n}) were most often in one or more of the positive learning behaviors. Scores of problem groups in both modes were most often in the area of negative learning behavior.

In the following chapter the implications of these findings will be discussed.

Chapter V

SUMMARY AND CONCLUSIONS

Summary

The purpose of this study was to investigate the relationship between auditory and visual screening ability, as measured by certain specified tests, and the classroom learning behaviors of elementary school children. Auditory screening ability as measured by the Goldman Fristoe Woodcock Test of Auditory Discrimination and visual screening ability as measured by the Children's Embedded Figures Test were used as the basis for grouping students. Individuals were rated by their classroom teachers as to frequency of particular behaviors on the Devereux Elementary School Behavior Rating Scale. Means of groups of "problem screeners" and "non-problem screeners" were computed and compared as to significant differences. The test of significant difference was a conservative, 't-like' test. The acceptable level of significance was. 05 or higher.

Significant differences were found to be numerous enough that patterns of behavior seem evident at various grade levels and with either auditory or visual screening problem or non-problem specified.

Findings

Hypotheses

Hypothesis one: The mean of sample A_{n} (auditory non-problem) and the mean of sample A_{p} (auditory problem) were significantly different at the .05 or higher level of significance on items 23 and 38.

Hypothesis two: The mean of sample V_{n} (visual non-problem) and the mean of sample V_{p} (visual problem) were significantly different at the .05 or higher level of significance on items $3,4,6,10,21,35$ and 37.

Hypothesis three: The mean of sample $A_{n} V_{n}$ (auditory and visual non-problem) and the mean of sample $A_{p} V_{p}$ (auditory and visual problem) were significantly different at the .05 level of significance on item 10 .

Hypothesis four: The mean of sample A_{p} (auditory problem) of stur dents in the open classroom area (grades 2, 3, 4) and the mean of sample A_{p} (auditory problems) of students in the traditional classroom setting (grades $1,5,6$) were significantly different at the .05 or higher level of significance on items $1,15,17,19$, 24, 27, 29, 30 and 32.

Hypothes is five: The mean of sample V_{p} (visual problem) of students in the open classroom area (grades $2,3,4$) and the mean of sample V_{p} (visual problem) of students in the traditional setting (grades $1,5,6$) were significantly different at the .05 level of significance on items 24 and 32.

Hypothesis six: The mean of sample $A_{p} V_{p}$ (auditory and visual problem) of students in the open classroom area (grades 2, 3, 4) and the mean of $A_{p} V_{p}$ (auditory and visual problems) of students in the traditional classroom area (grades $1,5,6$) were significantly different at the . 05 level of significance on item 30 .

Hypothesis seven: The mean of sample A_{p} (auditory problem) obtained at each grade level from one through six and the mean of sample A_{n} (auditory non-problem) obtained at each respective grade level were found to be as stated:
grade one - no significant difference - null hypothesis accepted. Significant differences at. 05 level or higher level of significance were found on
grade two - items 6, 28, 32, 33, 35
grade three - item 24
grade four - items $2,3,4,5,8,9,11,13,14,20,24$,

$$
31,32,33,34,35,40,47
$$

grade five - items 3, 5
grade six - items ll, $12,13,16,30,40$.
Hypothesis eight: The mean of sample V_{p} (visual problem) obtained at each grade level from one through six and the mean of sample V_{n} (visual non-problem) obtained at each respective grade level were significantly different at the .05 or higher level of significance on the following items:
grade one - items 1, 2, 15, 26
grade two - items 24,29
grade three - items $4,10,35,37,47$
grade four - items $10,15,18,24,29,35,37,45$
grade five - items $1,2,10,14,17,29,32,35,37$
grade six - items 8, 19, 24, 29, 35
Hypothesis nine: The mean of sample $A_{p} V_{p}$ (auditory and visual problem) obtained at grade level one and grade level six and the mean of sample $A_{n} V_{n}$ (auditory and visual non-problem) obtained at grade level one and grade level six were significantly different at the level of .05 significance or higher:
grade one - items 37, 42, 47.

```
grades two-five - no sample available
grade six - items 10, 32.
```

Auditory Findings

Upper grade (4,5 and 6) auditory problems cluster mainly in two behavior factors, classroom disturbance and disrespect-defiance. Classroom disturbance is a strong cluster. Sixth and fourth grades as well as the intermediate auditory problem samples have significant differences of the means in this cluster. In disrespect-defiance only one (item 7) does not show a significant difference of the mean. This item asks . . . how often the child acts defiant (says, "I won't do it'I). The implication seems to be that the teacher doesn't feel a personally directed defiance but simply a defiance of the surrounding structure (subject, rules, disrespect).

Sixth and fourth grade levels also indicate a significant difference of the means on item 40. This item refers to the tendency to quit when things are difficult. This seems to support the Adelerian theory that a misbehaving child (classroom disturbance, disrespectdefiance) is a discouraged child (Dreikurs and Stolz, 1964).

The "primary" pattern is not as strongly defined although it too is quite clear if grade four is included. Grade one did not contain a significant difference in the auditory problem-non-problem area. The pattern appears in three behavior factors:
achievement-anxiety, external reliance and creative initiative. The former two behaviors are of course negative in the ir implications for learning. The achievement-anxiety factor seems to contain a wide representation of significant differences. In the problem area however, it tends to be a "primary" pattern. A "primary" pattern is noted in the area of external reliance. Auditory problems from the open classroom sample are also included. The latter behavior factor, creative initiative, is considered a positive learning behavior. The items in this factor require experiential activity previous to introduction of material into the classroom and it would be impossible to define whether that had been an auditory or visual experience. Thus it comes as no surprise that fifth grade auditory problems also show a significant difference in this area.

The total sample contained significant differences of the mean on two items; item 38 says work is too hard and item 23, show anxiety about knowing the right answers. Significant differences on item 38 also come from the primary sample and on item 23 from the primary, intermediate and traditional classroom samples. Non-problem students are more likely to voice the se complaints, the implications being that students with auditory problems will not reveal their concerns about knowing the right answer or having work that is too hard. The lone representative in the auditory area on the comprehension factor is from the open classroom auditory
non-problem sample on item 35 .

Visual Findings

The patterns in the visual findings are, for the most part, very strongly defined. The two factors where scores are quite obvious are external reliance and comprehension. The visual problem students in grades two, four, five and six vividly demonstrate their dependence on outside assistance for cues as to what to do. Also represented in this cluster are V_{p} samples from the open classroom, the traditional classroom and the intermediate level. Visual non-problem students indicate an equally strong tendency toward the positive behavior factor of comprehension. Grades three, four, five and six are represented, along with visual non-problem samples from the open classroom, the traditional classroom, the TOTAL visual sample, the primary level and the intermediate level. Neither the setting nor the grade level appear to influence the results to a great degree. This factor indicates that it is the visually nonproblem child who understands what (s)he hears and reads, is able to apply what has been learned to a new situation and can report or recite what has been learned. It seems to be so clearly the visually non-problem child who demonstrates these competencies that there is a strong implication that the ability to screen visually is an essential tool of learning by the third grade level. This is not to say that
learning cannot take place without this ability; however the visual screening ability apparently enhances the learning process so that a significant difference in behavior is noted.

The second positive behavior factor is creative initiative. The total sample V_{n} is strongly represented in this factor along with V_{n} samples from the traditional classroom, primary level, intermediate level and the third grade. Spivack and Swift (1967) discuss this factor in terms of the student's involvement in and active contribution to the learning environment. It is the V_{n} (visual non-problem) child (as opposed to V_{p}) who is most likely to become involved in the learning environment. The authors of the DESB (Spivack and Swift, 1967) intimate that a lack of involvement indicates the subject is 'divorcing' himself from the learning environment. The implication in this situation however is that the association between the student and the learning environment was never established. The lack of perceptual (auditory and visual) organization blocks the child's ability and eventually the desire to become involved in her or his education.

