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THE PRG DIPFEBENr IAL IN NORMED LINEAR &ACES 

INTROJCTION 

Since the beginning of the twentieth century, the trend of 

athematics has been toward greater abstraction and. generality. une- 

tiona]. ana1yi, a recent :ìathernatical discipline originated by Vito 

Volterra and extended by 1w.rice Fre'chet1 E. H. Moore and. other mathe- 

raticians, hae cone to the forefront ebodyin the concepts of 

topological spaces and. modern algebra. Functional analysis is a 

generalization and an extension of imich of classica]. ana1ysis tue 

u.nd.erlying chracteriotic being the passage from the fixite to the 

infinite dinienslon. ne cvo].ution of fuìctiona1 analysis can be traced 

back throuh the theor.r of infinite systems, to intea1 and. integro- 

differential equations, the calculus of variations and the boundary 

value problems of mthenatical physics. 

A typical emple of an operation in funciona1 analysiz is 

y where z and y are elements of any nature, for instance, 

vectors, functions or sets of functions. This is a wide generalization 

of the functions in classical analysis. To particularize, consider the 

relation 

(1.1) P [g(x)] 
5 

g(x)d.x 

where g(x) is a single-valued real function. P [g(x)] is called a 

ftinctional. of g(x). The domain is the set of real functions for which 



2 

the integral is defined, and. bhe range is a subset of the real 

continuum. 

4uch of the theory of abstract spaces and. the extension of common 

notions from classical theories to functional analysis is due to 

Naurice Frchet, Jost of his works have recently been conpiled in the 

publication, Paes Ciois&es d.'Analyse Generale, One of FrchetIs 

iLportant contributions s the introduction of the idea of the d-ifferen- 

tial to abstract s)aces (4, pp.293-323). The complete analysis of this 

development can be found. in his cited works. 

The extension cf the differential led to new reseachea. Develop- 

rient of a differential calculus in abstract spaces followed. In most 

instances the topological spaces considered were norted linear spaces 

(to be defined later). Several extensions and. modifications of the 

?ciet differential were made by R. Gateaux, A. D. ilicimi (11, pp.532- 

536), E. . Paxson and D. h. rers (U, pp.315-316). A differential 

calculus of implicit functions in functional analysis was studied by 

Hildebrandt and Graves (6, pp.127-153). 

Altkgiigh much of the work involving the Frchet differential has 

been of a theoretical nature, there have been investigations on the 

applied level which have led. to practical results. ie study by 

iicha1 of solutions of Volterra and Fredhoim intea1 ecuations as 

functionals of resolvent hernels has aplicatlon to the problem of 

obtaining approximations with precise error estimates (13, pp.252-258). 

A most direct application of the Prchet dif-erential was in the 
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enera1ization of rieYzon*s iìethod by ¡antorovioh fo the apprcximate 

oltLtioL of functional equatione (9, pp.15-1B3). Also, on a research 

project directed by Dr. A. T, Loiueth at (.reon Cciee, te 
jonera1ized Newon s :ethod. wa used to ottain a irincrica1 so1ition to 

the Cuianìracekimr non-1thea integral ecjwttion thioh arises in astro' 

pbysics. In a rpcent paper on viìent Wp)iflS (15, pp.5-19), 

L. :, Rothp utilizes the Frchet differential In the treatment of 

intera1 eauat1on in hoLary value problems. 

A brief analysie will ìe presented here of the enerlization of 

the classical differential to norned linear spaces. Several rules for 

Fre'chet differentiation ad exemples will be given. The bibliograp 

will contain a øibstanttal list of references. 



1UiÎDI.ME1TAL DIThJ'IO3 

Banjo to th u.ndertanUng of d1fferrnt;iaì and ffrentiaton, 
in th ene of ]'rdchot, it th theory of copa.t ncrid. .thar rpacrc 

o r.tion in t.hei. öutln f this theory will be jreentea. 

bXow. Proof ß for raïy rciltn ïill be fourni. in the workt citea 

throughout the text of this paper. 

A set of elements X {x} will be called a rea) linear cpae when- 

e'ie' it satisfies the fc1lowtn condition8. Hare .re elemente 

02 the 2et and a, 1 are teal nunbre. 

(i) The x1 4- iie ti X 

(2) The ax i dei in& anti lies in X . 

(3) The el;ents of he set 2ci t ccr.itative (belan) croup 

under addition. The identity element of X is denoted by O. 

(1i) iiltiplicatici i:3 ocitive, i.e. a(bx) (ab)x 

(5) Multiplication is doubly distributive, i.e., (E:b)x ax + bx 

and a(xl+X2) = 811 ax2 

(6) 1xx anl 
If the mbere a and. b were complex, the set X woi4 be called 

complex lInear space. Only real linear b*O4í wiU b coidsred 

unless otherwise specified. 

