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ABSTRACT

The estuarine-dependent brown shrimp, Farfantepe-
naeus aztecus, is a significant commercial fishery and
important species in the Gulf of Mexico (GOM)
ecosystem as well as being a key component in energy
transfer between benthic and pelagic food web sys-
tems. Because of the economical and ecological impor-
tance of brown shrimp, we developed a spatial
population model to identify places of high shrimp
density under a set of spatial, environmental and tem-
poral variables in the Northern Gulf of Mexico
(NGOM). We used fisheries-independent data col-
lected by the Southeast Area Monitoring and Assess-
ment Program (SEAMAP) from 1992 to 2007
(summer and fall seasons). The relationship between
the predictor variables and shrimp density was mod-
eled using Boosted Regression Trees (BRT). Within
the environmental variables included in the model,
bottom type and depth of the water column were the
most important predictors of shrimp density in
the NGOM. Spatial predictions performed using the
trained BRT model for summer and fall seasons

showed a spatial segregation of shrimp density. During
the summer, higher densities were predicted near the
Texas and Louisiana coast and during the fall, higher
densities were predicted further offshore. The model
performed well and allowed successful prediction of
brown shrimp hot spots in the NGOM. Model results
allow fisheries managers to evaluate the potential
impact from fisheries on the resource and to develop
future fisheries management strategies, understand the
biology of brown shrimp as well as assess the potential
impacts of oil spills or climate change.
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INTRODUCTION

The estuarine-dependent brown shrimp, Farfantepe-
naeus aztecus, is a significant commercial fishery and
important species in the Gulf of Mexico (GOM)
ecosystem. In 2011, the brown shrimp fishery yielded
117.8 million pounds in commercial landings in Ala-
bama, Florida, Louisiana, Mississippi and Texas worth
approximately $200.3 million (NOAA NMFS Office
of Science and Technology, 2013). In addition to their
economic role, brown shrimp are a key component in
energy transfer between benthic and pelagic food web
systems (Patillo et al., 1997; Daewel et al., 2011).
Throughout their lifecycle, they feed on phytoplank-
ton, zooplankton, detritus, benthic organisms, and
other organic materials and species (P�erez-Farfante,
1969; Sheridan and Ray, 1981; Louisiana Office of
Fisheries, 1992; Patillo et al., 1997). Additionally,
throughout their lifecycle, brown shrimp are prey to
fish and large crustaceans, many of which are commer-
cially important species (P�erez-Farfante, 1969; Sheri-
dan and Ray, 1981; Louisiana Office of Fisheries, 1992;
Patillo et al., 1997). As a result of their economic and
ecological value, decades of population dynamics
research and management efforts in the GOM have
occurred (Haas et al., 2001a); however, the interan-
nual variability of brown shrimp has made it difficult
to predict their abundance.
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Brown shrimp exhibit an annual life cycle, although
individuals have been observed to live up to 2 yr
(P�erez-Farfante, 1969). Like other estuarine-dependent
species, adult brown shrimp spawn offshore over the
shelf, eggs and larvae are transported towards the coast,
post-larvae and juveniles grow within the estuaries and
late-stage juveniles, or subadults migrate offshore
(Etzold and Christmas, 1977; Benfield and Downer,
2001; Haas et al., 2001b). Brown shrimp spawn year-
round, but peak spawning is believed to occur from
September through to November (Lassuy, 1983) and
April through to May (St. Amant et al., 1966; Lassuy,
1983). Peak recruitment into estuaries occurs in Febru-
ary through to March (Li and Clarke, 2005) and
August through to September (Saoud and Davis,
2003). As brown shrimp have an annual life cycle,
their population size is dependent on the recruitment
in the same year (Caillouet et al., 1980). Therefore,
shrimp recruitment and abundance are significantly
influenced by annual environmental conditions and
survival rates as opposed to the success of previous
cohorts or historical catch (Caillouet et al., 1980;
Minello et al., 1989; Haas et al., 2001a; Li and Clarke,
2005).