Irrelevant-responsiveness tends to be a factor in the "primary" pattern. Two of the few significant differences from the first grade V_{p} sample are in this area. The fourth grade and the primary level are also represented. Inability to organize the perceptions may be a part of this situation. The students' response to being bombarded
by visual stimuli that can't be organized is to give irrelevant answers and to make irrelevant remarks during a classroom discussion.

Behavior factor ll, needs closeness to teacher, may be considered a negative behavior only when scores are on extreme ends of the scales indicating extreme distance between the teacher and student on the lower end of the scale and extreme dependence on the teacher on the upper end of the scale. Dependency on the teacher would be considered of more concern in the normal upper grade classroom than in the normal primary classroom. This factor is a part of the pattern established by visual problem students. The implication is, this action may be necessary for these students to be able to establish a relationship with the teacher.

If, as Cruickshank (1967) believes, the child cannot sort the visual image of the teacher from other stimuli in the room that child may be forced to physically seek out the teacher at other than regular classroom activity.

Auditory-Visual Findings

$A_{p} V_{p}$ (auditory and visual screening problems) and $A_{n} V_{n}$ (auditory and visual screening non-problems) were tested for significant differences of the means on each of the 47 items on the DESB within these samples: primary level (1, 2, 3), intermediate level
$(4,5,6)$, open classroom (2, 3, 4), traditional classroom (1, 5, 6), total sample (1, 2, 3, 4, 5, 6), grades one and grades six. Grades two, three, four and five contained either one student or no students in the $A_{p} V_{p}$ group.

The most spectacular results were shown when the $A_{p} V_{p}$ open classroom sample scored significant differences in 26 of a possible 36 negative behaviors. There are some scattered items in the factors of classroom disturbance, disrespect-defiance, and achievementanxiety. These appear to reflect previously mentioned findings. In addition to these items, there are several noteworthy clusters. In the behavior factor impatience, the open classroom sample is represented along with the first grade and the primary level samples. Clinicians have indicated that these behaviors are expected. Specifically, that due to perceptual disorganization, $A_{p} V_{p}$ students' work is often sloppy, that they tend to rush through their work and once it's completed certainly do not want to go back over that work.

External blame is another factor that contains a cluster from the open classroom $A_{p} V_{p}$ sample. These students have many excuses; they blame external circumstances, say the teacher doesn't help enough and that the teacher never calls on them. Interestingly enough, however, these students aren't likely to say that the work is too hard.

External reliance contains significant differences from the $A_{p} V_{p}$
primary, first grade, sixth grade and open classroom samples. The implications of these behaviors are given particularly in terms of leadership, following directions and being self-reliant. Younger students in these samples seem to be especially susceptible to the opinions of their peers.

Primary and open classroom $A_{p} V_{p}$ samples indicate a tendency toward being inattentive and withdrawn. The implication of being oblivious to activities in the classroom and of wandering attention is obvious in terms of learning behaviors. If one does not really see or does not really hear what is going on in the classroom, no matter what the setting, learning does indeed become difficult.

Irrelevant responsiveness is quite likely in the open classroom $A_{p} V_{p}$ sample. The primary $A_{p} V_{p}$ sample is also represented when answers are irrelevant to the question. Judgement as to what one knows or has learned is often made on the basis of the verbal response to what is appropriate for the situation. Implications in these behaviors are that learning simply has not occurred, lack of perception may well be the cause. The child has not been able to organize the stimuli in a manner to make it useful or usable.

Each of the three additional items are significantly different in favoring the $A_{p} V_{p}$ open classroom sample. These behaviors, inability to change tasks (perseveration), quitting when things get difficult (easily discouraged) and slow work (laboriously done) are
described in clinical observations of 'learning disability' students.
As in previously detailed findings in the comprehension behavior factor the mean of non-problem groups is significantly different from the mean of the problem students. Samples represented are from the first grade, the sixth grade, the open classroom and the total sample. Implications are that the learning process is clearly enhanced by auditory and visual screening ability.

Raw Score Data

Two pertinent observations result from a careful perusal of the scores of the GFW and the CEFT after subjects have been grouped according to their scores on these instruments.

After the teachers had rated each of their students, they made an appointment to review the findings of the GFW and CEFT. These findings were analyzed according to grade level and groupings for both instruments were indicated opposite the students' names (Appendix C). Teachers of grades three through six indicated that most of the students whose visual screening ability was scored as normal or better were also members of the top reading group at that grade level. Since the CEFT shows no relation ($r=.02$) with, for example, WISC composite verbal-comprehension scores in past studies (Witkin et al., 1971) the implication is that visual screening ability contributes to the reading efficiency of elementary students.

The second observation was made as groupings were plotted in adjacent columns. The trend in the fifth and sixth grades indicated that by the time students reach the fifth or sixth grades they have chosen auditory or visual strengths. If a student was 'low' in one modality (s)he was often 'high', in the other modality. This possibility implies uneven development and constant compensation proces ses. However it also implies a 'best' way for a student to learn. This student should be encouraged to capitalize upon his strengths especially in stress situations (i.e. testing). The student should also be encouraged to work on development of the lesser ability.

Conclusions

Several significant behavior patterns have been described. Variations exist because of age or grade level and because of specific screening problem(s). A great commonality is noted concerning the positive learning behavior factors, creative initiative and comprehension. The ability to screen auditorially and to screen visually increases the likelihood of the student becoming involved and contributing to the learning environment (creative initiative). Those students who are able to screen visually are significantly different, more able, than the visual problem students to understand what is heard or readin class, apply what was learned to a new situation and to recite in class. The ability to visually screen extraneous
stimuli contributes significantly the student's comprehension. It strongly enhances the learning process from the third grade through the sixth grade.

Generally students with auditory screening problems tended toward behavior problems. Students with visual screening problems often had academic problems.

Recommendations

Field of Education

1) Screening abilities of students should be of as much concern to the teacher as is their acuity in vision and audition. These screening abilities should be tested on a regular basis in the elementary school.
2) Teachers must be made aware of symptoms of screening problems as well as cognizant of helpful coping procedures.
3) Parents, students and teachers need to be able to consult with specialists who can confirm or reject diagnosis, assist in developing individual remediation programs and assist in evaluating progress.
4) Encourage and train teachers to learn to use behavioral rating scale(s) to discover and evaluate points of learning "breakdown" in order to more proficiently prescribe for the individual's learning needs and perceptual development.
5) Encourage and provide for perceptual development through developmental programs aimed at primary ($\mathrm{K}-3$) grade levels; provide emphasis in perceptual development throughout the elementary school.

For Further Study

1) Investigate the possibility that students with auditory screening problems are unaware that the noise they create is a problem.
2) Investigate the effect of the individual's awareness of personal screening problems and learning of appropriate coping behaviors.
3) Initiate a long term study of perceptual remediation efforts and how they affect behaviors and achievements.
4) Investigate the relationship of visual screening and reading, mathematics.
5) Investigate the relationship of auditory screening and negative learning behaviors.

BIBLIOGR APHY

Aaron, Ira E., Translatory research into practice: reading readiness, visual perception and auditory perception in Perception and Reading, Helen K. Smith, ed. Vol. 12, Part 4 Proceedings of the Twelfth Annual Convention, International Reading Association. Newark, Delaware. 1968. p. 131.

Arnheim, Rudolf, Visual thinking. Los Angeles, CA: University of California. 1969. pp. 54-79.

Ayres, A. Jean, Manual - Southern California Figure-Ground Visual Perception Test. Los Angeles: Western Psychological Sciences.

Barsch, Ray H. Achieving perceptual motor efficiency Seattle, Washington: Special Child Publications. 1968. pp. 231-289.

Bartley, S. Howard, Principles of perception. Harper and Row. 1958. pp. 84-96.

