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Software engineers often need help with discovering and learning how to use 

APIs. For example, software engineers who are starting to learn Java, and they want to 

implement a certain feature in a program, they might want to reuse existing APIs in 

order to save time versus rewriting it themselves from scratch. The most widely-used 

method for discovering APIs is to search for APIs. Unfortunately, the search results 

typically take users to a collection of code, documentation, and examples, none of 

which is collected together in a form that is optimized for making a given API 

understandable. In our research group’s previous work, we created the jTutors system, 

 



 

which bundles the materials related to an API together into an interactive tutor that has 

been shown to help people learn an API faster. Yet jTutors has not had a facility to 

help programmers learn a sequence of tutors, for the common situation where software 

engineers want to learn a combination of APIs.  

This thesis describes a new system that provides tutor recommendations to 

discover APIs in a sequence that users consider to be relevant and well-timed to their 

needs. The system integrates two internal algorithms to determine, for a given user at a 

given moment in time, what API tutors to recommend for that user’s consideration. 

One of the algorithms is a content-based recommender (CBR), which builds a graph 

reflecting the relationships between APIs (as reflected in how they call or refer to one 

another) to determine the most commonly used APIs with respect to a given API and 

also the order in which it makes sense to learn the APIs. The other algorithm is a 

standard collaborative filtering (CF) algorithm, which identifies which users tend to 

give similar ratings as one another, and then uses the ratings of one person to 

recommend a sequence of tutors for other people. In an empirical study, 25 novice 

programmers used the system, learned from recommended tutors, and gave ratings to 

the tutors. The study tracked which of the internal algorithms gave each 

recommendation, so that we could determine which algorithm tended to give tutors 

that got higher ratings. The study showed that ratings of CBR-based recommendations 

were significantly higher than ratings of CF-based recommendations. Further analysis 

of study data suggested that the reason for this difference is that CBR’s 

recommendations were more relevant and provided at points in time when the study 

 



 

participants felt more ready to learn a given API. These results are important because 

they show how to more effectively teach a sequence of APIs.  
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1 Introduction 

Software engineering in practice today places a high focus on re-use of code, 

and APIs are components that implement specific functionalities to aid programmers 

in implementing specific features to a system without them having to do all the work 

from scratch. An application programming interface (API) is a particular set of rules 

(code) and specifications that software programs can follow to communicate with each 

other. It serves as an interface between different software programs and facilitates 

their interaction, similar to the way the user interface facilitates interaction between 

humans and computers. With the advent of online code repositories and the explosion 

of community coding and development, languages like Java, C, C++ have seen a great 

many number of APIs being published to help programmers implement functionality 

within a software system.  

For example, one recent Java version has nearly 4000 classes/interfaces in its 

API library [1]. In addition to the standard Java library, there are thousands of other 

third party libraries published by both proprietary companies and the Open Source 

software communities [1].  

Whereas an experienced Java programmer might be able to intuitively identify 

APIs to use for implementing features to a software system, the sheer number of APIs 

and components available makes it impossible for a programmer to be informed about 

all the APIs. In this context, the problem is magnified for novice programmers who 

are just beginning to learn programming, as they have to contend with not only the 
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number of APIs that are available for use (which has been identified as a problem in 

component re-use by the ACM [6]) but also the problem of choice since there are 

more than a few APIs available to implement similar functionality.  

Whenever a programmer has to learn to use an API to complete a specific 

programming task, they need to be able to quickly identify what API to use and also 

understand the methods contained in them to implement requisite functionality [9]. 

Learning APIs on demand is different from other forms of learning in which the aim is 

to increase the general knowledge of the learner to prepare for future use [1]. In 

contrast, when the need for learning to use an unknown API arises for a programmer, 

their objective is to increase understanding just enough to implement required 

functionality to accomplish the pressing task before the programmer. Therefore, the 

process of learning to use a specific API on demand is highly personalized to the 

specific needs and existing knowledge of the programmer, and is tightly 

contextualized in the task and environment of the programmer. 

Learning about an API is not easy. A recent study reported that many API 

methods are “inadequately documented”, forcing the programmers to search online for 

usage samples and discussions of API methods to aid them in understanding the 

working of API methods in order for them to implement it successfully [4,23]. Finding 

a good, easy to understand example for API method usage is often a time consuming 

and tedious process for programmers [11].  
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Our research group has previously developed a system called jTutors to deliver 

learning materials for API usage, called Intelligent API Tutors, in a comprehensible 

form for novice programmers, by bundling common usage patterns, documentation, 

queries and remarks of other programmers from coding communities like Stack 

Overflow, Dzone etc [5,15]. jTutors achieves this by combining code samples for API 

methods along with descriptions of what they achieve and providing them to the user 

in a coherent way. The users are also provided with small quizzes as they step through 

the tutor, in the form of blanks in the code where they are required to call the correct 

method from the API being presented to implement a short functionality within the 

code snippet. Students also have functionality to look at code examples (automatically 

retrieved from online open source repositories by jTutors) that demonstrate how to use 

APIs. Empirical studies showed that this was in fact an effective way for novice 

programmers to pick up on usage of API methods without making them feel daunted 

about the abundance of materials they would have to go through by simply doing an 

online search for said API methods [5,15].  

