
AN ABSTRACT OF THE THESIS OF

Nicholas S. Flann for the degree of Doctor of Philosophy in

Computer Science presented on December 12, 1991.

Title: Correct Abstraction in Counter-planning: A Knowledge Compilation Approach

Redacted for Privacy
Abstract approved.

Tom G. Dietterich.

Knowledge compilation improves search-intensive problem-solvers that are

easily specified but inefficient. One promising approach improves efficiency by con-

structing a database of problem-instance/best-action pairs that replace problem-

solving search with efficient lookup. The database is constructed by reverse enumera-

tionexpanding the complete search space backwards, from the terminal problem

instances. This approach has been used successfully in counter-planning to con-

struct perfect problem-solvers for subdomains of chess and checkers. However, the

approach is limited to small problems because both the space needed to store the

database and the time needed to generate the database grow exponentially with

problem size.

This thesis addresses these problems through two mechanisms. First, the

space needed is reduced through an abstraction mechanism that is especially suited

to counter-planning domains. The search space is abstracted by representing prob-

lem states as equivalence classes with respect to the goal achieved and the operators

as equivalence classes with respect to how they influence the goals. Second, the time

needed is reduced through a hueristic best-first control of the reverse enumeration.

Since with larger problems it may be impractical to run the compiler to completion,

the search is organized to optimize the tradeoff between the time spent compiling

a domain and the coverage achieved over that domain.

These two mechanisms are implemented in a system that has been applied to

problems in chess and checkers. Empirical results demonstrate both the strengths

and weaknesses of the approach. In most problems and 80/20 rule was demon-

strated, where a small number of patterns were identified early that covered most

of the domain, justifying the use of best-first search. In addition, the method was

able to automatically generate a set of abstract rules that had previously required

two person-months to hand engineer.

Correct Abstraction in Counter-planning:

A Knowledge Compilation Approach

By Nicholas S. Flann

A Thesis submitted to

Oregon State University

in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

Completed April 11, 1992

Commencement June 1992.

Approved:

Redacted for Privacy

Thomas G. Dietterich

Redacted for Privacy

Head of Department of Computer Science

Redacted for Privacy

Dean of Gra e School
A

Date thesis presented December 12, 1991

Typed and formatted by Nicholas S. Flann

ACKNOWLEDGMENTS

There are many people that contributed in one way or another to this thesis.

I am indebted to my advisor, Tom Dietterich, who has been a constant source of

ideas, encouragement and support throughout my long career as a graduate student.

He has shown me by example how to be a good advisor, researcher and teacher.

I thank Prasad Tadepalli, who as a member of my thesis committee and

earlier as a fellow graduate student, encouraged me to pursue my interest in games.

He was always able to see the big picture and identify the important research issues.

I thank Barney Pell, who I met while at NASA and whose enthusiasm and ideas

have always been an inspiration. I have enjoyed and benefited from discussions with

many others including Devika Subramanian, Oren Etzioni, Steve Minton, Haym

Hirsh, Smadar Kedar-Cabelli, Chris Tong, Craig Knoblock and John Bresina.

My office mates over the years have been a constant source of encouragement

and friendship: Ritchie Ruff, Cerbone Giuseppe, Hussein Almuallim, Tony Fountain

and Caroline Koff.

I thank my friends with whom I have enjoyed many an adventure: Kevin

Krefft, Mike Gross, Rob Cline, Steve Poet and especially Tony Fountain. I also

thank Diane McKean for her patience and support.

I thank the Kalmiopsis and the Middle Santiamtwo special places that

after weeks of sitting in front of a computer, reminded me that we still live on a

wild Earth.

Finally, I would like to thank my parents, Jean and John, whose support and

encouragement make this thesis posible.

Table of Contents

1 Introduction 1

1.1 Previous Approaches 3

1.1.1 Explanation-based Approaches 3

1.1.2 Database Approaches 6

1.2 Overview of the Approach 9

1.2.1 Correct Abstractions 10

1.2.2 The Coverage/compile-time Tradeoff 14

1.3 Statement of Thesis 15

1.4 Reading Guide 15

2 Abstraction Based on Influence 17

2.1 Goal Achievement in Counter-planning 17

2.2 Influence Proofs for Goal Achievement 18

2.2.1 Influence Relations 20

2.2.2 Influence Axioms 21

2.2.3 Chess Proofs 23

2.3 Examples of Influence Proofs 25

2.3.1 Fork 26

2.3.2 Skewer 26

2.3.3 Half-Pin 27

2.4

2.3.4 Overworked Piece

Optimal Goal Achievement

2.4.1 When LOSS is to Play

2.4.2 When WIN is to Play

28

29

30

31

3 Compiling Influence Proofs 33

3.1 Compiling Influence Relations 35

3.1.1 Goal Patterns as Literals 35

3.1.2 Goal Patterns as Conjunctions 37

3.1.3 Goal Patterns as Conjunctions with Exceptions 54

3.1.4 Chess Examples 62

3.2 Compiling Influence Proofs 71

3.2.1 When LOSS is to Play 74

3.2.2 When WIN is to Play 83

4 Analysis of the Compiler 85

4.1 Soundness 86

4.2 Completeness 90

4.3 Complexity Analysis 91

4.3.1 Number of Proof Sentences Generated 91

4.3.2 Complexity of Compilation 93

4.3.3 Complexity of Performance 94

4.4 Summary 95

5 A Theory of Geometry for Efficient Abstractions 97

5.1 A Geometric Representation of Patterns 102

5.2 Geometric Influence Relations 105

5.2.1 Representation of Operator Sets 105

5.2.2 Compiling Geometric Influence Relations 109

5.3 Example of Compiling maintain-true 112

5.4 Geometric Intersection 119

6 Analysis of Geometric Abstractions 122

6.1 Completeness 122

6.1.1 Proof of Termination 122

6.1.2 Proof of Compiler Completeness 123

6.2 Complexity Analysis 124

6.2.1 Number of Proof Sentences 124

6.2.2 Number of Pattern Computations 124

6.2.3 Complexity of Pattern Computations 125

6.3 Summary 125

7 Techniques for Searching the Space of Abstractions 126

7.1 Breadth-first Search 129

7.1.1 The Compile-all-losses(Depth,NewWin) Algorithm . 131

7.1.2 The Compile-all-wins(Depth,NewLoss) Algorithm . 141

7.2 Best-first Search 143

7.2.1 Summary 147

8 Experimental Evaluation 148

8.1 Evaluation Criteria 148

8.2 Abstraction Effectiveness 149

8.3 Compiler Effectiveness 153

8.4 Analysis 156

8.5 Utility of Compiled Knowledge 158

8.6 Generality of Approach 159

9 Related Work 162

9.1 Knowledge Compilation 162

9.2 Abstraction in Counter-planning 165

9.2.1 Abstraction in Problem-Solving 165

9.2.2 Abstraction Form and Derivation 168

9.3 Summary 172

10 Conclusions and Future Work 173

10.1 Summary 173

10.2 Contributions 173

10.3 Limitations of the Thesis 175

10.4 Future Work 176

10.4.1 Pragmatic Issues 176

10.4.2 Research Issues 178

Bibliography 182

Appendices 190

A Chess Domain Theory

B King-Rook-King Problem Specification

C Example run for KRK Problem

190

196

203

List of Figures

1.1 Two similar chess positions both with black to play. (a) is a

loss position, while (b) is a draw

1.2 (a) The sufficient condition learned by EBL from the example

in Figure 1.1(a) expressed as a decision tree. If the condition

tested at a node is true the left branch is taken. (b) The key

for the symbols used to illustrate the patterns learned in chess. .

1.3 The correct decision tree that correctly classifies the examples

in Figure 1.1

1.4 (a) The behavior of the database compiler without abstraction:

there is a linear relationship between compile time and coverage

(b) The behavior of the compiler with abstraction, when the

most general patterns are learned first.

5

7

13

14

2.1 Examples of different chess concepts that can be described by

influence proofs 25

3.1 Prolog definition of the Room domain 38

3.2 Results of compiling make-true, make-false and maintain-true,

for the stuffy-room goal pattern 40

3.3 The evaluation tree generated when partially evaluating maintain-

true(vstuffY(S),Op,S) 45

3.4 The evaluation tree generated when partially evaluating make-

true(vstuffY(S),Op,S) 49

3.5 The evaluation tree generated when partially evaluating make-

false(vs'ifY(S),Op,S). Note the computation of not c(do(Op,S))) . 52

3.6 Definition of the Chess domain 63

3.7 Definition of the frame axioms for the Chess domain 65

3.8 Prolog definition and graphical representation of the termina-

tion pattern rook-takes-king 66

3.9 Prolog definition and graphical representation of the termina-

tion pattern rook-takes-knightl. Note that exceptions are de-

noted by a bold outline around the objects of the exception.

Hence, the black king must not be adjacent to the black knight. 67

3.10 Prolog definition and graphical representation of the termina-

tion pattern rook-takes-knight2 68

3.11 Pattern/action pairs that maintain the termination pattern capture-

king(S), with black moving 69

3.12 Pattern/action pairs that make false the termination pattern

safe-capture-knightl(S), with black moving 72

3.13 Pattern/action pairs that make true the termination pattern

safe-capture-knight2(S), with white moving 73

3.14 Compilation of a rook fork losing goal pattern with black to

play. We intersect those pattern/action pairs from make-false(As. rook-

takes-king(s), Op, S) (illustrated along the side) with those pat-

tern/action pairs from make-false(As.safe-capture-knightl (s), Op, S)

(illustrated across the top). Crosses denote an empty intersection 81

3.15 The final pattern in Prolog for a rook fork in the rook-king,

knight-king end-game in chess. Derived from compiling a Many-

threat proof with two threats, one where the rook captures the

king, the other where the rook threatens to safely capture the

knight 82

5.1 A geometric representation of the pattern rook-takes-king. See

Figure 3.8 for the logical and graphical representation. Note

the components of the pattern are marked on the right 103

5.2 A geometric representation of the pattern roo k-t a kes- kn igh t 1 ,

illustrated in graphical form in Figure 3.9 104

5.3 Geometric representation of make-fa/se(rook-takes-king(s), Op, S) 106

5.4 Operator Sub-spaces and linear constraint sets for the king,

knight and rook 107

5.5 Geometric representation of the king operator subspaces taking

into account edge affects 109

5.6 Determining consistent moves of the black king that maintain-

true rook-takes-king 115

5.7 Detail of Simplify determining the consistent solution to maintain-

true rook-takes-king marked (a) in Figure 5.6 116

5.8 Detail of Simplify determining an inconsistent case during com-

pilation of maintain-true rook-takes-king marked (b) in Figure 5.6 117

5.9 Detail of Simplify tightening the region bounds in the X di-

mension during compilation of maintain-true rook-takes-king

marked (c) in Figure 5.6 118

5.10 The final clustering stage combining individual solutions to

compiling maintain-true rook-takes-king 118

5.11 A graph showing the time in mS needed to lookup all intersect-

ing patterns as a function of the size of the database. The top

line is where the database is represented as a list and lookup is

linear search. The lower line is where the database is indexed

using a rectangle tree. Execution times for all calls to Lookup-

Intersection(v(s),PLoss) are illustrated during compilation of

the KRK chess ending 120

7.1 Dynamic program deriving a loss pattern from a one-threat

proof for the king-rook-king chess endgame 135

7.2 Dynamic program deriving a loss pattern from a no-threat proof

for the king-rook-king chess endgame 137

7.3 Dynamic program deriving two loss patterns (4) and (5) from

many-threat proofs for the king-rook-king-knight chess endgame. 139

7.4 Dynamic program deriving two optimal win patterns for the

king-rook-king chess endgame. Patterns (1) and (2) are new

black-to-play loss patterns that are used to generate the new

white-to-play win patterns (3), (5) and (6) through the influ-

ence relations shown. The patterns (4) and (7) are previously

determined white-to-play wins. 142

8.1 The number of instances as a function of ply for the problem

KRK with black-to-move and lose compared to the number of

patterns generated by the compile. Note the log vertical scale. 150

8.2 The number of instances as a function of ply for the problem

KRK with white-to-move and lose compared to the number of

patterns generated by the compile. Note the log vertical scale. 150

8.3 The number of instances as a function of ply for the problem

KRKN with black-to-move and lose compared to the number

of patterns generated by the compile. Note the log vertical scale. 151

8.4 The number of instances as a function of ply for the problem

KRKN with white-to-move and lose compared to the number

of patterns generated by the compile. Note the log vertical scale. 151

8.5 The average ratio between the branching factors of the abstract

search space and the extensional search space as a function of

ply for black-to-move. Both KRK and KRKN endings are shown. 152

8.6 The percentage of extensional instances covered as a function of

the compile time for the KRK problem when using Breadth-first

search and Best first search. The numbers marked on Breadth-

first search are the Ply achieved. 154

8.7 The percentage of extensional instances covered as a function of

the compile time for the KRKN problem when using Breadth-

first search and Best-first search. 155

8.8 The average lookup time (in mS) as a function of the number

of patterns produced by the compiler for the KRK ending . . 158

8.9 The coverage achieved as a function of run time for a king-man

ending in checkers. 159

8.10 The coverage achieved as a function of run time for a king-king

ending in checkers. 160

10.1 Example of a white-to-move-and-win position from the KRKN

ending 179

10.2 A pattern that is generated by the compiler that describes the

position illustrated in Figure 10.1. Note that the white king,

black knight and white rook are in fixed positions and the black

king is prohibited from the gray region 179

List of Tables

2.1

3.1

A definition of the influence relations

The inputs and outputs of algorithm that computes the influ-

20

ence relations 36

3.2 Compiling maintain-true(as.v(s), Op, S), when v(s) co A --,c1 55

3.3 The Set-Difference(10,/i) function 57

3.4 Compiling make-false(As.v(s), Op, S), when v(s) 4.> co A -'c1 59

3.5 Compiling make-true(As.v(s), Op, S), when v(s) <=> co A . 60

3.6 The Set-Interseetion(10,/i) function 62

5.1 Representation of geometric patterns 102

7.1 The databases used by the dynamic program 129

7.2 A definition of Cover-Pproofs 134

7.3 The Compile-all-wins algorithm 141

8.1 Time in minutes needed to reach a coverage goal when using

best-first or breadth-first search 157

Correct Abstraction in Counter-planning:
A Knowledge Compilation Approach

Chapter 1

Introduction

A major goal of Machine Intelligence is to develop techniques that enable users to

easily construct effective problem solving systems. Ideally, such problem solvers will

be complete, correct, optimal and efficient. A complete problem solver is one that

can solve all possible problem instances from a given class of problems. A correct

problem solver is one that always returns the correct solution. An optimal problem

solver always returns the best solution, such as the shortest solution or the one that

achieves the most valuable goal. An efficient problem solver is one that returns the

answer within a reasonable amount of time and using a reasonable amount of space.

Constructing such ideal problem solvers is difficult because of the strong

tradeoffs that exist among these desired characteristics. In particular, ensuring ef-

ficiency imposes the most difficulty on system builders. This can be demonstrated

by considering how easy it is to construct problem solvers that are inefficient yet

satisfy the other requirements. When ignoring efficiency, the system designer can de-

scribe the problem solver as a simple search-intensive procedure, that given enough

time, can solve any problem in the class correctly and optimally. For instance,

to ensure optimality, the procedure can perform exhaustive search through the

2

space of all possible solutions and return the best solution. In the terminology in

[McCarthy and Hayes, 69] the initial problem solver is epistemologically adequate

but not heuristically adequate. Since it is so easy to specify epistemologically ade-

quate problem solvers, there is much interest in developing knowledge compilation

techniques that can automatically compile such search-intensive specifications into

efficient form.

Most work in knowledge compilation for problem solvers has assumed that

the problem solving domain involves only one agent who acts in an otherwise static

world. While this simplification is useful in some domains, it is unrealistic for

dynamic worlds that have independent actors each with their own goals that may

conflict with the goals of the problem solving agent. These other agents increase the

complexity of problem solving, because to ensure correctness, the problem solving

procedure must now consider all possible actions of the other agents. For example,

in chess where we have two agents with conflicting goals, solving a check mate

problem correctly will necessarily involve exploring all possible actions that the

opponent could make, because if there exists an action by the opponent that will

prevent the loss, the opponent will take it.

This thesis addresses the problem of compiling correct knowledge for domains

such as counter planning abovethat necessitate exhaustive search for correct be-

havior. The requirement of learning correct knowledge complicates the knowledge

compilation process, because the intractability of the search required during prob-

lem solving cannot be avoided during learning.

Our approach to overcoming the intractability of problem solving and learn-

ing can best be understood by first considering how it is that human experts perform

so efficiently and accurately in these difficult domains. A human chess expert, for

example, is capable of quickly solving hard problems that when solved by comput-

ers require millions of nodes to be searched [Anantharaman Campbell and Hsu 88].

How is it possible that the human can avoid the massive search, yet still achieve

3

correct performance? The answer lies in the expert's use of an abstracted search

space that is smaller, yet equivalent to the exhaustive search of the computer

[Chase and Simon 72].

This thesis introduces a new domain-independent abstraction mechanism

that identifies useful abstractions in counter-planning domains. The emphasis

in this work is on abstractions that preserve correctness while effectively sim-

plifying learning and problem solving. Hence, the abstraction mechanism differs

from previous work in weak abstraction [Knoblock 90], [Mostow and Prieditis 89],

[Tenenberg 87] in that the reduction in the search space is not gained by simply

removing selected literals from the space.

Since the focus of this thesis is compiling useful knowledge when dealing

with adversaries, many of the complexities of real world multi-agent planning such

as incomplete information and robotics are not considered. Rather, we limit our

investigation to domains that involve complete information and only two agents,

such as chess.

1.1 Previous Approaches

There have been two quite different approaches to compiling counter-planning do-

mains in the past. One approachexplanation-based learninghas the advantage

that the method provides an abstraction mechanism [Cohen 90]. However, as we will

later show, this approach leads to either intractability of explanations or incorrect

generalizations. The other approachreferred to as the database approachdoes

not employ any abstraction or training examples. Rather, a complete database of

problem instance/solution pairs is constructed during compilation. The principal

advantage of this approach is that the compiled problem solver is ideal in that it is

guaranteed to be correct, optimal, complete and efficient. However, the complexity

of generating and storing the lookup table prevents the method from scaling to large

domains.

4

1.1.1 Explanation-based Approaches

Explanation-based learning (EBL) is a knowledge intensive technique that has

demonstrated success in speeding up performance in a variety of problem solv-

ing situations [Minton 88a], [Mitchell Keller and Kedar-Cabelli 86]. EBL is a three

step process that takes as input a problem instance to be solved, a target goal (the

goal to be achieved) and a specification of the problem solver. First, the problem

solver specification is applied to solve the given problem instance. This search tree

generated can be thought of as a proof that the instance achieves the goal. In the

second step, the proof is generalized by eliminating components of the tree that refer

only to the particular example, while retaining those parts of the tree that relate to

the domain theory. Finally, the weakest precondition of the proof is extracted and

simplified. This precondition describes a set of problem instances that, if solved by

the problem solver, would all achieve the same goal and generate the same proof

tree. Problem solving performance can be improved because the next time that any

instance from this set is encountered, there is no need to run the problem solver

again, we can simply match the instance against the precondition.

Although EBL has been successful in many planning and problem solving

domains, it is difficult to apply successfully in domains that involve exhaustive

search such as counter-planning. The problem arises because of the complexity of

two steps in the EBL method: (a) constructing a complete proof and (b) extracting

a correct and efficient weakest precondition from the proof.

Proof generation: Since in counter-planning, proving goal achievement involves

considering all possible defensive actions by the opponent, proof construction

is exponential in the depth of the proof.

Generalized proof analysis: The goal of this analysis step is to extract a suffi-

cient condition from the proof that is both efficient and correct. By efficient,

we mean that the sufficient condition must be directly evaluable in the current

(a) (b)

5

Figure 1.1: Two similar chess positions both with black to play. (a) is a loss position,

while (b) is a draw

situation. Since the proof tree includes the application of operators, these op-

erators must be excluded from the sufficient condition. This process is simple

in single agent domains such as planning, because the operators are existen-

tially quantified [Hirsh 87]. However, in counter-planning, because we must

consider all possible defensive actions by the opponent, the proofs will also

include universal quantification over operators. There is no simple solution to

this problem (such as treating the V as an "and" node) since the quantifica-

tion is over all possible operators not just those that occurred in the particular

example.

This last point is important since even if we are prepared to invest the re-

sources in constructing a complete search tree, the resulting generalization will not

be correct. This problem can be easily demonstrated by considering applying EBL

to learn a condition that can recognize lost positions from the example illustrated

in 1.1(a). To prove that this position is a loss involves searching the 16 available

moves by black and demonstrating that each either results in losing the king or los-

ing the knight. EBL generalization can correctly compute the weakest precondition

of each individual branch of this tree, since they involve only existential quantifi-

6

cation. However, the universal quantification at the root must be eliminated. One

approach is to assume that the operators that were applicable to this position are all

the operators that will ever be applicable in the resulting precondition, and replace

the universal quantification with an and node. Simplifying the result produces the

condition illustrated in Figure 1.2(a). However, this is an overgeneral and therefore

incorrect rule, because it classifies the position shown in 1.1(b) as a loss when in

fact it is a draw. The error arose because the assumption was wrongthe original

explanation was incompletein fact there are other applicable operators (such as

taking the rook with the king).

EBL approaches to learning in these domains have been forced to tolerate

errors caused by this overgeneralization. The emphasis has been on developing

techniques that learn how to avoid errors once they have been made [Tadepalli 89],

[Chien 89]. Eventually, as mistakes are made and corrected, these systems can

converge to correctness.

There are some significant problems with this approach. First, and foremost,

the system will make mistakes. Secondly, the system will require careful training

to reach a level of useful performance. Since our overall goal is to simplify the

construction of problem solvers, there is a danger that the burden of teaching will

undo any advantages gained by applying learning methods. This burden could be

quite considerable, because it will be up to the teacher to detect and correct any

error the system makes. Moreover, since these errors are due to incomplete searches

made by the problem solver, the teacher must have made a more thorough search

in order to detect the error. Hence, the responsibility for performing exhaustive

searchwhich was the focus of our learning approachhas shifted to the teacher.

To summarize, although explanation-based learning provides an abstraction

mechanism through the generalization of the explanations [Cohen 90], the method

leads to unacceptable errors which must be corrected at great expense by a teacher.

(a)

ir
Black

K

White

ing 0e J.
.... \I. I. r

7

Queen 0

Rook

Bishop

Knight

Pawn 0

Open
empty

line of
squares

empty

I IA A 1I I
Single
square

(b)

Figure 1.2: (a) The sufficient condition learned by EBL from the example in Figure

1.1(a) expressed as a decision tree. If the condition tested at a node is true the left

branch is taken. (b) The key for the symbols used to illustrate the patterns learned

in chess.

8

1.1.2 Database Approaches

In the database approach, the compiler constructs an exhaustive lookup table

of all possible problem instances and computes the best action to take for each

instance[Clark 1977], [Thompson 86]. The resulting lookup table can be considered

the ideal problem solver, since correctness and optimality are preserved, all problem

instances can be solved, and problem solving performance is very efficient (simple

table lookup). In fact, the method, when applied to chess, has created "super ex-

perts" that are unbeatable by the best human players and can solve complex endings

that require over 100 moves to win. In checkers, the large databases produced by

the method form an essential part of a program that has earned the right to play

for the world title [Schaeffer 91].

To ensure correctness and optimality of the lookup table, the compiler per-

forms an exhaustive search of the problem solving space. Since this search could

potentially be unbounded, it is important to organize the search effectively. One

obvious, but impractical search strategy would be to work through each position

in the table, perform the forward exhaustive search, then fill in the result in the

table. Clearly, such a forward search strategy is too underconstrained since it is

unbounded.1 The insight reported in [Clark 1977] was to notice that, in contrast

to the forward search, a backwards search from the known goal positions (i.e., ter-

mination positions) is much more constrained. In [Thompson 86 }, a dynamic pro-

gramming method was described that effectively performs the backwards search.

To understand the method, it is sufficient to understand how the database

would determine that the position in Figure 1.1(a) is a loss. To do this, the system

must demonstrate that all possible actions that can be taken from this position lead

to a win for the opponent. Initially, the table is filled with all the known white-win

termination positions (in this case, all these consist of positions where the king or

knight can be safely captured by white). Since the position in Figure 1.1(a) is not

1How do we detect that the position being searched is a draw?

9

a termination position it is initialized with the count of possible moves that can

be made by the players (black, 16; white 16). The backwards search is initiated

by computing all possible predecessors of the termination positions by applying the

standard moves of chess backwards (called unmoves) for black. Each time such

an unmove generates the position in Figure 1.1(a), its count of black moves is

decremented by 1. When the count reaches 0, we have shown that all available

black moves lead to successors that are white winsand hence the position is a

loss for black. Each new loss position can be similarly "unmoved" for white to

create new won positions. The process continues until there are no new won or lost

positions. All remaining unclassified positions are labeled as draws.

The major advantage of this approach is that it produces the ideal problem

solver by enumerating a finite space. However, the usefulness of the approach is

limited by the computational complexity of searching and storing this space. In

chess, with n pieces, both the compile time and the storage of the table' are lower

bounded by 64n. In general, when the problem instances are described by m binary

features or sensors, the table size will be 2', hence the principal disadvantage of

this method is that it cannot scale up to larger problem sizes.

1.2 Overview of the Approach

This thesis introduces a compilation method for adversary situations based on the

database approach. The principal strengths of this approachno training, and cor-

rect and efficient performanceare retained. The focus of this thesis has been over-

coming the principal weakness of the approach: the exponential growth in database

size and therefore compile time. Two techniques are explored in this thesis:

Correct abstractions: An abstraction mechanism has been developed that re-

duces the size of the database while retaining its correctness and efficiency.

2This size can be reduced by a factor of 8 for some combinations of pieces by exploiting rotational

and reflexive symmetry.

10

Rather than learning individual position/action pairs, the compiler learns an

equivalent but smaller set of pattern/action pairs. The reduced database is

constructed by a process of abstract enumeration: a search backwards from

termination patterns rather than positions.

Coverage/Compile time tradeoff: A strategy for constructing the database has

been developed that best exploits the tradeoff between the coverage achieved

over a domain and the time spent compiling the domain. This tradeoff exists

because even with abstraction, it may be impractical to run the compiler

to completion. Hence, it is wise for the compiler to make the best use of

the limited time it has available. The approach explored here is to control

the enumeration process so that the abstractions are generated best first: The

pattern/action pairs with the highest coverage are generated before those with

lower coverage.

These two techniques allow us to construct a near ideal problem solver that,

given a problem instance, either provides a solution that is guaranteed to be correct

or reports "solution unknown." Let us consider these two techniques in more detail.

1.2.1 Correct Abstractions

The manual design of useful abstractions in counter-planning is very difficult. Camp-

bell, [Campbell 88], earned a Ph.D. by developing useful abstractions in pawn-

king endings in chess. Michie, in [Michie, 82], describes several attempts at engi-

neering abstractions for solving the king-rook versus king chess ending. Quinlan,

[Quinlan 83], attempted the manual design of abstractions for lost-in-n-ply for the

king-rook versus king-knight chess ending (of which Figure 1.1(a) is example). He

spent 2 person-weeks developing abstractions for the case when 12 = 2, 2 person-

months when n = 3, and gave up when n = 4. The difficulty of this task can be

recognized when we consider that at each stage during the design process, Quin-

lan had a complete and correct database of positions with which to compare and

11

evaluate his designed abstractions. The problem is that each pattern initially en-

gineered will likely have exceptions, and rules written to handle those exceptions

will likely have exceptions too. For example, the incorrect decision tree illustrated

in Figure 1.2 is lacking two exceptions that are encoded as additional tests in the

correct decision tree illustrated in Figure 1.3.

Since manual design is so difficult, there has been much emphasis on develop-

ing methods that automatically identify useful abstractions. An effective methodol-

ogy in this area is to define rigorously what it means to be a useful abstraction, then

have the machine use this definition as a generator of abstractions. In [Knoblock 90],

useful abstractions for planning have been automatically produced by having the

machine exploit the property of ordered monotonicitya property that minimizes

the backtracking among levels in the abstract plan. While in [Subramanian 89],

better conceptualizations of problems are automatically produced by exploiting a

theory of irrelevancea theory that allows the system to prove components of a

conceptualization irrelevant and hence replace them.

Applying the same methodology in our domain immediately leads us to ad-

dress the following questions: What is a useful abstraction in counter-planning?

How can a definition of useful abstractions be processed to generate such abstrac-

tions?

Consider the first question: A useful abstraction in counter-planning is one

that reduces the size of the search space while preserving correctness. Counter

planning poses a distinct challenge for automating the abstraction process because of

the need to consider all possible actions of the opponent to ensure goal achievement.

Recall that the reason for the exhaustive search is because if there exists any means

for the opponent to prevent goal achievement it will be taken. The naive way to

ensure this is to search all possible actions by the opponent. However, many of these

actions will be irrelevant, because they cannot affect or influence the outcome. For

example in Figure 1.1(a), moves by the king along the line of the rook attack are

12

irrelevant, since they do not eliminate the rook threat. Hence, by focusing on how

actions influence goal achievement, we can distinguish between relevant actions that

must be considered during search and irrelevant actions that can be safely ignored.

This thesis introduces an abstraction mechanism based on a domain-independent

theory of influence that allows the system to reason about the effects of actions on

goal achievement.

To understand how a theory of influence could reduce the search space while

preserve correctness, it is useful to contrast two alternative proofs as to why the

position in Figure 1.1(a) is lost. The first proof is the naive one, when all possible

actions are considered:

Black is lost because all possible applicable actions lead to a situation

where there exists an action for white that wins.

We can contrast this with a proof that exploits the theory of influence:

Black is lost because there are two threats, the capture of the king by the

rook and the capture of the knight by the rook, and there exists no action

by black that can simultaneously eliminate both threats.

Note that in the second explanation, we do not consider all possible actions by black.

Rather we focus on the relevant actionsthose that can influence the outcome by

eliminating both threats. All other actions are irrelevant and hence ignored. This

leads to a significant reduction in the search space.

More formally, the theory of influence consists of two components. First, we

have influence relations that define four ways in which an action can influence the

truth value of a goal: make-false (the actions above that eliminate the threat are

making it false), make-true, maintain-true and maintain-false. These four relations

describe equivalence classes of actions. All actions within a class influence the

goal in the same way. For example, all actions by the king above that make the

threat false are considered equivalent. Second, we have influence proofs, that define

13

goal achievement in counter-planning situations using the influence relations. The

above explanation is an example of such a proof; in this case, the proof describes

one strategy for goal achievement that is a generalization of the familiar concept of

a fork. There are many other strategies for goal achievement that can be defined

by influence proofs. Each influence proof defines an equivalence class of situations

where the same goal is achieved using the same strategy.

Given that we have an abstraction mechanism based on influence relations

and influence proofs, the question becomes, how can these definitions be applied

to generate useful abstractions? The key lies in recognizing that the theory of

influence defines a space of influence proofs each describing a distinct strategy for

goal achievement. To generate useful abstractions, the system simply generates

proofs from this space and compiles them into the desired pattern/action rules. To

simplify this process, the compiler generates the shortest proofs first. For example,

the first proofs generated and compiled are for strategies that achieve the goal

immediately (such as capturing the king or knight). Then the proofs (such as

the fork above) are generated, since they describe goal achievement after only 2

actions. The process continues working back from the simplest proof, each depth

of proof using the previously compiled levels. The process is very like the dynamic

program described earlier, but in this case, we are working with patterns rather

than positions, and the proofs are abstract rather than extensional.

1.2.2 The Coverage/compile-time Tradeoff

Given that it may be impractical to run the compiler to completion, we must de-

cide how best to organize the compilation during the limited time available, so

as to maximize the coverage achieved. To understand how this coverage/compile

time tradeoff can be best exploited, it is necessary to understand how coverage

is accumulated during compilation. In Figure 1.4(a) we illustrate the behavior of

the traditional database approach [Thompson 86]. Here coverage is accumulated

14

0
°

°

Figure 1.3: The correct decision tree that correctly classifies the examples in Fig-

ure 1.1

100 %I Coverage

Compile-time I
I Compile-time

100 %
Coverage

(a) (b)

Figure 1.4: (a) The behavior of the database compiler without abstraction: there

is a linear relationship between compile time and coverage (b) The behavior of the

compiler with abstraction, when the most general patterns are learned first.

15

linearly3 with compile time, since the database is incrementally constructed one po-

sition at a time. With a linear relationship, the tradeoff is not very useful to exploit.

By committing say 20% of the total time needed, we can only hope to achieve 20%

coverage. Since compile time grows exponentially with problem size, we need to do

much better than linear to make it worthwhile to exploit this tradeoff.

Abstraction changes the relationship between compile time and coverage that

enable us to better exploit this tradeoff. Coverage can be accumulated at a rate

faster than linear by organizing the compilation process to produce the most general

patterns (i.e., those with the highest coverage) first. This process is illustrated in

Figure 1.4(b). With such a relationship, by committing say 20% of the total time

needed, we can achieve perhaps 80% or better coverage.

1.3 Statement of Thesis

Now that we have described the overall approach, we are in a position to state the

central thesis of this dissertation:

Speeding up problem-solving in counter-planning domains while main-

taining correctness can be effectively addressed by a combination of correctness-

preserving abstractions and search heuristics that exploit the compile-

time coverage tradeoff

1.4 Reading Guide

This thesis is divided into ten chapters. Chapter 2 introduces the abstraction mech-

anism and illustrates how some well known abstractions in counter-planning can be

defined within the mechanism. Chapter 3 details the compilation process that

translates abstract proofs into efficient pattern/action pairs. Chapter 4 presents an

3This is assuming that we have a uniform distribution over the problem instances, if this is not

the case, Thompson's method can do somewhat better.

16

analysis of the compilation approach proving that the method is sound, although

incomplete and intractable. Chapter 5 introduces a geometric representation of

the problem space with the goal of overcoming the previously identified problems.

Chapter 6 analyses the geometric interpretation and proves that it maintains sound-

ness while overcoming the problem with incompleteness and intractability. Chap-

ter 7 explores strategies to search the space of abstractions. Chapter 8 presents

an empirical study of the method compiling a selection of sub-problems in chess

and checkers. Chapter 9 reviews related work in abstraction and counter-planning.

Chapter 10 completes the thesis with the conclusions that can be drawn from this

work and identifies some important open problems in this area of research.

Chapter 2

Abstraction Based on Influence

This chapter introduces the abstraction mechanism and provides some examples of

its use in describing well known abstract concepts from counter-planning.

2.1 Goal Achievement in Counter-planning

To introduce the abstraction, let us first consider a simplified form of min/max

search where the winning player is known, and optimality concerns, such as achiev-

ing the highest value or shortest path, are ignored. Here we consider the case when

we have two actors, WIN and LOSS, where actor WIN can achieve an advantageous

goal G, within n ply (i.e., n operator applications by both players). In this case we

can define the search procedure as follows (note, all free variables are assumed to

be universally quantified):

achieve (As.G(s), S, LOSS ,n)
V Op, o(S, LOSS, Op), achieve(G(s), do(Op, S), WIN ,n 1)

achieve(As.G(s), S, WIN ,n)
30p, o(S, WIN, Op), achieve(G(s), do(Op, S), LOSS ,n 1)

achieve (\s.G(s), S, WIN ,0)
G(S)

Note that the goal to be achieved, G(s) employs lambda binding for its situ-

ation argument s. This is because we are employing situation calculus to describe

18

the application of operations to situations. Given an initial situation So, we de-

note a situation which results from applying some operator Op in So as do (0p,S0).

The lambda binding is necessary, because during construction of the search tree,

we need to evaluate the goal G at each leaf. To perform this evaluation, we em-

ploy the lambda mechanism to bind s, the argument of G, to the leaf situation,

which is a composition of the operators that were applied to reach that leaf (see

[Genesereth and Nilsson 87] Chapter 11 for a tutorial on situation calculus).

The first rule defines the situation when LOSS is to play. Since the losing

player is to move, we must consider all possible operators that are available (returned

by the relation o(S, LOSS, Op)) to ensure correctness. Hence we include universal

quantification over the operators available. The second rule defines the situation

when WIN is to play. Here, because the goal is advantageous, we need only show

that any one of the operators available to WIN leads to goal achievement. Hence

we include existential quantification over the operators available. The final rule

describes the termination condition, where the advantageous goal is recognized as

achieved.

