Doug Woon Cho for the degree of Doctor of Philosophy in the Department of Industrial Engineering presented on July 9, 1981.

Title: Development of a Methodology for Containership Load $\underline{P l a n n i n g}$

Abstract approved:
Redacted for Privacy

Dr. Tom M. West

Ship turnaround time at a marine containerport is an important measure of the port's efficiency and attractiveness. Both the speed and quality of load planning affect the length of turnaround time considerably. Past attempts at computerizing the load planning function have been unsatisfactory and have not reflected the port's objective of optimally utilizing its facilities and equipment. The computerized model developed through this study generates optimum feasible load plans that minimize yard material handling of containers while meeting all ship stability and loading restrictions. The model is particularly addressed to containerports with transtainers as prime yard movers.

Minimization of yard handling is accomplished through formulation of the transtainer routing problem as a dynamic programming problem. The set of shipboard container-cell assignments is then checked against the constraints. Pairwise exchanges of assignments are made to meet any violated constraint so that the yard handling
increase is minimized. The model has been tested using data for five actual ship loadings at Port of Portland. It yielded feasible load plans that were better than those manually generated showing an average 3.2 percent less material handling requirements. The model can be easily implemented at containerports with medium-to-large computers with some adjustments. The success of this study not only provides a way of increasing port productivity, but also makes available an important software component for a port automation system.
© Copyright by Doug Woon Cho
July 9, 1981
All Rights Reserved

Development of a Methodology for Containership Load Planning

by
Doug Woon Cho

A DISSERTATION
submitted to
Oregon State University

in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Completed July 9, 1981
Commencement June 1982

Redacted for Privacy

Associate Professor of Industrial Engineering in charge of major

Redacted for Privacy

Head, Department of Industrial Epqineering
Redacted for Privacy

Dean of Graduate School

Date thesis is presented July 9, 1981

Typed by Donna Lee Norvell-Race for Doug Woon Cho

ACKNOWLEDGMENTS

Many people graciously rendered support and guidance to me throughout the period of my study at Oregon State University, of which fruit is this dissertation.

I must express the greatest feeling of gratitude to my good friend and teacher, Dr. Tom West, for his patient and thoughtful guidance of this research, along with instructions in varied areas of our profession. Dr. Jim Riggs, Head of Industrial and General Engineering Department and a renowned educator, kindly provided the financial support in the form of a teaching position. Dr. Ed McDowell granted a support from a Sea Grant research project from which this study originated. Members of my doctoral committee, Drs. Dave Butler, Dave Thomas, and Terry Brown, along with Jim Riggs and Tom West, have been outstanding teachers and sources of constant encouragement.

The Port of Portland opened its facilities at its Fulton Terminal and provided much cooperation for the conduct of this study.
O.S.U. Milne Computer Center granted profuse amount of computer resources for both model development and testing. Its consulting team rendered a great service at clearing an innumerable number of problems usually associated with programs of such complexity and magnitude as of COMCL.

The Korean Navy, in which the author serves as an officer, kindly granted a three-year leave of absence to enable my study in Oregon. My loving wife Nahni's devoted support and prodding must not go unnoticed. She will be rewarded with more abundant love from me.

Finally, my heartfelt thanks go to many dear friends in Oregon who have made our time in this beautiful state both enjoyable and meaningful.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
1.1 Background 1
1.2 Purpose and Scope of the Study 2
1.3 Method of Approach 3
2 THE MARINE CONTAINER TRANSPORTATION SYSTEM б
2.1 The Container 6
2.2 Containership 9
2.2.1 Types and structure 9
2.2.2 Load restrictions 11
2.2.3 Ship stability 13
2.3 The Containerport 22
2.3.1 Its role and design considerations 22
2.3.2 Organization 24
2.3.3 Material flow 28
2.3.4 Information system 31
2.3.5 Port Efficiency 36
3 CONTAINERSHIP LOAD PLANNING PROBLEM 38
3.1 Problem Description 38
3.2 Present System of Load Planning 41
3.3 Desirable Properties of a CLP Program 43
3.4 Existing Models and Past Attempts 46
4 APPROACHES TO THE PROBLEM 51
4.1 Formulation as an Integer Program 51
4.1.1 A general model 51
4.1.2 A simplified problem 66
4.1.3 Experience with the simplified problem. 66
4.2 Other Formulations 67
4.3 Dynamic Programing Formulation 71
4.3.1 Transtainer routing problem 71
4.3.2 Simplification for manageability 74
5 COMPUTERIZED OPTIMIZATION MODEL FOR CONTAINERSHIP LOADING (COMCL) 79
5.1 Philosophy Behind the Model 79
5.2 General Structure of COMCL 80
5.3 Input Files 83
Chapter Page
5.3.1 File CTFIL and container list 83
5.3.2 File YLOUT and yard structure 84
5.3.3 File FSHIP and ship structure 87
5.3.4 File GPLAN structure 87
5.4 Program CLP Organization 89
5.4.1 Program CLP 89
5.4.2 Subroutine DYNAMIC 91
5.4.3 Subroutine DISCOMP 99
5.4.4 Subroutine ASSGN 100
5.4.5 Subroutine FCHECK 100
5.4.6 Subroutine LPOUT 103
5.4.7 Subroutine REMEDY 103
5.5 Simulation of Subroutine DYNAMIC 107
5.6 Analogy with the Dual Simplex Method 113
6 TESTING OF COMCL 118
6.1 Test Environments 118
6.2 Test Results 122
6.3 Discussion of Results 128
7 CONCLUSIONS AND RECOMMENDATIONS 131
7.1 Usefulness and Contributions of the Model 131
7.2 Restrictions in the Model 132
7.3 Possible Areas for Future Research 134
BIBLIOGRAPHY 138
APPENDICES
A Summary of Guidelines for Loading Con- tainers Shipboard 144
B COMCL Flowcharts 148
C COMCL Input Data File Specifications 172
D COMCL Program Listing 180
E A Sample Output of COMCL Run 230

LIST OF FIGURES

Figure Page
2.1 Containership with cellular structure 10
2.2 Typical lashing systems for on-deck storage 12
2.3 Effect of inclining moments on ship stability 15
2.4 Location of metacenter 16
2.5 Relationship between metacenter and center 17 of gravity
2.6 Permissible range of containership GM 18
2.7 Envelope of permissible ship drafts 21
2.8 Containership as a link between two transport 22 nodes
2.9 Network representation of container transpor- 23 tation system
2.10 Schematic layout of a containerport 26
2.11 Major material handling alternatives at contain- 27 erports
2.12 Yardside container flow 29
2.13 Dockside container flow 30
2.14 Suggested computer network for West Coast ports 32
2.15 Hamburg port automation system 33
2.16 Proposed computer system at a containerport 35
3.1 Ship schematic diagram 39
3.2 Manual load planning procedure 42
3.3 Bay storage plan (under-deck bay) 44
3.4 Bay storage plan (on-deck bays) 45
4.1 Yard storage pattern in simplified problem 59
4.2 Hypothetical ship structure in example problem 61
4.3 An example of generalized network 70
Figure Page
4.4 A multi-stage network 72
4.5 Types of systems with respect to complexity 75 and organization
5.1 COMCL model structure 82
5.2 Relative dispositions of yard sections 86
5.3 Program CLP flowchart 90
5.4 Arc-node relationship in dynamic program 94
5.5 Flowchart for subroutine DYNAMIC simulation 109
5.6 Working of dual simplex algorithm 114
6.1 COMCL test procedure 120

LIST OF TABLES

Table Page
1 Typical Container Dimensions 8
2 Container Data for Simplified Problem 60
3 Ship Cell Data for Simplified Problem 62
4 Results of Subroutine DYNAMIC Simulation 111
5 Summary of Test 非1 Results 123
6 Summary of Test $⿰ ⿰ 三 丨 ⿰ 丨 三 2$ Results 124
7 Summary of Test 非3 Results 125
8 Summary of Test \＃4 Results 126
9 Summary of Test \＃5 Results 127
10 Comparison of COMCL Plan versus Manual Plan 128
11 MSTAGE and Number of Containers to Pick 128

LIST OF ABBREVIATIONS

Code	Meaning	$\begin{aligned} & \text { Defined } \\ & \text { Page } \end{aligned}$
AR	After-REMEDY figures	124
BR	Before-REMEDY figures	124
CG	Center of gravity	13
CLP	Containership load planning	38
COMCL	Computerized Optimization Model for Containership Loading	79
D	Draft at midship at a given displacement	101
Da	Draft aft	102
Df	Draft forward	102
D/I	Distance/improvement ratio	104
DOV	Degree of violation	103
GLP	General loading plan	38
FS	Free-surface effect contribution in vertical moment	101
GN	Generalized network	68
IAYS	Array name for relative yard section dispositions	84
IP	Integer programming	49
KM	Keel-to-metacenter height	16
LBP	Length of ship between perpendiculars	20
LCB	Longitudinal center of buoyancy	101
LCF	Longitudinal center of flotation	20
LM	Longitudinal moment	101
LP	Linear programming	67
LPAT	Load pattern descriptor array	88
MSECT	Number of possessing yard sections	108
MSTAGE	Number of stages in dynamic program problem	108
MT	Metric ton ($=1,000 \mathrm{Kg}$)	14
MTC	Moment to change trim by 1 Cm	20

Code	Meaning	$\begin{gathered} \text { Defined } \\ \text { Page } \\ \hline \end{gathered}$
NERI	Number of row equivalents for an adjacent section change move by transtainer	92
NER2	Number of row equivalents for a nonadjacent section change move by transtainer	92
NCTLD	Total number of containers to load in a load set	112
NRUNS	Number of simulation runs with a parameter set	108
NTGEN	Total number of solutions generated	112
NTSOL	Total number of nodes adopted	112
RE	Row equivalent	92
TMD	Transtainer move distance by one transtainer	94
TTMD	Total transtainer move distance	40
TR	Trim	20
TRP	Transtainer routing problem	71
TRUN	CPU time per simulation run	112
VM	Vertical moment	101
W	Total ship displacement	14

Development of a Methodology for
 Containership Load Planning

1. INTRODUCTION

1.1 Background

Containerization has caused a revolutionary change in world shipping in that it allows a considerable increase in rapid and safe handling of cargo as units. More and more ships are exclusively built to carry containers and port facilities designed to handle containers have been built around the world to make use of this concept. The container industry is expected to continue this growth in the future as the benefits of containerization become more widely known. As containers are handled as cargo units, containerports have become major transshipment points in commodity transportation rather than distribution points as older bulk ports used to be.

Containerports, however, require large capital investments for initial construction. Their efficient operation is necessary for that reason alone. Looking at the entire picture of world trade, however, efficient operation of ports is essential for a number of reasons. Over 96 percent of international cargo moves through ports of the world. According to Frankel (1974), port costs total in excess of all costs of international transport from port of entry to port of exit. Also, over 55 percent of all port-related costs is the result of time losses in ship turnaround. If cost of stevedoring, usually paid by shipping lines, is included, total port-related costs become even more significant. This total amounted to more than $\$ 28$ billion in 1975 according to Frankel (1974). These figures provide an incentive for shipping lines to use efficient ports and avoid less efficient ports.

Ship turnaround time consists primarily of the following elements:

- Waiting time at anchor.
- Quay mooring and demooring time.
- Document transfer.
- Unload/load planning activities.
- Unloading and loading operations.

Operations at a containerport can be modeled using techniques of operations research. Although the entire port operation is an extremely complex one, its constituent parts can be separately modeled and optimization of each may be sought. Then, a system synthesis can be done to integrate various models towards overall system optimization.

This study is particularly addressed to containership load planning activity. Unload planning, although it has its complexities, is a far simpler task compared to load planning. Thus, we seek to reduce the last two components of ship turnaround time. Total impact of successfully completing this study is difficult to quantify at this time. However, it is not difficult to see that it could have serious economic impact on world commerce.

1.2 Purpose and Scope of the Study

General guidelines for load planning are generally provided by a shipping line representative in the form of a color-coded load schematic. This basically indicates how many of each container group is to be loaded in each bay. This information, along with the container distribution pattern of the yard, is used to construct a work sequence which specifies the bay sequence of loading.

Load schematic, work sequence, and container yard distribution pattern, are taken as input for the model developed through this study. The load planning model is intended to produce optimal feasible load plans; optimal in the sense of achieving the minimum transtainer move distance, and feasible in the sense that all load restrictions as well as ship stability constraints are satisfied. Existing models only attempt to obtain feasible plans. In this regard, the present model embraces the new concept of minimizing the yard material handling. This would provide an important contribution to ship turnaround time minimization.

The model is addressed only to containerports with "overhead crane and yard truck" type of yard handling. However, concepts developed in the model may be used to develop models for other yard configurations.

The developed model is intended to fill the basic requirements of an important component in a port automation system. Here, port automation must be viewed with the objective of reducing ship turnaround times as well as efficient utilization of port facilities. This study suggests a possible configuration of an automated port system and explains where the developed model fits in such a system.

The model, titled COMCL (Computerized Optimization Model for Containership Loading), is aimed at practicality and applicability. A model of great complexity and academic sophistication would serve no purpose if it cannot be used by most ports concerned. Ease of final adjustments on a produced load plan is another consideration included in the modelling effort.

1.3 Method of Approach

Past attempts at modelling containership load planning and
existing models have been surveyed. The current practice of manual load planning was also examined. This survey revealed the apparent need for an efficient computerized model. Since container-ship cell assignments constitute 0-1 type decision variables, integer-program-related techniques were first investigated for use as possible model structures. Inherent limitations in the operational size of such models make them impractical as day-to-day solution techniques for load planning.

The problem of obtaining an optimal routing plan for yard transtainers was then constructed as a dynamic programming problem. After some useful aggregation process, a structure of a manageable size was formulated. Thus, a two-stage model incorporating this dynamic program structure was written in FORTRAN IV. An optimal transtainer routing plan with a minimum total transtainer move distance produces a load plan which may or may not be feasible. An efficient heuristic was, then, constructed in order to attain feasibility in any violated constraints in a manner that the sacrifice in material handling is kept at a minimum. The model conducts feasibility checks and stability computations which are currently done by hand at most ports.

The model is divided into two separate programs: The first part prepares raw data into a useful format for the second part. This is necessary because raw container data cannot readily be used by the main program.

It is observed that the structure of COMCL embodies the idea behind Lemke's dual simplex method. Thus, it initially obtains a superoptimal load plan. If it is feasible, the algorithm terminates. Otherwise, iterations involving pairwise exchanges of assignments are conducted towards feasibility. This approach was adopted from the observation that large modern containerships provide such stable loading platforms that stability constraints may not be critical in most loading situations.

Testing of the model was conducted using actual loading situations of ships that had visited Fulton Terminal, Port of Portland, Oregon. Total transtainer move distances of computergenerated plans and manually generated plans were computed for comparison.

2. THE MARINE CONTAINER TRANSPORTATION SYSTEM

The marine container transportation system consists of the following subsystems: container, containership and containerport. The container provides a medium of goods transportation while the containership is identified as the vehicle of container transfer among containerports which are major transshipment points in container flow. Understanding of the marine container transportation system is essential in the analysis of containership load planning.

2.1 The Container

The container is the key element in marine container transportation systems. The freight container takes many different forms and a number of shapes. In general, all have in common a rectangular outer shape, a relatively weatherproof outer shell over a strong inner structure that protects the load, and the fact that the contents are handled as a unit load, being transshipped without repacking.

Containers are categorized according to their contents during a phase of their life in the following three basic types:
a. Dry cargoes,
b. Liquid cargoes and bulk commodities,
c. Special cargoes requiring protection from the environment.

Special cargoes can be broken down into two major subcategories: refrigerated cargoes (commonly called "reefers") and dangerous cargoes. Refrigerated containers must be loaded in special areas on a ship where electric outlets are provided to power
refrigeration machinery attached on them. Basically, there are eight major types of dangerous cargoes, each identified by a specific type of label:
a. Explosives (labeled as such),
b. Inflammable compressed gas (Red Gas),
c. Inflammable liquids (Red Label),
d. Inflammable solids, oxidizing materials (Yellow Label),
e. Corrosive liquids (White Label),
f. Non-flammable compressed gas (Green Label),
g. Poisonous articles (Blue Label),
h. Hazardous articles (labeled according to contents).

Coast Guard regulations require certain storage restrictions to be applied on dangerous cargoes. Beliech (1974) describes the specific details of cargo types.

Material used to construct containers may be used to categorize containers as follows:
a. Aluminum containers,
b. Steel containers,
c. Plywood/fiberglass containers.

Over 95 percent of existing containers are of the general purpose, box-type containers. Rath (1973) includes a good coverage on container structure details. Variations from these include the following:
a. Open top containers,
b. Racks and half-height containers,
c. Tank-type containers.

Due to lack of container shape/size standards, there are numerous different sizes that are currently used. Typical sizes which dominate the industry are shown in Table 1.

TABLE 1. TYPICAL CONTAINER DIMENSIONS
(Source: Rath)

Outside Dimensions	$\begin{gathered} \text { 40-ft. } \\ \text { Dry Cargo } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 40-ft. } \\ & \text { Dry Cargo } \\ & \text { Hi-Cube } \end{aligned}$	$0 \quad \begin{gathered} 40-\mathrm{ft} . \\ \text { Reefer } \\ \hline \end{gathered}$	$40-\mathrm{ft} .$ Tank	$\begin{aligned} & \text { 40-ft. } \\ & \text { Open Top } \end{aligned}$	$\begin{aligned} & \hline \hline 40-\mathrm{ft} \\ & \text { Half-High } \\ & \text { Open Top } \end{aligned}$	(AL) $20-\mathrm{ft}$. Dry Cargo	$\begin{gathered} \text { (FRP) } \\ 20-\mathrm{ft} . \\ \text { Dry Cargo } \end{gathered}$
Length	40^{\prime}	40^{\prime}	40^{\prime}	40^{\prime}	40^{\prime}	40^{\prime}	20^{\prime}	20'
Width	8^{\prime}	$8{ }^{\prime}$	8^{\prime}	8^{\prime}	$8{ }^{\prime}$	8^{\prime}	8^{\prime}	8^{\prime}
Height	$8{ }^{\prime}$	8'6"	8'6"	4'3'	8'6'	4'3'	8^{\prime}	8'
Inside Dimensions								
Length	39'7'	$39^{\prime \prime}{ }^{\prime \prime}$	$37^{\prime \prime} 1{ }^{\prime \prime}$		39'6"	39'6"	19'6"	19'7'
Width	7'9"	7'9'	7'4'		6'8'	$7{ }^{\prime \prime}$	7'8'	7'10"
Height	7'4'	7'10"	7'1/2'		7'6"	3'4'	7'4"	7'6"
Door Opening								
Width	7'5-3/4"	7'6"	7'6"		7'6'	7'6"	7'5-3/4"	7'5-3/4'
Height	6'11-3/4"	7'5-1/2"	7'5-3/4'		6'11"	3'4'	6'11-3/4'	6'11-3/4"
Construction	aluminum	aluminum	aluminum	st.steel AISI 304	aluminum	aluminum	aluminum	plastic plywood
Internal cu.cap.	$\begin{aligned} & 2,250 \\ & \text { cu.ft. } \end{aligned}$	$\begin{aligned} & 2,398 \\ & \quad \mathrm{cu} . \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1,988 \\ & \text { cu.ft. } \end{aligned}$	$\begin{aligned} & 6,020 \\ & \text { gals. } \end{aligned}$	$\begin{aligned} & 2,296 \\ & \text { cu.ft. } \end{aligned}$	$\begin{aligned} & 1,020 \\ & \quad \mathrm{cu} . \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1,096 \\ & \mathrm{cu} . \mathrm{ft} . \end{aligned}$	$\begin{aligned} & 1,151 \\ & \quad \mathrm{cu} . \mathrm{ft} . \end{aligned}$
Max. load cap.	60,260	60,950	50,000	51,600	59,280	45,000	44,800	40,650
	lbs.	1bs.	1bs.	1bs.	1bs.	lbs.	1bs.	lbs.
Tare weight	6,400	6,940	10,700	9,260	7,750	6,660	4,500	4,500
	lbs.	lbs.	lbs.	lbs.	1bs.	1bs.	lbs.	lbs.

A great majority is either of 40-foot or 20 -foot length. Matson and Sea-Land have used 23.5-foot and 34.6-foot lengths, respectively. But the current trend is one of convergence to these two prevailing sizes. Establishment of world-wise standards is necessary as container industry grows and more ships are built to carry containers.

2.2 The Containership

2.2.1 Types and structure

Many different types of ships carry containers on board. They may be classified into the following general categories:
a. Cellular containerships,
b. Roll-on, roll-off ships,
c. Barge carriers,
d. Combination roll-on containerships,
e. Conventional type, semi-containerships.

In this study, the primary interest is with the first category of cellular containerships. These ships are designed from keel up solely for container transportation. They have fixed cellular construction and the lift-on, lift-off method of handling is used. Some ships offer the flexibility of modifying a cellular structure to a limited degree to accommodate container size changes.

Container cells are grouped into "bays." A bay is either "on-deck" or "under-deck." "Cell guides" facilitate lowering of containers to their proper storage positions and resist horizontal loads exerted by containers as a ship rolls sideways during its voyage. Figure 2.1 illustrates some examples of

Figure 2.1 Containerships with cellular structure (Source: Rath)
cellular containership structures. These can accommodate both 20-foot and 40-foot lengths.

2.2.2 Load Restrictions

Containers are loaded from bottom to top of a ship, tier by tier. This creates the requirement that containers going to later ports of call should be stowed under those going to earlier ones. Violation of this condition is referred as "overstowage."

Under-deck bays are usually dedicated to a specific container size, either 40 feet or 20 feet in most cases. That is not true with on-deck bays. Most on-deck bays allow mixes of different sizes. In practice, however, a given stack of an ondeck bay has only one-size containers in order to minimize technical problems associated with loading as well as securing containers of different sizes. Reefers can only be stowed in areas of ship with electric outlets, either on-deck or underdeck.

All on-deck containers must be properly secured to the deck before a voyage begins. This activity should be done so that container movements are minimized under ship movements. Figure 2.2 illustrates typical lashing systems used for securing containers on deck.

Total container weight in a stack must not exceed a certain deck strength limit. This restriction often forces some light-weight containers to be selected for on-deck stowage.

Guidelines for loading containers shipboard were developed by the Maritime Administration with the help of the Technical and Research Panel 0-31 of the Society of Naval Architects and Marine Engineers. A summary of the guidelines is listed in Appendix A.

Symbols

Typical main deck container securing systems in use on the North Atlantic and North Pacific

Figure 2.2 Typical lashing systems for on-deck storage
(Source: Rath)

2.2.3 Ship stability

Ship stability theory is a large subject involving hydrodynamics and material science. This section presents a summarized excerpt of ship stability theory only as related to containership load planning. Much of the material in this section came from Bureau of Naval Personnel (1970) and Rawson and Tupper (1976).

A. Principles of ship stability

When a solid body is immersed in water, it experiences an upward thrust equal to the weight of the water it displaces. This fact is commonly referred to as the Archimedes' Principle. The weight, or displacement, of a containership consists of a ship's light condition weight, total weight of loaded containers, constant loads and temporary structure, and all liquid stores. This total weight represents the effect of a gravitational force. The ship rests at a waterline level at which the weight of the displaced water is equal to the weight of the ship. At this point, the algebraic sum of all forces acting on the ship is zero. When such a condition exists, we say the ship is "in equilibrium."

We may regard the total force of gravity as a single composite force acting vertically downward through the ship's center of gravity (G). Similarly, the force of buoyancy acts through the center of buoyancy (B), located at the geometric center of the ship's underwater body. When a ship is in equilibrium, G and B lie on the same vertical line.

Since the weight of a ship is equal to the weight of the displaced water, a linear relationship exists between the ship displacement and the volume of the displaced water. Therefore,
it is possible to obtain a plot of draft (waterline levels) versus ship displacement by computing the volume of a ship's underwater body at different waterline levels. This curve is called a "displacement curve."

As draft increases, center of buoyancy rises with respect to the keel (K). Values of $\overline{\mathrm{KB}}$ corresponding to possible values of draft and hence, displacement, form a part of a ship's hydrostatic data. The volume of the watertight portion of a ship above a waterline is known as the ship's "reserve buoyancy." Reserve buoyancy is an important factor in a ship's ability to survive flooding due to a damage. It also contributes to the seaworthiness of a ship in adverse weather conditions.

When a disturbing force such as caused by taking a load onboard exerts an inclining moment on a ship, the shape of the ship's underwater body changes, and this in turn produces a relocation of B. Now, B and G are no longer equal and opposite forces, but they form a couple. This newly formed couple produces either a righting moment or an upsetting moment, depending on the relative locations of B and G, as seen in Figure 2.3. The resulting righting moment has the following magnitude:

$$
\begin{equation*}
\mathrm{RM}=\mathrm{W} \times \mathrm{GZ} \tag{2-1}
\end{equation*}
$$

where RM : Righting moment ($\mathrm{M}-\mathrm{MT}$)
W: Displacement (MT)
GZ: Righting arm (M)

A ship's metacenter (M) is the intersection point of two successive lines of action of the force of buoyancy as the ship heels through a very small angle. Figure 2.4 depicts this point M where the line of buoyant force at a small angle of keel intersects the original line of buoyant force at rest. The distance from B to M when a ship is on an even keel is called "metacentric

A
(Righting Moment)

B
(Upsetting
Moment)

[^0]

$\begin{array}{ll}\text { Figure } 2.4 & \begin{array}{l}\text { Location of metacenter } \\ \text { (Source: U.S. Navy, NAVPERS 1.788-B) }\end{array}\end{array}$
radius." Also, the distance from G to M is known as a ship's "metacentric height (GM)." This quantity, GM, is a very important measure of a ship's righting ability. Figure 2.5 shows a definite relationship between GZ and GM, expressed mathematically as follows:

$$
\begin{equation*}
G Z=G M \cdot \operatorname{Sin} \theta \tag{2-2}
\end{equation*}
$$

where θ : angle of heel.

Thus, GM is a direct measure of GZ.
If GM is positive, i.e., M is above G, then righting moments are developed and a ship returns to more stable condition. But, if M is below G, upsetting moments are developed and the

Figure 2.5 Relationship between metacenter and center of gravity
(Source: U.S. Navy, NAVPERS 1-788-B)
ship is unstable. When GM is large, a ship resists rolling and is said to be "stiff." When GM is small, a ship rolls slowly and is said to be "tender." Large GM is desirable for resistance to flooding effects of a damage. A small GM, however, is sometimes desirable for ability to ride waves easily. A typical range of GM for a containership developed through inclining experiments by design engineers would look like Figure 2.6.

Figure 2.6 Permissible range of containership GM
(Source: Hydronautics, Inc.)

B. Effects of Load Changes

If a weight, w, was added to a ship exactly above G, then its displacement W^{\prime} would be:

$$
\begin{equation*}
W^{\prime}=W+w \tag{2-3}
\end{equation*}
$$

The resulting vertical shift of G can be found by the following:

$$
\begin{equation*}
G_{1}=\frac{W z}{W^{\prime}} \tag{2-4}
\end{equation*}
$$

$$
\begin{aligned}
\text { where } G G_{1}: & \text { Shift of } G \text { up or down (M) } \\
z: & \text { Vertical distance } w \text { is added above or below } G .
\end{aligned}
$$

Then, the new metacentric height can be found by the following:

$$
\begin{equation*}
\mathrm{G}_{1} \mathrm{M}_{1}=\mathrm{KM}_{1}-\mathrm{KG}_{1} \tag{2-5}
\end{equation*}
$$

where KM_{1} : New KM
K_{1} : New KG.
The horizontal shift in G due to a weight addition can be similarly determined.

D. Free surface effect of loose liquid stores

Liquid stores aboard containerships cause vertical and horizontal shift of their metacentric heights. When a liquid body is free to move in a compartment, it creates "free surface effect." Free surface in a ship always causes a reduction in GM with a consequent reduction in stability. The vertical rise of G due to a body of loose water regardless of its stored location due to its free surface effect can be determined by the following:

$$
\begin{equation*}
G G_{2}=\frac{i}{V}=\frac{b^{3} 1}{12 V} \tag{2-6}
\end{equation*}
$$

where i: Moment of inertia of the surface of liquid in a compartment about a longitudinal axis through the area of that surface,

V: Existing volume of displacement of the ship,
b: Athwartship breadth of the free surface (M),
1: Fore-and-aft length of the free surface (M).

D. Longitudinal stability and effects of trim

When a ship trims, it inclines about an axis through the geometric center of the waterline plane. This point is known as the "center of flotation (LCF)."

Trim (TR) is defined as the difference in draft forward $\left(D_{f}\right)$ and draft aft (D_{a}). If the draft forward becomes greater than draft aft, the change in trim is said to be "by the bow," and conversely, the opposite case is "by the stern."

A ship's ability to resist a change in trim is referred as "longitudinal stability." It is expressed by the moment to change trim by one unit, such as 1 Cm . Longitudinal metacentric height (GM') can be found by the following relationship:

$$
\begin{equation*}
G M^{\prime}=K B+B M^{\prime}-K G \tag{2-7}
\end{equation*}
$$

where $\mathrm{BM}^{\prime}:$ Longitudinal metacentric radius.

