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PHE FRECHET DIFFERENT IAL IN NORMED LINEAR SPACES

INTRODUCTION

Since the beginning of the twentieth century, the trend of
Hathematics hae been toward greater abstraction and generality. Fune-
tional analysis, a recent mathematical discipline originated by Vito

Volterra and extended by Maurice Fréchet, E, H. Moore and other mathe-
maticians, has come to the forefront embodying the concepts of
topological spaces and modern algebra. Functional analysis is a
generalization and an extension of much of classical analysis, the
underlying characteristic being the passage from the finite to the
infinite dimension, The evolution of functional analysis can be traced
back through the theory of infinite systems, to integral and integro-
differential equations, the calculus of variations and the boundary
value problems of mathematical physics.

A typical example of an operation in functional analysis is
Yy = Px where x and y are elements of any nature, for instance,
vectors, functions or sets of functions., This is a wide generalization
of the functions in classical analysis. To particularize, consider the

relation

(1.1) P [g(x)] = j g(x)dx
[+

where g(x) is a single-valuned real function. P [g(x)] is called a
funectional of g(x). The domain is the set of real functions for which



the integral is defined, and the range is a subset of the real
contimuum,

Mach of the theory of sbhstract spaces and the extension of common
notions from classical theories to functional analysis is due to

Maurice Fréchet. Host of his works have recently been compiled in the
publication, Pages Choisies d'Analyse Generale, One of Fréchet's

important contributions was the introduction of the idea of the differen—
tial to abstract spaces (4, pp.293-323). The complete analysis of this
development can be found in his eited works,

The extension of the differential led to new researches, Develop~
ment of a differential caleculus in abstract spaces followed. In most
instances the topological spaces considered were normed linear spaces
(to be defined later), Several extensions and modifications of the
Fréchet differential were made by R. Gateaux, A, D. Michal (11, pp.532-
536), E. W, Paxson and D, H, Hyers (8, pp.315=316). A differential
calculus of implicit functions in functional analysis was studied by
Hildebrandt and Graves (6, pp.127=153).

Although much of the work involving the Fréchet differential has
been of a theoretical nmature, there have been investigations on the
applied level which have led to practical results. The study by
Michal of solutions of Volterra and Fredholm integral equations as
functionals of resolvent kernels has application to the problem of
obtaining approximations with precise error estimates (13, pp.252-258).

A most direct application of the Fréchet differentisl was in the



generalization of Newion's method by Kantorovich for the approximate
solution of functional equations (9, ppe.l54~183). A4lso, on a research
project directed by Dr. A. T, Lonseth at Uregon State College, the
generalized Newton's method was used to obtain a numericsl solution to
the Chandrasekhar non~linear integral equation which arises in astro~
physics. In a recent paper on gradient meppings (15, ppe5-19),
E. H, Rothe ntilizes the Fréchet differential in the tremtment of
integral egquations in boundary value problems.

A brief analysis will be presented here of the generalization of
the classieal differential to normed linear spaces. Several rules for
Fréchet differentiation and examples will be given. The bibliography

will contain a substantial list of references.



YUNDAMENTAL DEFINITICHS

Basic to the understanding of differentials and differentiation,

in the sense of Frechet, is the theory of complete normed linear spaces

and operatione im them. An ocutliine of this theory will be presented

below. Proofe for many results will be found in the works cited

throughout the text of this paper.

A set of elements X = {x} will be called a rgal linear space when-

ever it satisfies the following conditions. Here Xy X, are elements

of the set and a, b are real numbers.

(1)
(2)
(3)

(%)
(5)

(6)

The gum x +x, is defined and liee In X .

The product ax is defined and lies in X .

The elements of the set form a commtative (abelian) group
under gddition. The identity element of X is denoted by O.
Multiplication is associative, i.e., a(bx) = (ab)x .
Multiplication is doubly distributive, i.e., (24d)x = ax + bx

i alayrm) = axy ¢ oz,

lex=x and 9« x=0,

If the numbers a and b were complex, the set X would be called

2 complex linear space. Only real linear spaces will De considered

unless otherwise specified.

If for every element x in X there is defined a non-negative

real mumber ||x||, called the porm or lenzth of x, which satisfies the

felleowing conditions:

(m

[lxl] 20, !lzl]l =0 ifand omly ir z=0,



@) llx + x|l < 1=l + lixll
(9) (lexi| = |af « [|x|] 3
then X 1is called = pormed linear space (9, pdit).