If or every elerient z in i tn9re is defined a ncn-neative 

rcal number lixil, called the nori r f x, which satiefleE the 

fcllowit con&it!cn: 

(1) IÑ$1ø. 11x110 usMzui zO, 
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(8) 11x + X211 I IIx,_H + 11X211 

(9) I axt = ia 
¡ 

X :Ls a11ed nored 1inai' sìa (9, p)1), 

In a iorinad IIXLea? )aCe . seience {x} converges to an 

eIe:aent z ii X 1f ¡X - x11j -> o a n -) (1) T'ne eqience {x} 

iz 3aii to a Caìcy eqj.enc if lizi -xi 
I 

-> o as n -> oo 

Lery positim intgr p A iurìei linear ?ace i Calle(i cc1ete 

if everr Gaucl;r eue2:ce ir it hs a 11r1t, that is, converges 

(71 p.5 and p.li). In a cornplete eace the convergence of the serles 

impilce the (xi3tnce or the lirilt 

n o: 

1iD Z = E 

k1 -. 

tiat Is, an absolu:ely convergent series Is convergent. 

Several examplec of norned linear saces are the following. 

(i) The set of all real numbers with addition and. inaitiDlication 

defined in the usual way is a formed. linear space. The norm is 

(2.1) jixil ¡xi 

(2) The st of U conp1ex numbers with adu1it:m d rtillica- 

tion by real (or cornple) munbere defined in he usu.al ay i a normed. 

linea'? snace. The orii is 

(2.2) 
I 
Ix + lyl I = lx + tyl = 

(2 
) 

2 

(3) The n-dLensionai vector caace (Thiclld.ean space R) where 



aí11tion is lefined as 

X ...Ç) + ('ti. It2. .it11) 

+ It2. + 

and. rnultiiication by a real (or complex number), a, as 

l'2' ' 

is a normed linear sace, The norm in this space ry be óefined in 

several ways, as 

HxH 

(2.) = ax 
¡ 

(i) 

(2.5) xjj = 
I I 

j=l 

(1i) The *et C of al]. continuous real functions defined on the 

interval (a,b) with addition and. niu.ltiplication defined in the usual 

way is a norxned. linear sace. The norm is 

(2.) lili, max lx(s)I 
8181b 

(5) The set £2 
c all real fuictions tmt are aquare-interable 

011 the interval (a,b) is a formed linear space. The norm is 

11x11 = 

(I 

X25d8) 

() The se H (after HUbert) of all real secmuences 



x (x1 X2, ...) such thtt converges is a norried linear s:ace. 

he norm is 

(2.8) 
00 

( ) 

2 

i=l 

Several of the real spaces just cited have extensions in the corn- 

plex field with slight alterations. 

Let X and. Y be two formed, linear saces with X an lement of 

X and. y an element of Y. A function y = ?x which maps X into Y 

is called an pperat&pn, The set X is referred to as the d.pmrUn of P 

and Y the range of P. The ers.tor P is called a functional if the 

range is the space R of real numbers. If in the space X the rela- 

tion um z z irmlies that um Px Pi in the space Y, Uhen 
n - n - 

is said. to be cot.tnuo (16, p.133). The operator P is called 

additive if 

(2.9) 

for all X1, X2 
- the domain of P. Conaeqìently O O and 

?(-x) = -ex. The operator P is said to be linear if it is continuous 

and additive. A linear oerator P is homogeneous, ;hat is, 

(2.lc) 2(ax) = a P z 

for any real number a. 

Consider the oDeration y Px where y is in Y and i is in 

X. The oierator P is jp'uflcld, if there exists a fixed non-negative 
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number M stich that 

(2.ii) IiixH jM ¡lxjJ 

for all x in X. The nal1es such number satisfyiri this inequality 

is called the or 1enth of the operator P and. is denoted by 

N1l (16, p.1314). The left side of the inequality refers to the norm 

as defined in the siace Y, and on the right the norm refers to the 

space X. The operation y = Px has an inverse i Py if and only 

if tnere is a one-to-one corresoondence between the domain and the 

range of the operation. The existence of the inverse follows from the 

condition that x, x implleø Px, Px (7, p.26). The inverse 

of a linear operation is again linear (16, p.162). 

A necessary and sufficient condition that the linear operation 

y = Pi have a bounded inverse is the existence of an ni > o such that 

I 
¡Pu 

I 
ml 1x I 

for all i in the domain of P. The largest admis- 

sible value of ni is the reciprocal of the norm of P (7, p.26 and 

16, p.163). To show this, let P exist and be a bounded operation. 