However, jTutors to date has lacked a way to provide novice programmers 

with API tutor recommendations in order to enable them to discover more APIs for 

implementing functionality. Novice programmers often are not aware of what public 

APIs are available in general. For novice programmers to be confident about using a 

language as extensible as Java, it is required that they have an understanding of what 

APIs are available and have an opportunity to understand these API methods in an 

order that makes them comfortable about learning different APIs. Novice 

 



4 
 

programmers may also want to have an understanding of the most commonly used 

APIs for implementing mundane features in a software system like date processing, 

database connectivity, string processing, using files, IO streams, network connectivity 

etc.  

Along with providing learning materials for API methods bundled together as 

API tutors, it is therefore essential for the system to provide these API tutors in an 

order that the programmers feel comfortable in so that their understanding and 

learning of different APIs can be enhanced. It is also necessary that a system like 

jTutors should provide API tutor recommendations so that novice programmers are 

given an opportunity for discovering APIs for use in implementing software 

engineering tasks.  

In order to address the limitations of our research group’s work to date, this 

thesis investigates the use of two algorithms to provide such API tutor 

recommendations to novice programmers using the jTutors system. Of the two 

algorithms, one of them is a collaborative filtering based approach that provides 

recommendations of API tutors based on likeness of the current user to other users of 

the system in their ratings of API tutors that the current user has completed. The 

second algorithm is a content based filtering algorithm that uses structures within the 

source code of samples used in a given tutor to determine which of the other API 

tutors are related to the given API tutor which the user is more likely to find useful for 

their needs.  
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An empirical study was conducted to evaluate the effectiveness of the 

recommendations that were provided by the algorithms in terms of the ratings given 

by the participants at each stage when the recommendation was made and 

subsequently completed by the participant. The results of the study were analyzed 

through standard non-parametric statistical tools. These analyzes revealed several 

strengths of the content-based recommendation algorithm over the collaborative 

filtering algorithm. 

The results of this study could be useful in understanding what best ways to 

teach novice programmers a sequence of APIs. It could be used by course instructors 

to deliver teaching materials, by software organizations to train new hires on 

proprietary APIs, and to support novice programmers in a distance learning scenario.  

This document is organized as follows: Section 2 covers a literature review of 

existing methodologies for providing API recommendations, understanding API usage 

patterns, delivering said recommendations to programmers and their effectiveness. 

Section 3 details the working of the prototype used for conducting the study and the 

mechanisms of the two recommender algorithms being evaluated. Section 4 outlines 

the experimental study and evaluation methods. Section 5 documents the results of the 

empirical study and also evaluates possible explanations for the results obtained, 

including threats to validity. Lastly, Section 6 concludes by stating contributions of 

this study and also provides a discussion on future research opportunities. 
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2. Background and Related Work 

2.1 Existing jTutors System 

The current jTutors system in place works by foraging for API usage samples, 

documentation and method descriptions from the internet and packaging all of those 

learning materials as a single unit which include descriptive texts of the method calls, 

showing actual code samples, annotations on presented code fragments along with 

quizzes in stages in order to help learning of API methods [5,15]. The tutors are 

created by experts (this could be teachers/instructors/TAs of a course, or any expert 

with knowledge of the API in question) who organize the tutor in a manner that is 

comprehensible to a novice programmer by placing these extracted samples and 

documentation in an order that aims to improve the understanding of the programmer 

who wishes to take the tutor to learn a particular API.  

2.1.1 Process of creating an API tutor 

When an expert wishes to create an API tutor, he/she clicks on the “create 

tutor” link in the website and enters a query in a search box. This query can be an 

abstract software engineering task (for e.g. “connect to a database”) or it can also be a 

specific class or API name (for e.g. Log4j). The jTutors system takes this query text 

and uses popular third party search engines (currently Google’s Custom Search API 

and Bing API) to get a list of code samples relevant to the search text. A web scraper 

module implemented within jTutors looks at the Top-N results from the search and 

catalogs all of the source code samples present within the <pre> or <code> tags in the 
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result pages. These code samples may be partial or complete code samples. The 

samples are then processed through a Java Parser provided by the Eclipse framework 

to develop compilation units which can be used to generate an Abstract Syntax Tree 

(AST). The ASTs provide information about method calls, imports, object invocations 

etc, which are then indexed by the class, method and type terms within the jTutors 

database. Relevant code samples are picked using the calculated TF-IDF co-efficient 

of these terms indexed and are shown to the expert in the tutor creation module. 

The expert can then pick the most relevant samples from among the snippets 

provided and add descriptions, re-order snippets and also designate specific method 

calls as blanks intended as a quiz for the user to complete. The expert also has an 

option to enter code snippets themselves if there are not many useful samples retrieved 

through the search process (as can be the case in obscure or less widely used APIs). 

After going through all of the snippets, the expert is asked to enter a description of the 

tutor now created and give it a title. Once the expert completes this step, API tutor 

creation is complete and the new API tutor created is added to the list of available 

tutors.  

2.1.2 Finding and taking API tutors 

Users who wish to understand API usage for any given API can log in to the 

jTutors system and access saved tutorials by searching for their specific topic of 

interest or by looking at the list of tutors and selecting one that they want to take. 