In a normed linear space X a sequence {’h} converges to an
element z in X if ||x=- an <> 0o as n => ®. The sequence {xn}
is sald %o be & Canchy sequence if 1im Hxn,p - :nH ~> 0 a8 n=> 0o
for @very positive integsr p. A normed linear space is called gomplete
if every Caunchy sequence in it has a limit, that is, converges
(1, p.5 and 9, p.t). In a complete space the convergence of the series
00

Z '
ktll lka implies the ecxistence of the limit
n
lim 2 x = ? X e
n~2c k=1 k=1
that is, an absolutely convergent series is convergent,
Several examples of normed linear spaces are the following.
(1) The set of all real numbers with addition and miltiplication

defined in the usual way is a normed linear space., The norm is
(2.1) H=l] = |x] .

(2) The set of all complex nmumbers with addition and multiplica-

tion by real (or complex) numbers defined in the usual way is a normed

linear space. The norm is
(2.2) HxMLyH--Irz*tar!'-'(::a«*sf?)'é

(3) Phe n=dimensional vector space (Buclidean space B®) where



addition is defined as
x4 y= Bl eennf) * (ngatar senny)
o (4'1 * '11.!2 * Roe cosfy * 'ln)
and mltiplication by & real (or complex mumber), a, as
ax = (G{l,a. Ca. cee w§ )

is a normed linear space, The norm in this space may be defined in

several ways, as

" a2\ %
(2.3) =i = (2 2 2) 2,
.l‘ bl
(244) Hxil ?:’)“51‘
(2.5) lxll = 2 1¢, .
=

(4) The set C of all contimous real functions defined on the
interval (a,b) with addition and multiplication defined in the usual

way is 2 normed linear space. The norm is

(2.6) [zl| = max [x(8)] .
als<h

2

(5) The set L™ of all real functions that are square~integrable

on the interval (a,b) is a normed linear space., The norm is

b &
(2.7) flx|] = ({ xa(a)ds) 2

(6) The set E (after Hilbert) of all real sequences
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0o

* a(xl. X eee) Buch that 121 % converges is a normed linear space.
=

The norm is

. i
(2.8) Hxl| = (= xf)?'-
i=1
Several of the real spaces just cited have extensions in the com~
plex field with slight alterations.
Let X and Y be two normed linear spaces with x an @2lement of
X end y an element of Y, A funection y = Px which maps X into ¥
is called an gperation, The set X is referred to as the domain of P
and Y the prange of P. The gperator P is called a functional if the
range is the space R of real numbers. If in the space X the rela-
tion 1lim x =x implies that 1lim P:rh = Px in the space Y, then

P ig said to be gontimious (16, p.133). The operator P iz called
additive if

(2.9) P(:l + 12) = Px, + Px,

for all X % in the domain of P. Consequently P0 =0 and
P(~x) = =Px. The operator P is said to be linear if it is contimuous

and additive. A linear operator P is homogeneous, that is,
(2.10) ?(&t) =alPx

for any real number a.
Consider the operation y = Px where y isin Y and x is in

X. The operator P is pounded if there exists a fixed non-negative



mumber M such that
(2.11) 12| | € u ||x|]

for all x in X, The smallesisuch number satisfying this inequality
is called the gorm or length of the operator P and is denoted by
[12]| (16, p.134). The left side of the inequality refers to the norm
as defined in the space Y, and on the right the norm refers to the
space X. The operation y = Px has an inverse x = F iy 4f and only
if there is a one-to-one correspondence between the domain and the

range of the operation. The existence of the inverse follows from the
condition that x, # x, implies Px, # rx, (T, pe26). The inverse

of & linear operation is again linear (16, p.162).

A necessary and sufficient condition that the linear operation
¥y = Px have a bounded inverse is the existence of an m > o such that
[1Px|] 2 m||x|| for all x in the domain of P, The largest admis~
sible value of m 1is the reciprocal of the morm of B+ (7, p.26 and
16, p.163). To show this, let P - exist and be a bounded operation.
Then there exist a fixed non-negative nmumber M such that

(2.12) Ll < n gl o
or

(2.13) x| g [[2xl] ,
80 that

(2.14) |12xl] 2% ||=l] .



Thus, if M 4is the norm of P-]', then % is the largest value of m
for which ||Px|| 2 m|lx||s Conversely, if ||Px|| 2 m||x||, then

Px=o0 if and only if x= o (16, p.162); and P'ly exists so that

(2.15) HE il g 2 lxll .