Then there exist a fixed. non-negative number M each that 

(2.12) ¡lP1yIl 1M lb'iI 

(2.13) ¡lxii 1M (f?X 

BO that 

(2.Ñ) I1If 2. 11x11 
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This, if M is the nor: of then is the lrest value of m 

for which 4jPxjj mjIxH, Conversely, if Iìx1 ¿mItx1, then 

= o if and. only if x o (16, p.162); and Py edts so that 

(2.15) jj'yH< 1rH 

Consequently, for a linear operator there exist to non-negative 

real numbers 

= 1.u.b. ' (2.16) 

jLxjJ#o 1X1I 

anil 

(2.17) m(P) ,l.b. 

j ¡ HXI 70 

where M(P) and m(P) are called respectively he u'oper Iour4 and 

lower bouig of P. Their existence implies the inecualities 

(2.1E) r:i(Ì) HPx1 < IizIi . 

()) ¡L11 

for any i. 

If ? and Q, are t:o operatore which ap pace X into space Y, 

the .L (? + c s defined by (? + ç) = Px + for all x in X. 

Vhen P and C are linear, the norii of (P + j, M(P + Q) , atisf les 

tue inqaa1lty 

(2.19) }4(P 4 Q) I (ï') + .«c) 

If P naps Y Into Z and Q. nape X into T, the r'odiict ?Q 

is defined by (PÇ)x = P(C) for all i in X. When P and Q are 



linear the norm of (?Q), u(Pt), satifíes the inequality 

(2.20) i«Pç.) M(P) M(Q) 

lo 

As an instance of a linear operation in a normed. linear space, 

consider the linear operation y = which maps X R luto Y Bm. 

The norm is defined, as HxI = max ß. For any x in X where 

(i) 
2' 

) x1 + ¿2x0 + ,, + x; let X1 

(i, o, ... , o), x2 = (o, i, .., o), ... x = 'o, o, ... i). Also let 

- PXk (afl, a, ... a), k = 1, 2, ... ;. 'uìen 

(2.21) y P( ') 4 
2'2 + ,,, 

+ P( x) 

= + 22 + + rin ' 

r"]. 
'r " nn 

y k2. .. kr)' then it is seen that 

(2.22) 
n 

= aik k' (j = l ... m) . 
.3 k=1 

Thus the operator is a linear transformation defined. by the itric 

(2.23) A (ajj) 

Th norm of this operator is found as follows. 

il 
(2.2) IlII = max )l = max aj1kI . I k1 

(i) (i) k=l (k) 
n 

max E laiki (i) k=l 
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or 

n n 
(2,25) ¡It1 ax i maz talkl lxi1 ' riax 

(k) (i) k=1 (i) k=1 

ih'.ts, In any case, 

n 
(2.26) x ja. 

(i) k=1 

and the ect equt Ion 

n 
(2.27) HH = me.x aik 

(i) k=1 

can be established (9, pp.6-9). 

The operatorB considered so far were operators of cr P1flCe which 

rapped a s.ace X into a space Y. ?he collectiox cf all such opera- 

tora L which are linear, forms a nored 1inar pace stfyIn all 

conditions defined for these spaces. The space of linear operators 

from i to Y will b denoted. by (X -> Y). 7or all L in 

(x -> Y), 
I 

L( = M(L)IjxIt. 

The rtesian prpcbict of the spaces X and Y io ;he set of all 

:oairs (x,y) where z ï in X and. y is in Y. The cartesian pro- 

duct will be denoted. bi X x T (X cross Y). An operation P on X 

to Y is a subset of X z Y so that (x,r) Is an element of P. 

A linear operator B which maps X z X Into Y is an o)erator 

of olapes and Is called bilflie. A bilinear operation on X to 

Y Is equivlent to a linear operation on X to (X -> Y), To show 

this, consider a linear operation L Bz appin X into (X - T). 

Since L is a linear operator from X to Y 
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$ 

Lx (iz) z 

is an element of Y, and B is deiined for all (x,x') in X z X 

J is additive with resect to eaoh aru1ue:, and ience is equivalent 

to a bilinear operator froii X to Y. Conversely, if Bxxt is a 

bllnear operation f rcm X to Y ; with z held. fized it represents 

a lInear operation from X to Y so that x is an element of 

(x ->r). Thus for Bx = L , 

(2.29) 
x,x')lj = I1i'lI jM(L)jjx'j 

(9, pp.155-156). 