When a saved tutorial is clicked in the list of tutorials, the user is taken to the start 

page of the tutor or the description page. 
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 At the start of any tutor, an example code snippet of a method in an API is 

shown along with a description of what that method does. The learner can examine 

these examples to get an understanding of what the methods do before progressing to 

other stages in the tutor where they are prompted with blanks among other code 

fragments which are intended to test the learner’s understanding of the API in view. 

The user can also click on a “get hints” button on the side when presented with a quiz 

page to get more information about what needs to be filled in the blank if the answer is 

not immediately obvious to the user. In addition, jTutors provides a search screen so 

that students can look for code examples that demonstrate how to use APIs. These 

code examples are retrieved from a cache of industry code examples, which are 

retrieved automatically by the system from an open source web repository 

(sourceforge.net) and indexed according to what Java classes they use [5]. 

2.2 The problem of API tutor discovery 

While it is possible for users to peruse the list of available API tutors and also 

search for API tutors by key words, jTutors has lacked a way to generate automatic 

tutor recommendations. This might be a hindrance for novice programmers, as they 

would have to specifically know what API they want to learn and use appropriate 

keywords to search for the API tutor. Furthermore, there may be more than one tutor 

for a given topic or more than one API for a given programming task that novice users 

might find difficult to distinguish exactly which API tutor would suit their needs.  

In the case of novice programmers who are casually learning APIs with the 

intention of increasing their understanding of a breadth of API topics, they would have 
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to identify a list of APIs that they might want to learn and then make a “lesson plan” 

(for themselves) consisting of API tutors available in the system and go through all of 

them in an order that helps them understand the usage of APIs conceptually. From the 

context of a novice programmer, this is a daunting task as they usually have very little 

prior knowledge of APIs in use or APIs that are popularly used in specific software 

engineering tasks. 

 2.3 Recommenders in the context of E-Learning Systems 

Over the years, there has been some research on applying recommender 

systems to the field of e-learning and intelligent tutoring systems (ITS). Systems that 

can automatically guide the learner’s activities and intelligently recommend on-line 

activities or resources based on modeling the learner’s profile in terms of the access 

history of learners and navigation patterns using association rules mining have been 

studied [16]. While the topic of providing recommendations have been extensively 

studied for e-commerce systems, in the context of e-learning systems there are 

tangible differences in the objectives and techniques for providing recommendations 

that aim to improve the learning of the user [18, 19].  

The majority of this work (cited above) has relied on association mining, 

which identifies objects frequently used in sequence, in order to recommend these 

sequences to users. A key problem with simple association rule mining is that just 

because a student used a certain object does not imply that the object contributed to 

learning. More sophisticated approaches rely on collaborative filtering-like algorithms, 

in which an algorithm receives a list of items, a list of people who have used each 
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item, and a “goodness” measure indicating how useful or appropriate the item was to 

each person who used it [19]. However, collaborative filtering algorithms have not yet 

been tested for use with recommending intelligent API tutors to computer science 

students. As a result, no empirical data exist regarding the effectiveness of this 

approach in this context. 

With the issue of recommenders in e-learning, there is no one hard and fast 

rule for developing recommendation techniques. An entirely different approach is to 

use the specific characteristics of the specific content domain to generate content-

based recommendations (e.g., as in [21]). In most cases, studies have been done on 

using the profiles of learners and guiding new learners to content based on the profiles 

of successful learners or making automatic recommendations based on an instructor’s 

intended sequence of navigation through course material [16]. Again, however, these 

content-based recommendation approaches have not yet been used to teach API usage. 

While the concept of Collaborative filtering can be readily implemented for jTutors 

considering items to be API tutors that users take, building efficient and effective 

content based recommenders for API tutors needs to be studied. 
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3. Approach 

This section details the solution developed and used for evaluating the 

effectiveness of recommendations provided within the jTutors system. The repository 

was enhanced to track each student’s history within the system. Specifically, features 

were added that each student can create an account, and the repository now tracks the 

list of tutors that each student uses. In addition, the user interface was enhanced so that 

the student can rate (on a 5-point scale) each tutor used, in terms of appropriateness 

for the student’s needs and current knowledge at that moment in time. For example, if 

a student does a search for “send data via network,” the search engine might return 

several tutors, each of which the student can rate after using them. 

The repository was then further enhanced so that it can make personalized 

recommendations of intelligent tutors to each student. Specifically, two algorithms 

were implemented that each assigns a “recommendation score” to each tutor in the 

repository based on the appropriateness of each tutor, given the previous ratings given 

by the student to other tutors. The repository can use either one of these algorithms. 

That way, the user sees recommendations ordered according to one of the two 

algorithms based on the student’s history up to that moment. Implementing two 

algorithms, rather than just one, made it possible later to gather data for an empirical 

study evaluating which of the two algorithms gave higher-rated recommendations. 

The subsections below describe these two algorithms in detail, as they are the 

key technical contribution of this thesis. Section 3.1 outlines the collaborative filtering 

algorithm used for providing recommendations. Section 3.2 discusses the approach 
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used for developing a content based recommender for the tutors made available 

through jTutors. (Section 4.4 discusses how the algorithms’ recommendations were 

integrated into the user interface for our empirical study.) 

