A Comparative Evaluation of the Estimation of
Effort-Profit Relationships in the Scottish Demersal
Trawl Fishery

B J Revell' and S. Pascoe’
1. Harper Adams University College, Newport, Shropshire, UK
2. CEMARE, University of Portsmouth, UK

Abstract. Generalised linear estimation and multi-layer perception neural network modelling techniques were
applied to the Scottish trawler fleet data in order to estimate which inputs have the greatest impact on boat profits
and output. Both produced comparable estimates that revealed inelastic and non-linear response to vessel power
and length, negative response to vessel size (tonnage), and elastic response to both trip frequency and trip
duration. Profit and catch-effort elasticities were greater for smaller vessels.

1. INTRODUCTION

A key assumption applied in fisheries economics is that the primary economic motivation of the skipper is to
generate profit from the application of inputs. The physical process of transforming his inputs to outputs is
through the production function, a concept that links fisheries technology into the economic model of fishing
through the effort-harvest function. However, the vessel incurs costs in acquiring its outputs, and generates
revenues from these outputs. For the individual firm (vessel), we may assume that the prices of its output or
catch are exogenous, given that any individual vessel is unlikely to affect the market prices it receives.

The relationship between inputs and outputs has generally been examined through the estimation of production
functions (e.g. Bjorndal 1989, Campbell, 1991) or stochastic production frontiers (e.g. Kirkley, Squires and
Strand 1998; Sharma and Leung, 1999; Squires and Kirkley 1999, Eggert 2001, Pascoe et a/ 2001, Pascoe and
Coglan, 2002). A criticism of these approaches has been the reliance on a single production function. While
flexibility can be introduced into the production function through adopting a flexible functional form (e.g.
translog), the function still implicitly assumes a common production technology.

Neural networks have been proposed as an alternative method for estimating the relationship between inputs and
outputs. These avoid any functional form assumptions, and are driven purely by the observed input-output
combinations.

In this paper, the potential usefulness of neural networks for assessing profit elasticities is examined. The results
are compared with a traditional generalised linear modelling approach.

2. METHODOLOGIES AND MODEL SPECIFICATIONS

Two methodologies were used to estimate profit-effort response functions for the Scottish demersal trawler fleet:
Multi-layer perceptron (MLP) neural network modelling; and Generalised Linear Modelling."! The two
approaches are contrasting in that one utilises optimal search procedures to determine parameters, and the other
classical statistical estimation and inference”.

2.1 Neural Network Models

Neural network modelling involves search procedures to determine a set of optimal weights minimising a
prediction error function, in which input/independent variables can interact through a hidden layer of nodes
which themselves then contribute to the final output/ dependent variable. Inputs are scaled and converted into
outputs through the hidden layer nodes and a logistic transfer function with threshold levels. The neural network
is capable of modelling many non-linear response functions and surfaces. Hence it may also usefully even serve

" See McCullagh and Nelder (1989) for details on Generalized linear models
? Estimation of neural networks and GLZ estimators was through Statistica V 5.5, Statsoft Corportation



as a diagnostic tool in determining the functional form of multivariate relationships which may be subsequently
estimated using classical regression approaches. Furthermore, the modelling process will iteratively search for an
optimal input variable set and number of hidden layers .

Neural network models generate response functions to individual input variables through the network weights
and logistic transfer function. Elasticity estimates have thus to be obtained through simulating change in the
input variable of interest and measuring proportionate change in the output variable, for given levels of the other
input variables (normally held at their mean values).

2.2 GLZ Modelling and Choice of Functional Forms

Generalised linear modelling (GLZ) not only permits multiple dependent variables and co-linearity of the
independent variables, but more significantly, it enables the modelling of dependent variable which are non-
normally distributed, permits non-linearity in the function linking the dependent and independent variables, and
permits either factorial or other interactions between independent variables. Initial analyses of the data (see next
section) found that profit and total weight of catch for the fleet were approximately gamma distributed, rather
than normally distributed. Consequently, GLZ is more appropriate than OLS.

A response surface can be generally written as
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where _, is sequentially numbered k= 1,2,... n(n-1)*2".

Based on preliminary analyses, it was found that the most appropriate general functional form for the fleet data
used was an exponential link function, given by
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If there are no interaction terms through the independent variables (_x = 0 for all k), the model collapses to a
quadratic function.