Bateman, Barbara, The efficacy of an auditory and a visual method of first grade reading instruction with auditory and visual learners in Perception and reading, Helen K. Smith, ed. Vol. 12, Part 4. Proceedings of the Twelfth Annual Convention. International Reading Association. Newark, Delaware. 1968. p. 110 .

Beadle, Muriel, A child's mind. New Jersey: Doubleday and Company, 1970. 321 p.

Beardslee, David C. and Michael Weitheimer. Readings in Perception. Van Nostrand publishing Company. 1958. 728 p.

Best, John W. Research in education. New Jersey: Prentice-Hall, Inc. 1970.

Birch, Herbert G., Brain damage in children, in Learning disabilities, McCarthy and McCarthy, ed. Boston: Allyn and Bacon. 1969. p. 4-5.

Bowd, Alan D., Retest reliability of the Children's Embedded Figures Test for Young Children, Perceptual and Motor Skills, 1974, 39, 442.

Bruininks, Robert H. Auditory and visual perceptual skills related to the reading performance of disadvantaged boys. Perceptual and Motor Skills, 1969, 29, 179-186.

Bruner, J. S. et al. Studies in cognitive growth. New York: Wiley and Sons, Inc. 1966. pp. 10-15.

Buros, Oscar Krisen, ed. The Seventh Mental Measurements Yearbook. New Jersey: The Gryphon Press. 1972. p, 938.

Chalfant, James C. and Corrine E. Kass, Training specialists for children with learning disabilities, in Learning disorders, Vol. 3 Jerome Hellmuth, ed. Seattle, Washington: Special Child Publications of the Seattle Segain School, Inc. 1968.

Chalfant, James C. and Margaret A. Scheffelin Central processing dysfunctions in children: a review of research. Department of Health, Education and Welfare, Bethesda, Maryland. 1969. p. 137-139.

Cratty, Bryant J. Physical expressions of intelligence. New Jersey: Prentice-Hall. 1972.

Cruickshank, William M. The brain-injured child in home, school and community. New York: Syracuse University Press. 1967. 294 p.

Davis, J. M., W. F. McCourt, P. Solomon and S. I. Solomon. The effect of visual stimulation on hallucinations and other mental experiences during sensory deprivation. American Journal of Psychiatry, 1960, 116, 889-892.

Dember, William N. The psychology of perception. Holt, Rinehart and Winston. 1960. p. 145-146.

Deutsch, J. Anthony and Diana Deutsch, Physiological psychology. Illinois: The Dorsey Press. 1973. p. 167, 282, 380-381.

Dreikurs, R. and V. Stolz. Children: the challenge. New York: Hawthorne Press. 1964.

Epstein, William, Varieties of perceptual learning. New York: McGraw-Hill Book Company. 1967. p. 124, 144-151, 272.

Flower, Richard M. The evaluation of auditory abilities in the appraisal of children with reading problems in Perception and reading, Helen K. Smith, ed. Vol. 12, Part 4. Proceedings of the Twelfth Annual Convention. International Reading Association. Neward, Delaware. 1968. p. 24.

Freedman, S. J. and M. Greenblatt. Studies in human isolation. Technical Report 59-266, Wright-Patterson AFB, Ohio, WADC Aero-Medical Lab. 1959.

Frostig, Marianne, Visual modality and reading in Perception and reading, Helen K. Smith, ed. Vol. 12, Part 4, Proceedings of the Twelfth Annual Convention, International Reading Association. Newark, Delaware. 1968. p. 28.

Gearheart, B. R., Learning disabilities. St. Louis: The C. V. Mosby Company, 1973. p. 108-136.

Gibson, Eleanor J., Development of perception: discrimination of depth compared with discrimination of graphic symbols. Monographs of the Society for Research in Child Development. 1963. Serial Number 86, Vol. 28, 5-24 (Ch. 13).

Goldman, Ronald, Macalyne Fristoe and Richard W. Woodcock. Manual, Test of Auditory Discrimination, Circle Pines, Minn. American Guidance Service. 1970. 31 p.

Gross, Charles G., H. Philip Zeigler. Readings in psychological psychology - neurophysiology|sensory processes. New York: Harper and Row. 1969. p. 147, 270-274.

Jackson, D. N., "A further examination of the role of autism in a visual figure-ground relationship. " Journal of Psychology, 1954, 38, pp. 339-357.

Johnson, Doris J. and Hilmer R. Myklebust. Learning disabilities, educational principles and practices. New York: Greene and Stratton. 1967.

Katz, P. A., "Effects of labels on children's perception and discrimination learning, "Journal Experimental Psychology. 1963. pp. 423-428.

Kephart, Newell C. The slow learner in the classroom: Ohio: Merrill Publishing Company. 1960. p. 31, 81, 209, 235.

Kirk, Samuel A. and Jeanne McRae McCarthy, ed. Learning disabilities selected ACLD papers. Palo Alto, CA.: Houghton Mifflin Company. 1975.

McCarthy, James J. and Joan F. McCarthy. Learning disabilities. Boston: Allyn and Bacon. 1969. p. 138.

Marks, Lawrence E. Sensory processes, the new psychophysics. New York, Academic Press. 1974. p. 217, 287.

Mecham, Merlin Audiolinguistics skills in children. St. Louis: Warren H. Green. 1969. p. 16

Morency, Anne, Auditory modality and reading, in Perception and reading, Helen K. Smith, ed. Vol. 12, Part 4, Proceedings of the Twelfth Annual Convention, International Reading Association. Newark, Delaware. 1968. p. 18.

Muller, Philippe, The tasks of childhood. Translated from the French by Anita Mason. New York: McGraw-Hill. 1969.

Mussen, Paul Henry, John Conger and Jerome Kagan. Child development and personality. New York: Harper and Row. 1963. p. 426-505.

Oxeridine, Joseph B. Psychology of motor learning. Appleton-Century-Crofts, 1968. p. 36-37. 284-285.

Palermo, David S. and Lewis P. Lipsitt, eds. Research readings in child psychology. New York: Holt, Rinehart and Winston. 1963.

Piaget Jean, Six psychological studies New York: Vintage Books. 1967. p. 6, 7.

Richardson, Sylvia. Learning disabilities: an introduction in Learning disabilities, selected ACLD papers. Samuel A. Kirk, Jeanne McRae McCarthy.

Robson, Colin, Experiment, design and statistics in psychology. Baltimore, Maryland: Penguin Book, Ltd. 1970.

Rock, Irvin, An introduction to perception. New York: Macmillan Publishing Company. 1975. p. 346

Sage, George H. Introduction to motor behavior: a neuropsychological approach. Menlo Park, CA: Addison-Wesley Publishing Company. 1971. pp. 153-209.

Solly, Charles M. and Gardner Murphy, Development of the perceptual world. New York: Basic Books, Inc. 1960. pp. 262-288.

Snedecor, George W., Statistical methods. Ames, Iowa: The Collegiate Press. 1946. pp. 82-85.

Snedecor, George W. and William G. Cochran Statistical methods. Ames, Iowa: Iowa State University Press, Sixth Edition. 1973. p. 115.

Spivack, George and Marshall Swift. Devereux elementary school behavior rating scale manual. Devon, PA: The Devereux Foundation. 1967. 33 p.

Spivack, George and Marshall Swift. A study of the nature and organization of disturbed elementary classroom behavior. A Report to the Office of Education, Health, Education and Welfare. Devon, Penn: The Devereux Foundation. 1967. ED 012-545.

Wepman, Joseph M. and Ralph W. Heine. Concepts of personality. Chicago: Aldine Publishing Company. 1963.

Wilentz, Joan Steen, The senses of man. New York: Thomas Y. Crowell Company. 1968. p. 160-190, 216-304.

Willenberg, Ernest P., Foreword to Learning disabilities by B. R. Gearheart, St. Louis: The C. V. Mosby Company, 1973.

