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Abstract. We construct a quantum interchange walk, related to clas-
sical walks with memory. This gives us a coinless discrete walk, while
the origin in classical walks with memory offers the promise of use of
existing tools from classical memoried walks. This approach readily re-
produces all standard approaches. We briefly discuss its generality and
advantages.

1 Introduction

Quantum walks have been introduced into study of quantum computation
with the hope of benefits similar to those of classical randomized algo-
rithms. Other than speed, quantum walks may offer different approaches,
and are one of the rare alternatives to approaches based on Grover’s
search and Shor’s factoring. Since this research direction was established
[1, 2] the field of quantum walks has grown considerably, with develop-
ment of algorithms [4] and implementation designs [5]. For an excellent
early survey see [3].

Standard approaches to quantum walks still follow the ideas of mem-
oryless classical walks. While we are still in the early stages in this field,
and there is much to be understood and developed from the basic ideas,
it is not too early to approach quantum walks from the point of clas-
sical walks with memory: quantum evolution is unitary and reversible,
and this is only natural. Also, in computer science memoried and biased
approaches are common and beneficial algorithmically.

We propose construction of quantum walks related to their most nat-
ural classical counterparts, which are random walks with memory. In Sec-
tion 3, we start with the observation that the standard Hadamard walk
is an analog of a persistent walk. Then in Section 4 we build a quantum
walk based on a particular representation of a Markov process with mem-
ory. Our approach yields a coinless discrete quantum walk. We discuss its
advantages, and show that it contains all other standard approaches.



2 A representation of classical walks with memory

We introduce a specific representation of a classical walk with memory,
which we are not aware of in the literature. For concreteness, we construct
a persistent walk. As it will be seen, this method can be used equally well
to construct other walks with memory.

When considering Markov chains with memory k > 1, there are mul-
tiple possible approaches. Here we use the Markov tensor of dimension
k +1, and the probability distribution is of dimension k. Since we look at
a persistent walk (memory k = 2), our state is a matrix, and is evolved by
the 3rd rank Markov tensor. In examples we mostly have in mind a walk
over the state space {0, 1, . . . , n−1}, often with identified ends. Note that,
in this section only, we use the fairly standard probabilistic notation, of
operators acting on left.

2.1 Description of the state of the walk

A persistent walk is a one-dimensional process where the probability for
the next step depends on the direction of the previous one. If the walk
has come to the site i from the site i− 1 (having moved to the right), it
has the probability p to continue moving to the right, to the site i + 1;
and the probability 1− p to reverse direction, and move back to the site
i− 1. This is a particular case of a classical walk with memory 2.

For a memory 2 classical walk, one way to describe the state is by
a pair of indices (i, j), with i being the site the walk came from, and j

being the site the walk is on. The Markov operator acts on this state,
performing the walk. The probability distribution, after t evolutions, can
be represented as a matrix with (i, j) entries, or a matrix of row, or
column, vectors

µ(t) =







µ0,0(t) · · · µ0,n−1(t)
...

µn−1,0(t) · · · µn−1,n−1(t)






=







r0
...

rn−1






=
[

c0 · · · cn−1

]

(1)

where rj and cj are respectively row and column vectors of µ (their explicit
time dependence has been omitted only for brevity of notation). Each row
vector rj contains probability distribution for a step from site j to any
other; while each column cj carries the distribution for steps having come
to site j, from all other sites. This will be important for our construction.

Note that all transitions are of the form (i, j) → (j, k), and that, for
the nearest-neighbor walks which we consider, the state can only be one
of the (j ± 1, j), and the transition can only be made to a (j, j ± 1) state.



2.2 A representation of the Markov tensor

The evolution operator can be represented as n layers of n×n transition
matrices Pj , each associated with one state. Let pij|k be the conditional
probability for the transition j → k, given that the walk came to j from
i. All such transition probabilities {pij|k} define the evolution operator,
M = [P0P1 . . . Pn−1], where for each j we have

Pj =







p0,j|0 p0,j|1 · · · p0,j|n−1
...