3.1 Weighted Slope-one predictor for collaborative filtering 

The weighted slope one predictor by Lemire et al. [12] lends itself to be a 

usable candidate for generating collaborative filtering recommendations. The 

algorithm sufficiently satisfies the following requirements for integrating into the 

jTutors system for generating recommendations: 

1. Updates nearly instantaneously: A new rating added to the system 

would change the predictions made for the next recommendation 

almost instantly 

2. Query efficiency: Queries to the engine are fast albeit at a little more 

expense to storage 

3. Cold start handling: The algorithm has been shown to be relatively 

adept at making reasonable recommendations to new users who have 

fewer ratings into the system to show their preferences 

The slope one family of predictors considers both the ratings of other users for 

the same item and also the history of ratings of the current user in consideration before 

generating predictions [12]. The weighted slope one predictor specifically also 

considers the number of ratings observed for a given item and weighs the ratings 

accordingly thereby being superior to the generic slope one predictor, by mitigating 
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the effect of one of the drawbacks of the generic algorithm of having different 

numbers of ratings for items [12]. In the context of jTutors, the item is the tutor that a 

user takes and rates.  

The weighted slope one prediction scheme for a user u for tutor j is given by: 

𝑃𝑤𝑆1(𝑢)𝑗  =  
∑ �𝑑𝑒𝑣𝑗,𝑖 + 𝑢𝑖�𝑐𝑗,𝑖𝑖∈𝑆(𝑢)− {𝑗}

∑ 𝑐𝑗,𝑖𝑖∈𝑆(𝑢)− {𝑗}
 

 

Where 

 dev𝑗,𝑖 =  ∑ 𝑢𝑗− 𝑢𝑖
𝑐𝑎𝑟𝑑(𝑆𝑗,𝑖(𝜒))𝑢∈𝑆𝑗,𝑖(𝜒)  

 uj, ui are ratings for any two items j,i 

 𝑢 ∈ 𝑆𝑗,𝑖(𝜒) is the set of user ratings for user u 

 𝜒 is the training set of all user ratings 

 card(s) is the cardinality of a set S 

 and cj,i = card(Sj,i(χ)) 

Considering three tutors A, B, C, with the tutor pair A and C having 100 

ratings versus the tutor pair B, C having 25 ratings, and a user U1 who has rated tutors 

A and B. With the weighted slope one predictor, the user’s rating for tutor A is used as 

a far better indicator for tutor C than the user’s rating for tutor B.  
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PwS1(u) is the vector of predicted ratings for all tutors in the set. Once this 

vector is calculated from the algorithm, the predictions for all tutors that the user has 

already taken are removed from the set (in order to not provide a tutor that the user has 

already completed as a recommendation). The tutor with the highest rating prediction 

is provided to the user as a recommendation of the weighted slope one predictor. 

3.2 Content-based tutor recommendations  

The second algorithm makes recommendations by analyzing the relationships 

among the classes in the APIs. One can reasonably justify that there are always a 

combination of classes that are used together to make certain features work.  For 

example, in projects that use Swing and AWT, if the component JButton 

(javax.swing.JButton) is used, then the button needs to be bound to a method that 

implements some function every time the button is clicked. ActionEvent 

(java.awt.event.ActionEvent) and ActionListener (java.awt.event.ActionListener) are 

two API classes in AWT events that provides for a mechanism to invoke specific 

actions when the conditions are met, like clicking a button in this case. So it is 

reasonable to say that a novice programmer learning to use JButton would also want to 

subsequently learn using ActionEvent in order to implement functionality with the 

button.  

The idea behind the algorithm is to recommend classes that are related to 

classes that the student has already learned about. The algorithm works in two phases. 
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Phase 1 is the miner/network builder. This phase builds an index consisting of 

a weighted, undirected graph. There is one node in the graph for each Java class, and 

there is an edge between two classes if they reference each other. Our prior work on 

jTutors has shown how to automatically scrape open source projects from a web-based 

repository (sourceforge.net) [5], which are used to provide code examples to students 

who are using the tutors in the repository. In the case of Phase 1, we configured 

jTutors to retrieve 36 Open Source projects. For each Java class defined or referenced 

in these projects, jTutors now generates a node in the undirected graph. It builds a 

compilation unit using the AST java parser from eclipse JDT for the class. It retrieves 

the list of class imports for each compilation unit. Using a method visitor, finally, it 

adds an edge to the graph for each method call discovered. If such a link already 

exists, its weight is increased by one.  

Phase 2 is the querying, which relies on a spreading activation model over the 

weighted undirected graph, which assigns an activation ax to every class x. Recall that 

all tutors have a list of classes used in them. Given the set Su of tutors that student u 

has already taken and rated higher than the student’s average rating, jTutors retrieves 

the set of classes Cu referenced by the tutors in Su. For each class c in Cu, jTutors 

calculates the link coefficient LCc,d,u to each other adjacent node and adds this LCc,d,u 

to ad. The link co-efficient on edge (c,d) to another class d is computed as: 

LCc,d,u = Ratingu,c * (weight of edge (c,d))/(weight of all links c).  

