N

Oregon State

UNIVERSITY

Open Access Articles

Using Landsat-derived disturbance and recovery history and lidar to
map forest biomass dynamics

The Faculty of Oregon State University has made this article openly available.

Please share how this access benefits you. Your story matters.

Citation

DOI
Publisher

Version

Terms of Use

Pflugmacher, D., Cohen, W. B., Kennedy, R. E., & Yang, Z. (2014). Using
Landsat-derived disturbance and recovery history and lidar to map forest biomass
dynamics. Remote Sensing of Environment, 151, 124-137.
doi:10.1016/j.rse.2013.05.033

10.1016/j.rse.2013.05.033

Elsevier

Version of Record

http://cdss.library.oregonstate.edu/sa-termsofuse

oregnsite (] S|


http://survey.az1.qualtrics.com/SE/?SID=SV_8Io4d9aAYR1VgGx
http://cdss.library.oregonstate.edu/sa-termsofuse

Remote Sensing of Environment 151 (2014) 124-137

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Using Landsat-derived disturbance and recovery history and lidar to map
forest biomass dynamics

@ CrossMark

Dirk Pflugmacher **, Warren B. Cohen ®, Robert E. Kennedy €, Zhigiang Yang *

2 Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall, Corvallis, OR 97331, USA
b USDA Forest Service, Pacific Northwest Research Station, Forestry Sciences Laboratory, 3200 SW Jefferson Way, Corvallis, OR 97331, USA
€ Department of Earth and Environment, Boston University, 675 Commonwealth Ave, Boston, MA 02215, USA

ARTICLE INFO ABSTRACT

Article history:

Received 5 September 2012

Received in revised form 18 May 2013
Accepted 21 May 2013

Available online 8 October 2013

Improved monitoring of forest biomass and biomass change is needed to quantify natural and anthropogenic ef-
fects on the terrestrial carbon cycle. Landsat's temporal and spatial coverage, moderate spatial resolution, and
long history of earth observations provide a unique opportunity for characterizing vegetation changes across
large areas and long time scales. However, like with other multi-spectral passive optical sensors, Landsat's rela-
tionship of single-date reflectance with forest biomass diminishes under high leaf area and complex canopy con-
ditions. Because the condition of a forest stand at any point in time is largely determined by its disturbance and

KLjny‘deSZrtds' recovery history, we conceived a method that enhances Landsat's spectral relationships with biomass by includ-
Time series ing information on vegetation trends prior to the date for which estimates are desired. With recently developed
Forest disturbance algorithms that characterize trends in disturbance (e.g. year of onset, duration, and magnitude) and post-
Biomass disturbance regrowth, it should now be possible to realize improved Landsat-based mapping of current biomass
Carbon across large regions. Moreover, given that we now have 40 years of Landsat data, it should also be possible to use
Lidar this approach to map historic biomass densities.

E;Ze;fsni:rp In this study, we developed regression tree models to predict current forest aboveground biomass (AGB) for a

mixed-conifer region in eastern Oregon (USA) using Landsat-based disturbance and recovery (DR) metrics.
We employed the trajectory-fitting algorithm LandTrendr to characterize DR trends from yearly Landsat time
series between 1972 and 2010. The most important DR predictors of AGB were associated with magnitude of
disturbance, post-disturbance condition and post-disturbance recovery, whereas time since disturbance and
pre-disturbance trends showed only weak correlations with AGB. Including DR metrics substantially improved
predictions of AGB (RMSE = 30.3 Mg ha™!, 27%) compared to models based on only single-date reflectance
(RMSE = 39.6 Mg ha~', 35%). To determine the number of years required to adequately capture the effect of
DR on AGB, we explored the relationship between time-series length and model prediction accuracy. Prediction
accuracy increased exponentially with increasing number of years across the entire observation period, suggest-
ing that in this forest region the longer the historic record of disturbance and recovery metrics the more accurate
the mapping of AGB. However, time series lengths of between 10 and 20 years were adequate to significantly
improve model predictions, and lengths of as little as 5 years still had a meaningful impact. To test the concept
of historic biomass prediction, we applied our model to Landsat time series from 1972-1993 and estimated
AGB biomass change between 1993 and 2007. Our estimates compared well with historic inventory data, dem-
onstrating that long-term Landsat observations of DR processes can aid in monitoring AGB and AGB change.
Instead of directly linking Landsat data with the limited amount of available field-based AGB data, in this study
we used the field data to map AGB with airborne lidar and then sampled the lidar data for model training and
error assessment. By using lidar data to build and test our prediction model, this study illustrates that lidar
data have great value for scaling between field measurements and Landsat data.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Improved monitoring of forest biomass is required to understand the
role of forest ecosystems in the global climate and to implement national
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and international mitigation strategies that reduce greenhouse gas emis-
sions (Aber et al,, 2001; Bonan, 2008; Houghton, 2005). Current observa-
tions of the land-atmosphere C-flux based on measurements via eddy
covariance techniques (Baldocchi, 2003) and field inventories (Goodale
etal., 2002) are too sparse in time and space to allow inferences of terres-
trial carbon sources and sinks with sufficient accuracy (Denman et al.,
2007; Houghton, Hall, & Goetz, 2009). Consequently, the value of remote
sensing data for estimating forest aboveground biomass (AGB) is high.
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The most promising strategies for improving forest carbon estimates
with remote sensing data are to combine them with ecosystem process
models. For example, studies have combined ecosystem process models
with maps of disturbance history and age from Landsat time series
(Cohen, Harmon, Wallin, & Fiorella, 1996; Masek & Collatz, 2006), and
with satellite-based estimates of FPAR (fraction of photosynthetic active
radiation) (Coops & Waring, 2001; Smith, Knorr, Widlowski, Pinty, &
Gobron, 2008). Ecosystem models are valuable because they can pro-
vide a detailed simulation of ecophysiological processes, including
those below ground, and can be run in prognostic mode, e.g. to analyze
ecosystem feedbacks to future climate scenarios. However, these
models also require large, detailed datasets for parameterization, and
independent validation is limited. In addition, over decadal time scales,
carbon fluxes are largely driven by changes in tree biomass, successional
change in forest composition, and disturbance events; processes that
are not well represented by current ecosystem models (Urbanski
et al., 2007). Remote sensing has the potential to provide much of the
detailed information that such models require.

Lidar (light detection and ranging) is currently the only sensor
type whose signal does not saturate in high biomass forests
(e.g. 1200 Mg ha™, Lefsky, Cohen, Parker, & Harding, 2002); thus lidar
data are ideal for mapping AGB. Lidar measures the three-dimensional
distribution of tree heights and foliage (Drake et al., 2002; Lefsky et al.,
1999) resulting in accurate estimates of forest biomass across a broad
range of forest types and biomes (Dubayah et al,, 2010; Lefsky et al.,
2002). Lidar systems are currently available either as wall-to-wall scan-
ners (most operational airborne systems) or as discrete samplers with
ground footprints between 10 and ~65 m in diameter (Abshire et al,,
2005; Blair, Rabine, & Hofton, 1999; Nelson, Krabill, & Tonelli, 1988). Sev-
eral studies have now demonstrated how to integrate large footprint lidar
samplers and satellite imagery to map forest biomass over temperate
(Lefsky, Turner, Guzy, & Cohen, 2005), boreal (Boudreau et al., 2008),
and tropical forests (Baccini et al, 2012; Helmer, Lefsky, & Roberts,
2009; Saatchi et al., 2011). Estimating biomass with airborne laser scan-
ning data is often more accurate (Zolkos, Goetz, & Dubayah, 2013), but
the high acquisition costs and data volumes currently prohibit repeated
monitoring of large areas. Thus, recent research with airborne data has
increasingly focused on integrating lidar with forest inventory data
in multi-stage sampling frameworks (Andersen, 2009; Gregoire
et al., 2011; Stephens et al,, 2012), and also with satellite imagery
(Andersen, Strunk, Temesgen, Atwood, & Winterberger, 2011; Wulder
& Seemann, 2003). To effectively use lidar as a sampling tool in regional
vegetation studies it is of interest to examine how the choice of
sampling design and sampling density can reduce uncertainties in the
estimates.