Moment to change trim by one centimeter (MTC) is now obtained by the following equation:

$$
\begin{equation*}
M T C=\frac{G M^{\prime} \times W}{100 \mathrm{LBP}} \tag{2-8}
\end{equation*}
$$

where LBP: Length of ship between two perpendiculars.
The change in trim due to relocation of a weight w by a distance t can be obtained as follows:

$$
\begin{equation*}
\Delta \mathrm{TR}=\frac{\mathrm{Wt}}{\mathrm{MTC}} \tag{2-9}
\end{equation*}
$$

The direction of change in trim is the same as that of the weight movement.

Each ship has a permissible range of drafts. Usually trim is restricted to be some positive value. An example of such a range is illustrated in Figure 2.7.

Ship stability limits are some of the important constraints in containership load planning. The knowledge presented in this section provides the basis for the routines for conducting feasibility checks and for making remedial actions to attain feasibility within the computerized model. A ship's hydrostatic data as well as current load conditions constitute an important input data block.

Figure 2.7 Envelope of permissible ship drafts (Source: Hydronautics, Inc.)

2.3 The Containerport

2.3.1 Its role and design considerations

A containerport is sometimes referred to as container "terminal." A containerport is a primary node where transshipment of containers occur between land transport and sea transport, as seen in Figure 2.8.

$\begin{array}{ll}\text { Figure 2.8 Containerport as a link be- } \\ & \text { tween two transport modes }\end{array}$

The role of a containerport is better illustrated by a network type diagram which shows points of transshipment and transport nodes connecting them. The design of a containerport should be based on a broad examination of container flow throughout a network, such as that shown in Figure 2.9. In Frankel (ed.) (1974), a containerport is viewed as a link in a regional trade network which incorporates a set of hinterland demand centers and foreign trade regions. Then an optimization algorithm is employed to determine the set of flows through all arcs which will satisfy the hinterland demands and minimize the total transportation cost to meet these demands. In Figure 2.9

Figure 2.9 Network representation of container transportation system
the air transportation of containers is purposefully left out, as its traffic volume is insignificant compared to that handled through the marine system.

Computer simulation techniques and queueing theory have been employed to determine optimum values of port design parameters (see Borovits and Ein-Dor, 1976; Hansen, 1972; Mytton and Walker, 1979; Edmond, 1975; Frankel, 1974; Jimenez, 1976; Edmond and Maggs, 1978; and \#wang, 1978). In these models, a containerport is viewed as a queueing system composed of container handling equipment and stations as servers and containers as entities requiring various types of service. Considerable savings can result from judicious information obtained from such simulations. The Port of Portland reports a multi-million dollar savings, which arose from the difference between the cost of the original proposal before simulation and that of an optimum design through simulation work. The key design parameters for containerports are:
a. Berth lengths,
b. Number of berths,
c. Equipment requirements and usage,
d. Yard layout and entry gate design.

The biggest part of the reported savings in the case of the Port of Portland development came from not having to purchase some of the multi-million dollar equipment such as shipside cranes and transtainers (gantry cranes that operate in the yard to pick up and stow containers), which would have been bought had simulation not been adopted as a method of optimum port design.

Monetary savings in investment is only one of the several types of benefits that can be garnered from using simulation as a design aid. Understanding of a containerport as a system and management confidence in its investment decision are some of the other benefits.

While the Port of Portland model is a highly complex one written in FORTRAN IV language and requiring a large computer core memory to run, the model constructed at MIT in GPSS (General Purpose System Simulator) can be utilized by any containerport planner with a relative ease in adaptation. GPSS is a blockoriented simulation language. For this reason, the MIT model is highly aggregated and does not offer the level of detail which the Port of Portland model possesses. Given only an estimate of future arrival patterns of ships and trucks, the resulting simulation output is likely to yield no better validity than that of the input data. More emphasis should be placed on correct estimation of input data than obtaining a highly detailed model, in this regard.

2.3.2 Organization

A containerport usually consists of the following components:
a. Dock area,
b. Yard storage area,
c. Gate processing area,
d. Container freight station (CFS),
e. Control/administration area,
f. Maintenance area.

Dock area covers the ship berths and their immediate waterfront area where guay cranes move on fixed rail tracks. Yard storage area is used to stow both inbound and outbound containers temporarily before they are shipped out to their next destinations. Gate area is where incoming and outgoing trucks are processed with necessary paperwork and weighed as necessary. Yard storage spots are designated here for incoming trucks with load. Container consolidation activities are performed at a CFS. Some outbound containers originate from a CFS. Functions of load planning, information processing and operational control are performed within the control/administration area. Figure 2.10 shows the schematic diagram of the Fulton Terminal (T-6) at Port of Portland.

Figure 2.11 shows major alternative configurations of material handing systems at containerports. Comparison of their relative merits is outside of the scope of this work. It must be pointed out, however, frequent troubles with systems using straddle carriers as yard movers have been reported. Our primary interest in this study is restricted to the overhead crane system which employs both yard trucks with chassis and transtainers as prime yardside movers.

At the Fulton Terminal, yard sections are numbered from 41 to 57. A yard section consists of 73 row positions (numbered 1 to 73), six columns (labeled A to F) and containers can be stacked up to four tiers high (labeled Bottom, Center, Top, and

Figure 2.10 Schematic layout of a containerport
(Courtesy of Port of Portland)

Figure 2.11 Major material handling alternatives at containerports
(Source: Rath)

Zulu). Row numbers start at the right end of each section and increase toward its left end. Sections four and eight have electric outlets provided for reefers. Sections 46 and 47 are primarily used to store empty containers. Side loaders are used to move these instead of transtainers.

Since two row positions take up one 20 -foot container length, one yard section has the length of 37 of 20 -foot containers. Odd numbers are used to designate 20 -foot container row positions and even numbers for 40-foot containers. Thus, row position 5427 is a 20 -foot container location in section 54.

Transtainers move along the side of a section and can turn their wheels to move to a different section not adjacent to the current one laterally. Transtainer movement between sections must be done via the middle two-way path between two columns of sections. This is primarily for safety reasons. Since turning of transtainer wheels is time-consuming, the number of such section changes should be minimized if a smooth flow of containers from yard to the loading dock area is to be maintained during a loading operation.

2.3.3 Material Flow

Container flow at a containerport can be divided into two different types for all practical purposes: yardside flow and dockside flow. The yardside flow refers to transfer of containers between arriving trucks and yard storage area. The dockside flow is between the ship and the yard. Figure 2.12 schematically shows the yardside flow for full as well as empty containers. Figure 2.13 shows the dockside flow for both inbound and outbound containers.

Figure 2.12 Yardside container flow

UNLOADING

Figure 2.13 Dockside container flow

2.3.4 Information system

Information flow with regards to containerports can be divided into the following two categories: The first is between containerports. The second is within a containerport. The following descriptive information is associated with a single container.

- Port of destination
- Size
- Type of commodity
- Structure
- Identification number
- Shipping line which carries it
- Height
- Total weight (in metric tons)
- Yard location
- Source of origin

Load planners often have to make do with imperfect set of information. Containers that are scheduled to be loaded to a certain voyage and have not arrived at the port usually carry only partial information. They include the ship's displacement, moments and weight distribution by bay, and foremost of all, what weight is loaded in each cell. Despite the rapid growth of the computer industry, data transfer from a port to the next port of call on a ship's load condition is currently only as fast as the speed of the ship.

A computer network connecting ports of a geographic region can greatly facilitate this data transfer. For example, a network connecting Vancouver, Seattle, Portland, Oakland/San Francisco, Long Beach/Los Angeles, and San Diego could be set
up for the benefit of all ports. Such a network is illustrated in Figure 2.14. A central computer with necessary software components for data management and planning could be installed at one port with all other ports connected to it through batch terminals which can access the system on a time-sharing basis.

Absence of such a computer network is deemed to stem from the lack of full comprehension of its potential benefits within the container industry and the lack of federal research support in this area. The federal government, however, can only provide help and guidance. Related ports in a region must exercise cooperation towards establishment of such a network for the benefit of all.

Figure 2.14 Suggested computer network for West Coast ports

Geisler and Trautnitz (1977) report a considerable increase in container throughput through partial automation of the EUROKAI container terminal in Hamburg. The automation consists of four levels: planning level, central control level, individual control level, and drive level. Only stacking cranes (transtainers) are included in this scheme. Shipside cranes are excluded. The three stacking cranes all operate on a single large yard section. The Hamburg system is depicted in Figure 2.15.

$$
\begin{aligned}
\text { Figure } 2.15 & \text { Hamburg port automation system } \\
& \text { (Source: Geisler and Trautnitz, } \\
& 1977: 349 \text {) }
\end{aligned}
$$

For containerports with many yard sections and dieseldriven transtainers operating among them, a different organization must be employed for automation. A proposed system which is more comprehensive than that of Hamburg is depicted in Figure 2.16. In this system, the yard location of an incoming container is displayed by the central computer to a display unit at the gate. This, together with the rest of the container information shown on its shipping document, is fed into the central memory from the terminal device at the gate. Yard container file thus created can be later verified by DP personnel as a copy of the document is delivered to the administrative area of the port. The container manifest for a voyage then can be entered to the central computer which goes into the load/unload planning using the data files which are constantly being updated. In order to work with a fixed set of containers, a deadline must be applied. Any container which has not arrived by this time is excluded from the voyage.

The load/unload plans generated are then converted to sequential movement orders to individual ship cranes and transtainers. A movement order would consist of yard locations, container identification number, size-type, and ship-cell coordinates. Process computers could be used to control stacking or picking of containers by ship cranes and transtainers. Manual operation must be allowed to effect the interface between transtainers and yard trucks and between ship cranes and yard trucks. As containers are moved/stacked in the yard, a container file is updated continuously within the central memory without having to manually enter their movements. Such an automation system would require the following major software components besides the usual file manipulation routines:

Figure 2.16 Proposed computer system at a containerport

1. Yard Location Designator Program
2. Unload Plan Program
3. Load Plan Program
4. Transtainer Control Program
5. Crane Control Program

These programs all interact through a master program which controls entire port activities. Such an automation system would greatly increase a port's throughput. It would require, however, a large amount of capital investment. Its potential benefits are becoming more and more attractive to ports of large sizes as labor costs skyrocket and control over labor practices have become increasingly difficult.

2.3.5 Port Efficiency

Frankel et al. (1974) list the following measures of port performance as possible criteria in port analysis:

1. Maximum throughput (per unit time),
2. Minimum lost/unit throughput,
3. Maximum cost/unit time,
4. Maximum profit,
5. Maximum return on investment,
6. Maximum productivity (output per unit input),
7. Maximum efficiency (in the use of resources),
8. Least total integrated transportation costs,
9. Maximum resource utilization,
10. Maximum regional income distribution,
11. Maximum balance of payments effect,
12. Other.

They are all very much interrelated. Since our assumption
is that the present level of investments are to continue for the immediate future, criterion (1) provides a reasonable measure of effectiveness. Specifically, ship turnaround times must be minimized in order to maximize a port's throughput.

3. CONTAINERSHIP LOAD PLANNING PROBLEM

3.1 Problem Description

The problem of containership load planning (CLP) is to generate a set of container-to-cell assignments which meet the general loading requirements set by shipping line, ship stability requirements, and minimize total material handling. It is an extremely complex task because the interrelationships among influencing factors are difficult to identify and various parameters effect operating constraints in both linear and nonlinear manners.

The shipping line's load requirements provide the main basis of a load planning work. They are color-coded on the ship's schematic plan sheet such as shown in Figure 3.1, and given to the load planning personnel. As far as a port is concerned, this sheet effectively sets the boundary within which planning work is done while searching for a feasible plan. In other words, the optimality in load planning is constrained within the demands of the shipping company. This is naturally so because the shipping company owns the ship and they have every right to utilize the ship capacity in whatever manner is desired. This set of requirements will be referred to as the general load plan (GLP) from this point on.

A GLP defines the following items:

- Number and destinations of containers to be loaded into each bay,
- Type and size of containers for each bay,
- Special loading instructions such as reefer machine positions,

Figure 3.1 Ship schematic diagram

- Total number of bays to load,
- Total number of containers to load.

Ship stability and attitude requirements impose another set of critical constraints on load planning. A permissible range of metacentric height (GM) is the explicit form of ship stability constraint, while draft forward, draft aft and trim restrictions pertain to ship attitude. Trim range is affected by seasonal variation of the sea state expected. During stormy periods a tight limit is required. Heel angle during a load operation must be close to zero. This requirement scarcely poses any problem if GLP allows even distribution of load between starboard and port sections of bays.

A number of alternative criteria can be formulated as the objective of containership load planning. Some examples are as follows:

- Minimize total port system cost per container,
- Minimize turnaround time,
- Minimize total transtainer move distance (TTMD),
- Minimize total crane operating time,
- Maximize throughput per unit time.

They are all relevant criteria for the interests of the port and consequently, the ship. The objective should be formulated within the set of facilities a port currently possesses. Selection of an appropriate objective function depends on ease of formulation and tractability of an effectiveness measure. The first one in the example includes many variables that interact and, hence, it could pose a problem of complexity before a successful translation, whereas other criteria tend to be more well-defined.

3.2 Present System of Load Planning

Containership load planning is done manually at most ports, with computer assistance in some cases. At some ports, computergenerated tags bearing container information are used for manual planning work by operations personnel. The planning activity is conducted as shown in the flowchart of Figure 3.2. The following explain the steps in this planning process:
a. Yard locations assigned to individual containers as they are processed through the gate are entered to their shipping documents.
b. Container release document from the steamship line is verified against individual container shipping documents. Appropriate adjustments are made for any discrepancy.
c. Data processing takes release information to generate container tags. (Some tags as attached on a bay storage plan are shown in Figure 3.3.)
d. Planners (operations personnel) check the tags against release information to correct any errors.
e. Extra tags are written out by hand for containers added to the release list after tags printout.
f. Planners prepare "Operators Recapitulation Sheet" which breaks down the number of released containers according to port, size-type, and line.
g. The shipping line representative delivers the general load plan to the planner.
h. Planners prepare "Ship Work Sequence" sheets. These include bay-by-bay load/unload work plan in sequence.

Figure 3.2 Manual load planning procedure

These are prepared in a way such that the work restrictions between two cranes and between two transtainers are satisfied, and that the work load is balanced between two gangs.
i. Planners pull tags from the board and place them on bay storage plan sheets such as in Figures 3.3 and 3.4. This activity is conducted with all loading restrictions in mind as well as to minimize total transtainer move distance.
j. Stability check is made for the load plan generated. Adjustments are made if either GM or trim condition is violated.

3.3 Desirable Properties of a CLP Program

The following attributes were considered essential for a CLP model:
a. It must yield load plans that are equivalent to or better than those generated manually.
b. Ease of implementation at most ports.
c. General enough to be used by most ports with overhead crane system.
d. Minimize yard equipment and crane moves.
e. Maximize the number of loaded containers.
f. Incorporate an interactive routine to enable minor changes.
g. Output format should be generally acceptable.

MS ALASKA NARU

BAY NO 16

Pe.ger
1

Whight (K1)	$\begin{aligned} & \text { Kic } \\ & \text { IMi. } \end{aligned}$	V AUMNT $; \times \quad \mathrm{Mi}$	
12 边			
17.3	' ${ }^{\prime}$	1154	
175	tk	283	
10 $\begin{array}{r}70.6 \\ 135.7 \\ 29.1\end{array}$	(1618)		
	5.	899	
	- 8	1544	
	TK	375	
	(13 59)		
O8 23.0	31	253	
	Tk	2362	
	06		
181.1	tK	1521	
	, 340		
\cdots			
200.6	$1 \times$	1119	
	(583)		
0 O			
139.1	7*	432	
	(323)		
164.91359	31	2346	
	K9	18.4	
770.4	ta.	6164	
1078.0	ros	10376	

Figure 3.3 Bay storage plan (under-deck bay)

WEIGHT (KT)	$\begin{gathered} \hline \text { K G } \\ (M) \\ \hline \end{gathered}$	$\begin{aligned} & \text { V- MOMENT } \\ & (K T-M) \end{aligned}$
${ }^{86}$ 2.7		
	kB	67
	24.68	
84		
3.5	KB	78
	22.23	
$82 \quad 19.9$	KB	394
	19.78	
26.1	K8	539

BAY NO. 21 (20)

110111.00	1081.61	106) 6.15	104) 369	102) 1.23	1011.23	1031 3.68		107) 8.61	1091 11.08
w'T									
$\begin{gathered} \text { Pont sioz } \\ \text { rotal } \\ \hline \end{gathered}$	$1-\begin{gathered} 3.3108 \\ \text { TOTAL } \end{gathered}$		$=\begin{gathered} \text { TORSIONAL } \\ \text { MOMENT } \end{gathered}$						

WEIGHT (KT)	$\begin{aligned} & \mathrm{KG} \\ & (\mathrm{M}) \end{aligned}$	$\begin{aligned} & \hline \text { V-MOMENT } \\ & \text { (KT-M) } \\ & \hline \end{aligned}$
$\begin{array}{r} 865 \\ 160.3 \\ 47.1 \end{array}$	$\left.\begin{array}{\|l\|l\|} \hline k 8 & 200 \\ k d \\ N 6 \\ 24 & 68 \\ 25061 \end{array} \right\rvert\,$	$\begin{aligned} & 63 \\ & 4017 \\ & 180 \end{aligned}$
	$k 6$ 20 $k 3$ $N 6$ 22.23 122461	$\begin{aligned} & 353 \\ & 3515 \\ & 1163 \end{aligned}$
$\begin{array}{\|cc} \hline 82 & 19.9 \\ 160.1 \\ 51.3 \end{array}$	$\kappa 0201$ κy $\mu \sigma$ 1978 19.861 $\|$	$\begin{aligned} & 395 \\ & 3180 \\ & 1059 \end{aligned}$
$\begin{aligned} & 38.1 \\ & 476.9 \\ & 152.2 \end{aligned}$		$\begin{gathered} 811 \\ \hline 10712 \\ 3402 \end{gathered}$
$\begin{array}{r} 629.1 \\ \frac{8 A}{19} \end{array}$		

Figure 3.4 Bay storage plan (on-deck bays)

Throughout this study, these attribute goals were kept in mind and efforts were exerted to achieve them. Two or more CLP models can be compared using the above criteria.

Existing Models and Past Attempts

The only working computer model for CLP that exists today besides the model introduced here has been developed by Hydronautics, Inc. of Maryland, as reported in Webster et al. (1969) and Cojeen and Van Dyke (1976). The Hydronautics' model develops a ship-loading plan which achieves desired stability parameters through consideration of both detailed current-port information and complete cycle estimates of expected trade. Practical constraints include: (1) consideration of exceptions and modifications to cargo; (2) specific locations for given cargo; (3) time dependence of cargo availability; (4) crane movement restrictions; and (5) achievement of desirable ship trim and stability characteristics. The input and output formats are excellent in that they are of readily available form and suitable for immediate use by ship and dock operations personnel. This work was done under the Ship Operations Informations System (SOIS) program, funded by the Maritime Administration and certain U.S. Merchant Marine operators. United States Lines, specifically, provided the terminal and stevedoring operating environment for testing their model.

The program was originally developed for a batch mode of operation and was designed for execution on a central computer facility. It is now available through the General Electric Mark III timesharing system which allows terminals in an international network to have access to SOIS developed systems.

In 1977, Matson Terminals, Inc. entered into a one-year contract with the Maritime Administration to perform the test of the

Hydronautics model using the G.E. Mark III system. Matson's charter, under the contract, was to perform a test of the model under operational conditions and make a comparison of automated versus manual load planning. Hydronautics customized their program to reflect Matson's particular ship and yard procedures.

The test resulted in a negative GM. This was an unacceptable result. In addition, the program's inability to consider vessel deck strength, lashing strength, and container racking strength limitations was identified. Also, the program did not ensure that a container placed aboard is supported by either the vessel structure or another container. Lastly, it did not properly constrain placement of hazardous containers in accordance with U.S. Coast Guard requirements.

The model's failure to produce a stable load plan stems from its assumption about container weight distribution. The model assumes uniform distribution of container weights and picks a container whose weight most closely fits the target weight for a given ship cell as generated towards meeting the stability requirements. The container weights of Matson's operating environments had a distribution of a bath tub shape, i.e., both ends were heavily distributed. After containers with "attractive" weights were run out, each selection tended to contribute negatively toward ship stability.

Another important aspect of the Hydronautics' model is that it was developed for loading using a multitude of chasses in which case random access of desirable containers is possible. This model would be inadequate for a port with transtainer operation in the yard. The key goal of this model was to meet stability, not to minimize yard handling of containers.

Beliech (1974) of the U.S. Navy wrote a heuristic for CLP, but coding and application of his logic have yet to appear. Also, his work gave no regard to minimizing yard-side material
handling but a heavy emphasis on load restrictions.
Scott and Chen (1978) of Matson Navigation Co. proposed a heuristic algorithm for CLP. The objective of this model is to maximize the number of containers which can be placed on the ship and to minimize the ballasting requirements. This form of objective stems from the unique Matson operating condition of bare loading a ship as fully as possible and of engaging in a single leg of voyage between Hawaii and Oakland, California. For most ports, this mode of strip-down, bare-loading operation is an unusual one. The algorithm, as proposed, would proceed as follows:

Stage 0 (Preparation):

Containers are classified into groups by type, size, destination and weight.

Stage 1:

Containers of other than the dry standard group are assigned to individual slots on the ship by destination from lower tiers and on up so that heavier containers are placed on lower tiers and closer to the midship.

Stage 2:

An integer programming problem is solved to determine the number of containers of each weight bracket of the dry standard type to be assigned to each row of a bay so that the total number of containers is maximized while meeting the requirements of trim and stability.

Stage 3:

Individual container-cell assignments of the dry standard type are made within each row so that stability is preserved.

Stage 4:

Any violation of load restrictions is smoothed out through the most favorable exchanges to resolve it.

Application of this heuristic has not been reported as yet. Some examination of this approach was conducted during the period of this research in order to determine its worthwhileness. The following summarizes the findings from the work:

First, the objective function is of an inadequate form for most ports concerned. This problem was discussed previously.

Second, material handling in the yard is not given any consideration. It is probably because Matson's Oakland yard employs a marshalling scheme with straddle carriers. These 'strads' can move only in one direction, making it indifferent where the container is located. Again, this is a unique situation which is not shared by ports such as Portland, Seattle and Vancouver where transtainers are the major movers in the yard.

Third, formulation and solution of the integer programming (IP) problem could create difficulty of software compatibility. Generation of a program data to fit an existing IP package is by no means easy. Also, there is no guarantee that an IP routine would yield an optimal feasible solution at all times. Experience with IP routines in the MPOS package developed by the Northwestern University justifies this concern. Gomory's cutting plane algorithm, in particular, sometimes gave a "presumed infeasible" response. It is difficult to determine whether the problem is really infeasible or not. If it was infeasible, then the heuristic fails to generate a load plan. If it was feasible, but the IP failed to find a feasible solution, an erroneous result is obtained.

The literature survey revealed the definite need for a good CLP model. Considering the significance of container industry
in world trade, not enough attention is being placed in this area. It was the author's hope that this work could spark a flood of research activity in useful CLP development even if it fails to achieve the aim.

4. APPROACHES TO THE PROBLEM

The mathematical nature of the containership load planning problem is explored in this chapter. Various approaches of model formulation are investigated especially with regard to feasibility in implementation.

4.1 Formulation as An Integer Program

Container-to-ship cell assignments are of one-to-one type. This nature easily leads to the 0-1 integer program as a possible model structure for solving the containership load planning problem. Thoolen et al. (1978) and Scott and Chen (1978) provide much of the basis of the following general integer program structure of the CLP problem.

4.1.1 A General Model

The containership loading problem consists of the following objectives and constraints:

Objectives:

0-1: Maximize number of containers to be loaded.
0-2: Minimize total equipment move distance.

Constraints:

C-1: Physical constraints (only one container is loaded into a cell on board).

C-2: Stability limits.
C-3: Container support constraints (no empty cell must exist between two containers vertically or between a container and deck).

C-4: Deck strength limits.

C-5: Container racking strength limits.
C-6: Stack height limits for under-deck bays.
C-7: Overstow limits.
C-8: Hazardous cargo placement restrictions.
C-9: Reefer placement restrictions.

A 0-1 integer assignment problem can be formulated to represent this problem. We define decision variables as follows:

M containers N ship cells

Thus, $X_{i j}=1$, if container i is assigned to cell j, $=0$, otherwise.
($i=1, \ldots, M ; j=1, \ldots, N$)

Container characteristics are defined as follows:

Here,
D_{i} : Destination port number of container i,
L_{i} : Length of container i,
H_{i} : Height of container i,
W_{i} : Weight of container i,
S_{i} : Racking strength of container i,
Y_{i} : Yard location of container i.
Characteristics of a container assigned to a ship cell may be defined as follows:

${ }^{\mathrm{w}}{ }_{\mathrm{j}}$
Here,
d_{j} (Destination no. of container in cell j) $={ }_{i=1}^{M} D_{i} X_{i j}$
I_{j} (Length of container in cell j) $={ }_{i=1}^{M} \sum_{i} L_{i} X_{i j}$
h_{j} (Height of container in cell j) $=\sum_{i=1}^{M} H_{i} X_{i j}$
w_{j} (Weight of container in cell j) $={\underset{i}{ } \sum_{1} W_{i} X_{i j}, ~}_{\text {in }}$
s_{j} (Racking strength of container in cell j) $={ }_{i=1}^{M} S_{i} X_{i j}$

The objectives and constraints of the CLP can now be formulated using the above notations as follows:

Objectives:

where $d(.,$.$) is a distance function between yard lo-$ cations of two consecutive containers loaded according to a sequence, $k=\left(k_{1}, k_{2}, \ldots, k_{M}\right)$.

Constraints:

C-1: $R_{i}=\sum_{j=1}^{N} X_{i j} \leqslant 1, i=1, \ldots, M$.
$c_{j}=\sum_{i=1}^{M} x_{i j} \leqslant 1, j=1, \ldots, N$.
C-2: (Trim and stability limits)
a. Horizontal Stability

$$
-D_{y} \leqslant C G_{y} \leqslant D_{y}
$$

where $C G_{y}$: Center of gravity for loaded containers in athwartship direction.

$$
D_{y}: \quad \text { Magnitude of maximum allowable } C G_{y} \text { deviation. }
$$

Here, the athwartship center of gravity can be obtained by the following:

$$
C G_{y}=\frac{\sum_{j=1}^{N} y_{j} \cdot w_{j}}{W_{c}}
$$

where W_{c} : Total container weight.

$$
y_{j}: Y \text {-axis location of center of gravity of cell } j \text {. }
$$

In the above relationship, y_{j} 's are known constants for each cell. Replacing w_{i} with its defining equation gives us the following:

$$
C G_{y}=\frac{\sum_{j=1}^{N} y_{j}\left(\sum_{i=1}^{M} W_{i} \cdot X_{i j}\right)}{W_{c}}
$$

Assuming W_{c} is a known constant, the horizontal stability constraint is a linear one.
b. Longitudinal (trim) stability

The longitudinal center of gravity ($C G_{x}$) must be within certain limits from a desirable position. Thus, we have

$$
P_{1}-D_{x} \leqslant C G_{x} \leqslant P_{1}+D_{x}
$$

where P_{1} : Desirable position of $C G_{x}$ from midships.
D_{x} : Maximum allowed deviation of $C G_{x}$ from P_{1}.

Here, $C G_{x}$ can be obtained as follows:
$C G_{x}=\frac{\sum_{j}^{N} x_{j} \cdot w_{j}}{W_{c}}$
where x_{j} : Longitudinal distance to the center of gravity of cell j from the midships.
c. Vertical Stability

Upper and lower limits of a ship's metacentric height (GM) for a given ship displacement can be translated to the following constraints on its vertical center of gravity:

$$
P_{v}-D_{z} \leqslant C G_{z} \leqslant P_{v}+D_{z}
$$

where P_{v} : Desirable vertical location of $C G_{z}$ from the keel,

D_{z} : Maximum allowed deviation of $C G$ from its desired position.

Here, CG_{z} can be computed as follows:

$$
\begin{aligned}
& C G_{z}=\frac{{ }_{j=1}^{N} z_{j}{ }^{W}{ }_{j}}{W_{C}} \\
& C-3: \quad \text { (Container support constraints) }
\end{aligned}
$$

$$
C_{j_{1}}-C_{j_{2}} \geqslant 0 \quad \begin{aligned}
& \text { for all vertically adjacent cells } \\
& j_{1} \text { and } j_{2} \text { within a bay. }
\end{aligned}
$$

C-4: (Deck strength limits)

$$
W_{j 1}+\ldots+W_{j k} \leqslant D S_{k}
$$

where $D S_{k}$: Deck strength limit of bay k in which cells j_{1}, \ldots, j_{k} are loaded in the same stack.

