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Accurate estimates of forest aboveground biomass are needed to reduce 

uncertainties in the terrestrial carbon flux. The Geoscience Laser Altimeter System 

(GLAS) onboard the Ice, Cloud and land Elevation Satellite is now the first 

spaceborne lidar sensor that will provide global estimates of vegetation height. This 

study investigated the utility of the GLAS sensor for large-scale biomass inventories 

by focusing on two important factors: the regional accuracy of GLAS-estimated forest 

height algorithms and the accuracy of general height-biomass allometric equations. 

Field data from the U.S Forest Service Inventory and Analysis (FIA) program was 

used to compare regional height estimates with GLAS predictions. GLAS algorithms 

provided generally accurate estimates of height and were on average 2-3 m lower than 

FIA estimates. The analysis of the regional variability of height-biomass relationships 

in the FIA data suggests that general non-species specific equations are applicable 

without a significant loss in prediction accuracy. Regional estimates of forest biomass 

from GLAS were about 20% lower than FIA estimates (difference between 39.7 – 

58.2 Mg ha-1).  
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Chapter 1 - Introduction 

Background 

The concentration of atmospheric CO2 has been increasing rapidly since the 

industrial revolution, which is likely to have implications for the global climate. The 

observed increase is attributed primarily to the burning of fossil fuels with 

contributions from cement manufacture, and to a lesser degree from deforestation and 

changing agricultural practices. At the same time the rate of carbon uptake by the 

ocean and the land has increased in the last decades and partly offset these trends 

(Denman et al. 2007). However, to what extent and for how long the terrestrial 

biosphere and the ocean can offset anthropogenic carbon emissions is highly 

uncertain. 

The importance of monitoring anthropogenic and natural carbon sources and 

sinks is now widely recognized, and national and international research programs are 

making efforts to address these issues (Wofsy and Harriss 2002; Denman et al. 2007). 

One of the great uncertainties in the global carbon cycle is associated with the global 

land-atmosphere flux, which is currently most reliably estimated indirectly by 

deducting the residual between fossil fuel and cement emissions and the total uptake 

by the ocean and atmosphere (Denman et al. 2007). Direct observations of the carbon 

flux via flux measurements by eddy covariance technique (Law et al. 2001) or 

biomass inventories (Goodale et al. 2002) are too sparse, given the heterogeneity of 
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terrestrial ecosystems, to provide inferences with sufficient accuracy (Denman et al. 

2007).  

Global knowledge on distribution and rate of change of biomass stored in 

forest ecosystems is crucial to reduce the uncertainties in the terrestrial carbon flux 

(Houghton 2005). Although forested biomes cover only about a third of the ice-free 

land surface, they account for 80% of the global plant biomass; most (70-80%) is 

allocated aboveground (Chapin et al. 2002). National forest inventories provide 

valuable field data on forest attributes in many countries. However, their utility for 

global-scale studies is limited, because of methodological differences and the lack of 

observations in remote regions. Consequently, the potential value of space-based 

observations is high. Satellite remote sensing is an efficient means to monitor the 

Earth’s surface in a spatially consistent way. However, mapping forest biomass has 

been challenging with existing satellite sensors (Lu 2006). 

The most promising sensor technology for remote estimation of forest biomass 

today is lidar (Hese et al. 2005), which until recently has been limited to airborne 

systems. Studies have demonstrated that airborne lidar (light detection and ranging) is 

capable of measuring forest height with high accuracy and that forest aboveground 

biomass can be accurately estimated from lidar heights (Drake et al. 2003; Lefsky et 

al. 2002; Lefsky et al. 1999; Patenaude et al. 2004). The success of lidar in forest 

environments has ultimately led to efforts in the United States (VCL: Vegetation 

Canopy Lidar mission, Blair et al. 1999) and later in Germany (Carbon-3D mission, 

Hese et al. 2005) to implement a space-based lidar mission for vegetation studies. 

Airborne simulations with the Laser Vegetation Imaging Sensor (LVIS), designed for 
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the VCL mission, showed good accuracies for estimating aboveground biomass at test 

sites in Costa Rica (RMSE1=60.02-63.17 Mg ha-1, Drake et al. 2002) and the U.S. 

(RMSE = 54.8-73.5 Mg ha-1, Hyde et al. 2005). Nevertheless, the two proposed space 

missions did not receive funding from the respective space agencies. 

In January, 2003, the Ice, Cloud and land Elevation Satellite (ICESat) was 

launched as part of NASA’s Earth Observing System (EOS) of satellites to make 

global laser observations over the polar ice sheet, the land, the ocean and the 

atmosphere over a period of 3-5 years (Zwally et al. 2002). ICESat carries a single 

sensor: the Geoscience Laser Altimeter System (GLAS). GLAS utilizes three diode 

pumped Q-switched Nd:YAG lasers operating in the near-infrared wavelength (1064-

nm) for measuring the elevation of surfaces and dense clouds and in the green 

wavelength (532-nm) for measuring the vertical distribution of clouds and aerosols. 

Each laser fires pulses over approximately month long periods three times a year 

(designated by sequential letters).  

The terrestrial component of the mission provides measurements of land 

topography and vegetation canopy heights, which represents a unique opportunity for 

global biomass research. However, since the primary objective of the ICESat mission 

is to monitor changes in elevation of the Greenland and Antarctic ice sheets, the sensor 

design is not optimal for vegetation studies. For example, GLAS has a relatively large 

laser foot-print size (64 m diameter compared to 25 m diameter proposed for the VCL 

and Carbon-3D mission), which can decrease its accuracy. Nevertheless, in a pilot 

                                                 
1 RMSE=root-mean-squared-error 



4 

 

study Lefsky et al. (2005) demonstrated that GLAS is able to predict forest height 

(RMSE= 4.85 m - 12.1 m) and biomass (RMSE=58.3 Mg ha-1).  

GLAS 

GLAS altimetry data 

GLAS uses a laser altimeter which determines the range distance between the satellite 

and the Earth’s surface by measuring the round-trip travel time of a 1064-nm leaser 

pulse emitted from the sensor. The laser foot-print on the surface is elliptical with an 

equivalent circular area of 64 m diameter (Abshire et al. 2005). An onboard GPS 

receiver and an inertial reference system (IRS) is used to determine the precise 

position and attitude of the spacecraft and reference topographic measurements to a 

global datum. The predicted accuracy for the GLAS surface elevation measurements is 

15 cm, (Zwally et al. 2002). The horizontal geolocation accuracy has varied between 

4.6 and 17.4 m (National Snow and Ice Data Center 2008). However, there are factors 

that could diminish the actual geolocation accuracy such as instrumental errors, 

atmospheric scattering and surface conditions. To provide quality assurance, the 

ICESat data products are accompanied by flags indicating the quality of the orbit and 

attitude determination (predicted or precision), the loss of GPS data, the correction 

algorithms applied to the range and the waveform-detected presence of cloud layers.  
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For each laser pulse, GLAS records the 1064-nm wavelength energy of the 

echo pulse as a function of time. Thus, the instrument does not yield a discrete 

measurement of elevation but acquires a vertical profile of the illuminated surfaces 

within the laser foot-print. The GLAS onboard digitizer records the entire laser pulse 

in 1 ns intervals, but only the transmitted portion and the surface echo are extracted 

and transmitted to the ground station (Zwally et al. 2002). Return waveforms are 

transmitted in 544 bins for ice sheets and land, and 200 bins for oceans and sea ice. 

The 544 bins of 1 ns intervals represent a range distance of 81.5 m, where 1 ns is the 

two-way travel time of the pulse corresponding to a range distance of 15 cm 

(
2

ctimerange ×
= , where c is the speed of light = 30 cm·ns-1). To extend the range 

over land surfaces to 150 m, the upper 151 bins are averaged to 4 ns intervals starting 

with laser 2 and operation period b. Global altimetry data are distributed under the 

product name GLA01.  

In addition to the “raw” altimetry data, the ICESat science team provides 

global elevation data for polar ice sheets (GLA12), sea ice (GLA13), land surfaces 

(GLA14) and oceans (GLA15). The “standard” algorithm derives mean surface 

elevation from the centroid of a single Gaussian distribution (or the larger of two) 

fitted to the waveform. Fitting a Gaussian distribution helps to diminish the effects 

from small-scale irregularities in the surface and forward scattering (Brenner et al. 

2003). The shape of the return waveform is affected by both the shape of the 

transmitted pulse and the distribution of surface heights within the laser foot-print. 

Since the transmitted waveform is Gaussian (with a 4-ns width at half the amplitude) 
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the return waveform is also close to Gaussian assuming the surface is even (no relief 

or vegetation) or the surface height variations are random, and no atmospheric 

forward scattering occurs (Brenner et al. 2003). Surface slope and roughness both 

result in a broadening of the return pulse. Thus, the variance of the Gaussian model 

can be used to make inferences on these two parameters. 

In comparison to ice sheets, sea ice and oceans, land surfaces often depict a 

complex conglomerate of slope, roughness (relief and vegetation) and varying 

reflectance properties. In particular, the presence of tall vegetation and cultural 

features can result in complex, multimodal surface height profiles. Thus, an 

“alternate” approach is employed to parameterize land waveforms (Zwally et al. 

