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Oversampled delta-sigma (AZ) modulators have been more and more

widely used in the high-resolution analog-to-digital (AJD) data conversions. These

converter architectures trade the high speed of circuit operation and the high

degree of complexity in the digital signal processing (DSP) circuitry for the high

resolution in data conversion which is otherwise hard to achieve under current

VLSI technology [1].

Stability limitation in single-stage single-bit A/ modulators makes their

implementations more difficult [1]. And although the multibit single-stage A/

modulators do not have stability limitations, they suffer from the nonlinearity error

in the multibit digital-to-analog (D/A) converter in the feedback loop [1]. Thus

another kind of modulators, namely dual-quantization AE modulators have

attracted more and more attentions recently. Without stability limitation, this kind

of modulators can ideally achieve very high signal-to-noise-ratio (SNR) at a rela-

tively low oversampling ratio (OSR). However, this kind of modulators rely on the

perfect matching between the analog and digital circuit transfer functions which is



hard to achieve. As a result, the SNRs of the A/D converters based on this kind of

modulators are far below the ideal SNRs.

This thesis studies the effects of the nonideal analog circuitry on the SNR

performance in various kinds of dual-quantization A modulators. The possibility

of digital estimation and compensation of these nonidealities is explored. Estima-

tion algorithms and compensation schemes are presented. Both theory and simula-

tion results showed that 10-20 dB SNR recovery is possible using these

compensation schemes at a cost of a little more complicated digital circuitry.



Effects and Compensation of the Analog Integrator Nonidealities
in Dual-Quantization Delta-Sigma Modulators

by

Yaohua Yang

A THESIS

Submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed February 12, 1993

Commencement June 1993



APPROVED:

Redacted for Privacy

Professor of Electrical &`Computer Engineering in charge of major

Redacted for Privacy
Head of Department of Elec@cal & Computer Engineering

Redacted for Privacy

Dean of Graduatichool d

Date thesis is presented February 20, 1993

Typed by Yaohua Yang



TABLE OF CON I ENTS

CHAPTER 1. INTRODUCTION 1

1.1 How Oversampled Delta-Sigma A/Ds Work 1

1.2 How Dual-Quantization Delta-Sigma Modulators Work 3

1.3 Nonidealities in the Analog Integrators 5

CHAPTER 2. EFFECTS OF INTEGRATOR NONIDEALITIES ON SNR OF
DUAL-QUANTIZATION DELTA-SIGMA MODULATORS 8

2.1 First-order Leslie-Singh Modulator 8

2.2 Second-order Leslie-Singh Modulator 12

2.3 Cascade 2-1 Modulator with Multibit Second-Stage 17

2.4 Cascade 2-2 Modulator 21

CHAPTER 3. DIGITAL COMPENSATION OF ANALOG INTEGRATOR
NONIDEALITIES IN DUAL-QUANTIZATION DELTA-SIGMA MODU-
LATORS 24

3.1 Compensation for First-order Leslie-Singh Modulator 25

3.2 Compensation for Second-order Leslie-Singh Modulator 27

3.3 Compensation for Cascade 2-1 Modulator 29

3.4 Compensation for Cascade 2-2 Modulator 29

3.5 Decimation Filtering for Compensated Dual-Quantization

Delta-Sigma modulators 31

CHAPTER 4. OFF-LINE ESTIMATION OF INTEGRATOR POLE
ERRORS IN DUAL-QUNATIZATION DELTA-SIGMA MODULATORS 35

4.1 Precharge Phase 36

4.2 Initialization and Discharge Phase 37

4.3 Effects of Circuit Nonidealities on Pole Error Estimation 39

4.4 SWITCAP Simulation Results 43



4.5 Calculation Phase 47

BIBLIOGRAPHY 49

APPENDIX 1. FIRST-STAGE LEAKAGE NOISE CALCULATION OF THE
FIRST-ORDER LESLIE-SINGH MODULATOR 50

APPENDIX 2. FIRST-STAGE LEAKAGE NOISE CALCULATION OF
HIGH-ORDER DUAL-QUANTIZATION DELTA-SIGMA MODULATORS

52



LIST OF FIGURES

Figure Page

1. Oversampled delta-sigma converter 1

2. First-order Leslie-Singh modulator 4

3. Switched-capacitor integrator 5

4. SNR versus analog integrator opamp DC gain curves in 1-bit/8-bit first-order

Leslie-Singh modulator with -10 dB input and an oversampling ratio of 128.

11

5. SNR versus second-stage quantizer resolution curves in a first-order Leslie-
Singh modulator with a -10 dB input and an integrator opamp DC gain of 65
dB and an oversampling ratio of 128.

13

6. Second-order Leslie-Singh modulator 14

7. SNR versus combined integrator opamp DC gain curves of a 1-bit/8-bit sec-

ond-order Leslie-Singh modulator with -10 dB input and an oversampling ratio
of 64. (Both opamps have the same DC gain.)

15

8. SNR versus combined integrator opamp DC gain curves in a 1-bit/8-bit sec-

ond-order Leslie-Singh modulator with -10 dB input and an oversampling ratio
of 64. (Individual opamps have different DC gains.)

15

9. SNR versus second-stage quantizer resolution curves in a second-order Leslie-
Singh modulator with a -10 dB input, an oversampling ratio of 64 and com-
bined opamp DC gain of 65 dB. (Both opamps have the same DC gain.)

16

10. SNR versus second-stage quantizer resolution curves in a second-order
Leslie-Singh modulator with a -10 dB input, an oversampling ratio of 64 and

combined opamp DC gain of 65 dB. (Individual opamps have different DC
gains.)

16

11. Block diagram of a multibit cascade 2-1 modulator 18



12. SNR versus combined integrator opamp DC gain of the first-stage integrators
curves in a 1-bit/8-bit cascade 2-1 modulator with a -10 dB input and an
oversampling ratio of 64. (Both opamps have the same DC gain.)

19

13. SNR versus combined integrator opamp DC gain of the first-stage integrators

curves in a 1-bit/8-bit cascade 2-1 modulator with a -10 dB input and an
oversampling ratio of 64. (Individual opamps have different DC gains,
A3=50 dB)

20

14. SNR versus second-stage quantizer resolution curves in a multibit cascade 2-
1 modulator with a -10 dB input and an oversampling ratio of 32 or 64,
A3=50 dB, Ai=A2=63.01 dB, (first-stage combined opamp DC gain = 60
dB).

20

15. Block diagram of a cascade 2-2 modulator 22

16. SNR versus combined integrator opamp DC gain of the first-stage integrators

curves in a single-bit cascade 2-2 modulator with a -10 dB input and an over-

sampling ratio of 64. (Both opamps in the first stage have the same DC gain.)

22

17. SNR versus combined integrator opamp DC gain of the first-stage integrators

curves in a single-bit cascade 2-2 modulator with a -10 dB input and an over-
sampling ratio of 64, A3=A4=50 dB (Individual opamps in first stage have

different DC gains.)

23

18. SNR versus opamp DC gain of the first-stage integrator in a compensated 1-
bit/10 -bit first-order Leslie-Singh modulator with different estimation accu-
racy of the integrator pole error (0.4% capacitor mismatch, OSR=128, -10
dB input).

26

19. SNR versus the combined opamp DC gain of the first-stage integrators in a

compensated 1-bit/10-bit second-order Leslie-Singh modulator with differ-
ent estimation accuracy of the integrator pole error (0.4% capacitor mis-
match, OSR=64, -10 dB input).

28

20. SNR versus combined opamp DC gain of the first-stage integrators in a corn-



pensated 1-bit/10-bit cascade 2-1 modulator with different estimation accu-
racy of the integrator pole error (0.4% capacitor mismatch, OSR=64, -10 dB
input, second-stage opamp DC gain 50 dB).

30

21. SNR versus combined opamp DC gain of the first-stage integrators in a com-
pensated 1-bit/3-bit cascade 2-2 modulator with different estimation accu-
racy of the integrator pole error (0.4% capacitor mismatch, OSR=64, -10 dB

input, second-stage opamp DC gain 50 dB).

30

22. Block diagram of post-decimation digital compensation for integrator nonide-
alities in dual-quantization delta-sigma modulators 33

23. Single-ended version of estimation circuit

24. Effects of the opamp offset voltage on the estimation accuracy

25. Effects of stray capacitances on the estimation accuracy

26. Effects of the clock feedthrough noise on the estimation accuracy

27. Effects of circuit nonidealities on the estimation accuracy

36

44

45

46

47



Effects and Compensation of the Analog Integrator

Nonidealities in Dual-Quantization

Delta-Sigma Modulators

Chapter 1. Introduction

1.1 How Oversampled Delta-Sigma A/Ds Work

As an example, consider the first-order oversampled AZ A/D shown in Fig-

ure 1, where / (z) = z-1/ (1 z-1) . The modulator consists of an analog filter, a

one-bit A/D converter (also called quantizer) and a one-bit D/A converter in the

feedback loop. It converts the analog input, a signal bandlimited by fs but sampled

at a much higher clock frequency fc, to a one-bit digital signal at the same clock

rate. The digital decimation filter following the modulator decimates the modulator

output, which is a low resolution but high frequency digital signal, to a high-reso-

lution signal at the Nyquist rate (2fs).

Modulator Decimator

Figure 1. Oversampled AZ A/D converter
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The input-output relationship of the modulator can be shown as

y (nT) = u (nT T) + e (nT) e (nT T) (1.1)

where e = y x is the quantization error of the one-bit quantizer, and T is the

clock period. Thus the z domain input-output relationship of the modulator is

Y (z) = z U (z) + (1 z- ) E (z) (1.2)

where z-1 is the signal transfer function (STF) of the modulator, and 1 z-1 is the

noise transfer function (NTF). Thus the input signal is passed to the output without

any change except for a delay, which is usually insignificant, and the quantization

noise e is filtered by a high-pass transfer function so that it has less spectrum den-

sity in the low frequency range, where the input signal has most of its energy in.