...
pn−1,j|0 pn−1,j|1 · · · pn−1,j|n−1






, j = 0, 1, . . . , n− 1 (2)

Each Pj is by construction indeed a transition probability matrix. Such
a Pj transition matrix acts on the (transposed) j-th column of the distri-
bution matrix µ(t), resulting in the j-th row of µ(t + 1). The evolution of
the state, µ(t + 1) = µ(t) · M, is then defined as

µ(t) 7→ µ(t + 1) : rj(t + 1) = cT

j (t)Pj , for each j = 0, 1, . . . , n− 1 (3)

where rj and cj are j-th row and column respectively, of the matrix µ.
Thus Pj act on transposed columns of µ(t), giving rows for µ(t + 1).

Note the meaning of this construction: the Pj matrices carry prob-
abilities to move from j to any other site, while the j-th column of µ

has the probabilities to have come to j from any site. Then the action of
Pj on the j-th column (transposed) yields distribution of probabilities to
have come to the j-th site from all possible sites, and to have moved on
to all possible sites, ie. the j-th row of the evolved state. Thus action of
all transition matrices on all columns evolves the probability distribution
over all paths.

For example, consider a persistent walk on the cycle of n sites, with
identified ends. Then the Pj matrices have the following block centered
at (j, j) (mod n) :

(j−1) (j) (j+1)

(j−1)

(j)

(j+1)

















. . .

1− p 0 p

0 1 0
p 0 1− p

. . .

















indices are mod(n) (4)

They also have 1 on the diagonal, with other elements 0, except for the
ones dealing with the boundary conditions. For example, take identified



ends, and consider the above block for Pj=0. The entry at (j − 1, j − 1)
(which is 1 − p), is at (−1,−1), and this is (n − 1, n − 1), since n ↔ 0.
The (j + 1, j − 1) entry (= p) is at (1, n − 1), etc.

This representation of the Markov evolution offers very interesting
uses in studies of classical stochastic processes. It also lends itself to an
approach in construction of quantum walks.

3 Quantum walks are memoried

One of the deepest requirements of quantum mechanics is unitarity; quan-
tum evolution has memory. Still, quantum walks have mostly been built
following an analogy with classical memoryless walks. Here we establish
that, instead, a classical walk with memory is a natural classical analog
of a quantum walk. We build a walk using a generalized Hadamard gate,
as an analog of a persistent classical walk; and a more general walk using
the interchange circuit, corresponding to classical walks with memory.

In this Section we address ‘coined’ quantum walks, and show that they
are a natural analog of persistent walks. We review the construction from
[2], and then, using different probabilities to take steps in different direc-
tions, show that the standard coin–walks have a natural correspondence
with classical persistent walks. In the next Section we introduce a more
general mechanism for building a quantum walk, that directly relates to
a classical walk with memory 2, and contains the coined walks. We will
see that Grover and Szegedy walks are also analogs of memory 2 walks.

3.1 Quantum walk from a memoryless classical walk

For further reference and comparison, here we briefly summarize the con-
struction of a walk on a d-regular graph with n vertices, from [2]. The state
is in the following direct product of two spaces. The first subspace, HA, is
the ‘coin space,’ an auxiliary Hilbert space spanned by d states |a〉; a uni-
tary operator C acting in this space represents a ‘coin toss.’ The second
is the space of vertices, HV , spanned by n states |v〉. The evolution oper-
ator acts in the space HA⊗HV as: U (|a〉 ⊗ |v〉) = S · (C ⊗ I) (|a〉 ⊗ |v〉).
In the case of a cycle with n nodes, for the coin toss one can use the
Hadamard transform

C = H =
1√
2

[

1 1
1 −1

]

(5)

and after its action the graph (circle) is then shifted by the operator S.
Then the walk is a repeated application of the operator U = S · (C ⊗ I).