These definitions can be used to solve problems in a domain by providing

definitions of relation o, G and frame axioms. For example, to employ this definition

to solve problems in chess such as the one given in Figure 1.1(a), o would be defined

as a mapping from the current situation and the side moving to the legal moves of

chess, while G(s) would be defined as a predicate that was true when s described a

situation where the game was won by white.

2.2 Influence Proofs for Goal Achievement

Although the definitions above can be used to solve problems, they are not useful

for knowledge compilation because of the previously discussed problemthe proof

sentences include quantification over all possible operators of the losing side. The

abstraction process introduced in this chapter is based on exploiting alternative

19

proofs of goal achievementcalled influence proofsthat include quantification over

only those operators that are relevant to goal achievement. The proofs distinguish

relevant from irrelevant operators by making explicit in the proofs the goals that

are threatened to be achieved and how the operators affect or influence the truth

value of these goals.

We define a space of influence axioms, where each axiom describes a distinct

strategy for goal achievement. The axioms are like the axioms above in that we

define goal achievement in depth i in terms of goal achievement at depth i 1.

However, unlike the axioms above, where we have only one sentence defining goal

achievement, here there are many distinct influence axioms for each depth i.

The first step in defining the influence axioms is to introduce a simple ab-

straction mechanism where a set of situations, in which an advantageous goal can be

achieved, is represented by a set of abstract goal patterns. For example, we can rep-

resent all the situations where the advantageous goal is achieved immediately (i.e.,

those defined by the predicate G(s) above) as a small set of goal patterns, each

denoted v(s)G. Hence, rather than specifying G(s) as a monolithic "black box,"

which implicitly defines the set of terminating situations, let us define G(s) explic-

itly as a disjunction of unique goal patterns: G(s) <=>. (s)? V v(s)2 V . . V v (8)2 . For

example, to define achieve (G(s), S, LOSS, 0) for a particular endgame in chessthe

king-rook, king-knight ending (of which Figure 1.1(a) and (b) are examples)we

specify two goal patterns, one describing the situations where the black king is

captured, and the other describing the safe capture of the knight (i.e., without a

recapture by black).

Let us assume, for the moment, that the same abstraction mechanism can

be applied to those situations where goals are achieved in any number of operator

applications, rather than just at termination. Hence, we will assume that for some

proof depth i, achieve(G(s), S, _, i) can be defined as a disjunction of goal patterns
. G. .11(S)1 V V(S)2 V ... V 11(8)k `. When i = 0 (i.e., at termination) the goal patterns

20

(1) make-true(As.vG (s), Op, S) 4.). --,vG (S) A o(S, Op) A vG (do(Op, 8))

"make-true(As.vG (s), Op, S) describes those cases in which the
goal pattern vG is false in situation S, Op can legally be ap-
plied in S, and vG is true after applying Op. In other words,
applying Op in S makes vG true (and it was not true before)."

(2) make-false(

(3)

As.vG (s), Op, S) <=> vG (S) A o(S, Op) A --,vG (do(Op, S))

<#.

"make-false(As.vG (s), Op, S) describes those cases in which
the goal pattern vG is true in situation S, Op can legally be
applied in S, and vG is false after applying Op. In other words,
applying Op in S makes vG false (and it was true before)."

maintain-true(As.vG (s), Op, S) <#, vG(S) A o(S, Op) A vG (do(Op, .5))

"maintain-true(As.vG (s), Op, 5) describes those cases in which
the goal pattern vG is true in situation S, Op can legally be
applied in S, and vG is true after applying Op. In other words,
applying Op in S maintains vG true."

(4) maintain-false(As.vG (s), Op, S) -vG(S) A o(S, Op) A -,vG(do(Op, S))

"maintain-false(As.vG (s), Op, 5) describes those cases in
which the goal pattern vG is false in situation S, Op can legally
be applied in S, and vG is false after applying Op. In other
words, applying Op in S maintains vG false."

Table 2.1: A definition of the influence relations

are provided by the user. We will proceed to show how for i > 0, the system itself,

through a compilation process applied to the influence axioms, can automatically

generate the goal patterns.

The following description of the abstraction process begins with a descrip-

tion influence relations, which define how the truth value of a goal pattern can be

affected by an operator, then a description of influence axioms, which define goal

achievement in terms of goal patterns and influence relations.

2.2.1 Influence Relations

In order to define these influence axioms, we exploit influence relations that

21

describe the four ways in which an operator can affect the truth value of a goal

pattern: make-true, make-false, maintain-true and maintain-false. Each of these

influence relations is a relation over a goal pattern, an operator set and a situation.

They are defined in Table 2.1. Note that each definition employs lambda binding for

the situations in the goal patterns. This notation is employed for a reason similar

to its use before: to gain access to the situation variable of a goal pattern. In this

case, we need access because the goal pattern is evaluated in two different situa-

tions, in the initial situation S, and the situation following the operator application,

do (0p,S). We call these primitives influence relations because they define the ways

in which the application of operators influence the truth of goals.

2.2.2 Influence Axioms

We have introduced the two components of the abstraction mechanism, goal pat-

terns and influence relations. We can now define the influence axioms for goal

achievement in terms of these components. As we will see, the number of different

axioms for a depth i depends upon the number of axioms for depth i 1. We will

give the simplest case first, and assume we have only one goal pattern for depth

i 1, denoted vG.-.(si). In this case, with LOSS to play we define goal achievement

for WIN for depth i as follows:

(5) achieve(As.G(s), S, LOSS ,i)
vGi-1 (S) A V Op, o(S, LOSS, Op), -,make-false(As.vGi-1 (s), Op, S)

V --wG1-1(S) A V Op, o(S, LOSS, Op),make-true(A.s.vG--1 (s), Op, S)

There are two cases: (a) vG.--1(si) is already true (i.e., WIN is threatening

to achieve the goal, all that is needed is a change of the side to move) and none of

the operators make vG.-1(si) false (i.e., the losing player cannot avoid the threat);

or (b) vG.-1(si) is not true and all the operators make it true. This proof differs

from the previous non-influence proof in that the case when WIN is threatening

to achieve a goal is made explicit. Under this condition, we need not consider all

22

possible operators; rather we can limit the quantification to only those operators

that make this threat false. This is the simplest case when we have only one goal

pattern at depth i 1, and hence one possible threat situation. In general, there

will be many goal patterns for WIN in i 1 ply and hence many possible threat

situations. The case when we have only 2 goal patterns is given below. Here goal

achievement for depth i 1 is defined as achieve()s.G(s), do(Op, S), WIN, i 1) 4#,

v1G n-1 (s) V v?"' (s). The influence axioms for the case when we have more than 2

goal patterns can be easily induced from this case. Here, considering when LOSS

is to move, goal achievement is defined:

(6) achieve(As.G(s), S, LOSS ,i)
viGi-1 (5) A vG`-1 (S) A VOp, o(S, LOSS, Op), [---imake-false(As.v1 ' (.$),Op, S)

V -imake-falsePts.v2G1-1 (s),Op, S)]
--iviG1-1 (S) A v2 '-i(S) A VOp, o(S, LOSS, Op), [make-true()s.v?' (s),Op, S)

maintain-true(As.v2 ' (s), Op, S)]
viG1-1 (S) A --w2G"-1 (S) A V Op, o(S, LOSS, Op), [maintain-true()s.viG' (s), Op,

make-true(As.v21-1 (s),Op, S)]
---iviG1-1 (S) A --Iv2 ''(S) A V Op, o(S, LOSS, Op), [make-true(As.viG' (s),Op, S)

V make-true(As.v2Gs (s),Op, 5)]

Here we have 4 cases, each describing a unique threat situation. The first

case defines the situation where the opponent is threatening goal achievement two

distinct ways and there is no operator available that can eliminate both threats. This

is an example of the well known tactic of fork. The second and third cases define

situations where there is a single threat and all moves either maintain the threat

or make some other threat true. In chess, these proofs can be used to describe the

tactic of skewer. The final case describes the situation where there are no threats,

but each move available makes one of two threats true.

In general, at depth i, we have n previous goal patterns for depth i 1,

vi _ (s) V u2 s-1(s) v V. . . V (s) .4=> achieve (G(s), do(Op, 5), i 1), then we have

2" axioms. Each axiom describes how the goal can be achieved given that some

subset of known goal patterns is true initiallythat is, we describe goal achievement

23

under all possible threat combinations. To simplify this general case, let us partition

these threat combinations into three cases:

No threat This axiom defines goal achievement when none of the goal patterns are

true in the initial situation. Here all operators make-true some set of the n

goal patterns. There will be one such axiom for depth i when we have n goal

patterns for depth i 1.

One threat This axiom defines goal achievement when only one goal pattern is true

in the initial situation. Here all operators either maintain-true the one threat

pattern or make-true some disjunction of other goal patterns. There will be

n such axiom for depth i when we have n goal patterns for depth i 1.

Many threat This axiom defines goal achievement when more than one goal pattern

is true in the initial situation. Here none the operators make all the threat

patterns false. There will be 2" - (n + 1) such axiom for depth i when we

have n goal patterns for depth i 1.

These influence axioms are much more useful for learning than the simplified

min-max definition given initially. The reason lies in limiting the quantification

of the operators available in the proofs to only those that are relevant to goal

achievement. The proofs make explicit the goals that are threatened to be achieved

in each situation and how the operators affect the goals. Rather than considering

all possible operators, we limit the quantification to only those operators that can

affect the outcome of the search by influencing the truth value of those goals already

known to be true.

2.2.3 Chess Proofs

The previous analysis applies to any two agent counter-planning domain. In this

section, we adapt the analysis for chess. The only detail to consider, which was

24

ignored in the above formalism, is the implementation of the function o, which

generates the operators in the given situation, S. In chess, the operators available

depend upon the side that is to move and whether that side is in-check or not. The

complexity caused by the effect of check on the legal moves available can be simpli-

fied by dealing with pseudo-moves rather than legal-moves, where pseudo-moves are

defined as those moves that are available if we ignore the in-check constraint. Then

legal moves can be defined as those pseudo-moves that do not result in the moving

side being in check. Hence, to define legal moves from pseudo-moves, we employ

influence relations applied to the in-check constraint: to generate legal-moves, we

first generate pseudo-moves. Then, if the moving side is in-check, we retain only

those that make the in-check constraint false. Otherwise, if the moving side is not

in-check, we retain only those pseudo-moves that do not make in-check true. Given

that the relation po(S, Side, Op) defines the mapping between the current situation

and the side to play to the pseudo-moves available, and in-check(S,Side) is true

when Side is in check in situation S, then we can define the legal moves as follows:

(7) o(S, Side, Op) <=>
po(S, Side, Op)A[(in-check(S,Side)

A make-false(As.in-check(s,Side), Op, S)),
V (--iin-check(S,Side)

A --imake-truePts.in-check(s,Side), Op, S))]

Incorporating this into the expressions above leads to a doubling of the number of

axioms. We illustrate this by incorporating (8) into (5):

(8) achieve(As.G(s), S, LOSS ,i)
V in-check(S, LOSS) A vGs--1 (S)

AV Op, po(S, LOSS, Op) [-imake-false(As.in-check(s, LOSS),Op, S)
--imake-false(As.vG.-I (s),Op,

V --iin-check(S, LOSS) A vGi-' (S)
AV Op, po(S, LOSS, Op),[make-true(As.in-check(s, LOSS),Op, S)

maintain-true(As.vGi-1(s),Op, S)]
V in-check(S, LOSS) A --IvG1-1 (S)

AV Op, po(S, LOSS, Op),[maintain-true(As.in-check(s, LOSS),Op, S)
make-true(As.vG'-1(s),Op,

25

*(1' 't 1

(a) Fork, Black-to-play (b) Skewer, Black-to-play

(c) Pin, Black-to-play (d) Overworked piece, White-to-play

Figure 2.1: Examples of different chess concepts that can be described by influence

proofs

V -iin-check(S, LOSS) A -1vG1-1 (S)
AVOp, po(S, LOSS, Op),[make-true(As.in-check(s, LOSS), Op, S)

V make-true(As.vGi-1 (s),Op, S)]

2.3 Examples of Influence Proofs

The influence proofs have been introduced as an abstraction mechanism for simpli-

fying learning. However, the proofs also happen to be useful in defining many of

the well known abstractions for achieving goals in counter-planning. These tactical

devices for achieving goals have been identified over many years during the study of

26

games and other situations that involve conflict. Although they are usually thought

of as a "bag of tricks" with little in common, the influence theory provides a uniform

language with which to define them. To illustrate this power of the influence the-

ory, there follows a description of four useful tactics in chess, each with an example

position, an english description of the idea, and the relevant proof sentence.

2.3.1 Fork

The fork is a universal tactic found in many counter-planning situations. We il-

lustrate an example from chess in Figure 2.1(a). Here the black knight on g6

simultaneously threatens both the black king on h8 and the black queen on h4.

There does not exist a single move for black that can eliminate both threats, so the

queen will be lost.

This tactic is defined by the following proof of depth 2:

achieve(As.G(s), S, LOSS, 2)
in-check(S, LOSS)

A vG1(S)
A V Op, po(S, LOSS, Op)

[--,make-false(As.in-check(s, LOSS),Op, S)
V -1 make-false(As.vG1 (s),Op, S)]

Where the pattern vG1 (S) achieve()ts.G(s), S, WIN ,1), and the goal G(s)

defines the condition when a queen is captured. The proof states that both in-

check(S, LOSS) and vG1 (S) are true in the current situation, and for all moves that

are available, they either make one threat or the other false. In other words, there

is no move available that can make both threats false.

2.3.2 Skewer

The Skewer is a useful trick for capturing valuable material. In a Skewer, the king is

attacked and forced to move out of the way, thereby opening an attack on another

piece that is behind the king. We illustrate an example in Figure 2.1(b). Here the

27

white bishop on g3 is attacking the black king on d5. The king is forced to move

out of check, exposing the black rook on a8 to capture by the bishop.

This tactic is defined by the following proof of depth 2:

achieve(As.G(s), S, LOSS, 2)
in-check(S, LOSS)

A V Op,po(S, LOSS, Op)
[maintain- true(\s. in- check(s, LOSS),Op, S)
V make-true(7s.vG1 (s),Op, S)]

Where the goal pattern vG1(S) = achieve(As.G(s), S, WIN ,1), and G(s) de-

fines the condition when the rook is captured. This proof states that in-check(S, LOSS)

is currently true and all available operators either maintain the in-check threat on

the king or make some new threat true.

2.3.3 Half-Pin

The Half-pin is similar to the Skewer, in that involves a threat along a line. However,

in the half-pin, the king is not attacked directly. Rather, a valuable piece is attacked

and it cannot move out of the way, because such a move exposes the king to attack.

We illustrate an example in Figure 2.1(c). Here the white rook on e3 is attacking

the black queen on e6. The queen cannot move out of danger because such a move

will expose the king to capture. Hence, the best black can do is to capture the

white rook and be recaptured by the pawn on f2.

This tactic is defined by the following proof of depth 2:

achieve(As.G(s), S, LOSS, 2)
A v?1(S)
A V Op, po(S, LOSS, Op)

[make- true(As. in- check(s, LOSS),Op, S)
V maintain-true(As.v?' (s),Op, S)
V make-true(As.41 (s),Op, S)]

Where viG1 (S) achieve()ts.G(s), S, WIN, 1), (rook captures black queen),

vG1(S) = achieve(As.G(s), S, WIN, 1), (pawn captures black queen) and G(s)2

28

Capture-queen(s). This proof defines a more complicated case of pin, where the

pinned piece has the option to exchange. The proof states that the opponent is

threatening to win immediately with v?1 (S), and for all the moves that are available

they either maintain the threat, put the king in check or make true a new threat

(the exchange).

2.3.4 Overworked Piece

An overworked piece is piece that is performing two distinct functions, and when

called upon the implement one function, it is unable to carry out the other. This

idea is illustrated in Figure 2.1(e). Here the black queen on d7 is the overworked

piece. The queen is protecting the rook on c8 from capture and preventing the

white queen from achieving check-mate by capturing the pawn on g7. White can

exploit this weakness by capturing the black rook on c8 with the rook on c5, thereby

forcing the black queen to capture on c8. This move of the queen destroys its other

function, allowing white to achieve check-mate.

This tactic involves a proof of depth 5, and so is more complex than the last

proofs. First we define the winning proof of depth 5:

achieve ()ts.G(s), S, WIN ,5)
--wG4 (5) A a Op, o(S, WIN, Op),make-true(As.vG4 (s), Op, S)

Where vat (S) = achieve(As.G(s), S, LOSS, 4) defined below:

achieve(As.G(s), S, LOSS, 4)
in-check(S, LOSS)

A V Op, po(S, LOSS, Op)
[maintain-true()ts.in-check(s, LOSS), Op, S)

V make-true(As.vG3 (s),Op, 8)]

This proof states that the king is currently in check and all moves either

maintain the check threat or make a new threat true. This new threat is defined as

vG3 (S) where vG3 (S) = achieve(As.G(s), S, WIN ,3) defined below:

achieve(As.G(s), S, WIN ,3)
--ivG2 (S) A 30p, o(S, WIN, Op),make-true(As.vG2 (s), Op, S)

29

This proof for WIN simply states that there is a move available that makes

true a loss defined as vG2(S) achieve(As.G(s), S, LOSS ,2). This goal pattern

defines a check-mate situation defined below:

achieve(As.G(s), S, LOSS, 2)
in-check(S, LOSS)

A V Op, po(S, LOSS, Op)
maintain-true(As.in-check(s, LOSS),Op, S)

2.4 Optimal Goal Achievement

The previously developed language of influence proofs for goal achievement focused

on proving correct goal achievement. Since in this thesis we are also interested in

optimal performance, this section extends the proofs to ensure optimal goal achieve-

ment. There are two considerations for optimality for counter planning in general:

First, we wish our problem solver to always achieve the best goal available. Second,

we wish our problem solver, when playing the winning side, to achieve the goal with

the minimum number of operator applications, and when playing the losing side, to

achieve the goal with the maximum number of operators.

To adapt the previous analysis to take optimality into account is straight-

forward. First, we must eliminate the simplification made in the previous proofs

that the expanded proof or search tree is always balanced, that is, the goal pat-

terns used to construct a proof of depth i are all of depth i 1. In fact, they can

be of any lower depth j, j < i so long as they are winning patterns (i.e., even j)

when we are constructing a proof for LOSS to play and losing patterns (i.e., odd

j) when we are constructing a proof for WIN to play. This constraint is necessary

to ensure correct counter-planning. Second, we must extend the notation for goal

achievement to include the operator that leads to optimal goal achievement as an

additional argument. Recall that achieve(As.G(s), S,Side,Depth) denotes that fact

that the goal G(s) is achieved in S for Side to play in depth Depth. We extend this

notation with the argument Op, achieve(As.G(s), S,Side,Depth,Op) where Op is the

30

operator leading to optimal goal achievement.

2.4.1 When LOSS is to Play

When LOSS is to play, the optimal operator is that which maximally extends the

solution length. In otherwords, the optimal operator delays the loss as much as

possible. Since the influence axioms for loss, given in Section 2.2.2, are written

in terms of a set of goal patterns which are wins, the optimal operator is the one

that leads to the goal pattern with the highest depth. Using the definitions given

previously, we have three kinds of loss axioms:

No threat This axiom defines goal achievement when none of the goal patterns is

true in the initial situation. Here all operators make-true some subset of the

n goal patterns. The optimal operator is the one that make-true the goal

pattern out of the set which has the highest depth.

One threat This axiom defines goal achievement when only one goal pattern is true

in the initial situation. Here all operators either maintain-true the one threat

pattern or make-true some disjunction of other goal patterns. The optimal

operator is the one that either maintains the threat if the threat pattern has

the highest depth or make-true the goal pattern from the set with the highest

depth.

Many threat This axiom defines goal achievement when more than one goal pat-

tern is true in the initial situation. Here none the operators makes all the

threat patterns false. The optimal operator is the one that make-false the

goal pattern with the lowest depth, thereby leaving the threat goal pattern

with a higher depth true.

31

2.4.2 When WIN is to Play

When WIN is to play, the optimal operator is that which minimizes the solution

length. Since we have not previously given influence proofs for the winning side,

let us develop the optimal axioms from the correct axioms. Assume that we have n

losing goal patterns that are used to define new winning axioms: vi
Gd' (s) V v2d2 (s) V

... V v,,, do (s) (note the superscripts di refer to the solution depth of losing pattern

j). Clearly, correct goal achievement can be defined:

(9) achieve(As.G(s), S, WIN ,i)
30p, o(S WIN, Op), viGdi (do(OP, S)), i = dl + 1

V30p,o(S, WIN, Op), v2d2 (do(Op , S)),i = d2 + 1
V.

V30p, o(S, WIN, Op), V7GIcin (do(Op, S)), i = do + 1

These axioms simply state that the advantageous goal G can be achieved for

WIN if there exists a legal operator of WIN that results in one of the known loss

goal patterns being true. To modify this to take into account optimality we add

an additional constraint to each axiom. This constraint states that there must not

exist any other legal operator that results in a goal pattern of a lower depth being

true. For simplicity, let us consider only one of the n possible axioms, denoted j:

(10)achieve(\s.G(s), S, WIN ,i, Op)

30p, o(S , WIN, Op), (do(Op, S)), i + 1

o(S, WIN, °Pi), vGdi (do(OP S)), j 1, dl < d3
A-a0p2, o(S, WIN, 0P2), v3Gd2 (do(OP2, S)), j 2, d2 <
A.

A-39pn, o(S, WIN, OP.), 14?dn (do(OP,,, n, do < di

This proof can be simplified if we assume that we have already compiled

winning goal patterns for lower solution depths. Let this set be represented as
Gd. G

V 1 (5) V V2 -I (s) V . . . V VinG (s) (note the use of a accent I) to denote winning goal

patterns). Then the proof can be simplified to:

32

(11)achieve(As.G(s), S, WIN ,i, Op)

30p, o(S, WIN, Op), vi (do(Op, S)),i = di + 1
Aw1 di (S), dl < di

,,Gd2
A-1112 (S), d2 < clj
A...
AIPmGdm (S), dm < di

This states that the winning goal is optimally achieved if there is no way to

achieve the goal in fewer steps. In other words, if none of the previously found op-

timal winning patterns apply. One further simplification is to eliminate the explicit

operator application from the proof and reexpress it in terms of influence relations:

(12)achieve(As.G(s), S, WIN ,i, Op)

30p, o(S, WIN, Op),make-true(As.v (s), Op, S), i = + 1
A (S), dl < di

cd,2
A w 2 (S), d2 <
A .

A --,iimdm (S), dm < di

We give only the case where WIN's move makes true the losing goal pattern
Gd Gd

Vi (S). There is also a similar axiom where WIN maintains vj (S). However, this

is rarely optimal because it implies that WIN must make a waiting move. These

kind of positions are known as zugzwang positions.

Chapter 3

Compiling Influence Proofs

The previous chapter has introduced an abstraction mechanism employing a theory

of influence. With this theory, a space of proofs of goal achievement is defined, where

each proof describes a unique strategy for achieving the given goal. This chapter

explores using this space of proofs to improve the performance of a problem solver.

In this study let us consider improving the performance of a simple "reactive"

problem solver. Reactive problem solvers determine the next action to take by

matching the given problem situation to a set of provided pattern/action rules.

The principle advantages of this "reaction planning" [Schoppers 87] approach is

that problem solving is quick, since no problem solving search is required to decide

which action to take.

We investigate improving the performance of a reactive problem solver by in-

creasing its coverage over a problem domain. Initially, given a domain specification,

the problem solver can solve only those problems that are immediately recognized

as wins. This is possible by matching the given problem to the termination patterns

provided by the user. However, no other problems can be solved since they require

a forward search.

To increase the coverage of the problem solver, we create new pattern/action

pairs that recognize when goals are achieved within some number of operator appli-

cations and recommend the best action to take. These new patterns are generated

34

by compiling influence proofs. A given proof P, which proves that some Op opti-

mally and correctly achieves the goal, is compiled into a pattern/action pair that

recommends Op in exactly those situations where P is true.

Our approach is to incrementally generate proofs of goal achievement and

compile each proof into a pattern/action pair. We organize the proof generation

process so as to simplify compilation. Two policies are followed:

Only proofs involving one step look ahead are compiled. In other words, proofs

of depth i are defined once proofs of depth i 1 have been compiled into goal

patterns.

Simple proofs are generated before complex proofs. The space of influence

proofs for depth i can be arranged in a partial order with respect to the

number of non-negated goal patterns included. Generation is controlled by

generating proofs ordered by the count of non-negated patterns.

The compiler takes each generated proof and compiles it into an equivalent

pattern/action pair. Compiling a proof containing goal patterns involves first com-

piling the relevant influence relations over the goal patterns, then combining them

together to ensure the constraints of the proof are met. For instance, to compile a

fork proof (given in Section 2.3.1), we first compile the make -false influence relations

over the two threat goal patterns, then combine them together to ensure that there

is no operator that can make both threats false.

The rest of the chapter is divided into two sections. The first section describes

the compilation of influence relations over patterns. Here we describe in detail the

method for compiling influence relations for increasingly complex representations

of goal patterns, from simple literals to conjunctions with exceptions. We illustrate

the methods both in chess and a simple planning domain. The second section

describes the methods for compiling the influence proofs into pattern/action pairs.

This section illustrates the techniques with examples from chess.

35

3.1 Compiling Influence Relations

The inputs and outputs of influence relation compilation is illustrated in

Table 3.1. We compile influence relations over goal patterns of depth i 1 as a

subtask of compiling new proofs of depth i. The compilation goal is to replace the

influence relation with a set of pattern/operator pairs that are equivalent to the

influence relation.

The complexity of compiling the influence relations depends upon the repre-

sentation of the goal patterns. We identify three cases of increasing complexity, and

describe each in succession. The simplest case is when the goal patterns are literals

in the state description, such as the blocks world goal of clear. A more complicated

case is when the goal patterns are conjunctions of "operational literals." We show

how this case arises in planning domains with derived effects. The final casewhich

we show to be sufficient for counter-planningrepresents a pattern as a conjunc-

tion with exceptions. We illustrate this case by computing influence relations over

patterns that arise in chess.

3.1.1 Goal Patterns as Literals

When the goal patterns are simple literals, it is easy to compute the influence

relations. For example, in the blocks world, given the goal pattern on-table(Block),

we can compute the make-true operations by selecting those operators that include

this literal in their add lists, but not in their preconditions. The result is the put-

down operator, which places a block on the table. Similarly, when we are considering

the goal pattern clear(Block) and we are interested in make-false, we choose those

operators that include the literal in the delete list and also in the preconditions.

Here the result is stack, which places a block on top of another block. In general, it

is easy to compute the influence relations when domains are described as STRIPS

operators and the goal patterns are literals in the add and delete list of the operators.

Although the computation of influence relations in this case is easy, this

36

Given

VOp E o(Op , s), make-true(vG (s), Op, S), or

VOp E o(Op, s),make-false(vG (s), Op, S), or

VOp E o(Op, s),maintain-true(vG(s), Op, S).

A goal pattern vG (5), where v G (s) = G(s) and G(s) is some goal.

A function o(S, Op) that takes a situation S and generates all the
operators Op that are applicable in S.

A set of n x m frame axioms for n dynamic literals and m operators
in the domain.

Find

A set L, {(vi(s), Oh), (v2(s), Op2), (vr(s), Op 7.)}
For each (vi(s), Op;) E L,1 < i < r, the following holds:

If we are computing a make-true, then for any situation S
where v2(S) is true, Op is an applicable operator in S, vG (S)
is false and vG (do(Op S)) is true.

If we are computing a make-false, then for any situation S
where vi(S) is true, Op is an applicable operator in S, (S)
is true and vG (do(Opi, S)) is false.

If we are computing a maintain-true, then for any situation
S where v1(S) is true, Op is an applicable operator in S,
vG (S) is true and vG (do(Op S)) is true.

Table 3.1: The inputs and outputs of algorithm that computes the influence relations

37

limitation on the representation of goal patterns as pre-defined literals strongly

limits the applicability of the approach. The principal problem arises because of

the recursive nature of the influence proofs. Recall that to compile an influence

proof of depth n we must first compile the influence relations over the goal patterns

that result from compiling proofs of depth n 1. Hence, the representation of

goal patterns must be expressive enough to describe the results of compiling the

influence proofs. It is hard to see how limiting the representation of goal patterns

to pre-defined literals could be effective in complex domains like chess, where we

are interested in goal patterns like "can win in at least 11 moves." The burden

of pre-engineering the domain so that these goal patterns are defined as literals is

prohibitive. Hence, it is necessary for learning that the compilation of influence

relations be flexible enough so as to compile goal patterns that are derived by the

proof compiler.

3.1.2 Goal Patterns as Conjunctions

In this section we are interested in developing algorithms that compile in-

fluence relations in a more complex casewhen the goal patterns are defined as

conjunctions of literals. More precisely, goal patterns are defined as follows:

v ::= c
c ::= A 12 A ... A in,

::=
opdl ::= dynamic literal
opl ::=other operational literal

We distinguish two cases of operational literals, dynamic literals, which are

directly affected by the operators, and other operational literals, which are sim-

ple constraints that can be easily computed. Notice, that we limit the dynamic

literals to be all positive in the conjunction. An operational literal is defined as

one that can be directly evaluated by simple lookup (such as object(Obj)) or easily

evaluated (such as con n ected(LocF, Loc2, Dir)). For more information on operational

stuffy(S,room):-
blocked(S,duct1),
blocked(S,duct2).

blocked(S,D):-
on(S,Obj,D),
object(Obj),
duct(D).

o(S,Op):-
(Op = move(Objm,From,To),
on(S,Objm,From),
From =1= To,
object(Objm),
on(S,empty,To),
in_hand(S,empty)
Op = swap(Objl,Obj2,Loc),
in_hand(5,0bj1),
object(Obj1),
on(S,Obj2,Loc),
object(Obj2)

)

38

on(do(move(Objm,From,To),S),Obj,At):-
(At = To -> %just moved to this loc
Obj = Objm

lAt = From -> %just moved from this loc
Obj = empty

otherwise -> %op has no affect
on(S,Obj,At)

)
on(do(swap(Objl,Obj2, Loc),S),Obj,At): -

(At = Loc -> %just swapped at this loc
Obj = Obj2

otherwise ->
on(S,Obj,At)

)

in_hand(do(move(Objm, From,To),S),Obj):-
Obj = empty.

in_hand(do(swap(Obj1,06j2,Loc),S),Obj):-
Obj = Objl.

Figure 3.1: Prolog definition of the Room domain

39

literals, see the EBL literature such as [De Jong and Mooney 86], [Hirsh 87] and

[Mitchell Keller and Kedar-Cabelli 86].

To introduce computing influence relations in this case let us use a simple

household domain adapted from [Ginsberg and Smith 88]. We illustrate a domain

theory for this domain in Figure 3.1. The domain defines a simple room in a house

that contains various objects such as boxes, televisions, plants and air conditioning

ducts, which provide the fresh air in the room. Notice that if both ducts become

blocked by objects, the room will become stuffy.

This domain is used to illustrate compiling the inflence relations over the

simple conjunctive goal pattern which describes the condition when the room will

become stuffy, that is, when both ducts are blocked. The resulting set of influence

relations could be employed by a planning system to ensure that any plan produced

is guaranteed never to make the room stuffy.

In this stuffy room world, there are two operators available: move, which

changes the location of an object and swap, which changes an object at the same

location. There are two dynamic literals: on(Situation,Operator,Location) and

in_hand(Situation,Held_object). There is one other operational literal, object(Obj)

which is true when Obj is an object. The operators are defined by the relation

o(S,Op), and their effects are defined by the four frame axioms shown on the right

side of Figure 3.1, one for each operator/dynamic-literal combination.

The goal we are interested in manipulating, stuffy(S), is represented as a

single conjunctive goal pattern, denoted vs'ffY(s), which defines the condition where

both ducts are blocked. This goal pattern is easily computed from the domain theory

by partially evaluating stuffy(S):

vstuffy (s):_

on(S,0bj1,duct1),
object(Obj1),
on(S,Obj2,duct2),
object(0bj2).

V Op E o(S,Op), maintain-true(vsiuffv(S),Op,S) <#.
([on(S,Obj2,duct1),

in_hand(0bj1),
object(Obj1),
object(Obj2),
on(S,Obj,duct2),
object(Obj)],
Op = swap(Objl,Obj2,ductl)),

V Op E o(S,Op),make-true(vstuffY(S),Op,S)
([on(S,Objm, From),

From =1= duct2,
in_hand(empty),
object(Objm),
on(S,Obj,duct2),
object(Obj)],
Op = move(Objm,From,ductl)),

V Op Eo(S,Op), make-false(vstuffY(S),0p,S)
([on(S,Objm,duct1),

in_hand(empty),
object(Objm),
on(S,Obj,duct2),
object(Obj),
To =/= ductl],
Op = move(Objm,ductl,To)),

Obj5

X
ductl duiuct2

X

OW I

Loc- \ -duct2 Obj2

40

Cx20111.4

ductl

moue

I
obJl Luc- \ -duct 1 Obj2

yobehhe
duct2

Z.AZ,
duct! duct2

Figure 3.2: Results of compiling make-true, make-false and maintain-true, for the

stuffy-room goal pattern

41

Given this goal pattern, compilation begins by compiling influence proofs

of length 1. The results of this compilation process are illustrated in Figure 3.2.

In each case the influence relations are compiled into a list of pattern/operator

pairs (v, Op). At the top of Figure 3.2 we show the result of compiling maintain-

true(vstuff9 (s), Op, S). Here the compiler determined' that there are two different

ways to maintain the stuffy condition, (1) swapping any object and (2) moving

any object which is not on one of the ducts. We have shown the first of these two

solutions as a logical expression and as a diagram. At the middle of Figure 3.2 we

show the result of compiling make-true(vstuffY (s), Op, S). Two pattern/action rules

where derived. The first, which is illustrated, is where duct' is empty and another

object, which is not on duct2, is moved to duct' by the move operator. The other

case has duct]. and duct2 reversed.

The result of compiling make-false(vstuffY (s), Op, S) is illustrated at the bot-

tom of Figure 3.2. Again, two pattern/action rules are determined. The first,

which is illustrated, is where the object on duct' is picked up and moved to another

location (which is not duct').

To compile influence relations we employ partial evaluationa powerful tech-

nique for improving the efficiency of a computation [Kahn and Carlsson 84]. A par-

tial evaluator is a program interpreter that, with only partial information about

the inputs of a program, produces a specialized version that incorporates the par-

tial information. More formally, given some function f (7, y) and the information

that y = a, partial evaluation produces a specialied function fa (7). For example,

in [Kahn 84] partial evaluation is used on the relation append(Front,Rest,Total), to

produce an efficient specialized version that can be applied when Front is known to

be some list [NB]. In this case partial evaluation produces a program, [[A1B]lftest],

which involves only unification.

Partial evaluation is applied to compile the influence relations by special-

11n 15 seconds running compiled Quintus Prolog on a Sun Sparc 1.

42

izing their definition (see Table 2.1) with respect to a given goal pattern. More

formally, partial evaluation takes a given pattern vi°"(s), a domain theory DT and

an influence relation such as make-true(As.vG (s), Op, S) and produces a special-

ized definition of make-true, represented as a list of pattern/action pairs, where

vG(s) = vt988(s).

In the remainder of this section, we present a detailed description of the

compilation process. First we describe compiling maintain-true, since it is the most

straightforward. Here we detail the partial evaluator, which is written in Prolog

[Sterling and Shapiro 86]. Next we describe compiling make-true and make-false.

With each description, we include an algorithm that calls the partial evaluator and

an example compilation in the stuffy room domain.

Compiling maintain-true

The goal of this stage is to produce a set of pattern/action pairs where the given

pattern is true both before and after the action is applied. To produce this set we

partially evaluate the definition of maintain-true with the pattern instantiated to

the given pattern. In the stuffy room domain this becomes the Prolog conjunction:
vstuffy(s), o(S,Op), vstuffy ofkOp,S)). The partial evaluator is implemented as a meta-

interpreter in Prolog and operates on conjunctions of Prolog literals. Disjunctions

in the expression are handled by employing the standard backtracking depth first

search of Prolog. More precisely, let us define the partial evaluator as a function

PE that takes a conjunction of literals L1, L2, ..., Ln and returns either fail or

a simplified conjunction. PE comprises two principal actions: unfolding, where

literals in the conjunction are expanded into their definitions, and simplification,

where inconsistencies and redundancies are detected. PE computes the fixed point

of an expression by repeatedly calling unfold and simplify until the expression is

unaffected. We describe each process in detail:

43

Unfold: Here we choose a "non-operational" literal Li that unifies with the

head H of some clause H:- B, with substitution 0. We replace Li with B,

instantiated with 0. B can be of two forms:

B is a conjunction. We call simplify over the new conjunction.