Most of the noise energy is in the frequency range of [fs, fc12], and are removed by

a low-pass digital decimation filter following the modulator.

If we model signal e as a white noise, the noise energy from [0,4] is

7t2

= 62
3 OSR" e

(1.3)

[1], where OSR is defined as fc.12fs, and 2 is the mean square value of the quanti-

zation noise.

It can be shown that if the transfer function of the analog filter in the modula-

tor shown in Figure 1 is modified, more efficient NTFs can be achieved [1]. More

specifically, the z domain input-output relationship of an Lth-order AE modulator

is

Y (z) = z-1 U (z) + (1 z-1)L E (z) , (1.4)

and its in-band noise energy is

2 TC2L
no = a2

(2L + 1) OSR2L + 1 e
(1.5)
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[1]. From the above equation we know that with a given OSR, the higher the mod-

ulator order is, the less the in-band noise energy. However, this kind of straightfor-

ward design has a severe limitation, namely the high-order (L>2) single-stage

single-bit modulators are usually unstable [1]. Although they can be stabilized by

using IIR NTFs [2], the SNRs may be degraded significantly compared to those

achieved by the modulators with transfer functions shown in Eq. (1.4). Single-

stage multibit modulators can be guaranteed to be stable if the multibit quantizer

has enough resolution, and can achieve the NTFs shown in Eq. (1.4), but they suf-

fer from the nonlinearity error introduced by the multibit feedback D/A. Without

the above limitations dual-quantization AE modulators have attracted more and

more attentions recently as introduced below.

1.2 How Dual-Quantization Delta-Sigma Modulators Work

Dual-quantization AX modulators usually have a low order modulator as its

first stage, and feed the first-stage quantization noise or the input of the first-stage

quantizer to the second stage, which is usually another low order modulator or

simply a multibit quantizer, and then the outputs of the two stages are combined

appropriately to give the final output of the modulator. Because there are no high-

order modulators in either stage, and there are no feedbacks between the two

stages, stability is guaranteed.

As an example, consider the first-order Leslie-Singh modulator [3] shown in

Figure 2. If the analog integrator is ideal, namely

z
-I

1 (z) = 1'
1

and the outputs of the two stages are combined properly by choosing

and

(1.6)

H1 (z) = z-1 (1.7)



H2 (Z) = 1 Z-1 , (1.8)

it can be shown that its z domain input-output relationship is

Y (z) = z-1 U(z) + (1 -z 1) E2 (Z) , (1.9)

4

where e2 = y2 x is the second-stage quantization noise. It is obviously from

Eq. (1.9) that ideally the first-stage quantization noise e1 is perfectly cancelled, and

the only noise which appears in the final output is the second-stage quantization

noise, which is smaller due to the high resolution of the second-stage quantizer.

Thus the in-band noise energy is much reduced and the SNR improved. Using sim-

ilar ideas, higher order modulators can be designed. However, the above results are

based the fact the analog transfer function shown in Eq. (1.6) can be ideally

achieved, otherwise it can be shown the first-stage quantization noise will not be

completely cancelled, instead a small part of its energy will appear in the final out-

put and thus degrade the overall SNR of the modulator.

1(z)

1-bit
D/A AN

Y2
lb.

y1

H2 (z)

Hi (z)

Figure 2. First-order Leslie-Singh Modulator
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1.3 Nonidealities in the Analog Integrators

For most AZ modulators the integrators are the most important analog cir-

cuit blocks, and are usually implemented by switched capacitor (SC) circuits. Thus

understanding its nonidealities is important to the AZ modulator design.

Consider the delaying SC integrator shown in Figure 3, where nominally

C1 = C2, and A = .0. It can be shown that if the opamp has an finite DC gain of

A, and a capacitor mismatch 5 defined as C1 /C2 1, its z domain transfer func-

tion is

your (z) (1 a) z
Vin (z)

[4], where

a=

2/A + 8/A + 1'

1- (1-(3)z-1

2/A + 5/A 8

2/A + 5/A + 1 '
1/A + 5/A

(1.10)

(1.12)

Thus the integrator has both the gain error a and the pole error 13. In the usual AZ

Vin

1

2/ (

C2

Figure 3. Switched Capacitor Integrator

A/D circuit implementations, the opamp DC gains are in the range of 55 - 70 dB

depending on the design specifications. Thus if we define 11 = 1 /A, g is in the
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range from 0.0003 to 0.002. On the other hand, the capacitance mismatch between

two unit capacitors can be quite small, usually in the range of 0.1% to 0.4%, there-

fore 6 is in the range from -0.004 to 0.004. Thus to a good approximation, Eq.

(1.11) and (1.12) can be simplified as follows,

a --- 211 8, (1.13)
-11. (1.14)

Notice that the above derivation assumes that nominally Ci /C2 = x = 1, it can

be shown that generally if K # 1 the gain and pole errors are

1) S, (1.15)

13 =-- 111C, (1.16)

where 6 = Cl/C, K. Notice that if K < 1 effectively the integrator pole error is

reduced. Throughout the rest of the thesis, ic = 1 is assumed for simplicity of dis-

cussion.

Thus the gain error a is usually in the range from -0.0034 to 0.008, and the

pole error Po is usually in the range from 0.0003 to 0.002. One interesting observa-

tion is that the pole error is only caused by the opamp finite gain but the gain error

is caused by both the opamp finite gain and the capacitor mismatch.

Notice that other opamp nonidealities such as DC offset, finite bandwidth,

etc., may also affect the overall performance. However these nonidealities are usu-

ally less significant in terms of the SNR degradation or can be remedied by proper

design techniques. For example, the opamp DC offset voltages only affect the DC

characteristics of the converters, and the DC offset voltages of the converters are

usually cancelled during the power-up calibration time. The ratio between the

opamp unity-gain bandwidth and the sampling clock frequency determines the set-

tling of the integrator. Incomplete settling is usually equivalent to an additional

gain error apart from the one indicated in Eq. (1.11) as long as the settling is linear.
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In high resolution applications, usually enough settling time is allowed to elimi-

nate the possibility of the harmonic distortion introduced by nonlinear settling. In

this thesis it is assumed that enough settling is allowed so that the gain error of the

integrator is only introduced by the opamp finite gain and capacitor mismatch.
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Chapter 2. Effects of Integrator Nonidealities on SNR of

Dual-Quantization Delta-Sigma Modulators

In this chapter, the effects of gain and pole error of the SC integrators on the

SNR of the dual-quantization A modulators are discussed. Due to the unavoidable

mismatch between the analog and digital circuit transfer functions, the cancellation

of the first-stage quantization noise is incomplete. Therefore the SNRs of this cate-

gory of modulators may be limited by the amount of the first-stage quantization

noise leaking into the final output. And it is shown that the pole error is much more

crucial in terms of the SNR degradation than the gain error. The impacts of these

nonidealities on the choice of design parameters are also discussed.

2.1 First-order Leslie-Singh Modulator

As discussed in Chapter 1.2, ideally first-order Leslie-Singh modulator can

perfectly cancel the first-stage quantization noise el and the only noise source in

the final output will be the second-stage quantization noise e2. From Eq. (1.9) and

Eq. (1.5), ideally the in-band noise energy is that of the second-stage quantization

noise,

2 2
2

It Ge,
n2 =

3 OSR3 (2.1)

If no significant overloading occurs, we can assume e2 is a random signal uni-

formly distributed in the range of [-A/2, A/2], where A is the quantization step [1].

For an M-bit quantizer with a non-overloading input voltage range of [- Vref, +Vref],

A = 2 Vref/ 2m. Thus if for simplicity we assume Vref = 1, the energy of the sec-

ond-stage quantization noise can be calculated as

A2
a2

e2 12 3 .4Nr (2.2)
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From Eq. (2.1) and Eq. (2.2) we can get the root-mean-square (RMS) value of the

ideal in-band noise as the following,

TC 2-M
n2

3 . OSR3/2

For the simplicity of later discussion, we express the noise energy in dB,

n2 (dB) = 6.02M 9.03osr + 0.4,

where osr is defined as log2OSR.

(2.3)

(2.4)

One thing to notice here is that Eq. (2.3) and Eq. (2.4) are obtained based on

the assumption that the input to the multibit quantizer seldom exceeds the non-

overloading conversion range of the multibit quantizer. However this is usually not

true, especially in high-order dual-quantization modulators. In circuit implementa-

tions, the reference voltages of the first and the second-stage quantizer are usually

made the same for hardware simplicity. It can be shown that this arrangement will

cause frequent overloading of the second-stage quantizer. Notice that the overload-

ing occurs much more frequently for the multibit quantizer than the single-bit one

because the non-overloading input range for the former is only ± (Vref+ A/2)

while the latter has a non-overloading input range as large as -±2 Vf. Also the con-

sequence of the overloading in the second-stage quantizer is much more severe

than in the first-stage quantizer because it will increase the energy of the second-

stage quantization noise, which is directly present in the modulator output. One

solution to this problem is to place a gain stage with a gain G smaller than 1, in

front of the second-stage quantizer to prevent overloading. Typical values of G are

0.6 to 1.0 for first-order Leslie-Singh modulator, and 0.25 to 0.5 for the high-order

dual quantization modulators depending on the second-stage quantizer resolutions.

But after the quantization is finished, the quantized signal usually needs to be

amplified by 1/G to maintain the original loop gain. The consequence is that the

second-stage quantization noise is also amplified by the same factor. It can be
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shown that other arrangements such as using two different reference voltages for

the two quantizers will result in the same conclusion, that is, the overloading make

the second-stage quantization noise increases by a factor of 1/G. Thus Eq. (2.4)

becomes

n2 (dB) = 6.02M 9.03osr + 0.4 - 20logG. (2.5)

One very interesting thing here is that since usually G<1 is implemented by

making the feedback capacitor larger than the input capacitor in the integrator, the

pole error of the integrator is reduced according Eq. (1.16). And as discussed

below, this will help reduce the first-stage leakage noise.