C-5: (Racking strength limits)

$$
s_{j 1} \geqslant w_{j 2}+\ldots+w_{j k}
$$

where j_{1}, \ldots, j_{k} are cell indices of the same stack and j_{1} is below j_{2}, \ldots, j_{k} with j_{k} the highest cell in the stack.

C-6: (Stack height limits)

$$
h_{j 1}+\ldots+h_{j k} \leqslant s H_{k}
$$

where SH_{k} is the stack height limit for bay k where cells j_{1}, \ldots, j_{k} are located in a stack.

C-7: (Overstow limits)

$$
d_{j 1} \geqslant d_{j 2}
$$

where j_{1} and j_{2} are any vertically adjacent cells with j_{2} above j_{1} in a stack.

C-8: (Hazardous cargo placement restrictions)

This constraint is not considered here to simplify the problem. The fact that a very small fraction of containers are in this category, whereas an explicit inclusion of these constraints is an extremely complex task, justifies the omission (see Thoolen et al. (1978) for an attempt on this).

C-9: (Reefer placement restrictions)
This restriction is applied by making all $\mathrm{X}_{\mathrm{i} j}=0$ for all reefer container i and non-reefer cell j.

4.1.2 A simplified problem

As an attempt to obtain familiarization of the integer assignment model in solving CLP's, a small CLP was constructed and an attempt was made to solve it using a linear program package.

In this simplified problem, there are forty containers to be sent to four ports. They are classified into three weight classes; heavy, medium, and light. The hypothetical ship has only five bays with nine cells in each. Container yard locations are known. They are assumed to be stacked in a single-tier in the same section, concentrated in one area. This simplified the
distance function. The problem, then, is to assign these forty containers to forty-five ship cells so that objectives $0-1$ and $0-2$ are achieved while satisfying constraints $\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3$, and $\mathrm{C}-7$. The other constraints are left out to provide simplicity to the problem.

Container yard locations are as shown in Figure 4.1. Container data are as tabulated in Table 2. Ship structure with bay locations is shown in Figure 4.2. Centers of gravity of ship cells are as shown in Table 3.

The decision variables A_{i} are as defined in the following assignment matrix:
cells

The constraints and objectives are constructed as follows:

C-1: (Physical Constraints)

a. Defining equations

$$
\begin{aligned}
& A_{1}+A_{2}+\ldots+A_{40}-S_{1}=0 \\
& A_{41}+A_{42}+\ldots+A_{80}-S_{2}=0 \\
& \vdots \\
& A_{1761}+A_{1762}+\ldots+A_{1800}-S_{45}=0
\end{aligned}
$$

Figure 4.1 Yard storage pattern in simplified problem

TABLE 2. CONTAINER DATA FOR SIMPLIFIED PROBLEM

Container no.	Port no.	Weight (MT)	Row no	Container no.	Port no.	Weight (MT)	Row no.
1	1	5	1	21	3	10	5
2	1	5	4	22	3	10	1
3	1	5	8	23	3	10	3
4	1	5	5	24	3	10	7
5	1	5	7	25	3	10	7
6	1	5	2	26	3	15	5
7	1	5	3	27	3	15	2
8	1	5	4	28	3	15	1
9	1	5	6	29	3	15	7
10	1	5	1	30	3	15	6
11	2	10	5	31	4	15	3
12	2	10	8	32	4	15	8
13	2	10	6	33	4	15	5
14	2	10	3	34	4	15	4
15	2	10	6	35	4	15	7
16	2	15	8	36	4	15	7
17	2	15	2	37	4	15	1
18	2	15	2	38	4	15	8
19	2	15	4	39	4	15	3
20	2	15	4	40	4	15	6

Figure 4.2 Hypothetical ship structure in example problem

TABLE 3. SHIP CELL DATA FOR SIMPLIFIED PROBLEM

Cell	Bay	$\overline{\mathrm{X}}$	\bar{Y}	\bar{z}	Cell	Bay	$\overline{\mathrm{X}}$	\bar{Y}	\bar{z}
1	1	2	-1	-1	26	3	0	0	1
2	1	2	0	-1	27	3	0	1	1
3	1	2	1	-1	28	3	-1	-1	-1
4	1	2	-1	0	29	4	-1	0	-1
5	1	2	0	0	30	4	-1	1	-1
6	1	2	1	0	31	4	-1	-1	0
7	1	2	-1	1	32	4	-1	0	0
8	1	2	0	1	33	4	-1	1	0
9	1	2	1	1	34	4	-1	-1	1
10	2	1	-1	-1	35	4	-1	0	1
11	2	1	0	-1	36	4	-1	1	1
12	2	1	1	-1	37	5	-2	-1	-1
13	2	1	-1	0	38	5	-2	0	-1
14	2	1	0	0	39	5	-2	1	-1
15	2	1	1	0	40	5	-2	-1	0
16	2	1	-1	1	41	5	-2	0	0
17	2	1	0	1	42	5	-2	1	0
18	2	1	1	1	43	5	-2	-1	1
19	3	0	-1	-1	44	5	-2	0	1
20	3	0	0	-1	45	5	-2	1	1
21	3	0	1	-1					
22	3	0	-1	0					
23	3	0	0	0					
24	3	0	1	0					
25	3	0	-1	1					

$$
\begin{aligned}
& A_{1}+A_{41}+A_{81}+\ldots+A_{1761}-B_{1}=0 \\
& A_{2}+A_{42}+A_{82}+\ldots+A_{1762}-B_{2}=0 \\
& \vdots \\
& A_{40}+A_{80}+Z_{120}+\ldots+A_{1800}-B_{40}=0
\end{aligned}
$$

b. Constraints

$$
\begin{aligned}
& B_{i} \leqslant 1, \quad i=1, \ldots, 40 \\
& S_{j} \leqslant 1, \quad j=1, \ldots, 45
\end{aligned}
$$

C-2: (Trim and Stability Constraints)
a. Defining equations

$$
\begin{aligned}
& 5 \mathrm{~A}_{1}+5 \mathrm{~A}_{2}+\ldots+10 \mathrm{~A}_{11}+\ldots+15 \mathrm{~A}_{16}+\ldots+10 \mathrm{~A}_{21} \\
& \\
& +\ldots+15 \mathrm{~A}_{26}+\ldots+\ldots+15 \mathrm{~A}_{40}-\ldots \mathrm{W}_{1}=0 \\
& 5 \mathrm{~A}_{41}+5 \mathrm{~A}_{42}+\ldots+10 \mathrm{~A}_{51}+\ldots+15 \mathrm{~A}_{56}+\ldots+10 \mathrm{~A}_{61} \\
& \\
& \quad+\ldots+15 \mathrm{~A}_{66}+\ldots+15 \mathrm{~A}_{80}-\ldots \mathrm{W}_{2}=0 \\
& 5 \mathrm{~A}_{1761}+\ldots+10 \mathrm{~A}_{1771}+\ldots+15 \mathrm{~A}_{1776}+\ldots \\
& \\
& \quad+10 \mathrm{~A}_{1781}+\ldots+15 \mathrm{~A}_{1786}+\ldots+15 \mathrm{~A}_{1800}-\ldots \mathrm{W}_{45} \\
&
\end{aligned}
$$

b. Longitudinal limits (X-direction)

$$
\begin{aligned}
& 2 \mathrm{~W}_{1}+2 \mathrm{~W}_{2}+\ldots+2 \mathrm{~W}_{9}+\mathrm{W}_{10}+\mathrm{W}_{11}+\ldots+\mathrm{W}_{18}-\mathrm{W}_{28} \\
& \quad-\mathrm{W}_{29}-\ldots-2 \mathrm{~W}_{37}-\ldots-2 \mathrm{~W}_{45} \geqslant-0.5 \\
& 2 \mathrm{~W}_{1}+2 \mathrm{~W}_{2}+\ldots+2 \mathrm{~W}_{9}+\mathrm{W}_{10}+\ldots+\ldots+\mathrm{W}_{18}-\mathrm{W}_{28}- \\
& \ldots-2 \mathrm{~W}_{37}-\ldots-2 \mathrm{~W}_{45} \leqslant 0.5
\end{aligned}
$$

c. Horizontal limits (Y-diractica)

$$
\begin{aligned}
& -W_{1}+W_{3}-W_{4}+W_{6}-W_{7}+W_{9}-\ldots+W_{45} \geqslant-0.5 \\
& -W_{1}+W_{2}-W_{4}+W_{4}+W_{7}+W_{9}-\ldots+W_{45} \leqslant 0.5
\end{aligned}
$$

d. Vertical limits (Z-direction)

$$
\begin{aligned}
& -W_{1}-W_{2}-W_{3}+W_{7}+W_{8}+W_{9}-\ldots+W_{43}+W_{44}+W_{45} \geqslant-2.0 \\
& -W_{1}-W_{2}-W_{4}+W_{7}+W_{8}+W_{9}-\ldots+W_{43}+W_{44}+W_{45} \leqslant 2.0
\end{aligned}
$$

C-3: (Container Support Constraints)

$$
\begin{gathered}
s_{1} \geqslant s_{4} \geqslant s_{7} \\
s_{2} \geqslant s_{5} \geqslant s_{8} \\
\cdot \\
\cdot \\
s_{38} \geqslant s_{41} \geqslant s_{44} \\
s_{39} \geqslant s_{42} \geqslant s_{45}
\end{gathered}
$$

C-4: (Overstow Restrictions)
a. Defining equations for port designators

$$
\begin{aligned}
& A_{1}+A_{2}+\ldots+2 A_{11}+\ldots+3 A_{21}+\ldots+4 A_{31}+\ldots+4 A_{40}-D_{1}=0 \\
& A_{41}+A_{42}+\ldots+2 A_{51}+\ldots+3 A_{61}+\ldots+4 A_{71}+\ldots+4 A_{80}-D_{2}=0 \\
& \\
& \vdots \\
& A_{1761}+\ldots+2 A_{1771}+\ldots+3 A_{1761}+\ldots+4 A_{1791}+\ldots \\
& \\
& +4 A_{1800}-D_{45}=0
\end{aligned}
$$

b. Constraints

$$
\begin{gathered}
D_{1} \geqslant D_{4} \geqslant D_{7} \\
D_{2} \geqslant D_{5} \geqslant D_{8} \\
D_{3} \geqslant D_{6} \geqslant D_{9} \\
D_{1}+D_{2}+D_{3} \geqslant D_{4}+D_{5}+D_{6} \geqslant D_{7}+D_{8}+D_{9} \\
D_{10} \geqslant D_{13} \geqslant D_{16} \\
D_{11} \geqslant D_{14} \geqslant D_{17} \\
D_{12} \geqslant D_{15} \geqslant D_{18} \\
D_{10}+D_{11}+D_{12} \geqslant D_{13}+D_{14}+D_{15} \geqslant D_{16}+D_{17}+D_{18} \\
\\
\quad \cdot \\
\cdot \\
D_{37} \geqslant D_{40} \geqslant D_{43} \\
D_{38} \geqslant D_{41} \geqslant D_{44} \\
D_{39} \geqslant D_{42} \geqslant D_{45} \\
D_{37}+D_{38}+D_{39} \geqslant D_{40}+D_{41}+D_{42} \geqslant D_{43}+D_{44}+D_{45}
\end{gathered}
$$

Objectives:
0-1: Maximize $B_{1}+B_{2}+\ldots+B_{40}$
0-2: Minimize transtainer move distance.
Since all containers are located within a single sec-
tion, the total move distance is the sum of distances between each successive pair of yard locations. Thus,
a. Defining equations

$$
\begin{aligned}
& A_{1}+4 A_{2}+8 A_{3}+5 A_{4}+\ldots+6 A_{40}-P_{1}=0 \\
& A_{1}+4 A_{42}+8 A_{43}+\ldots+6 A_{80}-P_{2}=0 \\
& \cdot \\
& \dot{\cdot} \\
& A_{1761}+4 A_{1762}+\ldots+6 A_{1800}-P_{45}=0 \\
& P_{1}-P_{2}+F_{1}-G_{1}=0 \\
& P_{2}-P_{3}+F_{2}-G_{2}=0 \\
& \cdot \\
& P_{44}-P_{45}+F_{44}-G_{44}=0
\end{aligned}
$$

b. Objective function

$$
\text { Minimize } P_{1}+F_{1}+F_{2}+\ldots+F_{44}+G_{1}+G_{2}+\ldots+G_{44}
$$

The two objectives can be combined as follows:

$$
\begin{aligned}
\text { Maximize } B_{1} & +B_{2}+\ldots+B_{40}-\left(P_{1}+F_{1}+F_{2}+\ldots+F_{44}\right. \\
& \left.+G_{1}+G_{2}+\ldots+G_{44}\right)
\end{aligned}
$$

4.1.3 Experience with the simplified problem

The containership loading problem was formulated as a multiconstrained integer assignment problem. A CLP problem involving 1,000 containers is not an unusually big one. An integer problem of such a magnitude would involve at least one million 0-1 variables. It is immediately clear that the integer program
formulation is not a feasible approach to CLP solution.
This conclusion was supported by the experience of attempting to obtain an LP (linear programming) solution of the simplified problem. Formulated as an $L P$, the problem had 1,976 variables and 252 constraints. The non-zero density in its coefficient matrix was only 1.57 percent. Bounds were set as tight as possible on all variables. The PREVISED algorithm in the Multi-Purpose Optimization System (MPOS) developed by the Northwestern University was used to run the problem.

Initially, the problem was too big to fit into the core of CYBER 720 computer at O.S.U. Computer Center, which allowed a maximum of 320 KB (octal) of central memory to batch jobs. The problem fit into the core after eliminating the associated constraints and the part of objective function for minimizing transtainer move distance. With the execution time limit set at 250 seconds (octal), the MPOS gave no solution. The initial tableau output was not quite completed at the end of the time limit. Input data handling time along took 69 seconds. The remainder of time was used up for data transfer and data conversion to form the initial tableau.

It was learned that an LP of this size would cost between $\$ 300$ and $\$ 500$ per run using the CDC APEX system. No attempt at solving the integer problem was made. It is clear, from this experience, that a day-to-day solution of CLP using the integer program structure is neither economical nor feasible.

4.2 Other Formulations

As a second attempt at using a traditional optimization technique to solve CLP, a network formulation was tried. A general problem encompassing a subset of CLP with 0-2 objective excluded may be formulated as a "generalized assignment model,"
as defined in Ross and Zoltners (1979). Its structure is as follows:

$$
\begin{align*}
& \text { Minimize } \sum_{i \varepsilon I} \sum_{j \varepsilon J} c_{i j} \cdot X_{i j} \tag{4-1}\\
& \text { Subject to } \sum_{i \varepsilon I} X_{i j}=1 \text { for all } j \varepsilon J \\
& \sum_{j \varepsilon J} f_{i j} X_{i j} \leqslant b_{i} \text { for all } i \varepsilon I \\
& \text { and } X_{i j}=0 \text { or } 1 \text { for all } i \varepsilon I, j \varepsilon J
\end{align*}
$$

The index set I and J would correspond to a set of containers and a set of ship cells, respectively. The objective coefficients $c_{i j}=0$ to accomplish ($0-1$). The ($C-1$) constraints fall into constraints of equation (4-1). The other constraints may be expressed by constraints of (4-3). Ross and Soland (1975) report construction of a computer code that solves generalized assignment problems.

Their program required ($4 \mathrm{v}+7 \mathrm{~m}+10 \mathrm{n}+5300$) words to solve a generalized assignment problem with m agents (index I), n tasks (index J) and v variables. This is translated to 425,300 words ($1,477 \mathrm{~K}$ octal) for a CLP of 1,000 containers and 1,000 ship cells. This excessive storage requirement makes the code unacceptable as a day-to-day solution technique for CLP. Furthermore, optimization of yard material handling ($0-2$) is not incorporated in this formulation. Computational speed report is limited to problems with $\mathrm{m}=20$ and $\mathrm{n}=50$.

It is well known that a certain class of LP problems can be expressed as "pure networks." Pure networks, however, are unable to represent LP problems with fractional coefficients. Flows on arcs in pure networks are restricted to discrete integer values. Generalized network (GN) overcomes this restriction and allows
any fractional gain on arcs. Glover, Hultz, Klingman and Stutz (1976 and 1978) report establishment of GN as a computer-based planning tool.

The GN problem represents a large class of LP problems. Pure networks require at most two non-zero entries in each column of the coefficient matrix, where the entries must be 1 and -1 . The GN problem, by allowing other non-zero doubletons as well as singletons in a column, is the broadest classification of linear network related problems. Applications of GN formulation arise in areas of resource allocation, production, distribution, scheduling, capital budgeting, and so on.

A generalized network, like a pure network, is represented as a directed graph. ${ }^{1}$ The coefficient matrix is transformed so that if a column has two non-zero entries, at least one of these is -l. In this way, a directed arc is formed that leads from the node associated with the -1 to the node associated with the other non-zero entry. If both entries are -1 , the arc may be directed either way. Columns with single non-zero entries cause arcs incident on only one node.

Consider the following illustrative LP problem as formulated by Glover et al. (1978).
$I_{\text {A }}$ graph consists of nodes and arcs connecting them. A directed graph has a sense of direction attributed to each arc, so that one node is the origin and another the destination of an arc.

$$
\begin{aligned}
& 0 \leqslant x_{12} \leqslant 3,0 \leqslant x_{13} \leqslant 4,0 \leqslant x_{23} \leqslant 6 \\
& 0 \leqslant x_{24} \leqslant 5,0 \leqslant x_{32} \leqslant 3,0 \leqslant x_{24} \leqslant 7
\end{aligned}
$$

The GN for this LP is shown in Figure 4.3. Each constraint corresponds to a node and each colum in the coefficient matrix to an arc. The simplified problem of section 4.1 , then, would involve 252 nodes and 1976 arcs.

The computer code which Glover et al. developed (NETG) reportedly occupied $(8 \mathrm{~N}+4 \mathrm{~A}+8500)$ words of central memory, where N is the number of nodes and A number of arcs. For the simplified problem, we would need approximately 18,420 words (43 K octal) of core space. For a CLP involving 1,000 containers and 1,000 ship cells, we would need at least 4.5 million words of central memory space. Moreover, the proprietors nature of NETG makes it unavailable to most researchers. Another major hindrance to this approach is the complexity of constructing a preprocessor program which takes in a primitive data set and converts it into data suitable for NETG. It is clear from these facts that the GN formulation would not be a practical model for CLP solution, although it offers a useful solution technique for many LP problems.

Figure 4.3 An example of generalized network

4.3 Dynamic Programming Formulation

4.3.1 Transtainer Routing Problem (TRP)

Formulation attempts so far described did not materialize in an acceptable and satisfactory model for real-world application. They also revealed the difficulty of incorporating the objective of minimizing yard material handling with integerprogramming related models. Since most ports are much concerned about minimizing their ship turnaround times in order to make themselves attractive to visiting ships, it seems imperative that a good CLP model should include this objective explicitly.

Unlike other real-world problems with many variables, the CLP problem requires that each container be treated as an identity and its exact shipboard assignment needs to be produced by the model. In handling containers, shipside cranes and yard transtainers move in discrete steps. For a pair consisting of a crane and a transtainer, the work sequence is the same for both pieces of equipment. The same set of containers is picked up by a transtainer from the yard slots and delivered to cranes by yard trucks in exactly the same order it is loaded into ship cells by a crane. Thus, the work sequence of a transtainer matches that of the crane in the same pair.

The movement of a transtainer, assuming one transtainer is used to pick up all containers in a loading set, is a multistage problem in the sense that after each container pick-up its next move consists of the yard location of the next container in a loading sequence.

A GLP, as discussed in section 3.1 , is made with all constraints in mind except $\mathrm{C}-2$ (stability), $\mathrm{C}-4$ (deck strength), C-5 (racking strength), and C-6 (stack height). These constraints are not included in GLP because they cannot be verified
until complete container-cell assignments are produced. If we set aside these four constraints for the moment, then a CLP problem is one of finding an optimal transtainer movement sequence which satisfies the constraints constituting a GLP.

This multi-stage problem can be expressed as a network of Figure 4.4.

Figure 4.4 A multi-stage network

The terminal nodes S_{1} and S_{2} represent start and ending positions of transtainer, respectively. Each column of nodes represent possible container locations to which the transtainer can move from its previously occupied position. In its primitive form, this network involves as many nodes in each column as the total number of containers in a load set. The number of stages also equals the total number of containers.

Since a GLP specifies what container group to pick up in each stage, the above network is reduced to one with as many nodes as number of containers in the group for each stage. Thus,
for a 1,000 container CLP with 20 groups each consisting of 50 containers, the network would have approximately 50,000 nodes. It is further noted that as each container of a particular group is picked up, there remains one less container location for the transtainer to move to. Therefore, the number of nodes in each succeeding stage decreases by one in each group picked serially. Then, the network would contain

$$
20{\underset{i=1}{50} \mathrm{n}=20\left(\frac{50.51}{2}\right)=25,500 \text { nodes. } . ~}_{5}
$$

Arcs in the network represent possible transtainer movement plans. A movement plan consists of movement details that specify where to go, and which container to pick. Thus, arcs represent alternative ways for a transtainer to move and to pick the next container.

For the reduced network described above, we would have the following number of arcs:

$$
20 \sum_{n=1}^{49} n(n+1)=20\left[\begin{array}{cc}
49 \\
\sum_{n=1} n^{2}+\sum_{n=1}^{49} n
\end{array}\right]=833,000
$$

The transtainer routing problem (TRP), then, can be formed as a deterministic dynamic programming problem with the following properties:

Stage: Selection of each container.
State: 1. Transtainer location.
2. Scatter pattern of remaining containers in the yard.

Objective function: Minimize TTMD.
Decision: What container to pick next.

The recursive relationship can be formulated as follows:
Recursive Relationship:

$$
\begin{equation*}
f_{k}^{*}(S)=\min _{X_{k}}\left\{d_{s, X_{k}}+f_{k-1}^{*}(S)\right\} \tag{4-5}
\end{equation*}
$$

Each ending state of a stage becomes an initial state of the next stage. The state space, S, needs to be a complete array which not only indicates transtainer position but also location of each remaining container in the yard.

For a TRP involving 1,000 containers, it would require an array with a size of $833,833,000$ to store state information of all arcs so the optimal path could be identified at the end of the forward pass. This is currently an impossible storage requirement. If a dynamic program formulation is to be used, a change must be made to reduce the storage requirement. It is observed that the problem complexity depends much on definition of state space and stage.

4.3.2 Simplification for Manageability

The process of science and technology is primarily due to the human ability to identify similar objects and traits, and to apply categorization on them. Degree of complexity in any system
is determined by the level of detail that is adopted for observation and analysis. Here, an appropriate distance between the system of interest and the observer must be determined. The containership loading problem is certainly a very complex one under close examination. Now that a close-up examination is complete, power of simplification is called upon to render it a manageable one for practical solution.

Weinberg (1975) categorizes objects of study into three regions in terms of their complexity and randomness:
I. Organized simplicity (machines)
II. Unorganized complexity (aggregates)
III. Organized complexity (systems)

This categorization is depiected in Figure 4.5.

$$
\begin{array}{cl}
\text { Figure } 4.5 & \text { Types of systems with respect to } \\
& \text { complexity and organization } \\
& \text { (Source: Weinberg, 1975) }
\end{array}
$$

Region I consists of small populations with a great deal of structure which could be expressed as a system of a reasonable number of equations. Populations in Region II have sufficient randomess to be analyzed using statistics. In Region III lie all systems that are too complex for analytic treatments and too structured for statistics. A containerport system falls in the last category in that its operations cannot be expressed as a set of equations and containers cannot be treated as random occurrences. Selective and judicious application of general systems approach techniques come into much usefulness here.

From the dynamic program formulation of TRP described in section 4.3.1, the number of stages can be reduced considerably by redefining the stage as consisting of picking all containers of a given group to be loaded into a specific bay. This approach is made possible because of the fact that a GLP essentially consists of groups of containers to be loaded into receiving bays. Furthermore, groups occupy segregated portions within a bay. Loading a bay is done group by group. So, each stage has a requirement of a given number of containers of a given group to pick in the yard. Now, a TRP of 1,000 containers would involve, say, 70 stages, as formulated with the revised definition of stage.

In each stage our attention is focused at a particular group to pick. The transtainer movement alternatives are then restricted to occupying rows of this group only. Now the decision at each stage is what containers among those remaining of this group to pick to fill the requirement of the stage. An appropriate heuristic rule must be structured so that a reasonable number of alternative transtainer movement plans can be investigated. As the algorithm progresses forward in the dynamic program solution process, the number of alternatives generated would decrease for a given initial condition and a group because the number of containers remaining in that group decreases.

The state space can also be redefined as follows: Since each stage is concerned with only one group, the state space, S , consists of the following conditions:

1. Initial transtainer row position.
2. Scatter pattern of remaining containers of the group picked in a stage.

It is anticipated, however, that this definition, although a much aggregated one from the original, would generate too many nodes to be manageable. Here, only the first condition, initial transtainer row position at the beginning of a stage, is used to define the state space. This is not a comprehensive definition, but it would reduce the TRP to a manageable size. Solutions from this formulation may not be truly optimal, but it is hoped that they would approach the optimal with sufficient proximity.

The recursive relationship for this formulation can be written as follows:

$$
\begin{equation*}
f_{k}^{*}(S)=\min _{j \in A_{k}}\left\{f_{k-1}^{*}\left(\xi_{k-1}\right)+d_{S, M_{j}}\right\} \tag{4-6}
\end{equation*}
$$

where $f_{k}^{*}(S): \quad$ Minimum total transtainer move distance by the end of stage k, beginning the stage at row position S.
A_{k} : Set of movement plan indices for stage k corresponding to initial state S.
M_{j} : A movement plan, $j \in A_{k}$.
$\mathrm{d}_{\mathrm{S} ; \mathrm{M}_{j}}$: Transtainer travel distance required to pick a given number of containers beginning at row position S and moving according to movement plan M_{j} in stage k.
$f_{k-1}^{*}\left(\xi_{k-1}\right)$: Minimum TTMD by the end of stage $k-1$, ending at row position $\xi_{k-1}=S$.

The dynamic program structure described above is embodied as a subroutine within the computerized CLP model which will be developed later. Whether this structure would maintain the corresponding computer program size at a manageable level needs to be ascertained. This work is completed through a simulation in which key problem parameters are varied and corresponding changes in program array requirements are noted. Explanations on this work will also appear later.

At this point, we know that the dynamic program structure will enable us to obtain an optimal transtainer routing plan for each load set. This routing plan would specify not only the sequence of rows to visit but also the number of containers of a particular group to pick among those located in a particular row. If the container list is sorted so that containers may be selected from top to bottom and from column A to column F in each visiting row, then an appropriate set of container-ship cell assignments could be obtained. Thus, an optimal transtainer routing plan would produce an optimal load plan. The next step, naturally, is to see whether a load plan thus obtained would satisfy all constraints. Finally, any violated constraint must be remedied so that an optimal and feasible load plan could be obtained. Detailed discussion on the model structure is presented in the next chapter.

5. COMPUTERIZED OPTIMIZATION MODEL FOR CONTAINERSHIP LOADING (COMCL)

5.1 Philosophy Behind the Model

Every model has a philosophy or thought behind it. This one is no exception. A number of facts were assembled to form our model structure.

First, although conventional ships were converted to carry containers aboard during the early stages of containerization, larger ships have been built from the keel up as fully dedicated containerships. These ships provide very stable loading platforms and their GM allowable ranges are rather broad. This makes ship stability constraint of less concern to ports which fill partial loads, although the ultimate nature of this constraint still holds true. The same can be said of trim limits. Also, the high cube limitation does not apply at all to most new ships. Thus, the structure of new containerships allows us to be more concerned about yard material handling than before when meeting ship stability conditions was of prime concern.

Second, ship turnaround time depends on how transtainers and cranes are routed. Crane and transtainer movements should be planned so that a smooth distribution of work load among work gangs is accomplished while the total loading time is minimized. Work sequencing of cranes and transtainers is a difficult task in that it demands consideration of a multitude of constraints and objectives. Computerization of sequence planning would constitute a good-sized research project and is left for further work. At present, our load planning model assumes that this sequencing activity is done properly by human planners. Then, the model is called upon to the task of minimizing the total transtainer move distance for a given bay-by-bay work sequence.

Here, we recognize the suitability of dynamic programming as a solution technique with each bay work as a stage in the problem structure.

Instead of sacrificing yard material handling effort to ensure loading restrictions, COMCL produces a load plan which minimizes total transtainer move distance. Then, any violation of stability or load restriction nature could be corrected through appropriate heuristic rules. These rules are constructed so that pairwise exchanges of container assignments are made towards attaining feasibility as fast as possible while the increase in total transtainer move distance (TTMD) due to exchanges is kept at a minimum.

With so many conditions and constraints to consider, this model would lack completeness if it did not include an interactive capability with the human operator. Designation of special cell locations for a few special containers should be made possible to the operator. Final adjustments on a computergenerated load plan should be easy to do. Thus, the model would take the nature of aiding the planner instead of replacing him.