In the GOM, research has been conducted to model
the relationship between environmental conditions
and the spatial distribution and abundance of shrimp
for decades. The majority of these studies have been
limited spatially and temporally by focusing on small-
scale regions, earlier life stages in estuaries and a lim-
ited set of environmental conditions. Environmental
parameters that have been incorporated into correla-
tive studies include water temperature (Haas et al.,
2001a; Clark et al., 2004; Li and Clarke, 2005; Diop
et al., 2007), salinity (Haas et al., 2001a; Clark et al.,
2004; Diop et al., 2007), dissolved oxygen (Craig
et al., 2005; Craig, 2012), depth (Craig et al., 2005),
water clarity, precipitation, water level (Haas et al.,
2001a), bottom type (Clark et al., 2004) and wetland
loss (Diop et al., 2007). However, we believe there is
still a gap of knowledge about the environmental and
spatial factors that affect the distribution and abun-
dance of brown shrimp at a larger spatial scale in the
GOM. Additionally, only a few studies have consid-
ered using an empirical model to describe the relation-
ships of brown shrimp on the GOM using an extensive
environmental dataset combined with the trawl survey
data.

The goal of this study was to use an empirical model
that allows us to identify the main spatial and environ-
mental variables that affect the spatial and temporal
distribution of observed density hot spots of brown
shrimp in the Northern Gulf of Mexico (NGOM). We

estimated the relative density of shrimp using catch
per unit effort (CPUE) and a model of the relationship
of shrimp density with environmental conditions using
boosted regression trees (BRT; Elith et al., 2008;
Froeschke et al., 2010). The main objective was to
identify an empirical model that detects under which
environmental condition the brown shrimp popula-
tion will be denser in the NGOM.

METHODS

Data

Monitoring brown shrimp abundance and density
requires a proxy of measurement with minimum vari-
ability in fishing effort as a result of gear modifications
and changes in management efforts. This study utilizes
fishery-independent trawl survey and oceanographic
data collected by the Southeast Area Monitoring and
Assessment Program (SEAMAP) Gulf of Mexico to
model and predict the density of brown shrimp across
the NGOM because of the datasets extensive spatial
and temporal coverage and consistent sampling proce-
dures (Ocean Studies Board, N.R.C., 2000). SEAMAP
has conducted fishery-independent trawl surveys target-
ing shrimp and groundfish since 1983 across Florida,
Alabama, Mississippi, Louisiana and Texas between
88°W and 97°W longitude (Hart, 2011) (Fig. 1). From
1992 to 2007, surveys occurring in the summer (June–
August) and fall (October–December) used similar
gears, protocols and random stratified sampling design
based on depth and statistical area (Craig et al., 2005).
Trawl surveys performed by the National Marine Fish-
eries Service Center, Alabama, Mississippi, and Louisi-
ana were made perpendicular to the depth strata from 5
to 60 fathoms for a maximum of 55 min using 40 ft nets
and parallel to the depth strata for 10 min using 20 ft
nets by Texas (Gulf States Marine Fisheries Commis-
sion, 1983–2010). At the start of each trawl, bottom
measurements of salinity and dissolved oxygen (DO),
sea surface temperature (SST) and depth were collected
and upon completion, all species collected were identi-
fied and counted, including brown shrimp.

Density of brown shrimp

Assuming that fishing effort in the SEAMAP dataset
was standardized as a result of the consistent sampling
protocols (Craig et al., 2005), the brown shrimp den-
sity was calculated in our study area (Fig. 1) based on
CPUE, which is used extensively as an index for the
relative abundance of fisheries research (Haas et al.,
2001a). To calculate the density of brown shrimp, data
were binned into a 0.1 by 0.1-degree grid, with each
cell representing an area of approximately 121 km2,
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across the entire study area. Then, CPUE was calcu-
lated for each grid cell per summer and fall months
using the equation:

CPUEt ¼ Ct=Et

where Ct represents the catch at time t and Et the fish-
ing effort, by taking the total number of brown shrimp
for all trawls in each grid cell for each summer and fall
months (Ct) divided by the total number of hours for
all trawls within the same grid cell per month (Et). To
reduce skewness of the distribution for calculating
brown shrimp density, density was log-transformed as
Log(density+1) (Legendre and Legendre, 1998; Lauria
et al., 2011). The density of brown shrimp was then
used to produce a map of the overall annual mean den-
sity of brown shrimp between 1988 and 2007 through-
out the NGOM and as the response variable for our
modeling approach using SEAMAP data from 1992 to
2007. For modeling purposes, we left out the years
1983–1991 and 2008–2011 because of changes in the
sampling techniques. The data left out (1983–1991
and 2008–2011) of the modeling process was later used
to generate brown shrimp log–CPUE prediction maps.