The elasticity of the function (4) wrt x; is given by
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3. DATA CHARACTERISTICS
3.1 Revenue and input data

Information on the level of outputs and inputs of the Scottish demersal trawl fleet were available from the
Scottish Office Agriculture and Fisheries Department (SOAFD)’ individual vessel logbook data for 1997. Within
this, vessels recorded as Bottom Otter Trawlers represented the major part of the activity. Data recorded included
gear type, vessel characteristics, days at sea, weight of declared/landed catch, species of catch (although
aggregated into round fish, flat fish, monkfish, nephrops and other species), and total value of catch. These data
were recorded for each vessel and for each fishing trip. For the bottom otter trawl fleet, these data represented
almost 10,400 observations/cases. Vessel identification was altered to preserve anonymity and confidentiality,
although individual vessels could still be identified.

The key variable means for the individual trip data set are summarised in Table 1. The fleet has also been
subdivided into power size groups in order to examine at the estimation phase whether vessel power size group
affects effort response coefficients (different slopes) and, given the non-constant elasticities, which derive from
the proposed functional form, how elasticity varies by power size group. The table shows that Group 2
dominates the sample with almost 50% of trips with the fleet averaging almost 6 days absence per trip

Table 1 Summary of Means for Bottom Otter Trawl 1997 per Trip Dataset
Power groups

PGl PG2 PG3 PG4 PG5 All Groups
kWh <200 200 <400 400 <600 600 <800 >800
Length 14.2 19.9 244 26.5 29.5 20.8
GRT 22.8 48.1 109.2 170.3 267.7 73.6
Power (kWh) 140.0 3184 488.1 685.3 904.8 373.3
Days Absent 24 55 7.6 8.8 9.3 5.9
Catch (tonnes) 1.3 52 10.8 13.1 11.7 6.7
Catch Value £ 1045 5664 11107 14912 15031 7273
Profit (£) 1008 5115 9651 12460 11505 6361
No. obs 1811 4826 2411 1231 51 10330

The same data analysed per vessel over the 1997 season are presented in Table 2. The dataset has been cleaned
and a number of extreme observations filtered out to facilitate statistical estimation and analysis®. This subset
represents some 251 vessels. The key characteristics of this subset do not differ significantly from the individual
trip dataset averages. The table also shows that on average, the fleet made between 27 and 28 trips per annum,
and that the smaller vessels make more trips of shorter duration, and spend less total time at sea than the larger
vessels.

Table 2 Vessel Characteristics: Annual sub-sample
Power groups

PGl PG2 PG3 PG4 PG5 All Groups
Length 15.4 19.8 24.2 27.1 36.1 21.1
GRT 26.9 48.4 93.5 161.8 423.9 72.5
Power (kWh) 140.7 313.6 472.7 682.2  1251.5 376.0
No. Trips 36.6 28.5 22.6 22.9 18.8 27.6
Mean Days Absent 2.8 5.6 7.8 8.4 8.9 6.0
Total Days Absent 92.1 154.8 173.4 194.0 169.0 154.2
Mean Catch (tonnes) 37 151 232 313 308 171
Total Profit (£) 40507 140492 198746 224209 225280 149004
no. obs 35 132 55 25 4 251

* Now Scottish Executive Rural Environment and Agriculture Department (SERAD)
* Excludes vessels which had a gross annual profit in excess of £0.5 million and vessels making less than 10 trips
per annum, on the assumption that they are not full-time fishing vessels.
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Although characteristics such as vessel length, tonnage and power (excluding auxiliary power units) may be
considered as fixed inputs for an individual vessel, for the fleet as a whole, we may view these are variable,. In
essence we thus estimate a hybrid function in which the scale of technology is not strictly constant. Nevertheless,
given that vessel characteristics can be regulated in the longer run, it is of interest to policymakers to understand
how these characteristics affect output’.

3.2 Costs

The profit estimates in Tables 1 and 2 were derived from subtracting trip costs from the derived revenue figures.
Clearly, the absence of cross-sectional questionnaire—based survey data created a difficulty in defining vessel
costs, which form a key component of the economic motivation, profit. However, survey data from an earlier
project® enabled indicative vessel cost functions to be estimated based on the vessel characteristics of gross
tonnage, vessel power and length.

