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The objective of this investigation is the development
of improved techniques for the estimation of robustness for
dynamic systems with structured uncertainties, a problem
which was approached by application of the Lyapunov direct
method. This thesis considers the sign properties of the
Lyapunov function derivative integrated along finite inter-
vals of time, in place of the traditional method of the
sign properties of the derivative itself.

This proposed approach relaxes the sufficient condi-
tions of stability, and is used to generate techniques for
the robust design of control systems with structured per-
turbations. The need for such techniques has been demon-
strated by recent research interest in the area of robust
control design.

The system considered is assumed to be nominally lin-
ear, with time-variant, nonlinear bounded perturbations.
Application of the proposed technique warrants that esti-

mates of robustness will either match or constitute an im-



provement upon those obtained by application of the tradi-
tional Lyapunov approach. The application of numerical
procedures are used to demonstrate improvements in estima-
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pects. To increase the accuracy of the numerical proce-

dures, symbolic algebraic calculations are utilized.
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On the Lyapunov-Based Approach to Robustness Bounds

CHAPTER 1

INTRODUCTION

1.1 Design Problem

The Lyapunov direct method has been utilized recently
in a number of applications for control system analysis and
design. This is the method most generally used for the
determination of the stability of nonlinear and/or time-
varying systems. Vannelli and Vidyasagar [47] have consid-
ered the application of the Lyapunov direct method to vari-
ous theoretical and computational approaches for the esti-
mation of the domain of attraction of autonomous nonlinear
systems. Implementations of the general method of the Lya-
punov direct method have thus resulted in such developments
as the maximal Lyapunov function. As early as 1979, Bray-
ton and Tong [8] introduced computer-generated Lyapunov
functions which considered the Aizerman conjecture to ob-
tain improved results. Subsequently, this approach has
been widely used for the robust design of control systems.

Classes of linear, time-invariant dynamical systems,
in which the system and input matrices, as well as the in-

put itself, are uncertain, have been considered by Leitmann



[24]. The only available information concerning these un-
certainties has been knowledge of the compact sets in which
they may range. Based upon this knowledge, state feedback
controls have been designed to assure uniform asymptotic
stability of the zero state for all possible system re-
sponses. Barmish and Leitmann [2] completed research for
uncertainty threshold estimation.

The control of dynamic systems which contain uncertain
elements and are subject to uncertain inputs is often
treated by the application of stochastic control theory.
The construction of measured (or estimated) state feedback
controls that provide a guarantee that system responses
enter and remain within a particular neighborhood of the
zero state after a finite interval of time was considered
by Leitmann (23], as well as controller design for uncer-
tain systems [25].

Thus, analysis of the stability robustness of linear,
time-invariant systems subject to linear perturbations has
been a matter of considerable research interest for a num-
ber of years. The two types of linear perturbations, time-
variant and time-invariant, which clearly influence the
analysis have been considered. The stability of linear
time-invariant systems with time-invariant perturbations is
directly addressed by testing for the negativity of the
real parts of the eigenvalues, whereas time-variant cases
are best accommodated by application of time domain Lyapun-

ov stability analysis.



For the current investigation, asymptotically stable
linear systems subject to time-~variant, nonlinear perturba-
tions are considered, and bounds are obtained for the per-
turbations to assure system stability. Considerable atten-
tion has already been focused upon the design of con-
trollers for multi-variable, linear systems to the end that
certain properties of the resulting system are preserved
under various classes of perturbations occurring within the
system. According to Patel and Toda [36], the bounds of
perturbation can be computed numerically, providing a use-
ful gquantitative measure of robustness for asymptotically
stable systens.

The Lyapunov approach to testing for the stability of
state-space models was first applied by Yedavalli and
Liang, generating bounds which ténded to be conservative
[52]. The principal theme of their approach was the reduc-
tion of the conservatism of the stability robustness
bounds. In addition, application of the Lyapﬁnov approach
has also been used extensively for the estimation of con-
troller robustness, thus renewing interest in the parameter
space approach to control systems and providing alterna-
tives to the classical methods of Routh-Hurwitz and Ny-
quist.

Thus, recent widespread interest in the robust design
of control systems subject to structured perturbations has
served to shift research activity toward parameter space

methods, and enlargement of the scope of the approach to



include the Lyapunov method as well as frequency domain

concepts [17,8,50].

1.2 Objectives of the Investigation

The objective of the current investigation is the de-
velopment of a new Lyapunov-based technique for the robust
design of control systems subject to structured perturba-
tions. Specifically, the proposed technique provides bet-
ter results for two basic robust control design problems,
the robust stability problem and the uncertain system sta-
bilization problem. This approach involves application of
the Lyapunov direct method to control design for time-vari-
'ant, nonlinear systems with bounded perturbations.

In Chapter 2, general stability concepts and the basic
theorems derivative from applications of the Lyapunov dir-
ect method are presented. 1In addition, generalizations of
this methodology are discussed and the advantages of their
mathematical apparatus are introduced. 1In Chapter 3, a new
approach to the determination of robustness bounds is in-
troduced, accompanied by consideration of improved stabili-
ty criteria for relaxing Lyapunov stability conditions.

The applications of the proposed technique are given prac-
tical demonstration in Chapter 4, with detailed analyses of
the results from the perspective of computational pro-
gramming. In the concluding chapter, results are summar-

ized and proposed directions for further research are con-



sidered. Detailed considerations of programs and pro-
cedures used for the development of the proposed technique

are included as appendices.



CHAPTER 2

THEORETICAL BACKGROUND

2.1 Introduction

For the successful design of given control systems for
uncertain systems, stability is the most important subject
to be determined. If the proposed system is linear and
time-invariant, a number of stability criteria are avail-
able, including both the Nygquist and Routh stability crite-
ria. However, if the proposed system is non-linear, and/or
time-variant, then these criteria cannot be applied. The
advantage of the application of the Lyapunov direct method
is that the stability of a system can be determined without
the need of solving the state equations, a process which
can be either very difficult or nearly impossible when ap-
plied to nonlinear and/or time-variant state equations.

Examination of the stability of a given system is al-
ways the first and basic step in system analysis. If a
system is disturbed in any manner at any given time, the
issue is to determine the effect of the disturbance on sub-
sequent output. If a system is initially in a state of
equilibrium, then it will in theory remain in that state
thereafter, and Lyapunov stability is concerned with the

trajectories of a system when the initial state is near to
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equilibrium. From an engineering point of view, this is of
the utmost importance since external disturbances (e.q.,
noise or component errors) are always present in any actual
system. In systems which have disturbances from their sur-
roundings, it is often procedurally difficult to obtain
precise solutions. However, from the practical engineering
point of view, it is of crucial importance to obtain mea-
sures that define allowable perturbation bounds so that the
stability of the original system may be maintained. Con-
siderable research attention has been devoted to this is-
sue.

The proposed technique for the solution of this prob-
lem utilizes the parameter space approach to the robust
design of control systems subject to structured perturba-
tions. The two principal research directions established
in the parameter space approach include the Lyapunov direct
method and frequency domain concepts. This investigation
is limited to an approach via the Lyapunov direct method.
Application of the Lyapunov direct method allows for the
analysis of nonlinear and time-variant systems, and is less
time consuming than other options since it does not require
calculation of characteristic polynomials of transfer func-
tions.

Two principal directions have been established in re-
search development in the aréa under consideration. The
first, including the Bellman-Matrosov concept of vector

Lyapunov function and the concept of maximal Lyapunov func-



tion, is engaged with the search for the best Lyapunov de-
vice to apply to the problems of robust stability. The
second has been concentrated upon devising better robust-
ness bounds by consideration of the properties of matrix
equations, forming derivatives of Lyapunov functions along
the system's solution. Both methods are considered in the
material presented in this chapter in the context of sys-
tems with structured perturbations. The improvement of ro-
bustness bounds in parametric space has been the subject of
several research approaches. For the current project, the
parameter space approach to the robust design of control
systems is subject to structured perturbations which are
nonlinear and time-variant.

Progress in this area has lead to the design of more
powerful, quicker, and lighter systems, which in turn re-
quire the development of new and more fully robust control-
lers. Aircraft, large space structures, manipulators, and
robots constitute examples of technological areas in which
the need for robust control systems is of particular util-
ity. Design estimates currently in use, and based on
Lyapunov-like theorems, have in simulations differed by as
much as hundreds of percent from accurate values [41].

Thus, research directions in methods to improve the
state of controller designs are discussed in this chapter.
In the following sections, stability in the sense of Lyapu-
nov, basic theorems and definitions of robustness are stat-

ed and defined, arriving at a generalization of Lyapunov



direct methods for improved controller design. Finally,
the Lyapunov derivative used for this project is considered
in detail with the establishment of new criteria for a

mathematical apparatus.

2.2 Stability and Robustness

In 1892, A. M. Lyapunov presented his first and second
methods for determining the stability of dynamic systems as
described by ordinary differential equations [30]. The
first method consisted entirely of procedures in which the
explicit form of the solutions of the differential equa-
tions were used for the analysis, a method which has proved
to be fundamental to the stability analysis of equilibrium
points. Unfortunately, this method is applicable only to
local stability at the point of interest.

The second method, however, does not require the solu-
tion of differential equations. Thus, the Lyapunov's sec-
ond method is suitable to the stability analysis of nonlin-
ear systems for which exact solutions may not be obtained.
The second, or direct, method provides improved stability
evaluation and is therefore powerful, but at the same time
it provides only sufficient conditions of stability.