Witken, Herman A., Philip K. Altman, Evelyn Raskin, Stephen A. Karp. Manual for Embedded Figures Test, Children's Embedded Figures Test, Group Embedded Figures Test. Palo Alto, CA: Consulting Psychologists Press, Inc. l97l. 32 p.

Wood, Nancy E. Verbal learning: dimensions in early learning series. Belmont, CA: Dimensions Publishing Co. 1969.

Wyer, Robert S. ed. Cognitive organization and change: an information processing approach. Maryland: Lawrence Erlbaum Associates, Inc. 1974. pp. 13-20.

Zusne, Leonard, Visual perception of form. New York: Academic Press, 1970. pp. 2-167, 247-288, 353-381.

APPENDICES

APPENDIX A

Elements of Informed Consent

BASIC ELEMENTS OF INFORMED CONSENT

The informed consent of subjects will be obtained by methods that are adequate and appropriate. Informed consent is the agreement obtained from a subject, or from his authorized representative, to the subject's participation in an activity.

The basic elements of informed consent are:

1. A fair explanation of the procedures to be followed, including an identification of those which are experimental;
2. A description of the attendant discomforts and risks;
3. A description of the benefits to be expected;
4. A disclosure of appropriate alternative procedures that would be advantageous for the subject;
5. An offer to answer any inquiries concerning the procedures;
6. An instruction that the subject is free to withdraw his consent and to discontinue participation in the project or activity at any time.

In addition, the agreement, written or oral, entered into by the subject, should include no exculpatory language through which the subject is made to waive, or to appear to waive, any of his legal rights, or to release the institution or its agents from liability for negligence.
sko
5/21/74
Taken from: The Institutional Guide to DHEW Policy on Protection of Human Subjects.

To Lincoln School Parents:

The ability of a child to hear or to see is of great importance in his or her daily life. Whether or not the child can use this ability efficiently may depend on how well he or she can "screen out" unimportant things or events and concentrate on the task in front of him. One must be able to give his attention in order to learn.

An opportunity for children at Lincoln School to have their screening abilities checked has become available. As a part of the research for a doctoral thesis, Marci Ling, who has been involved in our school's practicum program for the past four years has offered this service. The data obtained would be used to obtain group scores. NO INDIVIDUAL SCORES WILL BE USED as a part of the study. Results will, of course, be available for the teachers; parents of children discovered to have screening problems will also be notified.

The study has been designed so that inter ruption of class time will be minimal; students will not be taken from the classroom.

Parents who object to having their children participate in this program are asked to state the fact in writing and see that the school office receives the note no later than April 30, 1975. (If a time extension is necessary please call Lincoln School office before the deadline.)

Those who have questions are invited to call the school office, their children's teacher, or Mrs. Ling at 752-6105.

Marci Ling
P.S. Mrs. Ling has been working with our counseling program at Lincoln. She is an experienced teacher who has taught for eight years. She has taught second, sixth and eighth grades and has specialized in music and physical education. This project has been cleared with our Central Office Personnel. I have every confidence that this will be done with a minimum of interruption to our boys and girls.
S. W. Waldron

The following statement will be read to students in each classroom:
"In our booth in the corner of the room we have two things to do. You will be allowed a turn at each one. In one turn you will wear earphones to hear some words that tell which picture you are to point out. In the second turn you will be shown the shape of a tent and the shape of a house; then you will be shown some pictures of toys and things and asked to find the shape in the picture.

We will write down your answers but, of course you will NOT get a grade. This is an exercise to find whether you can see or hear as well as usual if other things are happening at the same time.

This is not something you have to do; but, we think it will be fun to do and interesting for you to learn more about yourself.

Do you have questions about these activities?

APPENDIX B

Instruments

SCORE SHEET FOR

CHILDREN'S
EMBEDDED
FIGURES TEST QUWVYYy
\qquad
CLASS \qquad
BIRTH DATE \qquad SEX: M__F__

DATE EXAMINER \qquad

$T_{\text {LAr }}$	DESCRIPTIUN	
r_{1}		
P_{2}		
T_{1}		
T_{2}		
r_{3}		
T_{4}		
T_{5}		
r_{6}		
T_{7}		
T_{8}		
Y_{9}		
T_{10}		
T_{11}		

: CONSULTING PGYCHOLOGISTS PAESS, INC.
577 College Avenue, Palo Allo, Califomia 94306

TRAINING PROCEDURE
\qquad

Equipment Used to Administer Goldman, Fristoe, Woodcock Test of Auditory Discrimination
Test set including casette tape.
2 headsets: 610-1 Telex 6000 (one set for subject, one set for examiner)
Sound level meter: BSR Electronics, Model 8A4 capable of measuring 60-116 dB at two speeds
Junction box model PB-l by
Audiotronics Corporation North Hollywood, CA
Casette tape 'deck' - Panasonic RQ 41351975 model

DEVIRREUX ELEMENERRY SCHOOL BELAVIOR RATMC SCELE*

George Spivack, Ph.D. and Marshall Swift, Ph.D.

Devereux Foundation Institute for Research and Training

RATING GUIDE

1. Base rating on student's recent and current behavior.
2. Compare the student with normal children his age.
3. Base rating on your own experience with the student.
4. Consider each question independently.
5. Avoid interpectations of "unconscious" motives and fecliast.
6. Use extreme ratings whenever uarranted.
7. Rate each item quickly.
8. Rate every question.

Consider oniy the ixhavior of the student over the past month.

The standard for comparison should be the average youngter in the normal elassroom situition.
Consider only your own impression. As much as possihle, finore what others have said about the stucient and their impressions.

Make no effort to describe a consistent behavioral picture or personality. It is known that children may show seemingly contradictory behavior.

As much as possible, base ratings on outward behavior you actually observe. Do not try to interpret what might be going on in the student's mind.
Avoid tending to rate near the middle of all scales. Make use of the full range offered by the scales.

If you are unable to reach a decision, go on to the next itcm and come back later to those you skipped.

Attempt to rate each item. If you are unable to rate a particular item bechase it is not appropriate to the child in question. or because of lack of information. circle the item number.

IUU AHF GOAG TUHATE THE OVFRT BFHAVIOR OF A STUDENT. FOH ITEMS 1-26 USE THE RATING
 IT GM NUMBER.

Veryfrequenty	Often	Oceasionally	Marcly	Never
j	4	3	2	1

COMP !RE: NHH THE AVERAGF CHILD IN THE NORMLAL CLASSHOOM DITUATION, HOW OFTEN DOES IHE CHID...

Item

1. Start working on something befure gettins the directions straight?

Rating
Item
2. Bis that the teacher ducsn't help him enomith (i.e. , won't show him how to do thins: or answer his (unestions)"
[-]
3. Buing things to class that relate to curreat topic (e.g., extibits, colleclions, atticles, ete.)?
4. Tell sturies or descrile thiney in an interestan; and cu!olfal fashiua (e.g. . has ata active imagimation, tc.)?

Speak di; respectfully to teacher (e.g., call teacher names, treab teacher as an ernal, ete.)?

6. Initiate class room discussion?
7. Act defiant (i.e., will not do what he is asked to do, says: "I won't do it')?
8. Serk out the teacher before or after cla:s to talk about school or persunal matters?

9. Belittle or make derogatory remarks about the subject being taught (e.g., "spelling is stupid')?
10. Get the point of what he reads or hears in class?
11. Have tu be remimanded ur controlled by the teacher because of his behavior in class?
12. Poke, torment, or tease classmates?
13. Amoy or finterfere with the work of his peers in class?
14. Tell stories whicn are exaggerated and untruthful?
15. Give an answer that has nothing to do with a question being asked?
10. Lreak classroom rules (e.g., throw thines, mark up desk or books, etc.)?
17. Interrupt when the teacher is talking?
18. Quichly loze attention when teacher explins somuthing to him (e.r., becomes fidyely, looks away, etc.)?
10. Officr to du things for the teacher (e.e., erase the board, empty the pencil sharpener, open the door, get the mail, etc.)?
20. Makes you doubt whether he is paying attention to what you are doing or sayifyr (e.g., louks elsewhere, has blank stare or faraway louk, etc.)?
21. Int roduce into class Jiscussion personsl experiences or things he has heard which relate to what is going on inclass?
22. Get upenly disturbed afout scores on a test (e.g., may cry, fet cmotionally upset, ete.)?
23. Show worry or get anxious about knowing the "richt" answers?
24. I, ow to see how others are doing something before he does it (e.f., when tancher gives a direction, etc.)?
25. Complain teacher never calls on him (e. E. , that teacher calls on others first, ctc.)?