B is of the form (T1 -> B1;T2 -> B2; ... ;otherwise -> 137i). This is the

syntax of an if-then-else construct in Prolog. Here we must work through

each disjunctive case in order, producing a simplified result for each case.

For each clause Tj -> Bj we first try to determine the truth value of Tj. If

Tj is false, we simply try the next case j +1. If Tj is true or undetermined

then we add not(Tk), 1 < k < j 1, Ti and Bj to the conjunction and

call simplify on the result.

Simplify: Here we try to determine if the conjunction is inconsistent or con-

tains redundancy. We perform many simple operations to detect inconsisten-

cies including the following:

Apply functional dependencies: Given information about functional de-

pendencies which the literals in the domain obey, we ensure that the con-

junction is consistent with those dependencies. For example, if we know

that an object can be at only one location in a given situation, then if the

conjunction includes both on(S,Objl,Locl) and on(S,Objl,Loc2) we can

conclude that Loci = Loc2. This equality substitution can now be made

throughout the conjunction, simplifying the result and possibly leading

to other applicable simplifications.

Look up ground literals: If a static literal is found that has no variables,

then its truth value can be directly determined by looking up the literal in

the database. If the literal is true, then we can eliminate it. If the literal

is false, the whole conjunction is false, due to Prolog's negation as failure

semantics. For example, while applying PE in the stuffy room domain,

44

the literal object(empty) is encountered. Here, a lookup determines that

this is false, causing PE to return fail.

Look up partially instantiated literals: When a static literal is partially in-

stantiated, it can often be determined, through a lookup in the database,

if the literal is false or has only one complete instantiation.

Compute functional attachments: Literals with functional attachments

allow the calculation of some of their arguments from other arguments.

For example, the literal plus(X,Y,Z) has three functional attachments,

each allowing the calculation of one argument from the other two. When-

ever this literal is found with two arguments bound, its third argument

can be computed and propagated, and the literal removed from the con-

junction.

Detect inconsistencies: We return fail if L and not(L) or Var =1= Var are

found in the conjunction.

We illustrate the evaluation tree generated when partial evaluating maintain-

true(v'uffY (S),Op,S) in Figure 3.3. Each unfolding of the rules in the domain theory

is marked as a node in the tree. The partial evaluator explores each disjunctive case

in the standard left-to-right top-down evaluation order of Prolog. The leaves of the

tree are numbered in the order that they are explored. Each leaf represents a

candidate solution. Those leaves with a cross, denote failure where no solution was

found. Those leaves with a tick mark denote a successful solution. Below we itemize

the computation at each leaf:

(1) fail. We move To ductl, which implies that ductl is empty in 5 (from

the constraints of o(S,Op)), since ductl is occupied by Objl (from unfolding
vstuffy (s)), this case fails. The contradiction is detected by noticing that the

conjunction contains both on(S,empty,ductl) and on(S,Objl,ductl), which im-

plies that Obj1 = empty. Since the conjunction also includes the constraint

maintain-true(v(s),Op,S)

Unfold maintain-truel

v(S),o(S,Op),v(do(Op,S))

lUrlfold v(S)
(Unfold o(S,Op)1

Op=move(Objm,Fro

Un ol V 0 ,

(Unfold

v(s) = on(S,Objl,ductl), object(Obj1),
on(S,Obj2,duct2), object(Obj2).

0 = swap(Objl,Obj2,Loc)

Unfold on(do(Op,S),Obj1,duct1)1

duct1 = duc -\=Loc

Unfold on(do(Op,S),Ob 2, uct2) Unfold on(do(Op,),Obj2,duct2)

duct2 = ct2=\=Loc duct2 = Lo d ct2=\=Loc

(6) (7)

on(do(Op,S),Obtduct1

duct1 =

)1

To du =\=To,
duct1 rom

(8) (9)

duct1=\=To,
=From

X X
(1) (2)

'Unfold on(do(Op,),Obj2,duct2)1

duct2 =

X
(3)

uct2=\=To,
d ct2=\=From

duct2= =To,
duct2 From

X
(4) (5)

45

Figure 3.3: The evaluation tree generated when partially evaluating

maintain-true(vstuffy (S) ,0 p ,S).

46

object(Obj1), this case fails. The constraint that the same object must occupy

the same location and the related constraint that the same location must be

occupied by the same object are imposed by functional dependencies:

on(S,Objl,Locl)
A on(S , 0 bj2, Loc1)

Obji = Obj2

on(S,Obj1,Locl)
A on(S, 0 bj1 , Loc2)

Locl = Loc2

(2) fail. We move an object From ductl, making it empty. The contradiction

is detected by the constraint on the final situation that both ducts must be

occupied by objects. In this case Objl, the occupier of ductl, is bound to

empty, which is not an object.

(3) fail. We move an object To duct2, implying that duct2 is empty. This case

fails like (1).

(4) fail. We move an object From duct2. This case fails like (2).

(5) succeed. We move an object that is not from either duct. Hence the goal

pattern true after the operator application is also true in the initial situation

S.

(6) fail. We swap the object both at duct' and duct2, implying that the

swapped object is at two different locations. This case fails like (1).

(7) succeed. We swap at ductl, while leaving duct2 unaffected. This case

succeeds.

(8) succeed. We swap at duct2, while leaving ductl unaffected. This case

succeeds.

(9) succeed. We swap at a location that is not ductl or duct2. This case

succeeds.

47

Compiling make-true

We compile make-true by employing partial evaluation in a manner similar to com-

piling maintain-true. Unfolding make-true(c(s),Op,S) yields not(c(S)), op(S,Op),

c(do(Op,S)) which includes the constraint that the given pattern must not be true

in the initial situation S. This negated constraint makes the compilation more com-

plex, because the partial evaluator described previously applies only to conjunctions

of literals and not to negated conjunctions. To overcome these limitations we first

re-order the evaluation so as to delay the evaluation of the negated constraint, lead-

ing to op(S,Op), c(do(Op,S)), not(c(S)). Partially evaluating op(S,Op), c(do(Op,S))

produces a set of candidate solutions that describe operators where c(s) is true in

do(Op,S), following the operator application. Since we are compiling make-true, we

must ensure that c(s) is false in S, before the operator application.

One way to ensure that c(S) is false is to just conjoin not(c(S)) onto each

candidate solution. However, this is not viable, because it can lead to a proliferation

of empty and redundant solutions:

Empty solutions will be produced when c(S) is always true in the candidate

solution. This can occur, for example, when the operator in no way effects

the expression c(S). In this case we want to eliminate the candidate solution.

Detecting and eliminating these empty candidates helps minimize the number

of compiled patterns produced.

Redundant solutions will be produced if c(S) is already false in the candi-

date solution. In this case the simplest solution is just the original candidate

solution. This analysis helps keep the compiled patterns succinct.

To detect these empty and redundant solutions we must incorporate the

negated constraint into the candidate solution. This incorporation is performed

by PE on an expression such as co A ici by noticing that it can be equivalently

rewritten as co A --i(co A ci). This equivalence is easily shown by applying DeMorgan's

48

rule to -'(co A ci) in the second expression, then distributing co over the resulting

disjunction. This yields co A --,c0 V co A which is co A our original expression.

The advantage of the latter form is that PE can be applied to (co A ci).

There are three cases to consider:

1. PE(co A ci) 1--.> fail. In this case, the ,c1 constraint is redundant, since c1 is

already false in co. We return co as the solution.

2. PE(co A c1) co. In this case, c1 subsumes co and the whole expression

simplifies to co A which is fail.

3. PE(co A ci) H c, where c is simpler than c1. In this case we return co A as

the solution.

To apply this approach to compiling make-true, we first apply PE to op(S,Op),

c(do(Op,S)) to generate candidate solutions, denoted cli(S). For each j we apply PE

to cii(S),c(S) with the result as cri(S). We have three cases to consider as above:

1. c;:(S) is fail, we know that the pattern is already false in the initial situation

and we have found a solution cli(S).

2. cr.(S) is ciAS), the pattern is always true in the initial situation and the solution3

is fail.

3. Otherwise, the pattern is true initially under some conditions and we must

ensure those conditions are never true. The solution is c7i(S), not(c:,:(S)).

We illustrate this process of compiling make-true(vstuffY(S),Op,S) in Fig-

ure 3.4. Unfolding of rules from the domain theory are denoted as nodes in the

tree, as in Figure 3.3. The difference in this figure is that the boxed evaluation

trees denote the incorporation of the negated constraints as discussed above. Below

we itemize the computation at each leaf:

make-true(v(s),Op,S)
1

!Unfold make-true

o(S,Op),v(do(Op,S)),not(v(S))
1

'Unfold o (S ,0 p)I

Op=move

'Unfold v

Unfold on(do(Op,S),Obj1,duct1)1

ductl = To

swap(...)

[Unfold v do(Op,S))1

X
(11)

duct \=To,
ductl = rom

Unfold on(do(Op,S),01312,duct2)1

duct2 = To duct2=\=To,
duct2=\=From

duct2 \=To,
duct2 From

X X V
(1) (2) (3)

X
(5)

duct1=\=To,
uct1=\=From

'Unfold on(do(Op,S),Obj2,duct2)
duct2=\=To,

duct2 = To uct2=\=From

(6)

duct2=\ To,
duct2 From

X
(9) (9)

X
(10)

49

Figure 3.4: The evaluation tree generated when partially evaluating

make-true(I/stufy (S), 0 p ,S).

50

(1) fail. We moveTo both ductl and duct2, implying that the same object

is at two different locations. This contradiction is detected by imposing the

functional dependencies.

(2) fail. We moveTo ductl, however we are moving From duct2, making it

empty. The contradiction is detected by the constraint that both ducts must

be occupied by objects after the operator has been applied. In this case Obj2,

the occupier of duct2, is bound to empty, which is not an object.

(3) succeed. We move an object To ductl while leaving the blocked duct2

unaffected. We have our first candidate solution.

(4) succeed. We must incorporate the constraint that the pattern be false

before the operator is applied. We partially evaluate v'ffY(S) with the can-

didate solution from (3). The result is fail. because the candidate solution

contains the constraint that ductl is empty, while vstuff(S) contains the con-

straint that it is occupied by an object. Since empty is not an object, this

case fails. Hence, we have our first solution.

(5) fail. We move an object From ductl. This case fails like case (2).

(6) succeed. We move an object To duct2 while leaving the blocked ductl

unaffected. This case succeeds just like case (3). We have our second candidate

solution.

(7) succeed. This case succeeds like (4). We have our second solution.

(8) fail. We move an object From duct2. This case fails like (2).

(9) succeed. We move an object that is not from either duct. We have our

third candidate solution.

(10)fail. We partially evaluate vs'ffY(S) with the candidate solution from

(9). This results in a pattern that is exactly equivalent to vstuffY(S), since the

51

operator in (9) does not affect the pattern. Since the pattern is true initially,

this case fails.

(11) fail. This branch, where the operator is swap, was not expanded fully in

the figure. All these cases fail, because in all situations where vstufh(do(Op,S))

is true (i.e., after a swap operator has been applied) the condition vstufh(S)

will also be true (before the operator is applied). Hence, all these cases fail

like (10).

Computing make-false(As.c(s), Op, S)

Compiling make-false is similar to compiling make-true. Unfolding

make- false(c(s),Op,S) leads to c(S), op(S,Op), not(c(do(Op,S))), which is similar to

make-true in that a negated constraint is included. However, this time the negated

constraint is following an operator application. We again delay the evaluation of

the negated constraint, and first apply PE to c(S), op(S,Op) generating those op-

erators that are applicable when the pattern is true initially. Let us denoted these

candidate solutions as cl.;(5). These candidate solutions do not take into account

the constraint that the pattern must be false following the operator application.

Hence we incorporate the negated constraints as before. For each j we apply PE

to c7;(S),c(do(Op,S)) with the result as c;:(S). We have three cases to consider as

before:

1. cr.3 (S) is fail, we know that the pattern is already false in the situation following

the operator and we have found a solution c'(S).

2. c;:(S) is ci;(S), the pattern is always true following the operator application

and the solution is fail.

3. Otherwise, the pattern is true following the operator under some conditions

and we must ensure those conditions are never true. The solution is cl;(S),

not(c;:(S)).

52

make-false(v(s),Op,S)
I

'Unfold make-falsel

v(S),o(S,Op),not [v(do(Op,S))]

Op=move(...)

Id ob ect Oh

Objm=Obj1 Objm=Obj

(1) (6) (9)

(5)

Figure 3.5: The evaluation tree generated when partially evaluating

make-fa/se(vstuffv(S),Op,S). Note the computation of not c(do(Op,S)))

53

Figure 3.5 illustrates the evaluation tree generated when partially evaluating

make-false(vstuffY(S),Op,S). Note the expanded trees when we are incorporating the

negated constraints. This occurs because this process involves both unfolding and

simplification. Below we summarize the computation at each leaf:

(1) succeed. We move Objl, the object currently occupying ductl. This case

succeeds. We have our first candidate solution. We must incorporate the

negated pattern after the operator application.

(2) fail. We move To ductl, however we are moving From ductl. The contra-

diction is detected by the constraint that with the move operator, the location

of the object must be changed.

(3) fail. We move From ductl, making it empty. Hence, the constraint that

both ducts must be occupied by objects fails.

(4) fail. We are moving From ductl, hence this case implies that ductl

ductl which is false.

(5) succeed. We have incorporated the constraint that the pattern must be

false following operator application by apply PE to the candidate solution (1)

and vstuNdo(Op,S)). Since all these cases failed, the pattern is already false

after the operator has been applied. We have our first solution.

(6) succeed. We move Obj2, the object currently occupying duct2. This case

succeeds. We have our second candidate solution. We must incorporate the

negated pattern after the operator application.

(7) fail. Although not shown in the figure, this case fails very much like the

combination of (2), (3) and (4) above, only this time, the move is from duct2.

(8) succeed. This case succeeds just like (5).

54

(9) succeed. We move Obj3, which is not currently occupying either ductl or

duct2. This case succeeds. We have our third candidate solution. We must

incorporate the negated pattern after the operator application.

(10) succeed. We have not expanded the evaluation tree fully in the figure.

This case succeeds, since the pattern will be true after the operator application

because the pattern is true initially and the object moved does not affect the

pattern.

(11) fail. Since (10) succeeded, this case fails.

(12) fail. Here we explore the case when the operator is swap. All these

cases fail because in all situations where vstuffY(S)) is true (i.e., before a swap

operator has been applied) the condition vstuffY(do(Op,S)) will also be true

(after the operator is applied). Hence, all these cases fail like (11).

3.1.3 Goal Patterns as Conjunctions with Exceptions

We have seen how partial evaluation can be effectively used to compile influence

relations when the patterns are described as conjunctions of operational literals.

This section extends the representational power of patterns to conjunctions with

exceptions. More precisely, a pattern, denoted v, is defined to have the following

form:

v ::= co A A ... A 1cm,
::= A /2 A .. A in

1 ::=
opdl ::=dynamic literal
opl ::=other operational literal

This extension in representational power is needed, because conjunctions are

insufficient to represent the result of compiling the influence proofs. The problem

with limiting patterns to simple conjunctions can be seen when we consider compil-

ing patterns that arise from proofs of depth greater than 1. Here we can encounter

55

1. Compile maintain-true(As.co(s), Op, S) 1*maintain-true-co.

2. Compile make-true(As.ci(s), Op, S) 1--4make-true-c1.

3. Compute Set-Difference(maintain-true-co,make-true-ci) maintain-
true -u.

Table 3.2: Compiling maintain-true(As.v(s), Op, S), when v(s) <#. co A

the situation where we need to compile an influence relation over a pattern which

is itself another influence relation. For example, we may need to compile an expres-

sion such as make-true(Asi.make-false(As2.v(s), Opt, si), Opi, S). This expression

will only be compilable if the inner influence relation compiles into a conjunction.

However, as we have seen, the result of compiling influence relations can lead to

expressions that include exceptions. Hence, it is insufficient to limit the pattern

representation to conjunctions, because the influence relations are not closed over

conjunctions. However, as we will see, inflence relations are closed over conjunctions

with exceptions.

In this section we define the algorithms for compiling influence relations

when the patterns are conjunctions with exceptions. Each algorithm works by

decomposing the given pattern into its component conjunctions which are then

compiled by the previously defined algorithms.

Compiling maintain-true(ts.v(s), Op, S)

The goal of this compilation step is just as before with conjunctive patterns:

replace the expression with an equivalent set of pattern/action pairs that imple-

ments the influence relation for the given pattern. For simplicity, let us assume

that the given pattern has only one exception, thus v(s) <=>. co A To see how to

decompose the compilation of this pattern, let us review the definition of maintain-

true given in Table 2.1(3):

56

maintain-true(As.v(s), Op, S) <=> v(S) A o(S, Op) A v(do(Op , S)).

Substituting the definition of v(s) into the right hand side gives us

c0(S) A 'ci(S) A o(S, Op) A co(do(Op, S)) A -ici(do(Op, S)).

This can be simplified to

maintain-true(As.co(s), Op, S) A -imake- true(Xs.ci(s), Op, S).

This analysis tells us that to maintain-true a conjunctive pattern with one

exception, we must maintain true the conjunction co and not make true the negated

conjunction ci. Hence, the problem of compiling maintain-true(As.v(s), Op, S)

is decomposed into compiling maintain-true(As.co(s), Op, S) and compiling make-

true(As.ci(s), Op, S). Let the result of compiling maintain-true(As.co(s), Op, S) be

maintain-true-co and the result of compiling make-true(As.ci(s), Op, S) be make-

true-c1. The compiler must determine a new list of pattern/action pairs, called

maintain-true-v, that implements maintain-true-co but not make-true-c1. To com-

pute this let us introduce a new function called Set-Difference(10,11), which takes

two lists of pattern/action pairs, and computes their set difference. With this func-

tion we can define the compilation algorithm in Table 3.2.

Since we have previously defined the compilation of conjunctions such as

c0 and ci, we focus on the computation of Set-Difference(1,11). We illustrate the

definition of Set-Difference in Table 3.3. The condition (a) on l ensures that each

pattern/action pair implements the same function as the pairs in /0. The condition

(b) on l ensures that each pair does not compute the function of the pairs in /1.

To compute Set-Difference, we compute the cross product with respect to

the n operator of the sets of pattern/action pairs illustrated below:

57

Given:

lo = {(q(S), OpO), (4(S), OA), , (vOn(S), OPT)}.

11 = {(1)1(S), Opt), (vi(S), Opt), - (vin(S), OP M.

Find:

{(vi (S), Op1), (v2 (S), 0) (vk (S), Opk)}
Such that: V(v3(S), Op') E 1,

(a) 3(4)(S), E lo, Op3 = OA and vj(S) fl 0

(b) V (v1(S), Op') E 11, if Op3 = Opl then v3 (S) n vgS) =
0

where fl computes the intersection of two patterns.

Table 3.3: The Set-Difference(10,11) function

n (4(S), OA) (v4 (S), 04 . . . (v,:r (S), OAT)

(4(S), OA) 0 0 0

(4(S), OpD 0 V
...

(vi n (S), OA') 0

For each pair from /0 and /1 we compute the intersection (using a function

Pattern-Intersection defined later) that first unifies the operators and then deter-

mines if the patterns intersect. There are three cases that result from this operation.

They are illustrated by the three symbols in the table:

1. 0 The intersection is empty, either the operators do not unify or the patterns

do not intersect.

2. The operators unify and the intersection of v4(S) with v.1:(S) is equal to

4(S). In other words, Ki)(S) C

3. V The operators unify, and the intersection is non-empty, but voi(S) /4(S).

58

For each column, i, we compute a new pattern/action pair as follows:

I. If the column has all 0, then there are no conditions where (vMS), Opoi) makes

true the exception c1. Hence (v4(S), 014)) forms part of the solution set.

2. If the column contains at least one , then this pattern/action pair is rejected.

since it always makes c1 true.

3. Otherwise the column contains some Here there are some conditions,

given by the pattern intersection, where (4(S), Opio) makes c1 true. We must

modify voi(S) so that these conditions are never true. This modification is

performed by the function Pattern-Difference that is defined below.

In order to completely define this algorithm, all that remains is to define the

two functions Pattern-Intersection and Pattern-Difference. Both are defined below

in terms of the previously defined function PE.

Let us assume that we have two patterns, vi and v2:

vl = con A --Ic2 A ... A -icq
v2 = A -lc? A -14 A ... A -Icr2

To compute Pattern-Intersection, we must simplify the following:

vi A v2 = A cg A A -1cl A ... A -Icql)

A (-,c1 A -4 A ... A -1c2r)

We have previously defined the function PE which simplifies conjunctions.

We can employ this routine by noticing that the above expression can be rewritten:

vi A v2 = (c10- A cg) A -,(clo A 4) A --,(c(1:, A 4) A ... A -.(clo A c2q)

A -1(4, A 4) A -1(4 A cl) A ... A -1(4 A crl)

Thus, computing Pattern-Intersection(vi, v2) decomposes into one call to
PE(4, q calls to PE(cli, cn,1 < i < q, and r calls to PE(4, c,), 1 < i < r.

To compute Pattern-Difference, we must simplify the following:

59

1. Compile: make-false(As.co(s), Op, S) make false -co.

2. Compile: make-true(As.ci(s), Op, S) 1make-true-c1.

3. Compute: make-false-coUmake-true-ci i*make- true-v.

Table 3.4: Compiling make-false(As.v(s), Op, S), when v(s) <=> co A -"CI.

vi A = co A -14 A ---14 A ... A -IclqA
-1[4 A -)c? A -14 A ... A ---)c,.21

Distributing the negation gives us

vi A = el) A -1(4- A 4) A A --1c12- A ... A
(con en A -'(cl A cl) A --.(q A c2) A ... A -1(4 A elq)
(elo A 4) A A el) A A el) A ... A -1(c2 A clq)
...
(co A c7.2) A --1(cr2 A 4) A --qc,2 A 4) A ... A --1(c7.2 A cql).

Thus, computing Pattern-Difference(vi, v2) decomposes into one call to PE(4-A

co2) and (q + 1) x r calls to PE(c1 A cD, 0 < i < q,1 < j < r
We have defined how to compile a pattern with only one exception. The

algorithm can be easily extended, through multiple calls to Set-Difference, to apply

to patterns with multiple exceptions. We give an example of applying this algorithm

to a simple example from chess in Section 3.1.4.

Compiling make-false(As.v(s), Op, S)

To understand the appropriate decomposition of this pattern compilation

into a set of conjunction compilations, let us review the definition of make-false

given in Table 2.1(2):

make-false(As.v(s), Op, 5) <#. v(S) A o(S, Op) A 'v(do(Op, S))

Considering the simple case when v(S) <=> co A -,c1 gives us

co(S) A ici(S) A o(S, Op) A --qco(do(Op, S)) A -Ici(do(Op,S))].

60

1. Compile make-true(As.co(s), Op, S) 1-4make-true-co.

2. Compile maintain-true(As.co(s), Op, S) 1-4 maintain-true-co.

3. Compile make-true(As.ci(s), Op, S) make-true-c1.

4. Compile make-false(As.ci(s), Op, S) 1* make-false-ci.

5. Compute: Set-Difference(make-true-co,make-true-ci)
U Set-Intersection(make-true-co,make-false-ci)
U Set-Intersection(maintain-true-co ,rnak e- false-ci) 1-> make-true- v .

Table 3.5: Compiling make-true(As.v(s), Op, S), when v(s) .#;> co A

By distributing the negation over the conjunction, we obtain

co(S) A -ici(S) A o(S, Op) A --ico(do(Op, S))
Vco(S) A -ici(S) A o(S, Op) A ci(do(Op, S)).

Simplifying gives

make-false(As.co(s), Op, S)V make-true(As.ci(s), Op, S)

This analysis tells us that there are two alternative ways to make false a

conjunction with one exception: (1) we make false co or (2) we make true c1. Hence

we have identified the appropriate decomposition for the compilation problem. We

illustrate the algorithm in Table 3.4.

This description has focused on compiling a pattern with only one exception.

We can easily extend the algorithm, through multiple calls to make-false(As.cj(s), Op, S)

for each negated conjunction to apply to patterns with multiple exceptions. We

give an example of applying this algorithm to a simple example from chess in Sec-

tion 3.1.4.

Compiling make-true(As.v(s), Op, S)

To understand the appropriate decomposition of this pattern compilation

into a set of conjunction compilations, let us review the definition of make-true

given in Table 2.1(1):

61

make-true(As.v(s), Op, S) s --iv(S) A o(S, Op) A v(do(Op, S)).

Considering the simple case when v(S) <#. c0 A --,c1 gives us

- [co(S) A 'ci(S)] A o(S, Op) A co(do(Op, 5)) A --Ici(do(Op, S)).

By distributing the negation over the conjunction we obtain

-co(S) A co(do(Op, 5)) A ,ci(do(Op, S))
V ci(S) A co(do(Op, S)) A ici(do(Op, S)).

Simplifying gives

make-true(As.co(s), Op, S) A --imake-true(As.ci(s), Op, S)
V make-true(As.co(s), Op, S)Amake- false(As.ci (s), Op, S)
V maintain-true()s.co(s), Op, S)Amake-false(As.ci(s), Op, S).

This analysis tells us that there are three alternative ways to make true a

conjunction with one exception: (1) we make true the co and not make true c1, or

(2) we make true the co and make false c1, or (3) we maintain true c0 and make false

c1. These three cases correspond to all combinations of the initial truth values for

the two conjunctions (except the one combination co(S) A --Ici(S), since the pattern

must be false in S). Hence we have identified the appropriate decomposition for the

compilation problem. We illustrate the algorithm in Table 3.5.

We introduce a new function Set-Intersection which is like Set-Difference

previously defined, but in this case we compute the intersection of the two sets of

pattern/action pairs. The function is defined in Table 3.6.

To compute Set-Intersection, we compute the cross product of the sets of

pattern/action pairs as illustrated previously for Set-Difference. For each pair from

/0 and /1, we compute the intersection (using a function Pattern-Intersection defined

earlier) that first unifies the operators and then determines if thepatterns intersect.

There same three cases can result from this operation as before. Whenever the

intersection is non-null, we include the intersected pattern and action in the output

solution.

62

Given:

lo = {(4(s), ()A) , (4(s), OA), , (vr (s), ()ion)).

11 = {(4(s), Opt), (4(s), 024), , (vin (s),

Find:

1 = {(v1(S), Op1), (v2 (S), 0p2), . . , (vk (S), Opk)}
Such that: V(v4(S), Opio) E /0, and e(vi(S), Opp E 11,
If Opio = Opi then k(S) fl Opio) E 1.

Table 3.6: The Set-Intersection(10,10 function

This section has focussed on describing the compilation step when the given

pattern has only one exception. The algorithm can be extended to more exceptions.

In general, when we have n exceptions, there will be 2n+1 1 combinations of

conjunctive influence relations that make up the solution, each corresponding to a

unique initial setting of the truth values of the conjunctions. We give an example

of applying this algorithm to a simple example from chess in Section 3.1.4.

3.1.4 Chess Examples

This section introduces a domain theory for chess, and illustrates our algo-

rithms compiling influence relations for some complex patterns that arise in the

chess domain. Figure 3.6 illustrates a slightly simplified definition of the chess'

domain theory used in this work.

The theory employs a generic language for describing the chess positions

and patterns. This language defines a situation as an arrangement of objects at

locations in space. This is the same language that was used in the stuffy room

domain. In particular, a situation S is defined by a set of on(S,Loc,Obj) relations,

2Simplifications include ignoring case analysis on whether variables are bound for the openline

relation. The complete domain theory is listed in the Appendix.

in-check(SO,Sidel):-
opside(Sidel,Side2),
on(SO,From,obj(Typet,Side2)),
on(SO,To,obj(king,Sidel)),
Iegaldirection(Typet, Direct),
reachable(SO,Typet, From,To, Direct).

o(S0,0p,Sil):-
(Op = move(nm,SqF,SqT,obj(Tm,Sil),empty),

on(SO,SqF,obj(Tm,Si1)),
Iegaldirection(Tm, Direct),
reachable(SO,Tm,Sq F,SqT, Direct),
on(SO,SqT,empty)

;Op = move(tm,SqF,SqT,obj(Tm,Sil),obj(Tt,Si2)),
on(SO,SqF,obj(Tm,Si1)),
Iegaldirection(Tm, Direct),
reachable(SO,Tm,Sq F,SqT, Direct),
opside(Si1,Si2), %must be opposite side
on(SO,SqT,obj(Tt,Si2))

)

reachable(SO,Type,Sq F,SqT, Direct):-
not(single-piece(Type)),
openline(SO,SqF,SqT,Direct).

reachable(SO,Type,SqF,SqT,Direct):-
not(sliding-piece(Type)),
connected(SqF,SqT, Direct).

63

opside(white,black).
opside(black,white).

sliding-piece(rook).
sliding-piece(queen).
sliding-piece(bishop).

single-piece(king).
single-piece(knight).

Iegaldirection(king,(1, 1)).
legaldirection(king,(1, 0)).
legaldirection(king,(1,-1)).
legaldirection(king,(0, 1)).
legaldirection(king,(0,-1)).
legaldirection(king,(-1, 1)).
Iegaldirection(king,(-1, 0)).
Iegaldirection(king,(-1,-1)).

legaldirection(knight,(1, 2))....

openline(SO,SqF,SqT,Direct):-
(connected(SqF,SqT,Direct)
;connected(SqF,Sql,Direct),
on(SO,Sql,empty),
openline(SO,Sql,SqT,Direct)

)

Figure 3.6: Definition of the Chess domain

64

where Loc is the location (represented as an (X,Y) coordinate) and Obj is the object

that is at Loc in situation S. Objects are either empty, denoting an empty location,

or composite terms describing their properties. In chess, an object is defined by

the composite term obj(Type,Side) which denote its two properties Type (such as

bishop or knight) and Side (black or white). Included in this generic language is the

relation openline(S,F,T,Dir), which defines a contiguous line of empty locations along

direction Dir originating at location F and terminating at location T. Also included

is the relation connected(F,T,Dir) that constrains two locations to be connected in

a given direction.

To define the chess domain, we must define the in-check constraint for use

generating legal moves from pseudo-moves (see Section 2.2.3). We must also define

termination patterns, which denote winning goals, such as capturing the king. The

in-check(S,Side) constraint is defined in Figure 3.6. It is true when Side is in check

in situation S. Also included is the definition of the operator generator o(S,Op,Side),

which is used to generate pseudo-moves given a situation S and a side Side. There

are two kinds of moves, normal moves (denoted nm) and take moves (denoted tm).

Legal moves are generated from pseudo-moves by taking into account whether the

moving side is in check as described in Section 2.2.3.

The theory introduces additional relations such as opside(Sidel,Side2), which

declares that white and black are opposite sides; sliding-piece(T), which declares

that pieces of type T can move through multiple squares; single-piece(T), which

declares that pieces of type T can only move through single square; and legaldirec-

tion(Type,Dir), which maps the piece type to the legal directions along which it can

move.

The frame axioms for the domain theory are given in Figure 3.7. We include

frame axioms for the generic situation predicates on and openline for both move

types.

Now that we have introduced the chess domain theory, we introduce two

on(do(move(nm,SqF,SqT,Of,0t),S0),Sq,0):-
(Sq = SqF -> %just moved from
0 = empty

;Sq = SqT -> %just moved to
0 = Of

;otherwise ->
on(SO,Sq,O)

).

openline(do(Op,SO),Start, End, D):-
Op=move(nm,SqF,SqT,Of,0t),
(inline(Start,SqT,End) ->
fail %just moved into line

;inline(Start,SqF,End) ->
% just moved from line
openline(SO,Start,Sq F, D),
on(SO,SqF,Of),
openline(SO,Sq F, End, D)

;SqT = Start ->
% just moved to start of line
openline(SO,Start, End, D)

;SqT = End ->
% just moved to end of line
openline(SO,Start, End, D)

;otherwise ->
openline(SO,Start, End, D)

)

65

on(do(move(tm,SqF,SqT,Of,0t),S0),Sq,0):-
(Sq = SqF -> %just moved from
0 = empty

;Sq = SqT -> %just moved to
0 = Of

;otherwise ->
on(SO,Sq,O)

)
openline(do(Op,S),Start, End, D):-

Op=move(tm,SqF,SqT,OLOt),
(inline(Start,SqT,End) ->
fail %just moved into line

;inline(Start,SqF,End) ->
% just moved from line
openline(SO,Start,SqF, D),
on(SO,SqF,Of),
openline(SO,SqF,End,D)

;SqT = Start ->
% just moved to start of line
openline(SO,Start, End, D)

;SqT = End ->
% just moved to end of line
openline(SO,Start, End, D)

;otherwise ->
openline(SO,Start, End, D)

)

Figure 3.7: Definition of the frame axioms for the Chess domain

capture-king(S) :-
on(S,SqR,obj(rook,white)),
Iegaldirection(rook, Direct),
openline(S,SqR,SqBK,Direct),
on(S,Sq B K,obj(king,black)).

66

Figure 3.8: Prolog definition and graphical representation of the termination pattern

rook-takes-king

example patterns that arise in compiling chess databases. For each pattern we give

its definition written in the domain theory and then demonstrate compiling the

influence relations over the pattern. The last section of this chapter introduces the

influence proof compiler and illustrates the compilation of influence proofs which

use these two patterns.

Examples of Chess Patterns

In this section, since we are interested in illustrating the influence compiler, we limit

the patterns to termination patterns defining winning situations that are provided

by the user. In particular, we consider those patterns that arise when specifying

sub-domains of chess where only a few playing pieces are involved. These sub-

domains represent challenging problems that arise during the endgame phases of

complete chess games.

There are many different patterns that could be considered. Here we illus-

trate two simple patterns that arise in popular endgames. One pattern defines a

special case of the ultimate goal in chess, when the opponents' king is captured

by a rook. This pattern is used in all sub-domains that involve the rook on the

winning side. Another pattern arises in the king-rook, king-knight sub-domain and

defines the conditions where the black knight is safely captured by the white rook.

This case is more complex than capturing the king, since we must ensure that the

capture is safe, i.e., the capturing rook cannot itself be recaptured.

The first pattern describing the capture of the black king is defined as a cap-

safe-capture-knightl(S) :-
on(S,SqR,obj(rook,white)),
legaldirection(rook,DirectR),
openline(S,SqR,SqN,DirectR),
on(S,SqN,obj(knight,black))
not(on(S,SqBK,obj(king,black)),

Iegaldirection(king, Direct K),
connected(SqBK,SqN,DirectK)).

67

Figure 3.9: Prolog definition and graphical representation of the termination pattern

rook-takes-knightl. Note that exceptions are denoted by a bold outline around the

objects of the exception. Hence, the black king must not be adjacent to the black
knight.

ture move of the black king by the white rook. The simplified pattern is illustrated

in Figure 3.8 (see Figure 1.2(b) for key to graphical representation of the pattern).

This pattern is true when there is a white rook on SqR and open line of empty

squares along direction Direct, where Direct is legal for the rook, leading to location

SqBK, which is occupied by the black king.

We consider two patterns which define different forms of the safe capture of

the black knight, given that the only other black piece is the king. The first pattern,

illustrated in Figure 3.9, defines the situation where the white rook can capture the

black knight and the black king does not protect the black knight. The principal

conjunction (that is, the non-negated conjunction) is similar to the previous pattern,

only in this case the captured piece is a knight. The exception defines the situation

where the black king is on some location SqBK which is connected to the location of

the black knight SqN in a direction that is legal for the black king to move. Hence

the exception defines the situation where the black king could recapture the rook.

The other pattern, illustrated in Figure 3.10, describes the case when the

black king is adjacent the knight, but unable to recapture due to the white king

also being adjacent to the rook. The principal conjunction of this pattern defines

the situation where the rook can capture the black knight (just as before) and both

safe-capture-knight2(S) :-
on(S,SqR,obj(rook,white)),
legaldirection(rook,DirectR),
openline(S,SqR,SqN,DirectR),
on(S,SqN,obj(knight,black))
on(S,SqBK,obj(king,black)),
legaldirection(king,DirectBK),
connected(SqBK,SqN,DirectBK)
on(S,SqWK,obj(king,white)),
legaldirection(king,DirectWK),
connected(SqWK,SqN,DirectWK),
not(connected(SqBK,SqWK,DirectK),

legaldirection(king, DirectK)).