As shown in Chapter 1.2 and Figure 2, if there is any gain or pole error in the

analog integrator, the cancellation of the first-stage quantization noise is incom-

plete and the leakage noise can be expressed in z domain as

Elk (Z) = E1 (Z) (NTF1(z) H2 (z)) (2.6)

where NTF1 is the NTF of the first-order AE modulator. If the transfer function of

the analog integrator has gain and pole errors as shown in Eq. (1.10), it can be

shown that

NTF1 (z) 1 bz-1
(2.7)1+ (a-b)zr

where a = 1 a, and b =1-13. As shown in Appendix 1 and [4], the in-band leak-

age noise energy is approximately

nu, (dB) -a- 3.0losr -A (dB) -4.8 (2.8)

as long as the opamp DC gain is between 40 dB to 75 dB, and the oversampling

ratio is over 32. If the opamp DC gain is so high that the SNR degradation caused

by the integrator pole error is so small that the SNR degradation caused by the

integrator gain errors can no longer be neglected, Eq. (2.8) will not be valid and

Eq. (A.1.7) must be instead.



11

Thus both the first-stage leakage noise and the second-stage quantization noise

contribute to the noise in the final output. If we assume these two noise sources are

uncorrelated, the final in-band noise energy is

no = ,in22 + ni2k. (2.9)

Shown in Figure 4 are the simulated SNR versus integrator opamp DC gain curves

when the first-stage leakage noise dominates the overall in-band noise energy. The

curves agree with Eq. (2.8) quite well and show the conclusion that the SNR deg-

radation is approximately independent of the capacitor mismatches. Notice that the

zig-zags in the curves are caused by the non-random character of the quantization

noise despite of the dither signal. Shown in Figure 5 are the SNR versus second-

stage quantizer resolution curves. They show that for small M the first-stage leak-

age noise is negligible and thus if the M increases by 1 bit, the second-stage quan-

tization noise decreases by 1 bit or 6 dB and the overall SNR increases by 6 dB.

However if M is so high that the first-stage leakage noise can not be neglected, the

SNR increase becomes smaller and finally saturates. Figure 5 shows that Eq. (2.8)

predicts the leakage noise energy (around -90 dB) accurately.

From Figure 5 we see that in dual-quantization modulators the choice of the

second-stage quantizer resolution depends on the first-stage leakage noise energy.

This is true because the increase in the second-stage quantizer resolution M, which

means the increase in hardware complexity, does not always increase the overall

SNR by the same amount as shown in Figure 5. In fact, it is cost-effective to

increase M only when the second-stage quantization noise dominates the overall

in-band noise. In other words, a cost-effective design for an uncompensated dual-

quantization modulators must make the second-stage noise the dominant noise

source. Thus for a given design problem, one should start with the estimation of

the leakage noise energy, from Eq. (2.8) in this case, and obtain the required

opamp gain for the integrator and the oversampling ratio. If the required opamp
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75

12

DC gain and the OSR are practical then the second-stage quantizer resolution can

be determined accordingly otherwise different modulator topology with less leak-

age noise must be chosen.

2.2 Second-order Leslie-Singh Modulator

Shown in Figure 6 is the block diagram of a 1-bit/M-bit second-order Leslie-

Singh modulator which employs a second-order modulator as its first stage and a

multibit quantizer as its second stage with the digital correction transfer functions

z--1 z--1) z--1) 2
It can be shown that if both

integrators in the modulator are ideal, i.e., if /1 (z) = 1/ (1 z-1) and

IZ (z) = Z1/ (1 z-1) are satisfied, the cancellation of the first-stage quantiza-

tion noise is perfect and the input-output relationship is
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+0.4% Capacitor Mismatch
0.0% Capacitor Mismatch

-0.4% Capacitor Mismatch

60

50
2 4 6 8

Second-stage Quantizer Resolution M (bits)
10

Figure 5. SNR versus second-stage quantizer resolution curve in a first-order
Leslie-Singh modulator with a -10 dB input and an integrator opamp DC gain
of 65 dB and an oversampling ratio of 128.

Y
z-1 z-i) 2E2

(2.10)

13

Thus from Eq. (1.5) it can be shown the in-band second-stage quantization noise

energy is

n2 (dB) = 6.02M- 15.05osr + 8.13 20logG, (2.11)

where G<1 is the gain of the second-stage quantizer to prevent overloading as dis-

cussed in Chapter 2.1.

However, if the integrators have phase and gain errors, the cancellation of the

first-stage quantization noise is incomplete and as shown in Appendix 2, the in-

band leakage noise energy is approximately

nik (dB) L.,- -9.03osr A (dB) +0.8 (2.12)

where A = 1/ (1/A1+1/A2) = AiA2/ (Ai+ A2) is the combined opamp DC
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gain of the two integrators, while A1 and A2 are the DC gains of the opamps in the

first and second integrator respectively. Again the above equation is only valid for

opamp DC gains below 75 dB and oversampling ratios over 32, otherwise Eq.

(A.2.9) must be used instead. The total in-band noise energy can be easily obtained

from Eq. (2.9) assuming the two noise sources are uncorrelated.

I1(z) 12(z)

1-bit
D/A

e2

y1

H2 (z)

H1(z)

Figure 6. Second-order Leslie-Singh Modulator

y

Figure 7 and Figure 8 show the simulated SNR versus A curves when the

first-stage leakage noise energy dominates the overall in-band noise energy. These

curves agree with Eq. (2.12) quite well by showing the fact that the first-stage leak-

age noise energy is nearly independent of the capacitor mismatch and individual

opamp DC gains of the integrators as long as the combined DC gain of the two

opamps remains the same. Figure 9 and Figure 10 show the simulated SNR versus

second-stage quantizer resolution curves. Again, the increase in the second-stage

quantizer resolution M is efficient only when the second-stage quantization noise

energy is significantly larger than that of the first-stage leakage noise.

Comparing the first and second-order Leslie-Singh modulators it is obvious

that the latter has a much smaller leakage noise. Thus the requirement on the

opamp DC gain of the integrators is much lower for a given SNR and OSR specifi-
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Figure 7. SNR versus combined integrator opamp DC gain curves of a
1-bit/8-bit second-order Leslie-Singh modulator with -10 dB input and
an oversampling ratio of 64. (Both opamps have the same DC gain.)
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Figure 8. SNR versus combined integrator opamp DC gain curves in a
1-bit/8-bit second-order Leslie-Singh modulator with -10dB input and an
oversampling ratio of 64. (Individual opamps have different DC gains.)
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Figure 9. SNR versus second-stage quantizer resolution curves in a second-
order Leslie-Singh modulator with a -10dB input, an oversampling ratio of 64
and combined integrator DC gain of 65 dB. (Both opamps have the same DC
gain.)
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Figure 10. SNR versus second-stage quantizer resolution curve in a second-
order Leslie-Singh modulator with a -10dB input, an oversampling ratio of 64
and a combined opamp DC gain of 65 dB. (Individual opamps have different
DC gains.)
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cation. However, the second-stage quantization noise energy of second-order

Leslie-Singh modulator is not low enough because it is only second-order high-

pass shaped and the overloading demands an amplification of 1/G in its amplitude,

thus the second-stage quantizer must have a quite high resolution, about 8 bits, to

achieve a SNR around 90 dB under a reasonable oversampling ratio such as 64.

This means increased hardware complexity in both the second-stage quantizer and

the decimation filter. To avoid this problem, higher order dual-quantization modu-

lators are introduced.

2.3 Cascade 2-1 Modulator with Multibit Second-Stage

Shown in Figure 11 is the block diagram of a cascade 2-1 multibit modulator

where the modulator employs a second-order single-bit modulator as its first stage

and a first-order multibit modulator as its second stage, this structure is also known

as Brandt-Wooley structure, named after its inventors [5].

It can be shown that if all the integrators in the modulator are ideal, namely

/1 (z) = 1/ (1 z-1) , and 12 (Z) = 13 (Z) = Z-1/ (1 Z-1) , the first-stage

quantization noise is perfectly cancelled and the third-order shaped second-stage

quantization noise is the only noise source appearing in the final output with an in-

band energy of

n2 (dB) ,---- 6.02M -21.07osr+ 16.6 20logG, (2.13)

where G here is the inter-stage scaling factor to avoid overloading in the second

stage. Notice that the second-stage quantization noise is not perfectly third-order

shaped because due to the phase and gain errors in the second-stage integrators the

NTF of the second-stage first-order modulator noise changes from perfect high-

pass function 1 z-1 to a leaking one 1 -133z-1, however as shown in [1] and can

be proved from Eq. (A.1.4.), as long as the opamp DC gain is at least twice as large
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as the OSR, which is almost always the case, the increase in the in-band noise

energy due to a leaking NTF is less than 0.3 dB. Moreover, it is followed by the

digital transfer function H2(z), which is a perfect second-order high-pass transfer

function (1 Z-1) 2, thus the in-band energy of the second-stage quantization

noise is hardly changed from the ideal situation.