An implementation for S on a cycle, following up on the action of C, is:
S = | ↑〉〈↑ | ⊗∑j |j + 1〉〈j| + | ↓〉〈↓ |⊗∑j |j− 1〉〈j|. The first factor in
each term selects the part of the state that is either in the ‘up’ or ‘down’
direction of the coin (arbitrarily taken to mean right of left), the second
projector shifts that state accordingly.

In order to see how the eigenproblem is approached, and for future
reference, let us write out the evolution step. Apply U to the state of
the coin |c〉 =

∑d
1 ca|a〉, with |a〉 being the coordinate vectors in the coin

space HA; the state vector in the space of vertices is labeled |v〉. Then
U |c, v〉 = S · (C|c〉 ⊗ |v〉) = S ·∑d

1 ca|a〉⊗|v〉. The matrix S can in general

be constructed as S =
∑d

1 |a〉〈a|⊗Sa, where Sa is the shift along a. Then,
given that the operators above act in the product spaces only

U |c, v〉 =

d
∑

a=1

|a〉〈a| ⊗ Sa ·
(

d
∑

a=1

ca|a〉 ⊗ |v〉
)

=

d
∑

a=1

ca|a〉 ⊗ Sa|v〉 (6)

The shift performed by Sa is the group action, Sa|v〉 = χ(g−1
a )|v〉, where

χ(g−1
a ) is the character of the group element ga, and its inverse is used

since the graph is shifted, [2]. Then U |c, v〉 = (
∑d

1 χ(g−1
a ) ca|a〉) ⊗ |v〉.

This means that we need eigenvectors for the operator Hk = Λk ·C, where
Λk(a, a) = diag{χ(g−1

a )} and k labels the representation. For the cycle,

with wk = e
2πi
n

k, this is

Hk = Λk · C =

[

wk 0
0 w−k

]

·
[

1√
2

1√
2

1√
2
− 1√

2

]

=

[

wk√
2

wk√
2

w−k√
2
−w−k√

2

]

(7)

As the construction of Hk includes the action of S, this matrix is a rep-
resentation of the whole operator U , in the coordinate basis {|ai〉, |vi〉}.
The choice of fixed and equal factors in H yields an unbiased walk. We
will see below that this is a special case of a quantum interchange walk.

3.2 Quantum Hadamard walk and persistent classical walk

Now we discuss a straightforward generalization of the unbiased quantum
walk. With the exact construction of the previous example, using unequal
probabilities for different directions of the walk (of p and 1− p), we get a
quantum walk that is persistent in nature, and in its pure states represents
a quantum analog of a persistent classical walk.

To see this, look at a step with the general Hadamard coin operator

C =

[ √
p
√

1− p√
1− p −√p

]

(8)



starting from the initial pure state. First we look at the state with the coin
‘up,’ for the walk moving to the right. With an appropriate shift following
the action of C above, for the initial state | ↑〉 ⊗ |i〉, the evolution step is

| ↑〉 ⊗ |i〉 S·(C⊗I)−−−−−→
{

(
√

p) | ↑〉 ⊗ |i + 1〉 (continues moving right)

(
√

1− p) | ↓〉 ⊗ |i− 1〉 (changes direction to left)

for the previous step taken to the right. Thus the evolution operator
S · (C ⊗ I) = (

∑d
a=1 |a〉〈a|Sa) · (C ⊗ I) acts as

S · (C ⊗ I) | ↓〉 ⊗ |i〉 = S ·
(√

p | ↑〉 ⊗ |i〉+
√

1− p | ↓〉 ⊗ |i〉
)

=
√

p | ↑〉 ⊗ |i + 1〉+
√

1− p | ↓〉 ⊗ |i− 1〉 (9)

Similarly, take a step from a pure initial state with the coin down, |c〉d =
[ 0, 1 ]T, representing the walker moving to the left, i→ i− 1. The action

of the coin operator gives C |c〉d =
[√

1− p, −√p
]

T
and then the shift

operator completes the transition to the new state

S · (C ⊗ I) | ↓〉 ⊗ |i〉 = S ·
(

√

1− p | ↑〉 ⊗ |i〉 − √p | ↓〉 ⊗ |i〉
)

=
√

1− p | ↑〉 ⊗ |i + 1〉 − √p | ↓〉 ⊗ |i− 1〉 (10)

We see a walk mimicking a classical persistent walk, when starting from
pure states: it continues moving in the same direction with the probability
p (obtained by squaring the amplitude), while it changes the direction
with the probability 1−p. In mixed states, the action is the same on each
component.