Ogata [30] has explained the Lyapunov methods by the
use of the energy function concept. From the classical
theory of mechanics, it is accepted that a vibratory system

is asymptotically stable if its total energy (a positive
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definite function) is continually decreasing (that is, the
time derivative of the total energy must be negative defi-
nite) until reaching a state of equilibrium. The Lyapunov
second method is based on a generalization of the fact that
if the system has an asymptotically stable equilibrium
state, then the stored energy of the system which is dis-
turbed within the domain of attraction decays with increas-
ing time. However, there is no simple way of defining an
"energy function."

To circumvent this problem, Lyapunov introduced the
so-called Lyapunov function, or a fictitious energy func-
tion which was more general than that of energy and more
widely applicable. In point of fact, any scalar function
satisfying the hypothesis of Lyapunov's stability theorems
can serve as Lyapunov function. Lyapunov functions are
dependent upon X;, X,,°***, X, and t, and denoted by
V(%;,%Xy,*"*,%,,t) or simply by V(x,t). If Lyapunov funct-
ions do not explicitly include t, then they are denoted by
V(X{,Xy,***,%,) Or V(x). 1In Lyapunocv's second method, the
sign behavior of V(x,t) and that of its time derivative
V(x,t) provide information on the stability, asymptotic
stability, or instability of an equilibrium state without
requiring a direct solution. Thus, it can be shown that if
a scalar function V(x), where x is an n-dimensional vector,
is positive definite, then the states x which satisfy

V(x) = C ,
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where C 1is a positive constant, lie on a closed hypersur-
face in the n-dimensional state space, at least in the
neighborhood of the origin. If V(x)-w as “x”*w, then such
a closed surface extends over the entire state space. The
hypersurface V(x) = C, lies entirely inside the hyper-

surface V(x) = C, if ¢; ( C,.

Theorem 2.1. Suppose that a system is described by x
= f(x,t), where £(0,t) = 0 for all t. The system
is continuous when solutions exist. If there
exists a scalar function V(x,t), having continu-
ous, first partial derivatives and satisfying the
following conditions,

1. V(x,t) is locally positive definite and
2. V(x,t) <0, t 2ty x € B,
then the equilibrium state at the origin is sta-
ble.

The equilibrium point at time t; is uniformly asymp-
totically stable over the interval [t;,o) if there exists a
continuously differentiable decrescent locally positive
definite function V such that -V is an l.p.d.f. (a locally
positive definite function, as defined by Vidyasagar [49]).
A good illustration is provided if we let V = V(x) (i.e.,
V is not time-dependent), and V(x) takes the constant val-
ues 0, C,, Cy, -+ (0(C){C, =++). Then, V(x) = 0 corresponds
to the origin of the state plane, and V(x) = C;, V(%) =

C,, -+ describes nonintersecting surfaces enclosing the
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origin of the state plane. Note that V(x) is radially un-
bounded, or V(x)-® as Hx”*w, the surfaces extending over
the entire state plane. Theorem 2.1 is a basic theorem of
the direct method. For details, see the proofs in Chapter

5.2 from Vidyasagar [49].

Theorem 2.2. Suppose that a system is described by
x = f(x,t) where £(0,t) = 0 for all t>t, .
If there exists a scalar function V(x,t), having
continuous, first partial derivatives and satis-
fying the following conditions,
1. V(x,t) is positive definite,
2. V(x,t) is negative definite, and
3. V(¢(t;%y,ts) ,t) does not vanish identical-
ly in t > t;, for any t, and any x, # 0O,
where ¢(t;xy,t;) denotes the trajectory or solu-
tion starting from x; at t;, then the equilibrium
state at the origin of the system is uniformly
asymptotically stable in the large.

Note that if V is not negative definite, but only neg-
ative semi-definite, then the trajectory of a representa-
tive point can become tangent to some particular surface
V(x,t) = C. However, since V(¢(t;%,, t,),t) does not vanish
identically in t > t;, for any t; and any X, # 0, the repre-
sentative point cannot remain at the tangent point and must
therefore move toward the origin. However, if there exists

a positive definite scalar function V(x,t) such that V is
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identically zero, then the system can remain in a limit
cycle. The equilibrium state at the origin, in this case,

is said to be stable in the sense of Lyapunov.

Instability: If an equilibrium state x = 0 of a sys-
tem is unstable, then there exists a scalar func-

tion W(x,t) which determines the instability of

the equilibrium state.

Theorem 2.3. Suppose that a system is described by
x = f(x,t) where £(0,t) = 0 for all t > t,
If there exists a scalar function W(x,t), having
continuous, first partial derivatives and satis-
fying the following conditions,
1. W(x,t) is positive definite in some re-
gion about the origin and
2. W(x,t) is positive definite in the same
region,
then the equilibrium state at the origin is un-
stable.
Consider the following linear systenm,

X = Ax ,
where x is a state vector (n-dimensional vector) and A is
an n X n matrix. When A is assumed to be nonsingular, a
possible Lyapunov function can be chosen as

V(x) = X'Px ,
where P is a positive definite matrix. The time derivative

V(x) along any trajectory is
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V(%) XTPx + x'Px

= (Ax)TPx + XTP(AX)
= x"TATPx + x"PAx
= x (ATP + PA)x .
Since V(x) was chosen to be positive definite, for asymp-
totic stability it is required that V(x) be negative defi-
nite. Therefore, it is further required that
V(x) = -x'Qx ,
where
Q = -(ATP + PA): positive definite
It is convenient to first specify a positive definite
matrix Q, then examine whether or not P determined from
ATP+PA = -Q is positive definite. Note that it is a nec-
essary and sufficient condition that P is positive defin-

ite.

Theorem 2.4. Consider the system described by
X = Ax ,

where x is a state vector (n x n dimensional vec-
tor) and A i1s an n X n constant nonsingular ma-
trix. It is a necessary and sufficient condition
that the equilibrium state x = 0 be asymptotical-
ly stable in the large if, given any positive
definite matrix Q, there exists a positive defi-
nite matrix P such that ATP+PA = -Q. The scalar
function x"Px is a Lyapunov function for this

system.
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In applying this theorem several important remarks are

in order.

1. If V(x) = -x'Qx does not vanish identically along
any trajectory, then Q may be chosen to be posi-
tive semi-definite.

2. If an arbitrary positive definite matrix as Q is
chosen and solves the matrix equation ATP+PA = -Q
to determine P, then the positive definiteness of
P is a necessary and sufficient condition for the
asymptotic stability of the equilibrium state x =
0.

3. The final result does not depend upon choice of a
particular Q matrix so long as it is positive
definite.

4. To determine the elements of the P matrix, the
matrices ATP + PA and -Q are equated element by
element. This results in n(n + 1)/2 linear equa-
tions for the determination of the elements Pp; =
pP; of P.

5. In determining whether or not there exists a pos-
itive definite matrix P, it is convenient to se-
lect Q = I, where I is the identity matrix. The
elements of P are then determined from ATP+PA = -
I and the matrix P is tested for positive defi-
niteness.

From Lunze [27], the definition of the robustness of

control systems is composed of two ingredients:
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1. A system property (e.g., a stability margin in

the frequency domain), and

2. A class of perturbations against which the system

properties are robust (e.g., uncertain physical

parameters, neglected actuator dynamics and non-
linearity, modeling uncertainty, non-ideal con-

troller implementation, sensor or actuator fail-
ure) .

In the current study, feedback control systems are
considered. Feedback control systems exhibit several im-
portant properties since the behavior of the overall system
is produced by the properties as well as the interactions
of its parts. Feedback makes it possible to stabilize in-
herently unstable systems, to improve the robustness
against variations of the performance of some system part,
or to attenuate unmeasurable external disturbances. 1In the
control system, unknown disturbances may influence the per-
formance of the process. 1In this case, the ocutput is not
only an answer to the control input, but also to disturb-
ances, which are generally uncertain in the sense that they
may be one of a set of possible disturbance signals. Un-
certainties of these types occur to a lesser or greater
extent in nearly all control systems since, for purposes of
modeling and design, the system to be controlled must be
taken out of its environment. Usually, it is not obvious
which of the phenomena must be considered as a part of the

actual plant, or as major connections between the plant and
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its environment, and which are not. Given these circum-
stances, it is important to be aware that the principal
properties of systems are only weakly dependent upon such
uncertainties. Robustness against unmodeled dynamic ele-
ments and perturbations may even be considered as a struc-
tural property of systems. The aim of robustness analysis
is to cope with the difficulties of model uncertainties
when designing feedback controllers.

In addition, for system analysis of the robust design
of control systems, stability must be considered in view of
the uncertainties of the system equations. This is partic-
ular true of the current investigation since stability is
the principal area of research interest. Specific expla-
nations and examples from Singh and Coelho [40] are consid-
ered in Chapter 4, in which VTOL (vertical take-off and
landing) aircraft systems, with several parameters varying
over time, result in substantial changes in dynamics.
Moreover, the system equations then require an adequate
controller to achieve satisfactory and stable performance
when subjected to widely different flight conditions. For
example, stability conditions vary with different flight
conditions, different airspeeds or different pitch angles.
However, parameters with certain conditions stated in the
system equations can be determined if the VTOL continues to
be stable over a large parametric space. The techniques

proposed in the current investigation serve to improve the
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parametric range of the structured perturbations considered

to be the robustness bounds.