Multi-spectral satellite sensors provide frequent and consistent
observations of the earth's surface, and have been used extensively for
monitoring vegetation characteristics across a variety of spatial and
temporal scales (Cohen & Goward, 2004; Running et al., 2004). As a re-
sult, a large body of research has focused on estimating biomass directly
with moderate spatial resolution (e.g. Landsat, Hall, Skakun, Arsenault,
& Case, 2006; Powell et al., 2010) and coarse resolution sensor data
(e.g. MODIS, Baccini, Friedl, Woodcock, & Warbington, 2004; Blackard
et al, 2008). To estimate AGB, these studies often utilize empirical
models based on single-date reflectance and field measurements.
However, the signal recorded by passive optical multi-spectral sensors
is known to saturate under closed canopy conditions (Lu, 2006)
diminishing the accuracy of biomass estimates obtained from these
sensors in medium to high biomass forests (e.g. > ~150 Mg ha™").

Despite this limitation, estimating AGB with multi-spectral sensors
remains an active field of research. Approaches that rely solely on re-
gional statistics and thematic land cover data may greatly misrepresent
the actual spatial distribution of AGB (Goetz et al., 2009). Recently,
Avitabile, Herold, Henry, and Schmullius (2011) compared available
biomass maps for Uganda and found, while estimates obtained from
multi-spectral data and regression models were conservative, maps

based on biome-average values and national land cover data vastly
overestimated AGB. To improve AGB estimates with multi-spectral
data, scientists have tested a variety of modeling techniques (Hudak,
Lefsky, Cohen, & Berterretche, 2002; Powell et al., 2010), utilized multi-
ple intra-annual imagery (Lefsky, Cohen, & Spies, 2001) and inter-
annual time series (Helmer et al, 2010), and included topographic
and climate variables in addition to spectral variables (Baccini et al.,
2004; Powell et al., 2010) with mixed success.

One potential means of enhancing the relationship between Landsat
reflectance and AGB is by incorporating Landsat spectral trends of dis-
turbance and recovery (DR) prior to the date for which predictions are
desired (Pflugmacher, Cohen, & Kennedy, 2012). The conceptual basis
for combining DR metrics with spectral data derives from ecological ob-
servations that type (e.g. fire, harvest, insect) and intensity of distur-
bances influence forest structure, composition, and carbon dynamics
(Franklin et al, 2002; Halpern, 1988; Harmon, Ferrell, & Franklin,
1990; Spies, 1998). Disturbance type and severity influence the propor-
tion of live biomass that combusts during a fire, is transferred to dead
woody biomass or removed from a site as products (Kasischke et al.,
2005). In combination with environmental factors, disturbances deter-
mine the rate and pathways of subsequent recovery (Gough, Vogel,
Harrold, George, & Curtis, 2007; Meigs, Donato, Campbell, Martin, &
Law, 2009), resulting in highly variable spatial and temporal patterns
of forest regrowth (Halpern, 1988; Yang, Cohen, & Harmon, 2005).

Recently, we tested the DR approach for predicting AGB with good
success (Pflugmacher et al, 2012). Including DR metrics calculated
from yearly Landsat time series (1972-2010) into empirical models
improved prediction accuracy substantially; root mean square error
(RMSE) decreased from 57% to 41% compared to models that used
only single-date (SD) Landsat data. However, the study was a proof-
of-concept and limited to 51 field plots and manually-digitized trajecto-
ries. Here, our objective was to extend that work to map AGB and AGB
change (AAGB). Accomplishing this required that we: 1) automate the
characterization of DR metrics, 2) develop DR-based AGB models,
3) and test if those models can be used to predict historic AGB and
AAGB. Further, we wanted to explore the use of airborne lidar for train-
ing statistical models that are better representative of the wide range of
forests and disturbance regimes in the study area than were a limited
sample of field measurements. Thus, instead of using the field plots
from our previous study directly for model training, we use these
plots to create a high-resolution AGB surface predicted from airborne
lidar data. We then sample the lidar-based AGB predictions and quanti-
fy the effect of sampling density on the prediction accuracy of the DR
models.

2. Methods
2.1. Study area

The study area is located in the Blue Mountains of eastern Oregon,
USA (Fig. 1). The area is ~830 km? and covers two large watersheds of
the Upper Middle Fork John Day River. Current forest structure has
been shaped by natural and anthropogenic disturbances, with harvest,
insects, and fire as major agents. Mountain pine beetle (Dendroctonus
ponderosae Hopkins) and western spruce budworm (Choristoneura
occidentalis Freeman) are the main causes of tree mortality and defolia-
tion (Meigs, Kennedy, & Cohen, 2011). Thinning harvest and frequent
low intensity fire are common, which have created structurally and
compositionally complex mixed and multi-aged conifer-dominated
forests (Campbell & Liegel, 1996). Two high intensity wildfires have
been documented by the Monitoring Trends in Burn Severity (MTBS)
project (http://www.mtbs.gov/). The larger fire burned approximately
14,800 ha in 1996 in the northern part, and the smaller fire burned in
2002 approximately 2600 ha in the south east part of the study area.

The Blue Mountain region is characterized by a dry climate, with av-
erage annual precipitation from 305 mm to 1270 mm. Elevation ranges
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between 500 m and 2700 m. Forest types include spruce (Picea
engelmannii Parry ex Engelm.) and grand fir (Abies grandis [Douglas ex
D. Don] Lindl.) at the higher elevations to mixed conifer at mid eleva-
tions, to ponderosa pine (Pinus ponderosa Douglas ex P. Lawson &
C.Lawson) at lower elevations (Franklin et al., 2002 ). Hardwood species
such as black cottonwood (Populus trichocarpa Torr. & Gray), quaking
aspen (Populus tremuloides Michx.), and willow (Salix spp.) occur main-
ly in the riparian areas and wetlands.

2.2. Lidar-based biomass data

In this study we used AGB estimated from small-footprint, discrete-
return lidar data and field measurements for training and testing
Landsat-based prediction models. Field data were acquired for fifty-one
15-m radius plots during the summer of 2009 distributed across the
lidar area (Fig. 1). Field measurements included diameter at breast
height (dbh), species, and height of all live trees with dbh > 2.5 cm.
For each tree, total AGB (oven-dry weight) was estimated using ten allo-
metric models developed for regional applications (Jenkins, Chojnacky,
Heath, & Birdsey, 2003) and then totaled over the plot area to obtain
estimates of biomass density (Mg ha~'). Field-based biomass estimates
are subject to several sources of uncertainty including measurement
errors and uncertainties in the allometric models. Here, we ignore
these uncertainties assuming their magnitude is negligible relative to
plot-to-plot variability.