An eanple of a bilinear operation i the integrai oera,Ion 

(2.30) y(s) 
Ç 

f 
k(s,t.v) xi(t) x(v) dt 4v 

ihcre the space C is the domain and the range of Another 

example is the bilinear operation from X = R to Y = R with the 

norm 
J jz = max j . he operation y Bxx' takes the form 

(i) 

n n t 

(2.31) 
1k 

: ajj,. 
'k ' 

(k=1, ... m) 
i j 

zhere ii is a three-dimensional wJ.t'ix 

In particular, consider the bilinear operation y Bzx' where 

x= 2' ' e (4 '2 and B is the threedimensional 

matrix 
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- ,-122 / 
(2.32) 

l f121 

,a2-12- ,---,a222 

I,, - - 

Now 

(a111 a112 a121 

a11 a212 a221 a222) 

(a 

(2.33) Bx 
= 

lii 
a112 1a121 a122\(1 

a211 a212 a1 a222)2) 

+ a1 a1211 + a122c2 

a11 + a2122 a221Ç + 

so that 

(2.34) Bxx' (a1111Ç + a1122 + a1211 a1222 

+ a2122 + a2211 + 

(ii, ?z) y, 

where 
2 2 

(2.35) 
? = 

a ¿" , k = 1, 2. 
k ijk i j 

Note that Bxx' ßx'x unles3 B is symmetric or x = x'. In 

general, for an operation B( )( ) of two places, a permutation on 

the places gives different results, unless certain conditions on 

symmetry are satisfied. In what follows, the notation B will 

mean a permutation on the places of the operator B; for Bx1x2, 

Bx2x1 = Bx1x2. 



br example, consider the bilinear operations 

(2.36) l'2 y(s) 
b 

k(s,t,v)(t)(v)dtdv 

If the kernel k(s,t,v) is symmetric with respect to t and. y, then 

(2.38) Bx1x2 Bx1x2 

If 1(s,t,v) is not SyLLetric, then Bx,x2 3x1x2. The kernel 

k(s,t,v) 
= would satisfy (2.38). 
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TBE DIPFIRENTIAL A1D DIIVATIVE 

In oxtenclin,; tì differeitt'i t, &istract s:ce. t t . a 4estrable 

to asce";a1n what t ezntta1 th t1 notion f ift'ntirt1. F 

t.tii, Frì.het tirne. to J Hadnard wic ted he differential of 

a function is a linear function of the differentials of the variableeR 

(1l, p.295). To this as a starting point, Frechet a&Ied. that the 

diffsi'sntial of a ±" .inctirr. ou.ht to be einp1 expression, approximate 

to the tneret of he functi'i. tty h e neant the linearity of 

t: xpretn and. by pDDroximate he meant that the aifferential of the 

function is the rthct1 art of the increment of the fnnction, that 

is, the differential and the increment should differ by fnfinitesimals 

cf hihr 3r1r. 

or itetance, ht differential cf the r1. Nncticn z 

(3.1) ãz = dx + dy 

je a linear function of tìe differentials dx and &y. The increment 

of z is 

(3.2) x + -+ cix + ey 

where 
c 

and. c2 tend to zero with x and. Ay. The principal 

part of z is defined. as x + y 

The definition of the differential for numerical functioxmls was 

the first step in the extension of the differential by Frechet to 

abstract s-'aces. The concept of variation of a functional in the 
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calculus of variation6 played an important role in the fornnilation of 

the leftnition. Conclò.er the functional P P(x,y,y' ) which depeths 

on y(x) and y' (z) for a fixed value of x. If y(x) is replaced 

by y(x) + c (x), where t = ôy is called the variation of y(4, 

the corresponding change in F for a fixed x, is 

(3.3) s F(xy+cv ,y'+c 't') - P(x,y,11) 

Expanding the right side of (3.3) in powers of c and neglecting 

terms with powers of higher than the first, one obtains the first 
order approximation 

(3.14) 6psc)t.+.!t s' 
2y 

Called the variation of F (5, pp.130-131). This is analogous to the 

notation of the differential calculus as portrayed by (3.1). Con 

sequant1y, if the variation, ô?(y,4y), of a differentiable functional 

F(y) is a linear fmnctional o±' the increment Ay 6y, one has the 

familiar exoression 

(3.5) F(y+ìy) - F(y) 8F(y,Ay) + h (iy) 

where 4(A3r) denotes the aistance of Ay from the function 5 o, 

and. h goes to zero with (iy). 

?re'chet, after a more rigorous analysis, of course, formulated 

the following definition of the differential for numerical functionals. 

The functions]. P.x allows a differential for a given x0 of the 
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f cioz .x if tero exists a fu.nctional J.x, linear with respect to 

the inreL1ent x, euch that ¡Px - LLx ta mf .telr snail with 

respect to the number which measures the &tffence betzeen the elements 

X and x The c1fferential of Px at x Will be Ltx 
o o o 

(II, p.296). 

ithout modification, rciet extend.e this definition to opera- 

tions on rorined linear spaces to nored linear spaces as follows: 

An operatinn y = ¡, linear or otherwise, mapping space X into 

space Y is (once) f reiab for a given value of x if there 

exits a linear operator L an element of (X _> Y) euch that 

(3.6) lIP(rx) - PI - Ax1I = o(jAxJ1) 

where the notation o( ) n'ans that the function o(!1Az!L) is 

infinitely amai]. wIth respect to fAXj j. 