For any class c in tutors that the user has already rated,  
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Ratingu,c = average of user’s ratings for those tutors in which c appears. 

Thus, ad ends up equaling the sum of all link coefficients over all links from 

classes that the student has already learned about in past tutors. The recommender 

picks the tutor with the highest score and propagates that to the UI.  
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4. Study design and Evaluation 

This section seeks to provide details of the experimental study conducted for 

the evaluation of the two recommenders developed for content discovery within the 

jTutors systems. The design of the experiment, participation selection, overall 

methodology of the study, expectations of the participants and survey questions 

provided to the participants are discussed in detail.  

4.1 Research Questions 

The main objective of this research work is to investigate the effectiveness of a 

content based recommender and a collaborative filtering recommender in the context 

of the intelligent tutoring system jTutors.  

It is not clear in the case of an e-learning system such as jTutors if a content 

based recommender may work better or worse than a collaborative filtering algorithm 

for recommendations. On the one hand, it makes sense to model a learning process for 

a user based on how other successful learners in the system have progressed, however, 

it also means that the system would need have enough prior successful learners to 

avoid the cold-start and sparsity problems that collaborative filtering recommender 

systems face whereas a content based recommender could provide clear deterministic 

recommendations to overcome these issues. In view of these points, this research 

seeks to ask the following questions: 
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RQ1: For the same set of tutors, does the content based recommender tend to 

give recommendations that fetch higher ratings than the collaborative filtering 

algorithm? 

RQ2: For the same set of tutors, does the content based recommender provide 

recommendations that are perceived to be more relevant than the collaborative 

filtering algorithm’s recommendations at a point in time when the recommendations 

are given? 

RQ3: For the same set of tutors, does the content based recommender provide 

recommendations at a time that is more appropriate for the user than the 

recommendations of the collaborative filtering algorithm? 

 RQ4: For the same set of tutors, does the content based recommender provide 

recommendations that the users perceive as novel when compared to the collaborative 

filtering algorithm’s recommendations? 

4.2 Participants and Study recruitment 

Since the jTutors system is intended to be used by novice programmers who 

are beginning to learn programming using Java and its APIs, the objective for 

recruitment of participants for the study was to have a set of users who were versed in 

programming in general but only were novice Java programmers. Recruitment was 

done by sending an email to instructors of the programming courses under OSU’s 

computer science department to forward the email to their students with the 

recruitment text which pointed to a website where interested students could read the 
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consent form, and indicate a time slot which would comfortable for them to visit the 

laboratory for signing up for the study. A total of 25 participants were sanctioned to be 

recruited for the study by the IRB. All of the participants were CS majors. 

4.3 Study Initiation and jTutors Tutorial 

On the day the participants visited the laboratory, they were provided with the 

consent forms and given a walkthrough of the consent forms, perceived risks involved 

in taking part in the study (including data privacy concerns) and participation 

requirements for the study. Each participant was informed that they were required to 

take and complete as many API tutors as they could up to a maximum of 20 API tutors 

within a period of two weeks from the day they signed the consent forms. The 

participants also had the option of withdrawing from the study at anytime.  

The participants were provided with a link to access the study website from 

their personal computers and were assigned a randomly generated user id (of the form 

userxxxxxx – where xxxxxx was a randomly generated 6 digit number) for access to 

the study website. The participants were allowed to pick their own passwords for 

access to the website when they were logging in to the system for the first time. The 

user id that was generated for each user was logged separately in order track the 

behavior of each participant within the jTutors system and to keep a record of how 

many API tutors each participant completed for the purpose of compensation for 

participating in the study.  
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Once each participant was initiated with access to the system, they were given 

a tutorial API tutor to familiarize them with the jTutors interface. The participants 

were informed that for the purpose of the study, completion of an API tutor meant that 

they had to finish the entire API tutor followed by the survey questionnaire at the end 

of each API tutor. 

4.4 Integration of recommendations into the user interface 

After completing the tutorial for understanding the jTutors interface, the 

participants were shown two API tutors alongside each other (in two columns, one on 

the right and the other on the left of the screen) each of which was generated as a 

recommendation from one of the two algorithms being evaluated. The participant was 

shown no indication of which algorithm recommended which API tutor and the order 

in which the recommendations were shown on the split screen was randomized each 

time the page was generated. For each API tutor shown to the user, the title of the tutor 

was displayed along with a brief description (from the initial page of the API tutor) of 

the contents of the API or tutor.  

The participants were never shown the ratings of the API tutors that other users 

had assigned to the same if they had taken it. The participants could pick either of the 

two API tutors and complete it, after which they would shown two other 

recommendations similarly until each assigned participant had completed 20 API 

tutors or until such time that the participant chose to withdraw from participation in 

the study. Any time in the middle of taking an API tutor, the participants had the 
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option to save and quit and later resume at the same place or they could choose not to 

complete the API tutor mid way and were shown two new recommendations instead. 

At each stage when recommendations were shown to the participants, the 

information regarding what recommendations were made by which algorithm, which 

recommendation was picked by the participant for completion and survey answers at 

the end of the API tutor were logged. In addition to this, the jTutors systems also 

logged other meta-information such as the time taken for completion of each API tutor 

and number of attempts for blanks within each stage of the tutor along with incorrect 

answer attempts.  