Airborne lidar data were acquired between 19-28 August 2008 with
a Leica ALS50 Phase II laser system at an altitude of approximately
900 m. Flight lines overlapped at least 50% on each side. The lidar sensor
operated at a wavelength of 1064 nm and recorded pulse range and in-
tensity at a nominal pulse density of >8 pulses per m2. Up to 4 returns
per pulse were recorded. To obtain estimates of vegetation heighta 1-m
DEM (provided by the vendor) was subtracted from the pulse eleva-
tions. Lidar returns co-located with the field plots were then extracted
and metrics describing the height and intensity distributions were
computed. For a more detailed description of the field and lidar data
processing see Pflugmacher et al. (2012).

To map AGB from lidar data we used the regression model from
Pflugmacher et al. (2012) built with the same field measurements and
lidar data. The model predicts AGB from a canopy volume metric
(HVOL), which was calculated as the product of lidar canopy cover
(returns above 2 m divided by all returns) and mean lidar vegetation
height. The AGB model described 87% of the variation in measured live
tree biomass (up to 354 Mg ha—!) with an RMSE = 35.3 Mg ha— .
We applied the model at a raster grid size of 30-m x 30-m comparable
to the field plot size. The predicted AGB surface was then smoothed
with a mean filter using the same 3 by 3 window to match the Landsat
time series processing.

[} wrs-146120 [ WRs-243129  Field plots [] InsetFigure 10 **&"

2.3. Landsat data

2.3.1. Image selection and processing

We obtained Landsat MSS, TM, and ETM + images for the study re-
gion (WRS-2 path/row: 43/29) for nearly every year between 1972
and 2010 from the Landsat archive (http://glovis.usgs.gov). To mini-
mize inter-annual changes in sun angle and phenology we selected
only images acquired between mid-July and August. Prior to 1984,
Landsat MSS data were acquired using a different reference system.
For those we obtained overlapping scenes from WRS-1 path/row
46/29 (Fig. 1; Table 4, Pflugmacher et al., 2012).

To quantify biophysical changes associated with forest distur-
bances and recovery it was crucial that all images in the Landsat
time series be geometrically and radiometrically consistent (Lu,
Mausel, Brondizio, & Moran, 2004; Song, Woodcock, Seto, Lenney,
& Macomber, 2001). Thus, we radiometrically normalized each image
to an atmospherically corrected (Chavez, 1996) reference image (here
we used 1997) using the MADCAL algorithm of Canty, Nielsen, and
Schmidt (2004). Schroeder, Cohen, Song, Canty, and Yang (2006) de-
scribe the procedure for MADCAL processing of TM/ETM + image stacks
in more detail.

Including MSS data in the image time series required additional
steps (Pflugmacher et al,, 2012). Although the majority of the MSS im-
agery had been orthorectified, additional corrections were necessary
to improve the geometric consistency. We utilized an automated pro-
gram by Kennedy and Cohen (2003) to register all MSS data to the
1997 reference image (RMSE < 0.5 pixel) and resampled each image
to 30-m x 30-m. Following Powell, Cohen, Yang, Pierce, and Alberti
(2008), we applied the tasseled cap (TC) transformation to the
TM/ETM + data and the MSS data and then normalized MSS to the
TM reference image using the TC components brightness (TCB) and
greenness (TCG). For TM/ETM + we used the TC coefficients for reflec-
tance data from Crist (1985). For MSS we used the coefficients from
Kauth, Lambeck, Richardson, Thomas, and Pentland (1979) but adjusted
for the recent MSS radiometric calibration (Pflugmacher et al,, 2012).
Residual systematic differences across sensors were corrected by
aligning the MSS time series using pixel-level correction factors obtain-
ed from overlapping MSS and TM images between 1984 and 1992
(Pflugmacher et al., 2012). We then built annual time series following
the LandTrendr method (Kennedy, Yang, & Cohen, 2010). If multiple
images were available for a given year, we selected the cloud-free pixels
closest to the median Julian day (day 216), and pixels from TM were
chosen over pixels from MSS sensors. Finally, we computed TC angle
(TCA) from TCG and TCB as described in Powell et al. (2008) as
TCA = arctan(TCG/TCB), and TC distance (TCD) first described in
Duane et al. (2010), where TCD = +/TCG? + TCB2. TCA and TCD trans-

late the brightness-greenness plane of the TC transformation into a

Lidar heiﬁht

0m >25m

Fig. 1. Map of study area (modified from Pflugmacher et al., 2012).
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polar coordinate system. TCA describes a gradient of percent vegetation
cover and TCD is related to vegetation composition and structure.

2.3.2. Time-series trajectories

To identify and characterize spectral trends for each pixel, we
use the LandTrendr algorithm developed by Kennedy et al. (2010).
LandTrendr is a temporal segmentation and fitting algorithm that
models change trajectories as a series of sequential line segments. The
algorithm seeks to reduce interannual noise caused by variations in
phenology and atmospheric conditions, while maintaining the temporal
patterns associated with disturbance and recovery. Starting with a
predefined maximum number of segments the algorithm iteratively
loops through less complex model solutions. The final segmentation is
selected from all possible solutions, balancing an increase in residual
error with decreasing model complexity (for details see Kennedy
et al,, 2010). As a result, the trajectory of a pixel may be described by a
single segment (i.e., stable, gradual increase or decrease) or by multiple
interconnected segments (up to the maximum defined number, here
we used six). Likewise, individual change processes may be represented
by a single segment or by multiple segments where changes are non-
linear (e.g. recovery).

LandTrendr consists of two main steps: temporal segmentation and
trajectory fitting. The segmentation step estimates the years (vertices)
at which changes begin and end, whereas the trajectory fitting yields
estimates of spectral values associated with the detected vertices. In
our previous study, we used a single index (TCA) for the segmentation
and fitting. Here, we also used TCA to derive the segmentation, but we
then fitted TCA and TCD time series to that segmentation. The results
were two fitted trajectories, TCA and TCD, with matching temporal pat-
terns (same timing and duration of change processes), but with differ-
ent spectral responses (e.g. magnitude of changes). For all time-series
analyses we used the mean value of a 3 by 3 sliding window to minimize
misregistration errors.

2.3.3. Disturbance history metrics

From the fitted trajectories we calculated a series of metrics to char-
acterize the disturbance and recovery (DR) history of each pixel. With
TCA and TCD, downward trending trajectory segments represent distur-
bance and upward trending segments represent recovery. Flat segments
represent spectral stability (Fig. 2i). First, we identified the greatest dis-
turbance as the segment with the greatest negative change magnitude
(segment b, Fig. 2i). Magnitude was calculated as the difference in spec-
tral value between the start vertex and end vertex of a segment. For the
greatest disturbance, the start vertex signifies the pre-disturbance spec-
tral value (vertex B) and the end vertex the post-disturbance spectral
value (vertex C). The segments preceding and following the disturbance
define the pre-disturbance trend (segment a) and post-disturbance
trend (recovery segment c), respectively. Time since the start of the
greatest disturbance was calculated by subtracting the year of vertex C
from that of vertex E. The approach to calculate DR metrics from
LandTrendr trajectories is also described in Kennedy et al. (2012) and
Pflugmacher et al. (2012) but here we included several additional
metrics.