Predictor variables

For modeling brown shrimp density, SST, bottom DO,
bottom salinity, depth, the percentage of mud on the
bottom (Mud %), longitude, latitude and season

(summer & fall) were used as environmental and tem-
poral predictor variables (Table 1). SST, bottom DO,
bottom salinity and depth were measured during each
SEAMAP survey. Mud % was determined from over
2 30 000 bottom-type samples within the GOM, pro-
vided by the Institute of Arctic and Alpine Research
(INSTAAR), that identified the proportion of mud,
clay, silt and sand in each sample (Jenkins, 2010; Gra-
ham et al., 2012). The environmental predictor vari-
ables were averaged for all measurements taken in
each grid cell for the summer and fall months of each
year.

Boosted regression trees

Booted regression trees (BRTs) are a combination of
the statistical techniques boosting and regression trees.
Boosting is a machine learning method, where the
results of several competing models are merged.
Through boosting, a stage-wise procedure fits tree
models iteratively to a subset of the data that is being
modeled, where the subsets are randomly selected
without replacement. This procedure is known as
stochastic gradient boosting and introduces a stochas-
ticity element that improves model accuracy and
reduces overfitting (Elith et al., 2008).

Like other model-averaging methods, BRTs differ
fundamentally from the more conventional regression-
based techniques such as generalized additive models

Figure 1. A figure of our study area in the Northern Gulf of Mexico (NGOM) and the Southeast Area Monitoring and Assess-
ment Program (SEAMAP) statistical regions where Brown shrimp trawls were made. The grey line represents the 200 m isobath
contour.
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(GAMs) (Hastie and Tibshirani, 1990). GAMs fit a
single most parsimonious model that best describes the
relationship between a response variable and a set of
predictors, whereas BRTs fit a large number of simple
models, which predictions are later combined to give a
more robust estimate of the response (Elith et al.,
2008). BRTs can be fit with a variety of predictor vari-
ables, are immune to extreme outliers and are flexible
when fitting interactions between variables (Friedman
and Meulman, 2003).

Only recently, BRTs have been applied to answer
ecological questions (Friedman, 2001; Leathwick
et al., 2006; Elith et al., 2008; Froeschke et al., 2010;
Froeschke and Froeschke, 2011; Mart�ınez-Rinc�on
et al., 2012). Because of the ability of BRTs to fit a
model with interactions and automatically select
important variables, as well as its robustness to outliers
and missing data, BRT models are growing in popular-
ity (Froeschke and Drymon, 2013). BRTs can fit com-
plex non-linear relationships and in many cases have a
superior predictive performance than Generalized Lin-
ear Models (GLMs) and GAMs, which are commonly
used to develop standardized abundance indices (Lo
et al., 1992). Generally speaking, BRTs have been
shown to be more robust than GAMs and GLMs and
can be implemented to answer the same type of eco-
logical questions.

BRT model fitting requires the specification of
three parameters: (i) learning rate, which controls the
rate at which model complexity increases, (ii) bag
fraction and (iii) tree complexity which represents the
number of splits in each tree and controls the size of
the trees, as well as the complexity of interaction
within predictor variables. A tree complexity value of
one corresponds to an additive model with no interac-
tion between the predictor variables where each tree
has a single node or decision way. In contrast, a value
of two or higher indicates that more than one node is
used in each tree, which represents a model with two
or more interaction ways (Elith et al., 2008).

For our analyses, the brown shrimp data from 1992
to 2007 were randomly divided into two datasets, a
training set (70% of the data) and testing set (30% of
the data), using a stratified random sampling based on
seasons (Summer and Fall) to reduce the bias. The
training set was then used to fit the BRT model whereas
the test set was used to evaluate model performance.
We fitted a BRT model using R (R Development Core
Team, 2012) version 2.15.2 with the ‘gbm’ and ‘dismo’
packages (Ridgeway, 2010; Hijmans et al., 2011). The
‘gbm’ library implements the formulae developed by
Friedman (2001) to estimate the relative influence of
the predictor variable over the response. These values
are based on the number of times a variable is selected
for splitting, weighted by the squared improvements to
the model based on each split, and averaged over all
trees (Friedman and Meulman, 2003). Adding its sum
to 100, the relative contribution of each variable was
scaled so that a higher number corresponds to a stronger
influence on the response.