2.3 Generalization of the Lvapunov Direct Method

Lyapunov's direct method is a logical alternative to
algebraic methods of parameter analysis and the robust de-
sign of control systems subject to structured perturba-
tions. An appropriate framework for the study of system
(S) stability is the Bellman-~Mastrov concept of vector Lya-
punov functions, one of the most important recent general-
izations of the Lyapunov direct method [48). 1In its most
simple terms, this concept is unique in that it assigns a
Lyapunov function to each subsystem, thus establishing sta-
bility in a part of the state space. 1In this general set-
ting, one means to consider structured uncertainties is to
apply the notion and criteria of stability under structural
perturbations.

As considered by Vidyasagar [48], the concept of vec-
tor Lyapunov functions calls for breaking a full system
into subsystems, assigning the Lyapunov function to each
component subsystems, and then proceeding with the investi-
gation of the stability of the entire system. Siljak [39]
considers a dynamic system as

S : % = g(t,x;) + h(t,x,E) , ieN (2.3.1)
being composed of N subsystems, i.e.,
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where x,(t)€R™ is the state of S, and x(t)€R" is the state of
S at teR, x = (x,",%",+++,xHT and N = {1,2,---,N}. The N
X N matrix E = (e;) represents uncertainty about the system
S, while it is assumed that the elements e;e[0,1] are con-
stant but unknown numbers. The usual existence and unique
properties of the solutions xg(t;t;,%x,) of (2.2.1) are also
assumed for all initial conditions (ty,x%;)€eR x R" and all
admissible E. The unique equilibrium x = 0 of the system S
is invariant under structured perturbations, that is, it
does not change in E.

Consider the interconnection functions h,(t,x,E), tak-
ing the form

h;(t,x,E) = hy(t,e;X;,€pXy, " **, &nXN) ieN (2.3.3)
which indicate that an element e; of E represents the cou-
pling from the subsystem S; to the subsystem S;. For this
reason, the perturbations in E are termed structural per-
turbations, and stability under such perturbations is
called connective stability. The notion of the N x N fun-
damental interconnection matrix, E=(én), a binary matrix
describing the basic structure of S is then introduced.
The structural perturbations are then described by the ele-
ment by element inequality, E<E, thereby stating the defi-
nition of connective stability:

Definition 2.1. A system S is connectively stable if

the equilibrium x = 0 of S is stable in the sense

of Lyapunov for all E < E.
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A large number of variations upon this basic definition and
related stability results within the framework of vector
Lyapunov functions have been presented by Siljak [38].

It is not the intent of this presentation to focus
upon these variations, or subsequent results obtained in
the context of connective stability, rather the purpose of
this study is to focus upon the relationship between sta-
bility analysis and developments in the area of robustness
bounds. However, a brief review of the former is useful to
an understanding of the presentation in this study. To
denote the systems which most frequently occur, such that
their unperturbed portion is linear and stationary, with
perturbations expressed linearly with respect to x, Siljak

[38] defines

which is composed of N subsystems:
S ¢ X = Ax, .
The subsystem Sg can then be rewritten in a compact form
Sg ¢ X = Apx + Ac(E)x ,

where Ap = diag{A;,A,,+-,Ay} and A = (e;A) are matrices of
appropriate dimensions.

Assuming that each subsystem S, is stable, that is,
all eigenvalues of each A, have negative real parts, for

each S; choose a norm-like Lyapunov function

(%) = (XiTHiX;)l/z ’
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where H; is the symmetric positive definite solution of the
Lyapunov matrix equation

ATH, + HA, = -G, .
For the overall system, Sg, choose a Lyapunov function
V(x) = d"V,(x), where VeR" is a vector Lyapunov function
with components as defined previously and deR,N is a posi-
tive vector. Calculating the Dini derivative D*v(x) along
the solutions of Sg and introducing some estimations, form
the N x N matrix W = (W;) where

w,o= 1 M(G) -e, € i=j
S R

and

WU = e €, . 1#7

In conclusion, Sg is connectively stable if the matrix
W is an M-matrix, which is equivalent to saying that W sat-

isfies the following inequalities:

Wip Wiy o oo Wik
Wy Way o oo Wok

...... : >0 for all ke N .
Wer Wiz Wik

The special case, when the system S is reduced to a single
subsysten,

S, ¢ X = AyX + Apx ,

is considered by Patel and Toda [35], where Ay is a matrix

of a nominal system Sy : X = Ayx and Apx is an unstructured



22
perturbation. 1In this case, in place of the matrices H,, a
single matrix H is to be found, obtained as the solution of
the Lyapunov eguation

AJH + HAy = -1 ,

where I is an identity matrix. Furthermore, improvements
of robustness bounds using transformations have been ob-
tained recently by Yedavalli and Liang [52].

Robustness bounds obtained by the application of vec-
tor Lyapunov functions result in inequalities which differ
from the bounds obtained by application of the scalar Lya-
punov function approach. Siljak [39] used a simple example
to show that the vector approach (that is, utilizing modal
transformation) would contribute to better results. Yeda-
valli and Liang [52] obtained an improvement of robustness
bounds by the consideration of state transformations. Sub-
sequently, Becker and Grimm [5], for the case of unstruc-
tured perturbations, proved that robustness bounds obtained
by application of the small gain theorem were always supe-
rior to those obtained by state transformation. Yedavalli
and Liang [52] had stated that the gquestion of finding the
best transformation for either unstructured or structured,
time-variant perturbations was still an open issue. For
the current investigation, another approach toward obtain-
ing better robustness bounds using scalar Lyapunov func-
tions with time-variant, structured system perturbations

has been adopted.
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The mathematical basis of the proposed technique was
established in two studies by Olas {31,32], who considered
the sign properties of the integral of the Lyapunov deriva-

tive along a finite interval of time
v
JO V(x(T, ty, %x,))dT , (2.4.1)

which is considered in place of the sign properties of the
derivative V when investigating system stability. The in-
terval of time is then considered as dependent upon t, and
X, [31].
Corollary 2.1 is utilized for the estimation of ro-
bustness bounds:
Corollary 2.1. Consider a system
x = £(x) , £(0) = 0 (2.4.2)
where feC”(R"). Let all solutions of (2.4.2) be
defined in the future. If there exist:
1) a continuously differentiable positive
definite function V(x),
2) a bounded function T(x) defined for
¥ € R" and having a positive lower bound,
and
3) a continuous, positive-definite function
W(x),

such that the function

V*(x) = J?T(X)V(X(T, 0, x))dr (2.4.3)
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fulfills the condition
-V(%) 2 W(x)
and
V' (0) = W(0) ,
then the trivial solution of (2.4.2) is globally
asymptotically stable.
The procedure based on Corollary 2.1 is then a natural ex-
tension of the Lyapunov direct method procedure.

The first step following selection of the Lyapunov
function candidate V(x) is to check the sign of V. It is
denoted by I' C R"\0 (i.e., a state space with the point
zero excluded), where V ( 0. If I''= R"\0, global asymptot-
ic stability is ensured; if Iy # R"\0, the following steps
are required. Observe that for each xeI'y, there exists an

€ ) 0 such that
0.
J Vix(r, 0, x))dr <O
-€

Therefore, further investigation of (2.4.3) is required
only for xel;.

For the proposed technique, the perturbations are con-
sidered as structured, nonlinear time-variant, and systems
are nominally linear. This class of systems is particular-
ly suited to the utilization of Corollary 2.1 for the esti-
mation of robustness bounds. Two approaches to the problem
are considered. The first is based on the numerical gener-
ation of the worst solutions, starting from the points

xel'). Given the class of systems under discussion, it is
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sufficient to consider only the points x belonging to the
unit sphere, S, xeS\I'y. The numerical procedure derived
in Chapter 3 is provided to serve as a check upon consider-
ation of this step.

The second approach utilizes the fact that the class
of systems under discussion allows for the derivation of
the analytical expression of the difference

V(x(t,0,x%)) = V(xq) . (2.4.4)
For a case when V(x) is selected as the gquadratic form,
this leads to the analysis of the properties of matrices,
which are used to describe how the difference in (2.4.4)
behaves for different perturbations. Following this ap-
proach, it is possible to obtain the robustness bounds ana-
lytically. It is also possible that this approach, when
applied to multi-dimensional systems, will result in a rel-
atively simple technique. The details of these techniques
and procedures, including application to aircraft dynamic

systems, are discussed in Chapters 3 and 4.
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CHAPTER 3
APPLICATION OF RELAXING LYAPUNOV STABILITY

CONDITIONS TO ROBUSTNESS BOUNDS

3.1 Introduction

The Lyapunov direct method has been recently applied
to a number of applications in the area of dynamic control
system and other related areas. Leitman [25] applied the
principle to controller design for uncertain systems, and
Siljak [39)] used the Lyapunov direct method to estimate the
control of robustness bounds. In addition, Barmish and
Leitmann [3] have used the technique for uncertainty thres-
hold estimation.

The objective of the current investigation is to im-
prove the robustness estimates of dynamic systems with
structured uncertainties, using Lyapunov stability condi-
tions to weaken the stability conditions formulated in
classical Lyapunov theorenms.

For purposes of analysis, the sign properties of the
Lyapunov function derivative integrated along the finite
interval of time are considered, rather than the sign pro-
perties of the derivative itself, which has been the tradi-
tional means of judging system stability. The system exam-

ined in the current investigation is assumed to be nominal-
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ly linear, with time-variant, nonlinear bounded perturba-

tions.