68

Figure 3.10: Prolog definition and graphical representation of the termination pat-
tern rook-takes-knight2

the black king and the white king are adjacent to the black knight. The exception

arises from the legal requirement that the two kings cannot be adjacent.

Example of maintain-true(capture-king(s),Op,S)

Let us consider the operators by black that maintain the pattern capture-king(S)

defined above. This case illustrates the role of the frame axioms for openline, given

in Figure 3.7, in compiling the influence relations. Given that the black pieces in

play are limited to the king and knight, intuitively, we would expect two kinds of

moves to result. First we have non-take moves of the king such that there is still

an openline in a legal direction for the rook from the rook position to the new

location of the king. Second we have non-take moves of the black knight which do

not block the openline. The compiler determines this in 9 seconds. We illustrated

in Figure 3.11 two of the cases derived.

The possible moves of the black king that maintain king-capture(S) are deter-

mined by unfolding and simplifying the expression king-capture(S), o(S,Op,black),

king-capture(do(Op,S)) as described in Section 3.1.2. This analysis produces two

cases, one where the king moves in the same direction as the openline away from

V Op, o(S,black,Op), maintain-true(capture-king(S),Op,S) 4*
([on(S,SqR,obj(rook,white)),

legaldirection(rook, DirectRO),
openline(S,SqR,SqBK,DirectRO),
on(S,SqBK,obj(king,black)),
legaldirection(king,DirectK),
connected(SqBK,SqT,DirectK),
on(S,SqT,empty),
legaldirection(rook,DirectR1),
openline(S,SqR,SqT,DirectR1),
DirectR1 =1= DirectRO],

Op = move(nm,SqBK,SqT,obj(king,black),empty)),

([on(S,SqR,obj(rook,white)),
legaldirection(rook, DirectRO),
openline(S,SqR,SqBK,DirectRO),
on(S,SqBK,obj(king,black)),
on(S,SqN,obj(knight,black)),
legaldirection(knight,DirectN),
connected(SqN,SqT,DirectN),
on(S,SqT,empty),
not(inline(SqR,SqT,SqBK))],

Op = move(nm,SqN,SqT,obj(knight,black),empty)).

69

Figure 3.11: Pattern/action pairs that maintain the termination pattern cap-

ture-king(S), with black moving

70

the rook (not illustrated) and the other when the king moves in any other direction

(illustrated). To understand why these two cases arise, it is necessary to study how

the compiler processes expressions that involve openlines. Consider the last literal

in the maintain expression above, king-capture(do(Op,S)). When this is unfolded, it

includes openline(do(Op,S),SqR,SqT,D).

Partially evaluating openline(do(Op,S),SqR,SqT,D) produces five cases (given

in the lower left of Figure 3.7). The first case, where the object moves into the line,

fails quickly. The second case, where the object moves from the line, produces

the solution, which is not illustrated, where the king moves in the same direction

as the rook openline. This solution is found during simplification when functional

dependencies of the openline relation are applied. Note that the candidate solution

in this case will include both openline(S,SqR,SqBK,D), from unfolding the frame

axiom (see Figure 3.7), and openline(S,SqR,SqBK,DirectR), from the original pattern.

Applying functional dependencies determines that D, the direction of the openline

to the new location of the king, must be the same as DirectR, the direction of the

original openline. Further simplifications constrain the direction of the king move

to be the same as DirectR. The third case, where the move is to the start of the

openline, fails because it constrains the destination location of the move (which

must be empty) to be the same as the start of the openline (which is occupied by

the rook). The fourth case, where the move is to the end of the openline, succeeds

and produce the solution illustrated above. The final case fails, because it implies

that the new openline from the rook to the king is independent of the move. This

is clearly false, since we are considering the case when the king is moved.

The alternative solution, when the knight is moved, is determined simi-

larly. In this case, we again have the five cases which arise from unfolding open-

line(do(Op,S),SqR,SqBK,D). However, here all but the last case fails.

Example of make-false(safe-capture-knightl(S),Op,S)

Let us use the example of compiling make- false(safe-capture- knightl(S),Op,S) with

71

black to play to illustrate compiling influence relations for a pattern that has ex-

ceptions. In this case, since we have a pattern with one exception, we make it false

one of two ways: (1) we make-false the positive conjunction (that a rook is inline

with the knight) or (2) make-true the negated conjunction (that the black king is

adjacent to the black knight). Compiling (1) leads to a two pattern/action pairs,

one which is illustrated, where the black king captures the rook, and another where

the black knight moves out the way; compiling (2) leads to a single pattern/action

pair where the black king moves to become adjacent to the knight. The two cases

are illustrated in Figure 3.12.

Example of make-true(saf e-captur e-knight2(S) ,Op ,S)

Let us use the example of compiling make -true(safe-ca pture-knight2(S),Op,S0)

for white to illustrate the introduction of exceptions in the resulting patterns. Here

we expect at least two sets of pattern/operator pairs; those that move the white

rook so that an openline from the rook to the knight becomes true, and those that

move the white king to be adjacent to the black knight. The two cases are illustrated

in Figure 3.13.

3.2 Compiling Influence Proofs

Once we have defined how influence relations are compiled, we can now turn our

attention to compiling the influence proofs. The goal of this compilation stage is to

compile a given influence proof into an equivalent set of pattern/action pairs, which

recommend the same action in the same situations, but without the complexity of

problem space search.

As we have previously described (in the introduction to Section 3) we only

consider compiling a proof when proofs lower depths (i.e., shorter solution lengths)

have already been compiled into goal patterns. The compilation process is further

simplified by ordering process to compile simpler proofs before more complex proofs.

V Op, o(S,black,Op), make- false(safe- capture- knightl(S),Op,S) <=>
([on(S,SqR,obj(rook,white)),

legaldirection(rook, DirectR),
openline(S,SqR,SqN,DirectR),
on(S,SqN,obj(knight,black))
on(S,SqBK,obj(king,black)),
legaldirection(king, DirectKl),
connected(SqBK,SqR,DirectK1)),
not(legaldirection(king,DirectK2),

connected(SqBK,SqN,DirectK2))]
Op = move(tm,SqBK,SqR,obj(king,black),obj(rook,white))),

([on(S,SqR,obj(rook,white)),
legaldirection(rook,DirectR),
openline(S,SqR,SqN,DirectR),
on(S,SqN,obj(knight,black)),
on(S,SqBK,obj(king,black)),
Iegaldirection(king, DirectKl),
connected(SqBK,SqT,DirectK1),
on(S,SqT,empty),
Iegaldirection(king, DirectK2),
connected(SqT,SqN,DirectK2),
not(on(S,SqBK,obj(king,black)),

legaldirection(king,DirectK3),
connected(SqBK,SqN,DirectK3))]

Op = move(nm,SqBK,SqT,obj(king,black),empty)

72

Figure 3.12: Pattern/action pairs that make false the termination pattern

safe-capture-knightl(S), with black moving

V Op E o(S,Op), make-true(safe-capture-knight2(S),Op,S) <#.
([on(S,Sq R,obj(rook,white)),

legaldirection(rook, DirectR1),
openline(S,SqR,SqT,DirectR1),
on(S,SqT,empty),
legaldirection(rook, DirectR2),
openline(S,SqT,SqN,DirectR2),
on(S,SqN,obj(knight,black))
on(S,SqBK,obj(king,black)),
legaldirection(king,DirectBK),
connected(SqBK,SqN,DirectBK)
on(S,SqWK,obj(king,white)),
legaldirection(king,DirectWK),
connected(SqWK,SqN,DirectWK),
not(connected(SqBK,SqWK,DirectK),

legaldirection(king, DirectK))
not(Iegaldirection(rook, DirectR3),

openline(S,SqR,SqN,DirectR3))]
Op = move(nm,SqR,SqT,obj(rook,white),empty)),

([on(S,SqR,obj(rook,white)),
legaldirection(rook, DirectR),
openline(S,SqR,SqN,DirectR),
on(S,SqN,obj(knight,black))
on(S,SqBK,obj(king,black)),
legaldirection(king,DirectBK),
connected(SqBK,SqN,DirectBK)
on(S,SqWK,obj(king,white)),
legaldirection(king,DirectWK1),
connected(SqWK,SqT,DirectWK1),
on(S,SqT,empty),
legaldirection(king,DirectWK2),
connected(SqT,SqN,DirectWK2),
not(connected(SqT,SqWK,DirectK),

legaldirection(king, DirectK))
not(connected(SqBK,SqWK,DirectK1),

legaldirection(king,DirectKl))]
Op = move(nm,SqWK,SqT,obj(king,white),empty))

Op

73

Figure 3.13: Pattern/action pairs that make true the termination pattern

safe-capture-knight2(S), with white moving

74

For this section, we will assume that there is some controlling process that generates

the proofs for compilation in an appropriate order. Section 7.1 gives full details of

this control process, this section covers only the compilation of a given influence

proof.

The remainder of this section is in two parts. The first section describes

the compilation of influence proofs for the losing side, introduced in Section 2.2.2

and Section 2.4.1. The second section describes the compilation of proofs for the

winning side, given in Section 2.4.2. In both cases we assume that previous com-

pilation has produced a set of n goal patterns of lower solution length denoted

{ v?(s), v2 (s), , vnG(s)}. When compiling proofs for the losing side, this set will

be used to denote previous winning patterns; when compiling proofs for the winning

side, this set will be used to denote previous losing patterns.

3.2.1 When LOSS is to Play

The compilation process when LOSS is to play is simplified by noting the three kinds

of influence proofs identified in Section 2.2.2: No-threat, One-threat and Multiple-

threat. Each proof type has a distinct compilation strategy which is given below.

Compiling No-threat Proofs

A no-threat proof describes a loss situation where none of the winning goal patterns

are true initially (and hence, there are no current threats) but all legal moves

available lead to new situations where one or more of the winning goal patterns are

true. Logically, these proofs are defined as follows:

achieve(As.G(s), S, LOSS ,i)
-'v?(S) A -4(S) ... A --,v,?(S)

AVOp, o(S, LOSS, Op), [make-true(As.v? (s), Op, S)
make-true(As.v (s), Op, S)
.

make-true(As.vnG (s), Op, S)]

75

To compile this proof, given the set of n goal patterns, the first step is to

compile the make-true relations for each goal pattern as described in Section 3.1.2,

Page 47. This leads to a set of make-true pattern/action pairs, called MT, where

each pair is represented as (yr (S), Opr'). To understand the next step of the

compilation process, it is helpful to take a procedural view of the logical proof

above. This proof states that a situation is a loss is all legal moves available make

some subset of winning goal patterns true. Hence, to identify a new loss goal

pattern, vG(S) which satisfies this proof, we must first identify some subset of the

pattern/action pairs in MT such that the union of the actions of each pair cover all

legal operators that are available in vG(S). Then vG(S) is the intersection of the

patterns from each pattern/action pair. More precisely, a goal pattern vG(S) is an

example of a no-threat loss if all the following are true:

1. f(vr(s),Opr),(,,r(s),0p1214T),...,(vr(s),opr)} C MT, where MT is

defined above,

2. vp(S) n vVT(S) n n v (S) = vG(S) 0,

3. Op' U Opr U U Op' = V Op, o(S, LOSS, Op).

We find subsets of pattern/action pairs that make true winning goal patterns,

such that the intersection of those patterns is non-empty, and the union of the

actions covers all possible operators that are available in S.

To complete this definition, we must provide procedures for computing both

the intersection of patterns with a corresponding test for non-empty pattern, and the

union of operators with a corresponding test for coverage of all available operators.

The intersection of patterns is easily specified by the procedure Pattern-Intersection

defined previously in Table 3.3. However, the union operator is more difficult to de-

fine, since with our current representation of pattern/action pairs, the set of actions

is represented implicitly. By this we mean there is no expression that denotes those

actions which exactly comprise the actions of the pattern/action pair. Rather, the

76

pattern implicitly describes the set of actions as a set of constraints on the argu-

ments of the operator. To see this, refer to the example of make-true pattern/action

pairs given in Figure 3.13. Here, the action set make true the winning pattern safe-

capture-knight2 for white. In the top solution, the set of actions is constrained to be

by the white rook, with the destination constrained to be a location with an openline

to the black knight and the origin to be a location occupied by the white rook, but

not inline with the black knight. While these constraints correctly define the action

set, they do not represent the set explicitly (such as by a set of legal directions and

distances for the piece that is moved). Hence, this representation cannot be used

for determining whether the set of all available operators are covered by a union

of such sets. This means that the current representation of pattern/action pairs is

not expressive enough to compile these no-threat proofs. In the next Chapter we

introduce a new representation that overcomes this problem.

Compiling One-threat Proofs

A One-threat proof describes a loss situation where one of the winning goal patterns

are true initially (and hence, there is one current threat) and all legal moves available

lead to new situations where either the initial threat is still true or one or more of

the other winning goal patterns are true. There are n such proofs, given n winning

goal patterns. Without loss of generality let us assume that the one goal pattern

true initially is v,g(S), 1 < j < n.

Logically, these proofs are defined as follows:

achieve(As.G(s), S, LOSS ,i)
,vi (S) A -Iv?(S) A ... A v(S) A ...--IvnG(S)

AV Op, o(S, LOSS, Op), [maintain-true(As.vjg (5), Op,
make-true(As4 (s), Op, S)
make-true(As.v?(s), Op, S)
. . .

make-true(As.vf i(s), Op, S)
make-true(7.s.vY+1(s), Op, S)
.

77

V make-true(As.viiG (s), Op, S)]

Compiling this proof is similar to the no-threat proof. First, given the set of

goal patterns, we compile for each goal pattern the make-true relations (described in

Section 3.1.2, Page 47) and the maintain-true relations (described in Section 3.1.2,

Page 42). This leads to a set of make-true pattern/action pairs, called MT as

above and a set of maintain-true pattern/action pairs, called M, where each pair is

represented as (14 (S), Opin . Taking the procedural view of the logical proof above

leads directly to the compilation algorithm. This proof states that a situation is a

loss if all legal moves available either maintain the threat or make some subset of

other winning goal patterns true. Hence, to identify a new loss goal pattern, vG(S)

which satisfies this proof, we first set vG(S) = v?(S) (the threat pattern) then

we identify some subset of the pattern/action pairs in MT called MTc , and some

subset of the pattern/action pairs in M which maintain vG(S), called Mc, such that

the union of those actions in Mc and those actions in MTc cover all legal operators

that are available in vG(S). Then vG(S) is the intersection of vG(S), the patterns

from each pattern/action pair in MTc and the patterns from each pattern/action

pair in Mc. More precisely, a goal pattern vG(S) is an example of a one-threat loss

if all the following are true:

1. {(vi v (S), Opr), (4 (S), Op in, . , (yr (S), Opik11)} C M, where each Opm

maintains vG(S) (the threat goal pattern),

2. {(vr(S), Op'), (v' (S), Opt), . . , (v' (S), 01)7,7)1 C MT, where MT is

defined above,

3. v?(S) n /411(S) n vr-(S) n n vtf(S) n v'(S) n vp(S) n n v' (S) =

vG(S) 0,

4. Opr U Op121/1 U. . .0 Opk U opr u opir u u op nimr = V0p,o(S, LOSS, Op).

78

We find subsets of pattern/action pairs which maintain the threat or make

true other winning goal patterns, such that the intersection of those patterns with

the threat pattern is non-empty and the union of the actions covers all possible

operators that are available in S.

Since this compilation step requires us to take the union of the operator sets

and determine coverage, compiling one-threat proofs suffers from the same problem

of unsuitable representation as the no-threat proofs. Hence, we will have to wait

until the introduction of new representations in Chapter 5 before these proof types

can be compiled.

Compiling Many-threat Proofs

A Many-threat proof describes a loss situation where at least two of the winning

goal patterns are true initially (and hence, there are at least two current threats)

and all legal moves available lead to new situations where at least one of the the

initial threats is still true. There are 2n 1 n such proofs, given n winning goal

patterns. Without loss of generality let us assume that only two goal patterns are

true initially vf(S) and ve(S), 1 < j < k < n. The case when more than two are

true can be easily induced from this case.

Logically, these proofs are defined as follows:

achieve(As.G(s), S, LOSS ,i)
-i?(S) A -v? (S) A ... A v?(S) A ... A vi?(S) A ...---tv,?(S)

AV Op, o(S, LOSS, Op), [-imake-false(As.vf (s), Op, S)
V -imake-false(As.ve (s), Op, S)]

The method of compiling this proof is different from the two previous proofs

because the coverage computation over the implicitly represented operator sets can

be avoided. This is achieved by noticing that the disjunction of negated influence

relations above can be simplified to a negated conjunction by applying DeMor-

gan's rule, then the negation can be brought outside the scope of the universal

79

quantification thereby changing the quantification to existential. The result of this

manipulation is the following equivalent proof:

achieve(As.G(s), S, LOSS ,i)
-iv?(S) ,v?(S) ... vG(S) ... v,?(S) ...

Aa Op, o(S, LOSS, Op), [make-false(As.v? (s), Op, S)
A make-false(As.vi? (s), Op, S)]

To compile such a proof, the first step is to compile for each goal pat-

tern the make-false relations (described in Section 3.1.2, Page 51) leading to a
set of make-false pattern/action pairs, called MF, where each pair is represented as

(vr(S), Opr). The procedural view of the proof leads to a simple compilation

algorithm. This proof states that a situation is a loss if there are two winning goal

patterns true initially and there does not exist a legal move available that makes

both threat patterns false. Hence, to identify a new loss goal pattern, vG(S) which

satisfies this proof, we first set vG(S) = vf(S)n v,?(s) (the intersection of the threat

patterns), then we take the intersection of all those pattern/action pairs which make

false vG(S) with all those pattern/action pairs which make false //(S). Since we

must ensure that this intersection of pattern/action pairs is empty, any resulting

patterns from this intersection operation are negated then intersected with the cur-

rent vG(S) to form the final goal pattern. More precisely, a goal pattern vG(S) is

an example of a many-threat loss if all the following are true:

1. make-false? <=> V Op,make-falsePs.v ?(s), S, Op), (one threat goal pattern),

2. make - falser .<#. V Op ,make-false(As.v? (s), S, Op), (the other threat goal pat-

tern),

3. vG(S) fl v? (s) fl --,[make-false?nmake-falsej?] = vG(S) 0.

To complete this definition we must provide a procedure for computing the

intersection of pattern/action pairs. This is simply the procedure Set-Intersection

previously defined in Table 3.6, which returns a set of pattern/action pairs. For

80

this compilation step, the actions are not needed and simply ignored. The resulting

patterns are negated and incorporated by the function Pattern-Difference previously

defined in Section 3.1.3 on Page 58.

This form of influence proof can be compiled completely because the required

constraint over the influence pattern/action pairs is empty intersection, and as we

have previously seen, the implicit representation is adequate for this computation.

We illustrate this process in compiling the influence proof for the rook fork

concept, of which Figure 1.1(a) is an example. Here the white rook threatens

both the black king and black knight with capture. We employ the two patterns

introduced in Section 3.1.4: rook-takes-king(S), which describes the situation when

the white rook can capture the black king, illustrated in Figure 3.8; and safe-ca pt u re-

knightl(S), which describes the situation when the white rook can safely capture the

black knight (i.e., with out recapture by the black king), illustrated in Figure 3.9.

The particular proof we are interested in compiling is:

achieve(As.G(s), S, LOSS, i)
rook-takes-king(S) A safe-capture-knightl(S)

Aa Op, o(S, black, Op), [make-fatse(As.rook-takes-king(s), Op, S)
A make-fa/se(As.safe-capture-knightl(s), Op, S)]

Compiling make-false(,\s.rook takes- king(s), Op, S) for black to move leads to

four pattern/action pairs: (a) where the black knight captures the rook, (b) where

the black knight blocks the rook attack on the king, and (c) where the black king

moves out of danger, and (d) where the black king takes the rook. The result

of compiling make- false(As.safe- capture- knightl(s), Op, S) for black is illustrated in

Figure 3.12. Here we get three pattern/action pairs, (a) where the black knight

moves out the way, (b) where the black king captures the rook, and (c) where the

black king moves adjacent to the black knight.

The intersection operation is illustrated in Figure 3.14. Note that each box

in the matrix represents one call to Pattern-Intersection. If we have p make-false

pattern/action pairs for the first threat pattern and q make-false pattern/action

81

n
make-false(safe-capture-knightl (s),Op,S)

(a)

x
(b)

x
(c)

(d)

x

x
Figure 3.14: Compilation of a rook fork losing goal pattern with black to play. We

intersect those pattern/action pairs from make-fa/se(A.s.rook-takes-king(s), Op, S)

(illustrated along the side) with those pattern/action pairs from

make-faise(As.safe-capture-knightl(s), Op, S) (illustrated across the top). Crosses

denote an empty intersection

82

rook-fork(S) :-
on(S,SqR,obj(rook,white)),
legaldirection(rook,DirectR1),
openline(S,SqR,SqBK,DirectR1),
on(S,Sq B K,obj(king,black)),
Iegaldirection(rook, DirectR2),
openline(S,SqR,SqN, DirectR2),
on(S,SqN,obj(knight,black)),
not(on(S,SqBK,obj(king,black)),

legaldirection(king,DirectK1),
connected(SqBK,SqN,DirectK1)),

not(on(S,SqBK,obj(king,black)),
Iegaldirection(king, DirectK2),
connected(SqBK,SqR,DirectK2)),

not(on(S,SqBK,obj(king,black)),
legaldirection(king,DirectK3),
connected(SqBK,SqE, DirectK3),
on(S,SqE,empty),
legaldirection(king,DirectK4),
connected(SqE,SqB N, Direct K4)).

Figure 3.15: The final pattern in Prolog for a rook fork in the rook-king, knight-king

end-game in chess. Derived from compiling a Many-threat proof with two threats,

one where the rook captures the king, the other where the rook threatens to safely

capture the knight.

pairs for the second threat pattern, we do not necessarily need to perform p x q

pattern intersections. This is because the pattern/action pairs can be partitioned

into equivalence classes with respect to the type of object moved. Only like object

pairs need be intersected, leading to a block diagonal structure to the intersection

matrix and a reduction in calls to Pattern-Intersection.

The final goal pattern derived from this compilation step is given in Fig-

ure 3.15. Three exceptions are included. The principal conjunction describes the

white rook at the beginning of two openlines, both along directions that are legal

for a rook. The first openline terminates in a location occupied by the black king.

83

The second openline terminates in a location occupied by the black knight. The

first exception arises from the original safe-capture-knight1 pattern. The second ex-

ception constrains the black king not to be adjacent to the white rook. This arises

from the successful intersection marked (1) in Figure 3.14 which demonstrates that

a rook capture by the king makes both threats false. Since such moves by black

must not be available in the goal pattern, the condition is included as an exception.

The third exception constrains the black king to be at least two steps away from

the black knight. This arises from a second successful intersection marked (2) in

Figure3.14 which demonstrates that a king move to safety which adds protection to

the knight makes both threats false.

3.2.2 When WIN is to Play

The compilation method when WIN is to play follows directly from the definition

of optimal win, given in Section 2.4.2 and reproduced below. Recall that fit? d' (8)

denotes a previously compiled winning pattern and vGc5 (S) denotes a previously

compiled losing pattern.

achieve(Xs.G(s), S, WIN ,i, Op)

30p, o(S, WIN, Op),make-true(As.viG. (s), Op, S), i = d, + 1
A -4d1 S), di < dj
A --.1)2Gd2 (S), d2 < di
A .

A --ii)mdm (S), < di

To compile this proof, the first step is to compile the make-true relations for

each losing goal pattern as described in Section 3.1.2, Page 47. This leads to a set of

make-true pattern/action pairs, where each pair is represented as (yr (S), Op').
The next step is to ensure that none of the previously compiled winning patterns

apply. Logically this is expressed as conjoining all vi (S) to each vr(S). How-

ever, procedurally we would like to produce the simplest possible pattern. This is

achieved, as previously discussed, by incorporating these negated pattern constraints

84

through repeated calls to the procedure Pattern-Difference defined in Section 3.1.3

on Page 58. If during this process the pattern becomes empty then the process is

terminated for that candidate pattern.

Chapter 4

Analysis of the Compiler

In this chapter we analyze the compiler. We first consider whether the compiler is

sound; is the compiler guaranteed to always produce correct knowledge? We find

that the compiler is sound, and therefore any rule produced will be behaviorally

equivalent to the initial search process. We next consider whether the compiler is

complete; will the compiler cover all the problem space with compiled rules? We

find that the compiler is not complete: there are rules that cover problem instances

which the compiler cannot generate. In addition, the compiler is not guaranteed to

terminate.

We finally consider the computational complexity of the compiler and the

anticipated complexity of using the compiled knowledge. This analysis identifies

a potential problem with the compiler and suggests a solution. We find that the

compiler, in the worse case, requires at least an exponential number of calls of a

procedure that is NP-complete. We conclude this chapter by identifying the causes

of these problems and briefly propose a solution which is fully explored in the next

chapter. The solution is based on employing a geometric representation of the

problem state that allows constraint incorporation during computation.

86

4.1 Soundness

Here we prove the compilation process is sound. Since the focus is on correctness, we

ignore issues of optimality. To prove soundness we show that the space of influence

proofs is equivalent to the original min/max proof. The soundness proof is inductive

on the depth of the influence proof.

When the depth is 0, both the min/max proof and the influence proofs define

goal achievement using the user provided termination patterns. Hence, influence

proofs are equivalent to the min/max proof when i = 0.

To perform the inductive step, we must show that if this equivalence exists

at depth i 1, it also exists at depth i. Since we are considering counter-planning

where two players alternate, the proof must show equivalence for both cases when

WIN and LOSS is to play.

The proof when WIN is to play is trivial and follows directly from the in-

troduction of influence proofs for WIN given in Section 2.4.2. The proof for LOSS

is more complex. Let us assume that at depth i 1 there are n winning goal pat-

terns vi(S), v2(S), . . . , vn(S) (note the subscripts denoting a solution depth and the

superscripts denoting the goal G are dropped to simplify the notation). Then the

min/max proof for goal achievement at depth i is

achieve (G(s), S, LOSS, n)
V Op E o(S, LOSS), vi(do(Op , S)) V v2(do(Op , S)) V ... V vn(do(Op , S)),

which simply states that S is a loss if all available operators lead to any of the win

goal patterns. Here we show that this proof is equivalent to the influence proof given

below, by a series of equivalence transformations. Recall that LOSS influence proofs

are partitioned into three types, no-threat, one-threat and many-threat. Below, we

apply a series of transformations to each kind of proof, then show that the combined

result is equivalent to the min/max proof.

We begin the equivalence proof with the no-threat axiom, reproduced below:

87

achieve(As.G(s), S, LOSS ,i)
--tvi(S) A -v2(S) A ... A iv(S)

AV Op, o(S, LOSS, Op), [make-true(As.vi(s), Op, S)
make-true(As.v2(s), Op, S)
...
make-true(As.vn(s), Op, S)].

Let us expand the make-true influence relations according to their defini-

tions given in Table 2.1(1). Factoring out the operator generator o(S, LOSS, Op)

produces:

achieve(As.G(s), S, LOSS ,i)
---ivi(S) A --iv2(S) A ... A ,v,,,(S)

AV Op, o(S, LOSS, Op), [tvi(S) A vi(do(Op, S))
1v2(S) A v2(do(Op, S))
...
--Ivn(S) A vn(do(Op, S))].

Distributing the conjunction over the disjunction and eliminating redun-

dancy produces the simplified no-threat axiom:

(1) achieve(As.G(s), S, LOSS ,i)
ivi(S) A ,v2(S) A ... A --Ivn(S)

AV0p, o(S, LOSS, Op), [vi(do(Op, S)) V v2(do(Op, S)) V ... V vn(do(Op, S))].

We now turn our attention to the one-threat axioms, reproduced below. Note

there are 7/ such axioms, given n winning goal patterns

achieve(ks.G(s), S, LOSS ,i)
,vi(S) A q)2(S) A ... A vi(S) A ...Ivn(S)

AV Op, o(S, LOSS, Op), [maintain-true(As.v2(s), Op, S)
make-true()s.vi(s), Op, S)
make-true(As.v2(s), Op, S)
...
make-true(As.vj_i(s), Op, S)
make-true(As.vi+i(s), Op, S)
...
make-true() s.vii(s), Op, S)]

88

Let us expand the make-true and maintain-true influence relations according

to their definitions given in Table 2.1(1) & (3). Factoring out the operator generator

o(S, LOSS, Op) produces:

achieve(As.G(s), S, LOSS ,i)
-vi(S) A -w2(S) A ... A v3(S) A ...

AV Op, o(S, LOSS, Op), [vj(S) A vi(do(Op, S))
-vi(S) A vi(do(Op, 5))
-1v2(S) A v2(do(Op, 5))
...
-Ivi_i(S) A vi_i(do(Op, 5))
--wj+i(S) A vi+i(do(Op, 5))
...
-Ivy,(S) A vri(do(Op, S))].

Distributing the conjunction over the disjunction and eliminating redun-

dancy produces the simplified one-threat axiom:

(2) achieve(As.G(s), S, LOSS ,i)
--ivi(S) A -iv2(S) A ... A vi(S) A ... -Ivn(S)

AV0p, o(S, LOSS, Op), [vi(do(Op, S)) V v2(do(Op, S)) V ... V v,,,(do(Op, S))]

Finally, we turn our attention to the last kind of influence axioms, many-

threat. Here there are a total of 2n n 1 possible axioms, one for each possible

subset of k, 2 < k < 72, goal patterns. To simplify the analysis, we expand only the

case where k = 2. Later we demonstrate how this case is generalized for k > 2. The

axiom when k = 2 has the following form:

achieve(As.G(s), S, LOSS ,i)
,vi(S) A -1v2(S) A ... n vi(S) A ... A vk(S) A ... --Ivn(S)

AV Op, o(S, LOSS, Op), [umake-false()s.vi(s), Op, S)
--imake-false(As.vk(s), Op, S)].

Let us expand the make-false influence relations according to their defini-

tions given in Table 2.1(2). Factoring out the operator generator o(S, LOSS, Op)

produces:

89

achieve(As.G(s), S, LOSS ,i)
---)vi(S) A -Iv2(S) A ... A vi(S) A ... A vk(S) A ... -ivn(S)

AVOp, o(S, LOSS, Op), [-i[vi(S) A vi(do(Op, S))]
V --i[vk(S) A vk(do(OP, S))]].

Applying DeMorgan's rule to the negated conjunctions, distributing the con-

junctions and eliminating those expression which contain both v(S) A -Iv(S) pro-

duces:

achieve (As.G(s), S, LOSS ,i)
-wi(S) A --,v2(S) A ... A vi(S) n ... A vk(S) A ...--wri(S)

AVOp, o(S, LOSS, Op), [vi(do(Op, S)) V uk(do(Op, S))].

This proof states that after the application of operators, at least one of the

initial threat patterns will be true. However, it says nothing about the truth value

of the other goal patterns after the operator has been applied. Since the disjunction

is not closed, the operators available may make any of the none threat goal patterns

true (i.e., not j or not k). Hence the above axiom can be equivalently written:

(3) achieve(As.G(s), S, LOSS ,i)
,vi(S) A -1v2(S) A ... A vi(S) A ... A vk(S) A ...

AVOp, o(S, LOSS, Op), [vi(do(Op, 5)) V v2(do(Op, S)) V .. . V vn(do(Op, S))].

From the construction of this equivalent axiom, it is easy to see what will

result when there are more than two threat patterns true initially. In the general

case, the conjunction before quantification (which defines the initial truth setting

of the goal patterns) will remain unchanged, while the expression following the

operator quantification will reduce to the same as given above, [vi(do(Op, S)) V

v2(do(Op, 5)) V .. . V vi,(do(Op, 5))).

Combining expression (1), (2) and (3) above and factoring out the common

expression [vi(do(Op, S))V v2(do(Op, S))V ...V v,i(do(Op, 8))] leads to the following:

achieve(As.G(s), S, LOSS ,i)
V Op, o(S, LOSS, Op), [vi(do(Op, S)) V v2(do(Op, S)) V ... V v,i(do(Op, S))]

A [A -1v2(S) A ... -Ivn(S)

90

vi(S) A --,v2(S) A ... ,vn(S)
-ivi(S) A v2(S) A ...w(S)
...
--Ivi(S) A 'v2(S) A ... vn(S)
vi(S) A v2(S) A ... A Ivn(S)
vi(S) A --iv2(S) A v3(S) A ... A --Ivn(S)
vi(S) A 1v2(S) A ,v3(S) A ... A vn(S)

V

vi(S) A v2(S) A v3(S) A ... A vn(S)].

The later bracketed expression represents all possible 2n truth settings of the

initial n goal patterns and can be factored into

[vi(S) V -wi(S)]
A [v2(S) V -,v2(S)]
A ...
A [vn(S) V -'vn(S)],

which is true. Hence, for n, given goal patterns, the conjunction of 1 no-

threat axiom, n one-threat axioms and 2n 1 n many-threat axioms are exactly

equivalent to the original min/max proof. Therefore, the abstraction mechanism

based on influence is sound.

4.2 Completeness

A complete compiler constructs a problem solver that can solve all possible problem

instances from a give problem class. Here we demonstrate that this compiler is

incomplete. There are two problems that lead to incompleteness:

It is not possible to guarantee termination of the compiler.

Some of the proof sentences cannot be compiled. Previously we identified

three types of proof sentences: no-threat, one-threat and many-threat. It is

not possible to compile both the no-threat and one-threat proofs because of

the representation problem described in Section 3.2.1, on Page 75. Hence, the

goal patterns may be incomplete. This incompleteness could be considered

91

minor, since the missing patterns account for only n 1 proof sentence out

of the complete set of 2n. However, these proofs are essential for chess, since

they account for many patterns of low depth. If they are not generated, all

deeper proofs that need these patterns cannot be compiled.

4.3 Complexity Analysis

This section investigates the computational requirements of the compiler. We are

interested in the requirements during compilation and during performance, when

the compiled knowledge will be used. The complexity of the compilation process

is determined by two factors: the number of proof sentences generated and the

complexity of compiling them into patterns. The complexity of performance is

determined by two similar factors: the number of patterns that are compiled and

the time required to match a problem instance against the patterns.

4.3.1 Number of Proof Sentences Generated

We can determine the number of proof sentences that are generated during compila-

tion by defining and solving simple recurrence relations that arise from the recursive

definitions given in Section 2.2.2(6) and Section 2.4.2(9). Let f(i) be the number

of proof sentences for a proof depth of i. Since at depth i 1 we can generate a

new sentence from each possible subset of the previous sentences, we arrive at the

following recurrence relation:

f(0) = n
f (i) = 2f (i-1)

Solving this recurrence relation leads to a function that grows much too fast.

In fact, when we consider all the proof sentences of at most depth 4, we have 2256

which is considerably more than the complete space of all likely chess positions

(10' 2132) On the face of it, the influence proofs do not appear to be providing

much abstraction! However, this space is much smaller than it appears, since many

92

of these sentences will be either empty (i.e., they have no extension) or redundant

and need not be generated. A sentence will be empty if, when compiled, it leads to

a pattern that has no extension. To understand the effect of these empty sentences,

we must review the form of the influence proofs given in Section 2.2.2. Let us assume

that we have n winning patterns compiled from previous sentences, which are to be

used to generate a new set of losing sentences. From the form of the influence proofs,

we know that we have a total of 2n distinct proof sentences, and hence, we have

the potential to generate 2n new goal patterns. Consider compiling a simple many-

threat sentence which includes only two goal patterns, vi(S) and vj(S) assumed

true initially (i.e., there are two current threats). From Section 3.2.1 (on Page 78)

we know that to compile this sentence, we must take the intersection of these two

patterns. Consider the effect on the space of proof sentences if this intersection

operation returns an empty pattern. Clearly all other many-threat sentences that

include vi(S) and vi(S) as threats will also compile to empty sentences. Hence, by

detecting empty intersections of goal patterns, the large space of many-threat proofs

can be considerably reduced. In general, if we detect a conjunction of k goal patterns

that has an empty extension, we eliminate 2n-k sentences from consideration.

These empty sentences reduce the growth of proofs from hyper-exponential.

If we assume, for example, that all conjunctions with 3 or more non-negated patterns

are empty, then the recurrence relation is as follows:

f (0) = n
f(i) = 1+ f (i 1)+ f (;1)2

Solving this leads to f(i) = 0(0i), which is much smaller than the original

function, but still exponential. Empirical results given in Chapter 8 confirm that

the space is even sparser than this.