Relationship between response and predictor variables

The relationship between brown shrimp density and
each predictor variable was explored by plotting the
partial dependence plots using the gbm.plot function in
R from the gbm package. These plots show the effect of
a variable over shrimp density after accounting for the
overall effect of all other variables in the model (Fried-
man, 2001). The predicted values for each variable of
the partial dependence plots are calculated by holding
the values of all other variables at their mean. The
partial dependence plots also indicate how shrimp
density partially depends on each predictor variable.

Model fitting and evaluation

Before fitting a final BRT, we went through several
steps to find the best candidate model (see Supporting
Information). We first fitted a BRT model without
interactions among variables (tree complexity of 1),
and recorded the performance parameters: residual

Table 1. Predictor variables used in the analyses.

Variable (Unit) Description Mean Range

Latitude (degrees North) Latitude of the observed CPUE 28.5 24.6–30.2
Longitude (degrees West) Longitude of the observed CPUE 92.8 97.3–81.5
Mud (%) Mud percentage provided by INSTAAR 64.2 0–100
Depth (m) Depth of the water column where sample occurred �42.6 0–400
Salinity (ppt) Salinity measured during sampling 34.4 0–40
SST (�C) Sea surface temperatures measured during sampling 26.7 15–32
DO (mg O2 L

�1) Dissolved oxygen concentration measured during sampling 5.1 0–15
Season (summer & fall) Seasons derived from months when sample occurred NA NA

CPUE, catch per unit effort; SST, sea surface temperature; DO, dissolved oxygen; NA, not applicable.
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deviance, mean residual deviance, and pseudo R2 (or
D2), calculated as D2 = 1-(mean residual deviance/
mean total deviance). The pseudo R2 was used as a
measure of model fitting and performance for the
trained model. The same procedure was performed for
a model with tree complexity 2 and 5, to evaluate the
performance of a model with multiple interactions.
We repeated the same procedure using Generalized
Additive Models (GAMs). Although a model compar-
ison was not the goal of our research, we wanted to
verify that the BRT approach performs better than the
widely used GAMs because BRTs have only recently
been used in the ecological and fisheries literature (see
Supporting Information for model comparison statis-
tics). We also calculated R2 for the testing dataset con-
trasting the predicted and observed values for all
models (See Supporting Information). We finally
selected as the best model a BRT with a tree complex-
ity of 5.

Additional to the general model statistics and good-
ness of fit tests, we built omnidirectional semi-vario-
grams to investigate spatial autocorrelation and the
ability of the BRT and GAM models. We first plotted
the semi-variogram of the train set CPUE and then
compared it with the residuals semi-variogram for the
different candidate models. This analysis allowed us to
identify how the model handles spatial autocorrelation
if present (see Supporting Information).

We used several statistics using the testing data to
look at the model performance of the final trained BRT
model in terms of accuracy and bias using the testing
data set. To look at model accuracy, we calculated the
proportion of variation explained in the outcome of the
testing data comparing the observations (test data set,
log-CPUE) versus predictions as 1-(SSR/SST), as well
as the Root Mean Square Error (RMSE). We also per-
formed a Spearman’s rank correlation coefficient (rs)
and calculated its respective P-value. We used the
Spearman’s rs because it does not assume linearity. In
the Spearman’s correlation test, if P < 0.05 and
rs > 0.1, the test for model accuracy is considered
passed (Lauria et al., 2011). To assess model bias in the
predictions, we used Wilcoxon’s signed-rank test to
compare observed versus predicted values deviations.
The Wilcoxon signed-rank test compares the median
observed densities of brown shrimp with median pre-
dicted densities. The null hypothesis for the sign test is
that the observations and predictions are unbiased,
therefore, the model was considered passed if P > 0.05.

Mapping model predictions

The trained model was used to predict the mean den-
sity of brown shrimp for summer and fall seasons with

SEAMAP survey data excluded from our initial mod-
eling process (1983–1991 and 2008–2011) which con-
tains measurements of all the predictor variables.
Maps of the mean observed model prediction output
were created in ArcMap 10.1 (Esri, 2012). Addition-
ally, we performed a spatial interpolation over the
CPUE predicted surface within a 200-m isobath by fit-
ting a Thin Spline Regression Model to fill the gaps
where data were not available to predict shrimp den-
sity distribution. This method has been previously used
by Mart�ınez-Rinc�on et al. (2012) and Montero et al.
(2016) to fill in gaps in the predictions when there is
missing data.