2003).  This approach defines the elevation of the first and last detected surfaces by a 

low-amplitude threshold (signal start and signal end). In this study the threshold was 

set to the mean background noise value reported in the GLA01 product (GLAS 

product variable: d_4nsBgMean) plus 4.5 times the standard deviation of the 

background noise (GLAS product variable: d_4nsBgSDEV). The range between 

signal start and signal end is referred to as the waveform extent. Further, the extent 

of the leading and trailing edge measured from signal start and signal end, 

respectively, is defined where the waveform crosses the mean energy above the 

background noise (Lefsky et al. 2007). If the return waveform is unimodal, the 

centroid of the waveform between signal start and signal end serves as an alternate 

estimate for mean ground elevation (Harding and Carabajal 2005). An alternate 

representation of the waveform model is the sum of up to six Gaussian components 
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fitted by a least-squares algorithm (Figure 1.1 and Figure 1.2) (Brenner et al. 2003). 

The alternate waveform model is defined as: 
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where 

w(t) =  the amplitude of the waveform at time t 

Np  =  number of peaks in the waveform 

Am  =  amplitude of the mth peak 

ε  =  bias (noise level) of the waveform 

tm =  position of mth peak at time t 

σm  =  standard deviation of the mth peak  

GLAS waveforms over vegetation 

Where waveforms occur over vegetated areas, the surface height distribution 

produced by the ground reflection is mixed with the height distribution of the 

vegetation surfaces. Differentiation of the vegetation signal from the ground 

therefore becomes increasingly difficult with increasing topographic relief (slope and 

roughness). In cases of small topographic relief, separation of the vegetation from 

the ground is relatively straight forward. Small and moderate relief typically yields a 

bi- or multimodal return waveform, where the first mode or modes correspond to one 
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or multiple vegetation layers (Harding and Carabajal 2005). Assuming sufficient 

energy penetrates through canopy gaps and reaches the ground, the last mode 

corresponds to the mean ground elevation. The signal start of the waveform indicates 

the elevation of the uppermost plant surface detected. Thus, maximum canopy height 

is correlated to the distance between the signal start and the centroid of the ground 

peak (Harding and Carabajal 2005). The extent of the leading edge is related to the 

variability in height (i.e. ruggedness) of the uppermost canopy, while the extent of 

the trailing edge is related to terrain slope (Figure 1.1) (Lefsky et al. 2007). Where 

topographic relief is high, the vegetation signal is convoluted with the ground return 

and inferences on the vegetation structure are more complicated (Figure 1.2). 

Vegetation height algorithms 

As a consequence of the large laser footprint, the main challenge in 

estimating vegetation heights using GLAS waveforms is associated with areas of 

high topographic complexity in combination with high variability in vegetation 

heights and low to medium vegetation density. Figure 1.2 shows an example for a 

waveform over forest in steep terrain, where the return energy from vegetation and 

ground surfaces becomes convoluted.  Inferences on the vertical distribution of 

vegetation heights alone are not possible without making assumptions on the 

underlying ground. The first algorithms for vegetation height from Lefsky et al. 

(2005) utilized digital elevation models (DEMs) from the Shuttle Radar Topography 

Mission (SRTM) to account for the pulse broadening associated with topographic 
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slope. Lefsky et al. (2005) used coincident field data to calibrate models of 

maximum tree height as a function of waveform extent and terrain slope. The study 

demonstrated that height estimation in complex terrain is possible with GLAS. 

However, the main disadvantage of this approach was that it relied on an external 

source for terrain information that itself is biased over forested areas (Sun et al. 

2003). For forest covered areas, the C-band interferometric SAR measures a height 

within the tree canopy and therefore overestimates ground elevation. In addition to 

the positive bias introduced from using SRTM data, previous algorithms revealed a 

negative bias in some cases as the result of using maximum height as predicted 

variable. Maximum height tends to be underestimated when the topmost canopy 

surface area is not sufficiently large enough to be detected in the waveform (i.e. a 

single tall tree).  

The work reported here uses a new generation of algorithms developed by 

Lefsky et al. (2007). The revised algorithms yield estimates of mean forest height 

and account for topographic variations by incorporating additional waveform 

parameters instead of relying on auxiliary data sources. In addition to waveform 

extent, the new models include the extent of the leading and trailing edge (see Figure 

1.2). Coincident field data at three test sites (Cascades, Oregon; Appalachians, 

Tennessee; Amazon, Brazil) and high resolution airborne lidar data at two test sites 

(Bartlett Experimental Forest, New Hampshire; Tahoe National Forest, California) 

were used for model calibration. Height estimates correspond to the mean height of 

the dominant and co-dominant trees for field sites and mean canopy height for sites 

with airborne lidar data. The regression models reported in Lefsky et al. (2007) 
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estimate a “correction factor” (cf), which is subtracted from the waveform extent to 

obtain an estimate of mean height. The equation for the cf is as follows: 

 

cf = 8.96 + 1.52 lf + 1.14 tf – offset (2) 

 

where offset is a constant to account for differences between test sites. In this study, 

two correction factors were calculated using the offset from the test site in the 

Cascades, Oregon (offset=4.83) and the test site in the Appalachians, Tennessee 

(offset=1.15). Lf and tf denote the trailing and leading edge correction factor, a 

transformation of the trailing and leading edge extent, respectively: 

 

32 4.141715.20495.8892.04.3
extent

trail
extent

trail
extent
trailtrailtrailtf −++−⋅+=  (3) 

 
 

extent
leadleadlf 8.2272.0 −⋅=  (4) 

 
 
where 
 lead  = leading edge extent 

 trail  = trailing edge extent 

 extent  = waveform extent 
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Summary 

Despite the challenges associated with high topography, GLAS currently 

provides the most promising approach for globally consistent observations of forest 

height and biomass from space. Recent studies have achieved good accuracies for 

estimating forest height (RMSE = 4.85-12.66 m, Lefsky et al. 2005; RMSE= 5 m, 

Lefsky et al. 2007) and biomass (RMSE=58.3 Mg ha-1, Lefsky et al. 2005) at test sites 

across North and South America. However, whether the developed concepts are valid 

at larger spatial scales has yet to be determined. The study presented here examined 

the utility of GLAS data for large-scale biomass inventories at two large forested 

regions in the United States. Using GLAS for remote sensing of biomass is a novel 

approach that may greatly advance our knowledge on terrestrial carbon stores. As part 

of NASA’s Terrestrial Ecology Program, this study aimed to advance the knowledge 

on state-of-the-art remote sensing and its potential contribution to global terrestrial 

ecosystem science. 



12 

 

References 

Abshire, J.B., X.L. Sun, H. Riris, J.M. Sirota, J.F. McGarry, S. Palm, D.H. Yi, and P. 
Liiva. 2005. Geoscience Laser Altimeter System (GLAS) on the ICESat 
mission: On-orbit measurement performance. Geophys. Res. Lett. 
32(21):doi:10.1029/2005GL024028. 

Blair, J.B., D.L. Rabine, and M.A. Hofton. 1999. The Laser Vegetation Imaging 
Sensor: a medium-altitude, digitization-only, airborne laser altimeter for 
mapping vegetation and topography. ISPRS J. Photogramm. 54(2-3):115-122. 

Brenner, A., H.J. Zwally, C. Bentley, B. Csathó, D.J. Harding, M.A. Hofton, J.-B. 
Minster, L. Roberts, J.L. Saba, R.H. Thomas, and Y. Donghui. 2003. Derivation 
of range and range distributions from laser pulse waveform analysis for surface 
elevations, roughness, slope, and vegetation heights. Algorithm Theoretical 
Basis Document 4.1. Available online at 
http://www.csr.utexas.edu/glas/atbd.html; last accessed Sep. 15, 2007. 

Chapin, F.S., P.A. Matson, and H.A. Mooney. 2002. Principles of terrestrial 
ecosystem ecology. Springer, New York. xiv, 436 p. p. 

Denman, K.L., G. Brasseur, A. Chidthaisong, P. Ciais, P.M. Cox, R.E. Dickinson, D. 
Hauglustaine, C. Heinze, E. Holland, D. Jacob, U. Lohmann, S. Ramachandran, 
P.L. da Silva Dias, S.C. Wofsy, and X. Zhang. 2007. Couplings between 
changes in the climate system and biogeochemistry. P. 499-587 in Climate 
change 2007: The physical science basis. Contribution of working group I to the 
fourth assessment report of the Intergovernmental Panel on Climate Change, 
Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. 
Tignor, and H.L. Miller (eds.). Cambridge University Press, Cambridge, United 
Kingdom and New York, NY, USA. 

Drake, J.B., R.O. Dubayah, D.B. Clark, R.G. Knox, J.B. Blair, M.A. Hofton, R.L. 
Chazdon, J.F. Weishampel, and S.D. Prince. 2002. Estimation of tropical forest 
structural characteristics using large-footprint lidar. Remote Sens. Environ. 79(2-
3):305-319. 