To particularize, le spaces X and. Y each be the space R of 

real numbers. Then y ?(x) is a real function of a real variable 

and the definition of the abstract differen,1al coincides with the 

classical definition of the d'ifferenial (2, pp.59-60), that is, 

(3.7) P(x4-Ax) - P(x) - i" (x)x = o(eix) 

For :Px differenale at a given X, the linear operator L 

defined by (3.6) is uxiJgu. For suppose the existence of another linear 

operator H, distinct frorri L, which fulfills the sate role as L for 

a gIven x. Let X' and consider the relation 



(3.8) I1x - BAxII IlAxil ¡IL" - Ex' ¡I 

The riht-nd side beine independent of j ¡xj 
I 

goes to zero ii.h 

j jAxj j. Conserjent1y, LAx = 

The linear operation LAx is called the f irt h4ifferent11 
of Pi foe a given x and will be denoted. by i,P. The definition of 

the second differential follows qiite naturally. 

An operation y Pi is twice differ tabJ if: i) P hs a 

first differential defined everywhere in a sphere S abolit i: 
2) there exists a bii o;erator 3 auch that f o' ali (1-Ax) in S 

(3.9) 1 - dii' - BAxß 
¡ 
u (j4Jj) 

The linear operation DAi is called ie and iferential 

of Pi and will be &*noted by d P 

In ener.,l, n operatln y = P'- la n-differentiable if: i) P is 

(n-l)-d.ifferentiable everywhere in a sphere S about i: 2) there 

exists an p-linear operator N such that 

P - P - NAzjj = o(jjAxIl) 

rt:e linear operation x le cslled the Frehet differential of 

Pi nd will be denoted by P 

From the definition of the differential, it follows that if the 

operation y = Pi is differentiaole at x lt is continuous at X0. 

T:is is redlly discerned by rewrltln: (3.6) in the form 

(3.") ¿jP(x+Ax ) - Pi ¡j M(L)jjAx II + 
o o o o 



and letting ¡Ix0t1 -> o 

Consider again the differentials dP LAx, P Bx and 

i = 1A 1ineA. by (3.f), .9) iici (3.10) respectively. he 

notion of the erivativ is atiparent whr. L, B anC.. } ar. called 

'o5pect&vely the eecon4 ¡nd 2rchet divt.ive (7 pp.7-7 

and 9, p.159). They ì1i e Ô.enottd by DIP, P, arì 2. Ihis, in 

tie neaning of differ"ntial calculus one baa 

(3.12) d PD ?Ix 
I Z 

(33.3) d P = 

aM 

n 
L. ' = D1 Px 

The notation JPx shall be understood to mean that 

operating on the elerent x. Scnetimes, dìirin the course of a dis- 

cussion involving Px, the arg'timent of P may becone, say, z, 

then the derivative of Pz will be displayed as JP 
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RUIE3 POR DIF1RENTIAI0N 

The analog imolied in this section between the rules for ab 

etract differEntiation and those for differentiation of rea]. functions 

is intended for intuitive purposes only. The analor will not Imid in 

many instances because of the nature of the elements and the operations 

on them. however, the raies for real functions are special cases of 

the ralee for normed linear spaces. 

T0REM 1. Frchet derivative ppnsta,nt operatioxi j. null. 

PROOF: Let Px = k, where k is a constant element. Then 

Set Vx=O so that 

P(rfAx) - P O 

H?(xx) - Px- VAXJL Hou 

Thu.s by (3.6) dP VAx = O and. 

(1.i) DP=0 
X 

In the case rea]. functions, D(c) o where o is a constant. 

ThEOREM 2. The Prchet d.erivative of ].inar operation j 

erator itself. 

PROOF: Let y Lx be a linear operation from X to Y. Then 

by (2.9) 

L(x4-Ax) - Lx LAX 



24. 

y (3.6) it fo1iow immediately that 

( .2) DL =1. 

Furthermore, since D L = D L = L, by theorem (i) rfx x 

(14,3) = L 

In the case of real functions, B,.(cx) = c and D(cx) o . 

iiI 3. driven that P and Q. are differentiable at X, e 

Ie'ohet deivíve L a ioeraío y = (P+)x is the sum 

derivatives operations Px d Q,x 

PRUUF: Let y (kMQ.)x be a sum operation from X to Y. y 

definition, (P+)x Px + Q.x and. (P+Q.)(rIx) P(rfx) + Q.(xfAx). 