Consequently, for a linear operator there exist two non-negative

real numbers

+16) )= l..b. Uexl]
ca O il il
and
{2.17) n(P) = g.l.b, Uzsll &
x| |#o [ 1=l

where M(P) and m(P) are called respectively the upper bound and
lower bound of P, Their existence implies the inequalities

(2.18) a(®) ||exj| < ||2x|| £ w(?) ||2x|]

for any =x.

If P and Q are two operators which map space X into space ¥,
the gum (P+ Q 4ds defined by (P+ Qx=Px+ Qx forall x in X,
When P and Q are linear, the norm of (P + Q), M(P + Q), satisfies

the inequality
(2.19) MR + Q) < H(P) + K(Q) »

If P maps Y into Z and Q mape X dinto Y, the product PQ
is defined by (PQ)x = P(Qx) for all x in X, When P and Q are
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linear the norm of (PQ), M(PQ), satisfies the inequality
(2+20) H(PQ) £ M(P) M(Q) .

As an instance of a linear operation in a normed linear space,
consider the linear operation y = Px which maps X = R* into Y =R,

The norm is defined as Hx“-ln(l::):lgil. For any x in X where
x= (E10800 ee b ) =dim + £ x4 o v L x i let x =

(1, 04 oo 4 0) x, = fos 3i ane 8)s vee X {0y 05 eee 1)e Also let
yk-P&-(‘lkO ‘&l vee .‘k)j k=1, 2y oss Bo Then

(2.21) y=Pe=P(4,x)+ 2(E,%)+ o v P(E ),
it B REU R oY

= 6171 + 5272 *aee +E T, .

Ir b 4 ‘(’llo ’la. ees !m)' then it is seen that

n
(2.22) ’lJ = kijl .Jk Ek’ (3= 15 oos n) .

Thms the operator P is a linear transformation defined by the matrix

(2423) A= (au) .

The norm of this operator is found as follows.

n
24 = = .
(2.24) xll m!'lil mlﬁlamtkls ?;J):Hkl
max I |ayl,
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or

n n
(2425) |l2=|] € e [ &l o - X oyl = Lixl] ¢ ) L] logl

Thms, in any case,

' n
026 P L ]
(2426) el < - e gyl
and the exact equation
n
(2.27) [Pl = x5 oy

can be established (9, pp.8~9).

The operators considered so far were operators of gne place which
mapped & space X into a space Y, The collectiorn of all snch opera-
tors L which are linear, forms a normed linear space satisfying all
conditions defined for these spaces., The space of linear operators
from X to Y will be denoted by (X => Y), For all L in
(x = 1), |I5f| = u(w)|i=l|.

The gartesian produck of the spaces X and Y is the set of all
pairs (x,y) where x is in X and y 4s in Y, The cariesian pro-
duct will be denoted by X x Y (X eross Y). An operation P on X
t0 Y is a subset of X x Y so that (x,y) is an element of P,

A linear operator B which meps X x X into Y is an operator
of two places and is called bilinear. A bilinear operation om X to
Y is equivalent to a linear operation on X to (X => ¥), To show
this, consider a linear operation L = Bx mapping X inte (X => Y).

Since L is a linear operator from X to Y,



(2.28) Brx = Ix' = (Bx) x'

is an element of Y, and B is defined for all (xx') in XxX.
B is additive with respect to each argument, and hence is equivalent
%o a bilinear operator from X to Y. Coaversely, if Bxx' s a
bilinear operation from X ¢o Y ; with x held fixed 1% represents
& linear operation from X %o Y so that Bx is an element of

(x ->Y). Tms for Bx=1L,

(2+29) [BCxx" )] = |12 || € w(E)||=*|]

(9 »pP.155~156).
An example of & bilinear operation is the inlegral operaiion

i 1
(2.30) v} = (r:(-.t.v) z,(t) x,(v) at av ,

o ]

vhere the space C is the domain and the range of 3:132. Another
example is the bilinear operation from X =R" to ¥ =R" with the

norm |ix{| = ﬁ “:l" Phe operation y = Bxx' takes the form
i

n n i
(2.31) %= P Loy £y &y v (&=l wum),

where B is a three-dimensional matrix ("1#)'
In particular, consider the bilinear operation y = Bxx' vhere
i
x= (glo Za). x = (5'1 o 2) and B is the three-dimensional

matrix
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A1F T 7 e
// // |
Risq— a a a
1117 121 | %3131 %12 "2y ™22
% e T N ( )
| /“212 " ®a22 8511 2212 13221 3222/ ,
| I
&1 T %
Now
(2.33) Bx = (‘111 #1112 (f121 ‘122)(51)
8311 8212 | 2221 2202/\ 52
(‘111‘51 + a0k 256 ¢ ‘122‘5?_)
ay118 * 808 B fy * 2%
so that