Drake, J.B., R.G. Knox, R.O. Dubayah, D.B. Clark, R. Condit, J.B. Blair, and M. 
Hofton. 2003. Above-ground biomass estimation in closed canopy Neotropical 
forests using lidar remote sensing: factors affecting the generality of 
relationships. Global Ecol. Biogeogr. 12(2):147-159. 



13 

 

Goodale, C.L., M.J. Apps, R.A. Birdsey, C.B. Field, L.S. Heath, R.A. Houghton, J.C. 
Jenkins, G.H. Kohlmaier, W. Kurz, S.R. Liu, G.J. Nabuurs, S. Nilsson, and A.Z. 
Shvidenko. 2002. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 
12(3):891-899. 

Harding, D.J., and C.C. Carabajal. 2005. ICESat waveform measurements of within-
footprint topographic relief and vegetation vertical structure. Geophys. Res. Lett. 
32(21):doi:10.1029/2005GL023471. 

Hese, S.M., W. Lucht, C. Schmullius, M. Barnsley, R. Dubayah, D. Knorr, K. 
Neumann, T. Riedel, and K. Schröter. 2005. Global biomass mapping for an 
improved understanding of the CO2 balance - the Earth observation mission 
Carbon-3D. Remote Sens. Environ. 94:94-104. 

Houghton, R.A. 2005. Aboveground forest biomass and the global carbon balance. 
Glob. Change Biol. 11(6):945-958. 

Hyde, P., R. Dubayah, B. Peterson, J.B. Blair, M. Hofton, C. Hunsaker, R. Knox, and 
W. Walker. 2005. Mapping forest structure for wildlife habitat analysis using 
waveform lidar: Validation of montane ecosystems. Remote Sens. Environ. 
96(3-4):427-437. 

Jenkins, J.C., D.C. Chojnacky, L.S. Heath, and R.A. Birdsey. 2003. National-scale 
biomass estimators for United States tree species. For. Sci. 49(1):12-35. 

Law, B.E., P.E. Thornton, J. Irvine, P.M. Anthoni, and S. Van Tuyl. 2001. Carbon 
storage and fluxes in ponderosa pine forests at different developmental stages. 
Glob. Change Biol. 7(7):755-777 

Lefsky, M.A., W.B. Cohen, D.J. Harding, G.G. Parker, S.A. Acker, and S.T. Gower. 
2002. Lidar remote sensing of above-ground biomass in three biomes. Global 
Ecol. Biogeogr.  11(5):393-399. 

Lefsky, M.A., D. Harding, W.B. Cohen, G. Parker, and H.H. Shugart. 1999. Surface 
lidar remote sensing of basal area and biomass in deciduous forests of eastern 
Maryland, USA. Remote Sens. Environ. 67(1):83-98. 

Lefsky, M.A., D.J. Harding, M. Keller, W.B. Cohen, C.C. Carabajal, F.D. Espirito-
Santo, M.O. Hunter, R. de Oliveira, and P.B. de Camargo. 2005. Estimates of 
forest canopy height and aboveground biomass using ICESat. Geophys. Res. 
Lett. 32(22):doi:10.1029/2005GL023971. 

Lefsky, M.A., M. Keller, Y. Pang., P.B. de Camargo, M.O. Hunter. 2007. Revised 
method for forest canopy height estimation from Geoscience Laser Altimeter 
System waveforms. J. Appl. Rem. Sens. 1(1): 1(1):013537-18 



14 

 

Lu, D.S. 2006. The potential and challenge of remote sensing-based biomass 
estimation. Int. J. Remote Sens. 27(7):1297-1328. 

National Snow and Ice Data Center, Laser Operational Periods - Attributes, Available 
at: http://nsidc.org/data/icesat/glas_laser_ops_attrib.pdf (access 2 January 2008). 

Patenaude, G., R.A. Hill, R. Milne, D.L.A. Gaveau, B.B.J. Briggs, and T.P. Dawson. 
2004. Quantifying forest above ground carbon content using LiDAR remote 
sensing. Remote Sens. Environ. 93(3):368-380. 

Sun, G., K.J. Ranson, V.I. Khairuk, and K. Kovacs. 2003. Validation of surface height 
from shuttle radar topography mission using shuttle laser altimeter. Remote 
Sens. Environ. 88(4):401-411. 

Wofsy, S.C., and R.C. Harriss. 2002. The North American Carbon Program (NACP). 
Report of the NACP Committee of the U.S. Interagency Carbon Cycle Science 
Program US Global Change Research Program. 75. 

Zwally, H.J., B. Schutz, W. Abdalati, J. Abshire, C. Bentley, A. Brenner, J. Bufton, J. 
Dezio, D. Hancock, D. Harding, T. Herring, B. Minster, K. Quinn, S. Palm, J. 
Spinhirne, and R. Thomas. 2002. ICESat's laser measurements of polar ice, 
atmosphere, ocean, and land. J. Geodyn. 34(3-4):405-445. 

http://nsidc.org/data/icesat/glas_laser_ops_attrib.pdf


15 

 

Figures 

 
 

 
 

Figure 1.1. Bimodal GLAS waveform over forest land with small topographic slope. 
The first peak represents the canopy layers and the last peak represents the ground 
surface. Signal start and signal end are the first and last crossing of a low-amplitude 
threshold. The extent of the leading and trailing edge (light blue area) is defined where 
the waveform crosses the mean energy level within the waveform extent after the 
signal start and before the signal end, respectively. The “alternate” model form of the 
waveform (red line) is the sum of up to six Gaussian distributions (green lines) fitted 
to the six largest (by area) peaks. The centroid of the last Gaussian peak is used to 
estimate the mean ground elevation. 
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Figure 1.2. Unimodal GLAS waveform over forest land with steep terrain. Signal start 
and signal end represent the first and last crossing of a low-amplitude threshold. The 
extent of the leading and trailing edge (light blue area) is defined where the waveform 
crosses the mean energy level within the waveform extent after the signal start and 
before the signal end, respectively. The “alternate” model form of the waveform (red 
line) is the sum of up to six Gaussian distributions (green lines) fitted to the six largest 
(by area) peaks. The centroid of the waveform between signal start and signal end is 
an (alternate) estimate for the mean elevation of the ground surface. 
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Abstract 

Accurate estimates of forest aboveground biomass are needed to reduce 

uncertainties in global and regional terrestrial carbon fluxes. In this study we 

investigated the utility of the Geoscience Laser Altimeter System (GLAS) onboard the 

Ice, Cloud and land Elevation Satellite for large-scale biomass inventories. GLAS is 

the first spaceborne lidar sensor that will provide global estimates of forest height. We 

compared accuracy and regional variability of GLAS height estimates with data from 

the U.S. Forest Service Inventory and Analysis (FIA) program and found that current 

GLAS algorithms provided generally accurate estimates of height. GLAS heights were 

on average 2.4 m  lower than FIA estimates in a conifer dominated study region and 

3.3 m lower than FIA estimates in a broadleaf tree dominated study region. To 

translate GLAS-estimated heights into forest biomass requires general allometric 

equations. Analyses of the regional variability of forest height–biomass relationships 

using FIA field data indicate that general non-species-specific equations can be 

applied without a significant loss of prediction accuracy. We developed biomass 

models from FIA data and applied them to the GLAS-estimated heights. Regional 

estimates of forest biomass from GLAS differed between 39.7 – 58.2 Mg ha-1 (18% - 

27%) when compared to FIA.  
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Introduction 

Accurate estimates of forest biomass, its spatial distribution and rate of change 

are required to quantify global and regional terrestrial carbon fluxes, and to formulate 

mitigation strategies for current and future greenhouse gas emissions. Current 

observations of terrestrial carbon flux are too sparse and the ecosystems are too 

heterogeneous to allow global assessment of the net biospheric flux with sufficient 

accuracy (Denman et al. 2007). National inventories provide the most extensive field 

observations and thus have been a key information source in many carbon studies 

(Goodale et al. 2002). However, the lack of field surveys in remote areas like the 

tropics and northern latitudes as well as methodological differences, raise uncertainties 

when carbon statistics are aggregated to the global scale (Houghton 2005). In addition 

most inventories are designed to provide inferences on the basis of administrative 

units or large regions. This is an important limitation, as information on carbon flux is 

needed on a spatial scale small enough to be linked to individual landscape units (i.e. 

forest stands) as they undergo natural disturbances, succession or land-use changes 

(Houghton 2005).  

While spatially explicit and consistent earth observations are a primary 

strength of satellite remote sensing, remotely sensed estimation of forest biomass 

remains a challenging task (Lu 2006). Aboveground biomass is a three dimensional 

variable. Hence, the capability of satellite sensors to provide accurate estimates 

depends on their ability to discriminate vertical forest structure. Many studies have 

demonstrated that canopy reflectance (Dong et al. 2003; Labrecque et al. 2006) and 
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radar backscatter (Ranson et al. 1997) are correlated with aboveground biomass. 

However, both are two-dimensional measures and become asymptotic with canopy 

closure, limiting their ability to predict biomass in high biomass forests (Imhoff et al. 