In this study, we computed 23 DR metrics. From these 23 metrics, 17
were computed twice (for TCA and for TCD trajectories) resulting in a
total of 40 potential DR predictor variables (Table 1). Because many
metrics describe similar aspects, it was convenient to group them
into five main categories: 1) greatest disturbance trend (GD), 2) pre-
disturbance trend (BD), 3) post-disturbance trend (i.e. recovery, AD),
4) last monotonic trend (LM), and 5) spectral values (CC) and trend
(CT) at the time of prediction. The last monotonic trend summarizes
all segments having the same direction prior to the prediction year. Re-
covery is a positive post-disturbance trend but often recovery is non-
linear and spans across multiple segments. Thus, we also estimated
total recovery by calculating the spectral change that occurred between
the prediction date and the year immediately after disturbance (and
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Fig. 2. Example of a Landsat time series for a single pixel over: i) the entire image time
series, ii) a period of 20 years from a historic prediction date in 1992, and iii) a period of
20 years from the current prediction date in 2009. Shown are the yearly tasseled cap
angle values (grey dots), the fitted segments (black lines), and the segment's vertices
(black dots).

five years after disturbance). To describe early recovery dynamics, we
calculated the spectral value five years after disturbance, and the change
in magnitude in the first five recovery years as in Kennedy et al. (2012).
We did not include information on disturbance agent (e.g. fire, harvest,
insect) as we did in our previous study (Pflugmacher et al, 2012)
because this information was not yet available for the entire study area.

The DR metrics were calculated for all forested pixels including non-
disturbed pixels. Doing this enabled us to develop and apply a single
model across all trajectory types, i.e. disturbance followed by recovery,
disturbance without recovery, recovery only, and no-change. But to
apply DR metrics for each trajectory additional rules were required.
For pixels characterized by initial recovery and no disturbance, the dis-
turbance start and end year were set to the first year in the time series.
As a result, disturbance magnitude and duration were assumed to be
zero. If the first segment showed the greatest negative magnitude the
disturbance start was set to the first year in the time series. In this
case, pre-disturbance magnitude and duration were set to zero and
pre-disturbance spectral value was set to the first value in the time se-
ries. Similarly, for pixels with negative trends without recovery, the dis-
turbance end was assumed to be the last year in the time series, and
post-disturbance magnitude and duration were set to zero. To calculate
the 5-year recovery metrics for pixels disturbed within the last five
years from the end of the time series, we estimated the recovery magni-
tude based on the remaining time series length. While this approach
avoids the need for stratification by trajectory type, it may lead to higher
uncertainties for pixels disturbed during the first or last years in the
time series. Because few disturbances occurred in our region within
the first year and last eight years, the overall effect on our results was
assumed to be minimal.

24. Forest inventory data

We used field data from the Continuous Vegetation Survey (CVS) of
the Pacific Northwest Region (available from the US Forest Service) to
assess predictions of historic AGB and AGB change (Table 2). CVS collect
field measurements for all forest land using plots established on sys-
tematic grids. Plots are periodically remeasured enabling estimates of
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Table 1

Correlation between Landsat-based predictor variables and (log-transformed) lidar-based aboveground biomass (AGByq4r) (grey shades range from white - no correlation to dark grey -
strong correlation). Predictors include disturbance-recovery (DR) metrics and single-date (SD) metrics.

) ) o Correlation with
Predictor variable Description Abbr. 10g(AGByq,,)
DR metric TCA-fitted TCD-fitted
Greatest disturbance (GD) Duration (GDTSE-GDTSS) GDDUR
Magnitude (BDVAL-ADVAL) GDMAG
Relative magnitude (GDMAG/BDVAL) GDRCH
Rate of change (GDMAG/GDDUR) GDROC
Time since disturbance start GDTSS
Time since disturbance end GDTSE
Pre-disturbance (BD) Spectral value BDVAL 0.23 0.00
Magnitude BDMAG -0.21 -0.02
Duration BDDUR -0.23
Rate of change (BDMAG/BDDUR) BDROC -0.03 0.13
Post-disturbance (AD) Spectral value ADVAL
Magnitude ADMAG
Duration ADDUR
Rate of change (ADMAG/ADDUR) ADROC
Spectral value 5 years after disturbance ADVA5
5-year magnitude (ADVA5-ADVAL) ADMG5
Total recovery ((CCTC[A/D]-
ADVAL)/ADVAL) ADREC
Total recovery after 5 years ((CCTC[A/D]-
ADVA5)/ADVA5) ADRE>
Last monotonic trend (LM) Duration LMDUR
Magnitude LMMAG
Rate of change (LMMAG/LDDUR) LMROC
Current condition (CC) TC angle CCTCA
TC distance CCTCD
Current trend (CT) Rate of change CTROC
SD metric
Current condition (CC) TC brightness CCTCB
TC greenness CCTCG -0.33
TC angle CCTCA 0.29
TC distance CCTCD -0.77

biomass change. In our study region, 87 CVS plots were first measured
between 1993 and 1996 and then remeasured between 1997 and 2007.

Within each inventory plot, trees > 2.54 cm diameter at breast
height (dbh) were measured and the species recorded. We estimated
biomass of live trees using the same allometry that we used to estimate
AGB from our field data and AGBy;qa- (Jenkins et al., 2003). Plot-level
biomass densities (Mg ha~') were then obtained using the recorded

Table 2
Summary statistics of the Current Vegetation Survey (CVS) data.
Assessment ~ #Plots AGBmean AGBSD AGBrange Dominant Dominant
period (Mg/ha) (Mg/ha) (Mg/ha) age mean  age range
1993-1996 87 99.0 553 9.0-360.3 95 39-225
1997-2007 87 100.5 512 33-2943 91 26-233

trees-per-area expansion factors. We only selected homogenous plots
with single conditions (as recorded by the inventory) to minimize
misregistration effects. Further, we visually screened plots for outliers
associated with edge effects such as adjacent meadows or roads. This re-
moved less than 5% of inventory plots. Finally, for each field plot we
extracted the spectral values and time-series metrics associated with
the 30-m x 30-m Landsat pixel that contained the plot center. Because
a 3 by 3 mean filter had been applied to all spatial data, the effective
ground area sampled was 90-m x 90-m around the plot center.

2.5. AGB model development
We built empirical models between AGByq, (response) and the

Landsat-based metrics (predictors) (Table 1) using random forest (RF)
(Breiman, 2001). RF does not make distributional assumptions and is
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able to account for complex, non-linear interactions among variables. RF
improves on traditional tree-based methods by incorporating two ran-
dom components: 1) each tree is constructed from a bootstrap sub-
sample of the data, and 2) node splits are performed using a random
subset of predictor variables. As a result RF does not require tree pruning
and independent estimates can be obtained by applying models to the
left-out data (referred to as out-of-bag (OOB) data). To develop AGB
models, we followed these general steps: i) sampling of model training
and testing data, ii) evaluation of the importance of predictor variables,
iii) model selection, and iv) model evaluation. We performed all statis-
tical analyses using the R statistical language (R Development Core
Team, 2011) and the RandomForest package from (Liaw & Wiener,
2002).

2.5.1. Sampling

To decrease the large data volume and minimize spatial autocorrela-
tion, we sampled the predictor and response (lidar-predicted AGB) ras-
ter using a Cartesian grid with a spacing of 500 m. Meadows and other
areas that were not forested between 1985 and 2009 were excluded
from analyses. To create a forest mask we performed an iso-cluster
classification iteratively on a six-band image stack build from TCB,
TCG, and TCW for 1985 and 2009, respectively, and visual interpreta-
tions of airphotos.