2G. Malke inrelevant remarks during a clas:iroon discussion?

FOR ITEMS 27-47 USE THE RATING SCALEE BELOW:

	Distinctly	Quite a bit	Moderately	A little	Very slightly	Not at all
Extrely	a	6	4	3	2	1

COMPARLD WITH THE AVERAGE CHHD IN THE NORMAL CLASSROOM STUATION, TO WHAT DECHIE IS THE CHILD..

Item
27. Unable to change from one task to another when asked to do so (e.g., has difficulty le binning a new task, may get upset or disorganized, ete.)?
28. Olfivious to what is roing on in clas: (1.e., not "with it," seems to be in own "private" closed world)?
29. Reliant u_{i} on the teacher fur directions and to be fold how to du things or proceed in class?
30. Quickly drawn into the talkinis or noise. matiou of otlers (i.e., stops work to listen or juin ing?
31. Outwardly nervous when a test is given?

Rating
Item

35. Ahle to apply what he has learned to a new situation?
36. Sloppy in his work (e.g. , his products are dility or marked up, wrinkled, etc.)?
37. Likely to know the material when called upon to recite in class?
38. Quick to say work assigned is too hard (e.g. " "juu expect too much." "l can't get it," etc.)?
39. Respunsive or friendly in his relationship with the teacher in ciass (vs. being coul. detached or distant)?
40. Likely to quit or give up when something is difficult or demands more than usual effort?
41. Slow to complete his work (i.e., has to be prodded, lakes excessive time)?
32. Unatble to follow directions given in class (i.e., nced i.recise directions before lie can proceed suceessfully)?

42. Swayed by the opinion of his peers?
33. Sensitive to criticism or currection about his school work (e.f., ficts ans, ry, sults, secms "defeated", etc.)?

34. Prone to blame the teacher, the test. or external eircumstances when things don't go well?
43. Difficult to reach (e.g., seems preoccupied with his own thoughts, may have to call hin by name to bring him out of himself)?
44. Unwilling to go back over his work?

COMPARED WITH THE: AVFRAGE CHIDD IN THE NOHMAL CLASSROOM SITUATION, TO WHAT DEGHEE DOFS THE CHMDD..
45. Like to be close to the teacher (e. E. . hug or tomet the teacher, git or stand next to tracher, ete.)?

4f. Have difficully deriding what to do when piven a chate betwera tivo ob more thimp:3?

47. Rush through his work and therefore make unnecessaty mistakes?

DEUEREUR ETEUENERRY SCEOOR BERAMOR RATMUG SCALE*

George Spivack. Ph.D. and Marshall Swift, Fh.D. Devereux Foundation Institute for Research and Training DESB PROFILE

APPENDIX C

Raw Data Used for Grouping Procedures

Grade 2

Grade Three

Grade Four

Grade Five

Grade Six

APPENDIX D
Computer Output
Summary of Findings

ITEMS	No.	AUDITORY		VISUAL		COMBINED AV		BEHAVIORS RESULTING IN:
		${ }^{A_{p}}$	A_{n}	V_{p}	V_{n}	${ }^{A V_{p}}$	${ }^{A V}{ }_{n}$	
needs control teases interfere drawn in	$\begin{array}{r} 11 \\ 12 \\ 13 \\ -30 \end{array}$	64 6I 614 6I			IT	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Classroom Disturbance
starts sloppy go back rushes	$\begin{array}{r} 1 \\ 36 \\ 44 \\ 47 \\ \hline \end{array}$	4		1 $3 \mathrm{P}$	5I	$\begin{aligned} & 0 \\ & \text { PO } \\ & \text { P10 } \end{aligned}$	I	Impatience
disrespect defy teacher subject rules	$\begin{array}{r} 5 \\ 7 \\ 9 \\ 16 \end{array}$	54 4 6				$\begin{aligned} & 0 \\ & 0 \end{aligned}$		Disrespect- Defiance
teacher help called on blames too hard	$\begin{array}{r} 2 \\ 25 \\ 34 \\ -38 \end{array}$	4 4	AP	1	5	$\begin{aligned} & \mathrm{O} \\ & 0 \\ & 0 \end{aligned}$		External Blame
test scores right answ. testing sensitive	$\begin{aligned} & 22 \\ & 23 \\ & 31 \\ & 33 \end{aligned}$	$\begin{aligned} & 4 \\ & 24 \end{aligned}$	APIT	I P		\bigcirc		AchievementAnxiety
see others rely on t'ch'r directions swayed choices	$\begin{array}{r} 24 \\ 29 \\ 32 \\ 42 \\ -46 \end{array}$	$\begin{aligned} & 304 \\ & 24 \end{aligned}$		$\begin{aligned} & \overline{240} \overline{\mathrm{I}} \\ & 24506 \\ & 5 \\ & \mathrm{~T} \end{aligned}$		$\begin{aligned} & \hline \bar{O} \\ & 0 \\ & 60 \\ & 1 \mathrm{PO} \end{aligned}$		External Reliance
understands applies recites	$\begin{array}{r} 10 \\ 35 \\ -37 \end{array}$		0		TOPV345I OIV3456. TOPV345I		$\begin{aligned} & \text { AV6O } \\ & 0 \\ & 1 \\ & \hline \end{aligned}$	Comprehension
lose attn. not attud. oblivious reachable	$\begin{aligned} & 18 \\ & 20 \\ & 28 \\ & 43 \end{aligned}$	$\begin{aligned} & 4 \\ & 2 \end{aligned}$		4 T		$\begin{aligned} & \mathrm{PO} \\ & \mathrm{O} \\ & \mathrm{PO} \\ & \mathrm{PO} \end{aligned}$		InattentiveWithdrawn
exagg. story answers interrupt irrel talk	$\begin{array}{r} 14 \\ 15 \\ 17 \\ -26 \\ \hline \end{array}$	4 I		$\begin{aligned} & 14 \mathrm{P} \\ & 1 \\ & \hline \end{aligned}$	5 5	$\begin{aligned} & \mathrm{O} \\ & \mathrm{PO} \\ & \mathrm{O} \\ & 0 \end{aligned}$		IrrelevantResponsiveness
brings in act. imag. start disc. talk exper.	$\begin{array}{r} 3 \\ 4 \\ 6 \\ -21 \end{array}$	5	$\begin{aligned} & 4 \\ & 4 \\ & 2 \end{aligned}$		$\begin{aligned} & \text { VTP } \\ & \text { V3P } \\ & \text { VTI } \\ & \text { V } \end{aligned}$	I		Creative Initiative
seeks t'ch'r helps friend ly phys. close	$\begin{array}{r} 8 \\ 19 \\ 39 \\ -45 \end{array}$		4	$\begin{aligned} & 6 \\ & 61 \\ & 4 \\ & \hline \end{aligned}$				Needs Closeness to Teacher
unable change quits slow work	$\begin{aligned} & 27 \\ & 40 \\ & 41 \end{aligned}$	64		I		0 0 0		Additional Items