93

4.3.2 Complexity of Compilation

Given that we know how many proof sentences we need to compile, we now con-

sider the complexity of actually compiling the proof sentences into patterns. To

understand the complexity of this process is is useful to review the compiler algo-

rithm given in Section 3.2. Computational resource requirements are dominated

by two computations: the intersection of patterns during proof compilation and

the compiling of influence relations. In this section we focus on the intersection

computation, since it is easily analyzed and provides an accurate bound on re-

source requirements. We consider a function Pattern-Intersection(vi , 1/2) defined in

Section 3.1.3 (on Page 58), which is called at least 0(f(i)2) times for each depth i.

Given that pattern vi has p exceptions and v2 has q exceptions, previous

analysis showed that to compute Pattern-Intersection we must call the function

Simplify 0(p+ q) times, where Simplify takes two simple conjunctions of operational

literals and returns either empty, if the conjunction has no extension, or a simplified

conjunction. This analysis tells us that the number of calls to Simplify for each

pattern intersection is a linear function of the complexity of both patterns. We also

know that in the worst casewhen none of the pattern intersections are detected as

emptythe number of patterns grows potentially hyper-exponentially with depth

i, and the complexity of each pattern grows linearly in i.

We still have not considered the computational complexity of simplify(c1 , c2)

itself. Here we are assuming that both d are simple conjunctions of operational liter-

als. Hence, the analysis introduced in [Minton 88a] and [Tambe, Newell and Rosenbloom 90]

is relevant, for it describes the complexity of matching a conjunctive rule against a

conjunctive state description. In this approach the following assumption concerning

the form of the operational literals is made:

Literals encode arbitrary one-to-many relations, which share variables

in the conjunction.

Given this assumption, we can model simplify over two conjunctions as a reduc-

94

tion from graph isomorphism over two graphs, where the nodes in the graphs are

variables and the edges are the mappings encoded by the literals. Hence, in the

worst case, Simplify is NP-complete. In [Tambe, Newell and Rosenbloom 90], the

complexity of match is given as 0(b') where 1 is the number of literals in the con-

junction and b the cardinality of the one-to-many mappings.

4.3.3 Complexity of Performance

The utility problem [Minton 88a] concerns the difficulty of ensuring that compilation

actually improves problem solving performance. We want the compiled problem

solver to return answers quicker than the original search-intensive problem solver.

Such improved performance is not guaranteed, because the compiler replaces domain

search with pattern matching, and pattern matching can involve expensive search.

The analysis of Pattern-Intersection above applies equally well to the problem

of matching learned patterns against problem instances. Hence, match time has the

potential to grow exponentially with the length of the patterns generated. The

principal problem then, is the growth in the length of patterns that occurs in our

method as the patterns come to describe goal achievement solutions of longer and

longer length. This problem was reported in [Tambe, Newell and Rosenbloom 90],

where it was demonstrated that in EBL approaches, the length of the conjunctive

rules tends to grow with the depth of the proof, leading to useless rules with "big

footprints."

This trend to patterns with long conjunctions can be seen in the example

illustrated in Figure 3.15 which shows the Prolog rule describing situations lost

in 2 ply through a fork tactic by a rook. As part of this pattern, the following

conjunction is included as an exception:

on(S,SqBK,obj(king,black)),
legaldirection(king, DirectK3),
connected(SqBK,SqE,DirectK3),
on(S,Sq E,empty),
legaldirection(king, Direct K4),

95

connected(SqE,SqBN,DirectK4)),
on(S,SqBN,obj(knight,black).

This conjunction describes a path of length two by the black king to the

black knight. To match this conjunction against a state description according to

the matching model introduced by [Tambe, Newell and Rosenbloom 90], requires

an exhaustive search from the king location for two steps in all directions. In other

words, we must generate 64 candidate locations and test whether each one is oc-

cupied by the black knight. Hence, matching such a short rule is very inefficient.

Moreover, as this pattern is used to generate new patterns describing solutions of

longer length, the path of the king will be extended, leading to an exponential

growth in match time.

To summarize, the performance is limited by the proliferation of patterns

that involve long conjunctions. Since the match time grows exponentially with this

length, it is critical to the success of the method that the conjunctions be kept

small.

4.4 Summary

The compiler was analyzed to determine its computational requirements and to

determine whether it is sound or complete. The analysis shows that the approach

can compile counter-planning into pattern-action rules that will be behaviorally

equivalent to the initial search procedure. Hence, the approach offers a means to

learn correct knowledge for improving the performance of counter-planning systems.

However, the analysis also uncovered some problems with this approach that

make it impractical:

The compiler is incomplete in that it may never compute a rule set that covers

every possible problem instance in a domain.

The compiler computation in the worst case requires solving an NP-complete

96

problem a hyper-exponential number of times.

In the following chapter the cause of these problems is explored in detail and

a solution is presented. Such a solution must provide:

A representation of pattern/action pairs that allows the coverage of sets of

actions to be determined. This will eliminate the problem with incompleteness

by enabling the compilation of no-threat and one-threat proofs.

An efficient means to exploit the sparseness of the space. In other words, we

must incorporate the fact that the intersection of two patterns is empty into

the generator of pattern pairs during proof generation and compilation. This

will contribute to reducing the hyper-exponential growth in patterns.

A representation for the patterns that would make Pattern-Intersection much

more efficient. This will overcome the problem with relying on a provably

exponential process during compilation.

A representation for the patterns that would make matching efficient. This

would overcome the problem with producing patterns that could potentially

take longer to match than the original state-space search.

Chapter 5

A Theory of Geometry for Efficient Abstractions

Hector Levesque in his 1985 Computers and Thought Award emphasized the effec-

tiveness of spatial representations over simple logical representations [Levesque 86]:

"[One observation] is our obvious success in problem-solving situations

where we can rely on visualization, such as in the case of geometry, or

reasoning about sets using Venn diagrams. This is to be contrasted with

the great difficulty we have with certain kinds of word puzzles, or solving

purely logical tautologies. A first explanation might state that we have

been primed by evolution to deal effectively with visual information, as

opposed to linguistic information, a relative late-comer. But perhaps a

better explanation is that visual information is inherently more tractable

than unrestricted linguistic information, and all that evolution has done

is taught us to exploit this fact."

In this chapter and the next we present an application that provides support

for Levesque's argument: geometric representations are inherently more tractable

than logical representations. This chapter introduces a geometric representation for

goal patterns and action sets, and illustrates the compilation algorithms working

with the new representations. The next chapter demonstrates that this geometrical

view overcomes the previously identified problems with the compilation approach.

98

In the previous chapters we have been employing a logical representation of

the problem space where goal patterns are represented as conjunctions of literals

where each literal encodes some predicate or relation. This powerful representation

could be used to represent arbitrary problem spaces such as word-puzzles, engineer-

ing designs, or planning problems. However, in the domains we are interested in, we

do not have an arbitrary problem space. Rather, the problem space describes situa-

tions that are composed of objects arranged in two dimensional space and operators

that move the objects between locations in two dimensional space. Hence, we can

employ a specialized geometric representation which exploits these characteristics

of the problem space.

To serve as an introduction to benefits of taking a geometric view of the

problem space, let us consider the problem of matching a logical representation of

a simple chess goal pattern. Below we give the logical definition of a pattern that

arises in chess endings which involve bishops. The pattern describes the situation

where a bishop can move to attack the opponent's king:

on(S,SqWB,obj(bishop,white)),
legaldirection(bishop,D1),
openline(S,SqWB,SqE,D1),
on(S,SqE,empty),
Iegaldirection(bishop, D2),
openline(S,SqE,SqBK,D2),
on(S,SqBK,obj(king,black).

This pattern describes a white bishop at location SqWB that can move in

direction D1 to location SqE, where there is an openline in a legal direction D2 for

the bishop to a location Sq BK occupied by the black king. In the logical interpre-

tation, variables such as SqWB and D2 take arbitrary terms as values and literals

such as legaldirection(bishop,Dl) and openline(S,SqWB,SqE,D1) encode arbitrary re-

lations over unstructured sets. Consider the problem of determining whether a

given problem instance is covered by this pattern. This process will involve first

binding the locations for the white bishop to SqWB, and then generating candidate

99

location for the black king which lie at the end of all possible compositions of two

openlines. Finally, each candidate black king location is tested to determine if it is

occupied by the black king. This kind of exhaustive generate and test is the only

option available with logical representations, where the relations encode arbitrary

relations over unstructured sets'.

When we take into account the fact that the relations are geometric and not

arbitrary and that the values of the variables are not unstructured sets but encode

locations and spatial vectors, the exhaustive generate and test can be avoided. For

example, if the given problem instance included the white bishop in the upper right

of the board and the black king in the lower left, then it makes no sense for the

matching process to be exploring paths further in the upper left corner, away from

the king. Neither does it make sense for the matching process to be doing any search

at all if the king is on a black square and the bishop is on a white square. These

kinds of efficiencies are possible because of the underlying geometric structure of

the problem.

By taking a geometric view, we can perform test incorporation to eliminate

or reduce wasteful generate and test. Test incorporation seeks to improve compu-

tation that can be modeled as a generator of candidate solutions followed by a test

t, of candidate solutions. Test incorporation improves performance by first factor-

ing the test t into a conjunction of sub-tests tl A t2 A ... A tn, which all must be

passed by the candidate solution. Next, the generator is modified to incorporate

the sub-tests, ti, such that the new generator only produces candidate solutions

which pass ti. Ideally, all the sub-tests can be incorporated into the generator, and

generate and test is eliminateda satisfactory solution is produced directly. The

method has been successfully used in a variety of knowledge compilation applica-

tions. In [Smith and Pressburger 881, information from the test of a satisfactory

1Better orderings of the literals can improve performance some what, but they can not eliminate

the generate-and-test behavior (see [Smith and Genesereth 85])

100

solution is incorporated into the search process that constructs the solution. In

[Braudaway and Tong 89], constraints on a suitable design are incorporated into a

generator of designs.

The application of test incorporation to the bishop-king pattern matching

example first requires additional geometric information about generators and tests,

or in this context, the variables and literals in the pattern. Information about

variables includes geometric encodings of their values; for example location variables

can be represented as (X, Y) coordinates, and direction variables can be represented

as two dimensional vectors (AX, AY). Information about literals includes linear

constraints on the values taken by the relations encoded; for example the openline

literal encodes a relation over two locations, (XF, YF) and (XT, YT) and a direction

(AX, /.Y), such that (XT, YT) = (XF,YF)+1.(AX, AY), 1 < 1 < 7. This additional

information allows us to produce a set of linear constraints that must hold between

the generated and tested values, which can then be simplified. This allows us to

solve for the tested values rather than have to generate and test them.

For example, solving the resulting linear equations in the bishop-king pat-

tern for the intermediate location SqE results in XsciE = ((Xsqwg f XsoK)

(YSqWB t YsoK))/2 and a similar expression for YsciE. Since both coordinates of

SqE must be integers, these expressions imply that the numerator must be even.

These expressions then distinguish the black squares from the white squares on a

chess board and impose the constraint that the king and bishop must be on squares

of the same color. Thus, the geometric view allows us to perform test incorporation

such that generate and test is completely eliminated when the two objects are on

different color squares.

This simple example of pattern matching has served to demonstrate the value

of test incorporation for eliminating search, and illustrated how test incorporation

is enabled by exploiting a geometric representation of the problem space. This

chapter shows the following:

101

Geometry enables test incorporation within compiled influence relations. Here

constraints from the pattern are incorporated into the generator of actions in

the pattern/action pairs of compiled influence relations. This enables set op-

erations over the set of operators, such as difference and intersection, which

are needed to compile the no-threat and one-threat proofs (as described in

Section 3.2.1). Hence, this incorporation eliminates the problem of incom-

pleteness demonstrated in Section 4.2.

Geometry enables test incorporation during the generation and compilation of

new patterns. Here constraints from the set of already compiled loss and win

patterns are incorporated into the generator of new influence proofs/patterns.

Recall that compilation of both win and loss proofs involves intersecting new

patterns with all previously compiled patterns: To generate a new optimal

win pattern we must intersect the newly formed non-optimal pattern with all

previous win patterns to ensure optimality; to generate a new loss pattern we

must consider all possible subsets of previous win patterns. Without incor-

poration, we must generate all candidate patterns (from the set of previously

compiled patterns) and test whether the intersection with our new pattern

is non-empty. Test incorporation allows us to incorporate the test of empty

intersection into the generator of candidate patterns. Ideally, we want the

generator to produce only those patterns that have a non-empty intersection.

This is achieved by employing a geometric representation of the patterns where

each object in the pattern is constrained to be in a rectangular region on the

board. Patterns are stored in a database indexed by the rectangular regions.

Finding all intersecting patterns reduces to indexing into this database based

on consistency between the regions of the new pattern and the patterns in the

database.

Geometry enables test incorporation during the matching of patterns against

problem instances. We have already illustrated a simple example of this kind

102

::=
::=

Objs ::=
RObjs ::=
Emps ::=
Olines ::=
Ri ::=
Loci ::=
LCons ::=
C ::=
Cons ::=
Scons ::=
Ocons ::=
Di ::=
C+ ::=
C+ ::=

Con -ICI A --1C2 A ... A Ci
[Objs, RObjs, Emps, Olines,

{(Loci3Obii), (Loc2,0bi2),
{ (Loci, R1), (Loc2, R2), . ,

{Locn+i, Locn+2, . , Locm}
{(Locm+i, Locm+2, DO,
(Loci, Loc2, Loci, Loco)
(Corxi, Corti)
{Col, Co2, , Ck}
ConsiSconslOcons
Cori = C+
Cori = Cori + C±
Cori = Cori + lk x C±,C+
(C±,C±)
011121... 8

81 71. 101...1718

LCons]
(Lock, Obi n)}

(Loch, R.)}

(LOCm+2.p-1, LOCm+2.73, Dp) }

lk C+

Table 5.1: Representation of geometric patterns

of incorporation.

The rest of the chapter is organized as follows. First, we introduce the geo-

metric representation of patterns and operators. Second, we demonstrate how the

previously given algorithms for compiling influence relations are adapted to employ

geometric representations. Third and finally, we describe the pattern intersection

and difference operations using geometrically represented patterns.

5.1 A Geometric Representation of Patterns

In the previous chapters, a pattern has been represented as a single conjunc-

tion of operational literals with a finite number of conjunctive exceptions. This

section introduces an equivalent representation for patterns that uses geometric

primitives. The representation is equivalent in that a single pattern represented

logically can be translated into a disjunction (usually small) of geometrically rep-

resented patterns that has exactly the same extension.

{((XwR, YwR),obj(white, rook)),
((XWK, YWK),obj(white,king)),
((XBK, YBK),obj(black,king)) },

{((XwR, YwR), ((1, 1), (1, 8), (7, 1), (7, 7))),
Xwif, YwK), ((1, 1), (1, 8), (8,1), (8, 8))),
((XBK, YBK), ((2, 1), (2, 8), (8, 1), (8, 8)))1,

{}
{((XwR, YwR), (XBK, YBK), (0, 1))}
{XBK = (XwR + 1, 1 < l < 7),
YBK -=YWR}1

103

Objects

Rectangular object regions

Empty locations

Openlines,

Constraints

Figure 5.1: A geometric representation of the pattern rook-takes-king. See Figure 3.8

for the logical and graphical representation. Note the components of the pattern

are marked on the right

The geometric representation is based on a simplification of one introduced in

[Brooks 81], where two and three dimensional physical scenes are represented as sets

of linear and non-linear constraints among points. In this case the representations

are simplified to model only in two dimensions and involve only linear constraints,

because the objects are always aligned with a reference grid (in this case the squares

of the playing board).

Patterns are represented by a principal conjunction and a finite number of

conjunctive exceptions as before, only this time the conjunctions are not of oper-

ational literals. Where before a conjunction of relations such as openline and con-

nected was used to describe the constraints among the locations of objects, openlines

and empty squares, here we use a set of linear constraints. More precisely, a pattern,

v, is defined in Table 5.1. Each conjunctive expression comprises Objs, a list of the

n objects and their location variables in the pattern; RObjs, a list of rectangular

regions, one for each object; Emps, a list of all the empty locations in the pattern;

Olines a list of all the openlines in the pattern; and finally, LCons a list of linear

constraints among the locations of the objects, corners of the regions, empty squares

and openlines. Since there are many equivalent sets of constraints among variables,

104

[{((XWR, YWR),obj(white,rook)),
((Xwx, Ywx),obj(white,king)),
((XBN, YBN),obj(black,knight))},

{((XwR, YwR), ((1, 1), (1,8), (7, 1), (7, 7))),
((Xwx, Ywx), ((1, 1), (1, 8), (8, 1), (8, 8))),
((XBN, YBN), ((2, 1), (2, 8), (8, 1), (8, 8))) },

{}
{((XwR, YwR), (XBN, YBN), (0, 1))}
{XBN = (XwR -I- /, 1 < 1 < 7),
YBN = YWK}1

-I [{((XBK,YBK),obj(black,king)),
((XBN, YBN),obj(black,knight))},

{((XBK, YBK), ((X11, Y1), (Xui, Yul),(X1r,Y1r),(Xur, Yur)))},
{}
{}
{X11 = XBN 1,1/11 = YBN 1
Xu1 = XBN 1, Yui = YBN + 1
Xir = XBN + 1,171r = YBN 1

Xur = XBN + 17 Yur = YBN + 1}]

Figure 5.2: A geometric representation of the pattern rook-ta kes- knight 1, illustrated

in graphical form in Figure 3.9

the method attempts to maintain the pattern constraints in a canonical form. A

total order is chosen for the objects and constraints for an object higher in the order

are always expressed in terms of variables lower in the order. In addition, redundant

internal variablesthose whose value has been determinedare eliminated. There

are three kinds of constraints: Cons, the simplest, where a coordinate of a location

equals a positive constant; Scons, where a coordinate of a location equals another

coordinate plus some constant; and Ocons, where a coordinate of a location equals

another coordinate plus some multiple of a positive constant, where the multiplier

(referred to as an internal variable) is constrained to be positive.

The three kinds of linear constraints among locations arise from the geometric

relations of the original logical representation: connected and openline. Constraints

of the form Scons are implied by the connected relation which encodes a relation

over two locations, (XF, YF) and (XT, YT), and a direction (AX, AY) such that

105

XT = XF + AX, and YT = YF -F AY. Constraints of the form Ocons are implied

by the openline relation which encodes a relation over two locations, (XF, YF) and

(XT, YT), and a direction (AX, AY) such that XT = XF -F 1 x AX, and YT = YF -1-i x

AY, 1 < 1 < 7. Note that the openlines and corresponding constraints in a pattern

always have directions that are instantiated with constants. This specialization

simplifies the geometrical reasoning but results in one-to-many mapping between

logically represented patterns and geometrically represented patterns.

A geometric representation allows symmetries to be exploited. Given a chess

board without pawns, there are 4 degrees of rotational symmetry and one degree

of reflexive symmetry. These symmetries were exploited in constructing the exten-

sional databases, referred to in Section 1.1.2, to cut the size of the database by a

factor of eight. With an abstract geometric representation as we have here, reflexive

symmetry is difficult to exploit. However, rotational symmetry is exploited to cut

the size of the abstract database by a factor of four. Two simple examples of chess

patterns described geometrically are given for the pattern rook-takes-king in Fig-

ure 5.1 (see Figure 3.8 for the original logical representation) and rook-takes-knightl

in Figure 5.2 (see Figure 3.9 for the original logical representation).

5.2 Geometric Influence Relations

In this section we define new influence compilation algorithms that employ the

geometric representations. We first define a new representation for operator sets

that overcomes the problems with incompleteness previously described. We then

define the compilation algorithms as an adaptation of the algorithms for logic defined

in Chapter 3.

5.2.1 Representation of Operator Sets

In Table 3.1 we defined the form of a compiled influence relation to be a set of pat-

tern/action pairs where the action is represented as a term, whose variables, such

106

([{((XwR, YwR),obj(white,rook)),
((Xwx, Ywx),obj(white,king)),
((XBK, YBK),obj(black,king)) },

{((XWR, YWR), ((1, 1), (1, 5), (7, 1), (7, 5))),
((Xwx, YwK), ((1, 1), (1, 8), (8, 1), (8, 8))),
((XBK, YBK), ((3, 1), (3, 8), (7, 1), (7, 8))) },

{(Xi, -171)}
{((XwR, YwR), (XBK, YBK), (0, 1))}
{XRK = XwR + 1,1 <2 < 6, YRK = YWRI
Xi = XBK,Yi = YBK}],

[1,0,1,1,1,0,1,1])

Figure 5.3: Geometric representation of make- false(rook- takes king(s), Op, S)

as TSq (the destination square) and FSq (the originating square), are constrained

by the corresponding pattern. This representation of operators was shown to be

inadequate for compiling no-threat and one-threat proofs in Section 3.2.1 (page 75).

The inadequacy arises because the term representation describes the set of operators

intentionally, as a set of constraints in the pattern, which prevent the intersection

and difference operations over

process. This section introduces a new representation for compiled influence rela-

tions where the patterns are described geometrically and the operator set is made

explicit, thereby enabling the required set operations for the compilation of no-threat

and one-threat proofs.

An example of the new representation of compiled influence relations is given

in Figure 5.3 for the king moves that make-false the simple termination pattern rook-

takes -king. Note that the pattern is represented geometrically. The operator set

that make this pattern false is represented as the bit vector following the pattern.

This vector is an example of an operator subspace. An operator subspace is a

representation designed to describe generic operators that move objects in quantized

space from one location to a finite number of other locations. Figure 5.4 illustrates

3 examples of operator subspaces for chess. In the case of a king, the vector is eight

units long, one for each possible direction the king can move. A 1 in the vector

{{XT1 = XF 1,YT1 = YF 1} ,

{XT2 = XF 1,YT2 = YF},
{XT3 = XF 1,YT3 = YF + 1 },
{XT4 = XF,YT4 = YF + 1} ,
{XT5 = XF + 1,YT5 = YF + 1},
{XT6 = XF + 1,YT6 = YF},
{XT7 = XF + 1,YT7 = YF 1},
{XT8 = XF,YT8 = YF - 1}}

{{XT1
{XT2

{XT3
{XT4
{XT5
{XT6

{XT7
{XT8

= XF 2,YTi = YF 1}
= XF 2, YT2 = YF + 1}
= XF 1,YT3 = YF + 2}
= XF + 1,YT4= YF + 2}
= XF + 2,YT5 = YF + 1}
= XF + 2,YT6 = YF 1}

= XF + 1,YT7 = YF 2}
= XF 1,YT8 = YF 2}}

{{XT1 = XF 11,YT1 = YF ,1 < 11 < 7}
{XT2 = XF,YT2 = YF + 12,1 < 12 < 7}
{XT3 = XF + 13,YT3 = YF ,1 < 13 < 7}
{XT4 = XF,YT4 = YF 14,1 <14 < 7}}

I
[1,2,3,4,5,6,7,8]

T2

T1

T5

T6

T8 T7

[1,2,3,4,5,6,7,8]

T1

T4
[1,2,3,4]

107

Figure 5.4: Operator Sub-spaces and linear constraint sets for the king, knight and

rook

108

signifies a king move in that direction. Moves by pieces like the rook, which move

along lines, require move information to be stored in the vector. Here each unit in

the vector holds a sequence of one dimensional intervals, where each interval denotes

the destination locations as an offset from the originating location. This generic

operator representation also includes a set of linear constraints for each object,

relating the originating location of the move (XF, YF) to the destination locations

(XTi, YTi). These constraints are illustrated on the left in Figure 5.4. Note that

there is one constraint for each possible direction. The constraints arise from the

geometric view of the primitives connected and openline previously discussed.

The operator subspace defines all the operators that are possible for a given

object. However, an object may be near the edges of the board and all the moves

may not be available, due to the destination location being outside the legal region.

The system automatically generates specializations of the subspaces to take into

account these edge affects. Figure 5.5 illustrates the result of this analysis for the

king subspaces. Here we find 3 mutually exclusive subspaces, one for the king in
the middle of the legal region, one on the side and the other when the king is in a

corner. Each specialized subspace includes the bit vector representing the operator

directions that are available and a simple pattern that constrains the location of the

object moved. For example, the middle subspace in Figure 5.5 includes bit vector

representing the 5 moves available and a pattern that constrains the black king to

the bottom edge of the board (YBK = 1). Note that only one side and one corner

subspace are needed because of rotational symmetry. Similar analysis for the knight

produces seven subspaces.

This section has introduced operator subspaces as an explicit representation

of the operators available for each object. The next section describes how these oper-

ator subspaces are used to compile influence relations and produce pattern/operator

set pairs such as the one illustrated in Figure 5.3.

109

([1,1,1,1,1,1,1,1],
[{((XBK,YBK),obj(black,king))},

{((XBK,YBK), ((2, 2), (2,7), (7,2), (7, 7))))].

([0,1,1,1,1,1,0,0],
[{((XBK,YBK),obj(black,king))},

{((XBK,YBK), ((2,1), (7,1), (2,1), (7, 1)))},
{YBK = 1) 1.

1, YBK = 1}

([0,0,0,1,1,1,0,0],
[{((XBK,YBK),obj(black,king))},

{((XBK,YBK), (1,1), (1,1), (1, 1)))},
{XBK =

Figure 5.5: Geometric representation of the king operator subspaces taking into

account edge affects

5.2.2 Compiling Geometric Influence Relations

The algorithms for compiling influence relations with geometrically represented pat-

terns and operator subspaces are similar to the previously presented algorithms for

the logic based representation. With a logic based representation it was demon-

strated in Section 3.1.3 that compiling influence relations for complex patterns is

decomposable into compiling influence relations for simple conjunctions. This de-

composition is unaltered when using geometrically represented patterns. However,

the algorithms for compiling the individual conjunctions is changed. Hence, this

section describes algorithms for compiling geometrically represented conjunctions.

The algorithms for compiling a conjunctive logical expression, described in

Section 3.1.2, apply partial evaluation to the logical definitions of the influence

relations when instantiated with the given conjunction. There are two principal

steps involved: unfolding, where the frame axioms, represented as horn clauses,

are unfolded; and simplification, where the resulting conjunction is simplified by

eliminating redundancy and detecting inconsistency. The new algorithm employs

110

the same logical definitions of the influence relations, but implements the two steps

differently. First, rather than unfold horn clauses to implement an operator ap-

plication, the algorithm employs specialized procedures that exploit the operator

subspace representations. Second, rather than simplifying a conjunction of logical

relations, the algorithm simplifies a set of linear constraints using a combination of

Gaussian elimination and the SUP-INF method ([Shostak 77]). An additional step

is involved when working with geometric representations, which is applied after the

above steps have produced a set of pattern/opset pairs. This final step combines so-

lutions, which apply only to individual moves, so the resulting operator subspaces

cover multiple operators (as illustrated in Figure 5.3, where all 6 operators that

make the pattern false are included). All three steps are described in detail below.

Applying Operator Subspaces

The frame axioms given in Figure 3.7 define the effects of operators on the logical

primitives on(S,Sq,Obj) and openline(S,Start,End,Dir). In the geometric representa-

tion we do not use these primitives, rather we define objects at a location as a list

of (Loc, Obj) and openlines as a list relating the start location, the end location

and a direction vector (LocS, LocE, A). Adapting the frame axioms to apply to the

alternative representations is straightforward. The method applies the axioms to

the geometrical primitives and explores the disjunctive cases for each primitive as

before. The algorithm collects consistent solutions.

In the logical representation, these solutions would be sufficient and the com-

piler would terminate. However, in the geometric representation, we must further

expand each solution so that the individual operators in the subspaces are explored.

Hence, we further enumerate each solution with the disjunctive cases defined for each

operator subspace. In Figure 5.4 each direction that can be moved is described by

a set of linear constraints between the originating and destination locations. De-

termining if that direction satisfies the influence relations involves composing the

111

subspace constraints with the constraints of the solution and simplifying.

Simplifying Linear Constraints

The Simplify procedure attempts to eliminate any redundancy and determine if

the set of constraints is inconsistent. The method repeatedly applies the following

operations until either a contradiction is found or no more operators apply and the

expression is in canonical form.

Apply functional dependencies. If the Objs list in the pattern includes (Loci, Obja)

and (Loc2, Obja), then set Loci = Loc2 and propagate. Conversely, if the Objs

list includes (Loc, Obja) and (Loc, Objb), and Obja Objb then fail.

Eliminate Variables. Apply Gaussian elimination to pairs of equations to

derive constraints on object variables and among object variables. Prefer

to eliminate intermediate variables (denoting empty locations) and internal

variables (which arise from the openlines in the pattern).

Propagate Values. If a value is determined for a variable, then substitute the

value in all constraints that involve that variable. Attempt to further simplify

those affected constraints.

Tighten bounds. A pattern includes interval bounds on both internal variables

(from the openline bounds) and object variables (from the rectangular region

constraint). These bounds are tightened by propagating high and low values

though the linear constraints using the SUP-INF method [Shostak 77]. The

general method for Presburger formulas is considerably simplified because the

equations only involve unit coefficients of the variables. In [Davis 87] an 0(n)

algorithm for n variables and linear constraints is given. The algorithm used

here takes only 2n steps. If an interval can be tightened to a single value,

then that value is assigned and propagated.

112

Detect inconsistencies. Inconsistent variable assignments are detected as early

as possible. Inconsistencies detected include: X = Cl, X = C2, where C1

C2; X < Co, X = CI., where CI > Co; X < Co, X > where Ci > Co

Combining Cases

The above steps produce influence relations where the operator subspace includes

only a single operator. It is desirable (for reasons that will become clear in Chap-

ter 7) that the operator subspaces of compiled influence relations include as many

operators as possible. This final stage of the algorithm clusters the single solutions

together so as to find a partitioning of the solution set, where the patterns of each

partition have consistent intersections. The process is illustrated in Figure 5.10.

5.3 Example of Compiling maintain-true

We use a simple example to illustrate the compilation process for maintain-true

for the pattern rook-takes-king illustrated in Figure 5.1. Here we are interested in

finding those cases where the black king is to move and maintain true the condition

that the king can still be captured by the rook. These cases consist of a set of

pattern/operator set pairs where rook-takes-king is true in the initial pattern and

each operator in the set, when applied leads to a new pattern where rook-takes-king

is still true. The final two cases are illustrated at the bottom of Figure 5.10. In

the first case, the king is adjacent to the rook and the three operators illustrated

maintain the rook-takes-king condition. The second case describes the situation

where the king is at least one square away from the rook and the two operators,

along the line of the rook attack maintain the threat.

The first step of the compilation algorithm is illustrated in Figure 5.6. In

this step we enumerate the possible operator subspace cases, which describe possible

directions, to see if the pattern is maintained. These operator subspace cases are

illustrated along the side of the figure. Recall that each case is described by a set

113

of linear constraints relating the originating and destination locations of the king.

The cases along the top describe the possible alternative orientations of new rook -

takes -king pattern following the king move. The first column assumes that following

the king move, the rook will be below the king. Each of these columns is described

by a set of linear constraints relating the current locations of the king and the rook,

and the new location of the king, denoted Ti?. Each box in the matrix represents

a composition of the two sets of linear constraints, the row constraints relating the

current king location to the destination location Ti?, and the column constraints

relating the current king and rook locations to the new destination location Ti?.

For each set of constraints in the matrix Simplify is called. Those boxes with a

cross denote an empty solution, where an inconsistency was detected. The other

boxes illustrate the solution found. For three of the cases marked (a), (b) and (c),

we illustrate the operation of Simplify in more detail.

The case marked (a) in Figure 5.6 is illustrated in Figure 5.7. Here, because

we are in the first column, we are assuming that the new location for the king will

be directly above the rook. In terms of the constraints, we are assuming that Xt

(the X coordinate Ti?) is equal to Xr (the X coordinate of the rook). The full

set of constraints from the column is illustrated on the left in Figure 5.7, while

the constraints from the row (from the king move) are illustrated on the right of

Figure 5.7. In this case the king move is to the north west. Applying Simplify to

the set of constraints first involves Gaussian elimination to determine a value for

both internal variables la (the length of the openline between the rook and the old

king location) and lb (the length of the openline between the rook and the new king

location). Here we determine that both internal variables have value 1, producing

the specialized solution illustrated.

An inconsistent case, marked (b) in Figure 5.6 is illustrated in Figure 5.8.

This case is also in the first column and so has the same set of constraints on the

left. The king move constraints on the right are different and describe a move of

114

the king vertically. It is clear that these two constraints are inconsistent, since the

king will not be attacked by the rook following the move. This inconsistency is

determined by Gaussian elimination that determines la = 0, which is inconsistent

with the constraint la> 0.

Finally, the case marked (c) in Figure 5.6 is illustrated in Figure 5.9. Here we

are in the third column, where it is assumed that the king is attacked in the same

direction before and after moving. The king move constraints describe a move to the

left. As we would expect, the system determines that this case is consistent. What

is interesting about this case is that it demonstrates the use of the SUP-INF method

as it tightens the bounds on the object regions. We illustrate this process for the

X dimension in Figure 5.9. The upper boxes on the left and right of the figure give

the initial bounds on XBK and XWR respectively. We illustrate computing the new

lower bound for XBK on the left. Here the equation giving XBK in terms of XWR

and the internal variable lb is used. Because we want the lower bound, we substitute

the lower bound of XWR and the lower bound of lb, producing a tighter bound of

3. Computing a new upper bound on XWR is illustrated on the right. Here the

transformed equation giving XWR in terms of XBK and the internal variable 1b is

used. Since we want the upper bound, we substitute the upper bound of XBK, but

because the variable lb is negated in the equation, we use its lowerbound, producing

a tighter bound of 5.

The final clustering stage is illustrated in Figure 5.10, where two final solu-

tions are determined. This stage clusters the four cases found (those non crosses in

Figure 5.6) into consistent sets, where each set becomes a final solution. To deter-

mine the pattern for a solution we intersect the patterns in the set and to determine

the operator set for a solution we form the union of each operator in the set.

115

XTi?

I Ti?
iTy

Ti?
MI," e2Mii

M-K

x
(c)

(b)

Figure 5.6: Determining consistent moves of the black king that maintain-true

rook-takes-king

Xt,Yt

lb

Xr,Yr

Solving for Xz

Xk, Yk

la 0, la c8, Xk = Xr + Is

Solving for Y:

lb 0, lb < 8, Yk = Yr,

Xt = Xr

Xk = Xt + la

Xt,Yt

Xk,Yk >

Xk = Xk - 1 + Is

= 1

Xt = Xk - 1

Yr +lb =Yk + 1

Yr+lb =Yr+1

lb = 1

116

Figure 5.7: Detail of Simplify determining the consistent solution to maintain-true

rook-takes-king marked (a) in Figure 5.6

117

< Xt,Yt

lb

Xr,Yr

Solvina for X;

< Xk,Y1c

la >0, la <8, Xk = Xr + la, Xt = Xr.

< Xt,Yt

Xk,Yk

Xt = Xk.

Figure 5.8: Detail of Simplify determining an inconsistent case during compilation

of maintain-true rook-takes-king marked (b) in Figure 5.6

< Xr,Yr

< Xt,Yt

14 la

Solving for X.

Xk 2 2, Xk 5 7

< Xk,Yk
Xk,Yk > < Xt,Yt

Xk = Xr + 1 +lb lb Xr = Xk - lb

Xk 1 + 1 + 1(a)

FXk 3,1Xk5 7

Xr 2, Xr 5 6

Xr 5 7 - 1 - 1(b)

XF72, X175-1

118

bounds in the X dimension

during compilation of maintain-true rook-takes-king marked (c) in Figure 5.6

Figure 5.10: The final clustering stage combining individual solutions to compiling

maintain-true rook-takes-king

119

5.4 Geometric Intersection

The original Pattern-Intersection algorithm defined on Page 58 demonstrated how

the intersection of two patterns reduces to many intersections of their component

conjunctions. This decomposition is retained with a geometric representation of

the patterns, but in this case the reduction is to intersections of simple conjunctive

constraints. To intersect two conjunctive constraints, the constraints are composed

and then Simplify (defined on Page 111) is called.

The geometric representation of patterns enables a significant inefficiency

with logically represented patterns to be eliminated. As discussed in the intro-

duction to this chapter, recall that the computation of both win and loss patterns

involves intersecting new patterns with all previously generated patterns. Given a

new pattern p and a set of previous patterns PP, the simplest implementation of

this process is by generate and test: generate candidate patterns pp from PP then

test whether p intersects with pp. Geometry eliminates this inefficient generate and

test behavior by incorporating tests of p into the generator of previous patterns.

The tests are incorporated by storing all of PP in a database and using properties

of p as an index into this database to find only those patterns that intersect with

p. In fact, we index using a necessary condition of p and hence, the set returned

from indexing represents a superset of those patterns that intersect with p. In

otherwords, not all the tests of P are incorporated into the generator of candidate

patterns.