We explored the effect of sampling density on prediction accuracy of
Landsat-based AGB by sampling the predictor and response raster using
systematic grids ranging from 500 m to 5000 m spacing in 100-m inter-
vals. For each sampling density, we estimated the prediction accuracy
using the RMSE of OOB-predicted versus observed AGBy;qar. The RMSE
is the generalization error associated with a particular dataset or esti-
mator, and therefore also subject to sampling error. To minimize and
capture the uncertainties associated with the sampling, we collected
multiple independent samples for each sampling density and calculated
the pooled (mean) RMSE and standard error (SE) over all samples. SE
was estimated by the standard deviation of the RMSE samples divided
by the square root of the sample size. To obtain multiple samples we
iteratively offset each grid's starting point by 120, 240, and 360 m in
each direction. This produced nine independent samples of size n for
each density level. Note that we did not account for uncertainties
in the lidar-based prediction; thus the absolute RMSE's are likely
underestimated relative to field-based AGB estimates.

2.5.2. Variable importance

We examined the importance of each Landsat predictor variable
using the RF importance metric for continuous variables and correlation
analysis. RF quantifies importance based on the influence of each vari-
able on the prediction error of each tree. Specifically, RF computes the
average increase in MSE (%IncMSE) by permuting the OOB data for a
variable while keeping the other predictors constant. The increase in
MSE is then averaged over all trees and normalized by the standard
deviation. The RF importance metric is therefore a measure of relative
importance and influenced by potentially complex interactions be-
tween predictors. The metric is often used as a means for variable reduc-
tion but interpretation can be challenging, e.g. predictors may rank low
when highly correlated with higher-ranking predictors. Additionally,
we also explored the relationships between single Landsat predictor
variables and AGBy;q4,, by means of correlation analysis. Here, we log-
transformed AGB q,, to linearize the relationships.

2.5.3. Model selection

To evaluate the performance of disturbance and recovery metrics,
we built two prediction models based on: 1) spectral indices from
single-date Landsat data (SD, Table 1), and 2) disturbance and recovery
metrics in addition to spectral indices (DR, Table 1). Based on the RF
importance score we selected only the most influential predictors
from the 40 DR metrics for inclusion in the final DR model. This step

was not required for prediction, because RF is robust against overfitting
(Breiman, 2001), but it can facilitate model interpretation.

To build the single-date model we also used TC indices as predictor
variables. We did not include additional indices or spectral bands, as
the TC components together commonly explain the majority of the var-
iance in the Landsat spectral space, e.g. 97% in a study from Huang,
Wylie, Homer, Yang, and Zylstra (2002). Here, we selected as predictor
variables the TCA and TCD values of the current condition, which were
also used as DR predictors, but we also included TCB and TCG. We
did not include TC wetness (TCW), because this index is not available
for Landsat MSS data. Also, in a previous study over the same study
area, TCW did not significantly increase the variance explained by a
model that predicted field-based AGB from TCB (Pflugmacher et al.,
2012). However, the importance of TCW might be different in other
regions.

2.5.4. Model evaluation

The models were evaluated based on goodness of fit, prediction ac-
curacy, and by examining model residuals. We calculated the pseudo
R2, which is the mean of the individual bootstrap R2 To assess a model's
performance we computed the RMSE, estimated bias (mean predicted
AGB minus mean observed AGB), variance ratio (standard deviation
of predicted AGB divided by standard deviation of observed AGB)
(Cohen, Maiersperger, Gower, & Turner, 2003), correlation coefficient
(r), and slope of the regression line between predicted versus observed
AGB. Model performance was evaluated using the same dataset for
model training and validation. Independent predictions were obtained
by applying each model to the RF OOB data. The method is therefore
analogous to cross-validation.

2.6. Prediction of historic biomass and biomass change

We estimated historic AGB and biomass change (AAGB) using the
single-date model and the disturbance-metric model. The metrics
used to build the disturbance model were based on time series from
1972 to 2009 (Section 2.5.3). The year 2009 was selected as the current
prediction date to match the lidar acquisition date. To predict historic
AGB, we applied each model to historic dates. This meant that the DR
metrics had to be recalculated for each pixel to capture only trends
prior to each prediction date. For example, if predictions for 1992
were desired then DR metrics were calculated from the 20-year time
series between 1972 and 1992 (Figure 2ii). Estimates of AAGB were
obtained by subtracting predictions between two points in time. We
evaluated the historic predictions by comparing the Landsat-predicted
biomass changes (AAGBsp and AAGBpg) with biomass changes from
re-measured CVS plots (AAGBcys).

2.7. Influence of time-series length

When predictions for historic time periods are desired, the predic-
tion date moves to an earlier time step and the length of the time series
decreases accordingly (Fig. 2ii). Because shorter time series may include
less information on disturbance and recovery, it was of interest to ex-
plore how decreasing time-series length may influence prediction accu-
racy of the disturbance-metric model. To explore this, we iteratively
decreased the time-series length (L) by 1 year from the original
38 years to 2 years. For each L we fitted a new model using the same
DR predictors and assessed its performance based on model R? and
RMSE. Note, if L = 1 then historic information is not included as in
the case of the single-date model. Also, because the prediction date, as
the last year in the time series, was fixed by the lidar data acquisition
year (2009), we decreased the time series length by increasing the
time series start year, i.e. from 1972 (L = 38) to 2008 (L = 2). Fig. 2iii
shows an example for L = 20 years.

The efficiency of the disturbance model likely depends on the inten-
sity and speed of the ecosystem response to a disturbance and also
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the intensity and frequency of past disturbances. In other words, if a dis-
turbance occurred 30 years ago then time series of 30 + years may be
needed to describe a highly resilient system or less if spectral recovery
is slow or delayed. To explore if varying time series length might have
captured different historic disturbance patterns, we analyzed the tem-
poral distribution of abrupt, intense disturbances between 1972 and
2009. We defined abrupt as an instantaneous change from one year
to another. However, when clouds or missing image years coincide
with abrupt events the recorded disturbance duration will increase
accordingly. Thus, to account for this ‘missing value’ artifact we selected
all disturbances with a recorded duration of 1 or 2 years. Further, we de-
fined intense based on an estimated relative change magnitude greater
than 30%. This threshold corresponded to a relative change in lidar-
estimated canopy cover of about 50%.

3. Results
3.1. Variable importance

Several Landsat predictor variables showed a correlation with the
log-transformed (In) AGByjqar (Table 1). Based on the current-date
spectra, TCD showed a strong correlation with [n(AGBjgar). TCA was
only weekly correlated with In(AGByiqa4r), although the relationship im-
proved for biomass densities greater than 50 Mg ha~! (r = 0.59).
However, historic TCA metrics associated with the greatest disturbance
spectra and disturbance magnitude (particularly relative change magni-
tude) were strongly correlated with In(AGByiqar). The best historic met-
rics based on TCD characterized post-disturbance trends suggesting that
TCD may have captured recovery better than TCA. For example, an in-
crease in AGBj;qar Was associated with a decrease in TCD within five
years after disturbance. A slightly lower correlation was observed for
recovery magnitude measured across the whole length of the post-
disturbance segment, and also when a linear trend towards the current
date was used. Interestingly, while biomass was correlated with TCA
and TCD five years after disturbance, the correlation with TCA was
higher immediately after disturbance, whereas the correlation with
TCD was higher after five years. Finally, there was only a weak correla-
tion between [n(AGBy;q,:) and disturbance duration, disturbance time,
and pre-disturbance conditions.