3.2 Relaxing Lyapunov Stability Conditions

Consider a system
x = f(t,x), f(t,0) =0, (3.2.1)

where feC,,®P(2), 2 = IL* x D, I, = {t:t. < t < ©}, and D =
{xeR": “x“<H}. Let x(t) be a solution to (3.2.1) for a < t
< b, where (a,b) C I,'. The following theory of integral

continuity of solutions is valid for system (3.2.1).

Theorem 3.1. Select an arbitrary constant € > 0 and
an interval [«,B]e(a,b). There exists a constant
§ > 0 such that
a) the solution z(t), fulfilling z(y) = 2z,
where vye[a,B] and [z(y) - x(y)| < &, is
well-defined for te(a,f], and
b) for te[e,B], the relation is fulfilled by
lz(e)-x(t) || < e.

It follows that the solution (3.2.1) comes from
X(t,te,%9), x(tg,t9,%) = %X,. The following conclusion,
based on Theorem 3.1, provides estimates for solutions
neighboring the trivial solution x = 0.

Conclusion 3.1. For any €;> 0 and for any finite in-

terval ([t,, tytT], there exists §, > 0 such that

for every x, fulfilling |x,| < §,, a solution
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X(t,ty, %) exists, satisfying ||x(t,t,, %) ]| < €, for

te(ty, t,+T].

3.3 Estimation of the Inteqral

For the sake of simplicity, the set D = R" is assumed.
Let V = V(t,x), defined on I, x R, be a continuously dif-
ferentiable function, such that it is locally positive-
definite on some ball, B, centered at 0. Then, let V(t,x)
denote a derivative of V along the system given in (3.2.1)
and let x(t,t,,xy) exist for te[t,, t,+T].
Then, consider the expression
:V('r,X(T,tO,xO)) dr . (3.3.1)
o
Conclusion 3.1 (section 3.2) can be used, taking into ac-
count the continuity of V(t,x) and the fact that V(t,0) =
0. The following conclusion can then be obtained.
Conclusion 3.2. For any constant €; > 0 and for any
interval [t;, t,+T], there exists a constant §; >

0, such that if |x,|<é;, then
| J%ﬂ‘V(T,X(T,tOPXd) dr| < €
l

for ue([t,, ty+T]; when the above integral on the
interval (t;,t] is estimated, a group property of
the solution to (3.2.1) is used.

Assume that x; is so chosen that the solution exists

and remains within the ball, B, on the interval [ty t].
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Let the sequence of time instants {7;}, i = 0,1,+-++,m, 74 =
t, Tm= tg, T;4; < 7; divide the interval [t;,t] on m sub-

intervals [7,4, 7;}, 1 = 0,1,2,-++-,m=1. Then, write
. m-1 T. .
JV(T,X(T,tO,XO))dT = Zj'V(T,X(T,tO,XO))dT . (3.3.2)
Iy i=0 JTin

The group property of the solution may then be expressed by
the relation
X(T,%y, %) = x(1,t;%(%,t9,%)) , (3.3.3)
valid for any 7, te[ty,t], letting x,= x(1,,t,,%,) and
X(7,t),%y) = x(7,7,,%) . (3.3.4)

Relation (3.3.4) allows the transformation of (3.3.2) to

the final form

m-1

L’V(T,x(r,to,xo))dr = ZI:‘V(T,X(T,T,.,X,.))dT . (3.3.5)
0 i=0 o Tist

Thus, it is possible to formulate the following theo-

rem:

Theorem 3.2. Consider a system given in (3.2.1) where
fe$$)(1;><R”) . If there exist
a) a continuously differentiable and locally
positive-definite function V(t,x) and
b) a bounded function T(t,x) defined for

te(0,w], xeB,, and having a positive low-

er bound such that the function
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V*(t,x) = f’

-T(x

)V(T,X(T,t,x))d’r (3.3.6)

exists and fulfills the condition

Vi(t,x) < 0 , for (t,x) € [0,®) X B, (3.3.7)
then the trivial solution of (3.2.1) is Lyapunov
stable.

Proof: In principle, the proof differs little from
the classical proof of the Lyapunov theorem. As
is known, it is sufficient to prove stability for
a selected initial instants t;, and t, = 0 is se-
lected. By virtue of the definition of V(t,x),
there exists a continuous and positive-definite

function W(x) such that

V(t,x) =2 W(x) >0 , for x # 0 , x € B,
V(t,0) = W(0) = 0 . (3.3.8)
Select the sphere s, = {||x| = €} such that SeB,.

By virtue of Weierstrauss' theorem, the lower
bound of W(x) on S, is attained at a certain
point X of S,, that is,

inf W(x) = W(X") = a > 0 . (3.3.9)
XEeS,

Utilizing the fact that the function V(0,x) is

continuous and V(0,0) = 0, it may be concluded

that there exists a neighborhood |x| < &, < ¢,

such that for every ”Xo“ < 6, 0 < V(0,%q) < a/2.
Then, T denotes the upper bound of T(t,x):

sup T(t,x) =T . (3.3.10)
(0,®)xB,
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Using Conclusion 3.2, §; is chosen so that for every x;, sat-

isfying ||x,ll<é;,
|ﬁ;V(T,X(T,O,X0))dT} <.% (3.3.11)

for ue(0,T]). Then, denoting that §, = min(é,,8;), for

%ol < 64,
0 < V(0,%) < a/2 (3.3.12)
and
|J:V(r,x(r,o,xb))dr| <.% (3.3.13)
for ue{0,T]}. Thus, consider an arbitrary non-trivial solu-

tion with initial condition x,, such that [x,| < §,, given
that trajectory of this solution remains entirely inside of
the sphere S,, that is,

| x(t,0,%) | <€ . for te[O0,®) (3.3.14)
Then, assume the contrary, that is, at some instant t = t7,
the point of trajectory is for the first time located on
5.

| x(t,0,%) | < ¢ for te[O0,t")
| x(t",0,%) || = € . (3.3.15)

The corresponding value of V(t,x) is obtained by writing

V(t*,x(t*,0,x,)) = V(o,xw+4g'V(r,x(r,o,xd)df . (3.3.16)
Denote x(t",0,%,) = x, t" = 17,, then introduce induc-
tively two finite sequences: the sequence of instants,

{1;}, 7;41<7;, and the sequence of points, x;eB,, by defining

*
T, = TO-T(TO/X) r X = X(TIIOIXO) '
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Tiv1 = T~T(7{, %) , Xip1 = X(T;41,0,%y) - (3.3.17)
By virtue of the properties of the function T(t,x) for some
i =1i", 7. £ 0, while for the previous instants 7, > 0.
Then, 0 is accepted as the last i’-th term of the sequence,
with the observation that
Towy < T(Tpg, ¥ ) < T . (3.3.18)

The integral on the right-hand side of (3.3.16) is then

trans-formed, writing

m-1

ff V(t,x(1,0,x,))dr = E:JW'V(T,X(T,T“}Q))dT . (3.3.19)
0 i=0 JTiel

From assumption (3.3.7), all of the above integration, with
the exception of the last time step integration of the in-
tegral (3.3.19), are less than or equal to zero. Using

(3.3.16), it may be estimated
V(t",x(t",0,x,)) < V(o,xw-+|JZ*‘V(T,x(T,o,xb))dt| . (3.3.20)

Therefore,

V(t",x(t",0,%)) < a . (3.3.21)

On the other hand, x(t",0,x))€S,. Thus, by virtue of
(3.3.8) and (3.3.9)

V(t,x(t%,0,%)) 2 a , (3.3.22)
contradicts (3.3.21) and proves the theorem. It should be
noted that the integral (3.3.6) may be transformed to the
form

V(t,x) = V(t,x) - V(t-T(t,x),x(t-T(t,x),t,x)) , (3.3.23)
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which is a representation of the difference between the
values of the function V at the initial point (t,x) and at
the point in the "past" defined by the pair

(t-T(t,x),x(t-T(t,x),t,x)) .

The right hand side of (3.3.23) should not be confused with
the expression

V(tr+T (tr, Xp) , X (Ep+T (L, Xp) , E1,Xp) ) = V(Er, %1) , (3.3.24)
in which the solution with the initial values t;,x; is
shifted forward through the interval T(tr,xr).

The following example shows that the fact that
(3.3.24) 1is not positive does not imply stability. Consid-

er a scalar equation

5 = l+sint+tcost
1+t (1+sint)
and function V = V(x) = x’. The solution to the equation
is of the form
X(t,ty,%y) = A t(1rsint)

1+t,(1+sint,) °

and, as may be seen, the trivial solution is unstable. To
determine the function T, two instants t, t,, t, > t, are
selected, writing

V(x(t, o, %)) = VI(X(t,ty, %))

and

_ Xp[(1+t,(1+sint,) )2~ (1+t(1+sint))?]
[1+t,(1l+sint,) ]?

For any t introduce
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k = integer(_E_)
2m

so that 27 < t < 27 (k+1), and choosing T(t) =
2n(k+2) + 3m/2-t so that t; = t+T(t) is obtained as t, =
2m(k+2) + 3m/2.

It is easily seen that T(t) is bounded, for it lower
bound, te[0,w), is positive. Then, for this selection of
ty

V(x(t, t,Xp)) = V(x(t,ty, %))

_ Xp[1-{1+t (1+sint)}?]
[1+t,(1+sint,) )?

which demonstrates that the negative semi-definiteness of
(3.3.24) does not ensure the stability of x = 0.