These ideas were fully embraced by COMCL. Testing of the model using actual load data sets proved the validity of this approach, as discussed later.

5.2 General Structure of COMCL

COMCL is an optimization model in that it initially obtains a load plan which minimizes transtainer yard movement. Then, ship stability and loading restrictions are checked for feasibility. If any of these are violated, the model conducts one or more pairwise exchanges of container-cell assignments towards the direction of meeting them while minimizing the increase in transtainer travel distance caused by the interchanges. Finally, COMCL allows the planner to interact with it to make pairwise
exchanges that he feels necessary to implement any special considerations not incorporated explicitly in the model.

Figure 5.1 depicts the general structure of COMCL. Circular elements represent data files and rectangular blocks are programs/subroutines. COMCL consists of two separate programs: Program DATPREP and Program CLP. Program DATPREP takes in two files as input: CTRAW containing individual container information and RUNDAT with operational information such as date, ship's name, voyabe number, port names, line names, etc. File CTRAW is in a form very close to primitive container information in actual use. Each record of CTRAW corresponds to one container. Program DATPREP generates "Operator Recapitulation Sheet" and "Tonnage by Line" tables, which are compilations of container statistics for a particular ship load. Then, DATPREP prepares data for the main program's use. In particular, it generates CTFIL which is read in by program CLP in the second state of COMCL execution. Both programs were wirtten in FORTRAN IV language.

The following briefly describes the nature of each input file for Program CLP:

```
YLOUT .. Yard structure file with yard section layout in- formation.
CTFIL .. Container file generated by DATPREP from CTRAW and RUNDAT.
GPLAN .. Contains general loading plan and ship's condition prior to loading operation.
FSHIP .. Fixed ship file containing ship structure and stability data.
```

File FSHIP is unique for each ship. Subsequent visits by the same ship do not necessitate changes or creation of a new FSHIP. File YLOUT is unique for a port. Once made, therefore,

Figure 5.1 COMCL model structure

YLOUT need not change except to accommodate changes in port facilities. File RUNDAT needs some minor changes for each voyage. Files CTRAW and GPLAN provide the variable data unique for a given voyage load. Descriptions and explanations on data files follow.

5.3 Input Files

Data file specifications may be found in Appendix C. The following files, however, demand explanations as to why certain file structures are adopted.

5.3.1 File CTFIL and container list

The major part of file CTFIL is the set of container records, each record corresponding to a single container. Program DATPREP conducts the following sorting in a number of stages in order to produce the container list in file CTFIL:
a. Sort by port of destination according to order of call.
b. Sort by size-type code in the following sequence:

1. 20^{\prime} Full
2. 20^{\prime} Reefers
3. 20^{\prime} Empties
4. 20^{\prime} Specials
5. 40^{\prime} Full
6. 40^{\prime} Reefers
7. 40^{\prime} Empties
8. 40^{\prime} Specials
c. Sort by row position number in ascending order.
d. Sort by yard column designator in ascending alphabetical order (from coiumn A to column F).
9. Sort by yard tier designator in descending alphabetical order (Zulu, Top, Center, and Bottom).

This sorting is necessary so that container-to-ship cell assignments can be made in the order of proper picking among containers of a group stacked in a yard row position. Containers are usually picked from the nearest column (column A) to the seaward side of a section to the farthest column (column F), and from top to bottom within a column. This order of picking makes rehandling of containers unnecessary.

When program CLP reads in file CTFIL, each container record is stored in several different arrays with a common array index. The index value of a container is as determined within program DATPREP after completion of the sorting described above. Hence, a container is identified with a unique index number throughout program CLP execution.

5.3.2 File YLOUT and yard structure

In order to implement the objective of transtainer travel distance minimization, containerport yard structure needs to be specified in a relevent way. File YLOUT contains the number of yard sections, their identification numbers and relative dispositions of sections. Relative disposition of the ith and the j th sections with order significant is represented by array IAYS (i, j), and its value is assigned according to the following rules:

IAYS (i, j)	Relative Disposition
1	Sections i and j are adjacent and section i is to the right of section j.
2	Sections i and j are adjacent and section j is to the right of section i.

3

4

5

8

Both sections are in the same column to the right of center traffic aisle.

Both sections are in the same column to the left of traffic aisle.

Sections i and j are in different columns with section i in the right colum, and they are not adjacent.

Sections i and j are in different columns with section 1 in the left column, and they are not adjacent.

Sections i and j are one section ($i=j$) and it is in the column left of the center traffic aisle.

Sections i and j are one section ($i=j$) and it is in the column right of the center traffic aisle.

Figure 5.2 illustrates the relative disposition relationships of yard sections. The above rule was made to suite the structure of yards with rectangular yard sections and overheadcrane type material handling. Different yard sections may require a greater range of IAYS (.) values than the one defined above. It is assumed that yard sections are of the same size.

Disposition

Illustration

1

2

3

4

5

6

7

8

\square

Figure 5.2 Relative dispositions of yard sections

5.3.3 File FSHIP and ship structure

Examination of a number of containership structures revealed the fact that a ship can be imaginally divided into a few sectors where all bays within a sector share a common set of vertical centers of gravity (VCG's). Tier levels are the same in the bays of a sector. It is reasonable, therefore, to specify data for the sectors and the sector in which each bay belongs.

Load restrictions applied to on-deck bays are different from those for under-deck bays. For this reason, an on-deck bay and an under-deck bay are regarded and dealt with as separate bays, although they may have a common bay number in many ships if they share the same location longitudinally.

An under-deck bay is assumed to take in only one-size containers, while some on-deck bays can have both 40 -foot and 20 foot containers stacked in them. In a given colum of a bay, however, only one-size containers are assumed to be allowed. For an on-deck bay with both sizes allowed, appropriate longitudinal center of gravity (LCG) and VCG values are entered in file FSHIP.

An important part of FSHIP consists of fixed stability data such as those for a light ship condition. GM and trim limits are also entered here. Trim limits may vary seasonally due to changes in sea conditions. Trim limits are the only part of FSHIP which may vary from one voyage to another. Once created and thoroughly checked for accuracy, FSHIP for a ship should not need any change thereafter.

5.3.4 File GPLAN structure

Data for file GPLAN come from the following source documents:

Document	Data
a. Color Schematic (GLP)	- Number, type, size, and destination of containers for each bay to load. - Total number of bays to load. - Total number of containers to load. - Loading patterns for each bay.
b. Ship Bay Plans	- Weight sum, vertical moment (VM) and longitudinal moment (LM) of containers on-board prior to loading in each bay. - Number of high cubes already loaded in each under-deck column. - Weight of already loaded containers in each on-deck column.
c. Ship Work Sequence Sheets	- Order in which bays are to be loaded. - Number and size of containers to load in each bay by group. - Cumulative count of containers handled by the end of each work stage.

The DATPREP output lists containers categorized into a number of groups. A group is a homogeneous collection of containers with the same destination, size and type of content. A GLP, then, specifies how many of each group to load into what bays in what load patterns. Work Sequence sheets specify the order of loading for bay-group combinations. A load pattern (LPAT) specifies how many to load starting in which cell in what tier of a bay.

5.4 Program CLP Organization

Program CLP is the main part of COMCL. It consists of a number of subroutines and function subprograms. General program flow is as shown in Figure 5.3. The following provide a description of each routine in terms of its function and output. Detailed flowcharts and program listings are found in the Appendices.

5.4.1 Program CLP

This is the main routine which reads in input data files and calls different subroutines. The final stage of this program consists of an interactive feature. Thus, program CLP provides input/output service, subroutine routing logic, and the interactive capability.

After input data files are read, CLP calls subroutine DYNAMIC to generate an optimum transtainer routing plan which minimizes the TTMD. Then, subroutine ASSGN is called to make individual container-cell assignments according to the generated transtainer routing plan. Stability and loading restrictions such as number of high cubes and weight on-deck are checked on this load plan in subroutine FCHECK. Any violated constraints and locations of such violations are identified in it also. Then, FCHECK calls subroutine STABLE to compute the most favorable values of GM and trim with the given set of containers regardless of yard locations if either GM or trim limits is violated.

By this stage, "Stability Calculation" sheet and "Stability Summary Table" would have been printed out along with a list of any violations for the operator to see. Then, the operator is asked by the program whether he desires to improve the stability conditions through subroutine REMEDY. This query is posed only

Figure 5.3 Program CLP Flowchart
if any violations have been detected. Otherwise, the operator is asked whether he desires the load plan with entire containercell assignments be printed out.

Subroutine REMEDY makes iterations towards feasibility. Each iteration consists of a pairwise exchange of assignments. At conclusion of subroutine REMEDY execution, program CLP calls subroutine FCHECK again to recompute stability figures. Then, the desirability of load plan output is asked again.

Program LPOUT lists the load plan (container-to-cell assignments) thus obtained. Each line of output corresponds to one container-cell assignment. This load plan provides the loading instructions to both the yard crew and ship gangs because the order of picking containers in yard is identical to the order of loading them on-board.

Finally, program CLP allows the operator to make use of its interactive feature to make any last-minute adjustments to the load plan generated by COMCL. Each exchange is made by entering container sequence numbers of a pair of containers whose locations are desired to be switched. Feasibility of each requested exchanged in checked internally before any exchange is made.

5.4.2 Subroutine DYNAMIC

The job of loading a particular group of containers into a certain bay constitutes a stage in the dynamic programming formulation of the transtainer routing problem (TRP). The solution to a TRP is given by a set of move details for each stage. An initial state of a stage is the location of a transtainer(s) before picking activity for that stage begins. An initial state of a stage is an ending state of the immediate preceding stage. The objective of a TRP is to minimize TTMD.

In order to measure $T T M D$ effectively, we employ the concept
of a row equivalent (RE). A row equivalent is the length of time required to travel a distance of a 20 -foot container side dimension. A row movement within a yard section and a section change move need to be made commensurable. Since the common factor shared by these two different types of transtainer moves is time, RE is defined as the above. The RE's for section change moves are established as follows:

Given:

1. Time to travel along an entire yard section: 1.5 minutes
2. Time to move to a non-adjacent section: 10 minutes
3. Length of a yard section: 74 row positions.
4. Distance between two adjacent sections: 10 row positions.

Conversion:

1. Transtainer move to an adjacent section (NER1): 10 RE's.
2. Transtainer move to a non-adjacent section (NER2) : ($10 \mathrm{~min} / 1.5 \mathrm{~min}$) $\times 74 \mathrm{RE}$'s $=493 \mathrm{RE}$'s.

Initially, subroutine DYNAMIC was formulated to handle the one-transtainer TRP. It was later expanded to handle twotranstainer TRP as well. Since most modern containerships require two gangs or more, each consisting of a crane and a transtainer team, it is only natural that COMCL possess such a capability.

Stages are constructed from the work sequence data. They provide cumulative counts of containers handled. These include unloaded containers and rehandles, and provide a measure of each gang's work progress. Assuming each container, regardless of its size, type, and bay to load, takes an equal length of
handling time, it constitutes a measure of work progress on a common scale. Here, three alternative methods of executing subroutine DYNAMIC are open to a planner:
a. Parallel Method: Both transtainers operate simultaneously.
b. Serial Method (T1-T2): Transtainer 非 operation is planned first and is followed by transtainer ${ }^{2}$ 2 operation.
c. Serial Method (T2-T1): Transtainer \#2 operation is planned first and is followed by transtainer \#1 operation.

The work sequence for a parallel operation is constructed by using the aforementioned cumulative container counts. Stages are formed in the increasing order of their cumulative counts. In the second method, a higher priority is given to transtainer \#1 than transtainer 非2. That is, all stages pertaining to transtainer $\# 1$ is conducted before those of transtainer \#2. A concatenated TRP of two TRP's is formed in this manner. The order of concatenation is the opposite in the third method of planning.

Of these three methods, the parallel method is the most realistic in that it handles one transtainer's stage at a time sequentially according to the way two transtainers are expected to operate in the yard. It must be pointed out, however, that the operational restriction of two transtainers not allowed in one section at the same time is not checked by subroutine DYNAMIC. Some type of a simulation would be necessary to implement this restriction rigorously.

The state space consists of initial row positions of both transtainers in the parallel method. It is obvious that the
number of arcs generated and nodes kept would be considerably greater in this method than in the other two. Also, each transtainer's total move distance (TMD) is kept for each combination of ending states. Movement plans correspond to only one transtainer within a given stage, however.

A solution within a stage corresponds to a set of move details which define transtainer moves necessary to pick up a given number of containers of the group specified for the stage. Thus, each solution (movement plan) corresponds to an arc in the network representation of TRP. A node represents a transtainer state. Each arc is associated with a beginning node (initial row position) and an ending node (ending row position). This relationship is depicted in Figure 5.4.

Figure 5.4 $\begin{aligned} & \text { Arc-node relationship in } \\ & \text { dynamic program }\end{aligned}$

Let the beginning node of an arc be called its root node. By keeping track of each arc's root node, the optimal solution path can be traced back starting at the ending node with the least TTMD in the final stage. Also, this feature allows computation of TMD at each stage a simple task.

A move detail is specified by a move type and a target row number. A target row is one towards which a move is to be made. Move types are defined as follows:

1: Within-section picking move, increasing row direction.
2: Within-section picking move, decreasing row direction.
3: Empty move to a new row in the same section.
4: Empty move to a new row in another section.

Alternative ways of routing a transtainer within a stage are generated according to the following transtainer routing logic. A possessing row is defined as one that has at least one container of the group to pick. A possessing section contains at least one possessing row. The center refers to the traffic lane between two columns of yard sections.

TRANSTAINER ROUTING LOGIC

Step 1. Check if the current section is possessing. If so, go to Step 4.

Step 2. If current section is the only possessing section, go to 2A. Otherwise go to Step 3 .

2A. Generate an upward pick move first. If enough has been picked, go to the pruning logic. Otherwise, go to 2B.

2B. Generate a downward pick move. If enough has been picked, go to the pruning logic. Otherwise, go to 2A.

Step 3. If current section is in the right column, go to 3A. Otherwise, go to 3B.

3A. Generate a "move down x rows, then pick upward" solution with x incremented by one at each iteration. Go to Step 4.

3B. Generate a "move up x rows, then pick downward" solution with x incremented by one at each iteration. Go to Step 4.

Step 4. Pick a possessing section to go to and see if enough can be picked there. If so, go to 4A. Otherwise, select the second possessing section and go to 4 A .

4A. Form a section change move to the first possessing section.

4B. Generate a center-to-outward pick move. If enough has been picked, go to the pruning logic, then to 4 C . If not, go to 4 A with the second possessing section.

4C. Generate an out-to-center pick move. If enough has been picked, go to the pruning logic. If not, go to 4 A with the second possessing section.

The advantage of dynamic programming in solving a problem of great complexity is in that only a fraction of all possible solution paths needs to be examined to obtain the optimal solution. This property is due to the pruning done in each stage. Different solutions which led to the same state by the end of a stage are compared on the basis of their TMD's up to that stage and only the best one is retained. The rest are discarded. This pruning function is embodied mathematically in the recursive relationship. Subroutine DYNAMIC utilizes the fact that we need to concern ourselves with only the possessing rows of one group in each stage. Other rows are temporarily left out of attention. This fact gives simplicity to the model structure.

The following notations are needed to explain the pruning logic:
m : Old solution number with the same ending state in the same stage.
n : New solution number.
n^{\prime} : Root solution of solution n.

```
\(\mathrm{f}_{\mathrm{m}}\) : TMD for solution m .
\(\mathrm{d}_{\mathrm{n}}\) : Transtainer move distance corresponding to solution n
        within this stage.
```

The pruning is done in Subroutine DISCOMP as follows:

PRUNING LOGIC

For each new solution n generated in a given stage,

Step 1. Compute $f_{n}=f_{n}, d_{n}$
Step 2. Search the solution list of the same stage to find one with the same ending state as solution n. If none exists, add solution n to the solution list. If one is found, go to Step 3.

Step 3. If $f_{n}<f_{m}$, replace solution m with solution n. Otherwise, discard solution n.

We know that the ending state of a solution in a dynamic program stage affects the outcome of solutions generated in the coming stages. A state should consist of the following two conditions, as discussed previously:
a. Ending row position of transtainer.
b. Location pattern of remaining containers of the group as a result of the current solution.

Only the first item was included in the definition of state in our formulation. An explicit consideration of the second condition would make the problem too complex to handle due to the great number of arcs which must be generated and investigated. As an indirect way of incorporating it, a penalty concept was investigated. If all remaining containers are located in one
section, the transtainer need not travel much to pick them up in remaining picking stages of the group. Conversely, if, regardless of the number, they are scattered over several sections, the required TMD would be considerable. Thus, remaining containers' scatter pattern affects TTMD in coming stages and, hence, the determination of the optimal solution.

Let

$$
\begin{aligned}
P_{n}: & \text { Penalty distance for remaining yard pattern of this } \\
& \text { group corresponding to solution } n .
\end{aligned}
$$

Here, P_{n} is computed as follows:

$$
p_{n}=\sum_{i \varepsilon I_{n}} d\left(Y_{i}, Y_{i+1}\right)
$$

where I_{n} : possessing row number indices corresponding to solution n.

Thus, P_{n} is the distance required to pick all remaining containers of the affected group from the lowest possessing row number to the last. The pruning logic Step 3 was modified as follows:

Step 3: Compare f_{n}^{\prime} with f_{m}^{\prime}. If $f_{n}^{\prime}<f_{m}^{\prime}$ replace solution m with solution n. Otherwise, discard solution n.

This feature was sometimes successful when applied to the last three pick stages of groups with at least three pick stages associated. But the improvements were marginal and the lack of consistency in its results forced its rejection from the model. The original pruning logic was used to obtain all test results.

5.4.3 Subroutine DISCOMP

Computation of TMD using RE's as well as the pruning work for subroutine DYNAMIC are performed within subroutine DISCOMP. Distance computation is facilitated by using function NDIST. The pruning logic had been discussed. Distance computation is done as follows:

Let
Y_{1} : Yard position of the initial transtainer position, where r_{1} is the row number of Y_{1}
Y_{2} : Yard position of the ending transtainer position at the end of a move, where r_{2} is the row number of Y_{2}.

IAYS ($\mathrm{Y}_{1}, \mathrm{Y}_{2}$) : Disposition code of two sections containing rows Y_{1} and Y_{2}.

NER1 : Number of RE's required for an adjacent section transfer move.

NER2 : Number of RE's required for a non-adjacent section transfer move.
$d\left(Y_{1}, Y_{2}\right): \operatorname{TMD}$ required to move from row Y_{1} to row Y_{2}.
Then, $d\left(Y_{1}, Y_{2}\right)$ is computed as follows according to section disposition code:

IAYS $\left(Y_{1}, Y_{2}\right)$	$\frac{d\left(Y_{1}, Y_{2}\right)}{}$
1	$74-r_{1}+N E R 1+r_{2}$
2	$r_{1}+N E R 1+74-r_{2}$
3	$74-r_{1}+N E R 2+74-r_{2}$
4	$r_{1}+N E R_{2}+r_{2}$
5	$74-r_{1}+N E R 2+r_{2}$
6	$r_{1}+N E R 2+74-r_{2}$

A few examples of NDIST computation are as follows:

$$
\begin{aligned}
& d(4237,5225)=37+10+74-25=96 \text { RE's } \quad(\text { IAYS }=2) \\
& d(4237,5725)=37+493+74-25=579 \text { RE's } \quad(\text { IAYS }=6) \\
& d(4237,4270)=70-37=33 \text { RE's (IAYS=8) }
\end{aligned}
$$

5.4.4 Subroutine ASSGN

Container-to-cell assignments are made by subroutine ASSGN according to the optimal transtainer routing plan obtained in subroutine DYNAMIC. The following rules are applied in making these assignments:
a. Special assign containers are assigned before others.
b. Loading is done by tier for a given container group to be loaded into a bay (from bottom and up).
c. Within a tier, loading is done from port to starboard side.
d. An entire group's loading must be finished within a bay before loading other groups into it.
e. Within a yard row position, containers are picked from column A to column F, from top to bottom.

The last rule is implemented through a sorting procedure for file CTFIL, as described in 5.3.1.

5.4.5 Subroutine FCHECK

The following ship stability and loading restrictions are
checked with the load plan obtained by subroutines DYNAMIC and ASSGN:
a. GM limits,
b. Trim limits,
c. Deck strength limits,
d. High cube limits.

Vertical and longitudinal moment contributions by each container to load is computed. Sums of weights and both moments just prior to loading the current set of containers have been read in as input data. The resulting $G M$ and trim values are checked against their upper and lower limits. Total weight stacked in each on-deck column is checked against the limit applied to the bay. Any violation is printed out to inform the operator. Also, bay-by-bay "Stability Calculation" sheet as well as "Ship Stability Summary" is printed out in the format that is currently used at most ports.

Let
W : Total ship displacement including containers (MT)
D : Draft at midship at a given displacement (M)
MTC : Moment to change trim by 1 Cm at a given displacement (MT-M)

KM : Keel to metacenter distance (M)
LCB : Longitudinal center of buoyancy (M)
LCF : Longitudinal center of flotation (M)
VM : Total ship vertical moment (MT-M)
LM : Total ship longitudinal moment (MT-M)
FS : Free-surface effect moment by liquid stores (MT-M)
LBP : Length of ship between two perpendiculars (M)

Then, the following relationships are used to compute a ship's GM and trim values:
$G M=K M-(V M+F S) / W$
$T R=(L M-L C B \times W) /(M T C \times 100)$
Forward draft $\left(D_{f}\right)=D-0.5 T R-T R \times L C F / L B P$
Aft draft $\left(D_{a}\right)=D+0.5 T R-T R \times L C F / L B P$
If either GM or trim limit is violated, subroutine FCHECK prints out the upper and lower limits of applicable moments due to the current set of containers to load. These are easily computed from known GM or trim limits and moment contributions from light ship condition, constant load, liquid stores, and containers already loaded. Then subroutine STABLE is called to see if it is possible to attain feasibility with the given set of containers. Subroutine STABLE assigns containers in the most favorable way with regard to the violated limit, and checks to see if this ideally obtained moment condition intersects the feasible region. Yard locations of containers are completely disregarded in this hypothetical assignment. It is to be remembered that what subroutine STABLE does has no effect on the original set of assignments at all. Its function is simply to determine if feasibility can be obtained with the current set or not. If not, the GLP should be reviewed for possible modifications and an informative message of that effect is printed out for the operator's benefit.

If there is no violation, the operator can choose to have the entire load plan printed out and terminate the planning. With any violation noted, he can consult the ship's personnel as to whether the violation can be tolerated or not. If it is deemed to be of no significant consequence, the run terminates by printing out the load plan as it is. If a violation needs to be corrected, however, subroutine REMEDY can be called for it. These options are entered manually from the terminal keyboard by the operator. Human judgments are thus effectively incorporated into the model. Subroutine FCHECK is called again after

REMEDY execution to print out the revised stabillty figures.

5.4.6 Subroutine LPOUT

The primary function of subroutine LPOUT is to print out a generated load plan in the sequence of loading. In case of two crane operation, the list for the aft crane follows that of the forward crane. This sequence is also the sequence of transtainer picking in the yard.

When LPOUT is called with a "no-print" option, it simply computes TTMD for each transtainer according to the current load plan. This feature enables the operator to see how much increase in TTMD was caused by subroutine REMEDY execution or by interactive adjustments. Load assignments for special assign containers are printed separately from the main set.

5.4.7 Subroutine REMEDY

The objective of subroutine REMEDY is to attain feasibility with as little sacrifice in TTMD as possible. For a given load set, the number of possible assignment combinations is so huge that it is not worthwhile to enumerate them all. An efficient heuristic is needed to achieve the objective. The following explain the logic employed in the REMEDY heuristic;

FIRST. The more serious violation is dealt with before others. GM and trim limit violations are considered more serious than stack weight or high-cube violations. Seriousness of GM and trim violations are compared using the quantity called "degree of violation (DOV)" defined as follows:

$$
\text { DOV }=\frac{\text { Amount of moment deviation from the limit }}{\text { Moment improvement hypothetically possible }}
$$

SECOND. Correction of one type of violation will affect consequences of other violated constraints. Here, as we deal with violations in decreasing order of their DOV values, we need to ensure that candidate pairs for exchanges are chosen so that they will not adversely affect other violated constraints. For example, suppose $G M$ is too high and trim is excessive by the bow. Also, assume that GM violation has a higher DOV value. Then, a candidate pair for improving GM could consist of a heavy container assigned to a high tier and a light container assigned to a low tier within the same group regardless of bays. However, if the heavy one is in a bay forward of the light one, this exchange will worsen the trim condition. Such candidate pairs are to be excluded from consideration.

THIRD. A large LM change may be created if, say, the lightest container assigned to the most forward receiving bay is exchanged with the heaviest one in the most aft receiving bay. Likewise, a great VM change is possible if a heavy container assigned to a high on-deck tier and a light one assigned to a low under-deck tier are exchanged. The resulting increase in TTMD, however, must be kept at a minimum. To implement these dual objectives, a "distance-to-improvement ratio (D/I ratio)" is used. The D / I ratio is defined as follows:

$$
D / I=\frac{\text { Distance between yard locations of a pair }}{\text { Moment improvement possible by a pair }}
$$

By selecting a candidate with the smallest ratio for a given first container of a pair, TTMD sacrifice can be minimized while moment improvement is maximized. Some extreme conditions, however, may result to hamper our intent. Consider, for example, D/I ratios of two candidate pairs are both equal to 1.0 and obtained as follows:

$$
\mathrm{D} / \mathrm{I}_{1}=100 / 100=1.0 \text { and } \mathrm{D} / I_{2}=500 / 500=1.0
$$

Preference decision between these two involves a tradeoff between the denominator and the numerator of the ratio. How much increase in $L M$ is equivalent to the 100 RE increase in TTMD? It is a difficult question to answer. We can get around this problem using "screens."

Two types of screens are used. The first type is one that limits the minimum amount of moment improvement possible by each iteration. The second type of screen limits the relative locations of candidate pairs. The latter screens are applied in three stages. In the first atage, only containers in the same yard section are considered for exchanges. Then, in the second stage, those that are in two adjacent sections are examined. Finally, containers in any locations are considered. This gradual relaxation of Type II screen ensures that we do not sacrifice TTMD overly for a gain in moment. At the same time, Type I screen allows only those with at least a certain amount of moment improvement to be considered as candidates. The size of Type I screen was arbitrarily determined as $50 \mathrm{MT}-\mathrm{M}$ for GM and 100 MT-M for trim violation, respectively. Appropriate finetuning of these screen sizes can be made easily for particular situations. The above screen concept is summarized below:

Type I Screen: Specifies minimum moment improvement. For GM violation : $50 \mathrm{MT}-\mathrm{M}$

For trim violation : $100 \mathrm{MT}-\mathrm{M}$

Type II Screen: Restricts yard location of a candidate.
Stage I : Within the same section.
Stage II : Within the adjacent section.
Stage III : In any section.

FOURTH. The above concepts are used to construct a list of candidate pairs from which exchange pairs are sequentially
selected according to their D/I ratios until either feasibility is obtained or no more pair is available. Arbitrarily, the maximum number of candidate pairs is limited to 200. This limit is necessary to set array dimensions in the subroutine. Thus, of all possible candidate pairs, most desirable pairs are included first in the list followed by others with relaxed screens. Then, the final exchanges are made according to a single measure of merit, the D / I ratio. These exchanges are performed by calling subroutine XCHNGE.

Remedial routines for deck-strength violation and high-cube violation ensure that an exchange does not cause the same trouble in another location. Deck-strength violation is a major concern to a planner for large modern containerships which often take on containers up to four tiers high on-deck. The routine searches the group list for the container which will make the greatest reduction of stack weight among those located in the same section as the one to be replaced. If no such candidate is found, then the search is expanded to the adjacent section. This process proceeds from the top container in the violated stack and moves downward. This is necessary because ship personnel would like to have lighter containers in top tiers than in lower tiers.

There is a tradeoff between the amount of stack weight reduction and the increase in TTMD. Naturally, we desire to minimize the latter while expediting the former process. In view of the absoluteness of deck strength constraints felt by most ship personnel, the formulation was done so that more emphasis is placed on achieving feasibility as soon as possible.

In resolving a high-cube limit violation, subroutine REMEDY looks for the candidate of the same group with the smallest distance difference from the one to be replaced. Since a container is either a high-cube or of regular height, this search is done by computing distance differences of those regular-height
containers in the same group. Thus, the problem in a stack is resolved while increase in TTMD is kept at a minimum.

Subroutine FCHECK is called again after REMEDY execution is terminated. Then, the operator is given a choice between having the load plan printed out and not. Finally, the interactive adjustment option is open, as discussed previously. At termination of the interactive phase, subroutines FCHECK and LPOUT are called again to give the final printouts of stability tables and the load plan.

5.5 Simulation of Subroutine DYNAMIC

The greatest concern associated with most dynamic programming formulation is perhaps the phenomenon called "curse of dimensionality." As we saw in section 4.3, information regarding all nodes which have not been pruned away needs to be retained so that the final solution may be traced back in the last stage of a dynamic program algorithm. Thus, the number of nodes imposes certain computer core storage requirements in a particular formulation. The definition of state space adopted in COMCL was inevitable for this reason. Now, it was necessary to see if this formulation could handle problems of expected sizes. A simulation program that includes subroutine DYNAMIC as a major part was constructed to answer this question.