RESULTS

Based on the SEAMAP dataset, two spatial trends
were observed in the overall mean density of brown
shrimp throughout the NGOM between 1992 and
2007 (Fig. 2). Overall, the higher densities were
located in the western region of the Northern GOM
between the 20–60 m isobaths whereas, lower densi-
ties of brown shrimp were observed in the GOM
region east of Mississippi, between 82 and 88�W.

Boosted regression trees

The final BRT model was constructed with a learning
rate of 0.05, 600 trees and tree complexity of 5 to allow
multiple interactions and a larger number of splits
(Table 2 and Table S2). The error was assumed to fit a
Gaussian distribution. Figure 3 summarizes the relative
contribution of each predictor variable in the model.
The most important predictor variable for brown
shrimp density was Mud % which contributed 20% of
the overall model response showing higher predicted
densities of brown shrimp corresponding with regions
that had a higher percentage of mud. The second most
important predictor variable was depth (Bathymetry)
with a relative contribution of 19.3% with a greater
density of brown shrimp predicted at depths between 20
and 100 m. Longitude, bottom salinity, SST, and bot-
tom DO, and Latitude has less influence on the model,
with contributions of 12.5, 12.1, 11.1 and 7.3%, respec-
tively, with a higher density of brown shrimp predicted
on waters of higher longitude, with bottom salinity
between 10 and 20 ppt, SST between 23 and 30°C, and
bottom DO from 2 to 7 ppm, and Latitude between 28
and 30�N. Seasonality did not significantly affect the
brown shrimp density. Spatially, the model shows a
decrease of brown shrimp density. In contrast, seasons
(summer and fall) had a minimal contribution to the
overall model (0.6%, Fig. 3). The partial dependence
plots (Fig. 4) depict the relationship between brown
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shrimp density and each predictor variable explained by
the BRT model.

Model performance

Model evaluation, based on the Spearman’s rank cor-
relation test for our BRT model, showed a significant
positive correlation between observed and predicted
values: P-value < 0.001 and rs = 0.54, suggesting a fair
accuracy in the model predictions. Also, Wilcoxon’s
signed rank test was considered successful, with a P-
value >> 0.05. In contrast, when we looked at the pro-
portion of variation explained in the outcome of the
testing data, this only explains ~30% of the variation,
which suggests a low precision in model predictions
(Table 2). These results imply that the BRT model

was fairly successful in describing the density trends of
brown shrimp and the potential factors affecting its
distribution. However, the model has a weakness in
predicting with precision the overall mean density of
brown shrimp in the environment.

Spatial distribution of brown shrimp density

The predicted brown shrimp mean densities trend
showed variation between the two seasons (Fig. 5a,b).
Greater densities were predicted during the summer
season compared with the fall season. In addition, the
spatial distribution of brown shrimp varied between
seasons. During the summer, higher density values
were predicted closer to inshore waters in the western
region of the NGOM near the Texas and Louisiana

Figure 2. Mean spatial distribution of observed mean brown shrimp density for summer and fall between the years 1992-2007.
The black line represents the 200 m isobath contour. Overall, higher densities were located in the western region of the North-
ern GOM between 20–60 m depth. The filled contours were made using natural breaks classification (Jenks) in ArcMap 10.1.

Table 2. Summary statistics of the candidate Boosted Regression Trees (BRT) models for brown shrimp.

Model
Model

complexity
Number
of trees

Residual
deviance

Explained
deviance (D2) RMSE

1-(SSE/
SST)

BRT (1) 1 3050 24 527.75 0.27 2.07 0.22
BRT (2) 2 2150 20 313.46 0.39 2 0.27
BRT* (5) 5 600 19 381.39 0.45 1.98 0.29

RMSE, Root Mean Square error, 1-(SSE/SST), Adjusted R2.
*NOTE, The model BRT-5 was the final model selected for training and prediction.

© 2016 John Wiley & Sons Ltd, Fish. Oceanogr., 25:3, 337–348.

342 J.T. Montero et al.



coast, between 26–29�N and 94.5–97�W. In contrast,
during the fall, higher brown shrimp densities were
predicted further offshore, with greater densities near
Louisiana between 28–23�N and 89–92�W. Very low
densities of brown shrimp were predicted for the
region of the NGOM east of Mississippi in both the
summer and fall.