12(z)
y1

1-bit
D/A

13(z)

M-bit
D/A

Y2

H1(z)

H 2(Z)

Figure 11. Block diagram of a multibit cascade 2-1 modulator

If the integrators have pole and gain errors, the cancellation of the first-stage

quantization noise is incomplete and as shown in Appendix 2.2, the in-band leak-

age noise energy is approximately

nik (dB) E-_-- 9.03osr A (dB) +0.4 (2.14)

where A = A 1A2/ (A1 +A2) is the combined opamp DC gain of the first-stage

integrators, while A1 and A2 are the DC gains of the opamps in the first and second

integrator respectively. In other words, this modulator has approximately the same

in-band leakage noise energy as the second-order Leslie-Singh modulator. There-

fore, its leakage noise energy is nearly independent of the pole and gain errors of

the second-stage integrator and thus the opamp DC gain of the second-stage inte-
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grator A3. As before, the above equation is valid for low or medium opamp DC

gains and medium to high oversampling ratios.
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Combined opamp DC gain of the first-stage integrators (dB)

Figure 12. SNR versus combined opamp DC gain of the first-stage integrators
curves in a 1-bit/8-bit cascade 2-1 modulator with a -10dB input and an over-
sampling ratio of 64. (Both opamps in the first-stage have the same DC gain.)

Figure 12 and 13 show the fact that the leakage noise energy is nearly inde-

pendent of integrator gain errors, second-stage integrator pole error, and individual

opamp DC gains of the first-stage integrators as long as the combined opamp DC

gain remains the same. Figure 14 shows the fact that due to the increase in the

order of the modulator, the in-band energy of the second-stage quantization noise

is much reduced and consequently the required second-stage quantizer resolution

for a given SNR is much lowered. With the same first-stage combined opamp DC

gain, this modulator needs only a 4-bit second-stage quantizer at the oversampling

ratio of 32 to achieve an overall SNR around 90 dB, while a second-order Leslie-

Singh modulator needs to have a 8 or 9-bit second-stage quantizer. Also, the high

order of noise shaping makes it suitable for high-speed medium SNR applications

[5]. It can be expected that the further increase in the order of the modulator can
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Figure 13. SNR versus combined opamp DC gain of the first-stage integrators
curves in a 1-bit/8-bit cascade 2-1 modulator with a -10dB input and an over-
sampling ratio of 64. (Individual opamps in first-stage have different DC gains,
A3=50 dB.)
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Figure 14. SNR versus second-stage quantizer resolution curves in a multibit
cascade 2-1 modulator with a -10dB input, an oversampling ratio of 32 or 64,
A3=50 dB, Ai=A2=63.01 dB, (first-stage combined opamp DC gain = 60 dB).
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even eliminate the necessity of a multibit second-order quantizer, a single-bit one

can be used instead.

2.4 Cascade 2-2 Modulator

Shown in Figure 15 is the block diagram of a single-bit cascade 2-2 modula-

tor where H1 (z) = z-1 and H2 (z) = (1 z -1) ) . It can be shown that if

11(z) = 13 (z) = 1/ (1 z-1) and 12 (z) = 14 (Z) = Z-1/ (1 Z-1) , the can-

cellation of the first-stage quantization noise is perfect and the only noise source

appearing in the final output is the perfectly fourth-order shaped second-stage

quantization noise e2 with an in-band energy of

n2 (dB) = - 27.09 o sr + 25.5 20logG, (2.15)

where G is the inter-stage scaling factor used to avoid overloading in the second

stage. As before, the nonidealities in the second-stage will change the NTF of the

second-stage quantization noise but again, both theory and simulation results show

that for reasonably high opamp DC gains and practical OSRs the increase in the in-

band energy of the second-stage quantization noise due to the second-stage inte-

grator gain and pole errors is negligible.

If there are pole and gain errors in the integrators, the noise cancellation of

the first-stage quantization noise is incomplete and it is shown in Appendix 2.2 that

the in-band leakage noise energy is approximately

nleak (dB) a- 9.03osr -A (dB) + 0.4, (2.16)

where A is the combined opamp DC gain of the first-stage integrators defined the

same way as before. Again the in-band leakage noise is nearly independent of the

integrator gain errors and also independent of the pole errors of the second-stage

integrators for low to medium opamp DC gains and medium to high oversampling

ratios.
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Figure 15. Block diagram of cascade 2-2 modulator
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Figure 16. SNR versus combined opamp DC gain of the first-stage integrators
curves in a single-bit cascade 2-2 modulator with a -10dB input and an over-
sampling ratio of 64. (Both opamps in the first stage have the same DC gains.)

Figure 16 and 17 support the above conclusion and show that the even with a



23

single-bit second-stage quantizer the second-stage quantization noise is still negli-

gible compared with the in-band leakage noise for reasonable opamp DC gains at

an oversampling ration of 64. As a matter of fact, from Eq. (2.15) even for an OSR

of 32 the in-band second-stage noise energy is still around -100 dB, which is suffi-

cient for most applications. If, however, the specification demands an even lower

OSR and a relatively high SNR, it may be necessary to use a multibit second-stage

quantizer.
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Figure 17. SNR versus combined opamp DC gain of the first-stage integrators
curves in a single-bit cascade 2-2 modulator with a -10dB input and an over-
sampling ratio of 64, A3=A4=50 dB. (Individual opamps in the first stage have
different DC gains.)
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Chapter 3. Digital Compensation for Analog Integrator Non-

idealities in Dual-Quantization Delta-Sigma Modulators

We saw in Chapter 2 that in dual-quantization AZ modulators due to the mis-

match between the analog and digital transfer functions caused by the nonidealities

in the analog integrators, the first-stage quantization noise will not be completely

cancelled and will appear in the final output, and thus degrade the SNR of the mod-

ulator. However, if the estimation of the above nonidealities is available, digital

compensation can be implemented by modifying the digital transfer function so

that a better matching between the analog and digital transfer functions and conse-

quently a better cancellation of the first-stage quantization noise can be achieved,

and therefore the SNR of the modulator can be increased. Generally speaking, dig-

ital compensation can, at the price of more complicated digital circuitry, get higher

conversion accuracy out of a dual-quantization AE modulator with poor analog

integrators or, more specifically, with low integrator opamp DC gains. This tech-

nique may also increase the conversion rate of the modulator because the opamps,

which usually cause the speed limitation of the whole modulator, can now be faster

since its DC gain requirement is much lowered by using the digital compensation.

Apart from these merits, digital compensation may be quite costly in imple-

mentation due to the following facts: firstly, it requires estimation circuits for the

integrator nonidealities, which will be discussed in Chapter 4; secondly, it

increases the decimator complexity significantly; and thirdly, since the digital

compensation only reduces the first-stage leakage noise, to reduce the total in-band

noise energy the second-stage quantization noise must be reduced as well by

increasing either the second-stage quantizer resolution or the order of the modula-

tor. In this chapter, digital compensation and its corresponding decimation

schemes are discussed for various dual-quantization AI modulators.
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3.1 Compensation for First-Order Leslie-Singh Modulator

From Chapter 2.1 we know that to cancel perfectly the first-stage quantiza-

tion noise, the first-stage leakage noise transfer function (LNTF) must be equal to

zero,

LNTF = NTFi- Hi+ (NTFi- 1) H2 = 0, (3.1)

where all the transfer functions in the above equations are defined in Chapter 2. It

can be shown that if H1 and H2 are FIR functions, there is a unique solution, except

for a common factor, to Eq. (3.1), namely H1 = az-1, and H2 = 1 (1 (3) Z-1.

Thus if the estimation of the integrator gain error, denoted by a, and the esti-

mation of the integrator pole error, denoted by 11, are available the digital compen-

sation can be implemented by choosing H1 = ezz-1, and H2 = 1 (1 p)z-1
.

However, both theoretical derivation and computer simulation showed that the cor-

rection for all integrator nonidealities is unnecessary for common circuit parame-

ters. Therefore, to save the hardware complexity in both estimation and decimation

circuitry only the correction for the integrator pole errors is implemented. Thus the

correction transfer function of the compensated first-order Leslie-Singh modulator

is

H1 = z -1, H2 = 1 (1 -(3)z-1. (3.2)

As shown in Appendix 1, the in-band leakage noise energy after compensa-

tion is then approximately

,, 2

2 2 (3 P) 2 2n = a
e l OSR

Ikc nlk K (3.3)

where K = (1 fl/(3) is the relative estimation error of 13, and ni2 ik is the in-band

leakage noise energy of the uncompensated scheme. The value of K usually ranges

from 0.05 to 0.15 if the estimation algorithm described in Chapter 4 is used. In



26

other words, the reduction of the in-band leakage noise energy due to the digital

compensation is around 17-26 dBs. Figure 18 shows the compensated SNR versus

opamp DC gain curves with different values of K.

90

70

perfect estimation
K = 6.25%
K = 12.5%
K = 25%
K = 50%
no correction

50 55 60 65
Opamp DC gain of the first-stage integrator (dB)

70

Figure 18. SNR versus the opamp DC gain of the first-stage integrator in a
compensated 1-bit/10-bit first-order Leslie-Singh modulator with different
estimation accuracy of the integrator pole error (0.4% capacitor mismatch,
OSR=128, -10 dB input).

A few things here are worth noticing. First, the compensation only reduces

the in-band energy of the first-stage leakage noise, and does not reduce the in-band

energy of the second-stage quantization noise. In other words, it only increases the

upper limit of the achievable SNR of the modulator in the presence of first-stage

leakage noise. To increase the overall SNR, the second-stage quantization noise

must be reduced as well by either increasing the resolution of the second-stage

quantizer or employing a high-order second stage. Second, the modification of the

correction transfer function H2 changes the transfer function of the second-stage

quantization noise from 1-z-1 to 1-Oil, in other words, now the second-stage

quantization noise is no longer perfectly first-order high-passed. However, it can
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be shown from Eq. (A.1.4.) that if the opamp DC gain of the integrator is at least

twice as large as the OSR, the increase in the in-band noise energy is negligible.