Set VLx = (a. p + 
. ) so tiit 

X X, 

N(P+Q.)(x*1X) -(P-)x-VzxjL 

= 
t 
P(-L) - -dxP + Q(x+x) -c-( 

I i j(rFix)-PX-d1P 
f 

= o(llAxll) + o(jfAxff) 

= )(llAXti) 

Thuaby(3.6) d(P+)VLxdP+dQ. and X X X 

(ì4) D(P+Q)=DP+D. 
X X X 

If P a Q. are linear operators, it follows from tbeorei (2) that 

(1L5) 
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lit th case of real functio DLf(x)+g(x)] = Df(x) + Dg(x) 

ThOR4 )4 en thai z Qy y Px fer 

y x ectivJ, r..QQJt YQX Ql the 

riwt oùerajn z = (LP) j 

OC: uy hjthesis ff:entabia at 

+Ly) - Qy - * 

Set Ay ?(fAx) -i. Ihen 

Ay 
f * J 

j P(x) - Px DX?IX + DPtZ J 

,' I I 
P(rFA ) - Px DP + j D?A 

* o(1t*zI) + *(DP) IIAXLI . 

Tlvia to infinitesiza1s of higher order 

o(JA7II) = o(JIAxlj) 

1O''? st Vx : DIDXP tLat 

!Q?(x+Lx) - QPx - VA:t 

* ikF(xAz) - 

= 
I 
jQP(x+Ax) QPz - D7QfiP(x'4LX) - Pi] + D1Q.[P(xz) - Px -Dx]J J 

= 
¡ I 

Q.P( rx) - qPx - DçAy + Dt: ?( +) - ?x - D,:Pix] ¡ J 

. Lk(+Ay) - Qy -Dujiy + ÍDQLrFAx) - Px - D.Ax3I1 

:: oCt J) :;«D) e I) 

* o(IjAx1j) * 

Thue dQP = VLtx = 

(1i.6) DQ? t »7cD? 
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Th1 theorem 1t the aimlogue of the cth rule for real functions in 

;he ordinary differential calculus, that is, DG[f(x)] D()D1f(x). 

If Q, i a linear operator, one has tne following corollary to 

theorem (1;.). 

COBOLLARY 1. Mt Z Y IX are dfThenitjab1e 

pertio, y d X civl3 Q. 

?rchet riatie ioduot QPx i QP 
PROOF: ?rorn thecreiis (2) and () it follows reacUlr thM 

04.7) DQP = QpP 

In the case of real fu.ctions, D[c(x)] cD1f(x) . 

TC)REM 5. Given bilinear operation y Bxx X x X Y, 

PrcJ differential j + x2Lx cheI deriva- 

4ve j Bx1( ) + Bx( ) 

PROOF; Since B ta 1inØat with respect to its places, 

an 

+)(+) = 3x1x2 + Ax1x2 + 3 + x1Ax2 

ß(x+)(+) -Bxx2 1'2 21 l2 

3et VAx1Ax2 BX1tAX2 + BXLX1 so that 

I 
J( 

) '22 ;8x1x2 -Tl2 I I = i 1BAx1&2 I I 

11311 11Ax111 11Ax211 

*OÜIALLII . 1kxII) 

Thus it follows that 

(.8) 
l22 

BxLx + :Bx2Ax1 



(11,9) 

Furthermore, if z1 z2 

Dz1B * )*( ) + ßx2( ) 

(4.1o) d.B = (»B) rAz 

(1.11) x 

(I.12) D2 B = (B+ß) 

Li he case of real functions, a specialization of (tL8) would be 

d.(cxy) s cydx+cxdy likewise, for y 2, (14.10) speia11zoB to 

d.(2) 2ìx. 

TO11EM 6. y1 liz y2 Qx two ifferentiJj 

aDeratiou x. J y 3y1y2 j bilinear operation fron Y X 

T, 

à B = B(Hx)(D cjx) + Í(Q)(D HAz) X7172 X X 

PR00': From (14.) 