The database and indexing scheme exploit the rectangular region constraints

for each object in the principal conjunction of a pattern (see Section 5.1). The

database is a multi-dimensional rectangle tree [Edelsbrunner 83], a specially de-

signed structure to enable efficient queries based on rectangular constraints. Given

a pattern with d objects, lookup complexity is bound by O(log2d(2d)+N). where N

is the number of patterns returned. Figure 5.11 gives some empirical results demon-

strating the effectiveness of this indexing scheme. The rectangle tree indexing is

1000
KRK: Lookup time as a function of database size:

800

600

Time (mS)

400

200

Using line se c

Using rectangle tree search 4.

2000 4000 6000 8000
Number of patterns in Database

ok
10000

120

Figure 5.11: A graph showing the time in mS needed to lookup all intersecting

patterns as a function of the size of the database. The top line is where the

database is represented as a list and lookup is linear search. The lower line is

where the database is indexed using a rectangle tree. Execution times for all calls

to Lookup-Intersection(y(s),PLoss) are illustrated during compilation of the KRK

chess ending.

121

compared to a simple linear search.

The indexing represents only a necessary condition because only the consis-

tency between the rectangular constraints of the principal conjunctions are tested.

In order to determine whether the two patterns intersect, the other constraints of

the principal conjunctions and the exceptions must be checked by repeated calls to

Simplify.

Chapter 6

Analysis of Geometric Abstractions

In this chapter we analyze the compiler that incorporates the geometric represen-

tations introduced in Chapter 5 and contrast it with the previous analysis given in

Chapter 4 when the compiler employed logic based representations. We first con-

sider whether the new compiler is complete. We find that, in contrast to the previous

compiler that employed a logical representation, the new compiler is complete. We

next consider the computational complexity of the compiler and the anticipated

complexity of using the compiled knowledge. This analysis demonstrates that the

problems of intractability identified previously (in Section 4.3) have been overcome

through the use of geometric representations.

6.1 Completeness

There are two aspects to proving completeness. First we must show that the method

will terminate within a finite time and using a finite amount of space. Second we

must show that all the influence proof types identified can be compiled into patterns

by the compilation algorithm.

6.1.1 Proof of Termination

To prove termination, we show that there will only be a finite number of patterns

generated, and once these patterns have been produced, the compiler terminates.

123

The argument relies on two important characteristics of the extensional database of

a give problem class. First, it is clear that the extensional database is finite, because

we have a fixed number of objects arranged in a fixed number of locations. Second,

given a problem class (defined by the objects) we know that there is a maximum

depth, n that represents the longest possible optimal solution to win or loss, beyond

which there are no instances. This can easily be shown by induction on the depth:

we know by definition that there are instances lost (won) in depth 0, and we know

that it is impossible for there to exist lost(won)-in-i + 2 instances without there

existing lost(won)-in-i instances. Hence, because there are only a finite number of

instances, there must be a finite depth at which there are no instances.

Given the assumption that the pattern compiler is correct, it will generate

no patterns at depth i if i > n (i.e., there are no instances at depth i). This

is because the geometric representation enables pattern intersections that have no

extension to be efficiently detected. Hence, to prove termination of the pattern

compiler, we need only show that it terminates the compilation for some arbitrary

depth j, where j < n. This is straightforward because as we have previously shown

(Section 4.3.1) that only a finite number of patterns can possibly be generated

for each depth. Hence, the compiler will eventually complete a given depth and

therefore will eventually terminate.

6.1.2 Proof of Compiler Completeness

The problems with incompleteness arose because of the inability of the logic rep-

resentation of operator sets to support set intersection and set difference (see Sec-

tion 3.2.1, page 75). The new representation of operators as operator subspaces,

introduced in Section 5.2.1, employs two representations for the space of all oper-

ators. The first involves representing the operator set as a bitvector. Clearly, this

representation supports both set intersection and set difference operations. The

second involves representing the operator sets as a set of ordered intervals. Both

124

set intersection and set difference can be implemented over this representation by

employing interval arithmetic. Hence, this new representation supports the needed

set operations and enables compilation of all three kinds of proofs.

Since the compilation algorithm has been shown to terminate, and is capable

of compiling the three kinds of proofs that exist, the new compiler is complete.

6.2 Complexity Analysis

This section analyses the previously stated geometric algorithms to determine their

computational complexity.

6.2.1 Number of Proof Sentences

The number of proof sentences has grown because of the one-to-many mapping

between logically represented patterns and geometrically represented patterns de-

scribed on Page 105. However, many of these sentences have no extension because

this reduction in individual coverage of patterns implies fewer consistent subsets.

Chapter 7 presents an efficient algorithm that avoids generating all empty sen-

tences. Chapter 8 presents empirical results demonstrating a manageable growth

in patterns.

6.2.2 Number of Pattern Computations

The number of calls to Pattern-Intersection is reduced by using geometry because

the need for a new pattern to intersect with all previously generated patterns is

eliminated. Geometry enables the previously generated patterns to be stored in a

database and indexing used to obtain those that intersect with the new pattern as

described in Section 5.4.

125

6.2.3 Complexity of Pattern Computations

It was demonstrated in Section 3.1.3 that the principal operators of the compiler,

Pattern-Intersection and Pattern-Difference, both decompose to calls to the sub-

routine Simplify. When using geometric representations this routine is defined in

Section 5.2.2. There are two main operations performed by this routine: First,

we have gaussain elimination, which requires 2n operations for n variables and n

equations. Second, we have the SUP-INF method, which also requires only 2n oper-

ations [Davis 87] (when we have n linear constraints with unit coefficients). Hence,

by employing geometric representations we have substituted a process with linear

complexity for one provably NP-complete.

6.3 Summary

This chapter has demonstrated that the problems with intractability have been elim-

inated by exploiting a geometric problem space representation. The principal result

is that the argument quoted by Hector Levesque in the introduction to Chapter 5

has been shown to be true: geometric representations are inherently more tractable

than logical representations. The core procedures of the compilation method, which

manipulate geometrically represented patterns, have only linear complexity.

Chapter 7

Techniques for Searching the Space of
Abstractions

In the previous chapters we have described in detail how individual influence proofs

are compiled into goal patterns. This chapter describes the overall control structure

of the compiler and details the selection and ordering of influence proofs to be

compiled.

In speedup learning there have been two principal methods for controlling the

generation of learned knowledge. The first method is the example based approach,

of which EBL is the prototypical technique ([Mitchell Keller and Kedar-Cabelli 86];

[Minton 88a]). In this approach, problem instances are provided by a teacher or

the environment. These examples are first explained and then compiled into some

form of rule. This new rule is intended to improve problem solving for the given

problem instance and other similar instances. This approach could be charac-

terized as lazy, since improvement is initiated only when new problem instances

are provided. In contrast, the second method is the knowledge compilation ap-

proach. Knowledge compilation employs no training examples and generates com-

piled knowledge from analysis of the initially specified problem space. There are

many examples of this approach including [Etzioni 91], where control rules which

avoid backtracking are generated from the initial specification of a problem solving

domain; [Braudaway and Tong 89], where efficient design rules are generated from

127

a declaratively written specification of a correct design; and [Schoppers 89], where

a complete "reaction plan" is generated from a specification of a planning domain.

This approach is eager, since the compiler actively generates knowledge independent

of problem instances.

The methods introduced in this thesis can be incorporated into either ap-

proach. [Flann 90] describes an application of the method when the influence proofs

are generated from explaining user-provided training examples. That work demon-

strates how the method can be used to learn correct patterns for low ply problems

from the King-rook king-knight ending, originally explored in [Quinlan 83]. In this

chapter we describe an eager approach to generating and compiling influence proofs.

There are two principal considerations when determining the best approach

to organizing the compilation process. First, we wish to organize the compilation

so that it is efficient and no redundant work is performed. Second, we wish to

organize the compilation so that the compile-time/coverage tradeoff discussed in

Section 1.2.2 is maximally exploited.

Since the previous chapters describing geometric representations have demon-

strated efficient compilation algorithms, the emphasis here is on ordering the com-

pilation so as to avoid redundancy. Redundancy can occur in many ways during

compilation. One obvious redundancy arises from the use of influence proofs of

depth i 1 to define proofs of depth i. To avoid the potential redundancy of having

to construct lower depth proofs multiple times, we order the compilation so that

the lower depth proofs are compiled before higher depth proofs. In this way, the re-

sulting goal patterns are compiled only once and shared among higher depth proofs.

Other redundancies can arise from influence proofs of the same depth that employ

common subsets of goal patterns. Here we want to compile that common subset,

then share the partial result among those proofs that include it.

A well established method to avoid redundancy in computation is dynamic

programming [Bellman 57], [Larson and Casti 78]. Dynamic programming is a pow-

128

erful method that has been applied to many different problems in domains such as

scheduling, resource management, control, and game theory. What characterizes

problems that are suitable for dynamic programming is the sequential nature of

the computation and the reliance of the computation on previously computed re-

sults. Recently, the method has been advocated as a technique for anytime problem

solving [Boddy 91]. Dynamic programming has been used successfully in a chess

end game application described in Section 1.1.2. There an extensional database is

constructed for a chess endgame by performing backwards search from a user pro-

vided set of termination positions. In this chapter we describe a similar approach

that constructs an abstract database by performing backwards search from a user

provided set of termination patterns.

The tradeoff between the time spent compiling a domain and the coverage

achieved over that domain arises because, even with abstraction, we may not be

able to run the compiler to completion. Hence, we want to organize the compila-

tion so that the coverage over a domain is maximally accumulated, given the limited

compilation time available. This implies that we should order the compilation so

that the patterns are generated most general first. Recall that in Section 6.1.1 we

demonstrated that the coverage of patterns tends to be a monotonically decreasing

function of their depth. Hence, the backwards search strategy of compiling shorter

depth proofs before longer depth proofsdeveloped to avoid redundancyalso al-

lows us to exploit the compile-time/coverage tradeoff.

We are still left with the decision of how to order proof/pattern generation

within the framework of backwards search. Two options are explored within this

thesis. The first option is breadth-first search, where we work backwards from depth

0, each time increasing the depth by 1 and completely compiling each depth before

moving to the next depth. This is the most straight forward approach, and it is

described first. The second option is best-first search, where we still work backwards

from depth 0. However in this case, we do not necessarily wait until we have corn-

129

Loss Contains a set of (v(s), Op, i), where v(s) is a LOSS pattern (in i
ply) and Op the optimal action to take when v(s) is true.

Win Contains a set of (v(s), Op, i), where P(s) is a WIN pattern (in i
ply) and Op is the optimal action to take when P(s) is true.

PLoss Contains a set of (v(s),DP,i) which are partially completed loss
proofs. In this case the Op represent those actions available in v(s) which
are not known to lead to a loss.

Table 7.1: The databases used by the dynamic program

pletely finished one depth before starting compilation on the next depth. Rather,

the compiler always tries to compile the proof that will have the most coverage,

irrespective of its depth. This best-first search is worthwhile, because even with the

monotonic relation between coverage and depth, the patterns within each depth

display a diversity of coverages. Hence, by having a more flexible control strategy,

the compiler can focus attention on the best patterns from each depth.

The remainder of this chapter is divided into two sections. The first section

describes in detail the breadth-first search algorithm and illustrates it with examples

from compiling chess endgames. The second section describes the best-first search

algorithm as a modification of the breadth-first search algorithm.

7.1 Breadth-first Search

To understand the dynamic programming algorithm for constructing abstract data-

bases described in this section, it is helpful to first review the compilation algorithm

for extensional databases introduced in Section 1.1.2, which is also a dynamic pro-

gram. That algorithm represents the extensional database as a large array, where

each cell in the array represents a single position. Indexing into the array is achieved

efficiently by employing a GOdel function to map directly from the locations of each

of piece in a given position to the cell representing that position (see [Thompson 86]

130

for more details). Initially, all the known white-win termination positions are tagged

as wins in the array. All other positions are initialized with a count of all the legal

operators for black that are available. Let us focus on how the method demonstrates

that some position p is a loss. To do this, the system must demonstrate that all of

the legal actions that can be taken by the losing player from p lead to a win for the

opponent.

The backwards search is initiated by computing all possible predecessors of

the termination positions by applying the standard moves of chess backwards (called

unmoves) for black. Each time such an unmove generates the position p, its count

of black moves is decremented by 1. When the count reaches 0, we have shown

that all available black moves lead to successors that are white winsand hence p

is a loss for black. Each new loss position can be similarly "unmoved" for white to

create new won positions. The process continues until there are no new won or lost

positions. All remaining unclassified positions are labeled as draws.

The algorithm for constructing abstract databases described in this section

works analogously. Backwards search is initiated from the win patterns of depth 1,

provided by the user. First, loss patterns of depth 2 are compiled, then new win

patterns of depth 3. The process continues, alternating between loss and win, until

either the time or space allotted runs out or no new patterns are derived.

There are some important differences between the extensional algorithm and

the abstract algorithm. First, rather than employing an array to hold positions, the

abstract algorithm employs geometrically indexed databases described in Section 5.4

to hold patterns. Looking up a pattern requires a search though a multi-dimensional

rectangle tree, which is more costly than the simple array indexing of the extensional

algorithm. Second, rather than apply unmoves to positions, we compute influence

relations which either make-true or maintain-true the patterns. Third, rather than

represent all the legal operators available as a count, which is reduced to 0 to prove

loss, the abstract compiler represents all legal operators as a set which is reduced

131

to 0 to prove loss. This reduction in the operator set is achieved by incrementally

removing sets of operators from compiled influence relations which make-true or

maintain-true known win patterns.

We now describe the abstract breadth-first algorithm in more detail. There

are three global databases employed by the algorithm to store completed goal pat-

terns and intermediate results during compilation. Each database is indexed to fa-

cilitate efficient intersection queries as described in Section 5.4. The databases are

listed in Table 7.1 and initialized to be empty. The function Store (Datum,Database)

is used to store information in each database. Let Wino be a set of (fi(s), Op, 0),

where each ii(s) is a winning termination pattern and Op is the optimal winning

operator. This set is initially specified by the user. The main loop of the program

is given below:

Done 4 false,
Forall p E Wino, Store(p,Win),
New Win 4 Wino,
i 4 1 ,

While Not(Done) Do:
NewLoss 4 Compile-all-losses(i,NewWin), i < i +1,
Forall p E NewLoss, Store(p,Loss),
Done f NewLoss = 0,
If Not(Done)
Then New Win 4 Compile-all-wins(i,NewLoss), i 4-- i +1,

Forall p E New Win, Store(p,Win),
Done 4 New Win = 0.

The top level loop simply compiles LOSS patterns and WIN patterns for

each depth. The flag Done is set true when no more new patterns are derived.

Both algorithms use the 3 global databases in Table 7.1. In the remainder of this

section we define both compilation algorithms in detail.

7.1.1 The Compile-all-losses(Depth,NewWin) Algorithm

The algorithm for Compile-all-losses(Depth,NewWin) comprises two sequential sub-

routines. The first routine, Initialize-partial-proofs(NewWin) compiles influence re-

132

lations for each of the new win patterns in New Win and then generates new partial

proofs using the compiled influence relations. A partial proof represents a potential

loss pattern and includes an undetermined Op set which describes all those oper-

ators that are available in the pattern for which the outcome is not known to be

a loss. The second routine, Complete-partial-proofs generates new loss patterns by

attempting to complete the partial proofs by reducing their sets of undetermined

operators to empty. A partial proof with an empty undetermined operator set be-

comes a new loss pattern, since it implies that all possible operators available in

the pattern lead to a win for the opponent. The two subroutines are described in

detail below.

The Initialize-partial-proofs (NewWin) Algorithm

This routine has two parts. First, both maintain-true and make-true influence

relations are compiled for each new winning pattern in New Win. Second, each

pattern/action pair from the compiled influence relations is used to generate new

partial proofs.

The first routine for compiling influence relations simply loops through all

new win patterns compiling both make-true and maintain-true influence relations

as defined in Section 5.2:

New Loss 4- 0,
MT Win 4-- 0,
MWin 4-- 0,
V (1)(3), Op wiN,i) ENewWin,

Push(CompileIR(make-true(As .1)(s), OpLoss, S)), MTWin),
Push(CompileIR(maintain-true(As.P(s), OPLoss, S)), MWin).

Partial proofs are represented as (v(s), Op), where v(s) is some pattern and

the undetermined set Op is represented as an operator subspace (introduced in

Section 5.2.1, Page 106). We generate initial partial proofs for each (v(s), OpLoss)

in MT Win and MWin. The patterns of the new partial proofs are simply each v(s),

133

while the undetermined Op sets are initially computed by taking the set difference

of all those operators that are available in v(s) minus OPLOSs , those operators which

maintain-true or make-true some win. More precisely, the initial partial proofs are

generated by the following algorithm:

MPLoss 4 0,
V (vmwin(s), Op) EMWin,

Op 4- {Op' o(S, LOSS, A vmwin(S)}
Push((vmwin(s), Op Op),MPLoss),

MTPLoss 4- 0,
V (vmTwin(s), Op) EMT Win,

Op 4- { OPi I 0(S, LOSS, Opi) A vm-Twin(S)}
Push((vmTwin(s), Op Op),MTPLoss).

The Complete-Pproofs Algorithm

This routine is a sequential, dynamic programming version of the algorithms given

in Section 3.2.1 (on Page 74 and Page 76), adapted to compile all three kinds

of proofs, no-threat, one-threat and many-threat. New loss patterns are derived by

reducing to empty the undetermined Op sets of the existing partial proofs using the

newly compiled influence relations. First, the compiled maintain-true relations are

used to complete both the new partial proofs in MPLoss and previously generated

partial proofs stored in the database PLoss. Next, the compiled make-true relations

are used similarly, this time to complete the new partial proofs in MTPLoss and

all the previously generated partial proofs. The two sets of new partial proofs are

handled differently to prevent redundancy caused by combining the same partial

proofs in different orders. More precisely, the algorithm is defined as follows:

V(v(s), Op) E MPLoss,
Push((v(s), Op),PLoss),

V (vmw(s), Op mw) E MWin,
PP° Lookup-Intersection(vmw(s),PLoss),
Cover-Pproofs((vmw(s), Op mw),PPo,i),

V (v(s), Op) E MTPLoss,
Push((v(s), Op),PLoss),

V (vm-Tw(s), Op mTw) E MT Win,

134

Cover-Pproofs((vw(s), Opw),PP, i)
PP

Then PP= [(1)PP(s), OP PP), 'PPR],
If Op w n 7013 pp =
Then Cover-Pproofs((vw(s), Opw),PPR,i)
Else v0(s) Pattern-Intersection(vw (s), upp(s)),

Op0 Oppp OPw,
If Op° =
Then Store((vo(s), Op°, i),Loss),

Push((vo(s), Op0, i),NewLoss)
Else Store((v0(s), Op0),PLoss),
Cover-Pproofs((vAnw(s), OP miw) 7PPR, i)

Table 7.2: A definition of Cover-Pproofs.

PP]. Lookup-Intersection(VmTW (s),PLOSS),
Cover-PprO0f4(1/MTW(S), OP MTW) ,PP1,i),

The first iteration simply stores all the new partial proofs generated from

maintain-true's into the global PLoss database. The next iteration then works

through the new maintain- tree's using each to complete as many partial proofs as

possible using the function Cover-Pproofs defined in Table 7.2. The remainder of the

algorithm performs similarly, only this time we use the partial proofs and influence

relations generated from make-true's. Note the use of indexing, through the function

Lookup-Intersection (defined in Section 5.4), to obtain only those partial proofs

which could potentially be completed by each make-true or maintain-true.

The function Cover-Pproofs is defined in Table 7.2. It takes as input a single

make-true or maintain-true pattern/action pair (vw(s), Opw), a list of relevant par-

tial loss proofs, PP, and the current depth i. The first test directs termination when

there are no more partial proofs. The second test determines if there is any inter-

section between the make-true or maintain-true operator set and the undetermined

set of this partial proof. If there is no intersection, then this partial proof cannot

Fora Op, o(S,Black,Op)

.... -.6..11

Maintain-true (v1 (S),Op,S)

Make-true(v2(s),Op,S)

0 (2

1111

Make-true (v2(s),Op,S)

0 (3)
Cover partial
proofs with
make-true's

® (5)

Initialize partial
proofs

135

Figure 7.1: Dynamic program deriving a loss pattern from a one-threat proof for

the king-rook-king chess endgame

be completed by the influence relation pattern/action pair and processing continues

with the rest of the partial proofs. Otherwise we form a new partial proof. The

new pattern is found by intersecting the old proof pattern with the vw(s) pattern.

The new undetermined set is found by subtracting the make-true or maintain-true

operator set from the old undetermined set. We then test if the new partial proof

is complete, i.e., the undetermined set is empty. If the set is empty then the partial

proof pattern is stored in the database Loss and the variable New Loss along with

the current depth and the optimal operator. If the partial proof is not complete,

then it is stored in the database PLoss.

We illustrate the algorithm deriving examples of the three kinds of proofs.

A simple one-threat derivation is illustrated in Figure 7.1 from the king-rook vs.

king chess endgame. The top of the figure illustrates the initialization of partial

136

proofs. All operators available to the black king, when located on the lower side

of the board, are combined with the pattern/action pair which maintain-true the

rook-captures-king terminating win pattern. The result is the partial proof labeled

(1) in the figure. Note the undetermined Op set is illustrated on the partial proof

by the 3 possible moves for the kingthose moves whose outcome is not known.

The next relevant step of the algorithm is when the new make-true pattern/action

pairs are used to try to complete this partial proof. The indexing procedure finds

(1) when using those make - tree's labeled (2) and (3) in the figure along with others

not illustrated. For each make-true, the Cover-Pproof function is then called with

pattern (1) as one of the partial proofs. Each make-true is intersected with (1) and

the set difference of the operator sets is computed. With make-true (2), the set

difference operation results in an empty set, so a new loss pattern is derived. This

pattern, labeled (4), describes one of the check-mate patterns for the king-rook-king

ending. With make-true (3), the set difference operation leaves the undetermined

set containing a single operator. This partial proof remains in the global database

PLoss for potential completion by make - tree's or maintain - tree's derived later in

the compilation.

Figure 7.2 illustrates a no-threat derivation from the king-rook-king chess

endgame. The initialization of partial proofs is illustrated at the top of the figure.

Here all moves of the king, when located on the side of the board are combined

with the make-true pattern/action pair illustrated. The partial proof, labeled (1)

illustrates the remaining three undetermined operators. During the next stage,

when the new make-true from this level are used to complete proofs, two of the

undetermined operators are eliminated by the make-true pattern/action pair labeled

(2) resulting in the partial proof labeled (3). This partial proof is not completed

during the compilation of this depth, so it remains in the database PLoss. The

compiler next compiles winning patterns for white (not shown) and then begins

compilation for loss again, this time for patterns of depth 3. At this stage, new

Fora II Op, o(S,Black,Op) Make-true(v1(S),Op,S)

Initialize partial
"41.! proofs

Make-true(v2(S),Op,S)
(2)

Make-true (v3(S),Op,S)

(4)

N.N.N."16:46.1. O

Cover partial
proofs with
make-true's
from depth 1

Cover partial
proofs with
make-true's
from depth 3

137

Figure 7.2: Dynamic program deriving a loss pattern from a no-threat proof for the

king-rook-king chess endgame

138

make-true pattern/action pairs are derived. One such pair is illustrated in the

figure and labeled (4). This make-true is derived from a win pattern which was in

turn derived from the loss pattern found in Figure 7.1. This pattern states that

if the king moves to the right then the resulting position is lost for black, because

the rook can move down to the side and create a check-mate position. The two

patterns (3) and (4) intersect and the single make-true operator eliminates the

remaining undetermined operator of (3), thereby deriving a new loss pattern.

The many-threat proofs are compiled differently from the method described

in Section 3.2.1. Previously, we exploited an equivalent encoding for the many-

threat proofs where it was necessary to prove an empty intersection over operator

sets that make-false the threat patterns. Here we exploit an alternative encoding

where proving loss involves demonstrating that all available operators maintain-

true at least one of the threat patterns. The advantage of this new encoding is that

the algorithms available for compiling the no-threat and one-threat proofs, which

exploit set coverage over operator sets, can be easily adapted to compile many-

threat proofs. Note that during partial proof initialization, proofs are generated from

maintain-true pattern/action sets, where the undetermined Op set is initialized to

those operators that do not maintain the threat pattern. Also note that these same

maintain-true's are used to complete all partial proofs by intersecting new threat

patterns and subtracting those operators which maintain the new threat. Hence,

during this proof completion stage, many-threat loss patterns can be derived by

accumulating threat patterns and showing that all available operators maintain at

least one of the threats.

Figure 7.3 illustrates two different many-threat derivations from the king-

rook-king-knight chess endgame. Note that the figure, because it involves more

than 3 pieces, employs a special notation to denote geometric exceptions. The

rook symbols with the bold lines indicate where the rook must not be, while the

rectangles indicate regions that exclude the black king. At the top of the figure

Fora II Op, o(S,Black,Op) Maintain-true(v1 (S),Op,S)

0 Om

Maintain- true(v2(S), Op, S)

(2)

.0A.0

Maintain- true(v3(S), Op, S)

(3)

aew= 2cwwv w.wwmlem
./..........~,

<
C
I

C

Ct
C
<i...ow..<

139

Initialize
partial
proofs

Cover partial
proofs with
maintain-true's

(4)

0 0
exxxxzzzzzzzzzzzzz 1

Figure 7.3: Dynamic program deriving two loss patterns (4) and (5) from

many-threat proofs for the king-rook-king-knight chess endgame.

140

we illustrate the generation of a partial proof using a maintain-true pattern/action

pair. In this case we use the set of operators which maintain-true the capture of the

king by the white rook. Here king moves along the line of the attack, and all knight

moves, so long as they do not capture the rook, are included in this set. Note that

this pattern does not constrain the knight, which can be anywhere on the board.

The resulting partial proof is denoted (1).

The next step of the compilation algorithm illustrated is when other maintain-

true's are used to complete this partial proof. One such maintain-true is illustrated

as (2). This maintain-true describes the case when the black knight is attacked by

the white king. Two moves of the knight and all moves of the black king, so long

as the king is outside the noted region around the knight and the region around

the rook, maintain-true the knight loss. The result of intersecting the two patterns

is shown in (4). Because the set difference returns the empty set, this pattern is a

new loss. This pattern describes the case where there are two simultaneous threats

by two different pieces: the white rook is attacking the black king, while the white

king is attacking the black knight. The exceptions ensure that the black king cannot

move to protect the knight, or that the black knight cannot capture the rook.

Another maintain-true, which can complete this partial proof, is illustrated

as (3). This pattern describes the case when the rook attacks the knight. No moves

of the knight and all moves of the black king (when outside the excluded regions)

maintain-true the knight loss (since the black king cannot capture the rook or move

to protect the knight). The result of intersecting the two patterns is illustrated as

(5). Here, because the rook is constrained to be at least 2 squares away from the

knight (from (3)), the multiple exceptions on the rook are eliminated. In addition,

because the black king is constrained to be at least one square away from the rook

(from (1)), the exception region for the king around the rook is eliminated. Both

of these simplifications are described in Section 5.2.2.

141

NewWin < 0,
V (v(s), Op, i) ENewLoss,

V (vAfTL(s), Op mTL) E (CompileIR(make- true(7s.v(s), OP WIN' S)),
OWins < Lookup-Intersection(vmu,(s),Wins),
vow(s) < Make-Optimal(vmu,(s),OWins),
If vow(s) # 0
Then Store((vow(s), OP muoi) , Wins),

Push((vow(s), OP muoi),NewWin).

Make-Optimal(vmTL(s),OWins)
If vmTL(s) = 0 V OWins = []
Then Return(vmTL(s))
Else OWins = [vw(s)10Winsti],

Make-Optimal(Pattern-D ifference(vmTL(s), vw(s)),OWins)

Table 7.3: The Compile-all-wins algorithm

This concludes our description of the Compile-all-losses algorithm. The next

section describes the other main routine of the abstract compiler, the routine which

compiles new win patterns.

7.1.2 The Compile-all-wins(Depth,NewLoss) Algorithm

The algorithm for Compile-all-wins is straightforward and follows directly

from the algorithm given in Section 3.2.2. The algorithm works through each new

loss pattern stored on NewLoss and generates those operators for white which make-

true the pattern. To ensure that the resulting pattern/action pair is optimal, none

of the previously compiled winning patterns of lower depth must intersect with

this new pattern. Thus, optimality is enforced by looking up (using geometric

indexing) those previous win patterns that may intersect with the new pattern,

then subtracting them from the new pattern using the function Pattern-Difference

defined in Section 3.1.3, but employing geometric representations. More precisely,

the Compile-all-wins algorithm is defined in Table 7.3.

Figure 7.4 illustrates two simple examples of the Compile-all-wins algorithm

(6)

142

, xxx xxxxxx.),..

Figure 7.4: Dynamic program deriving two optimal win patterns for the

king-rook-king chess endgame. Patterns (1) and (2) are new black-to-play loss

patterns that are used to generate the new white-to-play win patterns (3), (5) and

(6) through the influence relations shown. The patterns (4) and (7) are previously

determined white-to-play wins.

143

deriving optimal win patterns in the king-rook-king endgame. Here the recently

derived loss patterns are illustrated on the left side of the figure. The derivation of

the pattern marked (2) is illustrated in Figure 7.2. The first step of the algorithm

is to derive new win patterns by computing make-true influence relations for white

over these loss patterns. Two new patterns are shown derived for (1), while one is

shown derived from (2). The next step of the algorithm is to make these patterns

optimal. A lookup for win patterns that intersect with win pattern (3) returns

pattern (4), a pattern which wins in 3 ply (derived from the loss pattern shown in

Figure 7.1). Here the call to Pattern-Difference returns empty, since pattern (3) is

subsumed by pattern (4). A lookup for win patterns that intersect with (5) returns

null, so this pattern is an optimal win. An example when the intersection narrows

the coverage of a win pattern is shown in the bottom of the figure where optimal

win pattern (7) is subtracted from win pattern (6). Here the position of the rook is

restricted so as not to attack the king directly.

This concludes our description of the breadth-first compilation algorithm

The next section adapts these algorithms so as to compile the patterns best-first.

7.2 Best-first Search

This section describes the modifications made to the breadth-first search algorithms

to implement best-first search of the abstract search space. The main difference in

searching best-first is that the compilation of patterns for depth i is not necessarily

delayed until all patterns of depth i 1 have been compiled. Rather, a more flexible

control structure is employed, where the best patterns are compiled irrespective of

their depth.

The goal of employing best-first search is to improve the effectiveness of the

compiler. Two issues that influence the effectiveness of the compiler are considered

here. First, as discussed in the introduction to this chapter, we want the compiler to

optimize the compile-time/coverage tradeoff by compiling the most general patterns

144

first. Second, we want the compiler to utilize the limited resources available by

avoiding unnecessary work. An important component of unnecessary work is the

generation of partial proofs that will never be completed during compilation (i.e.,

patterns that represent drawn positions).

To implement such a best-first search, a flexible, agenda-based compiler ar-

chitecture is employed. The sequential compilation algorithms previously defined

are partitioned into a series of independent tasks, whose order of execution can be

determined dynamically. Best-first search then reduces to controlling this execu-

tion order, by picking appropriate tasks off an agenda, so as best to exploit the

coverage/compile time tradeoff and avoid unnecessary work. Given the previously

defined compilation algorithms, there are many ways to partition them into inde-

pendent tasks. A fine grained partition, such as considering each recursive call to

Cover-Pproofs as an individual task, provides great flexibility in control but in-

troduces unwanted complexity. It was decided that a partition of the algorithms

into four tasks provided the appropriate balance between flexibility of control and

complexity. The four tasks are identified below:

Taskl: Compile make-true and maintain-true for LOSS for a new win pattern.

This produces new Task2's.

Task3: Use a single new make-true or maintain-true of win patterns to gen-

erate new partial proofs and cover existing partial proofs. This task can

potentially generate new loss patterns and thus new Task3's.

Task3: Generate non-optimal win patterns by compiling make-true for WIN

for a new loss pattern. This produces new Task4's.

Task/: Optimize a win pattern and make it available for Taski's.

The four tasks represent a simple partitioning of the previously defined al-

gorithms for breadth first search. Task1 is the first part of the algorithm Initialize-

Partial-proofs (defined on Page 132), which compiles influence relations for the new

145

win patterns. Task2 is a combination of the second part of Initialize-Partial-proofs,

where new partial proofs are generated from a compiled influence relation, and

Complete-Pproofs (defined on Page 133), where compiled influence relations are

used to complete existing partial proofs. Task3 and Task4 partition the algorithm

Compile-all-wins defined in Table 7.3.

To simplify the implementation, each set of like tasks is stored on its own

agenda, rather than storing them all on the same agenda. The overall control

procedure cycles through the four agendas, 1 through 4, choosing tasks and running

them. There are two decisions that must be made with each agenda: (a) Which

task to pick to execute, and (b) when to move to the next agenda. Both these

decisions are made by applying a set of heuristic preference rules. Below we give

the rules for choosing tasks off the agendas:

Task 1 : Prefer compiling make-true and maintain-true for the win pattern that

is most general (i.e., one that has the greatest extension) and simplest (i.e.,

one with a low count of exceptions). The generality of a pattern is determined

by the function Estimate-coverage which is defined below.

Task2: Prefer using the influence relation pattern/operator-set pair with the

most general pattern and the largest operator-set.

Task3: Prefer compiling make-true for the most general and simplest win

patterns.

Task.: Prefer optimizing the most general non-optimal win patterns.

These preference rules implement best-first search by addressing three issues

which influence the effectiveness of the compiler introduced above:

Compile/time coverage tradeoff. The preference rules exploit the compile-time/

coverage tradeoff in two ways. First, by consistently preferring the most gen-

eral patterns at all stages of compilation, more general loss and win patterns

146

are identified earlier. Second, by preferring make-true and maintain-true in-

fluence relations with the largest operator sets at task2, new loss proofs are

completed earlier. An early completion for a pattern means that the pattern

was derived from an intersection of fewer make-true and maintain-true pat-

terns. Since each pattern intersection tends to reduce the generality of the

resulting pattern (i.e., given any two patterns pi and /32, then pi (1 p2 C pi and

pi fl /32 C p2 is always true) fewer intersections lead to more general patterns.

Generating uncompletable patterns. It is very difficult to determined before

hand if a partial proof generated is ever going to be completed and thus

form a new loss pattern. However, it is true that more general partial proofs

are more likely to intersect with make-true or maintain-true patterns during

future proof completion operations. Hence, general partial proofs are more

likely to be completed. In addition, by preferring make-true or maintain-true

with large operator sets, partial proofs with smaller undetermined sets will be

generated, which are more likely to be completed.

We have described the preference heuristics used to choose tasks off the

agendas, but we have not yet described the heuristics which decide to move on

to the next agenda. This decision for moving among tasks 1, 2 or 3 is based on

a simple evaluation function that estimates the generality and simplicity of the

pattern or partial proof produced. A different agenda is chosen when the best task

of the current agenda has a lower evaluation than a task on a different agenda.

The only difficult decision to be made is when to move to agenda 4 and run a

task. Each task on agenda 4 will generate a new optimized win pattern and a

new taskl. If the previous depths have not been completely compileda likely

event in best-first searchthen this process may produce only sub-optimal win

patterns. This problem arises because without knowing all previous win patterns,

it is impossible to determine for sure that the current win pattern does not include

some win pattern for a shorter depth solution. Since in performing best-first search,

147

we are not prepared to wait for all lower win patterns to be compiled, there is a

tradeoff between optimality and the eagerness of the best-first search. More eager

best-first search processes produce less optimal databases.

All that remains to be done is to define the function Estimate-Coverage used

to assess the generality of a pattern. This can be accurately computed by exploiting

the geometric representation of patterns. Recall that in Section 5.1 we introduced

the geometric representation of a pattern which included a set of rectangular regional

constraints for each object in the pattern. One simple way to estimate the extension

of a pattern is to form the product of the extensions of each object's rectangular

region (computed as height x width). However, this would lead to a gross over

estimation, since often objects are mutually constrained. In this case, the regional

constraints are enumerated into individual coordinates and a count of successful

instantiations is made.

7.2.1 Summary

This chapter has introduced a dynamic programming approach to compiling ab-

stract databases. First we presented a breadth-first search approach that works

backwards from the initial termination patterns, completely compiling each depth

before moving on to the next depth. We then introduced a best-first approach

that again performs a backwards search from the termination patterns, only this

time in a more flexible way in order to improve the effectiveness of the compila-

tion process. We showed how best-first search can be implemented by restructuring

the algorithms presented for breadth-first search into an agenda-based organization.