Finally, the integral (3.3.6) must be transformed to
the form (3.3.23), which represents the difference between
the values of the function V at the initial point (t,x) and
the point previously defined as the pair

(t-T(t,x),x(t=-T(t,x),t,x))

Then, proofs of the theorems for several conditions of

the trivial solution to the system given in (3.2.1) are

given:

Theorem 3.3. Consider a system (3.2.1), as defined in
section 3.2. If there exist:
a) a continuously differentiable, locally
positive-definite, and decrescent func-

tion V{(t,x),
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b) a bounded time function T(t,x), defined
for te[0,»]CI,", x € B,, and having a
positive lower bound, and
c) a continuous, locally positive-definite

function W(x), such that the function
I3 .

-V*(t,x) = -J V(r,x(7,t,x))dr
1=T@.x)

fulfills the conditions
-V (t,x) = W(x) , for x € B
and
-V'(t,0) = W(0) ,
then the trivial solution of (3.2.1) is asymptot-
ically stable. 1In this theorem, it is not re-
quired that V'(t,x) is a continuous function.
As may be seen from Theorem 3.2, Theorem 3.3 is the
stronger of the two. Since this is the case, it is only
necessary to prove that

lim |[x(t,0,x%)] = o . (3.3.26)

t -
That is, given n > 0, there exists an instant t" such that
Ix(t,0,%) | < € for tert’,«].

The functions V(t,x) and V'(t,x) fulfill
a(lx]) < vie,x) < B(x[)
Ve, x) < =yl
where a, f, v are functions belonging to Class k [49].
Therefore, it is enough to show that

V(t,x(t,0,%5)) < a(e) for te[t", =)
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This proof consists of two parts. First, it must be shown
that for an arbitrary § > 0, there exists an instant t such
that the function V attains the value §. In this process,
V is a positive-definite decrescent function and the prop-
erties of V' are used. Consequently, the fact that
V(t,x(t,0,%x,)) is some finite time which remains below the
assigned value allows establishment of the proof of

(3.3.26).

Theorem 3.4. Consider a system (3.2.1), as defined in
section 3.2, and let all solutions of (3.2.1) be
defined in the future. If there exists:

a) a continuously differentiable, positive-
definite and decrescent V(t,x),

b) a bounded function T(t,x) defined for
te(0,w), x € B,, and having a positive
lower bound, and

c) a continuous, positive-definite function
W(x),

such that the function

t .
v =f Vit,x(t, t,x))dr
t-T(t, Xx)

fulfills the conditions
-Vi(t,x) = W(x) , for te[{0,»), xeR"
and

V'(t,0) = W(0) ,
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then the trivial solution of (3.2.1) is globally

asymptotically stable.

The fact that the solutions of (3.2.1) are defined in

the future enables estimation of the upper bound of the in-

tegral

‘ulV(T,X(T,O,Xb))dT . ue[0,T)

The following corollary provides global asymptotic

stability conditions for the trivial solution of the auton-

omous system for the case when V = V(x):

and

Corollary 3.1. Consider a systenm

x = f(x) , £(0) = 0 , (3.3.27)
where fec”’(R"), letting all solutions of (3.3.26)
be defined in the future. If there exist:

a) a continuously differentiable, positive-

definite function V(x),

b) a bounded function T(x) defined for xeR",

and having a positive lower bound, and

C) a continuous, positive-definite function

W(x),

such that
V*(x) = IOT( Vi(x(1,0,x))dr

fulfills the conditions

V(%) 2 W(x)
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v'(0) =Ww(o) ,
then the trivial solution of (3.3.26) is globally
asymptotically stable.

Thus, in this chapter applied theorems for robust con-
trols and new approaches to dynamic systems have been in-
troduced. 1In the following chapter, these approaches are
applied to practical examples arising from actual dynamical

systems, including aircraft dynamic modeling.
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CHAPTER 4

RESULTS OF THE NUMERICAL APPROACH

4.1 Introduction

In this chapter, actual dynamical systems are ap-
proached by application of the Lyapunov direct method to
demonstrate the improvement of robustness bounds. These
examples are drawn from actual aircraft control systems, a
methodology which has attracted considerable attention in
testing robust controls since in their absence it is diffi-
cult to analyze these systems. The selected examples are
used to demonstrate the practicality of the proposed tech-
niques. Systems with structured perturbations are intro-
duced for purposes of problem analysis with the proposed
numerical and computational techniques. FORTRAN is the
principal computer language used for programming, in con-
junction with MACSYMA, a symbolic algebraic calculation
application directed at the analytical solution of complex
mathematical problems. FORTRAN has been applied to those
problems easily expressed in terms of numerical calcula-
tions, while MACSYMA has been used for those problems which
must be expressed in symbolic terms, including matrix cal-
culations, linear equations and nonlinear polynomial equa-

tions. This application serves to minimize the large er-
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rors in the numerical approach, while providing methods for
achieving exact solutions to problems. MACSYMA works with
symbols, polynomial expressions, equations, and numbers,
and can return results in either numeric or symbolic form.

In this chapter, Theorem 3.4 is applied to the inves-
tigation of the robustness of linear systems with struc-
tured uncertainties. The numerical procedure applied fol-
low the flow chart given in Figure 4.1.

First, the quadratic form was selected as the Lyapunov
function. The bounds of uncertainty were defined by calcu-
lating the Lyapunov derivatives. Then, new and higher
bounds of uncertainty were selected, with the function
V'(x) considered for the initial conditions belonging to a
unit sphere. For these initial conditions, for which the
Lyapunov derivative remains negative, there is no need to
determine a solution. For the remaining solutions, inte-
gration is extended until the function V' is negative.

The robust design of control systems subject to struc-
tural perturbations is a natural application of the results
~which are thus presented. Since the structural perturba-
tions are bounded, solutions for these types of systems are
defined in the future. A one-degree of freedom dynamic
system with structured perturbations is investigated in
section 4.2. Section 4.3 includes the example of a three-
dimensional case, and more complicated dynamic systems are

considered in the following section.
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4.2 Analysis of a Two-Dimensional System with a Single

Structured Perturbation

Consider the system

x = AX + g(t,x)Gx , X€eR?

where g(t,x) is a scalar function,

-1 -1 1 0
and the bound k on g(t,x) is such that if |g(t,x)|<k, the
trivial solution of (3.3.27) is asymptotically stable.
A quadratic form of the Lyapunov function V is chosen

as Lyapunov candidate function V = x"Px, V = xT(ATP+PA)x.

Solving for the matrix P to obtain the best Lyapunov func-

tion results in

and

5
vV = X12 + XX, + X7 .

Then, V is differentiated with respect to time,

av ; ; : .
= 2X\X| Y XX, v XX, + 2X,%, ,

dt

and x; and X, in the system equation are replaced:

v 2x1X2+X§+X1[ (-1+g)x;-x,] +2%,[ (-1+9)x,-X,]

dat

= —{(l—g)X%+(l—2g)ng+x§}< o .
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If V fulfills the condition V < 0, then the above equation
must fulfill the following conditions:

a) 1-9g>0 , g<1, and

b) (1 - 29)*-4(1 -9) <0, |g| < %; = 0.8660254.
If the case is positive, then the system is asymptotic sta-
ble. The numerical procedure shown in Fig. 4.1 is based on
the result |g] = 0.96, signifying a 10% improvement in the
estimate of robustness.

To consider the unit sphere in two-dimensional space,
first select k with the same extent of improvement, search-
ing the areas that do not satisfy V < 0. Corollary 3.1 is

then used to check the values of

V*(x) = ?nnV(X(T,O,X))dT

and

V(t,x) = V(t,x)=-V(t-T(t,x),x(t-T(t,x),t,x)) . (4.1.1)
If the value of (4.1.1) is less than zero, this initial
state is stable. In mathematical problem, differential
equations are in ideal terms solved about the state vari-
able. For the area which does not satisfy the condition V

< 0, integrate backward in time, selecting the time T,
T
x(-T) = e x(0) +.& e’ D g(t,x)Gx dT

the exact solution from the system equation, which may then
be used to check the value of V, the proposed technique.
Further implementations of this procedure are discussed and

solved in Appendix A.
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After the described technique is applied to the one-
degree of freedom case, the robustness bouﬁds of |g| can be

improved by a factor of 10%.

4.3 Analysis of a Three-Dimensional System with Two Struc-

tured Perturbations

Consider the three-dimensional case posed by Siljak
[39], originally introduced by Zhou and Khargonekar [54].

The following linear constant plant

-1 0 O 10
S: x = 0-2 0|x+ |0 1 |u
0O 0 -3 1 1
and
1 0 1
Yy = X
0 1 0O
is driven by the output feedback
1-k, O
u-=- Yy .
0 1-k,
The final closed-loop system is
-2+k;, 0 -1+k;
S+ x = 0 -3+k, O X .

-1+k; -1+k, -4+k,

This case is a two-degree of freedom dynamic system

with two structured perturbations, k; and k,. Applying the
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Lyapunov direct method, V = x'Px and V = x'(ATP+PA)x and the
equation ATP + PA = -I is solved, using the MACSYMA symbol-

ic calculation program. It follows that

2 9 1

7 476 14

P - 9 83 11
T | 476 476 476 |’

1 11 1

14 476 7

where P 1s the exact solution and is positive-definite.