Third, from Figure 18 we see that if the estimation error is very small, say smaller

than 0.06-0.1, the reduction of the in-band energy of the leakage noise is not as big

as that predicted by Eq. (3.3) either because the integrator gain error is no longer

negligible or, more often, because the second-stage quantization noise becomes

dominant. And for higher opamp DC gain, the required estimation accuracy is

lower for a given in-band second-stage quantization noise energy. From the above

observations, it becomes obvious that the compensation works better for relatively

low opamp DC gain as long as the opamp DC gain is at least twice as large as the

OSR so that the modification of H2 does not increase the in-band energy of sec-

ond-stage quantization noise significantly, and that a relative error of pole error

estimation around 5% is sufficient to recover most of the SNR loss due to the first-

stage leakage noise. Thus there is no need to include compensation for integrator

gain errors or to use a very accurate pole error estimation circuit.

3.2 Compensation for Second-Order Leslie-Singh Modulator

It can be shown that if the estimations of the first and second integrator pole

.. -,

errors, denoted by p, and P2 respectively, are available, the digital compensation

for the second-order Leslie-Singh modulator can be implemented by choosing

H1 = Z-1 (2 z-I) H2 = (1 Z-1)2 (Rl +132) Z-1 (1 z-1) .(3.4)

As shown in Appendix 2.3, the in-band energy of the first-stage leakage noise is

2

2 =
lkc e

0 )
": nik K

(72 (131+ 02 1 2 2 2

1 3 . OSR3/7c2
(3.5)

A A

where K = 1- (pi + p2)/(p1 +(32) is the relative estimation error of combined

pole errors of the first-stage integrators, and ni2k is the in-band leakage noise
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energy of the uncompensated scheme. Shown in Figure 19 is the simulated com-

pensated SNR versus combined opamp DC gain curves with different estimation

accuracy.
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Combined opamp DC gain of the first-stage integrators (dB)

Figure 19. SNR versus the combined opamp DC gain of the first-stage inte-
grators in a compensated 1-bit/10-bit second-order Leslie-Singh modulator
with different estimation accuracy of the integrator pole errors. (0.4% capa-
citor mismatch, OSR=64, -10 dB input)

Again these curves match the theoretical derivations quite well by showing

that each time K is halved, or the estimation accuracy doubled, the in-band energy

of the first-stage leakage noise is reduced by roughly 6 dB until the improvement

saturates when other noise becomes dominant. There is one thing worth noticing

here: from the figure we see that for opamp DC gain smaller than 46 dB, even if

the estimation is perfect, the SNR is degraded by 8-9 dB compared to the ideal

case. This is because the compensation modifies the transfer function of the sec-

ond-stage noise (Eq. (3.4)) in such a way that the its in-band energy is significantly

larger unless the opamp DC gains are sufficiently high, in this case, higher than 50

dB. Thus the digital compensation can recover about 20-25 dB SNR with modest

estimation accuracy for an opamp DC gain lower than 50 dB.
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3.3 Compensation for Cascade 2-1 Modulator

It can be shown that if the estimations of the first and second integrator pole

errors, denoted by 131 and 132 respectively, are available, the digital compensation

for the cascade 2-1 modulator can be implemented by choosing

z-1, (1 _z-1) 2
(111 4- r32) z-i (1 -z--1). (3.6)

As shown in Appendix 2.4, the in-band energy of the first-stage leakage noise is

,,2 II /3 )2, 2 031 +132 1 2 ..._ ,,2 v2
"licc s'e "Ik " ,

1 3 . OSR3/7c2
(3.7)

where K = 1 (f 1+ 132) / 01+ (32) is the relative estimation error of combined

pole error of the first-stage integrators, and ni2k is the in-band leakage noise energy

of the uncompensated scheme. Shown in Figure 20 are the simulated compensated

SNR versus combined opamp DC gain curves with different estimation accuracy.

The curves are similar to the ones before. Each doubling the accuracy in the

estimation of combined integrator pole error gives an decrease of 6 dB in the in-

band energy of the first-stage leakage noise, and if the leakage noise is the domi-

nant noise source, an increase of 6 dB in the overall SNR. If the combined opamp

DC gain of the first-stage integrators is larger than 50 dB, the decrease of SNR due

to modification of the second-stage NTF is negligible.

3.4 Compensation for Cascade 2-2 Modulator

It can be shown that if the estimations of the first and second integrator pole

errors, denoted by 11 1 and 13^2 respectively, are available, the digital compensation

for the cascade 2-2 modulator can be implemented by choosing

z-1, (l z-1) 2
(11 +R2)

z-1 (1 _z-1)
(3.8)
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Figure 20. SNR versus the combined opamp DC gain of the first-stage inte-
grators in a compensated 1-bit/10-bit cascade 2-1 modulator with different
estimation accuracy of the integrator pole errors. (0.4% capacitor mismatch,
OSR=64, -10 dB input, second-stage opamp DC gain 50 dB)

As shown in Appendix 2.4, the in-band energy of the first-stage leakage noise is

approximately the same as those of second-order Leslie-Singh and cascade 2-1

modulators,

5 5 2

n2 =0.2 (31+132P1P2) ...... 2 2
Ilcc e, n lk K

3 OSR3/7c2
(3.9)

where K = 1 ((31+ p2) / (p1+ (2 ) is the relative estimation error of the com-

bined pole errors of the first-stage integrators, and ni2k is the in-band leakage noise

energy of the uncompensated scheme. Shown in Figure 21 is the compensated

SNR versus combined opamp DC gain curves with different estimation accuracy.

The curves are similar to the ones before: each doubling of the estimation

accuracy gives an decrease of 6 dB in the in-band energy of the first-stage leakage

noise, and if that is the dominant noise source, an increase of 6 dB in the overall
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Figure 21. SNR versus the combined opamp DC gain of the first-stage inte-
grators in a compensated 1-bit/3-bit cascade 2-2 modulator with different
estimation accuracy of the integrator pole errors. (0.4% capacitor mismatch,
OSR=64, -10 dB input, second-stage opamp DC gain 50 dB)

SNR. If the combined opamp DC gain of the first-stage integrators is larger than 50

dB, the decrease of SNR due to modification of the second-stage noise transfer

function is negligible.

3.5 Decimation Filtering of the Compensated Dual-Quantization
Delta-Sigma modulators

The decimation filtering for compensated dual-quantization AE modulators

is more complicated because now H2 contains multiplication operations (unless a

one-bit quantizer is used in the cascade 2-1 or 2-2 structure), namely y2 (n 1)

for first-order Leslie-Singh modulator or (01 + (32) (y2 (n 1) -y2 (n 2) )

for other modulators discussed in this thesis. One straightforward choice, the so-

called before-compensation decimation, is to compensate the modulator output

signal y(n) in each clock cycle and then feed the compensated modulator output to
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the decimator. However, if the modulator is clocked at a very high frequency, the

multiplication needed in each clock cycle may be a problem especially when M,

the second-stage quantizer resolution, is high. Another problem is that if the com-

pensation is performed before decimation, the compensated output y(n) must have

many more bits, which means a significant increase in the decimator complexity.

Without compensation, the output y (n) = y 1 (n) + y 2(n) y2 (n 1) can be

represented by a M+2-bit binary code. On the other hand, as shown below, the

compensated output of first-order Leslie-Singh modulator (or similar for any other

compensated dual-quantization modulator) is

y (n) = y 1 (n) + y2 (n) y2 (n 1) + 11 y 2 (n 1) (3.10)

which requires many more bits to represent. Since 13 « 1, it may be preferable to

express and store it digitally as

13 = 2-13 . B, (3.11)

where P and B are integers. Since the truncation of 11 will introduce additional

error to the pole error estimation, the number of bits of B, denoted by Q for sim-

plicity, must be quite large. It can also be shown that the worst-case relative error

introduced by rounding 13 is 2-Q. Thus, depending on the estimation accuracy

requirement, Q may range from 4 to 7, corresponding to an 0.8% to 6% error due

to the quantization effect alone. Therefore, from Eq. (3.11), normally P is around

13 to 18 for normal integrator pole errors. Now from Eq. (3.10) we find that if no

addition truncation is performed the output y(n) is M+P+2-bit long, which is not

acceptable.

Fortunately, another decimator scheme, namely post-decimation compensa-

tion, can be used and is usually far superior to the pervious one. Since the decima-

tion process of AE A/Ds is (at least at the present time) a linear time-invariant one,

the order of decimation operation and multiplication operation can thus be inter-
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changed, therefore the multiplication can be performed after the decimation. Fig-

ure 22 shows the block diagram of post-decimation compensation, where H1 (z)

and H2 (z) are the original digital transfer functions in the modulators as shown in

their block diagrams, and (z) is equal to Z-1 for a first-order Leslie-Singh

modulator and z-1 (1 Z-1) for high-order dual-quantization modulators dis-

cussed in this thesis.

Y2

Decimator

H2 (Z)

H (z)

Decimator
H

Decimated
output

Figure 22. Block diagram of post-decimation digital compensation
for integrator nonidealities in dual-quantization A modulators

BecauseBecause after decimation the clock frequency is much lowered, the imple-

mentation of multiplier is much easier and cheaper. Instead of implementing two

separate decimators, it is much more efficient to implement a decimator which is

twice as fast so that it can be shared to perform the decimation for the two data

sequences. After examining the common structures of decimation filters, it is

found that most of the area-consuming circuit elements such as multipliers, adders

and ROM for storing the coefficient of decimation transfer functions etc. can be

shared if the input and output data to them are properly multiplexed and demulti-
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plexed. As a matter of fact, in audio-purpose AE A/Ds the decimation filter is usu-

ally shared between two channels anyway. Thus after adding some more control

circuitry and some other circuit elements such as the input shift registers, multi-

plexers and demultiplexers etc., most parts of the decimator can be shared and a

large chip area can be saved. Finally, another advantage of the post-decimation

compensation is that the truncation of data is much easier to manage because no

truncation before decimation is necessary.
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Chapter 4. Off-line Estimation of Integrator Pole Errors in

Dual-Quantization Delta-Sigma Modulators

As mentioned in Chapter 3, the idea of digital compensation is based on the

assumption that the estimation of the integrator pole errors, which happen to be

inversely proportional to the opamp DC gain of the integrators, is available.