(2.34) Bxx' = (‘11151”'1' +a0068 ¢ ‘1215152’ * ‘12252"'21) -
811608 * Bo10bad) * 265 *

(s 72) = Y

where

2 e
(2'35) ’Ik ’igl ngaijkgi{-; ] k=1, 2e

Note that Bxx' ¥ Bx'x unless B is symmetric or x = x'. 1In
general, for an operation B( )( ) of two places, a permutation on
the places gives different results, unless certain conditions on
symmetry are satisfied. In what follows, the notation B~ will

mean a permutation on the places of the operator Bj for Bxlxz,

Bxax1 =B xlxa.
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For example, consider the bilinear operations

P b
(2.36) ¥ = Bx x; y(s) = f [ K(s,t, V)%, (8)x, (v)atav .
a a
If the kernel k(s,t,v) is symmetric with respect to t and v, then

(2038) 321!2 = B.l’l& .

If k(s,t,v) is not symmetrie, then Bx, x, # 3'1112. The kernel
k(s,t,v) = ﬁg would satisfy (2.38).
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THE DIPFERENTIAL AND DERIVATIVE

In extending the differentisl to abstract spaces, it was desirable
to ascertain what is essential in the notion of the differential. TFor
this, Frechet turned %o J. Hadamard who stated: "“The differential of
a function is a linear function of the differentials of the variables®
(4, ps295). To this as a starting point, Frechet added that the
diffsrential of a function ought to be = simple expression, approximate
to the increment of the funetien. By gimple he meant the linearity of
the sxpression and by gpproximate he meant that the differential of the
function is the princivel part of the increment of the funetion, that
is, the differential and the increment should differ by infinitesimals
of higher order.

For instance, the differential of the real functicn 2z = P(x,y),

(3.) =Py,

is a linear function of the differentials dx and dye. The increment

of £ is
) , >
(3.2) bz = 5% ax + -;;tw-r e Ax + €Ay
where € and € tend to sero with Ax and Ay. The principal

part of Az is defined as %gmn%;ny .

The definition of the differential for mumerical functionals was
the first step in the extension of the differential by Frechet to
abstract spaces. The concept of yariation of a functional in the
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calculus of variations played an important role in the formulation of
the definition. Consider the functional ¥ = F(x,y,y' ) which depends
on y(x) and y' (x) for a fixed value of x. If y(x) is replaced
by y(x) + ¢n(x), where €n(x) = 8y is called the variation of y(x),
the corresponding change in F, for a fixed x, is

(3+3) AF = F(x,y+en ;7' +e n') = Mxy,y ) .

Expanding the right side of (3.3) in powers of ¢ and neglecting
terms with powers of ¢ higher than the first, one obtaines the first

order approximation
(3.4) oo h o=Loydh &',

called the variation of F (5, pp.130-131). This is analogous to the
notation of the differential calculus as portrayed by (3.1). Con-
sequently, if the variation, §¥(y,Ay), of a differentiable functional
F(y) 4is a linear functional of the increment Ay = 8y, one has the

familiar expression

(3+5) F(y+ay) = F(y) = 8¥(y,ay) + n ¢ (ay)

where §(Ay) denotes the distance of Ay from the function Ay = o,
and h goes to zero with ¢(ay).

Freéchet, after a more rigorous analysis, of course, formlated
the following definition of the differential for mumerical functionals.

The funetional Px allows a differential for a given x, of the
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fanction x if there exists s functiomal Lax, linear with respect to
the increment Ax, such that IAPx° - Lox| is infinitely small with
respect to the number which measures the diffevence between the elements
x and x +ax .. The diffevential of Px at x, will be Lix
(%, p.296).

Without modification, Fréchet extended this definition to opera-
tions on rormed linear spaces to normed linear spaces as follows:

An operation y = Px, linear or othervise, mapping space X into
gpace Y is (once) differentiable for a given value of x if there

exists a linear operator L an element of (X => Y) such that

(346) | [P(xtax) = Px ~ Lox|| = of| |ax]]) ,

where the notation o ) means that the function ofllazl]) 1s
infinitely small with respect to ||ax||.

To particularize, let spaces X and Y each be the space R of
real mumbers., Then y = P(x) is a real function of a real variable
and the definition of the abstract differential coincides with the
classical definition of the differential (2, pp.59~60), that is,

(3.7) P(xtox) = P(x) - P'(x)ax = o(ax) .