\qquad
\qquad

ITEM	rvolige	TF	$M=A N 1$	VAP1	N1	$9 \div 4: 12$	VAF？	NT	$:$
1	1．3．${ }^{2}$	30.159							095
$?$	－1．736	25：${ }^{\circ}$	1．455	$\begin{array}{r} 1.46 \\ +32 \end{array}$	54	？ 1.7510	$\begin{aligned} & 043 \\ & 1.62 ? \end{aligned}$	5 6	
30	$3: 756$			1．1． 0	54	1.710 2.15	1.65	${ }_{6}^{5}{ }^{2}$	$\begin{aligned} & 0.4 \\ & 0 \\ & 0 \end{aligned}$
$4-$	$-\frac{2}{2} \cdot 3+3$	$\begin{array}{ll} 1 \\ 1 \\ \hdashline & 1 \\ 0 \end{array}$?	1.30		\％．3）	$1 \cdot \frac{1}{3}$	\％	
$\frac{3}{5}$	2．23－	边		1. 2 1 37	－	$\frac{1}{2} \cdot 977$	1.30	ET	
$\begin{aligned} & 7 \\ & 8 \end{aligned}$	－0．754	1，只的		1： $3 \cdot 3$	3	1．$-2 \begin{gathered} \\ 0\end{gathered}$		E	oúcory
$\begin{aligned} & 8 \\ & 9 \end{aligned}$	－ 0.173	$13.0 *$	2．13J	2.732	5	$3: 30 ?$	¢．3it	¢	c它i
10.01	3．t？	12．75＊	－．4．7	1． $0^{2}, 1$	54	3． 197	1．4．25	$3{ }^{3}$	$00^{0} 11$
11	－j．+ ，${ }^{\text {e }}$	1） 4.7 \％	2．4．1	2．0） 0	5.	？ 205	$1 \cdot 1+2$	$5 ?$	コうci？
12	1．2：1	23．${ }^{0}$	¢， $2: 3$	1．5t3	5	3． 3 ？ 0	1．16	$\underbrace{6}$	$020: 3$
12	－j． 3.9	$1 \% \cdot 7$＊	$2 .+35$	1.759	54	$3 \cdot 505$		5	jcita
14	－4．375	13．3）	1.519	－150	54	1．	1.647	$6 ?$	
15	－1．512	$13.03 *$	1.511	－50\％	54	1．347	1．0？	${ }_{5} 5$	
16	$\cdots 34$	$11.11 *$	？ 267	1.337	54	－ 21.	$1.35 \frac{1}{4}$	E	$\begin{aligned} & 30<: 17 \\ & 26012 \end{aligned}$
17	－－ $\mathrm{y}_{7} 17$	名号： 0	？ $23>0$	1.707	54	？ 275	1.409	E？	$\begin{array}{cc} 20612 \\ 060 \end{array}$
19	－ 1.131	1？ 20×4		1.152	54	$3 \cdot 5$	1.23%	E	比云20
20	-3.158	$10 \cdot 3$	c， 5,7	2.963	5	2．0．6	1.453	6^{2}	
$21-$	－ $2 \cdot \square ?$	1号：	；3 31	1．412	5.4	2．M5s	$1.9 . ?$	¢	
－ 22	－1．4？ 0	1211	1．779	－6， 6	54	？．743	1．1？	¢ 2	กワ2？
24	－1： 0		？？${ }^{\text {a }}$	1.17%	${ }_{5}^{5}$	？？ 17	1.156	$5 ?$	dくを？う
pr，	－1． 31	1 $\because 1 \times$	1.40	1.6	${ }_{2}$	？ 0.77	1.271	03	1］ 0 ？ 0
20	－3．740	34．${ }^{4}$	1．931	1．45？	¢	ハ，		¢？	$\bigcirc \mathrm{CCO}$
27	－0． 2 F	¢ $311^{\prime \prime}$	？．725	3.517	54	リu1	1.279	$5 ?$	370？
24 29	－0． 113	$13.14 *$	2．513	こ． 330	$5+$	3.180		¢\％	了 ¢0，
	－2．035	1：．17＊	？．7．10	2．3．3	74	$3.93+$	3.303	ह\％	9603］
30	－j．j25	11．75＊	3．27）	4.374	54	？． 307	$4.15+$	¢	$0 こ ゙ 31$
31	-2.174	1） 11.7	1． $2 \cdot \%$ ？	． 243	94	？ 3 30	2．0日？	6	式 0 ？
3.3	－1．？${ }_{\text {－}}$	$1{ }^{1} \cdot{ }^{\text {c }}$	$\therefore 463$	3．395	56_{4}	2．942	3．3．3	Ej	20535
3.	－1： 030	$13.3{ }^{13}$	2．$+1+4$	3.615	54	3.232	3．6．j－1	©	00034
35	－ $0^{0} 032$	13．3\％＊	$2 \cdot 148$	$\because \cdot 7 ヵ 3$	$5{ }^{\circ}+$	2． 3 ？	3．271	5	נunsr
$3{ }^{3}$	－0．i．	1！．${ }^{\text {a＊}}$	－ 315	2．371	94	4． 51	2．3： 1	2	？ 6 co
37.01	र． $31 \times$	13．	こ．3．7	$2 \cdot 95$	64	－．？ 0	3.815.	E2	－ 5 C39
38	$-1 \cdot 1 \because$	$11.14 *$	こ031	1.723	3	4．304	$3 \cdot 36,1$	？	3） 03
39 40	1．31．1	1i：${ }^{\text {a＊}}$	$\because 5.93$	1．J¢？	9． 4	\％．3y	\％．80	\％	Truc！
40	－1．739	12．7／＊	$\therefore 415$	द．717	$i 3$	$\begin{aligned} & 574 \\ & 3.791 \end{aligned}$	4.419	3	9u041
41	$-1 . \pm 75$	11．31＊＊	2.7%	4.45	54	3． $3 \mathrm{3}:$	4．4．3，	\％	00062
42	－1．537	j0．53＊	？ $3.7=3$	3.713	54	3．5星		5	
4,3 4	－ $5 \cdot 315$		？． $7 \cup 4$	3.544	5	3.205	4.69	？	Cit 45
4.5	． 313	15		3．4．3？	54	\cdots－ci	3.277	2	吅吅ち
45,	－ 0.731	15.1	$\therefore 6 \rightarrow 1$		9，${ }_{4}$	$2 \cdot 104$	4.191	？	0 O0， 7
47	－1．030	13．73＊	2.500	2.740	54	2.919	$\begin{aligned} & 2.46 \\ & 3.616 \end{aligned}$	2	

Otrgetabisata	
69	
$\stackrel{\rightarrow}{ }$	
4	
\because	
$\rightarrow 4$	
$\Rightarrow 2 y+0$	
aiontrabucher	
tatasant	
\pm	-
\rightarrow	0
$\stackrel{\rightarrow}{\square}$	0
$\xrightarrow{9 \rightarrow}$	$\stackrel{+}{4}$
ther	$\rightarrow \rightarrow$

\$	\$ $\$ 8$	T.	9	\$ $\$ 886$
b	\pm	啫		4
\$!		+ 5	¢
\$	\$	\pm	1 E	\% GT
\$	$\$$	4	b	$\ddagger \quad 97!$
\$	is	$\$$	\bigcirc	$\$ \pm 155^{\circ}$

LIMG／SinA，SLAr
JO3 NO． $74^{2} 165$ 07／22／75 ごここけM TERMINAL 111

JOB NO.	74810		07/18		3124
8	\$St	\uparrow	$\$$		E\$\$\$B
\$	\$	36	\$	5	\$
\$	1	\pm	\pm \$	8	
\$	1	\$	\$ ${ }^{\text {b }}$	\$	
\$	$\$$	9	\$	9	9\$\$
\$	\pm	\$	\$1	I	\$
\$\$\$\$\$\$\$	\$S\$	\$	\$		6\$3\$8