Q4.13) dyyB = 12 + By2y1 

By hypothesis 

Ay1 s H(rfAx) Hz D1HAx + o(Ax) p 

Ay2 q(x+Ax) - = DQ.Ax + o(Ax) 

Substituting the last two erpressions, into (14.13), t is readily 



tscerned that 

aB s B(Hx)(DcAx) + B(Qx)(D.Hx) 

a UxU o. irtherniore, it' and. Q. are linear operators, 

(k45) = 4 (Qx)(ix) 

n t.ie case of real functiono, d1Cf(x)g(x)] = g(x) Df(x)ìx + 

r(x) 1)(x)dx 

n 

TiÜrI;M 7. y = Nf-;:;--:: n-linear operation X 

Y. I cUjferenttable t X, j 

n-1 .!11 

d.i = + Ní7zAx + , + NÍX' 
(Le iuiicript on N from .Lft to rih, that 

tx 

2iO(F: Sincie N is lnear, 

n n n-1 n-1 - - -,- 
N ( xi-x) . . . C X+iI) - Ni . . e X N1X . . . XAX + , + N1 . . . xAx + ( t ernie 

involving tx .n ncrv }ian on' 1ae) 
n n-1 u-J. 

et VAx . . ¿x = !J1i-;-:-;-xLx + e a eo that 

n-]. n n 

t 
¡i(x) -NiT::'.-;: -VAiTx i 

¡Nj 
I . I 

ternie involving 

Lx in more than one o1aCej o(Lx1l) a 

n 

Thus c1N VTTAX and. 

n-]. n-1 n-1 
_-_--Th 

(1.l6) d. N = N x ... xAx + Nx ... xx + + NjxAx X 1 

Consequently, if N is a symnetriC operator, 
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= riiIx ... xAx 

n-1 

(li..18) D1N = 

n-i. 
In the case of real functions, D (za) z 

X 

[EQEEM 8. Given that y Px is an operation from X to Y, 

M; i. inverse pertio X X exists, then 

D? = (D1c1 

PBDO: By iypothesis 

()4,19) IX = 

where I is the Identity operator. Yrom (11.19) theorem (1f) 

If D O, it oUows that 

(1&.20) 

DI I = DQDP 

Dx? = 
(Da1 

iirthermoTe, if P is linear then Q. 11!ear, s mentioned earlier, 

and. it followe prom theorem (2) tìit 

(I..a) 
-: 

aB lt hoiùd be. 
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EXAMPLE3 

(i) Consider an o eration y u Dpirlf X into Y 

where x = ( ... and F1( ... ); i = 1, ... m. The 

operation will be differentiable at x if the functiono are cLiff er- 

entiable at x. To infiniteeirals of higher order 

(5.1) y 
= 

¿ 

k 
?jdk(i1....m;L1,...n) 

The Prchet differencial of Px is seen to be renresented. by the taatrix 

pro duct 

(5.2) a P= 
(4k:Fi) (dk) X 

and. the ?rchet derivntve is the transfortation matrix 

(5.3) DP = ... m; k1, ... rL), 

where 19 F.=__J1 
k 

(2) Consider the bilinear integral operation 

il 
(.)) 

y(ß) = 
1'2 = J j' 

K(a,t,v) x,(t)z,(v)dvdt 

o o 

on C to C. Ap1yine rules (1.8) and. (1L9) of theorem 5, the 

Pr4chet differential and derivative of (5.) are 

(5.5) dB = K(s,t,v) (t)(v)dvdt + 

j(k(,t,v)(t)t(v)dvdt 



2o 

11 1 1 

(5.6) 

"1'2 
¡fK(8t.( )x(v)dvdt + 

f 
JK(e,t,v)x.j(t)( )d.vclt 

3) 

Then ue of (4.1}) tiieorem 6 ves 

(5.7) dxB;i, = 2 Ç Z(s.t,y)z(t)*(t)x'(v)dyctt + 

3 

J 
ÍK(n)tPT)x2(t)x2(v)Lx(v)d'-dt I 

( 
;4.) Oone4er non-1the ir1 

(5.8) y(s) = 
= 

,t) (tfl2 t 

from C to C. Now 

(5.9) P(rfAx) - Px ÍK(s.t)[x(t)+x(t))2dt 
J 

K(s,t)[x(t)32 dt 

= 2 
Ç 
K(et)x(t)x(t)dt +(K(st)[x(t)]2 dt , 

TTj 1efinition (3.6) and setting Ix 2 

J 
K(s,t)x(t)ix(t)dt 

(5.10) 
1 lP(;x) - Px -u1 

I = I ) K(e,t)[&(t)]2d.t 
M(K)11Ax112 

o(ßIAxlj) 

Time 

(5.11) dP = 2 J 
K(a,t)x(t)x(t) dt 



29 

i 

(5.12) DP = 2 
f 

K(,t)x(t)( )d.t 

These resu1t are readily obtathabie by treatiz (5.8) ac a irothit 

_________ on x as follows. Let 

(5.13) y = Lz K(s,t)z(t)dt 

'0e a linear operation, and 

z = Px = 

a non-linear oper.ttion. en (5.) is euivaient to tne product 

op erat ion 

(5.15) y(s) = L = (s,t) [x(t)]2dt 

Rule (Li.7) oi corollary i cives immediately 

(5.i6) LDJ 2 
Ç' 

K(s,t)z(t)( )tt 

The second Pre'chet derivative of (5.8) is seen to be tue bilinear 

operator 

(5.17) D P : 2 
f 

K(ø,t)( )( ) dt 

(5) Consider the non-linear integral operation 

(5.18) x(e) - i + () Ç 
x(t)clt 

in C. This is the Chandrasekhar non-linear integral eqwation which 



30 

arie in atroDhy3ics in connection with radiative tranßfer. The 

function 4(t) j determined by the type of scattering being coneidered. 