For Px differentiable at a given x, the linear operator L
defined by (3.6) is unigue. For suppose the existence of another linear
operator H, distinet from L, which fulfills the same role as L for

a2 given x. Let x = —ax and consider the relation

[lax]]
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(3.8) ||1ax = Box|| = ||ax|| » ||z’ - 5[] o
The right-hand side being independent of ||Ax|| goes to zero with
|lax||. Consequentiy, Lax = Hax,

The linear operation Lix is called the first Frechet differential
of Px for a given x and will be denoted by d,P. The definition of
the second differential follows quite naturally.

An operation y = Px 1is twice differentiable if: 1) P has a
first differential defined everywhere in a sphere 8 about x:

2) there exists a bilinear operator B such that for all (x+Ax) 4n $

(349) Ha, o = a2 = 2ox|| = of||ax(]) .

The linear operation BAx is called the Second Frechei differential
of Px and will be denoted by a&r.

In general, an operation ¥y = Px 4is p-differentiable if: 1) P is
(n~1)=differentiable everywhere in & sphere S about x: 2) there
exists an p~linear operator N such that

(3.10 e, 2= a3 2 - max]| = of|jaxl]) .

The linear operation NAx is called the pth Frechet differential of
Px and will be denoted by d:P .
From the definition of the differential, it follows that if the

operation y = Px is differentiable at x, it is contimous at X e

Thig is readily discerned by rewriting (3.6) in the form

(3.11) [B(x rax ) = Px || < w8} ] |ax || + of| lax 1)



19
and letting ||ax || => o .
Congider again the differentials de = Lix, di P= BAx and
di P = NAx defined by (3.6), (3.9) and (3.10) respectively. The
notion of the gerivative is apparent whern L, B eand ¥ are called

Tespectively the first, second and a'R Fréchet derivatives (7, ppe73-Th

and 9, p.159). They will be demated by D_P, 32

i a.ndD“;P. Thms, in

the meaning of differential caleulus one has

(3.12) & P=D_PAx
(3.13) ai P =1 Pax
and

{Re3ht) a; P= n: PAx .

The notation DxPAx shall be understood to mean that DtP is
operating on the element 4x. Sometimes, during the course of a dis~
cussion involving Px, the argument of P may become, say, 2,

then the derivative of Pz will be displayed as D‘P' »



RULES FOR DIFFERENTIATION

The analogy implied in this section between the rules for ab~
stract differentiation and those for differentiation of real functions
is intended for intuitive purpeoses only. The analogy will not hold in
many instances because of the nature of the elements and the operations
on them. However, the rules for real functions are special cases of

the rules for normed linear spaces,

TEEOREM 1., ZThe Fréchet derivative of & constant operation is mull.
PROOF: Let Px = k, where k is a constant element. Then

P(xtAx) = Px =0 ,
Set VAx = 0 so that
| |P(xtax) = Px = Vax|| = ||o]| = o(||ax]|).

Tims by (3.6) 4P =Vax =0 and

(4.1) DxP =0,
In the case real functions, Dx(e) = o where ¢ is a constant.

THECREM 2. The Frechet derivative of a limear operation is the
gperator itself.
PROCF: Let y = Ix be a linear operation from X to Y. Then

by (2.9) .
L{x+Ax) - Ix = LAx .



By (3.6) it foliows immediately that
()-hc‘?.) 3xL =1L .

Farthermore, since D voxt = Dgl = Ly Dy theorem (1)

(43) Frp=o.

In the case of real functions, Dx(cx) = ¢ and Di(ox) =0,

THEGRES 3, Given that P and Q are differentiable at x, the
Eréchet derivetive of a sum gperation y = (P+Q)x 1is the sum of the
derivatives of the operations Px and Qx .

PROOF: Let y = (P*Q)x be & sum operation from X to Y, By
definition, (P+Q)x = Px + Qx and (P+Q)(x+dx) = P(xtax) + Q(x+ax).
Set Vix = (dxxa + axq) so that

|| (2+Q) (x+ax) =~ (P+Q)x - Vax| |

= | [P(xtax) = Px = 4P + Q(xtax) = Gx~d0||
< || 2(xvax)-px-a_p| |+ |Qxrax)=0x-d,0l |

= o(||ax|[) + o(|]ax||)

= of | lax] |) .

Tius by (3.6) ax(m»o,) =Vax =4 P+ 4,Q and
(ba4) D (P+Q) =D P+ DQ .
If P and Q are linear operators, it follows from theorem (2) that

(4.5) Dx(P"Q) =P+ Q.



In the case of real functions, Bx[f(x)‘i-g(z)] = D f(x) + D_g(x) .