FFFFFニよ 	\cdots \cdots \sim	
	$\stackrel{-1}{5}$	シーローーロ゙ツ
 	c	ー
	m	
ウ トゥ		エニニミニニエ
	\bigcirc	
		$\begin{gathered} x \rightarrow \ggg> \\ 3 \\ 3 \end{gathered}$
	T	
	m	
	z	
	z	
VWWOOww		
	$<$	
	0	
	\cdots	
	7	\cdots
		－
	3	H
	m	
	z	
	N	rrrorrr
		$\underset{r}{r}$
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．	$>$	DD＞3
	刀	
	\sim	$\bigcirc \quad D$
べ大		DDDDPD
	7	
	\sim	

LINGItHVrLva
JOU NO. $74816,507 / 18 / 75$ ZISOPM TERMINAL 121

ITEM	TVALUE	OF	MFAN1	VAR1	N 1	HEANZ	VAR2	12
1	－3．9co	7．3 38	1.657	－ 61.7	6	2.200	1.200	5
2	－－ 379	7．292	1.833	1．767	6	2.204	3．2Ju	5
3	i．！ 6 M	と，1り1	2.1133	－51，7	6	1．800	1．7．jc	5
4	1．4．1！	6.654	2．833	1．36， 7	6	1.800	－cju	5
5	－L．94，	13．238	1．667	1.467	6	2.406	1．9JJ	5
6	． 314	8.648	C．Liu 0	1．Cud	¢	1． 800	． 700	5
7	－1．207	8.604	1．007	1.457	6	3.040	1.500	5
8 8－	1．156	t． 173	2．833	？． $9 \in 7$	－． 6	1.600	－． 300	5
9	－u．＜2，	8.981	2．000	2． 8 C 0	t	C． 200	1．74	5
10	2．354	6.151	$4 \cdot 657$	－ 267	6	3.600	．8uu	5
11	－1．142	8.448	2．15， 7	2．56，7	6	3.600	2.800	5
12	－ 1.144	B．E， 11	1.033	1.767	6	2.630	1．80C	5
13	－1． 130	8.978	1.833	1． 767	6	2.600	1.300	5
14	-1.971	4.000	1.000	0	6	2.430	2．8u号	5
19	-1.312	4．cidy	1.300	0	6	1.800	1．700	5
16	－ 1.4 .2	7．8．${ }^{\text {c }}$	1.353	1． 367	－6 6	$3 . j 49$	－sus	5
17	－2．331	$\mathrm{f}_{6} .151$	1.333	－ 607	6	3.000	c． 900	5
18 19	－1．030	6.595	1． 500	． .760	${ }_{6}$	2． 200	1．7Ju	5
19 20	1.964 -1.372	6.161	3.300	2． 6100	6	$\frac{1}{3} \cdot 800$	－ 205	5
20 21	-1.372 .429	6.634 9.926	1.567 2.500	1.467 1.500	6	3．000	3．550	5
22	.459	5．969	1.333	1．267	6 6	1．200	1． 200	5
023	－${ }^{\text {－}}$ ． 265	8．5ら7	1.667	－E67	6	1.0	－¢0j	5
． 0524	－ 2.566	8.643	1.500	－ 76	－．． 6	？．तus	－70j	5
25	－U． 210	8.870	1.333	1.767	6	2．000	1．500	5
26	－ 2.0 ¢ 1.4	4 －juj	1．jug	1.75	5	2．40゙心	c．31．j	5
21	－1．cı ${ }^{\text {c }}$	7.744	2． 00	2． 800	6	3.405	4．3う心	5
－23	－－．1．12	5.166	2．0J0	1． 604	6	2.850	7．200	5
2529		8.747	1．65 7	1．U6， 7	6	3.000	． 500	5
30	－－． 935	7．5．j	2．833	3．367	6，	$4 \cdot 500$	5．534	5
31	－-1.31	$5.5,39$	1． 500	． 7 ¢ ${ }^{\text {d }}$	ε	2．1㕱	3．030	5
－－32	－1．3ex	4.350	1.500	． 7 j 0	ε	3.040	E．s．jo	5
33	－1．124	E． 354	2．j0 0	$2 \cdot 8$［0	6	3.660	7．8Ju	5
34	－－924	8.342	1．0，33	$2 \cdot 517$	6	2.650	1.303	5
35	－ 0	8.391	5． 900	1． 600	ϵ	5.000	1.000	5
36	-2.665	6． 767	2．000	2．863	6	3.400	E．30j	5
37	．6is	7.378	¢，ju0	1．605	6	4.405	2．803	$\stackrel{5}{5}$
38	－－ 926	8.685	2．900	3.94 .9	6	3.605	3.802	5
39	1.285	E． 440	4.833	$4 \cdot 6.67$	6	3.60 C	－¢u	5
40	－u． 555	8.278	2．500	3.90 .5	－． 6	3．ट0 ©	4.703	5
41	－1．159	8.778	？． 6.57	6.667	6	4.2 us	3.200	5
42	－ .6 .944	ค． 836	2.333	4.507	6	3.600	c． 300	5
43	－1．221	8.949	2．157	3．367	6	3.460	2． 00	5
44	-1.132	7．193	¢．300	$2.84{ }^{4}$	ϵ	3．4ic	5.30	5
45	1．1，51	7.398	3.833	4．16：7	6	2.405	－80」	5
46	－6， 6.4	＋6．63	1． 607	－667	6	1.400	． 300	5
47	-3.743	7.782	c． 167	4.167	6	3．200	¢．200	5

$\begin{array}{lcccccc}J 00 & \text { NO．} & 749165 & 07 / 18 / 75 & 3110 P M \\ \$ & \$ \$ \$ & \$ & \$ & \$ \$ 15 \$ \\ \$ & \$ & \$ \$ & \$ & \$ & \$ \\ \$ & \$ & \$ & \$ & \$ & \$ & \\ \$ & \$ & \$ & \$ & \$ & \$ & \$ \$ \$ \\ \$ & \$ & \$ & \$ \$ & \$ & \$ \\ \$ & \$ \$ \$ \$ \$ & \$ 18 & \$ & \$ \$ & \$ \$ 5 \$ \\end{array}

ITEM	tvalue	DF	MEANI	VAR1
1	． 636	4.727	2.800	2.700
$\frac{1}{2}$	－1．509	16.104	1.200	－ 200
3	－1．453	7.503	3.200	1． 270
4	－389	6.460	3.600	1.300
5	－ 845	5.404	C． 000	1.500
6	－682	6.436	3.200	1.700
7	－ 0.620	5.712	1．R00	1．700
8 8	-2.347	7.161	2.000 2.000	1.500 2.000
＊${ }^{1} 9$	4.700	6.336 15.000	2.000 5.700	
${ }_{11}$	4.122	¢． 13	2.400	2.300
12	.755	4.424	2.400	2.300
13	－usy	4.956	2.600	1.800
$\times 14$	－ 1186	7．513	1.400	－ 200
＊ 15	－2．2．34	11.709	1.200 2.400	2.300
＋16	－0．516	5.421	1．800	1.700
－ 18 －	－ 3.504	$8 \cdot 568$	1.200	－ 200
19	－1．378	5.568 14.982	2.600 1.600	1.800 .300
20	－2．055	14.982 7.343	1.800 3.800	1．250
21	630 .682	7.343 6.701	2． 600	1．800
22 23	1．158	7.518	3.200	－ 700
＋24－	－4．802	13.250	1.900	－ 200
－ 25	－1．860	16.514	1.200	－ 700
26	－u．219	5.335	1．900	1.700
27	－1．8EG	18.166	1.600	－ 300
－ 28	－U． 133	11.202	1.500	－200
＊29－	－ 5.536	18.997 7.560	1.200 2.800	1．700
30 31	-1.651 -0.596	14.982	2．400	． 300
32	． 125	4.424	2.400	6.800
33	－0．234	4.876	2.800	5.700
34	． 363	4.545	2． 200	7． 200
米河	4.116	15.753	E． 400	3．300
36	． 396	6． 4.58	3.000	3.300 .300
＊37	4．1月2	17.917	1．400	． 800
38 39	－U．6151	11.131 6.933	5.200	1．700
43	－ 1.774	13.250	1.600	－ 800
4	－U．809	5．171	2.200	4.700
．．． 42	－1．044	5.673	2.600	2.300
43	－1．136	14.283	1.800	－700
44	． 412	9.279	2.200	2.700
＊ 45	-2.650	5．712	2.000	3.700 .700
46 47	-1.663 -0.077	12.036 6.318	2.200 2.800	3：700