1998; Turner et al. 1999). Lidar and interferometric synthetic aperture radar (InSAR) 

are both promising technologies in that they provide a measure of the vertical 

structure. Since forest biomass is directly related to height (Drake et al. 2002; Lefsky 

et al. 1999; Lefsky et al. 2005a; Woodhouse 2006), lidar and InSAR represent more 

robust tools to determine biomass consistently across large areas. Nevertheless, InSAR 

has not yet achieved accuracies comparable to lidar (Treuhaft et al. 2004). 

A spaceborne lidar mission is currently the most promising approach for 

accurate and globally consistent sampling of forest height and biomass. The 

Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land 

Elevation Satellite (ICESat) is the first lidar mission to acquire global measurements 

of vegetation height (Zwally et al. 2002). Height estimates have been obtained by 

means of empirical algorithms developed at seven training sites in North and South 

America (Lefsky et al. 2005a; Lefsky et al. 2007). Training sites were selected to 

cover a range of biomes and topographic conditions. To be regionally applicable the 

generality of the estimation algorithms must be tested. 

Another potential source of uncertainty in GLAS-based biomass estimation is 

determined by the degree to which environmental factors such as tree species 

composition, stand structure and site conditions affect the relationship between lidar-

height and forest biomass. To convert GLAS-estimated vegetation heights into 

estimates of forest biomass on a large geographic scale will require general allometric 
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equations that are applicable over a range of forest types and conditions. Regional to 

global-level studies do not have the detailed information available as local-level 

studies. However, empirical knowledge on the relationships between lidar-derived 

canopy height metrics and total aboveground biomass of all trees within the laser foot-

print currently exists only locally (e.g. Drake et al. 2002; Lefsky et al. 2005a). 

Consequently, there is a need for developing regionally to globally applicable 

allometric equations. 

The goal of this study was to investigate the applicability of GLAS data for 

conducting regional and global forest biomass inventories. The applicability of GLAS 

data to broader areas primarily depends on two factors: the regional accuracy of GLAS 

height estimates and the accuracy of height-to-biomass allometry. In this study we 

investigated these two factors using GLAS data and extensive field data from the U.S. 

Forest Service, Forest Inventory and Analysis (FIA) program for two large regions. 

Our objectives were to 1) evaluate the regional applicability of GLAS height 

estimation algorithms, 2) develop and evaluate regional models of height and biomass 

relationships, and 3) evaluate regional estimates of forest biomass derived from 

GLAS-estimated heights. 

Methods 

Ideally, to evaluate the accuracy of height and biomass estimates, we would 

use reference data that has co-located GLAS waveforms and field-based height and 

biomass measurements. However, this approach is costly and therefore only feasible 
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for a small sample of waveforms (i.e. for algorithm training sites). To validate the 

accuracy of GLAS estimates over a large geographic region therefore requires a 

different approach. Alternatively, national forest inventories provide extensive field 

measurements of forest height and biomass that can be used to validate GLAS 

estimates on a regional level. 

In this study we used an approach that compared regional estimates of forest 

height derived from GLAS waveforms with regional estimates from FIA (objective 1). 

FIA data was used to develop plot-level height-biomass models (objective 2), which 

we applied to the GLAS-estimated heights and compared the resulting biomass 

estimates with estimates from FIA (objective 3).The region of applicability of height 

and biomass models within the study regions was evaluated by grouping FIA and 

GLAS samples into ecologically meaningful strata.  

Study Regions 

Our research was focused on the Cascade Mountains in the Pacific Northwest 

region and the Appalachian Mountains in the eastern U.S. (Figure 2.1). These two 

regions play an important role in the terrestrial carbon cycle and span a wide range of 

topographic and floristic conditions. The forests in the Cascades study region are 

mainly comprised of needleleaf trees, with Douglas-fir (Pseudotsuga menziesii) being 

the dominant species, followed by Sitka spruce (Picea sitchensis), mountain hemlock 

(Tsuga mertensiana) and lodgepole pine (Pinus contorta). In the Appalachian study 

region, broadleaf deciduous species dominate (e.g. oak and hickory species).  
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The precise study region boundaries were determined based on inventory data 

availability and the geographic extent of ecological sections and subsections (Table 

2.1) as defined by the Forest Service (McNab and Avers 1994). Due to limited 

availability of recent statewide forest inventory data at the time of this analysis, the 

Cascades study region was confined to the state of Oregon. Similarly, the northern 

boundary of the Appalachian study region is bounded by the state borders of Kentucky 

and Virginia.  

GLAS data 

The Geoscience Laser Altimeter System (GLAS) includes a waveform 

digitizing lidar sensor. The instrument emits a laser pulse with an approximate ground 

footprint of 64 m (Abshire et al. 2005). Within each footprint, laser energy is reflected 

back by all intercepting surfaces, resulting in a waveform that represents a vertical 

height profile of laser-illuminated surfaces. 

In flat terrain and homogeneous forests, stand height is closely related to 

waveform extent, which is defined as the vertical distance between the first and last 

elevations at which the waveform energy exceeds a threshold level (Harding and 

Carabajal 2005). However, due to the relatively large GLAS footprint, the separation 

of the ground return from the vegetation surfaces is complicated in steep terrain and 

heterogeneous forest cover (Lefsky et al. 2005a). The first algorithm that accounted 

for terrain effects incorporated a digital elevation model (Lefsky et al. 2005a), and was 
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a proof-of-concept that vegetation heights and biomass can be predicted from GLAS 

waveforms under complex terrain conditions. 

The study presented here utilizes a new generation of height algorithms that do 

not require auxiliary topographic information, but are based solely on the properties of 

the waveform (Lefsky et al. 2007). The height algorithms are calibrated to estimate the 

mean height of the dominant/co-dominant trees using field plots that coincide with 

GLAS samples. The coincident field plots that were used to train the height algorithms 

for the Cascades and Appalachian study regions are located in the Willamette National 

Forest and the Great Smoky Mountain National Park, respectively (see Lefsky et al. 

2007).  

Forest inventory data 

Recent, annual field data from the U.S. Forest Service FIA program was used 

as reference data set, as it provides a consistent and extensive data source suitable for 

large scale studies. In the last decade, FIA has gradually moved from a periodic 

sampling scheme that was regionally specific to a nationally consistent, annual 

sampling scheme (McRoberts et al. 2005). The new annual forest inventory is based 

on a 5 to 10 year measurement cycle, but delivers a complete systematic sample for 

each state on a yearly basis.  

Field data are collected by FIA on permanent plots. Each field plot consists of 

a set of four circular subplots, over which most tree measurements are taken. Trees 

with a diameter at breast height (dbh) of 12.5 cm and larger are measured within a 7.3-
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m fixed radius, saplings (2.5 to 12.5 cm dbh) are measured on a 2-m microplot, and 

large trees (dbh > 102 cm) are measured on an 18-m fixed-radius macroplot. For each 

plot, FIA field crews assign one or multiple condition classes based on a series of 

predetermined discrete variables such as land use, forest type, stand size, tree density 

and ownership (Bechtold and Scott 2005). To avoid boundary plots (i.e. between 

forest/non-forest, forest types or distinctly different successional stages) we selected 

only plots where all four subplots were located completely on forest land and in the 

same condition class (Table 2.2).  

Tree heights are measured in the field as the total length of a tree from the 

ground to the tip of the apical meristem. In some cases heights are visually estimated. 

Trees with estimated heights represented only a small proportion in this study (at 

average 3.6% per plot).  For each plot, we calculated mean height of open grown, 

dominant and co-dominant trees (dcd-height), as this height metric was used to 

calibrate GLAS waveforms. Identification of dominant and co-dominant trees is based 

on the FIA crown class classification, which describes the position of a tree within the 

upper canopy layer (USDA Forest Service 2006). In addition to dcd-height, we 

computed maximum height, as the height of the tallest tree, and mean height of all 

trees with dbh greater than 2.5 cm.  

We estimated total aboveground (oven-dry weight) biomass of all live trees 

(dbh 2.5 cm and larger) for each inventory plot from a set of ten allometric equations 

developed for large-scale studies (Jenkins et al. 2003). The “Jenkins equations” 

distinguish between four hardwood and six softwood species groups and use a simple 

log-linear regression model with dbh as predictor variable. Although FIA also reports 
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total aboveground tree mass, these estimates are based on regional volume tables or 

models. Methodological differences (e.g., model form, parameter attributes and 

nonlinear regression method) between FIA districts have been found to introduce 

regional biases (Hansen 2002). Conversely, the Jenkins equations are consistent in the 

way trees of defined dimension and species are treated across the U.S. On rare 

occasions, trees have been measured at root collar (instead of dbh); in these cases the 

FIA biomass estimate was used. To obtain plot-level estimates of live aboveground 

biomass (Mg ha-1), we multiplied the tree biomass values with a trees-per-acre 

expansion factor reported by FIA and calculated the sum of the biomass of all live 

trees per plot. 