An actual load set from the Port of Portland was used to generate the following relationships:

1. Number of containers in a group (x)
; Beta distributed with $\alpha=0.70$ and $\gamma=3.45$
2. Number of possessing rows (Y) as a function of number of containers in a group (x)

$$
; Y=0.15 X+0.29
$$

3. Number of possessing sections (Z) as a function of number of rows (Y)
; $Z=0.15 Y+0.77$
4. Number of receiving bays (B) as a function of number of containers in a group (X)
; $B=0.08 \mathrm{X}+0.99$
5. Number of containers to load in a stage (L)
; Normally distributed with mean of 8.70 and standard deviation of 7.88.

The Beta parameter estimation followed the procedure explained in Greer (1970). Beta random number generation was done according to the method contained in Pritsker (1974). The input parameters were as follows:

MSTAGE : Number of states,
MSECT : Number of total possessing yard sections,
NRUNS : Number of runs to make with given MSTAGE and MSECT values.

Only the single transtainer problem was attempted in all runs. Figure 5.5 describes the steps of simulation. Basically, a ship loading situation is created using random numbers. Then, subroutine DYNAMIC is executed using this data set. Total number of solutions selected, total number of solutions generated including those pruned away, and total computation time were noted for each run. A total of 36 runs were made while varying MSTAGE and MSECT. Three runs each were made for each parameter combination. MSTAGE was varied from 10 to 65 and MSECT from 3 to 5. Simulation results are listed in Table 4.

The results were analyzed using the Statistical Interactive Package System (SIPS) at O.S.U. Computer Center. The following

Figure 5.5 Flowchart for subroutine DYNAMIC simulation

TABLE 4. RESULTS OF SUBROUTINE
DYNAMIC SIMULATION

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \\ & \hline \end{aligned}$	$\stackrel{1}{\text { MSTAGE }}$	$\begin{gathered} 2 \\ \text { MSECT } \end{gathered}$	$\begin{gathered} 3 \\ \text { MGROUP } \end{gathered}$	$\begin{gathered} 4 \\ \text { NCTLD } \\ \hline \end{gathered}$	$\begin{gathered} 5 \\ \text { NTSOL } \\ \hline \end{gathered}$	$\begin{gathered} 6 \\ \text { NTGEN } \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \text { TRUN } \end{gathered}$
1	15	4	7	189	43	110	0.51
2	15	4	6	90	21	33	0.22
3	15	4	6	96	45	110	0.52
4	25	3	15	321	57	131	0.68
5	25	3	14	342	64	174	0.82
6	25	3	15	263	46	85	0.49
7	35	4	13	354	92	257	1.12
8	35	4	13	261	81	205	1.06
9	35	4	11	164	57	101	0.52
10	45	5	26	667	128	434	1.79
11	45	5	27	563	136	429	1.95
12	45	5	21	397	82	187	0.95
13	55	5	25	390	98	201	0.99
14	55	5	25	417	98	196	1.01
15	55	5	30	506	110	285	1.34
16	65	5	23	519	141	322	1.64
17	65	5	30	610	155	485	2.01
18	65	5	24	479	147	363	1.67
19	10	3	5	148	27	58	0.32
20	10	3	3	70	23	41	0.25
21	10	3	4	51	14	17	0.13
22	20	4	10	218	50	132	0.61
23	20	4	9	156	39	69	0.39
24	20	4	10	237	73	286	1.01
25	30	4	16	283	57	116	0.57
26	30	4	17	371	81	271	1.14
27	30	4	10	186	73	180	0.83
28	40	4	18	457	103	261	1.29
29	40	4	20	327	57	93	0.53
30	40	4	18	308	73	162	0.78
31	50	4	29	587	161	565	2.11
32	50	4	30	718	149	465	2.06
33	50	4	22	444	101	256	1.18
34	60	4	29	620	131	385	1.78
35	60	4	26	370	103	225	1.14
36	60	4	30	606	132	407	1.64

relationships were obtained from the work:

```
Let
    \(Y_{1}\) : NTSOL (total number of nodes adopted),
    \(Y_{2}\) : TRUN (CPU execution time for Subroutine DYNAMIC),
    \(X_{1}\) : MSTAGE
    \(\mathrm{X}_{2}\) : MSECT,
    \(X_{3}\) : MGROUP (number of container groups),
    \(X_{4}\) : NCTLD (number of containers to load),
    \(X_{5}\) : NTGEN (total number of solutions generated).
\[
\begin{aligned}
& Y_{1}=1.08+0.86 X_{1}+0.14 X_{4} \\
& Y_{2}=-0.034+0.0019 X_{1}+0.0028 X_{4} \\
& Y_{2}=0.0016+0.0063 Y_{1}+0.0022 X_{5}
\end{aligned}
\]
```

The results show that MGROUP and MSECT do not affect either NTSOL or TRUN significantly. Instead, MSTAGE and NCTLD are the key factors of both dependent variables. All three relationships obtained showed very good fits to the linear models adopted. For a problem involving 1,000 containers and 100 stages, estimated values of NTSOL and TRUN from the above relationships are

$$
\text { NTSOL }=227 ; \text { TRUN }=2.95 \text { seconds. }
$$

This shows that the present dynamic programming formulation would not require excessive central memory or computational time requirements. Computationally, it seems quite efficient although we lack a basis for comparison.

This analysis provided the assurance that the current formulation would be a manageable one in the least, and that the model would find its usefulness at most containerports only if
its capability meets our intent and expectations in terms of load plan generation.

5.6 Analogy with the Dual Simplex Method

Lemke's dual simplex method solves an LP starting with a dual feasible (primal superoptimal) solution and conducts pivots towards primal feasibility while maintaining dual feasibility.

In order to understand the workings of the dual simplex method, consider the following linear programming problem.

$$
\begin{array}{ll}
\text { Minimize } & \underline{c} \underline{x} \\
\text { Subject to } & \underline{A} \underline{x}=\underline{b} \\
& \underline{x} \geqslant \underline{0}
\end{array}
$$

The following represents a basic solution at some iteration.

	2	x_{1}	$\cdots x_{j}$. .	x_{k}	-••	x_{n}	RHS
z	1	$z_{1}-c_{1}$	$\cdots z_{j}{ }^{-c}{ }_{j}$	\cdots	$z_{k}-c_{k}$		$z_{n}{ }^{-c}$	$\underline{c}_{B} \underline{b}$
X_{BI}	0	Y_{11}	$\ldots Y_{1 j}$. .	$Y_{1 k}$		$\mathrm{Y}_{1 \mathrm{n}}$	b_{1}
$\mathrm{X}_{\mathrm{B} 2}$	0	Y_{21}	$\ldots Y_{2 j}$	-••	$\mathrm{Y}_{2 \mathrm{k}}$...	$Y_{2 n}$	b_{2}
:	-	:	:					:
X_{Br}	0 \vdots	$Y_{r 1}$ \vdots	$\ldots{ }^{(1)}$. .	$Y_{\text {rk }}$. .	$Y_{\text {rn }}$	b_{r}^{\prime} \vdots
X_{Bm}	0	$Y_{\text {m1 }}$	$\ldots Y_{m j}$	\cdots	$Y_{\text {mk }}$	\ldots	$Y_{m n}$	$\mathrm{b}_{\mathrm{m}}^{\prime}$

Suppose that the tableau is dual feasible (that is, $z_{j}-c_{j} \leqslant 0$ for a minimization problem). If all right-hand-side values
($b_{i}^{\prime} s$) are positive, this is the optimal solution. Otherwise, we select the pivot row r with

$$
b_{r}^{\prime}=\operatorname{Minimum}\left\{b_{i}^{\prime}\right\} .
$$

In row r, if all $y_{r j} \geqslant 0$, the dual is unbounded and the primal is infeasible. Otherwise, select the pivot column k by the following ratio test:

$$
\frac{z_{k}-c_{k}}{y_{r k}}=\underset{j}{\operatorname{Minimum}}\left\{\frac{z_{j}-c_{j}}{y_{r j}} ; y_{r j}<0\right\}
$$

Then, a pivot is made at $y_{r k}$ and the algorithm is thus repeated. This process is depicted in Figure 5.6. Here, only a twodimensional situation is used to illustrate the point.

Figure 5.6 Working of dual simplex algorithm

Subroutine DYNAMIC in COMCL obtains a superoptimal solution which may or may not be primal feasible. If it is found to be primal feasible (that is, all constraints are satisfied), it is the optimal feasible solution. Otherwise, subroutine REMEDY performs pairwise exchange iterations which are quite analogous to dual simplex pivot operations. The philosophical parallel can be made regardless of the fact that the dual simplex solves LP problems while a CLP problem is essentially a 0-1 integer program.

The workings of subroutine REMEDY can be described by the following 0-1 integer program:

$$
\begin{align*}
& \text { Minimize } \sum_{1} \sum_{j} d_{i j} \cdot x_{i j} \tag{1}\\
& \text { Subject to } \sum_{1} \sum_{j} g_{i j} x_{i j} \geqslant \delta \tag{2}\\
& \sum_{j} x_{i j} \leqslant 1 \tag{3}\\
& \sum_{1} x_{i j} \leqslant 1 \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
x_{i j}=0 \text { or } 1 \tag{5}
\end{equation*}
$$

Here, $X_{i j}= \begin{cases}1, & \text { if container } i \text { and container } j \text { are to be } \\ \text { exchanged, } \\ 0, & \text { otherwise. }\end{cases}$
$d_{i j}=d\left(Y_{i}, Y_{j}\right)$
$g_{i j}=C G_{i} \cdot W_{j}-C G_{j} \cdot W_{i}$
$C G_{i}$: Center of gravity of cell currently assigned to container i
W_{i} : Weight of container i.
The objective (1) is to minimize the TTMD increase due to
exchanges. Constraint (2) states that the moment improvement due to all exchanges must be at least δ in order to ensure a stable load condition. Only one load constraint is expressed in this problem structure. This is appropriate because subroutine REMEDY handles one violation at a time. Note that stability constraints are chiefly in consideration here. CG_{i} may either refer to LCG or VCG of the cell assigned to container i by subroutines DYNAMIC and ASSGN, depending on which violation is being handled.

Note that a solution $X_{i j}=0$ for all i and j is a superoptimal solution to the above problem. It is exactly the solution obtained by subroutine DYNAMIC. It is not primal feasible if constraint (2) is not satisfied. In fact, the left-hand-side value of constraint (2) is zero for this initial solution. We assume δ is a positive quantity. Constraints (3) and (4) are added because "static" exchanges are desired. In other words, once a container has been switched to a different cell, it must not be moved again to another location. This condition is implemented by calling function LXAMIN, which examines if a container has been included as a candidate for exchange previously.

Of all feasible candidate pairs, subroutine REMEDY sequentially selects exchange pairs according to the magnitude of the following D/I ratio:

$$
D / I=\frac{d_{r k}}{g_{r k}}=\underset{i, j}{\operatorname{Minimum}}\left\{\frac{d_{i j}}{g_{i j}}: g_{i j} \geqslant G\right\}
$$

Pairs with $g_{i j} \leqslant 0$, that is, those that would result in negative contribution to stability improvement are rejected without further consideration. In order to prevent the phenomenon of many tiny improvements occurring, an arbitrary screen was used to eliminate those pairs with moment improvement less than amount G. Note that such a screen could have been implemented in the
dual simplex method if it was addressed to a particular type of problems. In our case, such a screen is possible and proves to be an efficient method of rapidly obtaining primal feasibility.

A similar analogy can be said of the high-cube correction routine, but somewhat different logic was adopted for the deckstrength correction, as discussed previously.

6. TESTING OF COMCL

6.1 Test Environments and Procedure

Testing the effectiveness of COMCL was conducted using actual load sets of two ships which visited the Fulton Terminal (T-6) of the Port of Portland, Oregon. These ships were Japan Apollo Maru and Alaska Maru. They both belong to the Japanese Consortium which consists of the following shipping companies:

- Japan Line
- K Line
- MOSK Line
- NYK Line
- Showa Line
- YS Line

Ships in this consortium commonly carry on board containers of other member companies as well as their own. They usually visit Vancouver, British Columbia; Seattle, Washington; and Portland, Oregon before making cross-Pacific voyages. On the other side of the Pacific, they usually call at Kobe, Nagoya, Shimizu and Tokyo or Yokohama in Japan.

Both Japan Apollo Maru and Alaska Maru are typical modern cellular containerships which can carry both 20 -foot and 40-foot containers. The tested voyages are as follows:

Test \#1: Japan Apollo Voyage \#5
Test 非2: Japan Apollo Voyage 非10
Test \#3: Alaska Maru Voyage \#92
Test \#4: Alaska Maru Voyage \#93
Test \#5: Alaska Maru Voyage \#91

All of the above voyages occurred between August 1980 and March 1981.

Actual loading operations according to COMCL-generated load plans were not conducted due to absence of an agreement to enable it. Technical difficulties associated with computer terminal connection and data input effort forced post-voyage testing in all cases.

All three modes of planning described in 5.4 .2 were used and feasible load plans were obtained in each test. The interactive adjustment feature was not used, although its usefulness and feasibility were tested separately. The CDC Cyber 72 computer at O.S.U. Milne Computer Center was used for the testing. Terminal mode of operation was used in all tests.

The test procedure used is as shown in Figure 6.1. All documents showing input data as well as manually generated plans were provided by the operations personnel at the Fulton Terminal.

The initial positions of transtainers were fixed as follows for all tests. The TTMD's of both manually generated plans and COMCL-generated plans were computed based on these initial transtainer positions:

T1 (Forward Transtainer): 4201
T2 (Aft Trainstainer): 5201

These positions were arbitrarily chosen because of the following two reasons: First, sections $\# 42$ and \#52 are the most frequently used sections for storing outbound containers at the Fulton Terminal. Second, fixing of their initial positions provides a common basis of TTMD comparisons among several different load plans generated for a load set.

The same work sequence used in manual planning was used for COMCL runs in each test except that a slight modification was applied on that of test $\# 5$ in order to simplify the operation.

(Continued)

Figure 6.1 COMCL test procedure

6．2 Test Results

The test results are sumarized in Tables 5 through 9．All three modes of planning（parallel，T1－T2，and T2－T1）produced feasible load plans whose stability indicators were acceptable to ship＇s personnel．The allowable limits in GM and trim for both ships were from 0.0 M to 2.0 M in both categories with 0.1 M excess in trim tolerated in certain situations．The tables show com－ parison of TTMD values in each test．The units of TTMD are row equivalents（RE＇s），as previously defined．

Sumary comparison of TTMD values of the best result by COMCL and the manual plan for each test may be tabulated as in Table 10．The overall performance of COMCL through these five tests is a 3.2 percent reduction in yard material handling from what the manual plans require．

Some statistics relating number of containers to pick per stage and number of stages are shown in Table 11．In this table，we may note that the average number to pick is the small－ est in test $⿰ ⿰ 三 丨 ⿰ 丨 三 4$ in which COMCL showed a poor performance．The ratio of MSTAGE to NCTLD was the highest in this test，also． These indicate that this particular test involved loading of small numbers of containers with many crane movements among different bays．In a situation such as this，subroutine DYNAMIC may not produce the true optimal routing plan due to the limita－ tions in the state space definition．In other words，some good solution paths are pruned out at choke points，where a container group with only one or two possessing rows is involved．This observation，however，can be verified through further testing effort．

The number of special－assign containers constituted only 0.9 percent of the total．In test $\$ 2$ ，a large number of special content containers（onions）required a designated storage area

TABLE 5. SUMMARY OF TEST \#1 RESULTS

Ship: Japan Apollo				Voyage No.: 5 Manual Method
	Parallel Method	$\begin{gathered} \text { Serial } \\ (\mathrm{T} 1-\mathrm{T} 2) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Serial } \\ & (\mathrm{T} 2-\mathrm{T} 1) \\ & \hline \end{aligned}$	
T1 TMD (RE's)	3354	3156	3354	4626
T2 TMD (RE's)	2561	4023	2561	2745
TTMD (RE's)	5915	7179	5915	7371
Violation	None	None	None	--
GM (M)	1.76	1.74	1.76	1.75
Trim (M)	1.09	1.18	1.09	0.92
\% TTMD of Manual Method 80.2*		97.4	$80.2 *$	100.0
Number of stages:			20	
Number of containers to load:			261	
Special assign containers:			None	
Number of container groups:			9	
Number of bays to load into:			18	
Possessing yard sections:			4	

TABLE 6. SUMMARY OF TEST \#2 RESULTS

Ship: Japan Apollo
Voyage No.: 10

	Parallel Method		$\begin{gathered} \text { Serial } \\ (\mathrm{T} 1-\mathrm{T} 2) \end{gathered}$	Serial (T2-T1)	Manual Method
T1 TMD	BR*	3284	2010	3502	2372
	AR**	--	2362	--	--
T2 TMD	BR	3879	4397	3919	3955
	AR	--	4613	--	--
TTMD	BR	7163	6407	7421	6327
	AR	--	6975	--	--
Violation		None	Trim	None	--
	BR	1.97	1.93	1.94	1.98
GM	AR	--	1.94	--	--
	BR	2.04	2.17	2.01	2.06
Trim	AR	--	2.08	--	--
Number of iterations		0	9	0	--
\% TTMD ofManual					
		113.2	110.2***	117.3	100.0
Method					

Number of stages: 37
Number of containers to load: 329
Special assign containers: . None
Number of container groups: 15
Number of bays to load into: 21
Possessing yard sections: 4

```
* Before REMEDY figures.
**After REMEDY figures.
*** Best result.
```

TABLE 7. SUMMARY OF TEST \#3 RESULTS

TABLE 8．SUMMARY OF TEST $⿰ ⿰ 三 丨 ⿰ 丨 三 一 4$ RESULTS

| Ship： | Alaska Maru | | Voyage No．： 93 |
| :--- | :---: | :---: | :---: | :---: | :---: |

Number of stages： 40
Number of containers to load： 218
Special assign containers： 7
Number of container groups： 16
Number of bays to fill： 19
Possessing yard sections： 4

[^1]TABLE 9．SUMMARY OF TEST $⿰ ⿰ 三 丨 ⿰ 丨 三 八$ S RESULTS

Ship：Alaska Maru
Voyage No．： 91

Number of stages： 39
Number of containers to load： 264
Special assign containers： 0
Number of container groups： 12
Number of bays to fill： 20
Possessing yard sections： 4

```
* Best result.
```

TABLE 10. COMPARISON OF COMCL PLANS VERSUS MANUAL PLANS

Test	Best Method COMCL	TTMD (COMCL)	TTMD (Manual)	$\%((1) \div(2))$
\#1	Paralle1	5915	7371	80.2
\#2	T1-T2	6975	6327	110.2
\#3	Paralle1	8504	9157	92.9
\#4	Parallel	6278	5768	108.8
\#5	Paralle1	5998	6166	97.3
Total	-	33,670	34,789	96.8

TABLE 11. MSTAGE AND NUMBER OF CONTAINERS TO PICK

Test	(1) MSTAGE	$\begin{aligned} & \text { (2) } \\ & \text { Av. NPICK* } \end{aligned}$	$\begin{gathered} (3) \\ \text { NCTLD } \end{gathered}$	(1) $\div(3)$	No. of spe-cial-assign containers
\#1	30	8.7	261	. 115	0
\#2	37	9.1	329	. 112	0
\#3	47	7.1	338	. 139	5
\#4	41	3.4	218	. 183	7
\#5	39	6.8	264	. 148	0
Total	194	6.9	1,410	. 138	12

for proper ventilation．This requirement was satisfied by classifying them into an exclusive 40 －foot specials（ 40 －foot S ） group and forming appropriate LPAT＇s for the designated area． Load locations for the few special－assign containers were en－ tered as designated and these were excluded from the normal assignment process．

The REMEDY routine for trim violations was effectively used to reduce the trim value in test \＃2．Tests $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 3 and \＃4 amply demonstrated the efficiency of the REMEDY routine for deck strength violations．An average of 1.4 iterations was required
 involved four－high stacking on－deck in eight columns．The routines for GM and high－cube violations had to be tested by creating artificial violations because no such violations occurred．They were found to function properly as designed．

Computer CPU run times required for each run varied from eight seconds to 23 seconds．Whenever subroutine REMEDY had to be called，the run time tended to be large．Program CLP re－ quired 135 KB （octal）of core memory to run．The maximum core storage limit of the CYBER computer used is currently 310KB （octal）．

6．3 Discussion of Results

The following observations are made based on the test re－ sults and experiences gained through the tests：
a．COMCL generated feasible load plans in all tests within reasonable computer execution times．
b．COMCL can be accommodated by any container port with a medium to large computer facility．Program CLP which is the larger part in the model，requires approximately 140 KB （octal）of core memory space．
c. In all tests except one, the parallel mode of planning gave the best result. It is deemed that this mode creates a combined work sequence which is closest to the real one. In this sense, COMCL performance is very much dependent on work sequence. A sequence plan involving excessive number of stages hinder the ability of COMCL, as seen in the test $\# 4$ result.
d. COMCL-produced load plans required overall four percent less transtainer movement than manually generated plans. Although the true potential of COMCL has not been revealed through this limited number of tests, this reduction will bring about significant economic consequences in terms of shorter ship turnaround times and better utilization of port facilities.
e. A much greater potential benefit that COMCL can render is in computerization of the load planning itself. Currently, three operations personnel are required to work at least one full day to complete load planning for an average-size load set at the Fulton Terminal. This does not take into account the work by data processing personnel for making stability checks using a minicomputer system. With a computer system organized as shown in Figure 2.16, the planning staff only need to input file GPIAN for a COMCL run. Two major parts of GPLAN are current load conditions and GLP information. If current load conditions of incoming vessels can be transferred in a common format from the previous port of call through data line, what is left would be construction of a work sequence and encoding of GLP information into LPAT's. These jobs should not take any more than an hour to an experienced planner. With time
allowed for error correction, a COMCL run can be completed within a two-hour span involving one planning person and one data entry person.

These estimates mean over 90 percent reduction in manpower cost of planning. Thus freed manpower may be used for other administrative tasks as well as for absorbing increase in planning work due to a forecasted increase in container business.
f. With more than one data entry display terminals connected to a main computer where COMCL would reside, load planning for more than one vessel can be conducted simultaneously. For a large port such as Seattle, Washington, this would mean better utilization of planning staff as well as shorter planning time.
g. Another important advantage that computerization offers is accuracy of results. Small discrepancies in stability computations were noted between COMCL-generated plans and manually generated plans during testing. Implementation of COMCL can eliminate the possible hazard of an unstable voyage across the Pacific due to a computational error.

These observations point to the usefulness and possibly tremendous impact on port productivity improvement that a proper implementation of COMCL can bring to the container port industry. It is noted here that any good model is not good at all unless its true value is appreciated and a proper management attention is expended for an effective design of a system which incorporates it.

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Usefulness and Contributions of the Model

The model developed through this study is a limited one in many respects as discussed in the next section. However, a few conclusions may be drawn on its merits as follows:

FIRST. COMCL is a unique containership load planning model in that no other of like nature has been developed. Existing models merely try to produce feasible load plans while COMCL optimizes in material handling as well as ensuring feasibility. The tests seemed to prove this point.

SECOND. The philosophy of the model was drawn from established optimization techniques and therefore, must be a sound one. The tests show that starting with an optimal plan which may be either feasible or infeasible is an efficient method of reaching an optimal feasible solution.

THIRD. Cost savings from COMCL utilization would come not only from resulting reduction of loading time but also from reduction of planning effort required to produce loading plans. These savings would be gained with a proper computer facility available at a containerport. To a particular port, the corresponding reduction in slip turnaround times would mean not only a more efficient utilization of port facilities, but also an eventual increase in container business as more ships begin to call it. Also, use of this model would obviate the longterm training of planning personnel usually required for efficient load plan generation.

FOURTH. COMCL provides an important software block in containerport automation. With a computer network linking all major
ports of a geographic region, as described in Section 2.3.4, a ship's current load condition can be relayed to another port rapidly and in a format suitable for load planning at another port. General loading plans can be entered graphically from a CRT terminal with a magnetic sensor pencil by the shipping line representative. This would obviate translating of color-coded schematics, thus shortening ship turn-around times considerably. The technology to do the above is currently available and it is a matter of port management innovation and cooperation among port authorities. When such an automation system is installed at major containerports, port efficiency increase could be phenomenal.

7.2 Restrictions in the Model

The following restrictions apply to COMCL:
a. The model is addressed only to containerports with overhead crane and yard truck handling system in the yard. These ports are characterized by rectangular yard sections. Other yard configurations would require some reformulation work if the same ideas are to be utilized.
b. The efficiency and cost savings from using the model would be obtained with a proper computer system which can accommodate the model and maintain/update data files constantly. A desirable configuration of a computer system is described in Section 2.3.4. Reduction in planning effort and stevedoring labor are somewhat offset by increased data processing needs in hardware, software development/maintenance, and personnel costs. Benefit cost analysis is necessary for each individual port. Most ports, however, already have medium-to-large
size computer systems. Operating and installation of an interactive terminal at a quay operations office would not require any substantial investment. Current data processing personnel can be better utilized to handle the software maintenance. One or two data entry personnel, however, would be required at the quay terminal point.
c. COMCL takes, as a part of its input data, human generated equipment work sequence. Potentially great improvements in yard material handling would be possible through use of an effective work sequencing program.

As of now, the quality of a work sequence effectively sets an upper bound as to how well COMCL can perform. This point is only a restriction to the model, and not a demerit. Manual planning is done likewise currently.
d. Equipment interference between two transtainers are not rigorously checked in subroutine DYNAMIC. The time element necessary to do this comes from cumulative container counts and these may not constitute an accurate measure of gangs' work progress. When such an interference occur, operational adjustments must be made as necessary. This restriction is equally shared by the current method of manual planning.
e. Exact measurements of activity times were not possible due to strong labor resistance. Given a more amenable atmosphere, however, time study results can be used to modify function NDIST with relative ease.

7.3 Possible Areas for Future Research

This study is only a small step into the future of port automation. One of the major hindrances to port automation is certainly the lack of appreciation of the usefulness of existing optimization techniques to efficient port operations. Future research should be conducted with a clear picture of how an automated containerport should be like. Under present set-up of container handling at most ports, the greatest part of ship turnaround times, besides actual unload/load time, is spent by "the preparation work." This involves transfer of current ship load data and GLP to port personnel by ship and shipping line personnel, generation of tags for manual planning, computation of data for stability check, data accuracy check and record keeping of pertinent data. An automated system should reduce such preparation time to a minimum. It can be done if the following problems are successfully solved:
a. A computer network connecting all major ports of a geographic region such as the West Coast of the U.S. and Canada need to be established. This network shall share the common software and enable ship data transfer from one port to another by simply opening access to it to all node points of the network. Optimum design of such a network with related software and hardware requirements and specifications is an important area of future research for port automation.
b. Current technology in computer graphics can be fully utilized for containership load planning work. Each shipping line represent-tive currently travels to next port of call of a ship where he color-codes general loading strategy on ship schematics. This work can be
done at a CRT terminal using a magnetic sensor pen interactively. Computer first asks the planner what group (port, size and type of cargo) to plan for. Then the bay numbers to load this group are queries. For each receiving bay, a full display of the bay plan may appear on the screen with all cells. The planner can designate the cells for a given group using a magnetic sensor pen. This input can be converted to input data for COMCL within the computer. After each step, the computer may provide an informative display showing number of remaining containers of each group to plan. Also, the computer may aid the planner by computing expected GM and trim values with the strategy entered. This can be done by using average weights of container groups. Thus, the planner can have prior knowledge of what stability situation will result from a loading.
c. Equipment work sequencing is done manually today. This problem was not attempted in this study because the problem without it was of sufficient complexity. A better utilization of crane and transtainer time, however, can result by an efficient heuristic program which considers both ship load requirements and yard distribution of groups. With two gangs operating, it is a problem of four-machine sequencing. Since a transtainer and a crane operate as a pair, however, it is, in effect, a two-machine sequencing problem. A common measure of effectiveness, such as time or dollar, needs to be established for it. Activity times such as for opening and closing hatches, passing over a superstructure, transit to a different bay, transtainer
transit times, etc., need to be established through time and motion studies. A plausible structure of such a heuristic is one that generates a fixed number, say 100 , of alternative sequences and checks their feasibility in terms of machine work interference restrictions. Then, the best sequence may be used for the COMCL use. If COMCL results in an undesirable plan in terms of stability, an interactive feature may allow selection of the next best work sequence for another COMCL run. Such a situation can be avoided, however, if the sequencing heuristic is properly structured.

It is hoped that there would be a surge of interest within the container industry in searching for effective ways to improve port efficiency as a result of this study.

Anonymous, Methodology for Estimating Capacity of Marine Terminals, Vol. I: Standardized Methodology, MA/RD-970-t 76070 VI, February, 1976.