Using the periodicity of the cycle, and the identification of n sites on

the circle by the roots of unity wk = e
2πi
n

k, we have |i + 1〉 = w−k|i〉. The
evolution U |c, v〉 of Eq.s (9) and (10) can then be represented as

S · (C ⊗ I) |c〉 ⊗ |v〉 =
1√
N

[

wk√p wk
√

1− p

w−k
√

1− p −w−k√p

]

|c〉 ⊗ |v〉 (11)

We have the same eigenvalue problem as in the reviewed unbiased ex-
ample of [2], but yielding a clear interpretation of a persistent walk. Our
eigenvalues are of course different, offering some interesting analysis, but
the main theorems of [2] hold for this walk.

Note that the directionality of the walk is naturally present: it came at
no cost as soon as the coin transformation is allowed to have probabilities
other than p = 0.5. In other words, the standard Hadamard transform,



Eq. (5), does not implement a memoryless walk, but is rather a persistent
walk (only with equal probabilities). This is unsurprising for a quantum
system, with its unitary evolution.

After this straightforward discussion of coined walks, we look at a
more general construction of a quantum walk with memory, using our
method from Section 2.

4 Quantum interchange walk

We construct a quantum walk of memory 2, using a more general ap-
proach, presented in Section 2 for a classical Markov evolution. The prob-
ability distribution is in the product of spaces, of sites and internal states:

|ξ(t)〉 = ξij(t) |i〉 ⊗ |j〉, over C
N×C

N (12)

We use the interchange circuit, X̂ : |i〉 ⊗ |j〉 7→ |j〉 ⊗ |i〉. This transforma-
tion can be implemented with CNOT gates, when applied successively to
qubits. Then, with U being unitary transformations in C

N ,

|ξ(t + 1)〉 = (UX)|ξ(t)〉, and |ξ(t)〉 = (UX)t |ξ(0)〉 (13)

Here the evolution transformation (algorithm) U acts in C
N as:

U =
N
∑

j=1

Πj ⊗ Uj , where Πj = |j〉〈j| (14)

where the Πj selects the first qubit, and Uj acts on the second.
One of the crucial points in this construction is that there is no coin.

The dynamics of the evolution is based on the interplay of the interchange
transformation and Uj matrices. The interchange forces the walk forward,
‘reversing the arrow,’ without deciding where the walk steps; then, the
stochastic nature of the walk is carried out by the Uj transformation
matrices, which ‘rotate the arrow’ toward the site for the next step. This
eliminates the need for a coin altogether. A visual representation of a step
can be

•
i
→ •

j

X̂7−→ •
i
← •

j
, and Uj rotates the tip to k : j •

ր
•k

We emphasize that this allows for different transformations to be assigned
for different sites. Also note that probabilities p in Uj(p), in the forthcom-
ing example of Eq. (15), may too be set at every step differently, so that
the dynamics can be manipulated step to step, via assignments Uj(p).
This offers flexibility in construction of walks using this method.



4.1 Coin walks are a case of quantum interchange walks

Here we show that coined walks are an example of interchange walks. The
above general approach of interchange walks can be used to construct
persistent walks, thus reproducing coined walks. This will also serve as a
specific example of the construction. A representation for Uj follows from
the construction for a classical memoried walk from Section 2, Eq. (4)

Uj(p) =

















. . . √
1− p 0

√
p

0 1 0
−√p 0

√
1− p

. . .

