A cost function of total daily vessel fuel and lubricant costs was then estimated, with registered tonnage and
vessel power as independent variables. Other direct costs data such as provisions, ice etc were not available for
all vessels in the survey. Crew costs are normally based on a share of (quasi) profit, and hence may be
considered a fixed cost.

The cost function estimates as a quadratic in vessel power and linear in tonnage are given in Table 3. All
variables were significant and the fit was relatively good.

Table 3 Vessel Daily Cost Function Parameter Estimates

Coeff St. error t(23) p-level
Intercept -62.14 31.70 -1.96 0.062194
GRT 0.56 0.16 3.45 0.002163
Power 0.46 0.097 5.3 2.15E-05
Power”2 -0.00015 3.59E-05 -4.16296 0.000375

Adjusted R_=.903
F(3,23)=81.237 p<.00000 Std.Error of estimate: 40.425

Vessel costs per trip for the Scottish Office survey data were then generated from the estimated daily cost
function multiplied by the number of days each trip.

4. NEURAL NETWORK MODEL ESTIMATES AND RESULTS: FISHING EFFORT

The models were estimate both at the trip level and at the annual aggregated level. The latter reduces the size of
the data set to the number of vessels in the fleet, and also reduces some of the noise in what is inherently noisy
data.

4.1 Individual Vessel -Trip Model

The optimal model for the individual vessel-trip dataset of 10336 observations was a MLP 3:3:1 with 3 inputs
(length, power and days absent), 3 hidden layers and a single output (profit). A diagrammatic representation of
the network is presented in Figure 1, and the corresponding network weight estimates are presented in Table 4.
The trip data are inherently very noisy, given the wide range of vessels and variation in catch from trip to trip.
The model performance, as measured by the root mean square prediction error was 0.63, which approximates to
a coefficient of determination of 0.4.

The profit response to the effort variables are shown in Figures 2. All are non-linear. Response to vessel power
and length is montonically increasing within the data range found in the fleet, suggesting that restrictions on
vessel length and power can reduce effort and catch.

> Indeed nested functions for vessels grouped according to power were estimated in order to test whether harvest-
effort relationships did vary according to power. The estimates however were non significant and hence the more
general estimates for all vessels in the fleet were preferred.

® Contract No. 94/26 “Economic Efficiency of the CFP and Social Objectives in Coastal Areas: A Comparative
Study in Greece and Scotland”, Final Report April 1997
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Table 4 Network Weight Estimates MLP3:3:1 Vessel Profit Effort Trip Model

Input : hil:1 h1:2 h1:3 Threshold
Threshold 0.70 -1.24 -2.11

Length 0.98 1.75 -0.32

Power 0.46 1.18 -0.37

Days Absent 0.89 -2.13 -4.68

h : Output -1.77 1.70 -1.45 -0.57
n= 10,338
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Fig 1 Network Illustration for Individual Trip Data
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Fig 2 Network Response to a) Vessel Power b) Vessel Length and c¢) Days Absent

Response to days absent during a fishing trip shows both increasing, constant and diminishing marginal returns
to time at sea. For the fleet as a whole, it suggests an optimal trip length of around 11 days to maximise profit (at
the mean fleet values for vessel length and power). This is somewhat longer than the actual mean of 5.9 days
absent,. It may suggest that either current restrictions are already limiting effort below its economic optimum,
and/or that catches and revenues are substantially under-declared or recorded (ie balck fish), and that the reality
is greater exploitation of the stock for the recorded days absent. Restrictions on days at sea per trip will,
however, further reduce catches and vessel incomes/profitability. Network simulation suggests elasticities for
vessel power, length and days absent of 0.10, 0.40 and 1.44 respectively.suggesting restrictions on trip length wil
have greatest impact on catches and profitability..
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4.2 Annual Vessel Effort Model

The optimal neural network model for the vessel annual profit function was an MLP5:4:1, with inputs vessel
length, power, GRT, number of trips, average trip duration, 4 hidden layers and profit as the output (Figure 3).
The prediction root mean square error of the model was 0.34, approximating to an adjusted coefficient of
determination of 0.67. The network weight estimates are presented in Table 5 .