Apple, James M., Plant Layout and Material Handing, Third Edition, John Wiley and Sons, New York, 1977.

ARINC Research Corp., Automated Management Control System for Public Marine Terminals, Report to Maritime Administration, $\mathrm{AD}-\mathrm{A} 061-$ 632, Annapolis, Maryland, November, 1978.

Bazaraa, M. S. and J. J. Jarvis, Linear Programming and Network Flows, John Wiley and Sons, New York, 1977.

Bazaraa, Mokhtar S. and C. M. Shetty, Nonlinear Programming: Theory and Algorithms, John Wiley and Sons, New York, 1979.

Beliech, D. E., Proposed Method for Efficient Preload Planning for Containerized Cargo Ships, Master's thesis, USNGPS, Monterey, California, June, 1974.

Bolton, R. L., J. H. Gner and M. S. Miller, Manual Procedures for Estimating Marine Terminal Throughput, AD A 055 535, March, 1978.

Bolton, R. L. et al., Marine Terminal Operations, AD 055 537, March, 1978.

Borovits, J., "Determination of Optimum Delivery Size of Containers," Operations Research Quarterly, Vol. 27, 1976.

Boyer, W. C., "Containerization--A System Still Evolving," Journal of the Waterways and Coastal Engineering Division of ASCE, November, 1972 .

Bradley, Gordon H., "Survey of Deterministic Networks," AIIE Transactions, Vol. 7, No. 3, September, 1975.

Bradley, Gordon, G. Brown, and G. Graves, "Design and Implementation of Large-Scale Primal Transshipment Algorithms," Management Science, Vol. 24, No. 1, September, 1977.

Bureau of Naval Personnel, Principles of Naval Engineering, U.S. Government Printing Office, Washington, D.C., 1970.

Canada, John R. and John A. White, Jr., Capital Investment Decision Analysis for Management and Engineering, Prentice-Hall, Inc., New Jersey, 1980.

Charnes, A. and W. W. Cooper, Management Models and Industrial Applications of Linear Programming, Vol. II, John Wiley, New York, 1961.

Cojeen, H. P. and P. Van Dyke, "The Automated Planning and Sequencing of Containers for Containership Loading and Unloading," Proceedings of the Second Ship Operation Automation Symposium, Washington, D.C., September, 1976.

Cohen, Claude and Jack Stein, Multi-purpose Optimization System: User's Guide, Version 4, Vogelback Computing Center, Northwestern University, Illinois, 1978.

Collins, D., Marine Terminal Control System, NTIS, Springfield, Va., July, 1976.

Control Data Corporation, FORTRAN Extended Version 4 Reference Manual, CDC, 1979.

Dannenbring, D. G. and B. M. Khumawala, "An Investigation of Branch and Bound Methods for Solving the Segregated Storage Problem," AIIE Transactions, September, 1973.

Edmond, E. D., "Operating Capacity of Container Berths for Scheduled Services by Queue Theory," Dock and Harbor Authority, November, 1975.
\qquad , "How Useful are Queue Models in Port Investment Decisions for Container Berths," Journal of Operational Research Quarterly, Vol. 29, No. 8, August, 1978.

Erichsen, Stain, Optimum Capacity of Ships and Port Terminals, Department of Naval ARchitecture and Marine Engineering, University of Michigan, April, 1971.

Ermol'ev, Yu M. et al., "Planning of Shipping Empty Seaborne Containers," Cybernetics, Vol. 12, No. 4, July-August, 1976.

Fishman, G. S., Concepts and Methods in Discrete Event Digital Simulation, John Wiley and Sons, Inc., New York, 1973.

Flores, Ivan, Data Structure and Management, Prentice-Hall, Inc., 1970.

Francis, R. and J. A. White, Facility Layout and Location: An Analytical Approach, Prentice-Hall, Inc., New Jersey, 1974.

Frankel, E. (ed.), Port Design and Analysis Methodology, Report No. MITSG 74-31, Massachusetts Institute of Technology, Mass., December, 1974.

Gass, Saul I., Linear Programming: Methods and Applications, Fourth Edition, McGraw-Hill, New York, 1975.

Geisler, R. and W. Troutnite, "Automation of a Container Terminal Using Process Computers," Siemen's Review, Vol. 44, No. 8, West Germany, August, 1977.

Glover, F., J. Hultz, D. Klingman, and J. Stutz, "Generalized Networks: A Fundamental Computer-Based Planning Tool," Management Science, Vol. 24, No. 12, August, 1978.

Glover, F., J. Hultz, D. Klingman, and J. Stutz, A New ComputerBased Planning Tool, Research Report CCS 289, University of Texas, Austin, Texas, December, 1976.

Glover, F., D. Karney, D. Klingman, and A. Napier, "A Computation Study on Start Procedures, Basis Change Criteria, and Solution Algorithms for Transportation Problems," Management Science, Vol. 20, No. 5, January, 1974.

Gordon, Geoffrey, System Simulation, Prentice-Hall, New Jersey, 1969.

Graves, Robert J. and Leon F. McGinnis, "Toward Multi-Criteria Location and Layout: Ship Facilities Layout Analysis," Proceed-ings--1980 AIIE Spring Annual Conference, 1980.

Greer, Willis R., Jr., "Capital Budgeting Analysis with the Timing of Events Uncertain," The Accounting Review, January, 1970.

Hanson, J. B., "Optimizing Ports through Computer Simulation Sensitivity Analysis of Pertinent Parameters," Operational Research Quarterly, Vol. 23, No. 4, 1972.

Hara, T. and Y. Takahashi, "Container Terminal System," Toshiba Review, No. 89, Japan, January-February, 1974.

Hillier, Frederick S. and Gerald Lieberman, Operations Research, Second Ed., Holden-Day, Inc., California, 1967.

Howard, H. H., "Container Handling in Deep Sea Terminals," World Ports, February-March, 1969.

Hwang, C. C., Analysis of Container Port through System Simulation, Ph.D. dissertation, North Caroline State University, Raleigh, N.C., 1978.

Jimenez, L. A., "Simulation Model to Assist in Port Capacity Planning Decisions," Proceedings of Summer Computer Simulation, AFIPS Press, Montvale, N.J., 1976.

Jones, L., Deep Sea Container Ports: Systems Appraisal and Simulation Modelling, Open University Press, U.K., 1972.

Katzan, Harry, Jr., Computer Data Management and Data Base Technology, Van Nostrand Reinhold Co., New York, 1975.

Klingman, D., A. Napier, and J. Stutz, "NETGEN: A Program for Generating Large-Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems," Management Science, Vol. 20, No. 5, January, 1974.

Klingman, D., P. Randolph, and S. Fuller, "A Cotton Ginning Problem," Operations Research, Vol. 24, No. 4, July-August, 1976.

McCarthy, T. J. and J. J. Carter, Data Analysis Techniques for a Containerized Export Cargo Transportation System, NTIS, Springfield, Va., June, 1974.

Miller, J. R. et al., Digital Computer Simulation of the Rivergate Container Terminal, a report to the Port of Portland, Oregon.

Morse, Philip M., Queues, Inventories and Maintenance, John Wiley and Sons, New York, 1958.

Mulvey, John M., "Testing of a Large-Scale Network Optimization Program," Mathematical Programming, 1978.

Mytton, M. and N. Walker, "Computer Models in Planning Container Terminals," Dock and Harbor Authority, April, 1979.

Nehrling, B. C., Container Ship Loading and Unloading Simulation, Department of Naval Architecture and Marine Engineering, University of Michigan, April, 1970.

Neter, John and William Wasserman, Applied Linear Statistical Models, Richard D. Irwin, Inc., Illinois, 1974.

Ninomiya, Y. and Y. Nabishima, "Container Handling System with Computer Controlled Crane at Freight Terminals," Hitachi Review, Vol. 25, No. 5, Japan, May, 1976.

Novaes, A. G. N., An Appraisal of Queuing Model for the Solution of Port Capacity Problem, Commodity Transportation and Economic Development Laboratory, M.I.T., Cambridge, Mass., 1972.

Parsons, Ron and Lawrence Hill, Analysis and Simulation of a Seaport, Interim Report, The Sea Grant Office, M.I.T., Cambridge, Mass., May, 1971.

Peleg, K. and E. Peleg, "Container Dimensions for Optimum Utilization of Storage and Transportation Space," Computer Aided Design, Vol. 8, No. 3, U.K., July, 1976.

Pierre, Creton, An Approach to the Optimal Design of a Container Terminal, master's thesis, M.I.T., 1973.

Price, Willard and Peri Muretta, Seaport Management: A Bibliography, Institute for Marine and Coastal Studies, University of Southern California, Los Angeles, December, 1979.

Pritsker, A. Allan B., The GASP IV Simulation Language, John Wiley and Sons, New York, 1974.

Rath, Eric, Container Systems, John Wiley and Sons, New York, 1973.
Rawson, K. J. and E. C. Tupper, Basic Ship Theory, Volume 1, Longman, Inc., London, 1976.

Reeves, S. J., "Evaluation of Port Functioning Characteristics," Dock and Harbor Authority, March, 1970.

Reitman, Julian, Computer Simulation Applications, John Wiley and Sons, New York, 1971.

Riggs, James L., Production Systems: Planning, Analysis and Control, John Wiley and Sons, New York, 1976.

Ross, Terry and R. M. Soland, "A Branch and Bound Algorithm for the Generalized Assignment Problem," Mathematical Programming, 1975.

Ross, Terry and R. M. Soland, "Modelling Facility Location Problems as Generalized Assignment Problems," Management Science, November, 1977.

Ross, Terry and A. Zoltners, "Weighted Assignment Models and Their Applications," Management Science, Vol. 25, No. 7, July, 1979.

Rowe, Kenneth et al., Statistical Interactive Programming System, Command Reference Manual, Department of Statistics, Oregon State University, Corvallis, Oregon, September, 1978.

Salkin, Harvey M., Integer Programming, Addison-Wesley Publishing Co., Reading, Massachusetts, 1975.

Schmidt, J. W. and R. E. Taylor, Simulation and Analysis of Industrial Systems, Richard D. Irwin, Inc., Illinois, 1970.

Scott, David K. and Der-San Chen, A Loading Model for a Container

- Ship, a paper presented at ORSA/TIMS Joint Meeting, Los Angeles, California, November, 1978.

Simmons, Donald M., Linear Programming for Operations Research, Holden-Day, Inc., San Francisco, 1972.

Thoolen, S. et al., Operational Evaluation of a Computer Loading Program for Container Vessels, MA/RD-930-79008, May, 1978.

Tozzoli, A. T., "Containerization and its Impact on Ports," Journal of the Waterways, Harbors and Coastal Engineering Division of ASCE, August, 1972.

Weinberg, Gerald M., An Introduction to General Systems Thinking, John Wiley and Sons, New York, 1975.

West, Tom M., Edward McDowell and Doug W. Cho, "Simulation of Operations in a Marine Container Port," Paper presented in Joint ORSA/TIMS Meeting at Colorado Springs, Colorado, November, 1980.

Whittaker, J. R., Containerization, Second Ed., John Wiley and Sons, New York, 1975.

Whitehouse, Garry E., Systems Analysis and Design Using Network Techniques, Prentice-Hall, Inc., New Jersey, 1973.

APPENDICES

APPENDIX A

Summary of Guidelines for Loading Containers Shipboard
(Source: Rath)

1. To minimize susceptibility to severe rolling, a containership should have a small bilge radius, carried well forward and aft, in conjunction with bilge keels.
2. To minimize susceptibility to severe pitching, a containership should have a low displacement/length ratio.
3. Containerships should be fitted with bilge keels to minimize susceptibility to rolling.
4. Bilge keels should be located right at the turn of the bilge for maximum effectiveness and should be greater than 18 inches in depth, to insure that they extend beyond the boundary layer.
5. Model tests should be made to determine optimum trace of bilge keels for minimum resistance, and to determine resistance and effectiveness trade-off data for establishing optimum depth.
6. If a passive-tank roll-damping system is used, it should be thoroughly model tested before installation to assure effectiveness over the $f u l l$ range of the sea conditions expected in service.
7. Activated stabilization systems on containerships should include safeguards in the system to prevent induced or aggravated rolling in the event of derangement of the normal control system.
8. For the development of intact trim and stability calculations, the following criteria should be applied:
a. Container weights should be based on data from the operator's experience on the particular trade involved. Where there are no data, according to Maritime Administration Guidelines, weight should be assumed as 60 percent of the rated maximum.
b. Permeabilities snould be assumed 0.60 for volume occupied by containers and 0.95 for remainder of hold.
9. Permanent ballast should be installed in the minimum amounts necessary to satisfy the U.S. Coast Guard stability standards.
10. Permanent ballast required because of possible deck cranes or other installations to be made in the future should not be fitted until the future installation is actually made.
11. Freeboard of a containership midbody should be at least 60 percent greater than the minimum required by the regulations.
12. Freeboard at the bow of a containership should be at least 6 percent of the overall length of the ship.
13. Investigations for adequacy of freeboard in severe ocean conditions on the routine contemplated should be made in the preliminary design of a containership.
14. Flare on the order of at least 25 to 35 degrees should be incorporated into the forward sections of a containership to reduce the possibilities of boarding seas at the bow.
15. Model tests should be made of any new containership design to determine optimum flare.
16. A containership should have a substantial breakwater as secondary protection for the forwardmost deck-stowed containers against green water shipped over the bow.
17. Bulwarks forprotection of containers stowed on deck from boarding seas should be provided on ships oeprating with freeboards less than about 25 percent of the beam.
18. Any ship which routinely carries containers on deck should have a container restraint system with permanently installed and portable fittings specifically designed for the size and weight of containers being carried and for the particular ship involved.
19. Selection of the type of securing system for deck-stowed containers on a containership should be based on trade-off studies of structural, lashed, and locked systems, considering life-cycle costs and degree of security afforded.
20. On-deck containers should be positioned on restraint fittings.
21. Positioning and restraint fittings for on-deck containers should be located within specified tolerances so as to fit the containers to be carried.
22. Ship structure under decks supporting containers should have sufficient local strength to support the container weight concentrated at the container corner fittings.
23. Where containers are carried over hatches, the strength of the hatch covers should be sufficient to carry the load of the continers, or supports of sufficient strength should be fitted across the hatch openings.
24. The supports for containers on deck should be adequate to carry the longitudinal and transverse loads from ship motions into the ship's primary hull structure.
25. The design of structural supports for on-deck containers should be based on the combined gravity and maximum dynamic loads from ship motions, and on a factor of safety of three on the ultimate strength of the material.
26. Lashing assemblies for securing containers on deck should include provisions for readily tensioning the lashing when installed to remove all slack and avoid excessive pretension in the assembly.
27. Stacking fittings should be used between tiers of containers lashed on deck, at each corner fitting, to prevent horizontal movement.
28. Bridge fittings should be used to provide horizontal support between rows of containers within a stack, and should be of a type to also resist tipping.
29. The number and arrangement of lashings in a lashed securing system for containers should be determined from calculations based on predicted sea conditions and the weight and stiffness characteristics of the containers to be carred.
30. The required strength of container lashings should be based on maximum loads determined from lashing calculations, a factor of safety of two on the breaking strength for lashing assemblies and attachment fittings, and a factor of safety of three on the ultimate strength of supporting structure.
31. Lashing assemblies should be proof tested and samples should be tested to failure to verify designed performance.
32. The arrangement of a buttress securing system for on-deck containers should provide for minimum interference of the structural posts with container handling and stowage, and for ready handling of the stowing frames by container-lifting equipment.
33. The strength of a buttress system should be based on maximum combined gravity and dynamic loads for expected extreme sea conditions and a factor of safety of three on the ultimate strength of the material of the structure.
34. In selection of arrangements for on-deck stowage of containers, athwartships arrangements should be included in the alternatives for consideration and evaluation.
35. Arrangements for container stowage on deck should include fore and aft access for personnel between container stowages and the deck edge with clear passageways a minimum of about three feet in width.
36. Where container stowages on deck require access to make up and inspect the restraint system, the arrangement should provide for a minimum of 30 inches of spacing between the ends of containers in adjacent rows.
37. Where reefer containers are carried on deck, the arrangement should provide a minimum of 30 inches' clearance for the container ends in which the reefer units are mounted.
38. Where ventilated containers with covers required to be opened and closed at sea are carried on deck, the arrangement should provide a minimum of 30 inches' clearance between the ends of containers for access to the covers and to permit the covers to swing open.
39. Fire stations, sounding tubes, and other features on deck requiring access at sea should be located clear of container stowages.
40. Where containers are carried directly on deck outboard of a hatch, stowage fittings should beprovided under the container corners to hold the containers securely in position and to elevate them clear of a wet deck.

APPENDIX B

COMCL Flowcharts

1. Program DATPREP

start

> Read in no. of parts, no. St lines, royage no, date, ship mame, part rames, and line names.

2. Program CLP

Subroutine DYNAMIC

Subroutine DISCOMP

Subroutine ASSGN

Subroutine FCHECK

Subroutine LPOUT

Subroutine STABLE

Subroutine XCHNGE

Function MPID Flachart

Function LXAMIN

APPENDIX C

COMCL Input File Specifications

1. File CTRAW Specification
2. File RUNDAT Specification
3. File YLOUT Specification
4. File FSHIP Specification
5. File GPLAN Specification

1. File CTRAW Specification

Each record corresponds to each container to load.
Column Format Data
1 Il PORT
(1:Kobe 2:Nagoya 3:Shimizu 4:Yokohama)
3 Il SIZE-TYPE
1:20' Full 2:20' Reffer 3:20' Special
4:20' Empty 5:40' Full 6:40' Reefer
7:40' Special 8:40' Empty
5 A6 YLOC: yard location
(e.g., 4225BT)

12 Il LINE
1:Japan Line 2:K Line
3:MOSK 4:NYK
5:SHOWA Line 6:YS Line
14 I2 COMM: type of commodity
1: Dry 2: Reefer 3: Explosives
4: 0/T 5: ORM 6: Corrosives

		7: Flamm. \quad 8: Oxides 10: Bulk $11:$ Hide	$\begin{aligned} \text { 9: } & F / R \\ \text { 12: } & \text { Other } \end{aligned}$
17	F4.1	WT: weight in MT (e.g., 23.5)	
22	II	HC: High-cube or not 0 : if not high cube 1: if high cube	
24	A11	ID: container ID number	
35	I1	Op Code	
		0 : if regular operation 1: if special operation be designated by ope	ell locatio

2. File RUNDAT Specification

Record	Column	Format	Data	Description
1.	1	I2	IP	No. of ports
	3	I2	LN	No. of lines
	6	L6	NDATE	Date (month-day-year)
	12	I2	NVOY	Voyage no.
	15	AIO	SHIPID	Ship name
2.	1	8AIO	$\begin{aligned} & \text { PNAME (I), } \\ & I=1, I P \end{aligned}$	Port names
3.	1	8AIO	$\begin{aligned} & \text { LNAME (I), } \\ & I=1, L N \end{aligned}$	Line names

3. File YLOUT Specifications

General format: list-directed input (no format)

Record	Data	Description
1.	NYSEC	No. of yard sections
	NERI	Equivalent RE's for adjacent section transfer

2. $\quad \operatorname{IYSEC}(\mathrm{I}), \mathrm{I}=1, \mathrm{NYSEC}$

3 (For $I=1$, NYSEC) $\operatorname{IAYS}(\mathrm{I}, \mathrm{J}), \mathrm{J}=1, \mathrm{NYSEC}$

Individual section numbers
Relative disposition code for section i and section j

4. File FSHIP Specifications

A. Definition of Variables and Arrays

Var/Array	Description/Definition
NBAYS	Total number of bays in the ship

IBNO (I) Bay number of the ith bay, from bow toward stern (on-deck and under-deck bays are separate)

LDSYS Bay number designation system $=1$ for Japan Apollo, Lions Gate Bridge, and Alaska Maru
$=2$ for Hikawa Maru, Beisha Maru, and Hotaka Maru

LSUP Location of the superstructure. The first bay number after of the superstructure is used

NBSEC Number of bay sectors
MCOLD (K) Maximum number of columns, on-deck in sector K
MCOLH (K) Maximum number of columns, under-deck in sector K
MTIRD(K) Maximum number of tiers, on-deck in sector K
MTIRH(K) Maximum number of tiers, under-deck in sector K

KBKEY(I) Characteristic code for the ith bay a b cc dd ee ff
a: Location (1:on-deck, 2:under-deck)
b: Type (1:20'only, 2:40'only, 3:both)

	```cc: Sector number dd: adjacent 20' bay no. which gets occupied by loading a 40' container in this bay (00 if not applicable) ee: Number of columns in this bay ff: Number of tiers```
JHOLD ( I )	Sector number of this bay
DEKL2 (I)	Deck strength limit in MT for $20^{\prime}$ stacks in the ith bay (for on-deck bays only)
DEKL4 (I)	Deck strength limit in MT for 40 ' stacks in the ith bay (for on-deck bays only)
CGL2 ( I)	Longitudinal center of gravity for $20^{\prime}$ container cells in the ith bay
CGL4 (I)	Longitudinal center of gravity for $40^{\prime}$ container cells in the ith bay
NCEL ( $\mathrm{I}, \mathrm{K}$ )	Number of cells in the Kth colum, ith bay
MHCH (I, K)	Maximum number of high cubes allowed in the Kth column, ith bay (for under-deck bays only)
WTLS	Displacement at light ship condition
VMLS	Vertical moment at ship condition
TMLS	Longitudinal moment at ship condition
GMMAX	Upper limit of GM
GMMIN	Lower limit of GM
TRMAX	Upper limit of trim
TRMIN	Lower limit of trim
BPL	Length of ship from bow to propeller (M)
VCG2D (M, L)	VCG for $20^{\prime}$ cells in the lth tier, ondeck, sector $M$
VCG4D (M, L)	VCG for $40^{\prime}$ cells in sector M
VCG2H (M, L)	VCG for $20^{\circ}$ cells in the 1 th tier, underdeck, sector $M$
VCG4H(M, L)	VCG for $40^{\prime}$ cells in sector M

## B. Record Structure (List-directed Input)

Record	Structure	How Many
1	NBAYS, LSUP, LDSYS, NBSEC	1
2	$\begin{aligned} & \operatorname{MCOLD}(K), \operatorname{MCOLH}(K), \operatorname{MTIRD}(K), \\ & \operatorname{MTIRH}(K) \end{aligned}$	NBSEC
3	WTLS, VMLS, TMLS, GMMAY, GMMIN, TRMAX, TRMIN, BPL	1
4A	IBNO(I), KBKEY(I), JHOLD(I)	NBAYS
4B	DEKL2(I), DEKL4(I) (on-deck only)	
4 C	CGL2 (I), CGL4 (I)	NBAYS
4D	NCEL ( $\mathrm{I}, \mathrm{K}$ )	No. of columns
4E	MHCH ( $\mathrm{I}, \mathrm{K}$ ) (under-deck only)	No. of columns
5A	VCG2D (M, L)	MTIRD (M)
5B	VCG4D (M, L)	MTIRD (M)
5 C	VCG2H (M, L)	MTIRH(M)
5D	VCG4H(M,L)	MTIRH (M)

5. File GPLAN Specifications
A. Variables/Arrays Definition

## Var/Array Definition

DISP Total ship displacement after loading (MT)
DRAFT Mean draft at the displacement (M)
HKM Metacentric height at the displacement (M)
CMT Moment required to change trim by 1 Cm (MT-M)

CBL Longitudinal center of buoyancy (M)
CFL Longitudinal center of flotation (M)
TKWT Total weight of tank stores (MT)
TKVM
TKLM Longitudinal moment tank stores (MT-M)

FSMT	Free surface moment due to tank sotres (Mt-M)
COWT	Constant loads, weight (MT)
COVM	Constant loads, vertical moment (MT-M)
COLM	Constant loads, longitudinal moment (MT-M)
NBAYL	Number of bays to load
IBAYL (I)	Bay number of the ith bay in load sequence
LOCA	Location of bay   ( $=1$ if on-deck, $=2$ if under-deck)
NCBL ( I )	Number of columns to receive at least one container in the ith bay to load
NTGB (K)	Bay-group load descriptor for the Kth stage of loading
NTGB (.)	```NTGB(.) = aa bb cc aa : Bay number bb : Group number cc : Number of load pattern arrays (LPAT's)```
LPAT (K, N)	Loan pattern descriptor in the Kth stage of loading. The second argument specifies the detailed order of loading in this stage $\operatorname{LPAT}(\cdot, \cdot)=a \mathrm{abb} \mathrm{cc}$   aa : Tier number to load. Tiers are numbered sequentially from bottom and up   bb : Column number to start loading in tier aa. Columns are numbered sequentially from port to starboard   cc : Number of cells to fill consecutively from column bb in tier aa
$\operatorname{KOLL}(\mathrm{I}, \mathrm{N})$	Column number of the nth receiving column in this bay
NHC ( I, N)	Number of high cubes currently loaded in the nth receiving column in this underdeck bay
WTOD ( $\mathrm{I}, \mathrm{N}$ )	Total stack weight in the nth receiving column in this on-deck bay



Record	Data	How Many
1	DISP, DRAFT, HKM, CMT, CBL, CFL	1
2	TKWT, TKJM, TKLM, FSMT	1
3	COWT, COVM, COLM	1
4	NBAYL, JBROW	1
5A	IBAYL(I), LOCA, NCBL(I)	NBAYL
5B	KOLL(I,N), N=1, NCBL(I)	

$\left.\begin{array}{lll}\text { 5C } & \operatorname{NHC}(\mathrm{I}, \mathrm{N}), \mathrm{N}=1, \operatorname{NCBL}(\mathrm{I}) \text { (under-deck only) } & \\ & \text { or } & \operatorname{WTOD}(\mathrm{I}, \mathrm{N}), \mathrm{N}=1, \operatorname{NCKL}(\mathrm{I}) \text { (on-deck only) }\end{array}\right)$

## APPENDIX D

## COMCL Program Listings

1. Program DATPREP

POOGRAM GATPREP 73/172 JPT=0 TPACE EPN 4.8+52月


C
C
C
C --SORT CTRAL TO YIFLO CTMEO.



$C$
$C=-I N I T I A L I Z E ~ A P R A Y S . ~$
$\begin{array}{llll}00 & 500 & 1=1.5 \\ 00 & 500 & j=1.5\end{array}$

$500 \operatorname{SUNFT}(I, j, k)=0$
510 NIOR(M,L)=15POW(M,L)=0
C C C-DEAO CTMEV AND CET NUMRER ANO WEIGHT TALLYS.
JUM=NSEC=IY=0 $\quad$ SWT=0.0
ENAFLG=FALSE. SNTVO.
10 CONTIHUE

3000
REAO(3.3000)IOORT, ISTン.ISEC.LIJE, HT

NUMENUM+
IF (NUM-E2-11 COTOTS

$35 \quad$ SUMWT (IÖ.LN,ISI =SUT


49
45
$5 H T=S H T+W T$
NUNG NUMT

IP =IPOFT TIS = ISTC $\quad$ TH=LINE
$C$
$C$
C
C
CONT INUS
G-- FEAD IV NIMOED RF OOFTS AM NUMAFF OF LINES.


$\stackrel{r}{2}$



MnT= $\operatorname{HMN1/160}$



```
PFOGPAM ПATPEEP 73/172 MPT=0 TPACE FTN 4.8+528
```



```
PRORRAM RATPREP 73/172 #PT=0 RPARE FTN 4.R+52A
```




```
PROCRAM CATPREP 7.3/17? OPT=0 TOACE FTN 4.8+52A
```


# $K R=N R I G(M) \quad$ $H R I T E(7,4090) \quad(I S O O W(M, N), N=1, K R)$ <br> 4090 FOFHATIZOI4I 

410 CONTINUE
HRITE (7, 3100$)$ IP,LN, V3GTE,NVOY,SMIPIJ
HRITE (7,3110) (PNAME(I), I=1, IP)

IF (MP LAN.ED.O) STO?
5155
 FOPMAT (12A5)
stco

## 2. Program CLP

1

5

```
PQORRAM CLP F FT/172 FPT=0 TFACE PYOMP FTV G.&45?G
```




```
PFORRAMCLP 73/172 CPT=0 TRACE PMOMP FTN 4.84528
```



```
570
```




```
580 CONTINUEDI:LTASTGIIGII GO 10590
590 GF TOGTO
600 POTNT 310
610
LLL \(=\) LIOCIIDI)
LLOCIOLI = LLCCIOZ)
LLOCIIDZI \(=L L G\)
PRINT
SEDO
READ 770. MGO
\(\begin{array}{lll}\text { IF }(M G O . E Q .1 H Y) ~ G O ~ T O ~ & 570 \\ \text { IF (MGO.EQ.1HN) GO } & \text { TO } & 520\end{array}\)
CONT IMUE
520 CONT INUE
C
C
C
C
C
630 FORMAT \(/ 1 /, 44 R E R A O R\) IA FIRST RECORD OF GPLAN DATA FOR RAY, IS, \(3 X\).
```