We also demonstrated that the benefits for best-first search do come at the cost of

optimality.

Chapter 8

Experimental Evaluation

This section reports on experiments on an implemented compiler'.

8.1 Evaluation Criteria

To evaluate the effectiveness of the method introduced in this work, the following

criteria are considered:

Abstraction Effectiveness: The principal goal of abstraction is to reduce com-

plexity. In this context, abstraction is employed to reduce the size of the

search space explored during compilation and hence the size of the resulting

database. In this evaluation we consider the effectiveness of the abstraction

by comparing the abstracted search space with the original extensional search

space.

Compiler Effectiveness: For the compiler to be effective it must use a "reason-

able" amount of time and space when generating a database. In particular,

the additional complexity of working with abstractions must not negate any

benefits. In this evaluation we consider how coverage over a given domain is

accumulated with compile time for the two control strategies introduced in

Chapter 7, breadth-first and best-first search.

'The compiler is implemented in common lisp, and all experiments were run on a Sun SPARC2

station with 56M of real memory.

149

Utility of Compiled Knowledge: The principal goal of knowledge compilation

is to improve problem-solving performance. Hence, it is important to evaluate

the efficiency of using the generated databases to solve problems. Previous

work has noted that due to inefficient matching and an overproduction of

useless patterns, performance can actually degrade with learning. In this

evaluation we test the cost of using the database as it grows.

Generality of Approach: It is important to assess the generality of the method,

and in particular, to understand how the characteristics of a domain affect

the method's effectiveness. In this evaluation we demonstrate the compiler in

two different counter-planning domains.

To perform this evaluation we have chosen two similar counter-planning do-

mains: chess and checkers. In particular, we have performed much of the evaluation

with two sub-domains of chess: KRKN, where the pieces are restricted to a white

king and rook against a black king and knight, and KRK, where the pieces are a

white king and rook against a black king. These two endings are difficult to play

well, even for experts, who have been shown to rarely play optimally or even cor-

rectly with problems from KRKN [Kopec and Nib lett 80]. A further advantage with

working with these endings is that they have been extensively studied for abstrac-

tions [Quinlan 83], [Bratko and Michie 80], [Bratko 84] and extensional databases

are available for checking the correctness of the compiler.

8.2 Abstraction Effectiveness

There are two characteristics of a search space that measure its complexity: the

number of states and the branching factor. In this evaluation we compare both

quantities in the extensional space and abstracted space for KRK and KRKN chess

endings. Figure 8.1 and Figure 8.2 illustrate the number of individual positions

and the number of patterns generated by the breadth-first compiler for the KRK

1000

1000

Count 100

10

10 15 20 25 30 35 40 45 50
BTM Ply

150

Figure 8.1: The number of instances as a function of ply for the problem KRK

with black-to-move and lose compared to the number of patterns generated by the

compile. Note the log vertical scale.

1000

1000

Count 100

10

10 15 20 25 30 35 40 45 50
WTM Ply

Figure 8.2: The number of instances as a function of ply for the problem KRK

with white-to-move and lose compared to the number of patterns generated by the

compile. Note the log vertical scale.

le+06

10000

1000

Count1000

100

10 20 30 40 50 60
BTM Ply

151

Figure 8.3: The number of instances as a function of ply for the problem KRKN

with black-to-move and lose compared to the number of patterns generated by the

compile. Note the log vertical scale.

le+06

10000

10000

Count1000

100

10 20 30 40 50 60
WTM Ply

Figure 8.4: The number of instances as a function of ply for the problem KRKN

with white-to-move and lose compared to the number of patterns generated by the

compile. Note the log vertical scale.

0.6-
Branching

factor
ratio

0.4-

I I

40 50 60

152

Figure 8.5: The average ratio between the branching factors of the abstract search

space and the extensional search space as a function of ply for black-to-move. Both

KRK and KRKN endings are shown.

ending. Figure 8.3 and Figure 8.4 illustrate the same information for the KRKN

ending. Both graphs give the number of positions and patterns as a function of the

ply of the position to a win or a loss.

There are a few significant features to notice in these graphs. First, the

vertical scale is logarithmic, and hence, the difference between the two lines is

a measure of the ratio between the size of the two spaces. Second, the line for

the abstracted space does not extend to as deep a ply as the extensional space,

which is given to the maximum possible ply. This is because of the large memory

requirements of the abstract compiler and is discussed in Section 8.3. Third, the

extensional data shown reflects a four-fold reduction obtained by taking into account

rotational symmetry. Finally, note the distribution of instances with ply for both

domains. In KRK, most of the examples are of larger ply, while the opposite is

true for the KRKN ending. This characteristic of the domain is significant, since it

influences the effectiveness of the compiler, and will be discussed in Section 8.3.

153

Figure 8.5 illustrates the effect of abstraction on the branching factor of the

space for both chess endings. The vertical axis gives the average ratio between the

extensional branching factor and the abstract branching factor as a function of ply.

Only the branching factor for blackthe losing sideis given. For a position in the

KRKN ending when both black pieces are in the center of the board, the extensional

branching factor is 16. This is reduced in some cases in the abstract database to

3 or 4, for example, where there is a threat on one piece and all moves of the

other piece maintain the threat. This is the reason why in the KRKN ending, the

effectiveness of the abstraction in reducing the branching factor initially improves

with ply. At the start, the majority of the low ply patterns involve pieces trapped

on the side, but as the ply increases, more patterns involve pieces in the center of

the board, leading to a larger extensional branching factor and an improvement in

the effectiveness of the abstraction.

8.3 Compiler Effectiveness

Figure 8.6 illustrates the compiler generating an abstract database for the KRK

ending. The percentage of extensional instances covered in the domain is given as a

function of elaped time'. Results when using the best-first and breadth-first control

structure are shown. The steps in the graph for breadth first search, not present

in the best-first graph, are caused by the compiler sequentially stepping through

each ply. The four principal stages of the compiler described in Section 7.1 can be

identified in the graph. The horizontal period of no growth in coverage at 23 signals

that the compiler is analyzing new Won-in-23-ply patterns and producing new make-

true and maintain-true influence relations with black-to-move. The following period

of slow growth corresponds to the partial proof coverage and generation stage,

2For times less than 15000 seconds this time is approximately 100% of cpu time, since no other

significant processes were running on the machine. After 15000 seconds real memory was ex-

hausted causing cpu utilization to drop to less than 10%.

Breadth-first
Best -first

60

% Covered

40

IIIIIIIII
5000 10000 15000 20000 25000 30000 35000 40000 45000 50 00

time (sec)

154

Figure 8.6: The percentage of extensional instances covered as a function of the

compile time for the KRK problem when using Breadth-first search and Best-first

search. The numbers marked on Breadth-first search are the Ply achieved.

100

80

60

% Covered

40

20

155

readth-first
Best -first

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Time (Sec)

Figure 8.7: The percentage of extensional instances covered as a function of the

compile time for the KRKN problem when using Breadth-first search and Best-first

search.

156

where new loss patterns are derived, in this case we generate new Loss-in-24-ply

patterns. The next period of no growth corresponds to the other analysis stage,

where influence relations with white-to-move are compiled for the Loss-in-24-ply

patterns. This stage produces a list of new non-optimal Win-in-25-ply patterns. The

final period where coverage is rapidly accumulated is when the compiler optimizes

the non-optimal wins by removing intersecting wins of lower ply. The new optimal

wins are now available for a repeat of the first analysis stage that produces new

make-true and maintain-true influence relations with black-to-play.

Figure 8.7 illustrates the compiler generating an abstract database for the

KRKN ending. Here the steps in coverage accumulation during breadth-first control

are not as pronounced due to the smaller number of patterns generated at each ply.

In both graphs and under both control strategies, the rate of coverage accu-

mulation declines considerably after approximately 15000 seconds (7---- 4 hours) due

to the compiler exhausting the real memory available. Swapping behavior is partic-

ularly inefficient because the dynamic program regularly sweeps through memory.

8.4 Analysis

An important characteristic of the compiler under either control strategy is the

rapidity with which coverage is accumulated initially. This is more pronounced in

the KRKN problem, where 80% coverage over the domain is achieved within only

50 minutes of run time. This rapid growth in coverage is an important advantage

of the abstract approach compared with to the extensional approach. With an

extensional database generator given the same patterns, no coverage is accumulated

initially, since the compiler must first enumerate the patterns into instances in

order to initialize the database. Following this stage, coverage is then accumulated

linearly. While it is difficult to compare the two methods directly due to differences

in implementation, these results show that the abstract database approach is most

effective at accumulating coverage initially, while the extensional approach is least

157

Coverage

Goal

KRK KRKN

Breadth Best Breadth Best

50 102 62 31 18

60 275 88 48 27

70 - 176 65 42

80 100 66

90 280 122

100

Table 8.1: Time in minutes needed to reach a coverage goal when using best-first

or breadth-first search

effective initially.

In both cases the best-first search strategy accumulates coverage faster than

breadth-first search. In the KRK ending, it enabled more of the domain to be

covered in the time available. In the KRKN ending, the advantage was less pro-

nounced. Table 8.1 gives the run times needed to achieve a given coverage for both

search strategies.

In comparing the performance between the two sub-domains, it is interesting

to notice that the compiler performs better in the KRKN ending, although that

ending is larger than the KRK ending. This can be explained two ways. The first

reason is that the distribution of the instances in the two endings is different. In

KRK, the majority of the instances are of higher ply, while in KRKN the majority

of the instances are of lower ply. Since the compiler works from low ply to high

ply and must work within resource limitations, it does not have the opportunity

to compile patterns for higher plys. Hence, only low coverage was achieved in the

KRK ending because the compiler did not reach the higher ply patterns where much

of the potential coverage exists. The second reason is that with more pieces, there

20

15

Average
Lookup 10Time
(mSecs)

5

0
0

I I i III II
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Patterns Compiled

158

Figure 8.8: The average lookup time (in mS) as a function of the number of patterns

produced by the compiler for the KRK ending

is more opportunity for generality in the patterns. Given a three piece pattern

with coverage q, an additional piece has the potential to produce a pattern with

coverage 61 x q. Indeed, this is exactly what has occurred when we compare the

patterns produced in the KRK ending to those for the KRKN ending, especially in

low ply patterns. For example, the KRK pattern describing a check-mate (such as

in Figure 7.2) describes only 25 instances, while the equivalent KRKN loss pattern

describes 1450 instances.

8.5 Utility of Compiled Knowledge

The compiled database is used to solve a given problem or play against an op-

ponent by looking up the current instance in the appropriate database whenever

the compiler must make a move. Hence, the principal cost during performance is

lookup time in the database. Figure 8.8 gives the average lookup time for a random

sample of instances as a function of the number of patterns stored in the database.

100

80

60 J
% Covered

40

20

Breadth-first

I I I 1

10 20 30 40 50
time (sec)

60

159

Figure 8.9: The coverage achieved as a function of run time for a king-man ending

in checkers.

As would be expected, the lookup time grows with the size of the database. The

observed linear rete is due to using a combination of the geometric indexing de-

scribed in Section 5.4 and linear search. Only the locations of the first two objects

in the pattern are indexed using the rectangle tree approach, the remaining test is

performed by linear search. The lookup time of 5 to 10 mS means that it takes ap-

proximately 230mS to produce a 34 ply solution sequence for a difficult problem in

KRKN. Solution time is linear in search depth using the abstract database, rather

than exponential with a brute-force problem solver.

8.6 Generality of Approach

It is difficult to accurately assess the generality of the approach presented here.

The method only works in counter-planning domains and due to the restrictions

of geometric representation, it appears suitable only for chess-like domains that

are played on a quantized 2D playing surface. Other restrictions include the need

for the operators to move objects in space and the requirement that the operators

100

80

60
% Covered

40

20

Breadth first

10 20 30
time (sec)

40 50 60

160

Figure 8.10: The coverage achieved as a function of run time for a king-king ending

in checkers.

be describable as geometric constraints between the originating and destination

locations. Although restrictive, most popular games satisfy these constraints.

Previous work in abstraction in counter-planning has been very problem spe-

cific, with abstraction methods developed for one ending unusable in other endings

[Seidel 86]. Abstractions have even been limited to a given ply, with an abstrac-

tion developed for n ply failing to help in developing abstraction for n + 1 ply

[Quinlan 83]. The abstraction mechanism presented here must be evaluated in this

context, more fully described in Section 9.4. The fact that the abstraction mecha-

nism works effectively in two different endings and across ply is therefore significant.

Moreover, the initial encoding of the domain theories is simple and requires no spe-

cial engineering, since it employs a generic geometric representation for describing

objects in space.

To further demonstrate the generality of the method, the compiler was ap-

plied to some simple endings in checkers. This game is similar to chess in that it

is played on the same board, but uses only 32 of the squares. The moves of the

161

pieces can be described as linear constraints relating the originating and destination

locations, as in diagonal king moves in chess. The results are given in Figure 8.9

for the ending where a king wins against an opponent's man and Figure 8.10 for

the ending where a king wins against an opponent's king.

Chapter 9

Related Work

This chapter describes related work in knowledge compilation and abstraction in

counter-planning. The first section discusses knowledge compilation approaches to

improving search-based problem solvers. Emphasis is on techniques like the one in-

troduced in this thesis that aim to completely eliminate search during performance.

The second section discusses abstraction methods in counter planning. Emphasis

is on applications in chess or related games.

For reasons of brevity and focus, this chapter discusses only topics that

are directly related to this thesis. Thus, example-driven improvement of problem

solvers, such as explanation-based learning approaches [Minton 88a], are not dis-

cussed. Also excluded is work in automatically generating abstractions for problem

solvers in single agent domains, since none of these approaches are successful in

counter-planning domains. See [Tenenberg 87] and [Knoblock 90] for a review of

these approaches.

9.1 Knowledge Compilation

Knowledge compilation is a broad field concerned with improving the performance

of intelligent systems. This review considers only knowledge compilation approaches

applied to problem solvers that either employ methods similar to those described in

the thesis or have the same goal of eliminating problem solving search at run time.

163

[Braudaway and Tong 89] presents a compilation method that improves a

generate and test problem solver in the domain of floor plan design. Initially,

good designs are simply stated as constraints that can be used as a test to reject

or pass candidate designs. Knowledge compilation seeks to improve performance

by incorporating some of the constraints from the test into the generator. This

work is related to the abstract enumerator in that both systems employ geometric

representations to encode constraints. In [Braudaway and Tong 89] a floor plan

is represented as a set of linear inequalities among the coordinates of the rooms,

while in the enumerator patterns are represented as sets of linear equalities among

the coordinates of the playing pieces. The computational advantages of geometric

representations (discussed in Chapter 6) are demonstrated in this work, since test

incorporation becomes enumerating and simplifying sets of linear equationsthe

same process described in Section 5.2 to compute the influence relations.

[Schoppers 87] present a compilation method that eliminates costly planning

for a robot trying to achieve goals in an unpredictable environment. The compiler

constructs a "reactive plan," which is a database of problem-situation/best-action

pairs, that quickly recommends the best action to take in any situation that the

robot may encounter. This reactive plan serves the same function as the abstract

database constructed in this thesis and has the same principal advantage: fast per-

formance time. The planning domain differs from the chess domain since in planning

there are many possible goals that could be achieved and the reactive plan needs to

consider these goals in addition to the current situation when deciding which action

to take. The database is constructed using a simplified reverse enumeration method

suitable for single agent domains. Given some goal to achieve, situation patterns

are created by back-chaining with actions that could achieve the goal, and enumer-

ating cases depending upon whether the preconditions are assumed true or false.

The method has been applied successfully to simplified blocks world problems, but

suffers from the same exponential growth in database size discussed in Chapter 1.

164

[Ginsberg 89] presents a criticism of [Schoppers 87] and the reactive plan ap-

proach in general. This criticism applies equally to the approach in this thesis, since

the abstract databases constructed are equivalent to reactive plans. The principal

problem with the approach according to Ginsberg is the potential size of the reac-

tive plan, since it is at least an exponential function of the number of features with

which the situations are described. He presents a simple counting argument similar

to the one made in Chapter 1 to show this. In companion articles defending their

positions and refuting Ginsburgs arguments, [Schoppers 89] and [Chapman 89] ar-

gue that the assumptions underlying the counting arguments are flawed and present

evidence that in some cases simple reactive plans can be constructed to solve com-

plex problems. [Schoppers 89] argues that the mapping represented in a reactive

plan is not arbitrary and any regularity present can be exploited to considerably

reduce its size. This argument is true in chess endings as the results in Chapter 8

demonstrate. However, the exponential growth cannot be completely eliminated

and some combination of search or planning with reactive plans may be necessary

as advocated by Ginsberg.

[Chapman 89] presents an implementation of a reactive system that effec-

tively solves a toy problem (the fruitcake problem) which Ginsberg argued (above)

could not be solve by reactive plans. The system employs a specialized visual repre-

sentation of situations that overcomes the problem with the size of universal plans.

The abstraction achieved through visual representations is very powerful since it

employs visual markers that denote functionally significant objects in the situation

and avoids the intractability of variable binding needed in logical representations

(see [Agre and Chapman 88] for more details). The method has been applied suc-

cessfully to activities such as playing video games [Agre and Chapman 87] where

abstraction is achieved by employing visual markers on objects such as "the-bee-

that-is-chasing-me." Similar abstractions are suggested in chess where functionally

significant objects such as "the-piece-that-is-threatening-my-king" or "the-piece-

165

that-is-blocking-my-pawn" are relevant. Although the approach appears to avoid

the problem with exponential growth, these abstractions to date have been manu-

ally engineered. This suggests that an important research problem is to construct

compilers that can automatically derive such visual representations directly and

avoid the construction of universal plans or abstract databases.

9.2 Abstraction in Counter-planning

The importance of abstraction in counter-planning was recognized in [de Groot 65]

and [Chase and Simon 72], where it was determined that human experts represent

their knowledge in chunkspatterns that describe significant arrangements of play-

ing pieces. Much of the work in abstraction in games has focused on the role of

these patterns in problem solving. Two issues have been emphasized: (a) How are

the abstractions effectively exploited during problem solving? and (b) What do

the abstractions represent and how are they derived? Although these two issues

are difficult to view in isolation, the following review is partitioned by considering

each question in turn. The first section considers work that emphasizes the use of

abstractions in problem solving, the second section considers work that emphasizes

the form and derivation of abstractions.

9.2.1 Abstraction in Problem-Solving

[Wilkins 80] presents a system called PARADISE that solves complex mid-game

positions in chess using high-level abstractions and flexible planning. The em-

phasis was on solving tactical problems where the losing player was strongly con-

strained by multiple threats. All the abstractions where hand-engineered and in-

volved terms such as "can-safely-move-a-piece" and "safely-capture-a-piece." The

principal achievement of this work was to demonstrate the effectiveness of abstrac-

tions in reducing the search space needed to solve complex problems by 4 to 5 orders

of magnitude, to around 150 positionsa number comparable to that searched by

166

human experts.

[Campbell 88] presents a system for solving difficult problems in pawn end-

ings through an abstraction mechanism based on chunking. In pawn endings, be-

cause of the limited freedom of movement, a problem can often be decomposed into

subproblems based on the proximity of pawns. This work presents a technique that

groups nearby pawns and kings into chunks and then solves the problem by con-

sidering the interactions among pieces in a chunk independent of the interactions

among chunks. The behavior of a chunk is characterized by computing abstract

features such as the number of pawns in the chunk, whether one side has a tempo

move, whether a pawn can queen or whether the king can capture enemy pawns

without allowing a pawn to queen. These properties of the chunks present in a

given problem determine the space of specialized plans that is searched. Although

the grouping mechanism employed to form the chunks and the abstract features

computed were carefully engineered, this work demonstrates how abstraction can

effectively reduce the search space in chess pawn king endings enabling errors to be

identified in published play.

[Tadepalli 89] presents an integrated problem-solving and learning system

that is capable of automatically learning useful abstractions from problem solving

experience and effectively using that knowledge to solve problems in king pawn end-

ings. The learning method analyzes training examples that are carefully chosen to

exercise gaps in the system's knowledge. The main focus of this work was to over-

come the inherent intractability of problem solving and learning in counter-planning

domains, due to the need to consider all possible actions by the opponent. Two ideas

are explored: lazy explanation-based learning, which learns from incomplete expla-

nations and then incrementally corrects the errors that are necessarily introduced,

and optimistic counter-planning, which flexibly combines chunks or macros learned

from small problems to solve larger problems. A difficulty with the approach is that

the system does not know when its knowledge is incorrect and depends upon an

167

external agent to identify and correct (through supplementary training) any errors

detected. Since these errors are caused by an incomplete search, this implies that

the external agent must have performed a more thorough search than the system.

The principal achievement of this work is that it introduces a mechanism to auto-

matically learn useful abstractions, such as removing protection and freeing a lane

for queening, with the minimum of initial domain theory engineering.

[Bratko and Michie 80] present two carefully engineered systems that solve

most problems in the KRK and KRKN endings correctly but non-optimally. The

emphasis is on encoding sufficient knowledge in the form of advice that can be

combined with some limited search at performance time to effectively solve most

problems. Advice is a set of patterns that when true recommend goals that should

be achieved and maintained during look ahead search. An example of advice from

the KRK ending is the following: when the area where the opponent's king is safe is

decreased and the opponent's king cannot attack our rook and the rook divides both

kings and stalemate is not possible, then look for a way to further constrain the safe

area of the opponent's king. The advice language incorporates abstraction in two

powerful ways. First, the patterns that determine which advice is relevant partition

the problem space into large equivalence classes. Second, the right hand sides of

the advice provide only constraints on the moves rather than particular moves to

make. For these reasons, only 5 rules incorporating 9 features were needed to solve

problems in the KRK ending, while only 12 rules incorporating 14 features were

needed for the KRKN ending. Although it was not clear how much of the two

domains each advice table covered or by how much the resulting play extended the

optimal play, this work illustrates the power of manually designed abstractions in

concisely capturing complex problem solving knowledge.

168

9.2.2 Abstraction Form and Derivation

[Seidel 86] presents a method for generating an abstract database for the KRK

ending that is correct but non-optimal. The method is similar to the one presented

in this thesis, since it generates the abstract database by reverse enumeration from

initial patterns. However, it is less general since it requires a specialized encoding

of the board in terms of a ring structure, suitable only for the KRK ending. Losing

patterns are derived by demonstrating that all moves of the king lead to known

winning patterns, while winning patterns are derived by applying one of a hold

transition (a waiting move), a rook production, or a king production to known loss

patterns. The method developed iterative schemes for patterns that are lost or

won in greater than 8 ply. For non-iterative patterns, the count of patterns derived

for each ply was approximately half that reported in Chapter 8 (due to the use of

reflective symmetry).

In Chapter 6 of [Michie, 82], a review of manually engineered abstractions

in the KRK ending is presented as well as a method that automatically generates

an abstract database for the ending when played on an infinite board with only

one corner. This method, although limited to a simplified problem with only three

pieces, formed the basis for the one presented in this thesis. The method performs

backward abstract enumeration by generating new patterns from preimages of ex-

isting patterns. Patterns are represented geometrically, by x and y offsets from the

black king enabling efficient indexing. Iterative schemes are produced for problems

that are won or lost in greater than 6 ply. The procedure produced a small table

of 11 patterns that completely describe an optimal and correct strategy to win the

ending from any opening position. The principal disadvantage of the method is its

limitation to the one simplified ending.

[Beal and Clark 1980] presents a semi-automated method for generating an

abstract database in the KPK ending that can correctly determine whether a given

position is a win or a draw. The first step in the method was to manually identify

169

non-stalemate termination patterns and repeated patterns that enable the pawn to

advance one square safely. The second step in the method was to semi-automatically

derive patterns that led to these known patterns via a backing-up procedure. This

backing-up procedure manipulated patterns consisting of many specially chosen ge-

ometric features such as "the maximum of the row distance or the column distance,"

and "the number of king moves needed to reach the target square taking squares

blocked by the pawn into account, but not squares blocked by the other king." The

complexity of geometric features made the backing-up procedure impossible to fully

automate, but led to patterns much more general than were derived by the method

presented in this thesis. The authors comment that "... these descriptions were

generated ad hoc as the need for them arose. No systematic deductive method of

obtaining them is apparent." This thesis presents such a method for determining

appropriate descriptions using a generic and much simplified geometric vocabulary.

[Quinlan 83] presents a method for learning the concept lost-in-n-ply for small

n for the KRKN ending. The concept was learned by applying the ID3 inductive

learning algorithm to examples described by a set of manually engineered abstract

features. The bulk of the effort in achieving correct performance was in the engi-

neering of these features. Quinlan estimates that 2 man-weeks of work was required

to produce the lost-in-2-ply features, 3 man-months of work was required to pro-

duce the lost-in-3-ply features while efforts were abandoned for lost-in-4-ply, since

the problem was considered too difficult. The difficulty of engineering suitable ab-

stractions in chess is well illustrated by this work, especially considering that during

this development process, the complete database of all example positions was avail-

able to evaluate features that were developed. [Quinlan 83] concludes with some

approaches to automatically deriving useful features through clustering of training

examples based on geometric constraints over the coordinates of the pieces involved.

[Utgoff 86] presents an approach for generating concepts in chess using a

method from single-agent domains known as constraint-back propagation. The

170

method uses a sequence of moves that terminates in a recognized goal such as

safely capturing a piece. To derive new concepts, this terminating goal is "back-

propagated" through a generalized form of the original move sequence. In this way,

concepts that indicate goal achievement in the future can be derived. The method

is not easily extended to counter-planning, where it is difficult to back-propagate

goals through the losing player's move, since to ensure correctness, all possible such

moves must be considered. To avoid these problems, the only conditions where the

method can be applied is when the losing player is restricted to only one movea

forced move. Even then, moves that could exist in the generalized concept, but were

not present in the example, must be considered if they could affect the remaining

move sequence. For example, if in the given move sequence the losing player was

forced to move away, allowing the winning player to capture, the back-propagation

mechanism must consider the option for the losing player to take the capturing piece,

even though these moves where not observed in the move sequence. [Minton 84]

reported on a similar method that required additional "forcing conditions" to be

conjoined with the derived patterns to ensure that only one losing move was possible.

[Muggleton 88] presents a method for automatically deriving chess strategies

by grammar induction over optimal and correct move sequences. To demonstrate

the approach, a sub-problem was chosen from the extremely complicated KBBKN

ending where a trapped bishop must be freed from a corner in less than 12 moves

under any opponent responses. A suitable vocabulary of attributes and actions with

which to describe the strategy was first developed with the help of A. Roycrofta

chess expert. Only four relatively simple attributes were needed, including whether

white was free to take the black knight and whether the white king is on the same

diagonal as the release position (where the bishop can escape). Four actions where

needed including white taking the knight and white moving the king towards the

release position. Following careful choice of training sequences, the induction al-

gorithm was able to derive a small set of rules that could solve the problem and

171

were easily understood by the chess expert. While this work demonstrated that

sequence induction algorithms can succeed in deriving generalized strategies from

correct move sequences, the method still requires considerable vocabulary engineer-

ing by human experts who understand the target strategy. Thus, the generality of

the approach cannot be determined from this single case.

[Gould and Levinson 1991] introduces a method called experience-based learn-

ing applied to improving a chess playing system which looks ahead only one ply.

The method combines a variety of traditional machine learning approaches includ-

ing genetic algorithms, evaluation function learning, temporal difference learning

and simulated annealing. What is most interesting about this work is the lack of

careful vocabulary engineering needed to represent chess patterns, in contrast to al-

most all previous work reviewed. Chess patterns are represented as subgraphs where

nodes represent pieces and edges represent simple attacking or defending relation-

ships. Little other chess-specific knowledge is build in. To improve problem-solving

performance, new patterns are created from analysis of played games and more im-

portantly, patterns are assigned an evaluation depending on whether they took part

in successful or unsuccessful play. Fundamental concepts such as the disadvantage

of being a piece down were automatically discovered. The principal limitation of

the approach is the simplicity of the problem solver being improved (only one ply

look ahead) and the reliance on an external agent who currently must be a better

player.

[Fawcett and Utgoff 1991] presents a method that aims to overcome the prin-

cipal weakness of much of the work in abstraction in gamesthe need to carefully

engineer an appropriate vocabulary. The method has been applied to the game of

Othello and automatically generated features such as semi-stable square and fron-

tier that had been manually engineered in previous systems [Rosenbloom 82]. The

method takes a transformational approach to feature generation where new fea-

tures are derived by applying transformations (such as decomposition, abstraction,

172

regression and specialization) to existing features. Initial features are derived from

the defined goals of the problem domain. The generality of the approach has been

well demonstrated by applying the method to two distinct domains, Othello and

telecommunications network management. However, it is not clear how successful

the method would be in a complex game like chess or how dependent the method is

on the initial encoding of the operators and the goals of the domain. For example,

it is difficult to see how many interesting features could be derived when the goal

in chess is defined as simply capturing the opponent's king.

9.3 Summary

This chapter has reviewed previous work in knowledge compilation methods that

aim to eliminate problem-solving search and abstraction methods applied to counter-

planning domains with emphasis on chess. This review of knowledge compilation

approaches has reinforced the need to consider more flexible target problem-solvers,

rather than the reactive plan approach explored in the thesis. Our review of abstrac-

tion methods has demonstrated the extreme difficulting in successfully designing

abstractions manually, yet illustrated the importance of abstraction in simplifying

problem-solving in counter-planning domains.

Chapter 10

Conclusions and Future Work

10.1 Summary

The reverse enumeration approach has proved useful in generating efficient and cor-

rect problem solvers in counter-planning, but at a cost exponential in problem size.

This thesis has investigated modifying the approach to alleviate this exponential

growth. In particular, this thesis has introduced the following:

An abstraction mechanism that enables the reverse enumerator to use pat-

terns, rather than instances. The patterns are defined by the influence theory,

where each pattern is an equivalence class of instances with respect to the

goal achieved and the tactic used. A geometric representation of patterns is

employed to ensure that the computation involved is polynomial.

A best-first control structure that optimizes the resources used by the reverse

enumerator. The compiler attempts to find the most general and simplest pat-

terns first thereby maximally exploiting the tradeoff between the time spent

compiling a domain and the coverage achieved over the domain.

10.2 Contributions

The following is a list of major contributions of this thesis:

174

1. A method for automatically determining correct abstractions in counter-plann-

ing. This is significant since in the past counter-planning abstractions have

either been laboriously hand engineered [Quinlan 83] or engineered semi-auto-

matically with the aid of a computer [Michie, 82], [Muggleton 88]. Moreover,

weak abstraction approaches, which have proved successful in single agent

planning domains [Knoblock 90], are ineffective in counter-planning.

2. A method that demonstrates the effectiveness of a general purpose geometric

representation for capturing and efficiently processing abstractions. With-

out the use of geometric representations, the compiler would be hopelessly

intractable and the performance of the compiled database would degrade

severely as its size grew to hundreds of patterns. This result strengthens

the arguments made in [Braudaway and Tong 89] and [Levesque 86].

3. A method for optimizing the performance of a knowledge compiler by heuristi-

cally controlling backwards search to prefer generating the simplest and most

general patterns. This approach is effective in domains that are so large that

it is impractical to run the compiler to completion.

4. A demonstration of the 80/20 phenomenon in chess endgames and its exploita-

tion in an abstract database compiler. This phenomenon enabled the compiler

to quickly construct a small database of patterns that covered most of a do-

main. The 80/20 rule has been demonstrated in other domains where the

goal has been to construct abstract problem-solvers [Agre and Chapman 87]

and [Kaelbling 90]. It is not clear whether the phenomenon can always be

exploited, nor is it clear what characteristics of a domain lead to this phe-

nomenon.

175

10.3 Limitations of the Thesis

A principal weakness of the method is the ineffectiveness of the abstraction mech-

anism when the depth of the pattern grows. In all examples it was found that

the coverage of the patterns tended to decrease with depth; eventually the abstrac-

tion mechanism became completely ineffective as the patterns became instances.

This effect was moderated by the trend for the count of instances at each depth to

diminish in the KRKN ending and others.

Another weakness of the method is its sensitivity to the initial representation

of operators and patterns. In the cases where the terminal patterns were specific

(as in the KPK ending) the abstraction produced only specific patterns. A specific

representation of operators compounds the problem. Notice that in the domains

that involve sliding pieces (such as the rook in the KRKN ending) the compiler pro-

duced effective abstractions, while in domains that involve only non-sliding pieces

(such as the KPK ending) the compiler produced only specific patterns. The slid-

ing operators are more abstract (4 cases describe 14 moves for the rook) than the

non-sliding operators (8 cases are needed to describe the 8 moves of the king) and

hence contribute to more abstract patterns.

The growth in complexity is a further weakness. In particular, some domains

lead to low-utility patterns that exhibit rapid growth in the number of exceptions,

as in branches of the KRKN ending. This complexity arises because of the need to

project negated constraints among the objects: the black knight must not be able

to take the white rook, or the black king must not be adjacent to the black knight

when it is captured by the rook.1 Applying best-first search in place of breadth-first

search did not solve this problem, rather it avoided the problem by not generating

these complex patterns.

There are a number of other shortcomings with the current approach. First,

only problem solvers that involve goal achievement, such as check-mate or safe-

'Except when the white king is adjacent to the black knight!

176

knight-capture, can be compiled. This kind of goal is unrealistic, even for simple

games. Most useful is the general goal of improving the evaluation of the current

position. However, this would require major modification to the influence the-

ory where operators increment or decrement an evaluation rather than make-true

or make-false a propositional goal. Finally, a significant shortcoming is that the

method still will not scale to problems that involve many pieces such as the open-

ing and midgame phases of chess. This problem, and others are considered in the

following future work section.

10.4 Future Work

This section considers future work from two perspectives. First, we cover pragmatic

issues that modify the method or current system so it could contribute to a com-

plete game playing system. Second, we address interesting research issues that are

suggested by our research.

10.4.1 Pragmatic Issues

Improving the Current Program

The current program was developed incrementally to demonstrate the viability of

the approach, and it is inefficient. In particular, the program is memory inten-

sive and runs out of real memory quickly. Moreover, the program utilizes virtual

memory poorly because of the behavior of the dynamic program sweeping through

memory. A more efficient, less memory-intensive implementation would enable fur-

ther investigation.

The current program employs a simple geometric representation that cannot

concisely represent the complex constraints that arise. Complexities are avoided

by giving up generality: complex cases are enumerated into a sufficient number

of simple cases. For example, the preimage of a king move is represented by 8

177

separate cases, rather than a single constraint describing the region from which the

king could have moved. A more powerful geometric representation and reasoning

system that could manage the resulting regions would improve the effectiveness

of the abstraction. Such a representation would also address the problem of too

many exceptions by enabling many of the exceptions to be incorporated into the

regions, thereby eliminating the need to represent them explicitly. Quad trees and

Box trees [Omohudro 90] both provide both efficient reasoning and a versatile, yet

concise representation of irregular shaped regions.

Reimplementing the Method in Parallel

The limit imposed on the extensional enumeration algorithm (due to its exponential

time and space complexity) has been advanced in the last few years through parallel

processing. In 1986, [Thompson 86] used 12 IBM machines in parallel to success-

fully generate the complete database for some 5 piece endings. Each database took

approximately 2 months (24 cpu months) and occupied 120M of memory. More

recently, Scientific American' reports that 6 piece endings have been compiled by

implementing the algorithm on a connection machine and exploiting the massive

parallelism available. This work identified a 446-ply forced win, the longest ever dis-

covered. The enumeration algorithm lends itself to easy parallelism due to the sim-

ple decomposition of problems by position index. The abstract algorithm described

here has many of the same characteristics and could be similarly decomposed. The

abstract geometric indexing poses more of a problem than in the extensional algo-

rithm where the address structure of the machine can be used directly.

2November 1991, Page 38. The program was implemented by Lewis Stiller from John Hopkins

University.

178

Extending the Domains

This thesis has reported applying the method to two quite similar domains only. To

demonstrate the generality of the approach, more domains are needed. Of particular

interest is the recent work by [Pell 92a] and [Pell 92b] that describes a meta-game

framework, where thousands of different "chess like" games can be automatically

produced. Each game is defined by a set of rules generated by setting parameters

of the meta game.

10.4.2 Research Issues

Problem Solver/ Learning Tradeoff

This work has employed a very simple problem solver that performs no problem

solving search during performance. Such a simple problem-solver is very efficient

at run time, but leads to the need to store large databases. This tradeoff can be

illustrated with an example from the KRKN ending illustrated in Figure 10.1. In

this position white can play and win in 5 ply (dl-el, d7-e6, f3-h3, e6-f5, h3-h1).