Although there is on-line estimation algorithm specially for the first-order Leslie-

Singh modulator [4], it is quite complex and its extension to high-order cases is too

complicated to be practical. Thus usually the estimation of the integrator pole

errors can only be performed off-line during the calibration period, which is usu-

ally needed for offset cancellation purpose anyway. Thus if more than one integra-

tor's pole error needs to be estimated, as in the case of high-order dual-

quantization modulators, it can be done one by one.

The estimation method presented in this chapter fully utilizes the existing

hardware in the dual-quantization AE modulators and thus is quite simple yet accu-

rate. As shown in Figure 23, the required circuit contains basically one offset-com-

pensated SC integrator, one comparator and one reference voltage equal to 3/4 Vref

(both are parts of a flash type multibit A/D converter), and a digital counter, all of

which are usually needed in the modulator anyway. Another major advantage of

this estimation method is that the estimation result is directly available in digital

form, unlike common opamp gain measuring circuits which require the measure-

ment of analog voltages. Because of these advantages, this method may be useful

in other circumstances where the opamp DC gain measuring is necessary.

Shown in Figure 23 is the single-ended version of the estimation circuit,

while the real circuit is going to be fully differential to reduce the clock

feedthrough and other common-mode noises. C111 is charged to opamp offset volt-

age Vos in the precharge phase and will hold that voltage in the discharge phase,
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thus the offset voltage is cancelled during the operation. Capacitors C/ and CH

serve as a voltage amplifier for Vy. As will be shown in the next section, this will

both reduce the number of clock cycles needed for the discharge and overcome the

problem of the small value of the amplitude of Vy to reduce the effect of clock

feedthrough noise in the discharge phase. Other parts of the circuit are quite simple

and self-explanatory.

1

2 2

i

2 2 2

Figure 23. Single-ended version of the estimation circuit

The estimation method consists of three steps a pre-charge phase, an ini-

tialization phase, a discharge phase, and a calculation phase, which will be dis-

cussed one by one in the following sections.

4.1 Precharge Phase (01 = 1)

In the precharge phase, all the switches labeled "1" are closed while the oth-

ers remain open, thus C2 is charged to Vref, which is usually in the range of 3 to 5

volts, while C/ and CH are completely discharged. Since the opamp output is con-

nected to the inverting input of the opamp,

V1 = V,/ (1 + i.t) .----- V, where g = 1 /A

CIII is charged to
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4.2 Initialization and Discharge Phase ((Di = 1)

Next, as shown in Figure 23, when clock phase "1" goes low, C2 is con-

nected between the opamp output and the inverting input through C1 and C111,

while all other switches are open. This phase is called the initialization phase. As

will be shown below, the opamp output voltage remains approximately Vref during

this phase. Since now the inverting input of the opamp is floating, any change in Vi

will cause the same change in V. In other words,

V (n) V (n) = V (0) (0) = V 01 (1 + . (4.1)

Since no current is flowing through C111, the current flowing through CI and C11

are identical, thus

CI ( Vx (n) V (n 1)) = (C + C 1) (V (n) V (n 1)) , (4.2)

since Vx (0) = Vy (0) = 0,

V (n) = g Vy (n) (4.3)

where g = 1+ CH/CI maybe chosen in the range of 10-20. The amplitude of Vy

is approximately the output of the opamp divided by the opamp DC gain, and thus

is usually in the millivolts range. The amplitude of VX, however, is amplified by g,

and thus is in the tens of millivolts range.

From the law of charge conservation, the difference equation in the initial-

ization phase can be obtained:

C2(Vo V ref) = (g C2+ CH) (-1) (V0 V os/ (1 ± (4.4)

Thus the initial opamp output voltage can be found as

Vo
V ref+ (g + K id l.1 Vos/ (1 +

1 ± 1.1(g + K11)

where Kll = C11/C2.

Vref, (4.5)
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After the initialization is finished, cp2 goes high and low alternatively, and

the C2 gradually discharges through C1 due to the opamp finite DC gain as shown

in Figure 23. From the number of clock cycles it takes Vo to discharge from Vf to

3/4 Vref, we can estimate the integrator pole error, which is inversely proportional

to the DC gain of the opamp in the integrator. The digital counter counts until the

output of the comparator changes sign. As shown below, the number of cycles

recorded in the counter, denoted by N, is the only data we need to estimate the inte-

grator pole error. From the law of charge conservation, the output of the integrator

during this phase (discharge phase) is

icigVy(n) = V(n) (n 1) (g + K11) AV (n) (4.6)

where K1 = C1 /C2, which can be set to 1, while according to Eq. (4.1),

Vy (n) = V (n) V (n 1) = 1 (V (n) V (n 1)) . (4.7)

Thus Eq. (4.6) becomes

V (n) = ( 1 13') V (n 1 ) +µKosVOs,

where

and

= 1 +µK"
K1 g

K = Klg,os (1 + µK') (1 + g)

K' = II+ g (1 + )

(4.8)

(4.9)

(4.10)

(4.11)

Notice here 13' is used to distinguish from the pole error 13 of the original integrator

as given in Eq. (1.16). However, from Eq. (1.16) and Eq. (4.9) we see that there is

a simple relationship between these two errors and thus once the pole error of the

estimation integrator is obtained, the other one can be obtained very easily. From

Eq. (4.9) we see that Pe' is about g times larger than 13, the original integrator pole
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error. If g is 10 and p. is around 0.001, 13' is around 0.01.

The solution to Eq. (4.8) is

1 (1
13

r i+1
Vo (n) = ( 1 13')n V, (0) + (.1-Kos v05) (4.12)

(1 --(3')nV0 (0) + (1 (1 13tY1+1) Vos. (4.13)

Thus the opamp output voltage will decay exponentially according to the above

equation. As mentioned before, a digital counter records the number of clock

cycles N for the output voltage to drop from Vref to 0.75 V ref, in other words,

V, (/V) = 0.75 V (4.14)

Since V, (0) = Vref, 17,5 « Vref, and N » 1, the pole error can be obtained from

Eq. (4.13) and Eq. (4.14) as follows

vo (0)

(N) )
(4.15)

1 7

l/N
1 e

V003) Vo(N) _ 0.288
(0)

V (N) In

Thus if IT is around 0.01, N is around 30.

4.3 Effects of Circuit Nonidealities on the Pole Error Estimation

The basic principle of the off-line estimation method introduced in last sec-

tion is fairly simple. However, in real circuit implementations circuit nonidealities

such as opamp offset, comparator offset, clock feedthrough and other noises, etc.

must be considered. The effects of these nonidealities are discussed in this section.

4.3.1 Error in Vo(0) and Vo(/V)

As shown in Eq. (4.13)

1nV0 (0) 1nV, (N)
N (4.16)

thus the error in the initial opamp output voltage and the output voltage around
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0.75Vf will both cause some error in the estimation. The relative error caused by

these errors can be calculated as follows:

a1
(N)

l'
( 01 +

a V

3A0
AVA13' a13vo(o)

A V
0

(0)
( 0

131 131

,..
4 Vo (0) Vo (IV)

(AV° (0) AVo (N) (0) AV0 (N)
3.47

Vo (0) Vo (N) ,(4.18)
11

ln ( 3)

(4.17)

where A Vo (0) = Vo (0) Vref, and A Vo (N) = V (IV) 0.751/ref are the

absolute errors in the output voltage at clock period 0 and N respectively.

As shown in Eq. (4.5), the error in V0(0) caused by the opamp offset voltage

is of the order of p.Vos. This is in the microvolts range, and is thus negligible.

Assuming g + K11= 10 and g = 0.001, the relative error in the initial voltage is

about 1%. The resulting error in 13' is 3.5%. If this error is not tolerable, it can

be corrected during the calculation phase because g + icil is known to the designer

from the very beginning and after discharge phase, and the approximate value of t

is known as well. Thus with these two parameters, the error due to inaccurate ini-

tial voltage can be almost eliminated. The error in Vo(N) is contributed by the error

in the 0.75 Vref reference voltage, comparator offset, and the opamp offset as shown

in Eq. (4.11) and the circuit noises, which will be discussed separately. The com-

bined error due to the inaccuracy in dividing the reference voltage and comparator

offset may be around 10mV, and from Eq. (4.11) we know the error in Vo(N) due to

is approximately 0.25Vos, around 2-4 mV. Assume a reference voltage of 3Vas

volts, the relative error of Vo(N) is around 0.5%, which causes about 1.9% error in

the pole error estimation.
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4.3.2 Errors due to Circuit Noises

The noises present in the circuit are clock feedthrough noise, opamp thermal

noise, kT/C noise, and low frequency flicker noise. It is obvious that since the pre-

charge phase only takes one clock cycle, the noise hardly affects the output volt-

age. However, according to Eq. (4.13) and (4.7), the discharge phase usually takes

20-60 clock cycles, and thus the output voltage error due to the circuit noises dur-

ing the discharge phase may not be negligible.

In the discharge phase, the clock feedthrough noise, due to the fully differen-

tial circuit topology, is completely common-mode and will be mostly cancelled by

the common-mode feedback. However, in the absence of voltage amplification

provided by capacitors C1 and C11, i.e., if C111 is connected to C1 directly, the

charge C1 takes in each clock cycle is very small, roughly of the same order as the

clock feedthrough charge injection. Thus the accuracy of the estimation must rely

on the cancellation of the clock feedthrough noise. Using the voltage amplification

as shown in Figure 23, Vx can be made much larger than VI, by making g » 1. Then

the charge C1 takes out each clock cycle is much larger and thus the cancellation of

the clock feedthrough noise is much less critical than in the previous case. Also, as

shown in Eq. (4.7) and (4.13), by making g » 1 we can reduce the number of clock

cycles the output voltage takes to decay, which will greatly speed up the estimation

also.