Table 5 Network Weight Estimates MLP 5:4:1 Annual Vessel Profit Model
hl:1 hl:2 h1:3 h1:4 Threshold

Threshold -3.30 2.04  -1.60 3.34
Length -1.56  -036  -0.56 1.04
GRT 1.34 091 -0.80 -0.80
Power -022  -0.11 0.35 0.74
Days Absent -2.39 0.03 0.44 2.75
No. Trips 421 2.80 0.16 522
H : Output 298 -383  -0.85 2.49 1.80

Responses to the input variables are shown in Figures 4. In general, over the data-set range, the relationships are
non-linear with the exception of power, which seems approximately linear. Vessel length and power both
positively affect vessel profitability. The former may act as a proxy for auxiliary power, given that deck area
may reflect the ability to carry more equipment. Vessel GRT exerts a negative impact on vessel profitability,
doubtless through its effect on fuel consumption and hence costs. Response to average trip duration appears
logistic in functional form (Fig 4c), and response to trip frequency, approximately quadratic.

Profit-effort elasticity estimates from the MLP network were obtained through simulation. Given the satisfactory
explanatory power of this network, these were disaggregated by power size classes and are presented in Table 6.
For the fleet as a whole, GRT has a negative and small elasticity, which suggests that decreasing vessel weight
will increase overall vessel profitability. The elasticity response to vessel length is 0.85, which suggests that
increasing vessel length increases profitability less than proportionately. The engine power elasticity is low and
positive.

Table 6 Profit-Effort Elasticity Estimates by Vessel Power Size Groups

Effort Variable PGl PG2 PG3 PG4 PG5 Fleet
Length 2.67 090 0.52 0.43 0.35 0.85
GRT -0.23 -0.10 -0.10 -0.14 -0.28 -0.14
Power 0.22 0.17  0.20 0.24 0.41 0.19
Days Absent 2.15 1.37  1.11 0.91 0.64 1.33
No. Trips 1.46 1.05  0.96 0.91 0.76 1.02
Total days 1.76 1.21  1.04 0.91 0.72 1.17

Vessel profitability is highly elastic with respect to days absent at 1.33 and of unit elasticity with respect to the
number of trips. This implies an elasticity of 1.17 with respect to total days fishing. It is notable there tends to be
a more elastic response of profit to effort in the smaller vessels, and that within power groups 1, restrictions on
days from port t will have a significantly greater impact than restricting the number of trips a vessel can make.

Length C— >

GRT 4l —C Profit

Fig 3 Network Illustration for Annual Vessel Effort Model
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Fig 4. Network Response to a) Vessel Length b) Vessel Gross Registered Tonnage c) Vessel Power d)
Vessel Mean Days Absent per Trip and e) No. Trips per Vessel

5. GENERALISED LINEAR MODEL ESTIMATES AND RESULTS
5.1Individual Vessel-Trip GLZ Modelling

A surface functional form was selected a priori as the most appropriate fixed parameter functional form for
estimation. This was supported by the response function simulations from neural network modelling, which
suggest approximate quadratic relationships between profit and effort variables. However, profit is non-normally
distributed, and the most appropriate functional form estimated was that with a gamma distribution for profit and
an exponential link function, which were estimated by maximum likelihood. The parameter estimates are shown
in Table 7. All parameters other than those indicated are significant at less than the 1percent level. Fit
diagnostics show residual deviance to degrees of freedom ratio of 0.4, and the Pearson residuals to degrees of
freedom ratio of 0.37, indicating reasonable goodness of fit’. All parameter signs are of the expected a priori
signs.

7 Estimation of conventional OLS specification of the same function with no assumption made regarding the
distribution of profit, achieved an adjusted R” of 0.69
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Table 7 GLZ Parameter Estimates for Profit-Effort Surface Function

Estimate St. Error
Intercept 3.2604 0.131
Length 0.223 0.020
Length”2 -0.005 0.001
Power 0.003 0.001
Power”2 -2E-06 5.17E-07
Days Absent 0.521 0.018
Days Absent”"2 -0.018 0.001
Length*Power 7.6E-05*° 3.54E-05
Length*Days Absent -0.001° 0.001
Power*Days Absent -0.0002 3.27E-05
Scale 2.558 0.034

Notes: all parameters significant at 1 per cent level except: a. significant at 5 percent level; b. Non-significant

The profit-effort elasticities associated with the individual effort variables are presented in Table 8, again
disaggregated according to vessel power size groups, given that the surface function produces non-constant
elasticity estimates.