This instance is an example of a pattern illustrated in Figure 10.2, where all but the

black king are constrainted to be in fixed locations. The region of the black king was

calculated to prevent it from interfering with any of the other pieces. This pattern

has low generality, because of the complexity of this interference. The compiler

derives a unique pattern for each position of the white king moving to el (dl, d2),

because each leads to a different region constraint for the black king. Generally,

where there is any interference between kings (by threatening the rook or protecting

the knight), or other pieces, the effectiveness of the abstraction is diminished. The

compiler is forced to enumerate each possible case of the interactions leading to an

explosion of specific cases.

To avoid this explosion, a new kind of abstraction is needed: computational

abstraction, where the enumeration of interactions is postponed until problem solv-

179

Figure 10.1: Example of a white-to-move-and-win position from the KRKN ending.

Figure 10.2: A pattern that is generated by the compiler that describes the position

illustrated in Figure 10.1. Note that the white king, black knight and white rook

are in fixed positions and the black king is prohibited from the gray region.

180

ing time. In this way, only a few general abstractions such as "can move safely

to square el" are recorded. This postponement of the computation complicates

the problem solver and reduces its efficiency, but it leads to a much more con-

cise description of the problem solving knowledge. In [Bratko and Michie 80], for

example, a non-optimal problem solver for KRK was constructed using only 12

rules, but the problem solver needed to look at least one move ahead. This trade-

off between the complexity of the problem solver and the simplicity of the learned

knowledge has been explored by chunking [Campbell 88] and optimistic counter-

planning [Tadepalli 89]. In [Campbell 88] a problem instance was first partitioned

into chunks based on pawn structure. The problem was solved efficiently by con-

sidering the interactions within chunks separately from those interactions among

chunks. In [Tadepalli 89] the chunks are learned from problem solving experience

and dynamically combined using a plan language during problem solving.

Computational abstraction is an important method, since it offers a way for

problem solving knowledge concerning only a few pieces to be effectively used to

solve problems involving many more pieces. Hence, the method may provide a way

to overcome the fundamental problem with intractability that the abstract database

approach cannot address directly.

The particular question of interest in this thesis is the following: given a

problem instance P containing a set S of objects, how can we solve P using a

collection of n databases d1, each covering some subset of S where d1U d2 U ...0 do =

S? The influence theory introduced in Chapter 2 may be of use. Recall that the

theory provides a language for describing goal achievement that is unfolded and

evaluated during compilation. Hence, the database approach takes an extreme of the

space/time tradeoff where all search (time) is compiled out. This view suggests that

the dynamic combining of small databases to solve large problems may be modeled

as the same abstract search performed by the compiler, strongly constrained by the

particular patterns in the given problem instance.

181

A further contribution that this work may make to the computational ab-

straction approach is in the use of geometric representations for efficiency. Dynam-

ically combining chunks has proved to be computationally expensive [Tadepalli 89]

and geometry may provide a means of reducing its cost.

Bibliography

[Agre and Chapman 87] Agre, P. & Chapman, D. (1987). Pengi: an implementa-
tion of a theory of activity. Proceedings of the Sixth National Conference
on Artificial Intelligence (pp. 268-272). Seattle, WA: Morgan Kaufmann.

[Agre and Chapman 88] Agre, P. & Chapman, D. (1988). Indexicality and the
binding problem. Proceedings of the Spring Symposium on Parallel Models
of Intelligence: how can slow components think so fast? Stanford University.

[Amarel 80] Amarel, S., (1981). On representation of problems of reasoning about
actions. Readings in Artificial Intelligence, Palo Alto, CA: Tioga Publishing
Company.

[Anantharaman Campbell and Hsu 88] Anantharaman, T., Campbell, M. and Hsu,
F. (1988). Singular extensions: adding selectivity to brute-force searching.
Proceeding of the Spring Symposium on Computer Game Playing, Stanford
University.

[Beal and Clark 1980] Beal, D. F. and Clark, M. R. B. (1980). Economical and
correct algorithms for King and Pawn against King. M. R. Clarke (Ed),
Advances in Computer Chess.

[Bellman 57] Bellman, R. E. (1957) Dynamic Programming. Princeton University
Press, Princeton, NJ.

[Berliner 74] Berliner, H., J. (1974). Chess as problem solving: the development of
a tactics analyzer. Ph.D. thesis, Carnegie-Mellon University.

[Boddy 91] Boddy, M. (1991). Anytime problem solving using dynamic program-
ming. Proceedings of the Ninth International Conference on Artificial In-
telligence, CA.

[Bramer 84] Bramer, M. A. (1980). An optimal algorithm for King and Pawn
against King using pattern knowledge. M. R. Clarke (Ed), Advances in
Computer Chess 2.

183

[Bratko and Michie 80] Bratko, I. and Michie, D. (1980). A Representation for
pattern-knowledge in chess endgames. M. R. Clarke (Ed), Advances in
Computer Chess 2.

[Bratko 84] Bratko, I. (1984). Advice and planning in chess end-games. Artificial
and Human Intelligence. Elsevier Science Publishers.

[Braudaway and Tong 89] Braudaway, W. and Tong, C. (1989). Automated syn-
thesis of constrained generators. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, Detroit, Michigan.

[Brooks 81] Brooks, R. A. (1981). Symbolic reasoning among 3-D models and 2-D
images. Artificial Intelligence, 17 (1-3), 285-348.

[Campbell 88] Campbell, M. (1988). Chunking as an Abstraction Mechanism, Ph.D.
Thesis, Carnegie Mellon University.

[Chapman 89] Chapman, D. (1989) Penguins can make cake. Artificial Intelligence
Magazine 10 (4), 45-50.

[Chapman 87] Chapman, D. (1987). Planning for conjunctive goals. Artificial In-
telligence, 32 (3), 333-378.

[Chase and Simon 72] Chase, W. G. and Simon, H. A. (1972). The mind's eye in
chess. Visual Information Processing, Ed. W. Chase.

[Chien 89] Chien, S. (1989). Using and refining simplifications: Explanation-based
learning of plans in intractable domains. Proceedings of the Eleventh Inter-
national Joint Conference on Artificial Intelligence, pp. 590-595, Detroit,
MI.

[Clark 1977] Clark M. R. B. (1977). A quantitative study of king and pawn against
king. M. R. B. Clark (Ed), Advances in Computer Chess 1, 30-59.

[Cohen 90] Cohen, W. (1990). Concept Learning Using Explanation-Based Gener-
alization as an Abstraction Mechanism. Ph. D. Thesis, Rutgers University.

[Collins et. al] Collins, G., Birnbaum, L. and Krulwich, B. (1989) An adaptive
model of decision-making in planning. Proceedings of the Eleventh Interna-
tional Conference on Artificial Intelligence (pp. 511-516). Detroit: MI.

[Davis 87] Davis, E. (1987). Constraint propagation with interval labels. Artificial
Intelligence, 32 (3), 281-332.

[de Groot 65] de Groot, A. (1965) Thought and Choice in Chess. The Hague: Mou-
ton, 1965.

184

[De Jong and Mooney 86] De Jong, G., and Mooney, R. (1986). Explanation-based
learning: an alternative view. Machine Learning 1(2), 145-176.

[Doyle 86] Doyle, R., J. (1986). Constructing and reining causal explanations from
an inconsistent domain theory. Proceedings of the Fifth National Confer-
ence on Artificial Intelligence (pp. 538-544). Philadelphia, PA: Morgan
Kaufmann.

[Ebeling 86] Ebeling, C. (1986). All the right moves: A VLSI architecture for chess.
Ph.D. thesis, Carnegie-Mellon University, 1986.

[Edelsbrunner 83] Edelsbrunner, H. (1983). A new approach to rectangle intersec-
tions. Interternational Journal of Computer Mathematics, 13 pp. 209-219.

[Egan and Schwartz 79] Egan, D. E., and Schwartz, B. J. (1979). Chunking in
recall of symbolic drawings. Memory and Cognition, 7, 149-158.

[Ellman 88] Ellman, T. (1988). Approximate theory formation: An explanation-
based approach. Proceedings of the Seventh National Conference on Artifi-
cial Intelligence, pp. 570-574, St. Paul, MI.

[Epstein 90] Epstein, S. (1990). Learning plans for competitive domains. Pro-
ceeding of the Seventh International Conference on Machine Learning, pp.
190-197, Austin, Texas.

[Etzioni 91] Etzioni, 0. (1990). A Structural Theory of Explanation-Based Learn-
ing. Ph.D. thesis, Carnegie Mellon University, 1990.

[Fawcett and Utgoff 1991] Fawcett, T. E. and Utgoff P. E. (1991) A hybrid method
for feature generation. Machine Learning: Proceedings of the Eighth Inter-
national Workshop (pp. 137-141). Evanston, IL: Morgan Kaufmann.

[Flann 88] Flann, N. S. (1988). Improving problem solving performance by example
guided reformulation of knowledge. Proceedings of the First International
Workshop in Change of Representation and Inductive Bias (pp. 14-34).

[Flann and Dietterich 89] Flann, N. S. and Dietterich, T. G. (1989). A study of
explanation-based methods for inductive learning. Machine Learning, 4,
187-226.

[Flann 90] Flann, N. S. (1990) Applying Abstraction and Simplification to Learn in
Intractable Domains. Proceeding of the Seventh International Conference
on Machine Learning, pp. 277-285, Palo Alto, CA: Morgan Kaufmann.

[Freuder 82] Freuder, E. C. (1982). A sufficient condition of backtrack-free search.
JACM 29(1), pp. 24-32.

185

[Genesereth and Nilsson 87] Genesereth, M. R. and Nilsson, N. J. (1987) Logical
Foundations of Artificial Intelligence, Los Altos, CA: Morgan Kaufmann.

[Ginsberg 89] Ginsberg, M. L. (1989). Universal planning: An almost universally
bad idea. Artificial Intelligence Magazine, 10 (4) pp. 40-44.

[Ginsberg and Smith 88] Ginsberg, M. L. and Smith, D. E. (1988) Reasoning about
action II: The qualification problem. Artificial Intelligence, 35 (3), 311-342.

[Goetsch and Campbell 90] Goetsch, G. and Campbell, M. S. (1990). Experiments
with the null-move heuristic. T. A. Marsland and J. Schaeffer (Eds.) Corn-
puters, Chess and Cognition.

[Gould and Levinson 1991] Gould, J. and Levinson R. (1991) Method integration
for experience-based learning. Proceedings of the Ninth National Conference
on Artificial Intelligence (pp. 378-393) Morgan Kaufmann.

[Hirsh 87] Hirsh, H. (1987). Explanation-based generalization in a logic program-
ming environment. Proceedings of the Tenth International Joint Conference
on Artificial Intelligence, pp. 221-227, Milan.

[Kaelbling 90] Kaelbling, L. P. (1990). Learning functions in k-DNF from rein-
forcement. Machine Learning: Proceedings of the Seventh International
Conference, (pp. 162-169). Austin, TX: Morgan Kaufmann.

[Kahn 84] Kahn, K. M. (1984). Partial evaluation, programming methodology, and
artificial intelligence. Artificial Intelligence Magazine, Spring 1984, pp. 53-
57.

[Kahn and Carlsson 84] Kahn, K. M. and Carlsson, M. (1984). The compilation
of prolog programs without the use of a prolog compiler. Proceedings of
the International Conference on Fifth Generation Computer Systems, pp.
348-355.

[Knoblock 90] Knoblock, C. A. (1991). Automatically Generating Abstractions for
Problem Solving, Ph.D. Thesis, Computer Science Department, Tech. Re-
port CMU-CS-91-120, Carnegie Mellon University, May 1991.

[Kopec and Niblett 80] Kopec, D. and Niblett, T. (1980). How hard is it to play the
king-rook king-knight ending? M. R. Clarke (Ed), Advances in Computer
Chess.

[Larkin et al. 80] Larkin, J., McDermott, Simon D. P. & Simon H. A. (1980). Ex-
pert and novice performance in solving physics problems. In Science, 206,
1335-1342.

186

[Larson and Casti 78] Larson, R. E. and Casti, J. L. (1978). Principles of Dynamic
Programming, Part 1. Marcell Dekker, Inc., New York, New York, 1978.

[Levesque 86] Levesque, H. J. (1986). Making believers out of computers. Artificial
Intelligence, 30, (1) 81-108.

[McCarthy and Hayes, 69] McCarthy, J. and Hayes, P. J. (1969). Some philosoph-
ical problems from the stand point of artificial intelligence. B. Meltzer and
D. Michie (editors), Machine Intelligence 6. Edinburgh University Press,
Edinburgh, 1969.

[Michie, 82] Michie, D. (1982). Machine Intelligence and related topics. Gordon
and Breach Science Pub.

[Minton 84] Minton, S. (1984). Constraint-based generalization: Learning game-
playing plans from single examples. Proceedings of the Third International
Conference on Artificial Intelligence, pp. 251-254, Austin, TX.

[Minton 88a] Minton, S. (1988). Learning effective search control knowledge: An
explanation-based approach. Ph.D. Thesis, Computer Science Department,
Carnegie Mellon University, March 1988.

[Minton 88b] Minton, S. (1988b). Quantitative results concerning the utility of
explanation-based learning. Proceedings of the Seventh National Confer-
ence on Artificial Intelligence (pp. 564-569). Saint Paul, MI: Morgan
Kaufmann.

[Mitchell Keller and Kedar-Cabelli 86] Mitchell, T., Keller, R. and Kedar-Cabelli,
S. (1986). Explanation-based generalization: A unifying view. In Machine
Learning, 1, (1) 47-80.

[Mooney and Bennett 86] Mooney, R. J., and Bennett, S. W. (1986). A domain
independent explanation-based generalizer. Proceedings of the Fifth Na-
tional Conference on Artificial Intelligence (pp. 551-555). Philadelphia,
PA: Morgan Kaufmann.

[Montanari 74] Montanari, U. (1974). Networks of constraints: Fundamental prop-
erties and applications to picture processing. Information Sciences 7, pp.
95-132.

[Mostow and Prieditis 89] Mostow, J. and Prieditis, A. E. (1989) Discovering ad-
missible heuristics by abstraction and optimizating: A transformational
Approach. Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, pp. 701-707, Detriot, MI, USA.

187

[Muggleton 88] Muggleton, S. H. (1988). Inductive aquisition of chess strategies.
D. Michie, J. E. Hayes and J. Richards, (Eds), Machine Intelligence 11.
Oxford University Press, Oxford, 1988.

[Nievergelt 77] Nievergelt, J. (1977). Information content of chess positions. SIGART
newsletter, (62) 13-14.

[Omohudro 90] Omohudro, S. M. (1990) Geometric learning algorithms. Physica
D, 42:307-321.

[Pell 92a] Pell, B. (1992). Metagame: A new challenge for games and learning, H.J.
van den Herik and L.V. Allis (Eds). Heuristic Programming in Artificial
Intelligence 3The Third Computer Olympiad, H. J. van den Herik and L.
V. Allis (Eds). Ellis Horwood, 1992.

[Pell 92b] Pell, B. (1992). Metagame in symmetric, chess-like games, Heuristic
Programming in Artificial Intelligence 3Third Computer Olympiad, H. J.
van den Herik and L. V. Allis (Eds). Ellis Horwood, 1992.

[Quinlan 83] Quinlan, J., R. (1983). Learning efficient classification procedures and
their application to chess end games. R. S. Michalski, J. G. Carbonell and
T. M. Mitchell (Eds.), Machine learning: An artificial intelligence approach
San Mateo, CA: Morgan Kaufmann.

[Rosenbloom 82] Rosenbloom, P. (1982). A world-chamionship Othollo program.
Artificial Intelligence, 19 279-320.

[Schaeffer 91] Schaeffer, J. (1991) Checkers program earns the right to play for
world title. Computing Research News, pp. 12, January.

[Schoppers 87] Schoppers, M. J. (1987) Universal plans for reactive robots in unpre-
dictable environments. Proceedings of the Tenth International Joint Con-
ference on Artificial Intelligence, pp. 1039-1046, Milan, Italy.

[Schoppers 89] Schoppers, M. J. (1989) In defense of reaction plans as caches. Ar-
tificial Intelligence Magazine 10 (4) pp. 51-60.

[Seidel 86] Seidel, R. (1986). Deriving correct pattern descriptions and rules for the
KRK endgame by deductive methods. Advances in Computer Chess 4. D.
F. Beal, Ed. Pergamon Press.

[Shostak 77] Shostak, R. E. (1977). On the SUP-INF method for proving pres-
burger formulas. Jornal of the Association for Computer Machinery 24 (4)
pp. 529-543.

188

[Smith and Pressburger 88] Smith, D. R. and Pressburger, T. T. (1988). Knowledge-
based software development tools. Software Engineering Environments, P.
Brereton, (Ed)., Ellis Horwood Ltd., Chichester, pp. 79-103.

[Smith and Genesereth 85] Smith, D. E. and Genesereth, M. R. (1985). Ordering
Conjunctive Queries. Artificial Intelligence, 24, 171-215.

[Subramanian and Genesereth 87] Subramanian, D. & Genesereth, M., R., (1987).
The relevance of irrelevance. Proceedings of the Sixth National Conference
on Artificial Intelligence (pp. 416-422). Seattle, WA: Morgan Kaufmann.

[Subramanian 89] Subramanian, D. (1989). A Theory of Justified Reformulations,
Ph.D. Thesis, Computer Science Department, Stanford University, March
1989.

[Sterling and Shapiro 86] Sterling, L. and Shapiro, E. (1986). The Art of Prolog,
MIT press, Cambridge: MA.

[Tadepalli 89] Tadepalli, P. (1989). Lazy explanation-based learning: A solution to
the intractable theory problem. Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence, pp. 694-700, 299-348, Detroit,
MI.

[Tambe and Newell 88] Tambe, M. and Newell, A. (1988). Some chunks are expen-
sive. Proceedings of the Fifth International Conference on Machine Learn-
ing (pp. 451-458). Ann Arbor, MI: Morgan Kaufmann.

[Tambe, Newell and Rosenbloom 90] Tambe, M., Newell, A. and Rosenbloom, P.
S. (1990). The problem of expensive chunks and its solution by restricting
expressiveness. Machine Learning, 5, (3).

[Tenenberg 87] Tenenberg, J. D. (1987) Perserving consistency across abstract map-
pings. Proceedings of the Tenth International Joint Conference on Artificial
Intelligence, pp. 1011-1014, Milan, Italy.

[Thompson 86] Thompson, K. (1986) Retrograde analysis of certain endgames.
ICCA Journal, September 1986.

[Ullman 83] Ullman, S. (1983). Visual routines. A. I. Memo No. 723, Mas-
sachusetts Institute of Technology.

[Utgoff 88] Utgoff, P., E. (1988). ID5: An incremental ID3. Proceedings of the Fifth
International Conference on Machine Learning, pp. 107-120, Ann Arbor,
MI.

189

[Utgoff 86] Utgoff, P., E. (1986). Shift of bias for inductive concept learning. Ma-
chine Learning: An Artificial Intelligence Approach, Vol 2. R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell (Eds.). Morgan Kaufmann, Los Altos;
CA.

[Wilkins 80] Wilkins, D. (1980). Patterns and plans in chess. Artificial Intelligence,
14, 165-203.

Appendix A

Chess Domain Theory

; This file contains the definition of the chess domain theory

; The domain is described in a standard syntax for interpretation

; by the compiler. The definitons of the operators employ

; a vocabulary of spatial primitives that are known to the system

; on, directions, connected, openline

(in-package "USER")

; OPERATORS

; *********

; Operators are given as (op name parameters precondition addlist deletelist)

(setq *ops* '(

(op normal-ops

(?side)

(?Obj ?F ?T ?vector ?symmetry)

?Obj

?F

?T

((on ?F ?Obj)

191

(= ?Obj (obj ?side ?type))

(single ?type)

(directions ?Obj ?vector ?symmetry)

(connected ?F ?T ?vector ?symmetry)

(on ?T empty))

((on ?T ?Obj)

(on ?F empty))

((on ?T empty)))

(op normal-ops

(?side)

(?Obj ?F ?T ?vector ?symmetry)

?Obj

?F

?T

((on ?F ?Obj)

(= ?Obj (obj ?side ?type))

(multiple ?type)

(directions ?Obj ?vector ?symmetry)

(openline ?F ?T ?vector ?symmetry ?length)

(on ?T empty))

((on ?T ?Obj)

(on ?F empty))

((on ?T empty)))

(op take-ops

(?side)

(?Obj ?ObjO ?F ?T ?vector ?symmetry)

192

?Obj

?F

?T

((on ?F ?Obj)

(= ?Obj (obj ?side ?type))

(single ?type)

(directions ?Obj ?vector ?symmetry)

(connected ?F ?T ?vector ?symmetry)

(opside ?side ?side0)

(= ?ObjO (obj ?side° ?typel))

(on ?T ?ObjO))

((on ?T ?Obj)

(on ?F empty))

((on ?T ?ObjO)))

(op take-ops

(?side)

(?Obj ?ObjO ?F ?T ?vector ?symmetry)

?Obj

?F

?T

((on ?F ?Obj)

(= ?Obj (obj ?side ?type))

(multiple ?type)

(directions ?Obj ?vector ?symmetry)

(openline ?F ?T ?vector ?symmetry ?length)

(opside ?side ?side0)

(= ?ObjO (obj ?side0 ?typel))

(on ?T ?ObjO))

((on ?T ?Obj)

(on ?F empty))

((on ?T ?ObjO)))

))

193

; Definitions of the directions for the various objects. Note that directions i

; predicate.

; Type information: (directions objectdes direction symmetry)

(setq *database* '(

(directions (obj ? king) (1 1) ((rotation 4)))

(directions (obj ? king) (0 1) ((rotation 4)))

(directions (obj ? bman) (1 1) ((rotation 4)))

(directions (obj ? wman) (1 1) ((rotation 4)))

(directions (obj ? knight) (2 -1) ((rotation 4)))

(directions (obj ? knight) (2 1) ((rotation 4)))

(directions (obj ? rook) (1 0) ((rotation 4)))

(directions (obj ? bishop) (1 1) ((rotation 4)))

(directions (obj ? queen) (1 1) ((rotation 4)))

(directions (obj ? queen) (0 1) ((rotation 4)))

194

; Definitions are given for user predicates

(user-predicate (single piece-type))

(single king)

(single knight)

(user-predicate (multiple piece-type))

(multiple rook)

(multiple bishop)

(multiple queen)

(user-predicate (opside piece-side piece-side))

(opside white black)

(opside black white)

))

(setq *object-graphics*

'(((obj black king) . black-K)

((obj black bman) . black-K)

((obj black knight) . black-N)

((obj black queen) . black-Q)

((obj black rook) . black-R)

((obj black bishop) . black-B)

195

((obj black pawn) . black-P)

((obj white king) . white-K)

((obj white wman) . white-K)

((obj white rook) . white-R)

((obj white queen) . white-Q)

((obj white knight) . white-N)

((obj white bishop) . white-B)

((obj white pawn) . white-P)))

Appendix B

King-Rook-King Problem Specification

;;; the objects involved

(setq *objects* '(

(obj black king) ; 0

(obj white king) ; 1

(obj white rook) 2

))

(setq *location-variables* '(

((obj black king) . (?Xbk ?Ybk))

((obj white king) . (?Xwk ?Ywk))

((obj white rook) . (?Xwr ?Ywr))

))

197

(flag-all-vars '(?Xbk ?Ybk ?Xwk ?Ywk ?Xwr ?Ywr ?L))

(setf (get '?L 'vartype) 'internal)

;;; the initial won patterns

;;; 2 describe the king-king attack

;;; 1 describes the rook king attack

(setq *initial-won-patterns* ((

,(make-pattern

:name 'king-attacks-king-1

:object-definition-order '(0 1)

:object-constraints

(make-array 3

:initial-contents '(,(make-location-constraint

:xvar '?Xbk

:yvar '?Ybk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x '?Xbk

:y '?Ybk)

,(make-location-constraint

:xvar '?Xwk

:yvar '?Ywk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x (make-linear-constraint

:variable '?Xwk

198

:equation '((1 . 1)(1 . ?Xbk))

:defined-using '(?Xbk))

:y (make-linear-constraint

:variable '?Ywk

:equation (((1 . ?Ybk))

:defined-using '(?Ybk)))

:rotation-symmetry 4)

,(make-pattern

:name 'king-attacks-king-d

:object-definition-order '(0 1)

:object-constraints

(make-array 3

:initial-contents 'Mmake-location-constraint

:xvar '?Xbk

:yvar '?Ybk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x '?Xbk

:y '?Ybk)

,(make-location-constraint

:xvar '?Xwk

:yvar '?Ywk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x (make-linear-constraint

:variable '?Xwk

199

:equation '((1 . 1)(1 . ?Xbk))

:defined-using '(?Xbk))

:y (make-linear-constraint

:variable '?Ywk

:equation '((1 . 1)(1 . ?Ybk))

:defined-using '(?Ybk)))

:rotation-symmetry 4)

,(make-pattern

:name 'rook-attacks-king

:object-definition-order '(0 2)

:object-constraints

(make-array 3

:initial-contents (Mmake-location-constraint

:xvar '?Xbk

:yvar '?Ybk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x '?Xbk

:y '?Ybk)

nil

,(make-location-constraint

:xvar '?Xwr

:yvar '?Ywr

:xhl (cons 8 1)

:yhl (cons 8 1)

:x (make-linear-constraint

200

:variable '?Xwr

:equation '((1 . ?L)(1 . ?Xbk))

:defined-using '(?Xbk ?L)

:internal-variables '(?L))

:y (make-linear-constraint

:variable '?Ywr

:equation '((1 . ?Ybk))

:defined-using '(?Ybk))

:internal '(?L)

:internal-line-constraints

(list (make-line-constraint

:variable '?L

:low 1

:high 7)))))

:openlines '(,(make-openline :from (cons '?Xwr '?Ywr) :to (cons '?Xbk '?Ybk)

:rotation-symmetry 4)

))

;; a black to move pattern must not subsume these patterns

(setq *illegal-btm-patterns* ((

,(make-pattern

:name 'king-attacks-king

:object-definition-order '(0 1)

:object-constraints

(make-array 3

:initial-contents 'Mmake-location-constraint

:rotation-symmetry 8)

))

201

:xvar '?Xbk

:yvar '?Ybk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x '?Xbk

:y '?Ybk)

,(make-location-constraint

:xvar '?Xwk

:yvar '?Ywk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x (make-linear-constraint

:variable '?Xwk

:equation '((1 . 1)(1 . ?Xbk))

:defined-using '(?Xbk))

:y (make-linear-constraint

:variable '?Ywk

:equation '((1 . ?Ybk))

:defined-using '(?Ybk)))

;; a while to move pattern must not subsume these patterns

(setq *illegal-wtm-patterns* ((

,(make-pattern

:name 'king-attacks-king

202

:object-definition-order '(0 1)

:object-constraints

(make-array 3

:initial-contents ((,(make-location-constraint

:xvar '?Xbk

:yvar '?Ybk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x '?Xbk

:y '?Ybk)

,(make-location-constraint

:xvar '?Xwk

:yvar '?Ywk

:xhl (cons 8 1)

:yhl (cons 8 1)

:x (make-linear-constraint

:variable '?Xwk

:equation '((1 . 1)(1 . ?Xbk))

:defined-using '(?Xbk))

:y (make-linear-constraint

:variable '?Ywk

:equation '((1 . ?Ybk))

:defined-using '(?Ybk)))

:rotation-symmetry 8)

))

Appendix C

Example run for KRK Problem

In this ending, we illustrate the first 120 patterns derived by the compiler when

employing a breadth-first search control strategy. The patterns are numbered con-

secutively in the order that they are generated. The first three patterns were pro-

vided to the compiler and describe situations where white can win in one ply by

capturing black's king. The square pieces represent black, the losing side, the round

pieces represent white, the winning side. If a piece is not constrained to be in a

single location, it is enclosed within a rectangle that represents the region that it

can occupy.

Included with each pattern is the estimated number of instances that it

covers. Also included is a brief explanation of how the pattern was derived. For the

loss patterns, the set of successor won patterns is included along with the relevant

influence relations. For example pattern 26, which includes the set { mt15, ml

} , was derived by intersecting a make-true of pattern 15 and a maintain-true of

pattern 1.

204

®

1: Won in 1

LK)

2: Won in 1

I (BA I iiK1

4: Loss in 2 (Covers 25) 5: Loss in 2 (Covers 25)
(ma mt3,ral)(rnt2mt3,m1)

AGM
7: Loss in 2 (Covers 6)

(mt2,mt3,m1)

10: Won in 3 (Covers 42)
(mt9)

8: Loss in 2 (Covers 6)
(mt2,mt3,m1)

3: Won in 1

113

6: Loss in 2 (Covers 6)
fmt2,mt3,rat)

[RI 0
9: Loss in 2 (Covers 6)

(rregmt3,m1)

11: Won in 3 (Covers 42) 12: Won in 3 (Covers 42)
(mt7)fmt8)

205

13: Won in 3 (Covers 42)
(mt6)

cs
16: Loss in 4 (Covers 6)

(mt10,intl,mamt3)

14: Won in 3 (Covers 175)
(m15)

17: Loss in 4 (Covers 6)
(mt77,mtl,m12.,mt3)

cs
19: Loss in 4 (Covers 1)

(mt12,mtl,m22,Int3)

22: Loss in 4 (Covers 30)
(mt14,mtl,m22,mt3)

20: Loss in 4 (Covers 1)
(mt13,mtl,m22,mt3)

23: Loss in 4 (Covers 5)
(rnt14,mtt)

15: Won in 3 (Covers 175)
(rat4)

(I!

18: Loss in 4 (Covers 6)
(mtt Zrati,ma,mt3)

21: Loss in 4 (Covers 6)
(mt13,mtl,mt2,mt3)

24: Loss in 4 (Covers 35)
(mt14,mt2,mt3)

206

25: Loss in 4 (Covers 30)
(mt15,mt1,mamt3)

26: Loss in 4 (Covers 5)
(mt15,entl)

Rci
28: Won in 5 (Covers 35) 29: Won in 5 (Covers 5)

ran27,-13)(mt27)

31: Won in 5 (Covers 35)
(mt27)

111111E111

34: Won in 5 (Covers 5)
(mt26)

32: Won in 5 (Covers 35)
(mt27)

113

35: Won in 5 (Covers 5)
fmt26)

27: Loss in 4 (Covers 35)
(mt15,m22,mt3)

30: Won in 5 (Covers 35)
(mt27)

33: Won in 5 (Covers 5)
(m26)

36: Won in 5 (Covers 5)
(m226)

207

MON 111111111

37: Won in 5 (Covers 30)
(mt25)

.1<1

40: Won in 5 (Covers 30)
(mt25)

[KI

43: Won in 5 (Covers 210)
(mt25, -1)

46: Won in 5 (Covers 35)
(mt24)

38: Won in 5 (Covers 30)
(mt25)

10
41: Won in 5 (Covers 30)

(mt25)

1

44: Won in 5 (Covers 96)
(mt25)

47: Won in 5 (Covers 35)
(mt24)

I 10

39: Won in 5 (Covers 30)
(mt25)

WM=

42: Won in 5 (Covers 30)
(m125)

45: Won in 5 (Covers 30)
(m25)

48: Won in 5 (Covers 5)
(mt24, -12)

208

113

49: Won in 5 (Covers 35)
(mt24)

52: Won in 5 (Covers 5)
(mt23)

50: Won in 5 (Covers 35)
(mt24)

53: Won in 5 (Covers 5)
(mt23)

55: Won in 5 (Covers 30) 56: Won in 5 (Covers 30)
{mt22)(mt22)

1:K1

58: Won in 5 (Covers 30)
(mt22)

[K1

59: Won in 5 (Covers 30)
(mt22)

51: Won in 5 (Covers 5)
(mt23)

54: Won in 5 (Covers 5)
(mt23)

11011111111

IK1

57: Won in 5 (Covers 30)
(mt22)

60: Won in 5 (Covers 30)
(mt22)

209

61: Won in 5 (Covers 96)
(mt22)

13
64: Won in 5 (Covers 6)

(mt21)

67: Won in 5 (Covers 6)
(WV)

70: Won in 5 (Covers 6)
(m21)

62: Won in 5 (Covers 210)
(mt22,-1)

1[11111111111

Pc1

63: Won in 5 (Covers 30)
(m22)

[RI

65: Won in 5 (Covers 6) 66: Won in 5 (Covers 6)
(mt21) (mt21)

68: Won in 5 (Covers 6)

(1!

I
ca

69: Won in 5 (Covers 6)
(mt21) (mt21,-1)

71: Won in 5 (Covers 1) 72: Won in 5 (Covers 1)
(m120) (mt20,-1)

210

73: Won in 5 (Covers 1)
(rat/9)

76: Won in 5 (Covers 6)
(mt/8)

79: Won in 5 (Covers 6)
(rntt8)

82: Won in 5 (Covers 6)
(mt17,-1)

74: Won in 5 (Covers 1)
(nt/9, -1)

g

111

77: Won in 5 (Covers 6)
(mt78)

113

80: Won in 5 (Covers 6)
(mt18)

83: Won in 5 (Covers 30)
(mt77)

75: Won in 5 (Covers 6)
(mt19)

78: Won in 5 (Covers 6)
(rat/8)

(11

81: Won in 5 (Covers 6)
(mt18,-1)

84: Won in 5 (Covers 30)
Ont16)

211

85: Won in 5 (Covers 6)
(mt16,-7)

1101111111111

Ei<1

88: Loss in 6 (Covers 30)
fmt43,mt7,mt2,m13)

91: Loss in 6 (Covers 24)
(mt44,mt12,mt2,mt3)

94: Loss in 6 (Covers 6)
irnt45,mam7)

86: Loss in 6 (Covers 4)
(Int32,mt15,rat7,mt2)

89: Loss in 6 (Covers 6)

87: Loss in 6 (Covers 6)
(mt41,mt2,Int3)

90: Loss in 6 (Covers 28)
(mt43,mt41,m132,mamt3) (mt43,mt32,m115,mt2,mt3)

La
92: Loss in 6 (Covers 6)

(Int45,mt12,mt2,mt3)

95: Loss in 6 (Covers 5)
(mt48,mt43,maInt3)

93: Loss in 6 (Covers 5)
(mt45,mt2,mt3,m1)

96: Loss in 6 (Covers 5)
fmt49,mt43,mt7,mt2)

212

97: Loss in 6 (Covers 20) 98: Loss in 6 (Covers 5)
(mt49,mt43,mt15,mt2,mt3) (mt49,mt43,mt47,mamt3)

100: Loss in 6 (Covers 6)
(mt60,mt2,mt3)

I

103: Loss in 6 (Covers 24)
(mt62,mt45,mamt3)

iK1

106: Loss in 6 (Covers 24)
(mt62,mt43,mt2,m1)

99: Loss in 6 (Covers 4)
(mt49mt14,mtl,mt2)

101: Loss in 6 (Covers 54) 102: Loss in 6 (Covers 24)
(mt61,mt13,mt2,mt3)(mt61,mt43,Int2,mt3)

104: Loss in 6 (Covers 54)
(mt62,mt44,mt2,mt3)

107: Loss in 6 (Covers 30)
(m162,mt1,mt2,mt3)

105: Loss in 6 (Covers 144)
(m162,mt43,mt2,mt3)

108: Loss in 6 (Covers 5)
(m162,mt29,m12,mt3)

213

109: Loss in 6 (Covers 5)
(mt62,mt60,mt32,mt2,mt3

112: Loss in 6 (Covers 5)
(mt62,mt32,mt7 mt2)

11(1

115: Loss in 6 (Covers 24)
(mt63,mt43,mt2,mt3)

cm

118: Loss in 6 (Covers 6)
fmt63,mt2,m1)

111

110: Loss in 6 (Covers 6) 111: Loss in 6 (Covers 28)
(mt62,mt60,mt49,mt2,mt3) (mt62,mt49,mt74,mt2,mt3)

113: Loss in 6 (Covers 20) 114: Loss in 6 (Covers 36)
(mt62,mt32,mt14,mt2,mt3) (mt62,mt43,mt2)

116: Loss in 6 (Covers 6
fmt63,mt13,m12,mt3)

111

119: Loss in 6 (Covers 6)
(m167,mt2,mt3)

EOM=
117: L033 in 6 ((Covers 5)

(mt63,m12,mamt)

111

120: Loss in 6 (Covers 6)
(mt68,mt62,mt2.,mt3)