THEOREM 4. Given $hat 2 = Qv and y = Px are differentiable
sperations at y and x respectively, the Fréchet derivaiive of ihe
Broduct. speration = = (QP)x 48 D.QD.P .

FPROCGF: By hypothesis, § 4s differentiabls at F #5c that

latr+ay) = @ = D.qavl| = olllayll) .
Set Ay = P(x¥Ax) - Px. Then
Hayll = |i®(x+ax) = Px = D Pox + D Pox||
£ l2(ztaz) - Px = D pax| + |2 Pax]|
= of|lax||) + u(D_P) « ||ax|| o

Tius to infinitesimals of higher order

ol lay]]) = of||ax||) .
How set Vax = n’cwxm 20 that

| |QP(=+ax) - QPx - Vax||
= ||Qp(xrax) = QPx = D G pax| |
= | |QP(x+ax) ~ QPx - D ALP(x+ax) « Px] + D, QL P(x+ix) ~ Px = p_pax]| |
= ||Qp(xtax) ~ QPx ~ D qay + D,O[P(x+ax) = Px - o paxl||
< latr+ay) = @ = D aayl| + | [0, QLP(x+ax) ~ Px - p pox]||
= ofllay) + u(doQ) « of|lax| )
= o(||az||) .

Thms d:QP = Vix = D ’@:deand
(146 DGR = DD .



a3 .
This theorem is the analogue of the ghain rulg for real functions in
the ordinary differential calculus, that is, D G{£(x)] = nys(y)nxz(x).

If Q is a linear operator, one has the following corollary to
theorem (4).

COROLLARY 1. Given that 2z = Qy apd y = Px are differentiable
operstions st ¥y and x respectively and Q is & linear operator, the
Eréchet derivative of the product =z = QPx is QD.P .,

PROOF: From theorems (2) and (&) it follows readily that
(%7) DOP = DR .

in the case of real functions, Bx[et(x)] = aﬁzﬂx} .

THEOREM 5. @Given a bilinear operation y = Bxx, on XxX %o,
she Préchet diffevential is Bx Ax, + B'xAx, 2nd the Fréchet deriva~
tive i8 Bx,( ) + B'x,( ) .

PROOF: Since B 1is linear with respect to its places,

PinghingHongimgd = By » SRy & Mghny ¢ Magiey

Bz vax, ) (xytoxy) = Bxyx, = BxAx, + Bxphx + BAx,Ax, o
Set "“‘1"‘2 = h’l.‘na + B‘xaa.xl 8o that

| 1B(x +ax) )(x 40x,) = B3, - Vax ax, || = | [Bax x| |
£ LBl Haxy [] ] laxy]]
= o(|lax || « [lax,]])

Thus it follows that

(4.8) 4,1,2 = Bx,Ax, + B x,Ax



and

(4.9) Dex, = () + 350 ) .

Furthermore, if 1:1 = xa N

(4.10) 4B = (B+37) xAx
(4.11) D3 = (3437) x
and

(4.12) 2B (B45) .

In the case of real functions, a specialization of (U4.8) would be
d(exy) = oydxsexdy likewise, for y = :2. (4.,10) specializes to
a(xa) = 2xix,

THECREM 6. Let y; = Hx and ¥y, = Qx e iwo differentiable
operations ai x. If ¥ = By,¥, is a bilinear operation from Y =xT¥
fo ¥, then

43y g, = D Q) + ¥ (RR)P )

PROOF: From (4:9)

(%.13) Uy 7, = Wylvp By by, o

By hypothesis
by, = H(x+Ax) - Hx = D_HAx + of{ax) ,

4y, = Q(x+ix) - Qx = D_QAx + o(4x) .

Substituting the last two expressions, into (¥.13), it is readily



discerned that

(1h.24) 4By g, = BER)D,0) + 37(GR)(D,Rx)

aa HAx” ~»> 0. Furthermore, if H and Q are linear operators,
(%.25) 4‘37172 = B(Ex)(cAx) + B7(Qx)(Hax) .

in the case of real functions, d [#(x)g(x)] = g(x) D f(x)ax +
£(x) D g(x)ax .

n
TEEOREM 7. Let y = NX ... * Do an n-linear operation on X %o

Yo IL ¥ is differentiable at x, then

n~l n~3 n-l
ilzﬁ = llx vee XAX + N, ses XAX + 00 * an coe JAX »

(The subscripts on ¥ indicate the pisces, from left to right, thub
Ax pomples).