 

Figure 1: Screenshot showing top recommendation made by the CF and 
CBR each displayed to a participant 

4.5. Survey Questions 

After each API tutor was completed, the participants were asked to rate the 

API tutor that they had just taken on a 5-star rating scale and were also shown a set of 
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3 survey question statements that they had to answer on a scale of 1 to 5 depending on 

how much they agreed.  

The three questionnaire statements shown to the participants were: 

1. This tutor helped me discover APIs that were relevant to my needs. 

2. I felt ready to take this tutor. 

3. I already knew about the APIs in this tutor. 

The first question was intended to determine the relevance of the current API 

tutor recommended to the user with respect to the user’s own history and also to 

determine if the recommendation was perceived as within the interests of the user 

taking the API tutor. The second question was meant to determine if the API tutor was 

recommended at a point in time when the user felt comfortable in taking the tutor and 

also with respect to any other API tutors that might have to be taken before the user is 

able to comprehend the contents of the currently recommended tutor. The third 

question was meant to determine the novelty value of the recommendation made in 

terms of helping the user discover API tutors that they might not have otherwise 

discovered themselves. 
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Figure 2: Screenshot showing the tutor rating bar and survey 
questionnaire after a participant completes an API tutor 

4.5 Data analysis 

Recall that, for a given tutor i, each might recommend i at certain points in 

time to certain users, while the algorithm would recommend i at other points in time to 

other users. The repository recorded the rating ru,i given by each user u to each tutor i, 

regardless of which algorithm recommended i at that moment. The study was aimed at 

determining which algorithm was better at recommending i at appropriate moments. 

Therefore, to analyze these data, a value CFi was computed for each tutor i as the 

mean of ru,i over all situations when i was recommended by the collaborative filtering 

algorithm; likewise, a value CBi was computed as the mean of ru,i over situations when 

i was recommended by the content-based algorithm. This made it possible to compare 

 



24 
 

the two algorithms while controlling for inter-tutor differences. Specifically, the pairs 

(CFi, CBi) were compared using the non-parametric Wilcoxon two-tail rank sum test 

(recognizing that the data would not necessarily be normally distributed). 

Analogously, we compared the two algorithms based on each of the three survey 

questions (looking for a p < 0.05 cut-off). 

 4.6 API Tutor Topics 

The goal of the study was to evaluate the effectiveness of API tutor 

recommendations to users and hence it was important to have a wide selection of API 

topics that cover many of the common scenarios in which programmers would want to 

use third party APIs for implementing features. A total of 20 third party API topics 

that were most commonly re-used was identified [13,14] and a total of 26 API tutors 

to cover the most important features and methods over these 20 libraries were created. 

The following 20 libraries were covered:  

• Apache Commons Lang 

• Commons Lang 2 

• Jsoup 

• GWT  

• Google Guava SDK 

• JFreeCharts  

• Apache DBUtils 

• Standard Widget Toolkit  
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• OpenNLP 

• WALA 

• GSON 

• JSON-lib 

• JDBC 

• Log4j 

• JodaTime 

• Swing Components 

• Swing Events 

• Eclipse RCP 

• Java.util.regex 

• Java.sql 

• Commons Math 
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5. Experimental Results 

A total of 25 participants were recruited for the experimental study conducted 

over a period of 3 weeks in two phases. In the first phase 13 participants were 

recruited and initiated into the study. In the second phase, a total of 12 participants 

were recruited. A total of 481 ratings and survey responses (after completing API 

tutors) were obtained during the course of the study.    

5.1 Results 

RQ1: For the same set of tutors, does the content based recommender tend to 

give recommendations that fetch higher ratings than the collaborative filtering 

algorithm? 

There was strong evidence (p=0.0006) for a significant difference between 

ratings given to recommendations made through the content based recommender and 

the recommendations made by collaborative filtering algorithm for the same tutors. 

This indicates that when the recommendations were made by the content-based 

recommender, the participants tended to give higher ratings to the tutor than when the 

recommendation was made by the collaborative filtering algorithm.  

RQ2: For the same set of tutors, does the content based recommender provide 

recommendations that are perceived to be more relevant than the collaborative 

filtering algorithm’s recommendations at a point in time when the recommendations 

are given? 
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There was strong evidence (p=0.002) for a significant difference between the 

scores assigned to the relevance question in the survey between the recommendations 

made by the content based recommender and the recommendations made by the 

collaborative filtering recommender for the same tutors. This shows that the users 

tended to find the recommendations of the content-based recommender more relevant 

to their needs than the recommendations provided by the collaborative filtering 

algorithm.  

RQ3: For the same set of tutors, does the content based recommender provide 

recommendations at a time that is more appropriate for the user than the 

recommendations of the collaborative filtering algorithm? 

There was strong evidence (p=0.03) for a significant difference between the 

scores assigned to the appropriateness question between the recommendations made 

by the content based recommender and the collaborative filtering recommender for the 

same tutors. This shows that the users felt more comfortable that the content-based 

recommender provided recommendations at a time when the user was more 

comfortable to take a tutor. 