Estimation of regional parameters 

We derived regional estimates of mean forest height and biomass from FIA and GLAS 

samples using simple and stratified estimation. Both methods require a probability 

sampling design, e.g. random or systematic sample selection. FIA uses a systematic 

sample on a hexagonal grid with an approximate spacing of 5.3 km, which is expected 

to produce a random, equal probability sample (Scott et al. 2005). We calculated 

stratified estimates of means ( y ) and standard errors (SE) using the standard formulae 

from (Cochran 1977), ignoring finite population correction factors: 

∑
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where hy  and 2
hs  depict the mean and variance, and hw  and nh depict the weight and 

sample size of stratum h, respectively. Stratum weights were computed from digital 

maps showing forest/non-forest, forest type groups and ecological subsections 

(described in section 2.5). In case of simple estimation, H and hw are equal to 1. 

Like FIA, GLAS features systematic sampling. In contrast to airborne lidar 

instruments, GLAS does not provide images of canopy height, but takes samples along 

transects (orbit tracks) every 172 m (center to center footprint spacing). The orbit 

tracks form a non-orthogonal grid spaced 14.5 km at the equator and 7 km at 60 

degrees latitude (Zwally et al. 2002). GLAS waveforms tend to saturate under cloudy 

sky conditions. Hence, the actual sampling density of cloud-free waveforms can vary. 

We applied the GLAS height algorithms from Lefsky et al. (2007) to 18,346 

cloud-free waveforms in the Cascade region and to 24,050 waveforms in the 

Appalachian study region acquired between October 2003 and November 2006. 

However, GLAS samples are very dense along transects such that neighboring 

observations could be spatially autocorrelated. The occurrence of spatial 

autocorrelation would violate the assumption of independence among samples. As a 

result the sample mean computed for GLAS-derived forest height and biomass would 

not be an unbiased estimator and the variance would be underestimated. To avoid 

spatial autocorrelation we randomly selected waveforms with the requirement to be at 

least 2 km apart. We determined the minimum spacing based on the range of a 
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semivariogram from GLAS height estimates for each study region. We repeated 

sampling of the GLAS data 1000 times for simple and stratified random estimation 

and calculated the mean of each sample using the same formulas as we used for FIA. 

Thus, repeated sampling allowed us to construct a sampling distribution of the mean 

parameter. Mean and standard deviation of that sampling distribution were used as 

estimates of the population mean (equation 3) and its standard error (equation 4). 

 ∑
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where ry  is a simple or stratified mean for sample r; and Gy  and )( GySE  is an 

estimate of the population mean and standard error derived from R=1000 samples, 

respectively. 

Regional applicability of GLAS height algorithms 

We evaluated the regional performance of GLAS height algorithms by 

comparing the frequency distributions of GLAS-estimated heights and FIA-estimated 

dcd-heights for each study region. GLAS heights less than 2 m and over non-forest 

land (National Land Cover Data, NLCD 2001) were omitted from the analysis. The 

NLCD is a Landsat-based land cover map for the conterminous United States that 
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distinguishes these forest classes: deciduous, evergreen and mixed forests as well as 

woody wetlands. We further compared mean FIA and GLAS estimates by forest type 

group and ecological subsection. The two variables are reported in the FIA database 

and are also available as geospatial data layers. We used the latter to determine the 

respective membership for the GLAS samples. 

Forest type groups are aggregations of forest types into ecological groupings 

(Eyre 1980). The Forest Service distinguishes 28 national forest type groups. Forest 

types are specified by FIA for each plot condition. Since we analyzed only plots with 

unique condition classes, each plot was associated with a single forest type group. The 

corresponding spatial layer is a thematic map produced with data from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) acquired in 2001 at a spatial 

resolution of 250 m (http://svinetfc4.fs.fed.us/) (Ruefenacht et al. in press). We used 

this map to determine forest type groups for the GLAS samples. 

While the comparison by forest type groups explores the effect of tree species 

and species groups on the performance of the GLAS algorithm, the meaning of 

ecological subsections is more complex. Ecological subsections are geographic 

regions of similar surficial geology, lithology, geomorphic process, soil groups, 

subregional climate, and potential natural communities (USDA Forest Service 2006). 

A vector layer is available for download at 

http://ncrs2.fs.fed.us/4801/fiadb/fiadb_documentation/FIADB_DOCUMENTATION.

htm (last accessed August 3, 2007). 

Assuming FIA provided an unbiased estimate of the mean height for each 

stratum, we calculated the bias of the GLAS estimate as the difference between the 

http://svinetfc4.fs.fed.us/
http://ncrs2.fs.fed.us/4801/fiadb/fiadb_documentation/FIADB_DOCUMENTATION.htm
http://ncrs2.fs.fed.us/4801/fiadb/fiadb_documentation/FIADB_DOCUMENTATION.htm
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GLAS and FIA mean. To obtain reliable stratified estimates, a minimum of five plots 

per stratum are recommended by FIA (McRoberts 2006). Therefore, forest type groups 

with fewer than five plots were omitted from this analysis (see Table 2.3 for sample 

sizes). No ecological subsections contained less than 5 plots.  

For each ecological subsection we determined mean slope and elevation from a 

30-m digital elevation model to explore potential biases introduced by differences in 

terrain conditions. Also, given the size of the study regions, there may be biases that 

are indirectly related to the distance of the GLAS samples from the source of the 

height calibration dataset. To test for this effect, the proximity of each ecological 

subsection to the training site for the height calibration dataset was calculated (as the 

Euclidean distance between the geographic center of each subsection and the 

geographic center of the subsection containing the training data). Proximity was only 

calculated for the Appalachian study region. Due to the spatial arrangement and low 

number of ecological subsections in the Cascades region, a proximity measure was not 

meaningful. 

Regional applicability of height-biomass allometry 

The regional applicability of height-based allometric equations to predict forest 

biomass largely depends on the site-specific variability in the relationship between 

plot-level height and biomass. For each study region, we developed height-based 

biomass regression models using FIA plot data, and then tested the region of model 
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applicability (as for the height algorithms) using information on forest type groups and 

ecological subsections. 

To develop a basic height-biomass model, we performed a logarithmic 

transformation of the predictor and response variables and applied a linear regression 

model of the form: 

 

f(AGBM) =  exp( β0 + β1 ln height ) (5) 

 

where  

AGBM  =  total aboveground (oven-dry weight) biomass (Mg ha-1) including 

all live trees (dbh 2.5 cm and larger) 

height  =  maximum/mean/dcd-height (m) 

exp  =  exponential function 

ln  = log base e (2.718282) 

 

We then included the factors forest type group and ecological subsection using 

indicator variables and multiple linear regression models with and without interaction 

terms. Adding these variables permitted the mean response (biomass) in the models to 

vary with different levels of the factors. We evaluated all models based on several 

statistics: the model’s coefficient of determination, and the root-mean-squared-error 

(RMSE) and bias of the predicted versus observed values. Whereas the coefficient of 

determination is a measure of the strength of the model fit, RMSE and bias quantify 

the model’s prediction accuracy. These were calculated as: 
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When factors are included in regression models, the sample is partitioned into 

groups according to the number of factor levels. As a result some of the groups may 

contain only few observations.  To assure an adequate sample size for each factor 

level, we excluded forest type groups and ecological subsections with fewer than ten 

observations. As a result, four out of ten and seven out of ten forest type groups 

remained for analysis in the Cascade and Appalachian study region, respectively (see 

Table 2.3 for sample sizes). In addition, one of the thirty three ecological subsections 

located in the Appalachian region was removed. 

We developed and tested regression models based on mean dcd-height, 

maximum and mean height, respectively. Since GLAS provides estimates of dcd-

height, empirical relationships between biomass and this height metric were of 

primary interest. However, we also developed models using maximum and mean 

height as predictor variables and compared their performance. 
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Regional estimates of forest biomass 

To estimate forest biomass for each GLAS sample, we calibrated plot-level 

height-biomass models using FIA data and applied the “best” regional model to the 

GLAS estimates of height. Then we calculated and compared mean estimates of forest 

biomass from GLAS and FIA data using simple and stratified estimation by forest type 

groups and ecological subsections. Forest area for the ecological subsections was 

determined from the NLCD 2001.  

Since a minimum of five plots per stratum is considered necessary for reliable 

stratified estimates (McRoberts 2006), we combined strata with fewer than five plots 

with ecologically similar strata. For FIA estimates in the Cascade region, we 

combined the western white pine and the other western softwoods group with the 

ponderosa pine group, and the alder/maple and tanoak/laurel group with the other 

western hardwoods group. In the Appalachian region it was necessary to pool together 

the longleaf/slash pine group with the loblolly/shortleaf pine group. For stratified 

GLAS estimates we combined the California mixed conifer group and the ponderosa 

pine group with the lodgepole pine group, the western oak group with the alder/maple 

group and the longleaf/slash pine group with the loblolly/shortleaf pine group. 
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Results 

Regional applicability of GLAS height algorithms 

Repeated random sampling from the GLAS data resulted for each study region 

in 1000 subsamples with an average sample size of 863 and 1948 shots for the 

Cascade and Appalachian region, respectively. The FIA sample consisted of 362 forest 

plots in the Cascades and 3054 forest plots in the Appalachian study region. 

Comparison of the frequency distributions of GLAS heights, which show the mean 

frequency of 1000 sample distributions, with frequency distributions from FIA 

suggests that the GLAS algorithms are generally accurate predictors of mean dcd-

height (Figure 2.2). 