${ }^{1} 1$
MEAN2

arz
16

\$	\$\$\$	$\$$	\$	\$88\$\$
\$	\$	\$ ${ }^{\text {d }}$	\$	\$ \$
\$	\$	\$	F \$	\$
\$	$\$$	8	\$ \$	$\$$
\$	\$	q	\$ ${ }^{\text {d }}$	\$ \$ \$
\$ $\$ 88 \$ 8 \pm$	\$\$\$	$\$$	\$ $\$$	\$\$\$\$\$9

LING/AKトK, A NTKK

IT－EY	TVALIE	LT	MFDN1	$V A D 1$	1.1	MFAN2	$V \cap P 2$	$N ?$	$\begin{aligned} & 0.1031 \\ & 0000 ? \end{aligned}$
				1．7？	23	2.251	．990	35	$30 \mathrm{cc} 3$
$\frac{1}{?}$	-0.150 -1.319	46.194 55.796	1．475	－．711	$2 ?$	1．77？	$\begin{aligned} & 1.3: 1 \\ & 1.0 \equiv 3 \end{aligned}$	35 35	$\begin{aligned} & 71004 \\ & 0 \text { i) } 005 \end{aligned}$
101×3	2.914	49.772	？．479	1－344		－$-1.7 ?$	－ 2.063	3 l	J55rg
60.64	こ，こ7	$5: 737$	3．5？2		3	1.097	1.757	35	ว） 017
0 or 5	$-3 \cdot 20$	54.541	$1.5 \div 9$	1．547	$\stackrel{3}{2}$	1．35n	1.736	35	0 O 093
6	1．7．1	34．71	2．957	1.590 1.505	？ 3	2．187	1.914	3	\bigcirc5
7	－0． 771	50.042	1.4 .5	？．5117	23	2．3？	2.000	？	02010
\＆	1.774	4.3 .759	2．04 87	1．30n	23	2.111	1.530	35	00011
9	－ $0.7 \dot{3}^{8}$	149.915	1.977	1.301	$2 ?$	4.093	1．764	？ 6	（） 912
.0510	2.53	$55 \cdot 773$	$4 \cdot 607$	－25	27	$2 \cdot c 46$	2．293	？ 6	09013
11	－1．339	4 hror 3		$5 \cdot 722$	，	う：1r7	1.571	35	$\cdots 0014$
12	－1．1．7	$45 \cdot 112$	2．217	1.914	93	2．759	2.259	35	15015
13	-1.415	50.577	$2 \cdot 217$	1．314	23	$1 \cdot E 67$	1.371	35	01015
14	－2． 114	51.394	－$\frac{3}{3} 4$	－ 494	\％	1.933	1.343	37	00017
． 15	－2．17？	「E．293	1.314	1．391	$? 3$	2． 12	1.742	35	$\cdots 5319$
16	－0．+70	50.9 ？ 5	－ $0^{1} 10$	1．19？	23	2：361	1.952	35	（1） 017
17	－： 1111	$54 . \operatorname{bst} 4$	$5 \cdot 043$	1．494	23	2．472	1.571	36	09920
19	－1．2．3	47．95，		$1: 4=4$	23	2．fni	1． .761	35	0 O 21
19	－0．115	45.116		$1 \cdot 9-4$	－	2．50n	-2.143	35.	900 02
-20	-3.90	$14.50-3$	2． 4^{4}	1.954	23	$2 \cdot 508$	1.971	35	$000 ? 3$
21	1．7．30	47.53	1.3	1.754	23	4.722	． 949	36	93024
22	－6．550	5，3． 54	$1 \cdot 0=3$	1：743	23	1.9 ¢n	.9134	35	90025
2.3	－5\％ 0^{2}	44.529	1．4．${ }^{1} 7$	1． 5134	23	2.167	1.114	35	00026
24	－0． 050	$40 \cdot 567$	2．1427	1.76	？ 3	1． 50	． 223	35	$\mathrm{r}_{3} \mathrm{C} 27$
25	$-1 \cdot 4.14$	47,536	1.455	－1779	$\frac{2}{2}$	1．${ }^{1} 56$	1.711	35	10929
25	－1．479	54.194	1.479 2912	1．979	23	\％．0ヶ？	4.754	35	006？${ }^{\text {c }}$
27	－11．？ 30	$4 \mathrm{~F}, \mathrm{~B}$ ？${ }^{5}$	$\therefore 9$			\cdots－\because ¢	i． $\mathrm{m}_{4} 7$	75	C＝C：
． 29	$-5 \cdot 318$	「 6.732	$\frac{2}{2} \cdot 979$	2，3）	2 ？	3．27R	$3 . C 6,3$	35	90031
29	$-1 \cdot 554$	$45 \cdot 453$	3．401	4.775	23	4． 12 a	5.342	35	05032
30	－1．$) 34$	42.254	3.31	4．523	53	2．j号	2．06	25	93033
.0531	-2.176	54.455	1．3）1	－ 364	\％	2．$=0$	3.167	34	70034
－ 32	－1．72？	1.5 .339	2.7	3.364	2	3.756	4.854	35	0003%
33	－1．555	$52 . ? 21$	2.174	3.423	23	$2 \cdot 6 F 7$	4.255	35	75025
34	$-1 .+29$	$57 \cdot 49$	1． 2×1	2．43 24	23	4.9 ¢a	$2.6,73$	35	90037
35	1． $2+2$	43.520	130	3.207	23	2．5．90	$4.15{ }^{\text {c．}}$	36	99039
36	13.76	$52 \cdot 665$			27	5.55	1．893	35	J C 37
0537	$2 \cdot 5 \geq 0$	$5 \mathrm{C} \cdot 796$	5.757	$\frac{1}{2} \cdot 497$	23	2．Eヶf	4.311	35	］$\cap 140$
39	－1）． 737	$52 \cdot 745$	$\cdots \cdot 097$	2．9 ${ }^{\text {c }} 3$	23	5．0．3	1.250	35	90041
39	－ 749	$35 \cdot 319$	？．4．35	$4.35 ?$	27	？．c7？	4.485	75	1） $5 \cup 42$
40	－1］． 21 ？	47,55	？．4797	4．992	53	3.15	$4 \cdot 6,33$	36	$\cap 0 \cap 43$
41	－ $7>0$	42.753	3.097 3.739	4.93 R	27	3．250	4.179	35	30044
42	－ 1.378	44.143		c． 4 ，${ }^{\text {a }}$	？ 2	3.194	$4 \cdot 6.75$	35	2尤碞
4.3	－1．34	44.2% ？	2.56	く．43の	c	？．pa	－－4．33？	T5	00045
-44	-1.314	$47 . ? 75$	2.817	4.174		3.129	2.042	2F	02047
45	1．7？6	41.944_{4}	？．96，	2．1474	27	2．3x	2.276	35	00049
－46，	－5．175	$44^{4} \cdot 5 \cdot 5$	6.261	2．474	23	2．A89	4.616	36	30049
.0547	－2．9？0	56.493	1.739	1．938	2.				

[^0]: *. 05 level of significance
 **. 01 level of significance

[^1]: *. 05 level of significance

[^2]: *significant at the .05 level of significance

[^3]: *. 05 level of significance; **. 01 level of significance; digit entry = equivalent grade level

[^4]: Entry $=$ Open Classroom or Traditional Classroom
 $*=.05$
 ** $=.01$