The RF importance measures generally agreed with the correlation
analysis such that variables that ranked high with respect to variable
importance also showed high linear correlations. The most important
predictors were current-date TCD (1st) followed by TCA immediately
after (2nd) and five years after disturbance (3rd), and relative distur-
bance magnitude based on TCA (4th). However, some variables with
weak linear correlations ranked also high: current-date TCA (5th),
TCA before disturbance (8th), relative disturbance magnitude for TCD
(9th), and time since disturbance ended (11th).

Overall, the importance of DR metrics declined gradually with the
number of variables and did not show a visible break. Therefore, deter-
mining a cut-off value to select a parsimonious model was relatively ar-
bitrary. We decided to select the first 10 variables, but also included
time since disturbance, since this variable has been effective in other
studies (Helmer et al,, 2010; Lefsky et al., 2005; Li et al., 2011). After
removing co-linear variables (r > 0.8) the final model included a total
of eight variables (Table 3).

3.2. Model comparison

The model based on single-date Landsat data performed relatively
well with an R?> = 0.68 and RMSE = 39.6 Mg ha™ . Including distur-
bance and recovery metrics improved overall model performance
(R? = 0.82 and RMSE = 30.3 Mg ha™'), but particularly in the high
and low biomass range, increasing the dynamic range of the predictions
(Fig. 3). Areas of low biomass corresponded mostly with recently dis-
turbed areas, e.g. the two large fires in the north and south of the area
and clear-cuts. Here, the single-date model overestimated AGB resulting
from regrowth. Both Landsat models slightly underpredicted biomass,
although the estimated bias was lower for the disturbance model
(Table 3).

3.3. Sampling density

We evaluated the effect of sampling density on prediction accuracy
for single-date model and the disturbance-metric model. Varying sam-
pling density between grid spacings of 500 m and 1 km did not affect
prediction errors (e.g. RMSEprs00m = 30.5 £ 0.2 and RMSEpg 1000m =
31.4 £ 0.3). This suggests that a 500-m sampling density was adequate
in this study, and that higher densities (<500 m) would not have signif-
icantly improved model predictions. On average, the disturbance model
performed consistently better than the single-date model across all sam-
pling densities. However, the disturbance model was more sensitive to
decreasing sampling density: RMSE increased by 2.6 Mg ha~! per km
compared to 1.2 Mg ha™! per km with the single-date model. At a
2 km spacing, the disturbance model performed still substantially better
(RMSEpg = 35.7 + 1.2, RMSEsp = 42.1 4+ 1.1), whereas differences di-
minished at spacings of 4 km and greater (RMSEpg = 40.9 + 2.3; RMSE-
sp = 445 £+ 2.1).

Decreasing the sampling density from 500 m to 5000 m also sub-
stantially increased model uncertainties. Standard error (SE) of RMSE
increased from 0.17 to 3.17 (0.54 Mg ha~' average increase per km).
However, the increase may also be attributed to the small sample
sizes at low sampling densities. Sample sizes decreased from 2285
with 500-m spacing to 148, 35, and 22 samples with 2 km, 4 km, and
5 km spacing, respectively. We did not account for spatial autocorrela-
tion when calculating standard errors. As a result, uncertainties in
model predictions may have been underestimated. However, the effect
would have been consistent across sampling densities and model types.

3.4. Influence of time-series length

The accuracy of the disturbance-based predictions decreased gradual-
ly with decreasing time-series length (L) reaching performance levels
more similar to those of the single-date model when only ~2-4 years
were used (Fig. 4). The difference in RMSE between the DR and SD
model for the full time series (L = 38) was9 Mg ha™ !, and decreased ex-
ponentially but slowly to 3 Mg ha™" until L = 4. Based on a fitted power
function of the form RMSE = a - L, the RMSE declined with increasing L
at an estimated rate of b = —0.084 + 0.004 (95% CI) Mg ha™! per year
from an estimated initial (L = 0) RMSE of a = 40.9 + 0.5 Mg ha™!
(R? = 0.98). Model R? stayed nearly constant for time-series lengths of
L> 13 (R? = 0.80-0.82) after which it decreased and showed a visible
change at L = 14.

Table 3

Model summaries for predicting AGBy;q.r based on single-date indices (SD) and disturbance-recovery metrics (DR) (see Table 1 for description of metrics).
Model Predictors R? RMSE RMSE% Variance ratio Bias r
SD CCTCA, CCTCD, CCTCB, CCTCG 0.68 39.64 34.81 0.82 —7.12 0.76
DR CCTCD, ADVALqca, GDRCHyca, CCTCA, ADRECrcp, GDRCHycp, BDVALyca, GDTSE 0.82 30.34 26.65 0.86 —538 0.87
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Fig. 3. Predicted (Landsat) versus observed (lidar) aboveground tree biomass (AGB) based on single-date Landsat data (left) and disturbance-recovery metrics (right).

While there was substantial year-to-year variation in the frequency
of disturbances between 1972 and 2009 (Fig. 5), two main features
were apparent: First, the large wildfire in 1996 coincided with the
abrupt decline in R? (but not RMSE) at L = 14, indicating that knowl-
edge of the fire event and magnitude was important to improve
model predictions for the succession following the fire. Second, the
frequency of disturbances visibly declined after 2002 (L = 8), which
also coincided with wildfire in the south of the study area. Thus, for
short time series (L < 8) changes in AGB were mainly associated with
recent forest recovery.

3.5. Historic AGB and AGB change

Estimates of biomass change clearly improved with the inclusion of
disturbance metrics (RMSEpg = 18 Mg ha™!) compared to the single-
date model (RMSEgp = 24.6 Mg ha™!) (Fig. 6). Using DR metrics, pre-
diction accuracy improved for low biomass changes (425 Mg ha™1)
but most importantly for plots that lost more than 50% of their original
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Fig. 4. R? (left axis) and RMSE (right axis) as a function of time-series length (L) based on the
disturbance-recovery model (DR) and the single-date model (SD). The grey vertical lines
mark two significant disturbance events: 1) a large wildfire detected in 1996 (L = 14),
and 2) a smaller wildfire in 2002 followed by a significant decline in disturbance frequency
(L=8).

live biomass. This is a promising result as all disturbed plots had rem-
nant overstory trees and were not completely cleared.

The application of the disturbance model to historic time periods
achieved robust AGB predictions. Prediction errors in the early time pe-
riods were comparable to the prediction errors of the more recent time
periods. However, the difference between predicted AGBpr and ob-
served AGBcys was slightly higher in early CVS periods and decreased
over time (by 0.84 + 1.25 Mg ha™' year™ ', 95%-CI). This small, resid-
ual trend was not statistically significant. Nevertheless, it may indicate
that Landsat captured changes in AGB associated with disturbances,
but was less effective in describing small gains in AGB associated with
tree growth.

4. Discussion

The disturbance and recovery history of forests can be highly com-
plex, particularly when observed over long time periods (Kennedy,
Cohen, & Schroeder, 2007). In our study area, forest changes are caused
by a range of anthropogenic and natural disturbances of varying inten-
sity and duration (e.g. fire, clear-cuts, partial harvest, insect), and recov-
ery and maturation processes are highly variable. Forest stands may
have experienced a single disturbance or multiple disturbances during
the observed period. Thus, quantification of the cumulative effects of
disturbance history on forest biomass was likely to require a model
that captures multiple, consecutive trends (of various direction and du-
ration) that lead to the current condition. In a previous proof-of-concept
study (Pflugmacher et al., 2012), we delineated DR trends by means
of manual interpretation and hand-digitizing of Landsat time series.
Here, we showed that the DR approach can be automated using the
trajectory-fitting algorithm LandTrendr (Kennedy et al, 2010) and
that it can be used to predict historic AGB and AGB change.