In the Cascade region, the GLAS estimate of mean forest height was 25.3 m (± 

0.5 m 95% confidence interval), which is 2.4 m lower than the FIA estimate of the 

mean (27.7 m ± 1.4 m). The agreement is higher between the medians of the two 

distributions (difference of 0.8 m), and also very good between the maximum heights 

(FIA: 65.7 m, GLAS mean of all subsample maxima: 64.7 m, GLAS maximum of all 

waveforms: 69.7 m). However, the frequency of FIA heights was higher in the height 

range between 30 m and 55 m compared to GLAS. 

In the Appalachian region the GLAS estimate of mean forest height was 3.3 m 

lower than the FIA estimate (GLAS: 17.3 m ± 0.2 m; FIA: 20.6 m ± 0.2 m). Both 

frequency distributions are symmetric and exhibit similar standard deviations (FIA: 

5.8 m, GLAS: 6.5 m). The maximum observed height of the 1000 GLAS subsamples 
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was 51.6 m (or 58.5 m when all GLAS waveforms are considered). Compared to FIA 

(39.8 m), this is a difference of 11.8 m. However, the majority of height estimates 

were within a similar range. 98% of the height estimates were between 3.4 m - 34.0 m 

(GLAS) and between 4.6 m – 33.4 m (FIA), respectively.  

Examination of GLAS height distributions sampled by forest type groups 

revealed no substantive bias associated with tree species composition (Table 2.3). In 

the Cascade region, differences between GLAS and FIA heights varied from -5.4 m to 

-1.7 m for forest types with more than 5 plots. The bias of the Douglas-fir group, 

which was associated with the GLAS training plots, is nearly equivalent to the average 

bias across forest types (-4.5 m). Largest differences were observed in forest type 

groups with small sample sizes from FIA and GLAS (hemlock/Sitka spruce group and 

lodgepole pine group). The results are similar in the Appalachian region with biases 

varying between -6.4 m and 0.1. In comparison, biases of the forest type groups 

associated with the training plots were -1.6 m and -4.0 m (oak/pine group and 

oak/hickory forest group, respectively). Again, largest differences occurred in groups 

with small sample sizes (oak/gum/cypress group and elm/ash/cottonwood group). 

Analyzing the mean differences between FIA and GLAS-estimated heights by 

ecological subsection revealed no association between biases and median topographic 

slope, median elevation or proximity to training data set (Figure 2.3 a-c). In the 

ecological subsection containing the training plots of the Appalachian region for 

example, GLAS estimated heights were on average -3.4 m lower than FIA heights. In 

comparison, we determined a difference of -4.0 m for the most distant subsection. 

Again, the largest biases occurred in subsections with limited FIA plot representation 
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(as in the forest type groups). These subsections also exhibited the largest standard 

errors in the GLAS and FIA estimates (Figure 2.3 d-f). 

The regional applicability of height-biomass models 

Empirical analysis of the height-biomass relationships revealed that the general 

region-specific allometic equations predicted biomass with accuracies comparable to 

forest-type-specific and ecological-subsection-specific equations. All regression 

models performed similarly across the study regions, in that there were only slight 

differences in model fit and prediction accuracy by factor and factor level (Table 2.4). 

The coefficient of determination of models using dcd-height (mean height of 

dominant/co-dominant trees), for example, varied between 0.74 and 0.77 in the 

Cascades study region, and between 0.60 and 0.64 in the Appalachian study region. 

Model fit and prediction accuracy improved in both regions when variations in forest 

type and ecological subsection were taken into account; however, these improvements 

were minimal. For example, RMSE’s decreased between 6.6 - 12.2 Mg·ha-1 in the 

Cascades region and between 2.9 - 3.8 Mg·ha-1 in the Appalachian region, depending 

on the height metric used. These amounts correspond to less than 1% of the maximum 

observed aboveground biomass in each study area (1455.2 Mg·ha-1 and 541.1 Mg·ha-1 

in the Cascades and Appalachians, respectively).  

The performance of models using dcd-height was similar to models based on 

mean or maximum height. However, differences were greater in the Cascade region 

with higher biomass forests than in the Appalachian region. In the Cascade region, 
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prediction accuracies of maximum-height-models were between 0.8 and 6.0 Mg·ha-1 

better than the accuracies of dcd-height-models. Conversely, maximum height 

produced biases two to three times as high as the biases observed with dcd-height. 

Finally, models using mean height were least accurate with RMSE values between 

32.5 and 41.4 Mg ha-1 greater than the RMSE values for dcd-height models. In the 

Appalachian region, differences between all height metrics were minimal, and did not 

exceed 1.7 Mg·ha-1.  

Regional biomass estimates 

To obtain regional estimates of mean aboveground biomass, we applied the 

regional biomass models based on FIA data to the GLAS heights. Since accounting for 

variations in ecological subsections and forest type groups did not improve the 

prediction accuracy of the models significantly, we proceeded with the simplest model 

that used mean dcd-height as a single predictor variable. This time, however, we 

included plots from all forest type groups and ecological subsections. The resulting 

models explained 74% and 60% of the variation in the FIA biomass data in the 

Cascade and Appalachian region, respectively. The equations are as follows (standard 

errors in square brackets): 

 

AGBMC = exp(0.156 [0.168] + 1.665 [0.052] · ln dcd-height)  (8) 

 

AGBMA = exp(-0.484 [0.079] + 1.777 [0.026] · ln dcd-height) (9) 
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where:  

AGBMC and AGBMA =  total aboveground (oven-dry weight) biomass (Mg ha-1) 

for the Cascade and Appalachian region, respectively 

dcd-height   =  mean height of the dominant/co-dominant trees (m) 

exp   =  exponential function 

ln   =  logarithm base e (2.718282) 

 

The Cascade model had a bias of -2.66 Mg ha-1 and yielded an RMSE of 174.7 

Mg ha-1, which corresponds to 12.0% of the maximum observed biomass value. In 

comparison, the bias of the Appalachian model was -7.52 Mg ha-1 with an RMSE of 

60.6 Mg ha-1 or 11.2% of the maximum biomass of this region (Figure 2.4). 

Table 2.5 shows the regional estimates of biomass from GLAS and FIA data 

based on simple and stratified estimation. Simple estimates of biomass from GLAS 

were 40.9 and 58.2 Mg ha-1 lower than estimated by FIA in the Appalachian and 

Cascade region, respectively. Stratification by forest type or ecological subsection did 

not decrease standard errors of the estimates or the discrepancy between FIA and 

GLAS significantly. The results are in agreement with our previous findings (section 

3.1), that differences between FIA- and GLAS-estimated heights are not explained by 

this type of stratification. 
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Discussion 

In this study, we validated the regional applicability of height algorithms for 

the GLAS sensor. The height algorithms used here correspond to two training sites 

located in the Cascade and Appalachian region in the U.S. According to Lefsky et al. 

(2007), GLAS algorithms explained 90% (Cascades) and 40% (Appalachians) of the 

variance in the training data with an RMSE of 5.91 m (Cascades) and 4.86 m 

(Appalachians), respectively. The results of our study show good agreement between 

GLAS and FIA dcd-heights, despite the relatively few plots available for direct 

calibration of GLAS height algorithms. GLAS heights are on average 2 - 3 m lower 

than FIA heights. We were not able to detect any patterns of disagreement associated 

with forest type, mean slope, elevation or proximity of training data. Further research 

will need to focus more specific on the GLAS waveforms and their response to 

varying forest structure and topographic conditions. This will require additional 

training sites (potentially with high resolution lidar data) and simulation exercises 

(Yong et al. in prep). 

To explore the regional accuracy of GLAS-estimated forest heights, we built 

on an approach that compared regional distributions of forest heights with data from 

the U.S. Forest Service FIA program. We choose this approach because it had a large 

geographic scope, and it provided inferences on an application-oriented level. 

However, the results of this study were not only affected by the accuracy of the height 

algorithms, but also by other factors inherent to the GLAS data (e.g. the temporal and 

spatial consistency) and the sampling scheme. An additional weakness of this region-
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level analysis was its limited flexibility in linking the uncertainties of the height 

estimates to potentially important environmental factors (e.g. stand structure, terrain 

conditions). To obtain site-specific inferences will require reference measurements 

coincident with GLAS samples. However, since neither field nor high resolution lidar 

data are currently available for extensive areas, such a study would be confined to 

small geographic regions. 

We explored the regional applicability of height-biomass allometic equations 

and found that regional models based on height as a single predictor variable 

performed equally well compared to models that accounted for variations in forest 

types and ecological subsections. This suggests that generalized, non-site and non-

species-specific allometric equations can be useful for large-scale estimation of forest 

biomass. Our results are consistent with former studies from Lefsky et al. (2002, 

2005b) who reported that height-biomass relationships were robust across the 

investigated forest types and even major biomes. Similarly, Mette et al. (2003) 

compared height-based equations for two hardwood and two coniferous tree species 

using German forest yield tables and found that the overall variability in the equations 

between species and stand ages was negligible (less than 15%). In this study we 

developed separate equations for study regions dominated by coniferous and broadleaf 

forests. Thus, we did not attempt to draw inferences across these two types of forests. 