RQ4: For the same set of tutors, does the content based recommender provide 

recommendations that the users perceive as novel when compared to the collaborative 

filtering algorithm’s recommendations? 

There was not strong evidence (p=0.07) for a significant difference between 

the scores assigned to the novelty question in the survey between the recommendations 

 



28 
 

made by the content based recommender and the collaborative filtering algorithm for 

the same tutor. This indicates that the evidence is inconclusive on whether the users 

perceived the recommendations made by the content-based recommender to be 

something formerly unknown as compared to the recommendations made by 

collaborative filtering algorithm at points in time when the recommendations were 

made, for the same set of tutors.  

The figure below summarizes the scores for the algorithms on each survey 

question and for the overall rating, averaged over all recommendations made by the 

corresponding algorithm. The collaborative-based recommender clearly outperformed 

the collaborative filtering algorithm. 

 

Figure 3: Means scores for survey questions over all tutors 
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5.2 Discussion 

Results from this research work did indicate that the users perceived 

recommendations made by the CBR to be more relevant to their needs based on their 

history and that they were made at a time when the users felt they were ready. These 

findings can also be explained to an extent by the looking at the order in which users 

had taken tutors through the course of the study.  

It is notable that the CBR made recommendations for API tutors that are 

logically next in the series as opposed to the CF algorithm which made 

recommendations across topic lines. For example, whenever the CBR recommended 

tutor 4 (GWT 1) it was followed by CBR recommending tutor 5 (GWT 2) or vice 

versa. The same observation is also present with tutors 10 and 11 (SWT 1 and 2), 

tutors 24, 25 & 26 (Commons Math) and tutors 1 & 2 (Commons Lang). The users 

who had taken any one of the tutors in the series followed up by picking the 

recommendation of the other tutors in the series when it was recommended by the 

CBR. This shows an example of a scenario where the CBR makes recommendations 

within the same topic.  

In some cases, the CBR also tended to recommend API tutors that are off topic 

but logically related, as in the case of tutor recommendations for Apache DBUtils 

when the user had complete the JDBC tutor, or recommendations for GSON or JSON-

Lib after JDBC or DBUtils. In this case, although they are different libraries, in many 

use cases, source files had combinations of methods where JDBC was used to 

interface with a database and then the result set returned was manipulated using 
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GSON or JSON-lib to send data to a client in JSON format. This example also helps 

to explain CBR recommendations that were perceived as relevant to what the users 

had taken previously, although not within the same topic, but logically related through 

their function.  

 With respect to the comfort (appropriateness) question in the survey, the 

amount of retries needed before users got answers right to quiz questions could be an 

indicator of how valid their comfort score was. On average, users who gave a comfort 

rating of 4 or 5 tended to answer the quizzes correctly in the first attempt or with 1 

retry at the most, whereas recommendations that received a comfort score of 1 – 3 

tended to have users who needed 2 or more retries before arriving at the correct 

answer to a blank.  

It should also be noted that the average ratings for the CF algorithm’s 

recommendations had a tendency to be elevated as more ratings were added to the 

system. This could be due to the fact that the CBR made some initial 

recommendations that were well received by the users which in turn influenced the CF 

algorithm’s recommendations as the study progressed. In this regard, it can be said 

that the CBR can be used as a way to alleviate some of the cold start issues that the CF 

algorithm has, although this hypothesis would need to be investigated further through 

future studies.       
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6. Conclusion 

Our study showed that ratings of content-based recommendations were 

significantly higher than ratings of collaborative-filtering-based recommendations. 

Further analysis of study data suggested that the reason for this difference is that 

content-based recommendations were more relevant and provided at points in time 

when the study participants felt more ready to learn a given API.  

These results are important because they suggest a process to more effectively 

teach a sequence of APIs. The results could be applied in several ways. First, they 

could be used by professors to determine how to effectively cover APIs in a course. 

Second, a company that needs to teach new employees about corporate APIs could 

follow the content-based recommendations algorithm to bring the new employees up 

to speed. Third, the underlying jTutors system could be used to cover other languages 

and a broad range of APIs, then deployed to the world at large in order to help people 

learn programming more easily via the internet. Fourth, a company such as Amazon 

that has a large collection of public-facing APIs could implement a system similar to 

jTutors to provide better training materials for programmers that the company wants to 

entice into using those APIs. 

Apart from addressing API discovery issues, the content based recommender 

could also be used as a tool for providing information about what API tutors could be 

added to the jTutors system. It would be possible to determine any gaps in tutor 

coverage by looking at APIs/classes that are frequently used together (mined from the 

open source projects) but currently do not have any API tutors in the system. Further 
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studies in this regard may be conducted to explore the validity of using mined 

informaton to enable tutor creators (users with privileged accounts, like a TA or an 

instructor for instance) to enhance the system by adding more content or improving 

existing content.   

 



33 
 
7. Bibliography 

[1] Ye, Yunwen, et al. (2007) Searching the library and asking the peers: 

learning to use Java APIs on demand. Proceedings of the 5th international symposium 

on Principles and practice of programming in Java. 

[2] Begel, A, and Simon, B. (2008b) Struggles of new college graduates in 

their first software development job. Proceedings of the 39th SIGCSE Technical 

Symposium on Computer Science Education.  