```
710 FOPMAT \(\%, 5\) HGRCUP, \(2 \mathrm{X}, 7\) HTO LOAD, 2 X , AHIN GROUP, \(25 \mathrm{X}, 14 \mathrm{HFECEIVING}\) PAYS
\(720^{11}\)
```






``` + \({ }^{+N O+1}\) (Ai)
770 FORMAT (A1)
FORMAY
```




```
OF A RAIR OF CONTAINEES WHICH YOU HISH TO HAVE INTERCHANGEO.. 1.
A10 \({ }^{2}\) GOREMATER 3ELONTD NUMEERS OF CONTAINERS TO EXCHANGE. 'A'
```



```
Q30 FOOMAT 3 ITGFIG:1)
```



```
880
890 FOPMAT (AA10I
EMAT
EMN
ENT
```

310

SURROUTINE OYNAMIC 731172 CPT=0 TRACE PMOMP FTN 4.8+528








```
 SUQPOUTINE DYNAMIC 73/172 CPT=0 TFACE PMOMP FTN 4.E+52B
6 2 0
6 2 5
```

SURROUTINE OISCOMP 73/172 CPT=0 TRACE PHDMP FTN 4.9+529

```
```

    C DISC
            SUGROUTINE OISCOMP INRT,K,J, ISOL, JSOL,NMV,JRI
    ```

```

            COMMON /CCOH/ KICKS'(5),KICKR(20),LTEM(20), MSOLN(410),LES(410),LFY
    ```

```

    C
            #-SOLUTION BCCK-KEEPING FUNCTIION.
            NSOL =NSOL+1
    1 0
    10 CONIINUE
            LESINSEGG.1'1 COTO 20
    ```

```

            OO LOGIR=1,YROM = LTEM(IRI
    4O CONTINUE
    NRT = O
    IROW = JR
            OO 90 NV=1,NMY
            MO NV=1,NMY MOV MOV ISOL,NVI
            MK =MOV/1ODOL,NV)
            MR =M1/10
    ```


```

            NRT = NRT+IAGSILROW-IPOW)
            GOTOO80
            GOTTO 90 NRTERS(LAST-IPOW)
            NRT = NKT+NTTST(IPOW,LROW)
            O IROW=NRT+N
            C
            O-COMPUTE PENELTY VALUE FOR THIS SOLUTION.
            MR = 0
            MRENO
            LPEN=
            GOTO 120
                120
                \JGT):(T.51 GO ro 120
                M
                MR =MR.G
    100 LPEN= LPENINEISTIMR,NRI
    CONTINUE,GR.1) GO TO 120
    IF (K,EN:GI:I)VGONTO 120
    ```

```

    40 IF (KTT.EO.2) &O TC 150
            LVI E (LFVIJS'IOOOODIFIOONOO
            G0%0}15
    150 LV2 隹 150
    160 CNNTINUE
    non
\#ORUAE SOLUTIONS IS TENERATEL GY COMPARING FUNCTITN NALUES:
IFOLG=EO.11 HSE=1

```
SURRCUTINE OISCOMP \(73 / 172\) CPT=0 TPACE PMOMP FTN 4.84529

 \(00190 \quad \mathrm{~N}=\mathrm{NS}^{-1}\)
 190 N=NSS,NIS.
IF ILESINiNF.LESIISOZI) GO TO 190
LF \(=\) LFN'N:
 LFOLD LFI/1E5
 LF \(=\) LFVITSOLIO+MOC(LF1.100000) +MOD(LF2. 100000)
 LFS = LFVITSOL)

 IF (LFVEW.GE.LFCLSIC CLF TO 10000
LFVIN) 210

 MSOEN(NI = SOLNITSCL)
DO 170 NV \(=1\) NMY
 170 CONTINUE NONVI = YOVEIISOL,NV)
 JJOL \(\stackrel{\text { NUE }}{=}\)
 \(0018 \stackrel{N}{0}{ }^{2} R=1\), MROW
 150 CONIGR(N,IRTHE LGQITSOL,IRI
 190 COMTVNOETO

 CONTINUE
SSOL
RETURN
 RETURN
ISOL
 ISnl-1
 RETUQN
SNO
```

FUNGTION NOIST 73/172 CPT=0 TRACE DHIMP FTN 4.8+528

```
\(c\)
FUNCTION NOIST 1 JSROM, KSROM
COMMON
1, NYSEC JSROW/iCO
KSEG = KSROW/1C0
JROH = MOO (JSECH,100)
KROH = MOO KS KCH: 100)
10 CONIFNUYYECTMSI.EO.JSEGI GO 1020
20 OO 30 NSJ=1.NYSEC
CONIFINUESEC(NSI.EO.KSECI GO TO 40
40 KOIS = IAYSINS,NSI

60 TO 120 R \(N\) R \(1+\mathrm{KROH}\)
NDIST = JOOW+NEP1+74-KROW
NOTSO \(=120\)
GOTST \(\stackrel{120}{=} \mathrm{JROH}+\mathrm{NER2+KROW}\)
60 TO 12

100 NOIST \(=\mathrm{JROW}+\mathrm{NER2+74-KROW}\)

110 NOTST
120 NETUPN
RNT
```

SUROOUTINE ASSGN
73/172 CDT=O TRACE PMDMP

C

$C$
$C$

```
 #-MAKE ASSIGNPENTS FOR MANUAL PLAN CONTAINERS.
```

    IF
    IF (PPLAN.EQ. \(O 1\) GO TO 30
        \(20 \quad K=1, M P L A\)
    $I=M P C(K)$

$C$
$C$
$C$
20 CONTINUE
continue
30 DO 270 NS二人MMTAGE
O-FOR THE NEXT STAGE OF LOADING:
C
C
C
-OIDENTIFY GAY NO. ANC GAY CHARACTERISTICS.
NCI $=$ NTGF(AS)
NGY
KEY $=$ NGOKEYOID,
KEY $=$ KAKEYIIE)
KY
KEY

KOUNT $=0$
$\begin{aligned} & \text { NCZ } \\ & \text { JGG }\end{aligned}=\mathrm{MOD} 1190$
NCZ $=N C 1 \prime 100$
$J G G=M O D(N C 2,100)$
C
C
COSET INITIAL TRANSTAINER POSITION FOR THIS STAGE
NPAT = MOD (ACI. 1 ODI
JJ $=1$
KSOLN $=$ NOPTINS
$K 1=K S O L N / 10 O O D$
IF EKOPE.GTYOI GO TO 40

$40 \quad$ GF TKTROE. $11 \times 2=x_{1} / 10000$
50 IF (KTQ.EOS K2 = MOO(K1.10030)

        \(0 \quad\)\begin{tabular}{l}
    $N R=N R I G(J G G)$ <br>
$D O$ <br>
\hline 0 <br>
\hline
\end{tabular}

        60 CONF (K2.ET.ISROH:JGG.NF)! GO TO 70
            CONTINUE
    

| 70 | KSR KO |
| :--- | :--- |
| 30 | KO |
| 0 NF |  |

            CONTINUE
    




```
FUNCTION KFIND
73/172 CPT=0 TRACE PMOMD

C KFIN
KFIN
FUNCTION KFINC (JGG,KSR)

 1 KZKEY(40).NREAY(32), NLCAOIS2,30,
COMMON /ALCOM/ LPATI70,15), NTGR(7O)IIGCH(32),JYPOS(500)

\(\begin{array}{ll}C \\ C \\ C\end{array} \quad \because-O H I S\) FUNGTICN FINOS THE FIPST UNASSIGNEO CONTAINER IN THE CGRRE
--AYARO ROHG ANCN FINOS THE FIPST UNASSIGNED CONTAI NER IN THE CCRRE ---NO SUCH CONTAINEZ EXISTS.
KFIND \(=0\)

10 JC= J1, J2
\(1 Y P=J Y P O S(J C)\)

IF (JSROH.NE. ISROW IJGG;KSR)I ro To 10
IF
KFINDOC (JCI:GT.OJ GOTO 10
KFIND= JC
10 CONTINUE
RETURN
C
20 FORMAT (IL,R2)

C FCH
COMMON /FCOM, EPL,CMT,CGL,CFL, COWT,COUN, COLM,CISP, ORAFT,FSHT,GMMAX

 4 COLO

 1 KgKEY(40), NRGAY(3Z), NLCADO 32,30\()\)
COMMON /FLCOM/ IPST (50OI, WGT 15001

-- IN THIS SURFOUTINE FEASIBILITY CHECKS ARE MADE ON GENERATEC LO
\(\rightarrow \rightarrow\) - ESTRIGTIOAS INHEREAT SHIP SIABILITY RESTRICTIONS ANC OTHER LOAD
-- - -
--INITIALIZE RRRAYS AAD VARIAPLES.
\(K F=0\)
00 AVMGITA, NBAYS
AyM4 \(=0.0\)
AVM2(IA) \(=\) VMG(I3)
ALM4 (IB)

10 CONTINUE

KOL = MCSL

GOCTO 30 NCUAK (I,K)
CONTINCNE
TINUE
CONTINUE
--FFR EACH COATAINEQ LOADEO, COMPIJTE HOMENT CONTRITUTIONS -- - UROATE STACK WEIGHT AND HIGH CUAE STATUS.
00 \begin{tabular}{ll}
\(180 \mathrm{I}=1 . N C T I D\) \\
\(1 F\) \\
\hline
\end{tabular}
\(40 \mathrm{OC}=\mathrm{LLOC} \mathrm{C}^{\circ} \mathrm{EO}\)
\(19=\mathrm{LOC} 110000\)
\(\begin{array}{ll}\mathrm{L} \\ \text { IC } & =\mathrm{MOH}(L C C, 10000)\end{array}\)
\(\mathrm{C}=\mathrm{L}=100\)
T
\(=\mathrm{MOOLD}\)
=MOD(L1.100)
\(1 F\)
10
0
\[
\begin{aligned}
& M P L A Y E G O I \text { GO TO RO } \\
& 0 \text { MEI FFAN } \\
& E \text { IINEMPC(4) GO TO } 50
\end{aligned}
\]

CONTINTOE 50
C 50
\(7079 \mathrm{JP}=1\), A 3 YL

GOTKO :
GONTINIJE
\(N C=N C 3 L(J F)\)
NO 90 JK=1.AC


```

SURROUTINE FCHEGK 73/172 CPT=0 FRACE PMOMP FIN 4.8+52B

```
```

390 FORMAT I2X,SMSHTPI,A:O,20X,1OHVOYAGE NO:,IN, 20X,5HOATEI,I2,IH/,IZ,
400'1HORMAT,'SX,5HE/Y E, 2X, gHCONTAINER, 2X, EHVEPTICAL, 3X,3HLCG,7X,
41011HTRIM NOMENTI

```

```

    430 FORMAT {I3,3X,12,1HT,3F10.1,3X,FIO.1;
    ```


```

        4EG FORMAT (%,37HLCHER LIMIT OF FEASIELE LONG MOMENTE,F1O, M,5H KT-M., 
    ```

```

        490 foRMar Sox,2ct*###################1
    O FORMAF I'I'2OX,1OHMEIGHTIKTI,10X,12HVERT. MOMENT,10X,12HLONG. MOME
    S00 FORMAT (10HLIGGFY SHITP,10X,F10,1,10X,F11.1,10X,F12.11
    ```

```

    S20 FORMAT II1HFANKTOTALS,GX,F10.1,10X,F11:1,100X;F12.1,10X,F10.1)
    ```



```

        //10X,9FGM =,F6.2,4H= (,F10.1,2H +,F6.1,3M/1,F7.1,
    ```

```

    5801%HMX IOO!
    FORMAT I/.10X,10'HFWI' ERAFT=,F5.1,5X,10HAFT DRAFT=,F5.1./1/
    ```
```

    SUBROUTINE LPCUT 73/172 CPTIOTRACE PMOMP ETN 4.8+52%
    ```

1

5

C OUT SUPDOUTINE LPCIT
COMMON /ALCOM/ \(\mathrm{COAT}(70,15)\), NTGR(70), IGCH(32), JYPOS(500)

1.JHOLO (4O), MGFCUP,KTRAAI7O) , MSTAGE,GMEAN(3ZI, NIGI32), NCEL 140,12\()\)

1 ONYSEC
C
C
C

ISR = JBROHIKTRI
90 IS=1, PSTAGE
IF IKTR.

\begin{tabular}{c}
NC \(2=N C 11100\) \\
\(1 f G\) \\
\hline
\end{tabular}
\(J G G=M C E T N C Z, 1001\)
\(0020 ~\)
\(20 \quad\) CONTINUE EO.IFAYLINA

JT \(=\mathrm{LP1/100}\)
\(K S=M O O(1 P 1,102)\)
\(K F=\)

LO CCNTINULLCEXJCJ.EO.LOKNY GO TO 50
50
GOTO 70
ISE

IF \(=K E Y(1 G\)
\(I T=M O H(K Y, 10)\)
\(K E r_{0}=M O D(i O S T\)

\(\begin{array}{l}I L \\ K E\end{array}=\) KEgf 1009,1000\()\)

\(60^{1}\)
\[
\begin{array}{r}
70 \\
80 \\
90 \\
105
\end{array}
\]

CONTI
CONTINUE
IF \({ }^{2} \mathrm{INLA}\)
CONTI
NTINUE

\(00 \quad 110 \mathrm{I}=1, \mathrm{MPL}: N\)
\(10=\mathrm{MOC}\)
LOK = YPCL (1)
IOK = YOP/LOCJo
\(L=-00(100 k+190001\)

```

    SUPROUTINE LPCUT 73/172 CPT=0 TP\triangleCE PMDMP FTN 4.8452R
    ```

```

KEX $=40 D(K E N, 1000)$
ICOM
ICOM $=1$ KEX/10
1 WGTN(IO).JYPISIIE;
110 CONTINUE
120 PQINI 20 NO, NOIS(1), NOIS(2)
C
RETURN

```



``` \(170^{1)}\) F
```



``` FORYAT ( 1 FORMTHEFMANUALLY PLANNED CONTA INER LOAC POSITIONS***) ENRMAT (\%,33HTOTAL TQANSTAINER YOVE OISTANGES=, 2ILOI
```

1

0
STAR
SUQOUTINE STAPL
COYMON

COYMON JAFCOH

4 (z5:100

COYMON GGOY/' IBAYL(25), NAAYL, MSTAGE.GMEAN(32), NIG(32), NCEL(40,12)
1 JHOLDILD, YGRCUP KTRANITOI
(50). KOONE (100)

--IINTIALIZE VAQIAALES ANO ADPAYS.
n 10 I=1:50 $=0$
10 CORTINUE
MEX ${ }^{\top}=0$
$H L Y=0.0$
HVM HCO HCM
C T,O TO (20,330.ट̃), LOVE
C C-FOR NEXT TRCUP:

NLL = NSS\&NIG(JGG)-1
NGIG $=$ NIG 30 NFGG
NO 30 KONE1, NCIG
CONTINUE
c 30 CONTINUE
C
C
C
C
-OFOR SINGLE EAY LJAOTNG GPOUP, GET THE NEXT HITHEST TIER.
DO 40 LiE1. 50 O
40 CONTINUE $=0$

50 CONT MJT,G.ET.JGFO (KSU GO TO 60
50 CONTINUE
NTY = KBL(KS)
NTY ${ }^{\prime}=$ NTGR (KS!
NPAT
NO

70 CONiINUE
an NUM $=0$
C
C
LIGKHTHENUMEHEST INFILLE? TIE?.
DO 9j N=1, NFAT
$N N_{M}=N S_{\Delta T-N+1}^{N A}$
NUM $=$ N(FRt
IF (LOONE (NUN).EG.1) GO TO On

KESことS
LHIGH
NUM
$=$
NLHT
af CONTINUE
IF TLHIFH.GT.DI TO In 150


```
SUBPDUTINE STAPLE 73/172 CPT=0 TRACE PMOMP FTN 4.0452&
```


 560^{1} FODMATEMEDY:I
 1. 2TH HYPOTHETHC RPEAT LCNG. MOMENT OUE TO AODEC CONTATNERS=.F10.1.,

2 EXISTING CGOITIONS OSSIRLE TOAATAIN TRINGFEASIPILITY UNOER ENT LOAO PLAN CR CCNTAINÉP COMPOSITTION.1

1

C REMY SUMTINE REMEDY
COMMON JOACOM ISOOW（32，20），JGTP（70），MOETA（70．5），NPICK（70），NOPT（70

COMHON KFSCOM

1 CO4MON／AFCOM

COMMON／GCOM／7HAYL（251，NAAYL，MSTAGE，GMEAN（32），NIG（321，NCEL（4O．12）
1．JHOLDRYOSMGRCUP，KTRAABTOJ
Maqk（109201
$\begin{array}{ll}\mathrm{C} \\ \mathrm{C} & -\rightarrow I N I T I A L I Z E ~ V A R I A M L E S . ~\end{array}$

20
GOTO 30 50 50 O 20 SOLOVE
ASDV＝ASSACVME－ACVMII

FAGT1＝AMOV／CEN
OENOM＝ARS（ACIMZ－ACLMI）
A JOVE $=A B S(A C L M I-A C L N)$

L091 $=L A A C I 11$
4092

IF（FACYZ．GT．FACT1）GO TO 500
のロロロถด
30
——PICK A PAIF OF RECEIVING BAYS IN THE SAME HOLI．
0

40
－－－GM CORRECTICN

PRNT 11：0

50 NSH $=0$

00 9O IG三KTGP．MGROUD
NRA $=$ NRRAYITG
IF（NRA．LE．II GO TO 90

IF（NLOAC（IG．IG）．E日．CI GO TO 80
$K T{ }^{T}=K T I+1$

if

KHO＝YCÓKSH， 1901

60
70
80 CONTINTINE


```
    SUQROUTINE QEMEOY 73/172 CPT=0 TQACE PMOMP FTN4.8452%
```



```
FUNCTION MPIC 73/172 CDT=0 TRACE PMOMP FTN 4.8+529
```

C MPIT
FUNCTION MPIT (NUH:
COMMON /AFCOM/ LLOC(500), NCTLO,NSTG(32), MPCL (25), MPC(25).MPLAN. 1×3KEY(40), NरAAY(32), NLOAD (32.Jí
C - - THIS FUNCTICN DETURAS VALUE O IF NUM IS NOT A YANUAL PLAN CCNTA --ANI RETURNS VALUE 1 OTHEQWISE.
MPIO $=0$
$00^{1} \frac{10}{5} \quad M P=1, Y P L A N$
IF INUM NE.FPGIMOII GOTO 10
$M P T O=1$
$R=T H Q N$
10 CONTINUE
ENO

C LXA
FUNCTICN LXAMIA (KOH)

LXAMIN $=0$

IOX2 2 MODITOEX (NT . 10000)
IF IKKOM,NE.IDXI.ANT.KOM.NE.IOX2I GO TO 10
RETURN
10 CONTINU
RETU
ENT

APPENDIX E

A Sample Output of COMCL Run

1. DATPREP Output (Test \#1)

1

: OPERATOR RECAPI TILLAIION:**

****:IONNAIJE GY LINE*****

20f1 COMIAINEFS*							
F'OM	J LIME	K LINE	nuste	NYK I.INE	SHOUA I.INE	Y: AINE	10IALS
FUHE	245.5	0.0	24.4	112.3	76.1	597	1105.4
MABly ${ }^{\text {a }}$	\%1.1	0.0	0.0	0.0	0.0	0.0	81.1
SHIMIL!	0.0	0.0	0.0	0.0	0.0	9.9	0.0
TLKUHAAA	137.0	11.3	67.8	0.0	0.0	215.9	432.0
\therefore SUAII	513.6	11.3	92.2	112.3	76.1	793.9	1618.5
40 FI LOMIAINERS							
KOHE	404.2	91.9	69.3	46.4	85.4	48.4	935.6
MABOTA	0.0	43.6	0.0	0.0	22.8	93.5	163.9

SHIMILU	0.0	326.1	0.0	0.0	0.0	0.0	326.1
YOKOHAHA	1028.4	612.4	99.9	251.1	100.8	340.1	2432.7
40' LOAD	1522.6	1074.0	169.2	297.5	209.0	486.0	3758.3
20' EMPTY	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40. EHPIY	0.0	0.0	0.0	0.0	0.0	0.0	0.0
GRAND TOTAL	2036.2	1095.3	261.4	409.8	305.1	1279.0	5378.8

** CONTAINER GROUP DATA***

IOTAL NO. TO LOAD: 261
TOIAL UEIGHT(KT):5.376.8

GP	SEO NO. ******		$\begin{gathered} \text { IPST } \\ * * * * \end{gathered}$	$\begin{aligned} & \text { YFOS } \\ & * * * * \end{aligned}$	LCHC $* * *$	IDC * * *		$\begin{aligned} & \text { UGI } \mid \\ & 4: 1 \end{aligned}$
	N0:	1	FORI: K		TYPE:20F	AV.		16.3
	1	1	11	42016 C	6010	Y SAA662899		12.1
	2	2	11	4201 DC	6010	YSFF674248		15.2
		3	11	42018 B	6010	YSFF674147		15.7
		4	11	$4203 A C$	6010	YSAA 660642		14.5
		5	11	420388	8010	YSFF67414.5		15.6
	6	6	11	$4203 C \mathrm{C}$	8010	YSFF674423		15.7
	7	7	11	4209AC	6100	YSFF668894		14.9
	8	8	11	4209 AB	8101	1SFF674343		15.3
	9	9	11	42098 B	6100	YSAA668795		14.7
	10		11	4209 CC	6100	ISAA66801H		14.4
	11		11	4209Cg	6100	YSAA668,114		14.1
	12		11	420908	6101	YSFF670555		15.4
	13		11	4209 C	6100	YSAAS60634		13.9
	14		11	420 9tB	6100	YSAA6606899		14.3
	15		11	420?FC	6101	Y5FF6;4355		15.3
	16		11	42095	6191	YSFF67421?		15.1
	17		11	$4215 A B$	6100	YSAA66800 4		14.8
	18		11	42158 C	6010	YSAA668.64		14.6
	19		11	42158 C	3100	Y'SAA660699		14.7
	29		11	4215CC	6100	YSAAC609: 6		14.6
	21		11	421518	b190	YSAASAJY 31		14.6
	22		11	42151 C	8100	YSAA668457		15.3
	23		11	421511 H	8010	YSAAS68)71		15.2
	24		11	421560	6910	YSAAG6BE13		15.?
	25		11	4215tur	6910	YSAAS68, ${ }^{\text {Y }}$ S 4		14.9
	26		11	4215F1	6010	YSFF668954		14.8

\therefore	11	423st	－utu	15 San 0 dy 18	15.2			4	15	\＄21400	－ 1010	x16Uy\％o， 21	23．9＇
$\therefore 8$	11		oulo	1SAASEEHIT 4	16.1			J	15	521468	1010	JLav202034	23.6
24	11	425101	1010	JLauzos．j2 5	15.5			0	15	S214EC	． 1010	SSIU20so，	22.9
30	11	4237CC	1010	Jtau26538：	16.4				15	S214Es	1910	JLI $120: 10 \div 4$	25．：
31	11	425701	5010	ISAA6687\％	15.0				15	$521+48$	1010	SSIU202004	25.1
32	11	42570 C	6010	YSAA668760	15.6				15	S218ay	1010	S51u202045	24.9
33	11	425708	6010	YSAA60872\％	15.7				1）	\＄21才日	1019	SSIU202928	25.1
34	11	5203ET	4011	NLSU26214H	20.1				15	S218ic	1010	xirus80830	15.2
35	11	5203EC	4011	SCPU22919）	17.6				15	5218 cb	1010	JLLU206211	25.0
$3{ }^{3}$	11	5203EB	4011	MYKUIIO1S＇S	15.6				15	52180 C	1010	NICCIIUS\％1	24.7
37	11	5203FC	4010	NYKEY119	19.1				15	521808	1010	SSIU20：2712	35.1
38	11	5203F0	4010	32048	18.2				15	5218EC	1010	S5lu2020ss	24.4
39	11	5205a	8010	YSFF634152	12.4			－	15		1010	JLAU204064	1， 1.0
10	11	520548	1010	JLAU205684	16.1				15	Sizuri	1010	HLLU2011．5	25.0
41	11	520568	1010	JLAU26310）	13.6		8		15	S218FB	1010	JLLu204142	34.4
42	11	S20SEC	1010	Jlauzojoss	14.0				15	525019	S010	SSlu220229	72.3
43	11	S2326	3010	nulushotis	1．．1		9		15	S2S0E\％	1010	xfku880／14	12.1
44	11	523708	0010	小Lid： $011+3$	13.1		9		15	5200f：	3010	nulu20s．jus	20．3
45	11	S237E8	1010	ル－miodiu	15.4		9		15	5212al	3010	HLLUSO4ESa	35.4
46	11	221／Fy	su！ 1	llcusaious	12.5		1		15	527218	6010	USLU205046	18.9
47	11	3：syut	－ 211	－ draytum $^{\text {a }}$	$\because 9$					J2．3．	Solo	USLJ205046	18.4
48	11	sasyes	301	らligisyouso	290								
44	11	－S\％	＋611	＊YKしりこごの	14．8＇	ip	N0：	3	FURI：KU		1：ft：40x	AU．Wi：	24.2
\＄0	11	－ivies	0.810	rsamostil	18.6							NU．H．	
31	11	y／31al	－uls	15AA600St 1	14.3		4		16	546088	6020	YSLUSU300Y	29.5
32	11	ごこうA	S010	15tF6／4045	13.4		95		16	S464AS	4020	NYKU／3207s	3． 3.8
j）	11	こたフ号	1010	Jltuelold．	1\％．9		4		10	54048C	3020	nulusuouts	2！． 9
34	11		1010	NILLうdSJ00	18.1		7		16	$3484 C C$	5020	SLFF 48600）	14．1）
\because	11	こ．大．cs	1010	1utugy 3y2z	18.9		98		16	S404ty	5020	SLRF 88002\％	－5．3
36	11	S／S．15	1010	N（C）／84 S\％	14.5		9		16	5464bC	Su20	SLKF48．2014	：1．4
S＇	11	\％／g＇ty	1010	10LU2604S1	18.5		100		16	540464	2020	llsus0011．	22.7
：${ }^{\text {d }}$	11	こグうか	1010	JLLU261354	13．1）		10		10	$5464 E C$	2020	KKLUSO＋3：	2．3．1
2y	11	27：468	1010	JLLU0050／1	19.1		102		is	3404E\％	2020	KKLUs01：2s	$2 \mathrm{S.1}$
01	11	315408	1010	YSp＋6／tze	14．y		10.		10	S404tC	4020	arkupaisio	23．7
01	11	STsycy	1010		29.2		104		10	34545 d	2020	ñ゙Lusư0	23.0
$0 \cdot 1$	11	コ／syou	1010	JLlubsjas 4	20．4							anlusotoso	－3．0
6 S	11	s\％）yts	1010		1\％．								
of	11	jisjay	－010	fULU2799．d9	18．）	ur	NU：	4	ruki：ma	jur	Irtes：	A\％．Н1：	2－
0.5	11	a＇bsyd	2010	1ULU：850\％2	18．8							N\％Wr．	
so	11	570368	0010	10LU：${ }^{\text {1／345 }}$	14.6		105		$\therefore 1$	576124	1010	JLLI6019y\％	2． 5
$3 /$	11	\％osjoy	0010	10LU2B425s	17.1		100		4	こ？${ }^{\text {colbs }}$	1010	1SFFosuidy，	21． 2
\％	11	3／6jty	5019	IULUE881sy	18.4		102		21	S7orcy	1010		20.1
							108		21	s／olus	1010	JLUSASO， 4	20.3
\therefore	furl：ku		Ifre： 40 r	AV．${ }^{\text {l }}$	22.8								
						15		j	FUKI： ma	Ora	SYRE：40F	Аソ．य1：	23.4
in	19	3214AS	1010 1010	11RU880／58	24.3								
7	19 15	321486 521458	1010 10.0	JLAU205231 xirugr0bj5	24.4 24.8		104 110		\because	220468	Sulu	＇stu29\％02＇	22.0
\because	15	S21458 S214c	1010 1910	x1RU8808JS SSIU20こ048	24.8 24.0		110		3	$320+6$ $320+16$	2011 $=014$	Clluayojdi	3 a
15	15	5214C8	1010	JLLU20s190	24.8		11：		\bigcirc	$2.64+6$	－010	fecujaviju	27.0

113	25	526478	6010	YSLU203027	21.8	154	41	5／5508	6010	15AA669754	15.4
114	25	526888	2010	KKLU204004	22.1	157	41	575508	6010	YSFF674064	15.4
115	25	526888	6010	YSLU209257	26.7	158	41	575519	6210	YSAA6606，＇2	14.2
6	PGRI：S	10120	TYPE：40F	AV．UT：	23.3	（；P 10： 8	PORT： 1	OHABA	TYPE：40F	AV．Wi：	23.7
116	35	3208AC	2010	［15U202306	23.13	159	45	42130 C	6010	1SLU294028	28.8
117	15	S208A	2010	KKLU204735	23.0	180	45	421886	2010	115U202094	23.7
118	35	3208＊C	2010	［1SU202552	22.9	161	45	42188	2010	115U202430	23.5
118	35	520888	2010	KKLU2049イ1	23.5	162	45	421 日CC	3010	KKLU205177	20.3
120	35	5208CC	2010	ITSU203707	22.8	183	45	4218 CB	2010	KKLU204979	24．7
121	35	5208C8	2010	ITSU202389	22.9	164	45	42180 C	2010	115U202222	27.5
122	35	52080 C	2010	KXLU201128	23.3	165	45	421808	2010	1 1SU202112	23.4
123	35	520808	2010	CTIU415904	24.4	166	45	4218EC	2010	KKLU201164	23.6
124	35	520861	2010	KKLU201396	23.0	167	45	4218E	2010	IISU202145	24.5
125	35	5208EC	2010	SSIU2174J9	24.5	168	45	421 pre	2010	KKLU201381	23.9
126	35	S208E	2010	KKLU204952	23.4	169	45	4218 F	2010	［ F5U202716	23.7
127	35	5208FT	2010	WYLU201131	23．2	170	15	4224AB	1010	WICC11540	14.8
128	35	5208FC	2910	［15U203319	22.7	171	45	422487	1010	JLLU204022	24.4
129	35	52085	2010	WYLU201299	23.0	172	45	$42248 \mathrm{C}$	1010	JLLU204026	24.6
						173	45	422481	1010	JLU219157	21.2
						1／4	45	122401	1010	SCIU411502	25.5
7	PORT：YOR	KOHAMA	TYPE：20F	AV．UI：	14.7	175	45	4224CC	1010	SSIU224．71	25.9
						176	45	422463	1010	MYLU201209	24.8
130	41	420163	6010	？SAAn6471：	15.0	177	45	422401	1010	JLLU202018	24.5
131	41	4203 A	60：0	ISFFbil4s4	15.0	178	45	12248C	1010	SSIU205057	24.8
132	41	4203BC	60：0	YSFF64011：	15.2	179	45	422408	1010	MiCCIIOS0J	25.1
133	41	420368	6010	YSFF674114	15．H	180	45	4224ET	1010	JLAU202035	26.3
134	41	425768	1010	JLAU262S\＄	12．6	181	45	1224EC	1010	JLLid20624）	24．4
135	41	427388	3010	JLAU263464	12.1	182	45	4224E	1010	JLLU204021	24.9
136	41	42：503	1010	SCxU629984	12.2	183	45	4224F1	1010	NICAI361	23.0
137	41	12：300	6010	YSAA2／5150	20.1	184	45	1224FC	1010	XIRU880117	24.1
138	11	42：3FC	2019	KKLU261942	11.5	185	45	4224% \％	1010	UFCU21443＇	24.3
137	41	2\％ 318	3010	YSAA266／14	9.5	186	45	4228A	1010	－AU202055	25.1
110	41	\＄20．5F	1010	JLU261843	14.4	187	45	42288 ！	1010	JLLU206251	24．3
141	41	S20SF8	1910	JaUs6504b	18.4	188	45	42283C	1010	XTRU980798	24.3
142	41	S243EC	3010	nULU27：969	14.8	189	45	422888	1019	JLLU202054	24.9
144	11	S24JEH	3010	MリLU2？ 4 ¢	15.3	180	45	4228 C	1010	WICCIIOS46	24.9
144	41	5243FL	3010	HULU277818	13.2	191	45	4228 Cl	1010	crrus80\％4：3	24.4
145	17	4243F8	3010	nOLU277131	16.2	192	45	4228C	1010	JLAU20S251	24．7
144	11	5749AK	6010	YSAA668895	7.3	193	45	422日C	1017	SS1リ20Sth	24．3
141	41	574968	3010	UFCU3852．56	2． 4	194	45	4228C3	1019	W1CA1476	24．7
148	41	5／53A1	6010	PSFF6743．38	15.0	195	45	42291 C	1010	Jし乚U202949	23.3
147	41	S／53AC	1010	NICUP0458J	15.3	196	45	423848	1010	FECU347345	25.3
150	41	9753AB	1010	JLAU26179：3	11.1	197	45	422gEE	1010	JLUU20107）	25.0
151	41	575301	5010	YSFF668\％90）	18.5	198	4.5	4228E3	1010	X1RU880H64	24.6
132	41	8／5．598	1011	JLLU661079	20.1	199	15	4228FT	1010	JL620213．1	23.5
153	41	5．5368	1010	YSFF6）40＇72	19.9	200	4）	4228FC	1010	AYLU201：29	24.4
154	41	3．5581	6010	YSAA6617725	15.1	$\therefore 91$	45	422810	1010	SSIU2050：4	21.3
155	41	5／5589	6017	Y SAA668，${ }^{\text {S }}$ S	15． 1	$\therefore 19$	45	133？AB	1910	WICCIIOS42	21.9

203	15	423280	1010	SS10202611	25.8
204	45	$42 \mathrm{J288}$	1010	$5 S 14202640$	22.2
205	45	4232CC	1010	SSIU202.384	19.1
206	45	4232C8	1010	nYLU201036	22.2
207	45	4232 nc	1010	SSIU204110	22.4
208	45	423208	1010	S51u20200?	21.7
209	45	4232 EC	1010	SSIU2026\% 6	21.7
210	45	4232E日	1010	SSIU202646	22.5
211	45	4232 FC	1010	JLAU205:35	22.4
212	45	4232 Fg	1010	JLLu201136	23.6
213	45	4236 AC	4010	NYKU68022;	25.2
214	45	4236 AB	4010	NYKU681921	25.0
215	45	42368 T	4010	NYKE5817	24.8
216	45	42368 BC	4010	HYKU6885	25.0
217	45	42368 B	4010	NYKU681457	25.8
218	45	4236 CC	4010	NYKU68186¢	29.1
219	45	4236 CB	4010	MYKE4017	25.4
220	45	42360C	4010	MYKUS70340	24.8
221	45	423688	4010	MYKU4051	25.1
222	45	4236EC	5010	SHUU209386	24.7
223	45	4236 EB	4010	SHWU202034	25.3
224	45	42369 C	6010	FECU340034	21.0
225	45	4236F8	6010	FECU340076	24.3
226	45	4240 AC	6010	ICSU225.306	24.4
227	45	4240 AB	5010	SLDR488060	1.3 .6
228	45	1240BC	6010	YSLU201249	22.7
229	45	42408B	6010	YSLU:01189	22.6
230	45	4240EC	6010	CIIU4443E4	22.1
231	45	4240E日	5010	L110438538	2.3.)
232	45	4240 I	6910	YSLU20911\%	21.3
233	45	12405 C	6010	rstue0s146	21.4
234	45	4240 H	5010	SHWU2023.9	13.9
235	45	424816	2010	KRLU20590?	21.8
236	45	4248 EL	2010	ITSU203,55	2.3 .9
237	45	4:48E ${ }^{\text {a }}$	2010	KKLU20547s	24.4
238	45	4248 FC	2010	KKLU204:299	2.1.8
239	45	4248 F 8	2010	115U2026:50	24.4
240	45	4260AC	5010	ICSU228231	22.6
241	45	4260 AB	8010	rSAA204727	20.9
242	45	425085	8010	rSLUZOJ081	21.0
243	45	4260 HB	6919	rstu20918\%	20.;
244	45	4260CC	3010	holu201346	27.4
245	45	42 bOCB	2010	HYLU2055\%2	23.8
246	45	4260DC	3010	HUL 1220.592	37.6
247	45	425008	6010	1159220043	23.1
248	45	4260 Es	3010	nutu206:99\%	17.5
249	45	426011	3910	MOLU201474	$2 \cdot 2$

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline 250 & 46 & 5480ac & 2020 & KKLUS00161 & 2.3. 5 \\
\hline 251 & 46 & S460AB & 2020 & KKLU504427 & 23.1 \\
\hline 252 & 46 & 5460RC & 5020 & SLRF48¢012 & 25.6 \\
\hline 253 & 46 & 54608 B & 6020 & YSLA505664 & 23.2 \\
\hline 254 & 46 & 5460 CC & 2020 & IISU500240 & 23.1 \\
\hline 255 & 46 & 5460 CB & 2020 & IfSu500209 & 23.0 \\
\hline 256 & 46 & 546000 & 2020 & HKLU504226 & 23.5 \\
\hline 257 & 46 & 546008 & 2020 & KKLU50423, & 23.1 \\
\hline 258 & 46 & 5460EC & 2020 & KKLUS04439 & 23.2 \\
\hline 259 & 46 & 5460EB & 2020 & KKLU504341 & 23.1 \\
\hline 260 & 46 & 5460 CC & 2020 & KKLU504080 & 23.0 \\
\hline 261 & 46 & \(5460 \mathrm{FB}^{8}\) & 2020 & KKLU504095 & 23.1 \\
\hline
\end{tabular}
**DISIRIBUTION of containers in yardo:c:
```

```
GP NO
```