Next, we shall estimate the effects of the opamp input-referred noise. From

the law of charge conservation, the output voltage due to the opamp input-referred

noise is

Von(n) = (1 131)1 7(n l) + Vni (n) + V n2(n) , (4.19)

where

Vn 1 (n) Kr/ (1 i in(n) V in(n 1)) , (4.20)
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Vn2 (n) (1 + f) (Vin (n) Vin (0)) (4.21)

while Vin(n) is the opamp input-referred noise voltage at the nth clock cycle. From

Eq. (4.18) and (4.19) it is obvious that due to the auto-zeroing offset compensation

technique, any DC noise component will be completely cancelled and will not

appear in the output, and at the same time, the low frequency flicker noise are

greatly suppressed. However, the white noise sources such as opamp thermal noise

is not cancelled or suppressed. Their effects are analyzed as the following.

From Eq. (4.17), the output noise at the Nth clock cycle due to Vni(n) is

N -1

Vonl (AO 2-"ICII(17in (AO pi (1 pi) N Vin (1)1 (4.22)
i = 0

Suppose Vin(n) is a white noise, the RMS value of the output noise at the Nth clock

cycle due to Vni(n) is approximately ,/17tcn6i/4 = Knai, where ai is the RMS

value of opamp input-referred white noise, which is usually around 10-5011V.

Therefore its effect on the output voltage is negligible. The output noise at the Nth

clock cycle due to V2(n) is

N -1

Von2 (N) c (1 +I) ( (1 131)1 V (Vin (i) Vin (0) ) ) . (4.23)
i=0

Assuming Vin(n) is a white noise, from Eq. (4.21) we find the RMS noise voltage
K (1 +P A6 .

in the output is approximately 6i = 7-4 , where A is the opamp DC gain.

Thus the RMS value of the output noise voltage may range from 1 mV to 30 mV

depending on the opamp DC gain and the RMS value of the opamp input-referred

white noise voltage. This is mainly due to the integration of Vin (0) as shown in

Eq. (4.21), otherwise the RMS value of the output noise voltage is somewhere

between ,Aci/4 and A6/4. Assuming a worst-case 30 mV RMS noise output,

from Eq. (4.16) we see that the relative error in the estimation is around 4.5%.

Thus a low noise opamp will help to achieve a high estimation accuracy. Another
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solution to this problem is to perform the estimation for several times, since one

estimation only takes tens of clock cycles, and then average the results to reduce to

effect of random error caused by the opamp input-referred white noise.

The kT/C noise will also cause random error in the output voltage. First, in

the discharge phase, kT/C noise will appear on C1. It will cause an random error in

the output voltage with a RMS value of ,j2KiAkT/Ci, which is usually in the mil-

livolts range and can usually be neglected. Second, in the precharge phase, kT/C

noise will appear in Vx and Vy. This is equivalent to increase the RMS value of

Vin (0) . It will cause a random error in the output voltage with a RMS value

approximately equal to jkT/Cii A/4, which may range from lmV to 10mV if

CH is around 10pF. Thus it may cause a 1.5% error in the pole error estimation.

Again, if the overall error in the estimation can not be accepted, several estima-

tions can be performed and the results can then be averaged to reduce the RMS

value of the noise.

4.4 SWITCAP Simulation Results

SWITCAP simulation was performed to verify the functionality of the

opamp gain measuring circuit shown in Figure 23. The circuit nonidealities

included in SWITCAP simulation were the opamp offset voltage, capacitance mis-

matches, finite on-resistance of the switches, clock feedthrough of the MOS

switches, stray capacitances, and finite common-mode rejection ratio (CMRR) of

the opamp.

First, the effects of the opamp DC offset voltage were simulated. The results

are shown in Figure 24. As predicted by Eq. (4.5) and Eq. (4.13), after using offset

cancelling technique, the error in the opamp output voltage due to the opamp DC

offset is in the millivolt range and is thus negligible. Eq. (4.15) can be used to cal-

blackp
Sticky Note
p.44 missing from original.  Author unavailable to supply.
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opamp output voltage. This effect was simulated and the results are shown in Fig-

ure 25, where Cis is the stray capacitance associated with i node, and C the

stray capacitance associated with x node.

5

5.-
w0) 4.5
cts

0
>
5
ca.

5
0
0 4
E
as
0_
0

3.5

Eq. (4.15)
No stray capacitance
Cis = 1pF, Cxs = 10pF

.- Cis = 3 fF, Cxs = 30 fF
Cis = 5 fF, Cxs = 50 fF

0 5 10 15 20 25

Number of discharge clock cycles
30

Figure 25. Effects of stray capacitances on the estimation accuracy

35

In the simulation, a 1% mismatch was assumed between symmetrical capac-

itors in the fully differential structure. The capacitances used in the simulation are:

Cl = C2 = 10 pF, Ci = 1 pF, CH = 9 pF (thus g = 10), and CLu = 0.1 pF. It can be

seen from Figure 25 that the errors due to the stray capacitances are usually in the

range of 5 to 50 mV around 3/4 Vref (3.75 Volts), thus according to Eq. (4.18), the

resulting relative error in the estimation is in the range of 0.3% to 4%. If it is a con-

cern, the main capacitances can be made larger to reduce the effects of stray capac-

itances.

As mentioned before, clock feedthrough will also affect the accuracy of the

estimation accuracy if the clock feedthrough noise is not completely common-

mode. The simulation was performed for different gate and bulk capacitances and
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different matching percentages between the switches. The switch model presented

in SWITCAP Manual [10] was used, and a 4 KO on-resistance was assumed.

Three simulations were performed and the results are shown in Figure 26. In the

first simulation, a 10% mismatch between switches was assumed, and the assumed

clock signal coupling capacitances of the switches were Cgs = Cgd = 5fF, and

Csb = Cdb = 50 fF. In the second one, 20% mismatch, C8, = Cgd = 10fF, and

Csb = Cdb = 100 fF was assumed. In the third one, 30%

Cgs = Cgd = 15 fF, and Csb = Cdb 150 fF was assumed.

5

4.5

4

3.5

mismatch,

Eq. (4.15)
perfect switch matching
10% switch mismatch
20% switch mismatch
30% switch mismatch

0 5 10 15 20 25

Number of the discharge clock cycles
30 35

Figure 26. Effects of the clock feedthrough noise on the estimation accuracy

The simulation results show that unless the matching between the switches is

very poor (more than 30% mismatch) and the sizes of the switches are big, the

error caused by the clock feedthrough noise is smaller than 3%. Now the necessity

of the voltage amplification of V), (a factor of g provided by C1 and C11) is obvious.

If no voltage amplification is available, the requirement on the matching percent-

age between the transistors would beg times higher.
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A final simulation with all the above nonidealities was performed as shown

in Figure 27. The simulation shows an overall relative error of 10.4% with 1%

capacitance mismatches, Cis = 50 fF, Cxs= 500 fF, CMRR = 70 dB, switch mis-

match of 20%, Cgs = Cgd = 10fF, and Csb = Cdb = 100 fF in the switches.

These parameters were picked randomly, and may not represent the actual design

and nonideality parameters. In circuit implementation, after the nonideality param-

eters are available, the design parameters can be chosen accordingly to ensure an

acceptable estimation accuracy. For example, if the effects of the stray capaci-

tances are intolerable, larger capacitances can be chosen to reduce it.

5

4.5

4

3.5

Eq. (4.15)
Ideal circuit
Nonideal circuit

0 5 10 15 20 25

Number of the discharge clock cycles
30

Figure 27. Effects of circuit nonidealities on the estimation accuracy

35

4.5 Calculation Phase

The estimation formula Eq. (4.13) requires an inverse operation which is

costly to implement in digital circuitry. This problem can be solved by the combi-

nation of table-lookup method and linear interpolation.
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The constant factor In (4/3) or the capacitor ratios in Eq. (4.13) can be

combined with the result of 1/N and stored in a ROM for each value of N. Notice

that a ROM is usually necessary for the decimation filter anyway, and the overhead

cost is not significant. Usually the estimation takes only 20-60 clock cycles, thus

storing around 40 digital values in the ROM should not be a problem. If for some

reason, the estimation takes many more clock cycles the linear interpolation

method can be used. Suppose the values of 1/N are stored for N1 < N2 < ... < N

then any N can be interpolated between these base points as follows,

N = kN x+ (1 k) N (4.24)

where 0 < k < 1, and NZ < Ny are both base points. The relative error caused by
1 k

replacing 1/N by = N +
( 1 k)

N '
which can be obtained by table-lookup andN

y

simple multiplication, is

1 1

N N _ k(1 k) (N x Ny) 2 (Nx - Ny) 2

1 NxNy 4N xN
N

(4.25)

Thus even for N=70, the minimal spacing between consecutive base points can be

as large as 8 if an 0.5% relative error is required. Notice that as N increases the

spaces between base points increase dramatically, for example, for N larger than

500 the space between the base points can be as large as 100 for an 1% relative

error! Also notice that if Nx Ny is the 2 to the power of an integer there is no divi-

sion required in interpolation procedure.

From the above discussion we see that if carefully implemented, the off-line

estimation method presented here can achieve an overall estimation error smaller

than 10%, corresponding to a opamp DC gain estimation error less than 0.86 dB.

Therefore a SNR around 20 dB can be recovered if the digital compensation is

properly implemented.
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Appendix 1. First-stage Leakage Noise Calculation of First-

Order Leslie-Singh Modulator

Consider the situation when a white noise signal ein is passed through a gen-

eral first-order NTF (with arbitrary delay) H (z) = z-k (c - dz-1) The base-band

energy of the output noise eout can be calculated as follows:

trout

W b

II C d (1)12

0

2

e jka) 12 nin do
TC

n2.
:II

n2
= 1'1

It

(c d) 2 Wb+2cd (wb- sinwb) )
"

(w3 ',5 w7
(C d) 2 Wb + 2cd b b b

3! 5! 7!