Then, V is calculated by the matrix

3k,-7 25k, +2Kk, 2k,
7 476 7
476 119 476
2k, 57k,-2Kk, k=7
7 476 7

If the matrix ATP + PA had been negative-definite, the

selected system would always be asymptotically stable.

For

ATP + PA to be negative-definite, the regions k, and k,

should be |k;| < 1.60 and |k,| < 2.74.

To find the regions

for k; and k,, the inequality equations from the given ma-

trix (4.3.1) are solved. These inequality equations are

derived in a manner such that the negativeness of the ma-
trix ATP + PA observes the Routh-Hurwitz criterion.

For the current investigation, the regions considered
above are considered to be rectangular spaces. Using the

same proposed technique, but with the complications in this
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example that the case is three-dimensional with two struc-
tured perturbations, the k;, and k, regions can be extended.
For |k,| < 1.60, the region of |k,| is extended to 2.97.
Judged from the standpoint of computational requirements,
the three-dimensional case with two structured perturba-
tions takes much more time to achieve results than two-
dimensional case with one structured perturbation. As may
be seen from the results, the |k,| region is extended with

an 8.3% improvement in robustness estimate.

4.4 Analysis of an Aircraft (VTOL) Svstem

In this section, the method for the estimation of ro-
bustness described in Chapter 3 is applied to a specific
VTOL aircraft (i.e., a helicopter). With respect to model
dynamics, the linearized model of the VTOL aircraft in the
vertical plane is described by:

X = (A + AA)x + (B + AB)u . (4.4.1)
The state vector xeR*, and the components of x are:

X;: horizontal velocity (knots),

X,: vertical velocity (knots),

X3: piltch rate (degree/sec), and

X4 pitch angle (degrees).

The two~vector control is u = [ullh]T, where

u; = "collective" pitch control and

u, "longitudinal cyclic" pitch control.
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Control is essentially achieved and maintained by
varying the angle of attack with respect to air passing by
the rotor blades. Collective control u;, is principally
used to control the vertical motion of the aircraft in an
up and down direction, while the principal use of longitu-
dinal cyclic control u, is to control the horizontal veloc-
ity of the aircraft.

For the model under consideration, nominal air speed
is assumed to be 135 knots. Thus, for an airspeed of 135
knots, AA and AB are zero matrices in (4.4.1). For typical
load and flight conditions for a VTOL aircraft at an air-

speed of 135 knots, the matrices A and B are:

-0.0336 0.0271 0.0188 -0.4555
0.0482 -1.01 0.0024 -4.,0208
A 0.1001 0.3681 -0.707 1.42
i 0 0 1 0 ]

and

0.4422 0.1761

3.5446 -7.5922
-5.52 4.49
0.0 0.0

As the airspeed is changed, all of the elements of the
first three rows of both matrices also change. The most
significant changes take place in the elements a;,, a;, and
b,;, and in the following example all the other elements are

assumed to be constant. Thus, in the matrices AA(t) and
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AB(t), the only non-zero parameters are Aa; (t), Aas;(t) and
Ab,, (t) .

A control law of the form u = kx is chosen, where the
constant matrix k is obtained by solving the linear quad-
ratic optimization problem for the nominal system from
(4.4.1) with AA = 0, AB = 0. To obtain desirable handling
characteristics at the nominal airspeed of 135 knots, the

feedback gain, as provided by Sundararajan [44], is

-0.8143 -1.2207 0.266 0.826
-0.2582 1.178 0.0623 -0.212 |

It is then of interest to improve the robustness estimates
for the linear controls on the bounds of variations with
parameters. Thus, for the nominal part of the given system

equation,

pi4 AX + Bu = (A + Bk)x = AX

and

o=
I

A + Bk

— -

-0.442152 -0.305248 0.147396 -0.127576

-0.877862 -14.2805 0.47227 0.516586
) 3.435818 12.39558 -1.895593 -4.0914 )
0 0 1 0]

The system equation is therefore

X (A + AA)x + (B + AB)u ,

u kx

and
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.
Il

(A + Bk)x + (AA + ABK)x

AX + AAX

In the matrices AA and AB, Aas(t), Aaj, and Ab,, are the
only non-zero elements. With three parameters, the system
is called a three-degree of freedom dynamic system with the
structured perturbations Aa;,, Aa;, and Ab,,.

Applying the Lyapunov direct method, MACSYMA is used
for V = x'Px and V = x"(ATP+PA)x to solve the equation ATP +
PA = -I. Using this approach, there are 16 linear equa-

tions, but only six of these equations are dependent since

the matrix P is symmetric. Finally, the matrix P is
2.365108 0.190270 0.204453 -1.215635
0.190270 0.348726 0.366103 0.079727
0.207453 0.366103 0.460888 0.170179

| -1.215635 0.079727 0.170179 2.187138 |

and the system equation is

-0.442152  -0.305248 0.147396 -0.127576
-0.8143Ab,, -1.2207Ab,,  0.266Ab,, 0.826Ab,,
. x = | -0.877862 -14.2805 +0.47227 +0.516586

3.435818 Aay,+12.39558 -1.895593 Aa,,-4.0914

0 0 1 0

Thus, P is the exact solution and is positive-definite.
Then, from the system equation, V is calculated for three

structured perturbations,
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ATP + PA

-0.309874Ab,, -0.51623Ab,,
-1.0 +0.2074534a,,

0.0922415Ab,,

~0.2475068b;; L4 20745344,

-0.85138Ab,,
+0.732206Aa,,
-1.0

0.190725Ab,,
+0.366103Aa,,
+0.170179Aa,,

-0.51623Ab,,
+0.207453Aa,,

-0.354141Ab,,
+0.460888Aa,,

-0.354141Ab,;  0.194767Ab,, 0.3236085Ab,,

0.247506Ab;; L4 46088844, -1.0 +0.460888Aa,,

0.190725Ab,,
+0.366103Aa,,
+0.170179Aa,,

0.131709Ab,,
+0.340358Aa,,
-1.0

0.0922415Ab,,
+0.207453Aa,,

0.3236085Ab,,
+0.460888Aa,,

and V = xT(ATP+PA)x is
V = (-0.309874Ab,;;-1.0)x,> + (-1.03246Ab,,
+ 0.414906Aa3,) XX,
+ (-0.85138Ab,+0.732206Aa3,~1.0) X,
+ (-0.49501Ab,;) X;X;
+ (-0.708282Ab,,;+0.921776Aa3,) X,X;
+(0.194767Aby;—1.0) X,>
+ (0.184483Ab,+0.414906Aa;,) XX,
+ (0.38145Ab,,+0.732206Aa;,+0.340358Aa,) XX,
+ (0.647217Ab,;+0.921776Aa,,) XaX,
+ (0.131709Ab,;+0.340358Aa3,-1.0) x,’
If V is always negative, that is, the matrix ATP + PA is
always negative-definite, the system will be asymptotically
stable. To fulfil this condition, the regions Aaj,, Aa;, and
Ab,;; have certain limits. In the case of |Aaj;| < 0.43,
|Aaz,| < 0.24 and |Ab,| < 0.44, the system is stable.
Following application of the proposed techniques, the

regions which fulfill stability conditions are extended.
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Thus, the final results for regions Aa,;,, Aa;, and Ab,, are,
respectively, |Aa;| < 0.47, |Aay| < 0.26 and |Ab, | < 0.48.
These results constitute a 10% improvement of the robust-

ness estimates.
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CHAPTER 5

CONCLUSIONS

A new technique to estimate the robustness of multi-
dimensional systems with bounded perturbations has been
presented in this investigation. New stability criteria
and conditions were presented and considered for selected
application examples. The sign properties of the Lyapunov
function derivative integrated along finite intervals of
time were considered, rather than upon the sign properties
of the derivative itself. Theorems were formulated to
serve as a basis for both analytical and numerical proce-
dures. The results demonstrated improvements of the bounds
and global asymptotic stability for selected ranges of pa-
rameters.

An example of a two-dimensional system was investigat-
ed by Radziszewski [37], who obtained estimation results of
k = 0.866 It was apparent that allowing g(t,x) = -1 re-
sults in an unstable trivial solution for a two-dimensional
system. The application of the proposed method of improv-
ing robustness bounds results in a reduction in the margin
of the bound estimation (i.e., the difference between the
exact bound and the estimated bound). The numerical proce-

dure based on the presented results provides k = 0.96,
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which is only 4 percent less than the maximum possible re-
sult and is 10 percent better than k = 0.866.

For the three-dimensional system, originally consid-
ered by Zhou and Khargonekar [54], the results of the pro-
posed technique when compared with results from previous

research for the bounds for robust stability were as fol-

lows:
a) Patel and Toda [35]: |k;| < 0.5207;
b) Yedavalli and Liang [52]: |k;|] < 0.81577;
c) Zhou and Khargonekar [54] give three different

conditions, any one of which is sufficient:
(1) k> + k)2 < 2.726768
(2) 0.60521 |k,;| + 0.3512 |k,|] < 1 , and
(3) |k;| < 1.55328

The results for the proposed method are |k;| < 1.60 and |k,|
< 2.97, which may be compared to the regions of robustness
bounds indicated in Figure 5.1. As may be seen, the pro-
posed method allows for improvement in the k, region.