Nevertheless, the results are promising as it is unlikely that accurate and global fine-

scale maps for tree species composition will be available in the near future. We do 

anticipate that stand density, canopy cover and perhaps a classification by leaf-type 

might reduce the residual variance observed in our biomass models. However, more 
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research is required to quantify these effects. Conventional remote sensing has been 

successful in retrieving such two-dimensional variables. Future research should focus 

on possible synergies of GLAS with other sensor technologies.  

This study showed that current GLAS algorithms for forest height can be 

extended to the regional scale with good accuracy. However, differences between 

GLAS and FIA estimates of forest biomass were still significant. Since the error 

associated with the allometric equations was relatively small more accurate height 

estimates are needed for regional biomass inventories. Other sources of error are 

related to the measurements and allometric equations at the tree-level which may 

propagate to the plot and landscape level; but they are not specific to GLAS and thus 

were beyond the scope of this study. 

GLAS is the first spaceborne lidar sensor relevant for vegetation studies. As 

algorithms for vegetation height are continued to be refined, GLAS will provide a 

unique opportunity for large-scale observations of forest structure and biomass. In 

addition, forest research with GLAS will inform policy makers and earth scientists to 

guide future space missions. The Committee on Earth Science and Applications from 

Space: A Community Assessment and Strategy for the Future and the National 

Research Council (2007) have included in their recommendation for the next decade 

of space missions two operations that might support lidar observations of forests. 

Existing inventories programs like the FIA will be an important tool to provide the 

field observations necessary for validation. 
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Figures 

 

 

Figure 2.1. Cascade (Western U.S.) and Appalachian study region (Eastern U.S.) 
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Figure 2.2. Frequency distributions for forest height in the Cascade (a, b) and 
Appalachian study region (c, d). Figures a) and c) show the mean frequency and the 
standard error for 1000 repeated, random GLAS samples. Estimates of the mean, 
median, maximum (max) and standard deviation (sd) depict the mean of these 
estimates across the 1000 samples which have a mean sample size of size = n . 
Figures b) and d) show the frequency distributions of FIA samples based on the mean 
height of the dominant/co-dominant trees (dcd-height). 
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Figure 2.3. Scatterplots showing the bias (difference) between mean GLAS and mean 
FIA height for ecological subsections versus a) median slope and b) elevation of 
forested area, c) distance to the geographic center of the ecological subsection with the 
training data, d) standard error of mean GLAS height, e) standard error of mean FIA 
dcd-height, f) number of FIA plots. 
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Figure 2.4. Observed versus predicted aboveground biomass (Mg ha-1) for the Cascade 
(left, RMSE=174.7 Mg ha-1, n = 362) and Appalachian study region (right, 
RMSE=60.6 Mg ha-1, n=3054) 
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Tables 

Table 2.1. U.S. Forest Service ecological sections and subsections of the study regions 
 
Study region Ecological section Ecological subsections 
Cascades Western Cascades  West Cascade Slope Forest, Western Cascades 

Highland Forest, Cascade Crest Forest and 
Volcanic Peaks, Southern Oregon Cascades, 
Southern Oregon Cascade Highlands 

Appalachians Southern Unglaciated 
Allegheny Plateau 

Teays Plateau, Kinniconick and Licking Knobs 

 Northern Cumberland 
Plateau 

Rugged Eastern Hills, Kinniconick and Licking 
Knobs, Southwestern Escarpment, Sequatchie 
Valley, Miami-Scioto Plain-Tipton Till Plain 

 Central Ridge and 
Valley 

Rolling Limestone Hills 

 Southern Appalachian 
Piedmont 

Schist Hills 

 Southern Cumberland 
Plateau 

Shale Hills and Mountain, Sandstone Plateau, 
Table Plateau, Sandstone Mountain, Moulton 
Valley, Southern Cumberland Valleys 

 Southern Ridge and 
Valley 

Chert Valley, Sandstone-Shale and Chert Ridge, 
Sandstone Ridge, Shaley Limestone Valley 

 Northern Ridge and 
Valley 

Ridge and Valley, Great Valley of Virginia 

 Northern Cumberland 
Mountains 

Western Coal Fields, Eastern Coal Fields, Black 
Mountains, Southern Cumberland Mountains, 
Pine and Cumberland Mountains 

 Blue Ridge Mountains Northern Blue Ridge Mountains, Central Blue 
Ridge Mountains, Southern Blue Ridge 
Mountains, Metasedimentary Mountains 
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Table 2.2. Source and number of selected FIA plots 
 

State Report year Cycle Subcycle #Plots 
Alabama 2004 8 5/5 456 
Georgia 2004 8 7/7 320 
Kentucky 2004 5 5/5 603 
North Carolina 2005 8 3/5 236 
Oregon 2005 5 5/10 362 
South Carolina 2001 3 5/5 30 
Tennessee 2004 7 5/5 653 
Virginia 2001 7 5/5 756 
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Table 2.3. Mean and standard error (SE) of FIA and GLAS heights by forest type 
group in the Cascade and the Appalachian study region. GLAS statistics are based on 
1000 random samples with a mean sample size = #Shots. Bias is the difference 
between the mean GLAS and mean FIA estimate. 
 

Area FIA dcd-height (m) GLAS height (m) Forest type group 
(103 ha) Mean SE #Plots Mean SE #Shots 

Bias 
(m) 

Cascades         
Douglas-fir 2021.08 32.11 1.07 181 26.62 0.27 725.3 -5.5 
Ponderosa pine 17.53 22.60 3.90 7 13.60 1.54 3.5 -9.0 
Western white pine 0.10 30.08 - 1 - - - - 
Fir/spruce/mountain 
hemlock 657.86 23.48 0.78 122 21.80 0.41 238.9 -1.7 
Lodgepole pine 62.93 17.07 1.12 16 11.62 0.88 23.5 -5.4 
Hemlock/Sitka spruce 25.01 30.02 2.76 26 24.66 1.43 26.3 -5.4 
Other western 
softwoods 0.54 16.60 - 1 - - - - 
California mixed 
conifer 1.69 - - - 7.34 0.86 1.0 - 
Elm/Ash/Cottonwood 0.04 - - - - - - - 
Aspen/Birch 0.08 - - - - - - - 
Alder/maple 0.69 17.81 5.24 3 20.89 0.48 4.0 3.1 
Western oak 0.76 - - - 22.36 0.50 1.0 - 
Tanoak/laurel 0.04 12.05 4.26 2 - - - - 
Other western 
hardwoods 0.07 10.12 4.51 3 - - - - 
Appalachians         
White/red/jack pine 95.93 21.59 0.83 74 18.21 0.56 30.4 -3.4 
Spruce/fir 0.01 19.18 1.97 7 - - - - 
Longleaf/slash pine 9.96 15.65 3.71 4 9.99 1.16 2.0 -5.7 
Loblolly/shortleafpine 758.29 14.13 0.40 229 14.20 0.22 272.5 0.1 
Pinyon/juniper 2.23 12.03 1.00 9 - - - - 
Oak/pine 427.99 17.86 0.34 277 16.22 0.22 211.9 -1.6 
Oak/hickory 12128.11 21.49 0.11 2348 17.52 0.10 1863.9 -4.0 
Oak/gum/cypress 
group 34.64 21.02 1.85 13 14.61 0.73 19.0 -6.4 
Elm/ash/cottonwood 21.24 21.02 1.06 13 15.75 0.87 9.0 -5.3 
Maple/beech/birch 100.28 22.96 0.49 80 16.68 0.54 16.7 -6.3 
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Table 2.4. Comparison of biomass models that account for forest type group 
(fortypgrp) or ecological subsection (ecosubcd) or both with (*) and without (+) 
interaction. Plot heights are defined as height of the tallest tree (max-ht), mean height 
(mean-ht), and mean height of the dominant/co-dominant trees (dcd-ht). Model 
evaluation is based on the root-mean-squared-error (RMSE) and BIAS of the predicted 
(fitted) versus observed biomass values, and the R2 of the regression model. 
 