DISCUSSION

The results of this study suggest a significant relation-
ship of brown shrimp density with the environmental,
spatial and temporal variables used for the BRT model.
The model suggested that the bottom-type composi-
tion (Mud %) and depth of the water column as the
strongest predictors of brown shrimp density in the
NGOM. The predicted spatial distribution and density
of brown shrimp were consistent with the spatial pat-
tern and brown shrimp densities observed in the
NGOM based on the SEAMAP dataset corroborating
the performance of the BRT model to accurately

predict the spatial distribution of brown shrimp density
using the selected predictor variables.

Our results suggest that the variation in brown
shrimp density in the NGOM is mostly as a result of
Mud %. This is consistent with previous research con-
ducted in estuaries in the GOM, indicating that brown
shrimp prefer soft bottom substrates because they are
rich in food material (Williams, 1955, 1959; Van
Lopik et al., 1979; Turner and Brody, 1983). Further-
more, research suggests that although juvenile and
adult brown shrimp are found on sand, silt, clay and
shell bottoms, a greater abundance of brown shrimp
are located in areas with mud bottoms (P�erez-Farfante,
1969; Etzold and Christmas, 1977; Lassuy, 1983). In
regard to the spatial distribution of brown shrimp den-
sities, the most distinct trend observed in our results
was the presence of a distinct ‘line’ separating areas of
a relative high density and areas of low-density present
in both observed and predicted brown shrimp densities
around the 88�W meridian. This invisible spatial divi-
der of brown shrimp can be attributed to distinct regio-
nal differences in bottom type, with regions in the
NGOM west of the 88�W meridian characterized pre-
dominantly by muddy clay-silts and muddy sands,
whereas regions east of the 88�W meridian are pre-
dominantly sand, gravel and shell (Wilkinson et al.,
2009).

Depth also plays a critical role in determining
brown shrimp density, with our results indicating that
brown shrimp are most abundant in depths between
20 and 100 m. This is consistent with previous
research in which brown shrimp were distributed
broadly on the GOM shelf in areas up to 110 m, with
highest densities occurring between 20 and 40 m from
June to July (Zein-Eldin and Renaud, 1986; Craig
et al., 2005). The spatial distribution of the observed
and predicted mean density of brown shrimp, despite
seasonal differences, supported these results. The slight
seasonal variations observed between the summer and
fall months predicted densities might be the result of
different stages of their life cycle, which have been
strongly correlated to depth (P�erez-Farfante, 1969;
Renfro and Brusher, 1982). Increased densities of
brown shrimp during the summer months closer to the
Texas and Louisiana shoreline might be attributed to
increased emigration of late juveniles from the shallow
estuaries, which are prolific along the Texas and
Louisiana coast, into the GOM during June and July
(Zein-Eldin and Renaud, 1986). Higher densities
observed offshore in the fall corresponds with brown
shrimp’s peak spawning season from September to
November in waters between 27 and 110 m (Renfro
and Brusher, 1982), which overlaps with SEAMAP’s

Figure 3. Graphical representation of the relative contribu-
tion of each predictor variable for brown shrimp density by
the BRT model. Y-axis shows the predictor variables and X-
axis depicts the relative contribution of each predictor vari-
able on a scale of 0-100%. The most important predictor
variable for brown shrimp density was Mud %, contributing
20% of the overall model response.
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fall sampling season. Furthermore, this aggregation
between 27 and 100 m depths for spawning could
explain the slightly higher densities observed off East-
ern Louisiana and Mississippi as the slope of the conti-
nental shelf is steeper off Eastern Louisiana and
Mississippi and a more gradual slope off Western
Louisiana and Texas.

Based on our results, bottom salinity and SST con-
tribute to brown shrimp density in the NGOM. Salin-
ity and SST have been known to affect brown shrimp
physiology, migration and abundance (Zein-Eldin and
Aldrich, 1965; Lassuy, 1983; Haas et al., 2001a; Saoud
and Davis, 2003; Diop et al., 2007; Piazza et al., 2010;
Rozas and Minello, 2011). Previous research found

Figure 4. Partial dependence plots used to explore the effect of each predictor variable, mud %, depth, longitude, bottom salin-
ity, SST, bottom DO, latitude and season (summer & fall) over shrimp density used in the BRT model. Y-axes show the centered
scale of the data distribution. The X-axes represent the range of the eight predictor variables and their relative contribution. The
shaded region represents the confidence interval.
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that there is a positive correlation between tempera-
ture and salinity for brown shrimp, indicating that
high river discharge and climate variability play a sig-
nificant role in the success of juvenile and adult brown
shrimp (Haas et al., 2001a; Saoud and Davis, 2003;
Diop et al., 2007; Piazza et al., 2010). The variation in
observed densities of brown shrimp in salinity ranges
between 10 and 20 and 30 and 40 ppt in our results
could be an indication of regional differences in

freshwater input. Areas of high brown shrimp densities
with bottom salinities between 10 and 20 ppt were
observed closer to estuaries and major river outputs
along Eastern Texas and Western Louisiana, whereas
regions of high density with bottom salinities between
30 and 40 ppt occurred further offshore.