4.1. Using disturbance history for predicting AGB

Landsat-based forest disturbance and recovery metrics were impor-
tant predictors of AGB. The results are encouraging, especially consider-
ing that conifer forests in our study are structurally complex, and
disturbances vary substantially with respect to disturbance agent, in-
tensity, and duration (even over a period of 38 years observed here).
Including DR metrics improved overall prediction accuracy compared
to spectral single-date models by 8% (9.3 Mg ha~!). Whether this
estimate will make the difference when it comes to meeting accuracy
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Fig. 5. Number of lidar samples that underwent an abrupt and intense disturbance between 1973 and 2009. The two years with the highest disturbance activity correspond to two wildfires
in 1996 (detected in 1997) and 2002, respectively. Also visible are years of increased harvest activity (e.g. 1990 and 1995), and a drastic decrease of disturbances after 2002.

requirements for carbon inventories, it remains to be seen. Most impor-
tantly, however, the model improved predictions particularly in low
and high biomass stands (up to ~240 Mg ha~!). Overall, the perfor-
mance of the Landsat spectral data was also relatively good compared
to other studies (RMSE% = 34.8%), albeit model predictions saturated
at ~200 Mg ha—".

The dynamic nature of forest disturbances in the region required
some simplifications with respect to how disturbance history was char-
acterized. While our approach describes many aspects of temporal tra-
jectories, it favors the greatest disturbance (defined by the magnitude
of canopy change). That assumes that the greatest disturbance is the
dominant driver for current structure, and that knowledge of the pro-
cesses or trends immediately before, during, and after are sufficient.
This simplification may or may not accuractely characterize stands
that are exposed to a multitude of non-stand-replacing change agents
over many decades.

Recovery metrics based on TCD trajectories were important descrip-
tors of AGB, but there is no doubt room for improvement. Forest (re-)
growth follows more complex and non-linear patterns, which are likely
not well captured by our simplified recovery metrics. Non-linear models
(e.g. logistic, exponential, and polynomial) are routinely applied to pre-
dict height and diameter growth in forest management and planning
(Curtis, Herman, & Demars, 1974), but adoption of these concepts to
remote sensing data has been slow. A few studies have characterized
forest succession using mathematical models (Lawrence & Ripple,
1999; Viedma, Melia, Segarra, & GarciaHaro, 1997; Yang et al,, 2005)
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that can provide ecologically meaningful interpretations of successional
development (e.g. mean growth rate and delay in tree establishment).
However, these models describe only a small time window associated
with (early) forest succession and also do not consider (pre-) distur-
bance conditions. In comparison, the LandTrendr algorithm character-
izes both disturbance and recovery processes simultaneously.

The importance of time since disturbance as a predictor of forest
structure seems to vary between disturbance regimes and ecosystems.
In this study, time since disturbance was less important for predicting
AGB compared to other studies that used Landsat-based disturbance in-
formation for predicting forest height, which is correlated with AGB.
Helmer et al. (2010) found that forest type and age (estimated from
time since disturbance) explained 85% of the variability in forest height
in a tropical forest in the Bahamas. However, the authors also showed
that using spectral data from the entire time series achieved more real-
istic results. Li et al. (2011) used the Vegetation Change Tracker (Huang
etal.,, 2010) to estimate stand age and cumulative indices of spectral re-
covery. The authors then used these metrics to predict forest height es-
timated with the Geoscience Laser Altimeter System (GLAS) across 11
Landsat scenes covering the US State Mississippi. In their study, stand
age explained 90% and the cumulative indices explained 70% of the
total variance in GLAS-estimated heights. Hence, time since disturbance
appears to be a good predictor of forest structure in systems where
stand-replacing disturbances dominate and/or environmental condi-
tions favor rapid growth of relatively few dominant tree species. In
our study area, less favorable growing conditions and frequent, low
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Fig. 6. Change in Landsat-predicted AGB based on single-date Landsat data (left) and disturbance-recovery metrics (right) versus change in AGB from CVS inventories.
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intensity disturbances from fires, partial harvest, droughts and insects
have created a landscape with a diverse age and stand structure
(Campbell, Azuma, & Weyermann, 2003; Johnson, Miyanishi, & Kleb,
1994).

Spatial knowledge of the disturbance agent may improve predic-
tions of AGB. Post-disturbance conditions following wildfires are differ-
ent from those following clear-cut harvest; the latter are influenced
largely by management decisions such as logging intensity and site-
preparation practices (Franklin et al, 2002). We did not distinguish
between disturbance agents. Mapping disturbance agent has been a
difficult task and often involved hand-digitizing (Cohen et al., 2002;
Healey et al., 2008). However, research is evolving for automated map-
ping of disturbance agents across larger landscapes (Kennedy et al.,
2012; Schroeder, Wulder, Healey, & Moisen, 2011). Including agent
in biomass prediction models is important because agent can be the
most valuable predictor of aboveground dead biomass (Pflugmacher
et al,, 2012), an otherwise illusive biomass component with respect to
remote sensing.

To exclude areas that were not forested during the analysis period
we used a Landsat-based forest mask. Classification errors in the forest
mask may have led to a false inclusion (commission) of some areas
with dense shrub vegetation and a false exclusion (omission) of some
areas with very sparse tree cover. The potential exclusion of very sparse,
low biomass forest pixels and pixels at the forest/non-forest boundary,
which are commonly difficult to accurately map, may slightly underes-
timate the reported errors in the Landsat-based predictions. However,
the good agreement between AGB change measured by the forest
inventory and predicted by Landsat suggests an overall minor impact
on the results of this study.

4.2. Difference between TCA and TCD disturbance history metrics

The correlation analysis between DR predictors and log-transformed
(In) AGByqar revealed several important differences between the ex-
planatory value of TCA and TCD trajectories. Log-transformed AGB;gar
was correlated with TCA-based metrics that characterized disturbance
intensity and post-disturbance spectral properties, but the same metrics
were only weakly correlated with In(AGBjqar) When based on TCD.
Conversely, In(AGBgar) Was correlated with TCD metrics characterizing
recovery processes after disturbance. These results are promising as
they indicate that TCD was sensitive to changes in vegetation composi-
tion (or quality) associated with different successional pathways, which
in turn lead to different biomass accumulation rates. Changes in TCD
after disturbance could also indicate changes in understory vegetation
caused by low-intensity disturbances. Low intensity fires and thinning
eliminate competition for light and nutrients and therefore are likely
to promote understory vegetation and tree growth in these systems
(Youngblood, Metlen, & Coe, 2006). Conversely, the insensitivity of
TCA to the compositional and structural gradient in young forest stands
might explain why TCA was only correlated with [n(AGByiqa) at higher
biomass densities, and why TCD showed overall higher correlations
with lTl(AGBLidar).

4.3. Using lidar-predicted AGB for model training

Currently, airborne lidar data provide the most accurate remotely-
sensed predictors of forest biomass, but they are not suited for repeated,
wall-to-wall monitoring of large areas due to high data acquisition
and storage costs. However, as a sampling tool, airborne lidar data can
improve the efficiency of field inventories by increasing the number of
accurate samples for probability-based biomass estimation (Andersen
et al., 2011) or for training prediction models based on other, less accu-
rate but wall-to-wall remote sensing data (Wulder & Seemann, 2003).
In this study, airborne lidar data were used to sample a broad range
of forest disturbance histories and therefore allowed us to efficiently

scale limited (51) field measurements of forest biomass to a larger
region.