FEQUF: Since X 48 linear,
n n n=-l n-1
"“-—«_—“ P L ,~_-
F(x+Ax)eoo(xtox) - Nx ..o X = B oo xAx + o. + N X o0, xbx 4 (terms

involving 4&x in more then one vlace) .
n n-l

n~1i
Set VAX 440 8% = El:: soe XX * gq0 ¥ lnz ese XAX 80 that
n-l n n '

Hl(;mu) - FX oee X = VAZ 500 Bx || £ |1i¥]]+]] terms involving

Az in more than one placel|| = o(||ax||) .
n
Tme 4N = VAX ... Ax and
-l ol o=l
(416) 4N = KX ..o 3Ax + B8 co0 3AX # o0 + N X o0, XAX ,

Consequently, if N is a symmetric operator,



n~1
(’"’017) dg = alix .0 ZAX ’
and

n~l
(4.18) DN = nlix ... x .

In the case of real functions, Dx(xn) =nx 1 .

THEOREM 8. @iven that y = Px is an operation from X %o Y,
and the inverse operation x = Qr from Y 3o X sexists, then
Dp= (7.

PROOF: By hypothesis

(uolg) Ix = QPI
where I 4is the identity operator, From (4.19) and theorem (})
BxI = I= D,CSB!? .
I D ,Q, # 0, it follows that
"y -3
(4.20) DR = (D.Q)

Furthermore, if P is linear then Q is linear, as mentioned earlier,

and it follows from theorem (2) that

(4.21) P=q,

as it should be.



EXAMPLES

(1) Consider an operation y = Pxr mapping X = B® into Y = R™
where x = (gl. see {n) and '73 = rj(él' see {n); j = 1, ese m« The
operation will be differentiable at x if the functions FJ are differ~
entiable at x. To infinitesimals of higher order

n
(5.1) ay = {angli any= ;-1 ngrjdgku-l....nzm....n) .

The Fréchet differential of Px is seen to be represented by the gatrix
Rroduct

(5.2) aF = (4 7)) (4L,

and the Fréchet derivative is the transformation matrix

(503) DZP - (Jggkrj)t (:.1’ ses M k’l. se e n)’
oF
where H, F, =i .
T3 75,

(2) Consider the bilinear integral operation

i 1
y(s) = B‘.an = f f K(s,t,v) xl(t)zz(v)dvdt

<] 4]

(5.14)

on ¢ to €. Applying rules (4.8) and (4.9) of theorem 5, the
Fréchet differential and derivative of (5.4) are

i1 1
55) 4 B 0{ o{ K(s,tv) Ay (t)x,(v)avat +
11

{ { o, t,v)x, (61, (w)avat
¢ 0



28
and

11 11
(5.6) D__B= E(s,t,v)( )x,(v)dvit + K(s,t,v)x, (t)( )avdt .
gt ™ [[Hem e f fierin

{(3) Suppose that in example (2) xlcmaxa and ‘2'“'13 o
Then use of (4.14) theorem 6 glves

O
(5.7) =2 f ( x(s.t.v)z(t)u(t)é(v)dvat +
e O

ar
11 "
3 f { K(8,4,v)2(8)x2(v)ax(v)avds .
o 0 ‘
(4) Consider the non-linear u'gegral operation
1
(5.8) y(s) = Px = ( K(s,t)[x(t)1° at
<
from C to C. Now N "
(5.9) P(xtax) - Px = f (s, ) x(t)+ax(t) 120t - f £(s,t)[x(8)1° as
o [+]
1

.
=2 f K(s, t)x(t)ax(t)at + ( (s, 8)(ax(t))Z ab .
0

]

1
Using definition (3.6) and setting LAx = 2 { K(s,t)x(t)ax(t)ds ,
[+

1
(5410) | |P(xtox) - Px - Iax|]| = || j k(s, ) ax(t) 1% ||
L+

< m(x)| |ax |2
= of | lax|]) .
Thus N
(5411) ap =2 [ Ko,t)x(t)ax(e) at ,

o
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1
(5.12) DP=2 f K(s,t)x(t)( Jat .