(15)

The square roots provide for the probability, in quantum systems being
the square of the amplitude; the −√p sign is necessary to have Uj unitary.
Other entries are much like in the classical case: 1’s on the diagonal, zeros
almost everywhere else, except for entries necessary to honor boundary
conditions.

To look at the walk this generates, act with ÛX̂ on a pure state. First,
look at the state |i− 1〉 ⊗ |i〉, having in mind a persistent walk: the walk
is on the site i, having moved to the right, from the site i− 1. Using the
above construction for Uj matrices

Û · X̂ |i− 1〉⊗|i〉 =
√

1− p |i〉 ⊗ |i− 1〉 +
√

p |i〉 ⊗ |i + 1〉 (16)

When acting on the walk directed opposite, in the pure state |i+1〉⊗ |i〉,

Û · X̂ |i + 1〉⊗|i〉 = −√p |i− 1〉⊗|i〉 +
√

1− p |i + 1〉⊗|i〉 (17)

Such evolution of pure states maintains the interpretation of a persistent
walk: with the probability 1− p the walker reversed direction, and with
the probability p it continued. Since the operators Uj are linear and prob-
ability operators, and the walk stays in the subspace of adjacent sites, we
can assert that an arbitrary mixed state evolves according to the above
analysis, as a directed walk.

Note that this is an isomorphism of the example of the unbiased walk,
of Eq.s (9) and (10), via identifications

|i− 1〉 ⊗ |i〉 ⇔ | ↑〉 ⊗ |i〉 and |i + 1〉 ⊗ |i〉 ⇔ | ↓〉 ⊗ |i〉 (18)

The quantum interchange walk constructed above contains the persistent
walk implemented with Hadamard transformation with p 6= 0.5. Similarly,
any coined walk can be reproduced.



4.2 Grover walk from quantum interchange walk

By a suitable choice of the transformation matrices Uj other standard
quantum walks can be obtained. Consider a process on the irregular
graph. Let the order of vertex j be dj , and let its neighboring vertices
be i1, . . . , idj

. For each vertex, its order dj and neighbors {idj
} define the

transformation matrix Uj

i1 · · · idj

Uj =

i1
...

idj



















. . .
2
dj
− 1 2

dj

2
dj

2
dj

2
dj
− 1 2

dj
2
dj

2
dj

2
dj
− 1

. . .



















(19)

The block above is dj×dj. The remaining diagonal elements of the matrix
are 1, the rest are 0.

The evolution of the interchange walk, via Eq.s (13) and (14), per-
formed with the above construction of matrices associated with each ver-
tex, is Grover diffusion, introduced in [6]. Similarly, the appropriate choice
of Uj matrices nicely reproduces Szegedy walk.

5 Summary and discussion

We have shown that Hadamard, Grover, and other quantum walks are
naturally related to memoried walks. For example, the standard Hadamard
walk is not really an analog of a memoryless walk, but it is rather a persis-
tent walk, which is apparent as soon as probabilities for steps are relaxed
to be p 6= 0.5.

We propose approaching quantum walks from memoried classical ones.
We present one such construction, following our particular representation
of a classical Markov evolution. The walk built this way has no coin: the
interchange transformation prepares the walk (by ‘reversing the arrow’),
and then the Uj transition matrices decide about and perform the next
step (by ‘rotating the arrow’ to the next site), thus carrying the walk’s
stochastic character. This brings various advantages.

We have shown how the interchange walk contains other approaches,
both coined and Grover–style walks. A much greater variety of processes
can be modeled, and walks constructed, by way of assignments of Uj

for each site. Take for example Uj = Uj(pj) in Eq. (15), and vary pj at



every site. Also note that the adjustment of probabilities pj at various
steps (with time), as needed, opens yet other venues. This approach is
extremely flexible, and there seem to be nearly no limit to what can be
constructed with it.

Since there is no coin, there is not much in the way of relating continu-
ous and discrete walks with this approach, for example by simply slowing
down the walk.
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