Equation (5.18) may be written 

(5.19) Px Ix-Bxx-1 

4pplyisg rulas i)i.i) p4.2) »4 Q4.1i) of theorems 1, 2 5 respecti- 

Ve17, the Yruoht dertvatts of (5.114) becomes 

(5.20) DP - X - (B + B )x 

App1yig ru.lee (14.3) and (14.12), the second fre'chet derivative becomes 

(5.21) D = -(3 + 3) 

These Prc'c,het dervativet wert. used. in Newton' s method to arrive at a 

!rumerical solution to (53ß). This was carried out on research 

project at Oregon 8t** Oo1lsø. 
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NEAN VALUE T}LOBEM 

The fo11owin theorei Is an abstract ana1oae to the classical 

nean vaiie theorer of ;ic diffeeatia1 calculus (9, pp.161-162). 

ThEOH 9. ksit. Pi operation, linear otheise, from 

X 19 Y. .LÍ P j tfferenUab1e o3erator, 

¡jP(x+Ax) - ìxH rax P jLx = (ifL). 
e<<1 

ROQF: Set (+:i) - Pi = y. Let there exist in 8tce Y a 

linear functional 2 (1, p.55 and 16, pp.144-))48) su.ch that 

(6.1) Ty = UïiI; 11i'H = i 

consIder tìe real function of a real variable t, 

(6.2) «t) T P(x-tAz) t! 

Using theorem lj. for a cPain of txree operations, (6.2) tahes the form 

(6.3) f'(t) : j j) i 

(rtixY 
p D' P 

' 

L,x 

Proic y = P(x4-óx) - Pi and (6.2), 

(6.L) 2y = [P(x+Ax) - Pi] = f(1) - f(o) 

and pp1ying the law of finite increments for real fu.nctiono to (6.11) 

(6.5) f(i) - f(o) ?() T DP()X D P Ax 

Tì from (6.1), (6.1) id (6.5) it follows that 
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(6.6) HP(x) - I «T) HDPH ¡x1I i IIDPIl IIxII 

The abstract analo to Taylor' o forni].a foliois quite naturally 

(9, po.162-163). 

TiiEO}EM LO. Px be operation, linear otherwiae, f rosi 

X to Y. If P is a tiice 3frchet differentiable operatr, 

max HDPÍI Hxl12 ¿(rAx) 

PBOO: Set ?(x+x) - Px -DPLx = y Again select a linear 

functional T such that 

(6.7) Ty = I!I = i 

Consider the real function of a real variable t, 

(6.8) f(t) = T «x+tAx) T P 

Tue first and second i'r6chet derivatives of (6.3) are 

(6.9) f (t) = T D, P(t)tX T D, P, ¿x 

(6.io) f'(t) = 1, P()ixx T 

where D, P, is a bilinear operator defined. by (3.9) 

From y = P(x4-&) - -DPx and. (6.3), 

(6.11) y = T[?(x+ix) - Pi -D?] = f(i) - f(o) - f' (o) 
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and apo1yin Taylor's foriiula for real functions to (6.u) 

(6.12) f(i) - o) - ? () f() = T D Pthx 

Thus from (6.7), (6.11) and (6.12) it follows that 

(6.13) HP(rx) M(T) IIDPH 1IxH2 

max 1lDPH 2 

Gonaequently, if P is n-differentiable, 

(6 .11i) j P( x'+Lx) - Px - - PLxAx - . 

- (t)' 
n 

max IjDPJj ¿IxII; CrF9Ax 
nl, oj1 

Newtonta method for approximatione of solu.tions of the real 

funct ion 

(6.15) 

takes the form 

f(x) o, 

f(x ) n-1 (6.16) x = x 
- 1 n n 

n-1 

where xi' xa s are ccess1ve approximations to z. 

Kantorovich (9, P?.16&].98) has demonstrated that Newton's process 

can be extended to the operation 



(6.i) Px = o, 

3l, 

where P, an operator on X to Y, is twice differentiable. If the 

derivative DP has an inverse (D1Pr1, the analogu.e to (6.16) ie 

(6.18) 
n n-1 -(DP)ix_i X X 

The conditions for convergence of (6.18) to the ect solution, and 

applications of Newton's method can be found in Kantorovich's paper. 
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