It is important to note that using predictions of AGB instead of field
data directly has consequences. For example, uncertainties in the lidar
predictions and also the field data need to be considered to fully
describe the uncertainties in the Landsat-based predictions. The lidar
model showed a strong fit with the field-estimated AGB data (R? =
0.88 and RMSE = 35.3 Mg ha™!, Pflugmacher et al., 2012). Neverthe-
less, the presented method reduces the variability in the plot-level
AGB values. In some cases this can have a positive effect, but it can
also mask the relationship with other variables.

Because lidar-predicted AGB was used for model training and CVS
data was used for validating historical predictions, differences between
the two data sources could influence the interpretation of the results.
Generally, there was good agreement between the two AGB datasets
based on 23 CVS plots collected in 2007 over the lidar region (r =
0.71). The root-mean-square-difference between AGBcys and AGBygar
was 36.9 Mg ha~! (31.6%), which is comparable to the AGB, 4. predic-
tions. However, reduced major axis regression (Cohen et al., 2003)
between AGByiqar and AGBcys indicated a small, potential systematic dif-
ference between the two data sources (slope = 0.81 + 0.19, 90%-CI;
intercept = 2.30 £+ 26.99).

4.4. Sampling density

In this study, 500-m to 1000-m grids were adequate to sample the
variation in disturbances and biomass within the study area. The opti-
mal sampling density depends on the spatial distribution of distur-
bances, forest types and structural conditions, and therefore may be
different in other areas. However, the results are comparable to those
of Hudak et al. (2002), who tested different sampling densities for
predicting conifer stand height with (single-date) Landsat data in the
dense, more even-aged forests of western Oregon. The authors found
that the spatial autocorrelation structure of conifer stands was less
than 500 m. Prediction accuracy based on regression models was the
highest for 250-m grids, but the 500-m grid achieved comparable re-
sults. In fact, in that study, the prediction error did not increase substan-
tially up to 2000-m grid spacing. This suggests that the range of spatial
auto-correlation likely did not exceed the smallest interval of our sam-
pling grid.

The accuracy of DR-based models was more sensitive to sampling
density than SD-based models. However, DR-based models still
performed better than SD-based models using systematic grids of
2-km spacing (n = 148). Low sampling densities (n = 30) did not
capture the variation in disturbance and recovery patterns well enough
to substantially improve model predictions compared to SD models.
This underlines the importance of sampling design to capture the fine
spatial grain of many forest disturbances.

4.5. Influence of time-series length on model predictions

We explored how time-series length affected the strength of the re-
lationship between AGB and DR metrics. The length of time for which
effects of DR on current forest structure are meaningful depends on
the disturbance frequency and intensity, the rate at which the ecosys-
tem returns to its pre-disturbance state (resilience) and exogenous
agents (e.g. climate) that may decouple structural developments from
the stand initiating disturbance. Here, we found no clear boundary
that would indicate a saturation of the disturbance signal (i.e. ecosystem
response). Prediction accuracy gradually increased with increasing time
series length across the entire observation period. This suggests that ef-
fects of disturbances were still meaningful after 38 years. In fact, vegeta-
tion changes and recovery processes occur slowly over long time-scales
in our study area. Drought stress in young trees can slow down tree-
establishment, and young pine stands can take 10-20 years to reestablish
(Law et al., 2001). Prediction accuracy diminished for short time lengths
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Landsat Tasseled Cap

Fig. 7. Zoomed view on the study area (see Fig. 1) showing Landsat tasseled cap (brightness, greenness, wetness) (top row) and AGB predicted from Landsat disturbance-recovery metrics
(middle row) for the years 1992 and 2009, and lidar-derived AGB (bottom) for the year 2009. Blue areas in the tasseled cap image represent intact forests, brown and red areas represent
stand-replacing disturbances (clear-cut and fire), and brownish colors are associated with partial disturbances (partial harvest and fire).
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(<8 years). The substantial decline in management activities and fire in
the last decade may have contributed to that. We conclude that, for our
study region, observations of at least 10-20 years are necessary to derive
strong relationships between Landsat-based DR history and AGB, but
even as little as 5 years of history were meaningful. In regions where
disturbances are less frequent, longer observations may be needed to cap-
ture the disturbance and recovery history.

4.6. Predicting AGB change

By applying DR models back in time, we were able to predict historic
AGB and ultimately AGB change in our study area using a combination
of field, lidar, and Landsat time-series data. The DR model improved pre-
dictions of AGB loss associated with disturbances and it also generally
improved predictions of AGB gain associated with tree growth. Thus,
the DR model captured AGB dynamics better than the SD model across
the whole range of observed change. Further, predictions reflected the
spatial and temporal patterns of disturbances and regrowth (Fig. 7).

We demonstrated that the relationships between DR metrics and AGB
were generalizable across time periods. The temporal invariance of AGB
models based on normalized Landsat time series has previously been
demonstrated by Powell et al. (2010) for Landsat models using (single-
date) spectral data. The finding that this also applies to disturbance-
recovery metrics is encouraging. We observed a small residual (statisti-
cally not significant) trend in AAGB of 0.84 Mg ha~' year—!, but this
estimate is well within the margin of error obtained for AGB predictions
(DR: RMSE = 30 Mg ha~!, SD: RMSE = 40 Mg ha—!). Although, we do
not know the origin of the estimated bias, it may be related to tree growth
in mature or older stands. Because the environmental conditions in our
study region are less favorable, tree growth is slow but persistent over
long time periods (Law, Sun, Campbell, Van Tuyl, & Thornton, 2003).

Despite the observed limitations, the method presented provides
maps of biomass change over large areas that would not have been
possible without long-term time series of Landsat data. Ultimately,
however, changes in AGB are triggered by a variety of different process-
es such as changes in land-use, disturbances, regrowth, and changes in
metabolic processes driven by environmental conditions. The level of
accuracy for which these processes can and need to be observed with
remote sensing to improve uncertainties of the global carbon balance
is currently vague (Houghton et al., 2009) and likely depends on how
these datasets are going to be used in carbon cycle models.

5. Conclusions

Forest biomass mapping with single-date spectral Landsat data has
known limitations related to the sensor's diminished sensitivity in
closed canopy conditions and the reflectance of bright soils and under-
story in open forests. Here, we presented a method that directly maps
forest AGB and AGB change based on empirical relationships between
lidar-estimated AGB and forest disturbance-recovery trajectories from
annual Landsat time series between 1972 and 2010. Previously, we
showed in a proof-of-concept study that DR metrics (based on TCA
trajectories) predicted AGB and other forest structure attributes better
than models using single-date Landsat data only. Here, we demonstrat-
ed that this approach can be automated across a larger landscape and
that it also extends back in time, which is required for estimating bio-
mass change.

Disturbance and recovery metrics were important to estimate AGB.
AGB was most correlated with disturbance magnitude metrics from
TCA and with post-disturbance recovery from TCD. Previous research
has focused on describing disturbance and recovery using a single spec-
tral index (Kennedy et al., 2012; Pflugmacher et al., 2012). Our results
highlight that characterization of these processes can be improved
when multiple indices are used that describe different spectral gradi-
ents associated with vegetation type and structure. TCA and TCD are
two complementary indices derived from the same transformation.

Used in unison the two indices can improve studies of vegetation
change that require long historic observations such as those provided
by the Landsat series.
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