[3] Brandt, J, Guo., P, Lewenstein, J., Dontcheva, M., and Klemmer, S. (2009) 

Two studies of opportunistic programming: Interleaving web foraging, learning, and 

writing code. Proceedings of the 27th International Conference on Human Factors in 

Computing Systems.  

[4] Robillard, M, and Deline, R. (2010) A field study of API learning 

obstacles. Empirical Software Engineering, 1-30.  

[5] Dahotre, A., Krishnamoorthy, V., Corley, M and Scaffidi, C, (2011) Using 

intelligent tutors to enhance student learning of application programming interfaces. 

ACM Journal of Computing Sciences in Colleges, ACM Consortium for Computing 

Sciences in Colleges, 27, 1, 195-201. 

[6] What is Java technology and why do I need it? 

http://www.java.com/en/download/faq/whatis_java.xml (retrieved on May 24, 2012)  

 



34 
 
[7] Davor C. Cubranic and G.C. Murphy, (2003) Hipikat: Recommending 

Pertinent Software Development Artifacts, in Proceedings of the 25th International 

Conference on Software Engineering (ICSE03). 408-418. 

[8] Lange, B.M. and T.G. Moher. (1989) Some Strategies of Reuse in an 

Object-oriented Programming Environment, in Proceedings of Human Factors in 

Computing Systems.  

[9] Mandelin, D., et al., (2005) Jungloid Mining: Helping to Navigate the API 

Jungle, in Proceedings of 2005 ACM SIGPLAN Conference on Programming 

Language Design and Implementation. 48-61. 

[10] Mili, A., et al., (1999) Toward an Engineering Discipline of Software 

Reuse. IEEE Software 22-31. 

[11] Raymond, E.S., (2004) The Art of UNIX Programming. Boston, MA: 

Addison-Wesley 

[12] Daniel Lemire, Anna Maclachlan, (2005) Slope One Predictors for Online 

Rating-Based Collaborative Filtering, In SIAM Data Mining (SDM'05). 

[13] Stylos, J, and Myers, B. (2006) Mica: A web-search tool for finding API 

components and examples. Proceedings of the IEEE Symposium on Visual Languages 

and Human-Centric Computing, 195-202.  

 



35 
 
[14] The Most Widely Used Third Party Java Libraries by X Wang : 

http://www.programcreek.com/2011/08/the-most-widely-used-java-apis/ (last 

retrieved on 11/24/2013) 

[15] Krishnamoorthy, V., Appasamy, B., and Scaffidi, C. (2013). Using 

intelligent tutors to teach students how APIs are used for software engineering in 

practice. IEEE Transactions on Education, 56, 3, 355-363. 

[16] Zaíane, Osmar R. (2002) Building a recommender agent for e-learning 

systems. Computers in Education. 

[17] Khribi, Mohamed Koutheaïr, Mohamed Jemni, and Olfa Nasraoui. (2008) 

Automatic recommendations for e-learning personalization based on web usage 

mining techniques and information retrieval. Eighth IEEE International Conference 

on Advanced Learning Technologies. 

[18] Romero, Cristóbal, and Sebastian Ventura. (2007) Educational data 

mining: A survey from 1995 to 2005. Expert Systems with Applications, 33.1, 135-

146. 

[19] Baker, Ryan SJD, and Kalina Yacef. (2009) The state of educational data 

mining in 2009: A review and future visions.  Journal of Educational Data Mining, 

1.1, 3-17. 

[20] Zhuhadar, Leyla, et al. (2009) Multi-model ontology-based hybrid 

recommender system in e-learning domain. Proceedings of the 2009 IEEE/WIC/ACM 

 



36 
 

International Joint Conference on Web Intelligence and Intelligent Agent Technology-

Volume 03. 

[21] Meteren, R. V., & Someren, M. V. (2000). Using Content-Based Filtering 

for Recommendation. MLnet / ECML2000 Workshop, May, Barcelona, Spain. 

[22] Pahl, C., & Donnellan, C. (2003). Data mining technology for the 

evaluation of web-based teaching and learning systems. In Proceedings of the 

congress e-learning, Montreal, Canada 

[23] Robillard, Martin P. (2009) What makes APIs hard to learn? Answers 

from developers. Software, IEEE 26.6, 27-34. 

 
 
 
 
 
 
 
 
 
 

 

 

 


	1 Introduction
	2. Background and Related Work
	2.1 Existing jTutors System
	2.1.1 Process of creating an API tutor
	2.1.2 Finding and taking API tutors

	2.2 The problem of API tutor discovery
	2.3 Recommenders in the context of E-Learning Systems

	3. Approach
	3.1 Weighted Slope-one predictor for collaborative filtering
	3.2 Content-based tutor recommendations

	4. Study design and Evaluation
	4.1 Research Questions
	4.2 Participants and Study recruitment
	4.3 Study Initiation and jTutors Tutorial
	4.4 Integration of recommendations into the user interface
	4.5. Survey Questions
	4.5 Data analysis
	4.6 API Tutor Topics

	5. Experimental Results
	5.1 Results
	5.2 Discussion

	6. Conclusion
	7. Bibliography