Brown shrimp are sensitive to low oxygen condi-
tions. We observed greater densities of brown shrimp
in locations where the bottom DO was between 2

(a)

(b)

Figure 5. Spatial distribution of predicted mean brown shrimp density (log-CPUE) using the trained BRT-5 model. (a) Shows
the predictions made for Summer season and (b) for Autumn (fall). *NOTE: These maps were made averaging the predicted
CPUE by latitude and longitude for all the years and months included in the study to identify the major trends in the prediction
of brown shrimp density. The filled contours were made using natural breaks classification (Jenks) in ArcMap 10.1.
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and 7 ppm. Brown shrimp have been found to detect
and avoid hypoxic waters where dissolved oxygen
concentrations range less than or equal to 2.0 ppm
(Renaud, 1986; Zimmerman, 2003; Craig, 2012). Low
DO avoidance affects brown shrimp emigration and
leads to an alteration in trophic interactions, density
and distribution patterns (Zimmerman, 2003; Craig,
2012). An increase in hypoxic conditions on the
Louisiana shelf has led to shifts in brown shrimp dis-
tribution in the NGOM and has been found to affect
brown shrimp catchability (Craig, 2012). This is con-
sistent with our findings in which brown shrimp den-
sities were greatest near the Texas shelf suggesting
migration to Texas waters during summer months
when hypoxic conditions are frequent in the Louisi-
ana shelf (Renaud, 1986; Zimmerman, 2003; Craig,
2012).

Uncertainty

While this study was partially successful in modeling
the density of brown shrimp and matches expected
outcomes, there were sources of uncertainty, espe-
cially in the data used (Szuwalski and Punt, 2012)
and the model. The sampling techniques of fisheries-
independent data can result in both temporal and
spatial biases in the data. Although SEAMAP per-
forms surveys over a short-time period, mostly from
June to July, species distributions change over time
both vertically and horizontally (Ocean Studies
Board, 2000). Additionally, the total trawl catch
from the SEAMAP dataset containing no catch
located near trawls with large catches, indicating
that brown shrimp may be clustered, which would
reduce the overall model performance. Each of the
environmental predictors provided by SEAMAP and
INSTAAR would also have a spatial and measure-
ment error. Averaging the datasets together and
modeling with relatively large cell sizes would reduce
some of this.

The statistics of the trained models and test set sug-
gested a fair predictive power of spatial distribution of
brown shrimp density in the GOM. Even although the
goal of this study was to predict, as close as possible,
the values observed in the environment, our model
output informs under which environmental condition
brown shrimp will be more abundant in the GOM,
regardless of the mismatch between predicted and real
values. We think the model is not fully capable of pre-
dicting brown shrimp density in the GOM. However,
it gave us an insight of where, when and under which
environmental and spatial condition is more probable
to find higher densities of brown shrimp during fishing
operations.

CONCLUSION

The results of our study provided broader-scale analy-
ses and spatial predictions of brown shrimp based on
environmental and temporal parameters which have
significant implications for fisheries management. The
capabilities of predicting the spatial distribution of
brown shrimp density based on environmental predic-
tors, many of which are readily available through pre-
vious research or remotely sensed data, can help
fisheries managers evaluate potential impacts to the
fishery from sources including alternative fisheries
management strategies, oil spills, extreme weather
events, or climate change.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in
the online version of this article:

Table S1 Comparison of five candidate models with
different levels of interaction terms and its respective
statistics. RMSE, Root Mean Square Error; SSE, Sum
of Square Error; SST, Sum of Square Total; GAM,
Generalized Additive Model, BRT, Boosted Regres-
sion Tree.
Figure S1 Comparison of the Root Mean Square

Error (RMSE) (bars), and explained deviance (dotted
line) of the five trained models using the test data set.
Figure S2 Omnidirectional semivariogram of the

model residuals for the best candidate BRT and GAM,
compared with the nominal log(CPUE) (black line).
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