Table 8 GLZ Derived Profit-Effort Elasticities for Individual Trips
PGl PG2 PG3 PG4 PG5 Fleet

Profit-Length .21 076 0.07 -0.13 -0.56 0.68
Profit- Power 041 062 0.55 0.13  -0.59 0.64
Profit-Days Absent 097 135 1.01 045  -0.13 1.30
Harvest-days Absent 0.96 1.32 1.01 0.88 0.77 1.24
Cost -Days Absent 0.84 098 1.00 1.01 1.02 0.85

The elasticity estimates are broadly consistent with those presented in Table 6 from neural network estimation,
bearing in mind the different data-sets and model specifications. However, the elasticity estimate for power in
Table 8 is somewhat higher than in Table 6, but the elasticity estimates of profit to days absent are comparable.

Also presented in Table 8 are the elasticity of cost to days absent, derived from the cost function parameter
estimates in Table 3, and the harvest/catch elasticity with respect to days absent. The latter is derived through the
profit and cost—days elasticities in Table 8, and the cost and revenue profit shares®. The catch-effort elasticity
shown in Table 8 is again relatively high for the fleet, and tends to be higher for the smaller vessel power groups
relative to the larger vessels. Cost —days absent elasticities on the other hand are higher for the larger vessels.

Models were also specified and estimated to test for different slopes according to power groups, and using power
groups as a categorical variable to test for complete or partial interaction with other effort input variables. The
results did not improve on those presented above.

5.2 Annual Profit per Vessel GLZ Model

The best estimates for the annual profit-effort model per vessel were achieved through a log link function with
linear and quadratic terms for in vessel power, number of trips and average trip length. Parameter estimates are
given in Table 9 and the effort elasticities in Table 10. All parameter estimates are significant at the 1 percent
level or better and of the expected sign, with ratios of residual deviance and Pearson residual to degrees of
freedom ratios both close to 0.17.

Elasticity estimates are reported by power groups and for all vessels. Elasticities again decline as vessel size
increases. The elasticities for both numbers of trips and days absent are higher than the equivalent MLP network

¥ The catch/harvest-effort elasticity can then be obtained from € q= (67 +0.€.)/ 0, where , is the effort

elasticity of quasi profit, _g is the harvest elasticity of effort, _ is the cost elasticity of effort , _, is the revenue
share of quasi-profit, and . is the cost share of quasi-profit and in which , >1 and 0< _ <I.
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estimates. However the GLZ model only has power as an additional explanatory variable’, and so more of the
profit response is being loaded onto these two variables.

Table 9 Parameter Estimates GLZ Annual Total Profit Effort Function

Estimate Error
Intercept 6.663 0.168
Power 0.001 4.3E-03
Power2 -5E-07" 2.5E-07
Days per Trip 0.697 0.063
Days per Trip”2 -0.034 0.005
No. Trips 0.077 0.003
No. Trips"2 -0.0004 3.1E-05
Scale 5.685 0.493

Notes: all parameters significant at 1 per cent level except: a. significant at 5 percent level; b. Non-significant

Table 10 Annual total Profit Effort Elasticity Estimates
PGl PG2 PG3 PG4 PG5 Fleet

Power 0.19 0.36 0.47 0.53 0.24 0.41
No. Trips 1.65 1.48 1.29 1.31 1.14 1.46
Days Absent 1.43 1.75 1.28 1.01 0.75 1.71

6. CONCLUSIONS AND IMPLICATIONS FOR FISHERIES REGULATION

Both neural network and GLZ modelling approaches lead to useful insights into the composition and
determinants of efforts in the Scottish demersal trawl fishery where the bottom otter trawl predominates as gear

type.

The results have implications for the current proposal to introduce effort controls on vessels operating in the
North Sea, primarily as a means of reducing effort on cod stocks and allowing stock recovery. Imposing
restrictions on the number of trips or the trip length has a greater than proportional impact on profits in the
fishery. With proposed days-at-sea restrictions of up to 60 per cent of the current levels, average “profits” (in
fact, average gross margins) of the vessels could decrease by between 80 and 90 percent. When fixed costs are
deducted, many vessels are likely to run at a loss.

The results also suggest that a transferable effort quota may be successful, as there are considerable incentives to
purchase additional days. As a result, such a policy may result in fleet rationalise in the same manner as would
be expected under an ITQ programme.
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