In our case wb = Tc/OSR « 1, thus

2n2 "=-* n.out in

(c d) 2 2cd 7c2
OSR 3! OSR3 ).

(A.1.4.)

From Eq. (2.7) it can be shown that for an uncompensated first-order Leslie-Singh

modulator, the leakage noise transfer function (LNTF)

LNTF (z) = NTF1 (z) H2 (z) (A.1.5.)

z-1 (-a+ (a-13)1-1). (A.1.6.)

Thus using Eq. (A.1.4.) the in-band leakage noise energy is

p2 (cc p) n2
n2 a2leak ei OSR 3 OSR3

(A.1.7.)

For usual values of integrator gain and pole errors discussed in Chapter 1.3, it is

obvious that the first term in the above equation is dominant if OSR>32, thus

2nleak'
e
2

p2

, OSR (A.1.8.)

Expressing ni2eak in dB, and noticing that the energy of the first-stage quantization
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noise cr is 1/3, Eq. (2.8) is easily obtained.e,

From Chapter 2.1 and 3.1, it can be shown that the first-stage LNTF of a

compensated first-order Leslie-Singh modulator is

LNTF (z) = NT F (z) (H 1(z) + H2 (Z) H2 (z) (A.1.9.)

1 Oz1
(1 bz-1) (1 - bz-1) (A.1.10.)

1 + (a b)

(1 bz-1) f (1 hz-1), (A.1.11.)

where

13= f =1 1+÷a -1-a.

Thus Eq. (A.1.4.) can be used and

2 2 ( (r3 -.fl3)2 n2a2
n = 2

6342
leak aei

OSR 3 OSR"
(3OSR

(A.1.12.)

(A.1.13.)

Thus from Eq. (A.1.8.) and (A.1.13.), Eq. (3.3) can be easily obtained.
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Appendix 2. First-stage Leakage Noise Calculation for High-

Order Dual-Quantization Delta-Sigma Modulators

Consider the situation when a white noise signal ein is passed through a gen-

eral second-order NTF (with arbitrary delay) H (z) = z-k (pz + q + rz-1) . The

base-band energy of the output noise eout can be calculated as follows:

W b

2
n2 ut = pej° + q + reo

0

2n.
e-paoll- in tho

TC
(A.2.1.)

2

=
n in (r2 q2

) wb + 2 (pq + rq) sinwb+ prsin2wb) .

(A.2.2.)

If wb = n/ OSR « 1, we get

2 (P + q + r) 2 (pq + qr + 4pr) 7c3
n2 = n.out = zn C OSR 3 OSR3

(A.2.3.)

2.1 Uncompensated Second-Order Leslie-Singh Modulator

It can be shown that the LNTF of a second-order Leslie-Singh modulator is

LNTF (z) = NTF1 (z) H1 (z) + (NTF1 (z) 1) H2 (z) (A.2.4.)

= NTF (Z) H2 (z), (A.2.5.)

where NT F i(z), the NTF of the first-stage second-order modulator when there are

gain and pole errors in the integrators, can be shown as

(1 biz-1) (1 b21-1)
NTF1 (z) =

(1 biz-1) (1- b2z-1) + a2z-1 (1+ al-biz-1).
(A.2.6.)

Here ai = 1 a,, and bi = 1 13i, i=1,2, while al and a2 are the gain errors of

the first and second integrator respectively, P1 and 132 are the pole errors of the

first and second integrator respectively.
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Direct analysis of Eq. (A.2.5.) using Eq. (A.2.6.) is very complicated. Thus

Eq. (A.2.6.) is simplified by assuming its denominator remains approximately con-

stant in the band of interest as long as OSR is big enough and therefore the band of

interest is narrow enough. For simplicity, we assume it takes its DC value

Pi P2 + (1 a2) (1 + pi- ad - 1 + Pi -al a2. This assumption is justified

by the good agreement between the theoretical estimation based on it and the com-

puter simulation results.

Thus Eq. (A.2.5.) becomes

LNTF (z) ..a: (1 c) (1 - b iz-1) (1 b2z-1) (1 z-1)2

where

c = 1
1 + 13

1
al a

2

1 al + a
2 pl«1'

(A.2.7.)

(A.2.8.)

Thus using

age noise energy

2 = a2n lk ei

where

P = (1

Eq. (A.2.3.) for the

is

r P Q n2 \

NTF shown in Eq. (A.2.5.), the in-band leak-

(A.2.9.)

(A.2.10.)

OSR 3 OSR3

02 M. 13-.=-13 132,

Q = -2c(1-c)131r32- (1 -c)2( (31+132)2-P032 01+132))

--(1-02(131+(32)2--(131+(32)2. (A.2.11.)

For usual values of integrator gain and pole errors discussed in Chapter 1.3,

it is obvious that the first term in the above equation is dominant as long as

OSR<300 assuming the pole errors are smaller than 0.003 or opamp DC gains are

above 50 dB. Thus the in-band leakage noise energy is approximately

n2 (1 + P2)
2

n2 = a2
lk ei

3 OSR3
(A.2.12.)
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Expressing n 12k in dB and noticing that the energy of the first-stage quantization

noise a2 is 1/3, Eq. (2.12) is easily obtained.

2.2 Uncompensated Cascade 2-1 and 2-2 Modulators

From Chapter 2.3 it can be shown that the first-stage LNTF of a multibit cas-

cade 2-1 modulator is

LNTF (z) = NTF1 (z) H1 (z) STF2 (Z) H2 (Z) , (A.2.13.)

where NTFi(z) is the NTF of the first-stage second-order modulator as shown in

Eq. (A.2.6.), and STF2(z), the STF of the second-stage first-order modulator, can

be shown as

(1 a3) z-1
STF2 (z) = (1 -d)z-1

31 + a) z 1-

where

(A.2.14.)

d = 1- (1 a3) / (1 + 133 a3) =(33 (A.2.15.)

and a3 and r33 are the gain and pole errors of the second-stage integrator respec-

tively. Again assuming the denominator of both NTFi(z) and STF2(z) remains con-

stant in the band of interest, we get

LNTF (z) = (1 d) z-1 ( (1 -f) (1 b iz-1) (1 b 2z-1) (1 Z-1) 2)

(A.2.16.)

where

f=1-(1-c)/(1-d) +a2-131-133 « 1, (A.2.17.)

and c is defined in Eq. (A.2.8.). Thus using Eq. (A.2.7.) to (A.2.12) in Appendix

2.1, it can be shown that

7t2 (p + ) 2
2 1 2 2 1 2TC

2
(P + R )2

n2le ak (1 c) Ge a
e , (A.2.18.)

3 0 SR 3
I 3 OSR3
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and Eq. (2.14) can be easily obtained. It can be shown from Chapter 2.4 that the

LNTF of the cascade 2-2 modulator is also in the form of Eq. (A.2.16), the only

difference is that here f is different from the one shown in Eq. (A.2.17). Instead,

f = 1 (1c)/(1d)-a1 + a2 - + a3 + a4 -133, (A.2.19.)

where in this case

d= 1
1 +13

3
a

3
a

4

1

a3 a4+ P3, (A.2.20.)

while a3, a4 and 13, 134 are the gain and pole errors of the second-stage two inte-

grators respectively. However, since f << 1 the previous results can be duplicated,

thus in-band leakage noise power of the cascade 2-2 modulator is approximately

the same as that of the cascade 2-1 modulator, and Eq. (2.16) can be easily

obtained.

2.3 Compensated Second-Order Leslie-Singh Modulator

It can be shown that after compensation, the LNTF of a second-order Leslie-

Singh modulator is

LNTF (z) = (1 c) (1 biz-1) (1 b2z-1) (1 biz-1) (1 -132z-1) ,

(A.2.21.)

1 i=1,2. Thus Eq. (A.2.3.) can bewhere c is defined in Eq. (A.2.8.), and bi =

used by replacing

p = 1-c, (A.2.22.)
q = s c (2 s) (A.2.23.)
r = s-3+c(1-s), (A.2.24.)

where s = +132, arid 3 = 131 +132.

After some complicated calculation, it is found that



P Q. 7,c2
n2 =2lk el (OSR 3 OSR3)'

where

P 2--131132-111112,

Q = c2s2 + 2cs (s (s g) 2 1== .I") 2.

(A.2.25.)

(A.2.26.)

(A.2.27.)
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For usual values of OSR and integrator pole errors the second term is usually dom-

inant, and thus Eq. (3.5) can be obtained.

2.4 Compensated Cascade 2-1 and 2-2 Modulator

It can be shown that after compensation, the LNTF of a cascade 2-1 modula-

for is

LNTF (z) = (1 d) z-1 G (z) , (A.2.28.)

where

G (z) = (1 -f) (1 biz-1) (1 b2z-1) (1 -b1z-1) (1 b2z-1)

(A.2.29.)

and d and f are defined in Eq. (A.2.15) and (A.2.17) respectively. Since 1(z) takes

the form of Eq. (A.2.21), and both d and f are much less than 1, the results in

Appendix 2.3 can be used and thus the in-band leakage noise energy is

n
lic (1 d)2Ge2

1

o1 -Fp2-1-432) 2 2 (Pi + P2 01 12)2
3 OSR3/7C2 el 3 OSR3/7c2

(A.2.30.)

the same as that of compensated second-order Leslie-Singh modulator.

For compensated cascade 2-2 modulator, the leakage NTF takes approxi-

mately the same form as that of cascade 2-1 modulator, except that d and f are

defined in Eq. (A.2.20) and (A.2.19) instead. However, since f « 1 and d « 1, Eq.

(A.2.30) still holds, and thus Eq. (3.9) is proved.