The proposed procedure has been applied to VTOL air-
craft. Based upon a VTOL model system developed by Singh
[41], the most important parameters for the control and de-
sign of the airplane controller were extended in range,
assuring the stability of the original system in the

context of Lyapunov stability.
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Zhou and Khargonekar : (1) 0.605211kq1+0.35 12yl <1
(2) ky2+ky2 <2.72768
(3) k;l < 1.55328

Proposed method : (4) Ikl < 1.60,, Ikl < 2.97

Figure 5.1 Stability Region Estimates for the
Three-Dimensional Case.
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Robust control design for VTOL aircraft was previously
considered by Singh and Coelho [41], who obtained bounds

resulting from nonlinear controls of:

|Aa;,| < 0.2,

|Aay| < 0.3

and

|Aby | < 0.3

In comparison, the results obtained from the proposed tech-
nique, based upon the study of robust stability and the
ability to stabilize VTOL aircraft systems with parametric

(structured) uncertainties, were

|Aajy,|<0.47 ,

|Aay,| < 0.26

and

|Ab, | < 0.48 ,

thus an improvement upon those obtained by Singh and Coelho
[41]. As indicated in Figure 5.2, the region of the pro-
posed method (2) is more efficient in the sense of the ro-
bust control of a VTOL system.

Further research of robustness bounds based upon the
Lyapunov approach should be directed toward the study of
new generations of Lyapunov functions for dynamic systems,
to include robot manipulators and automotive dynamic sys-

tems controlled by a wide variety of parameters. Finally,
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(1) Singh and Coelho [41] : 1Aa351 < 0.2, [Aagyl < 0.3, IAby¢I 0.3

(2) Proposed method : |Aazy| < 0.47 , |Aazy] < 0.26 , |Aby¢| < 0.48

Figure 5.2 Stability Region Estimates for VTOL Systems.

the examination of variations in bounded and unstructured
perturbations will also be a fruitful area of future re-

search.
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APPENDIX A
Numerical Procedures and Computer Programs

for Two-Dimensional System

A.1l Procedures to solve the system equation:

X = AX + g(t,x)Gx

Select interval time T:

x(T) =x(0) el + ﬁ: 4T kx, (1)
1

0
= el {x(0) + J7éA7 dr }.
0 kx, (1)
Introduce finite time difference A\,
T=nA\ .

Denote the discrete time state solutions,
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0
x(n) = e Ix(n-1) + A\

kx,(n-1)

A.2 Computer programs for obtaining robustness bounds:

A.2.1:

MACSYMA is used to obtain numerical procedures for

AN

e”. The following list is the program and the MACSYMA
results.
(Cl) A:MATRIX([O0,1],(-1,-1]);

(C2) I:IDENT(2);
(C3) ISA:INVERT(S*I-A);
(C4) INVISA:ILT(ISA,S,T);

A.2.2:

Program, written in FORTRAN, to find the areas which
do not satisfy the condition V < 0.

PROGRAM TESTVFUN
REAL*8 TPI,PIN,THETA,X1,X2,VDOT,H
WRITE(*,*) ' ENTER |H! '
READ (*,*) H
TPI=8.*ATAN(1.)
PIN=TPI/100.
WRITE (*,100)
100 FORMAT (5X, 'THETA (RADIAN)',8X, 'X1', 15X, 'X2', 12X,
'dv/at’, /)
DO 10 I=0,100
THETA=I*PIN
X1=COS (THETA)
X2=SIN (THETA)
VDOT==(1.+H) *X1*X1=(1.+2.%H) *X1#*X2-X2*X2
WRITE(*,101) THETA, X1, X2, VDOT
101 FORMAT (2X,4 (3X,E13.7))
10 CONTINUE
STOP
END

g}
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A.2.3:

Program to obtain new robustness bounds with the pro-
posed techniques.

PROGRAM THESIS1
C THIS IS THE FIRST PROGRAM TO CHECK THE ASYMPTOTICAL
C STABILITY OF THE SYSTEM THAT HAS PERTURBATIONS.

REAL*8 EA(2,2),X1(10,1000),X2(10,1000),RAD(5) ,H(2)
C DIMENSION X1A(10000),X1B(10000)
C REAL*8 X2A(10000),X2B(10000)

REAL*8 T,TIN

REAL*8 VDOT

integer*4 id,in,i1,i2,i3,1i4,im,iml,k1

C READ THE DATA

WRITE(*,*) 'INPUT SAMPLING TIME T & ITERATION

& NUMBER K.'!

READ(*,*) T,IN

WRITE(*,*) 'INPUT NO. OF INITIAL STATES '

READ (*, *) ID

TIN=T/IN

WRITE(*,*) 'INPUT PERTURBATION !H|.'

READ(*,*)H(1) ,H(2)
C COMPUTE THE EXP(A*LAMDA) MATRIX.

EA(1,1)=EXP(-TIN/2.)*(SIN(SQRT(3.)*TIN/2.)/SQRT(3.)+

& COS (SQRT(3.)*TIN/2.))

EA(1,2)=2.*EXP(-TIN/2.)*SIN(SQRT(3.)*TIN/2.)/SQRT(3.)

EA(2,1)=-EA(1,2)

EA(2,2)=1.099807351
C READ THE INITIAL STATES

OPEN (UNIT = 5,FILE = 'INITIA1.DAT',STATUS = 'OLD')
OPEN (UNIT = 6,FILE = 'VDOT1.RES',STATUS = 'NEW')

c DELV (X1T,X2T,X10,X20) == (X1T*X1T+X1T*X2T+X2T*X2T)

c & +(X10*X10+X10*X20+X20%X20)

DO 1 I0=1,ID

READ (5, *) RAD (I0)

X1(0,1)=COS(RAD(I0))

X2(0,1)=SIN(RAD(IO))

DO 2 Il=1,IN

IM=2%% (2%*T1-1)

IM1=2%% (2%% (I1-1)-1)

I14=0

DO 3 I2=1,IM1

DO 4 I3=1,IM1

DO 5 Kil=1,2

I4=I4+1
X1(I1,I4)=EA(1,1)*X1(I1-1,I2)+EA(1,2)*(X2(I1-1,1I3)
& ~TIN*H (K1) *X1(I1-1,I2))
X2 (I1,I4)=EA(2,1)*X1(I1-1,I2)+EA(2,2)*(X2(I1-1,13)
& -TIN*H (K1) *X1(I1-1,I2))
WRITE(6,*)EA(1,2),EA(2,2)
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WRITE(6,*)X1(I1-1,I2),X2(I1-1,1I3)
WRITE(6,*)X1(I1,I4),X2(I1,I4)
5 CONTINUE
4 CONTINUE
3 CONTINUE
WRITE(6,100)I0,RAD(IO0),X1(0,1),X2(0,1)
100 FORMAT(/,1X, 'INITIAL STATE NO.= ',I3,5X,'RADIAN= '
& ,E13.7,/ 9X,'X1= ',E13.7,2X,'X2= ',E13.7,//)
DO 10 IVi=1,IM
DO 20 IV2=1,IM
VDOT=DEV (X1 (I1,IV1),X2(I1,IV2),X1(0,1),X2(0,1))
WRITE(6,102)I1,VDOT
102 FORMAT(2X,'TIME STEP NO = ',I3,' VDOT= ',E20.8)
20 CONTINUE
10 CONTINUE
C PRINT THE FIRST RESULT.
WRITE(6,100)I0,RAD(I0),X1(0,1),X2(0,1)
100 FORMAT(/,1X,'INITIAL STATE NO.= ',6I3,5X,'RADIAN=
& ',E13.7,/9X,'X1= ',E13.7,2X,'X2= ',E13.7,//)
WRITE(6,101)I1,XMAX1(I,1),XMIN1(I,1),XMAX2(I,1),
& XMIN2 (I, 1)

101 FORMAT (1X,'TIME STAGE NO.= ', IS5,/
& ' XMAX1= ',E13.7,4X,'XMIN1= ', E13.7,/
& ' XMAX2= ',E13.7,4X,'XMIN2= ',E13.7)
WRITE(6,102)I1,VDMAX, VDMIN

102 FORMAT (2X, 'VDMAX = ',E20.8,5X,'VDMIN = ', E20.8)

C FIND THE STATES FOR THE NEXT TIME STEPS.

M=MOD (J, 1000)

IF(M.EQ.0) THEN

WRITE(6,101)J,XMAX1(I,J),XMIN1(I,J),XMAX2(I,J),

& XMIN2 (I,J)

WRITE(6,103) VDMAX, VDMIN

103 FORMAT(2X,'VDMAX= ',E20.8,5X,'VDMIN= ', E20.8)

ENDIF
C PRINT THE FIRST RESULT.

WRITE(6,100)I,RAD(I),X1(I),X2(I)

100 FORMAT(/,1X,'INITIAL STATE NO.= ',I3,5X, 'RADIAN=
& ',E13.7,/9X,'X1= ',E13.7,2X,'X2= ',E13.7,//)
WRITE(6,101)I1,XMAX1(I,1),XMIN1(I,1),XMAX2(I,1),
& XMIN2 (I, 1)
101 FORMAT(1X,'TIME STAGE NO.= ', IS,/
& ' XMAX1= ',E13.7,4X,'XMIN1= ',6E13.7,/
& ' XMAX2= ',E13.7,4X,'XMIN2= ',6E13.7)

2 CONTINUE

1 CONTINUE
STOP
END
FUNCTION DEV(X1,X2,X10,X20)
REAL*8 DEV,X1,X2,X10,X20
DEV=- (X1*X1+X1*X2+X2*X2)+
& (X10*X10+X10*X20+X20*X20)
RETURN
END



APPENDIX B
Numerical Procedures and Computer Programs

for Three-Dimensional System

B.1 Procedures to solve the system equation:

X = AX + Bu ,

-1 0 0 1 O
A=10 -2 o0 B=1|0 1|,
0 0 -3 1 1
1-k, 0
u = -
0o 1-k, Yo
1 0] 1
Yy = X
0 1 ©
Therefore,
-2+k, 0 -1+k,
x = 0 -3+k, O x .