GP NO
NO
NO
N0
N0
1 7
1 7
5460 5464
5460 5464
5761
5761
4
4
464 5268
464 5268
5
5
14
14
4201 4203 4257 4273
4201 4203 4257 4273
5460
5460
4.250 CP SECONDS EXECUTION TIME.

```

\section*{IROUP LOAD PLAN \\ ****:}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Grouf} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TO LOAD IN GROUP}} & \multicolumn{18}{|c|}{HECEIVIMG BAIS} \\
\hline & & & 3 & 4 & 5 & 1 & 8 & 9 & 11 & 12 & 14 & 15 & 18 & 20 & 21 & 22 & 24 & 25 & 28 & 32 \\
\hline 1 & 68 & 68 & 0 & 2 & 0 & 0 & 0 & 21 & 35 & 0 & 0 & 0 & 0 & 1 & 0 & 4 & 0 & 0 & 0 & 5 \\
\hline 2 & 25 & 25 & 8 & 10 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 5 \\
\hline 3 & 11 & 11 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 3 & 0 \\
\hline 4 & 4 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 7 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 7 & 0 & 0 & 0 & 0 \\
\hline 6 & 14 & 14 & 0 & 0 & 0 & 14 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 29 & 29 & 0 & 0 & 6 & 0 & 21 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 \\
\hline \(\theta\) & 91 & 91 & 0 & 0 & 0 & 4 & 0 & 0 & 0 & 4 & 21 & 7 & 0 & 0 & 21 & 6 & 12 & 12 & 4 & 0 \\
\hline 9 & 12 & 12 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 0 \\
\hline TOTAL & 261 & 261 & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\section*{Hokk sequence table}

\section*{*****************}
\begin{tabular}{rrrrr} 
SIAGE & IRANS & GROUP & HOU MANT & \multicolumn{1}{l}{ BAY } \\
1 & & & \\
1 & 2 & 8 & 21 & 21 \\
2 & 2 & 1 & 1 & 20 \\
3 & 2 & 1 & 4 & 22 \\
4 & 2 & 8 & 6 & 22 \\
5 & 2 & 5 & 7 & 22 \\
6 & 2 & 8 & 12 & 24 \\
7 & 2 & 8 & 12 & 25 \\
8 & 2 & 3 & 4 & 18 \\
9 & 2 & 3 & 3 & 28 \\
10 & 2 & 9 & 4 & 28 \\
11 & 2 & 8 & 1 & 28 \\
12 & 2 & 7 & 2 & 28 \\
13 & 2 & 1 & 5 & 32 \\
14 & 2 & 2 & 5 & 32 \\
15 & 1 & 2 & 8 & 3 \\
16 & 2 & 8 & 21 & 14 \\
17 & 1 & 2 & 10 & 4 \\
18 & 1 & 1 & 2 & 1 \\
19 & 1 & 7 & 6 & 5 \\
20 & 1 & 7 & 21 & 8 \\
21 & 2 & 9 & 3 & 15
\end{tabular}
\begin{tabular}{rrrrr}
22 & 2 & 9 & 7 & 15 \\
23 & 1 & 8 & 4 & 7 \\
24 & 1 & 6 & 14 & 7 \\
25 & 1 & 1 & 21 & 9 \\
25 & 1 & 1 & 35 & 11 \\
27 & 1 & 4 & 4 & 11 \\
28 & 1 & 3 & 4 & 12 \\
29 & 1 & 2 & 2 & 12 \\
30 & 1 & 8 & 4 & 12
\end{tabular}
****DP SOLUTIOMS GEMERAIED IU STAGIIS**:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline STAGE **** & trans **** & \begin{tabular}{l}
6ROUP \\
****
\end{tabular} & HPICK **** & \[
\begin{aligned}
& \text { K SOL } \\
& * \\
& * * * *
\end{aligned}
\] & NO St & SOL.U
***** &  & End rou & FN UAL R & rou stal ***:0*:** & & & & & & & & & & & & & & & \\
\hline 1 & 2 & 8 & 21 & & 12 & 420 & 14224 & & 10700000 & & & 0 & 6 & 16 & 11 & 13 & 9 & 5 & 10 & & & & & & \\
\hline & & & & noue & DEIAIL & AILS: & 4011 & 11097 & & & & & & & & & & & & & & & & & \\
\hline 1 & 2 & 8 & 21 & & & & & & 16300000 & & 10 & 01 & 16 & 16 & 11 & 13 & 3 & 0 & 0 & & & & & & \\
\hline & & & & hove & DEIA & All 5 : & 4091 & 12017 & & & & & & & & & & & & & & & & & \\
\hline & OPT & soluti & ION NO: & 1 & & & & & & & & & & & & & & & & & & & & & \\
\hline 2 & 2 & 1 & 1 & 3 & 12 & 420 & 5203 & & 21200000 & 0 & 3 & 31 & 10 & 12 & 5 & 4 & 1 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & hove & DETAL & Alls: & 4062 & 1098 & & & & & & & & & & & & & & & & & \\
\hline 2 & 2 & 1 & 1 & 4 & 12 & 4201 & 5239 & & 17600000 & 0 & 3 & 31 & 10 & 12 & 5 & 5 & 1 & 4 & 2 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & MOVE & deta & AILS: & 4092 & 22068 & & & & & & & & & & & & & & & & & J \\
\hline 2 & 2 & 1 & 1 & & 12 & 4201 & 5749 & & 84900000 & 0 & J & 31 & 10 & 12 & 5 & 5 & 4 & 4 & 3 & 0 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & nove & & AILS: & 4106 & 6 1158 & & & & & & & & & & & & & & & & 5 & J \\
\hline 2 & 2 & 1 & 1 & & 12 & \[
4201
\] & & & 63500000 & 03 & 3 & 310 & 10 & 12 & 5 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 4 \\
\hline & & & & HOVE & DETAI & AILS: & \[
4156
\] & 6 2108 & & & & & & & & & & & & & & & & & \\
\hline 2 & 2 & 1 & 1 & & 12 & 4201 & & & 13000000 & 0 & 3 & 310 & 10 & 12 & 5 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & hove & DEIAI & AILS: & \[
3017
\] & 7 201\% & & & & & & & & & & & & & & & & & \\
\hline 2 & 2 & 1 & 1 & 8 & \[
12
\] & \[
420
\] & \[
14203
\] & & 12800000 & 0 & & 210 & 10 & 12 & 5 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & hove & DETAI & AILS: & \[
3027
\] & 2017 & & & & & & & & & & & & & & & d & 5 & 5 \\
\hline 2 & 2 & 1 & 1 & 9 & 12 & 4201 & 4209 & & 12200000 & 03 & & 3 & 91 & 12 & 5 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & hove & delal & AILS: & 3037 & 72017 & & & & & & & & & & & & & & & & & J \\
\hline 2 & 2 & 1 & 1 & 10 & \[
12
\] & \[
420
\] & 4215 & & 11600000 & 3 & & 310 & 10 & 11 & 5 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & \({ }_{11}^{\text {HOUE }}\) & DEIAI & AILS:
\[
420
\] & 3047
4257 & 72017 & & & & & & & & & & & & & & & & & 5 \\
\hline 2 & 2 & 1 & 1 & 11
nove & \[
\begin{gathered}
12 \\
\text { DETAI }
\end{gathered}
\] & \[
\begin{gathered}
420 ; \\
\text { AILS: }
\end{gathered}
\] & 4257
3057 & & 14000000 & 3 & & & 1012 & 12 & 4 & 5 & 4 & 4 & J & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & OPT & s0luti & On no: & 10 & & & & & & & & & & & & & & & & & & & & & \\
\hline 3 & 2 & 1 & 4 & 12 & 42 & 4201 & 4203 & & 22400000 & 0 & 2 & 210 & 101 & 12 & 5 & 5 & 4 & 4 & 2 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & nove & detal & & 4011 & 11057 & & & & & & & & & & & & & & & 6 & \(\checkmark\) & J \\
\hline 3 & 2 & 1 & 4 & 13 & 112 & 4201 & 4257 & & 14000000 & 3 & 3 & 310 & 101 & 12 & 0 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 5 \\
\hline & & & & hove & DETAI & ItS: & 3057 & 72017 & & & & & & & & & & & & & & & & & \\
\hline 3 & 2 & 1 & 4 & 14 & 62 & 4201 & 5757 & & 64100000 & 3 & 3 & 310 & 01 & 12 & 5 & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 2 & 5 & 4 \\
\hline & & & & \({ }_{15}\) MOVE & DETAI & ILS: & 3138 & 81158 & & & & & & & & & & & & & & & & & \\
\hline 3 & 2 & 1 & 4 & 15 & 62 & 4201 & 5763 & & 63500000 & 3 & 3 & 310 & & 12 & s & 5 & 4 & 4 & 3 & 1 & 1 & 1 & 6 & 5 & 0 \\
\hline
\end{tabular}





```

 27 1 4 4 4 119 1131 57614260 21370256100000 0
 HOUE DETAILS: 1018
 OPT SOLUTION MO: 119
 | 28 | 1 | 3 | 4 | 120 | 1192 | | | 266 | 6100000 | 0 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | DET | Sts: | | | | | | |
| 28 | 1 | 3 | 4 | 121 | 1192 | 546 | | 28157 | | 0 | | |

 OPI SOLUTION NO: 120
 29 1 2 2 2 1 122 1202 52144280 32240256100000 0
 hove details: 4013 1010
 OPI SOLUTION MO: 122
    ```

```

 MOUE DETAILS: 4091 1097
 OPT SOLUTIOM NO: 123
    ```
TOIAL NO. OF GENERATED SOLUTIONS: 528

FOR NO. 1 IRANS. INITIAL POSITIOM: 4201

FOR NO. 2 IRANS. INITIAL POSITIOK: 5201

IDIAL TRANSTAIMER MOUE DISIANCES= 33542561
toial displacenent figures du not haich CHECK DISPLACEMEMT ENTRY IM FILE GPLAN. CORRECI VALUE=33426.9 ENTERED VALUE \(=334 \% 0.0\) 1

IRIA AMd Stability calculation
***************************
SHIP:J APOLLO
bay COMIAIMER VERTICAL LCG
voyage no: 5
DAIE: 8/15/80
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{IRIA AND STABILITY CALCULATION ***************************} \\
\hline \multicolumn{5}{|l|}{SHIP:J APOLLE} & vorage & N0: 5 & \\
\hline & bay & - & COMTAIMER & vertical & LCG & irim mone & EMT \\
\hline & & & UEIGHT & MOMENT & & FORE (-) & AF \([(+)\) \\
\hline 1 & \(1{ }^{1 H}\) & & 278.0 & 5357.0 & -75.0 & -20850.0 & \\
\hline 2 & 30 & & 56.4 & 1291.0 & -66.8 & -3769.0 & \\
\hline 3 & 3 H & & 219.8 & 3383.2 & -63.6 & -13987.7 & \\
\hline 4 & 40 & & 244.3 & 5751.5 & -63.8 & -15576.6 & \\
\hline 4 & 50 & & 101.5 & 2332.6 & -60.0 & -6091.6 & \\
\hline 5 & \(7{ }^{\text {7 }}\) & & 429.3 & 5148.2 & -52.2 & -22396.9 & \\
\hline 6 & 70 & & 2.6 & ¢8.0 & -52.3 & -1.36.0 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 7 & 81 & 476.3 & 11815.5 & -49.2 & \(-23443.5\) \\
\hline 7 & 90 & 5.2 & 122.0 & -45.5 & -236.5 \\
\hline 8 & 9H & 470.7 & 5504.4 & -45.6 & \(-2146.3 .8\) \\
\hline 9 & 11H & 531.8 & 5363.0 & -38.1 & -20277.5 \\
\hline 10 & 110 & 0.0 & 0.0 & -38.3 & 0.0 \\
\hline 11 & 13 H & 677.1 & 7570.3 & -31.6 & -21369.3 \\
\hline 12 & 120 & 244.8 & 5830.5 & -35.2 & -14612.1 \\
\hline 12 & 130 & 0.0 & 0.0 & -31.4 & 0.0 \\
\hline 13 & 150 & 272.6 & 6503.0 & -23.9 & -6504.0 \\
\hline 14 & 15H & 1246.8 & 13752.0 & -20.7 & \(-25771.2\) \\
\hline 15 & 160 & 484.3 & 12035.7 & -20.8 & \(-10064.1\) \\
\hline 15 & 170 & 254.2 & 8074.0 & -17.1 & -4334.0 \\
\hline 16 & 19H & 533.4 & 5183.0 & -9.7 & -5174.0 \\
\hline 17 & 19 D & 45.6 & 1057.0 & -9.8 & -44d. 0 \\
\hline 18 & 200 & 97.3 & 2293.6 & -6.8 & -656.8 \\
\hline 18 & 210 & 37.9 & 892.0 & -3.0 & -114.0 \\
\hline 19 & 21H & 694.2 & 8187.0 & -3.1 & \(-2173.0\) \\
\hline 20 & 23 D & 327.4 & 7993.8 & 4.6 & 1496.6 \\
\hline 21 & 23 H & 1355.0 & 14671.6 & 7.8 & 10514.d \\
\hline 22 & 248 & 361.1 & 8970.7 & 3.6 & 2758.6 \\
\hline 22 & 250 & 372.5 & 9165.2 & 11.4 & 4238.7 \\
\hline 23 & 270 & 25.2 & 591.0 & 18.6 & 469.0 \\
\hline 24 & 27\% & 330.0 & 4248.1 & 21.8 & 7308.1 \\
\hline 24 & 28H & 703.1 & 6934.0 & 21.8 & 15328.0 \\
\hline 25 & 281 & 637.0 & 12112.0 & 21.7 & 28129.5 \\
\hline 25 & 290 & 269.2 & 6327.0 & 25.4 & 5836.0 \\
\hline 26 & 31 H & 52.2 & 1189.0 & 61.4 & 3199.0 \\
\hline 27 & 310 & 39.3 & 919.0 & 61.3 & 2816.0 \\
\hline 28 & 320 & 766.9 & 13897.0 & 64.4 & 51195.5 \\
\hline 28 & 3311 & 244.1 & 5747.1 & 68.1 & 15820.3 \\
\hline 29 & 33H & 347.3 & 8408.0 & 68.0 & 26662.0 \\
\hline 30 & 350 & 368.1 & 5889.0 & 76.8 & 29430.0 \\
\hline 31 & 35H & 251.0 & 5889.0 & 80.0 & 20979.0 \\
\hline 32 & 360 & 92.6 & 2542.8 & 79.8 & 7393.2 \\
\hline 32 & 370 & 302.8 & 7378.5 & 83.6 & 24448.7 \\
\hline \multicolumn{2}{|l|}{TOTALS 1} & 14248.9 & 236377.1 & & 24428.5 \\
\hline
\end{tabular}

SHIP STABILITY SUMMARY

\begin{tabular}{rrrr} 
WEIGHT(KT) & VERT. MOMEHT & LOMG. MOMENT & F.S.MUHENT \\
& & & \\
12184.0 & 149620.0 & 210418.0 & \\
352.0 & 3000.0 & 13010.0 & \\
6642.0 & 25872.0 & -63349.0 & \(14,3.0\)
\end{tabular}





\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 14 & 14-5 1 & YokOhan & NYKE581? & myk tine & DRY & 24.8 & 423 S \({ }^{\text {\% }}\) & 215 \\
\hline 14 & 14-61 & YOKOHAM & NYKU6685 & nyk Lime & dry & 25.0 & 42368 C & 216 \\
\hline 14 & 14-42 & tokOham & NYKU681457 & NYK LIME & ORY & 25.6 & 423688 & 217 \\
\hline 14 & 14-5 2 & YokOham & MYKU68:866 & NYM LINE & Bry & 25.1 & 42360 C & 210 \\
\hline 14 & 14-6 2 & YOKOHAM & NYKE4017 & nyk Line & bry & 25.4 & 4238ca & 219 \\
\hline 14 & 14-43 & yokohan & NYKU670340 & nyk Lime & bicy & 24.6 & 4238 SC & 220 \\
\hline 14 & 14-5 3 & yokuham & NYKU4051 & WYK LINE & Itig & 25.1 & 4236618 & 221 \\
\hline 14 & 14-63 & rokoham & SHUU200386 & ShOHA LINE & digr & 24.7 & 42 sbEC & 222 \\
\hline 14 & 14-4 4 & YOKOHAM & ShWUZ202034 & NYK LINE & Ofr & 25.3 & 423 SEB & 223 \\
\hline 14 & 14-54 & YOKOHAM & feculate & ys line & URY & 21.0 & 423 AlC & 224 \\
\hline 14 & 14-64 & YOKOHAA & FECU340076 & ys line & digy & 24.3 & 42.3618 & 225 \\
\hline 14 & 14-45 & yokoham & ICSU225306 & YS LIME & ORY & 24.4 & 424016 & 226 \\
\hline 14 & 14-5 5 & rokgham & SLPR486060 & Shoua line & DRY & 13.6 & 4240AB & 227 \\
\hline 14 & 14-65 & rokohan & YSLU201249 & ys line & dry & 22.7 & 42408C & 228 \\
\hline 14 & 14-46 & rokuhan & YSLU201189 & ys line & Ufy & 22.6 & 4240 HB & 229 \\
\hline 14 & 14-56 & rokohan & CTIU444064 & ys lime & ary & 22.1 & 42401: C & 230 \\
\hline 14 & 14-66 & YOKOHAM & CtIJ438536 & SHJUA IINE & URY & 23.0 & 4240E9 & 231 \\
\hline 14 & 14.4) & YOKOHAM & YSLU209119 & ys line & diry & 21.3 & 4249F f & 232 \\
\hline 14 & 14-5 7 & yokohat & YSLU296146 & ys lime & firy & 21.4 & 4240 C & 233 \\
\hline 14 & 14-67 & yokuhan & SHWU202339 & Shoua line & DRY & 13.9 & 4240 FB & 2.34 \\
\hline 15 & 15-5 1 & YOKOHAM & ITSUS00240 & K LINE & RfR & 23.1 & 5430CC & 254 \\
\hline 15 & 15-61 & YUKOHAM & 1154500209 & K LIne & KFR & 23.0 & 5460 CB & 255 \\
\hline 15 & 15-71 & YOKOHAM & VKLE504226 & K LINE & RFR & 23.5 & 546 ¢) \({ }^{\text {c }}\) & 256 \\
\hline 15 & 15-81 & YOKOHAM & RKLU504237 & k Line & RFR & 23.1 & 546010 & 257 \\
\hline 15 & 15-5 2 & yoruhal & KKLUSC4439 & K LINE & RFR & 23.2 & 5480EC & 258 \\
\hline 15 & 15-s2 & YOKUHAM & RKLEE04341 & K Line & AFR & 23.1 & S460EP & 259 \\
\hline 15 & 15-72 & yokohan & KYLU504080 & K LINE & RFR & 23.0 & 5460FC & 260 \\
\hline 15 & 15-82 & yokoham & KKLU504095 & K LINE & KfR & 23.1 & 548058 & 261 \\
\hline 15 & 15-53 & YOKOHAM & KRLU205902 & K LINE & Irry & 21.8 & 424808 & 235 \\
\hline 15 & 15-83 & YOKOHAM & HSU203755 & K LINE & HRY & 23.9 & 4248 CC & 236 \\
\hline 15 & 15-73 & yokaham & KKLU205476 & K line & bry & 24.4 & 4248EB & 237 \\
\hline 15 & 15-83 & YOKOHAK & KKLU204298 & \(k\) LInE & liry & 23.8 & 1248FC & 238 \\
\hline 15 & 15-93 & y OkOHAM & 11SU202650 & K LINE & IRTY & 24.4 & 4244F B & 239 \\
\hline 15 & 15-10 3 & yokoham & [ 151928231 & YS LINE & DRY & 22.6 & 4260AC & 240 \\
\hline 15 & 15-113 & POKUHAM & YSAA204:2' & is line & DRY & 20.9 & 4260AB & 241 \\
\hline
\end{tabular}

TOIAL TFANSIAINER MOUE DISIANCES= 3354
```

00 YOIJ LANT TO MAKE ANY ABJISIMENI 1O THE GENERATED LOAD PIGN?
ANSUER EITHER YES OK NG.
? NI
12.674 CF SECONTIS EXECUTION IINE.

```
,```


[^0]:    Figure 2.3 Effect of inclining moments on ship stability
    (Source: U.S. Navy NAVPERS 1-788-B)

[^1]:    ＊Best result．