  Cascades   Appalachians Model terms 
  RMSE BIAS R2   RMSE BIAS R2 

log(dcd-ht)   173.13 -3.43 0.74   60.58 -7.53 0.60 
log(dcd-ht)*ecosubcd   168.71 -6.06 0.76   57.31 -7.09 0.64 
log(dcd-ht)*fortypgrp   165.52 -6.04 0.76   60.84 -7.54 0.60 
log(dcd-ht)*fortypgrp+log(dcd-
ht)*ecosubcd   164.60 -7.16 0.77   58.02 -6.79 0.64 
log(dcd-ht)+ecosubcd   166.37 -5.52 0.75   58.61 -6.53 0.62 
log(dcd-ht)+fortypgrp   164.96 -6.08 0.76   61.13 -7.38 0.60 
log(dcd-ht)+fortypgrp+ecosubcd   162.69 -6.34 0.76   59.49 -6.30 0.63 
log(max-ht)   167.13 -15.57 0.73   61.49 -8.94 0.59 
log(max-ht)*ecosubcd   164.71 -16.58 0.74   58.69 -8.47 0.63 
log(max-ht)*fortypgrp   164.75 -18.01 0.74   61.95 -8.72 0.59 
log(max-ht)*fortypgrp+log(max-
ht)*ecosubcd 162.72 -17.52 0.74   59.69 -7.86 0.64 
log(max-ht)+ecosubcd   161.50 -17.47 0.74   60.02 -7.84 0.61 
log(max-ht)+fortypgrp   164.15 -17.49 0.74   62.11 -8.77 0.59 
log(max-ht)+fortypgrp+ecosubcd   160.52 -17.76 0.74   61.10 -7.53 0.62 
log(mean-ht)   205.59 -5.71 0.67   61.54 -8.02 0.57 
log(mean-ht)*ecosubcd   210.09 -5.91 0.71   58.61 -7.65 0.61 
log(mean-ht)*fortypgrp   200.67 -6.04 0.71   61.05 -8.27 0.57 
log(mean-ht)*fortypgrp+log(mean-
ht)*ecosubcd 200.41 -7.45 0.73   58.94 -7.60 0.61 
log(mean-ht)+ecosubcd   204.16 -5.55 0.70   59.57 -7.12 0.59 
log(mean-ht)+fortypgrp   201.07 -6.17 0.71   61.53 -7.96 0.57 
log(mean-ht)+fortypgrp+ecosubcd   197.87 -6.21 0.71   59.98 -7.02 0.59 
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Table 2.5. Means and standard errors (SE) of the regional biomass estimates from 
GLAS and FIA in Mg ha-1 based on simple and stratified estimation 
 

Biomass FIA   Biomass GLAS Region Estimation method 
Mean SE   Mean SE 

Appalachians simple, no strata 148.06 1.33   107.20 1.06 
  stratified by eco-subsection 148.92 1.29   109.19 1.14 
  stratified by forest type group 150.98 1.35   106.80 1.02 
Cascades simple, no strata 334.03 11.75   275.87 4.61 
  stratified by eco-subsection 336.50 12.06   270.91 4.07 
  stratified by forest type group 352.85 13.85   272.90 4.11 
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Chapter 3 - Conclusion 

 

There are great uncertainties in the current and future ability of forest 

ecosystems to offset anthropogenic carbon emissions. New approaches are required to 

improve our knowledge on the distribution of plant biomass across the globe. While 

satellite remote sensing is perhaps the most appropriate tool for consistent and 

frequent observations of the Earth’s surface, most existing sensors have failed to 

produce accurate estimates of forest biomass under closed-canopy conditions. Light 

detection and ranging (lidar) is capable of predicting forest biomass with high 

accuracies, but until recently sensor technologies have been limited to airborne 

systems. 

With the Geoscience Laser Altimeter System (GLAS) onboard NASA’s 

ICESat satellite, now global lidar observations have become available that could 

potentially be used to inventory global biomass stocks. With over 900 million laser 

observations globally (by June of 2005, Abshire et al. 2005), GLAS represents a 

unique opportunity for global carbon research. The objective of this study was to 

determine the utility of GLAS for large-scale biomass inventories. The utility of 

GLAS data for biomass inventories primarily depends on two factors: the accuracy of 

GLAS-estimated forest heights and the accuracy of allometric equations that are 

needed to transform estimates of forest height into estimates of biomass. 
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By comparing GLAS estimates with field data from the U.S Forest Service 

Inventory and Analysis (FIA) Program, this study found that locally trained height 

algorithms were applicable to larger regions without introducing regional bias. GLAS-

estimated heights were generally accurate, but consistently lower than FIA estimates 

by 2-3 m. It can be expected that GLAS is not as accurate as high resolution airborne 

lidar (due to the larger footprint). However, more research on the effects of complex 

terrain and stand heterogeneity might improve future algorithms. Future research 

could include additional test sites and theoretical models based on radiative transfer 

theory (e.g. Koetz et al. 2006). Since the study regions in this research were selected to 

include complex terrain and high biomass forests, the results obtained here might 

represent the lower limit of accuracy that can be expected with GLAS. 

This study investigated the uncertainty associated with general, non-species 

specific allometric equations to convert GLAS-estimates of vegetation height into 

estimates of biomass. Species-specific allometric equations are not feasible for large-

scale studies. However, it is important to evaluate the trade-offs and potential biases 

associated with general equations. The research presented here showed that two 

general equations based on a single measure of stand height (for a conifer and 

broadleaf dominated study region, respectively) achieved comparable accuracies on 

the regional scale relative to equations that accounted for variations in forest type and 

other ecological strata. The accuracies of the allometric equations were similar to 

accuracies achieved with airborne simulations of the Vegetation Canopy Lidar 

mission, where biomass was directly estimated from waveform parameters (Drake et 
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al. 2002; Hyde et al. 2005). However, allometric error does not take into account the 

error associated with the GLAS height estimates. 

This research demonstrated the potential of a space-borne lidar mission for 

large-scale biomass inventories. GLAS provides a first attempt to provide global 

observations of forest height and biomass. The results are promising, but further 

research is needed to improve current algorithms. Given the current lack of knowledge 

on the spatial distribution of forest biomass, it is not certain what the minimum 

accuracy requirements are to effectively reduce the error in current climate models. 

Since GLAS is a sampling instrument, its utility for biomass inventories does not only 

depend on the accuracy of individual observations, but also the sampling design and 

its ability to capture the spatial variability of forest biomass. Future research should 

focus on methods to combine GLAS samples with spatially continuous data from 

optical or radar remote sensing. 
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Table A.1. Parameters for estimating aboveground biomass (source: Jenkins et al.,  
2003) 
 
  Parameters* 
  

Species group 
β0 β1 

Hardwood Aspen/alder/cottonwood/willow –2.2094 2.3867 
 Soft maple/birch –1.9123 2.3651 
 Mixed hardwood –2.4800 2.4835 
 Hard maple/oak/hickory/beech –2.0127 2.4342 
Softwood Cedar/larch –2.0336 2.2592 
 Douglas-fir –2.2304 2.4435 
 True fir/hemlock –2.5384 2.4814 
 Pine –2.5356 2.4349 
 Spruce –2.0773 2.3323 
Woodland Juniper/oak/mesquite –0.7152 1.7029 

* Biomass equation: 
 bm = exp(β0+ β1 ln dbh) 
where 
 bm = total aboveground biomass (kg) for trees 2.5 cm dhh and larger 
 dbh = diameter at breast height (cm) 

exp = exponential function 
ln = natural logarithm 
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Table A.2 Ecological subsections in the study regions 
 

Ecological subsections Study region 
Code Name 

Appalachians  221Eb Teays Plateau 
  221En Kinniconick and Licking Knobs 
  221Ha Rugged Eastern Hills 
  221Hb Kinniconick and Licking Knobs 
  221Hc Southwestern Escarpment 
  221Hd Sequatchie Valley 
  221He Miami-Scioto Plain-Tipton Till Plain 
  221Ja Rolling Limestone Hills 
  221Jb Sandstone Hills 
  221Jc Holston Valley 
  231Ag Schist Hills 
  231Ca Shale Hills and Mountain 
  231Cb Sandstone Plateau 
  231Cc Table Plateau 
  231Cd Sandstone Mountain 
  231Ce Moulton Valley 
  231Cf Southern Cumberland Valleys 
  231Cg Sequatchie Valley 
  231Da Chert Valley 
  231Db Sandstone-Shale and Chert Ridge 
  231Dc Sandstone Ridge 
  231De Shaley Limestone Valley 
 M221Aa Ridge and Valley 
 M221Ab Great Valley of Virginia 
 M221Ca Western Coal Fields 
 M221Cb Eastern Coal Fields 
 M221Cc Black Mountains 
 M221Cd Southern Cumberland Mountains 
 M221Ce Pine and Cumberland Mountain 
 M221Da Northern Blue Ridge Mountains 
 M221Db Central Blue Ridge Mountains 
 M221Dc Southern Blue Ridge Mountains 
 M221Dd Metasedimentary Mountains 
Cascades M242Ba West Cascade Slope Forest 
 M242Bb Western Cascades Highland Forest 

 M242Bc Cascade Crest Forest and Volcanic Peaks 
 M242Be Southern Oregon Cascade Highlands 
 M242Bg Southern Oregon Cascades 
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Figure A.1.  U.S. Forest Type Groups of the Cascade study region (after Ruefenacht et 
al. in press) 
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Figure A.2. Ecological subsections of the Cascade study region 
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Figure A.3. Field plots from the U.S. Forest Service Annual FIA program used in this 
study for the Cascade region 
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Figure A.4 Cloud-free GLAS laser observations over forested areas in the Cascade 
region 
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Figure A.5. U.S. Forest Type Groups of the Appalachian study region (after 
Ruefenacht et al. in press) 
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Figure A.6. Ecological subsections of the Appalachian study region. See table Table 
A.2 for subsection names. 
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Figure A.7. Field plots from the U.S. Forest Service Annual FIA program used in this 
study for the Appalachian region 
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Figure A.8. Cloud-free GLAS observations over forested areas in the Appalachian 
region 
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Figure A.9. Models of forest aboveground biomass for the Cascade (left) and 
Appalachian (right) study region based on mean-dcd height as a single predictor 
variable. Individual observations represent FIA annual field plots.  
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