0
These results are readily obtainable by treating (5.8) es a product

operation on x as follows. Let

1
(5.13) y=lzg= f K(e,t)z(t)at

o
be a linear operation, and

(5.14) z = Px = [x(t))°

a non-linear operation. Ihen (5.8) is equivalent to the product

operation
(5.15) y(s) = LPx = ? K(s,t) [x(¢)1%t .
Rule (4.7) of corollary 1 gives m.a.;my
(5.16) LD.P =2 ?x(-.s)z(z)( Jas .
°

The second Frechet derivetive of (5.8) is seen to be the bilinear

operator
'  §
(5.17) Bre2 [(Kat) ).
@
(5) Coneider the non-linear integral operation
1
(5.18) s =1exe) (8
o

in C. This is the Chandrasekhar non-linear integral equation which
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arises in astrophysics in connection with radiative transfer., The
function ¢(t) 4ie determined by the type of scattering being considered.
Equation (5.18) may be written

(5.19) Px=Ix~Bxx =1,

Applying rules (4.1), (8.2) and (%.11) of theorems 1, 2 and 5 respecti~
vely, the Prechet derivative of (5.14) becomes

(5420) D= T~ (B+ )z,

Applying rules (%.3) and (4.12), the second Frechet derivative becomes

{5.21) Di P= =(B+3) .

These Frechet derivatives were used in Newton's method to arrive at a
numerical solution to (5,18). This was carried out on & research
project at Oregon State College.
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HEAN VALUE THEOREMS

The following theorem is an abstract analogue to the classiecal
mean value theorem of the differential caleulus (9, pp.161=162).

THEOREM 9. Let Px be an gperation, linear or otherwise, from
X %o Y. If P is g differentiable overator,

|[P(xtax) = Bxl| & max |[[D, 2, || ||axl], &= (xrons).
o£8<1

PROOF: Set P(x+ix) -« Px =y, Let there exist in space Y a
linear functional T (1, p.55 and 16, pp.ld4~148) such that

(641) oy = |lylls lell=1.

Consider the real function of a real variable &,

(6.2) £(t) =T P(xtthx) =2 P £

Using theorem 4 for a chain of three operations, (6.2) takes the form

(6.3) t'(t)-wné:.r Ax=TDet Pyt Ax.

(x+tax)
From y = P(x+Ax) - Px and (6.2),
(6.14) ty = [ P(x+ax) - Px] = £(1) - £(o) ,
and applying the law of finite increments for real functions to (6.4)

(645) (1) = £(o) = £'(®) = 7 DePlrrong)ox = T D, Py Ax o

Thas from (601)' (6.1") and (6.5) it follows that
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(646) |IP(x+ox) = Bx|| < u(®) |[|Dg,)| |loxl| < max [D, 2 || |laxl] .
LGS

The abstract analogue to Taylor's formla follows quite naturally
(9- Pp.162-163).

THEOREM 10. Let Px De an operation, linear or otherwise, from
X to Y. If P is a twice Fréchet differentiable operator,

|Ip(xtax) = px - D pax|| <3 max |[f 201 [lax][% &= (xvesn) .
oge<l

PROOF: Set P(x¥+ix) - Px = D PAx = y. Again select a linear
functional T such that

(6.7) ty = |ylls LTl =1,
Consider the real function of a real variable ¢,
(6.8) £(t) = 2 P(x+tax) =T P £

The first and second Fréchet derivatives of (6.8) are

(6.9) £(8) =2 Dy Bz =T D, Py ix,
1
(6.10) £(8) = 7 17, P g pag)iT0% = T Dy By hxix
where D5, P,, is a bilinear operator defined by (3.9) .

g e
From y = P(xtAx) ~ Px = DxPAx and (6.8),

(6411) ty = T[P(x+ax) = Px = D 2] = £(1) = £(0) = £ (o) ,



and applying Taylor's formila for real functions to (6.11)

(6.22)  £(2) = #(o) = £'(0) =2 £"(6) = 2 2 2% P axx .

Thus from (6.7), (6.11) and (6.12) it féuawa that

(6:13) |[P(xtax) - 2x - Depax|| < & u(r) (123 2, 1] |Jax||?
sé& [19% 211 [lax] |2 .

Consequently, 1f P 1is n-differentiable,

(6.1%) | [P(x#ax) = Px = D pax - 3,02 paxax ~ .., = 'é-'i')t

]

<9 c;;‘g“n’;’g“ll&xlh ¢= xvonx .

Newton's method for approximations of solutions of the real
function

(6+15) £(x) = o,

takes the form

2(x, )

- AT T )
L

where x3°¢ X3 eee x, are successive approximations to =x.
Kantorovich (9, pp.166~198) has demonstrated that Newton's process

can be extended to the operation



(6.17) Px = 0,

vhere P, an operator on X to Y, is twice differentiable. If the
derivative D.P has an inverse (D:P).". the analogue to (6.16) is

(6.18) X =x - (00 e .

The conditions for convergence of (6.18) to the exact solution, and

applications of Newton's method can be found in Kantoroviech's paper.
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