-1+k;, -1-+k, -4-+k,

The state vectors are
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kix) + Kix;
T
x(T) = e?’x(0) + I edT" Kyx, dr
0

Kix; + kyx, + kix,

Denote the finite time interval T = nA. The discrete-time

state vector is then

x(n) = e yx(n-1) + A Kk x,(n-1)

kix,(n-1) + k;x;(n-1)

kix,(n-1) + K,x,(n-1) + k,;x;(n-1)

B.2 Computer programs for obtaining robustness bounds:

B.2.1:

N

Program list for solving e in matrix form using

MACSYMA.

(Cl) A:MATRIX([-2,0,-1],(0,-3,0],[-1,-1,-4]);
(C2) I:IDENT(3);

(C3) ISA:INVERT(S*I-A);

(C4)

INVISA:ILT(ISA,S,T);

B.2.2:

Program list to solve AP + PA = -I and to obtain v,

using MACSYMA.

(Cl)
(C2)
(C3)
(C4)
(C5)
(C6)
(C7)
(C8)
(C9)

BATCH("silpl.mac\;1");
A:MATRIX([-2,0,-1],[0,-3,0],(-1,-1,-4]);
AT:TRANSPOSE(A) ;
P:MATRIX([P11,P12,P13],(P21,P22,P23],[P31,P32,P33]);
LHS:AT . P+P . A;

EQ1:-P31-P13-4%P11 = -1;
EQ2:-P31-P23-5%P21 = 0;
EQ3:-P33-6%*P31-P11 = 0;
EQ4:-P32-P13-5%P12 = 0;
(C10) EQ5:-P32-P23-6%P22 = -1;
(C11) EQ6:-P33-7%P32-P12 = 0;

(C12) EQ7:-P33-6%P13-P11

I
o
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(C13) EQ8:-P33-7%P23-P21 = 0;

(Cl14) EQ9:-8%P33-P31-P13 = -1;

(C15) LIST_OF_EQS:[EQ1,EQ2,EQ3,EQ4,EQ5,EQ6,EQ7,EQ8,EQ9]S
(C16) LIST OF VAR:[P11,P12,P13,P21,P22,P23,P31,P32,P33]$
(C17) EV(RES:LINSOLVE(LIST OF EQS LIST OF VAR),
GLOBALSOLVE: TRUE) ;

(D17) [P11=2/7 P12=9/476 P13=-1/14 P21=9/476 P22=83/476
P23=-11/476 P31=-1/14 P32=-11/476 P33=1/7)

(C18) EP:EV(P);

(C19) AK:MATRIX([-2+K1,0,-1+K1],[0,-3+K2,0], [-1+K1,-1+K2, -
4+K17]) ;

(C20) X:MATRIX([X1],[X2],[X3]);

(C21) VDOT:EXPAND (TRANSPOSE (X) . (TRANSPOSE (AK) . EP+EP.AK) .X) ;

B.2.3:

Program list to check the ares which do not satisfy
VvV < 0.

PROGRAM TESTVSIL
REAL*8 TPI,PIN,THETA,PHI,X1,X2,X3,VDOT,K1,K2
OPEN(6,FILE='VDSIL.RES', STATUS='NEW')
WRITE (*,*) 'ENTER K1,K2'
READ (*, *)K1,K2
TPI=4.*ATAN(1.0)
PIN=TPI/10.
WRITE(6,100)
100 FORMAT (2X, 'THETA',3X,'PHI',3X,'X1',3X,'X2"',3X, 'X3",
& 5%,'dv/dt!', /)
DO 1 I=0,10
THETA=I*PIN
DO 2 J=0,10
PHI=J*PIN
X1=SIN (PHI) *COS (THETA)
X2=SIN (PHI)*SIN (THETA)
X3=COS (PHI)
VDOT=(3.%K1-7.)/7.*%X1%X1~(25.%K2+2.*K1) /238.*X1*X2+
& 4.%K1/7.%X1*X3+(36.%K2-119.) /119.*X2*X2+
& (57.*K2-2.%K1) /238.*%X2*X3+(K1-7.)/7.*X3*X3
WRITE(6,101) THETA, PHI, X1,X2,X3,VDOT
101 FORMAT (2X,5(F8.5,2X),E13.7)
2 CONTINUE
1 CONTINUE
STOP
END
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B.2.4:
Program list to obtain new robustness bounds with pro-
posed techniques.

PROGRAM THESIS2
C THIS IS THE FIRST PROGRAM TO CHECK THE ASYMPTOTICAL
C STABILITY OF THE SYSTEM THAT HAS PERTURBATIONS.
REAL*8 EA(3,3),THE(100),PHI(100)
REAL*8 X1(30,3300),X2(30,3300),X3(30,3300)
REAL*8 VDOT
REAL*8 T,TIN,TAU,H1(2),H2(2)
INTEGER*4 IN,ICOUNT,ID,I1,I2,I4,IM,IM1,K1,K2
C READ THE DATA
WRITE(*,*) 'INPUT SAMPLING TIME T & ITERATION NUMBER
& IN. '
READ (*,*) T,IN
WRITE(*,*) 'INPUT NO. OF INITIAL STATES '
READ (*, *) ID
TIN=T/IN
TAU=ABS (TIN)
WRITE(*,*) 'INPUT PERTURBATION !K!s. (K1 & K2)'
READ (*, *)H1 (1) ,H2 (1)
H1(2)=-H1(1)
H2 (2)=-H2(1)
C COMPUTE THE EXP(A*LAMDA) MATRIX.
EA(1,1)=EXP(~TIN*3.)* (SINH(SQRT(2.)*TIN)/SQRT(2.)+
& COSH (SQRT(2.) *TIN))
EA(2,1)=0.
EA(3,1)=-EXP(-3.*TIN)*SINH(SQRT(2.)*TIN) /SQRT(2.)
EA(1,2)=EXP(-3.*TIN)*COSH(SQRT(2.)*TIN) /2.
& -EXP(-3.*TIN) /2.
EA(2,2)=EXP(-3.*TIN)
EA(3,2)=EXP(-TIN*3.)* (COSH(SQRT(2.)*TIN)/2.-

& SINH(SQRT(2.)*TIN) /SQRT(2.))-EXP(-3.*TIN) /2.
EA(1,3)=-EXP(-3.*TIN)*SINH(SQRT(2.)*TIN) /SQRT(2.)
EA(2,3)=0.

EA(3,3)=EXP(-3.*TIN)* (COSH(SQRT(2.)*TIN) -
& SINH(SQRT(2.) *TIN) /SQRT(2.))

C READ THE INITIAL STATES
OPEN (UNIT = 5,FILE = 'INISIL1.DAT',STATUS = 'OLD')
OPEN (UNIT = 6,FILE = 'VDSIL1.RES',STATUS = 'NEW')

c

c

DO 1 I=1,ID

C WRITE(*,*)' INPUT THE DATA THETA & PHI'
READ (5, *) THE(I),PHI (I)
X1(1,1)=SIN(PHI(I))*COS(THE(I))
X2(1,1)=SIN(PHI(I))*SIN(THE(I))
X3(1,1)=COS (PHI(I))
WRITE(6,10)I,THE(I),PHI(I)
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FORMAT (/,1X, 'INITIAL STATE NO.= ', I3,3X,'THETA=
' ,E15.7,3X, 'PHI= ',E15.7)
WRITE(6,100)X1(1,1),X2(1,1),X3(1,1)
FORMAT (5X, 'X1= ',6E15.7,2X, 'X2= ',E15.7,2X, 'X3=
'+E15.7,//)
IM=1
ICOUNT=0
DO 2 I1=1,IN
IM=2%* (IM-ICOUNT)
IM1=IM/2
14=0
ICOUNT=0
DO 3 I2=1,IM1
DO 4 K1=1,2
DO 5 K2=1,2
I4=I4+1
X1(I1+1,I4)=EA(1,1)*(X1(I1,I2)*(1.+TAU*H1 (K1))
+TAU*H1 (K1) *X3 (I1,I2))
+EA(1,2)*(X2(I1,I2)*(1.+TAU*H2 (K2)))
+EA(1,3)*(X3(I1,I2)*(1.+H1(K1)*TAU)
+H1 (K1) *TAU*X1 (I1,I2)
+H2 (K2) *TAU*X2 (I1,I2))
X2 (I1+1,I4)=EA(2,1)*(X1(I1,I2)*(1.+TAU*H1 (K1))
+TAU*H1 (K1) *X3 (I1,I2))
+EA(2,2)*(X2(I1,I2)*(1.+TAU*H2 (K2)))
+EA(2,3)*(X3(I1,I2)*(1.+H1 (K1) *TAU)
+H1 (K1) *TAU*X1(I1,I2)
+H2 (K2) *TAU*X2 (I1,1I2))
X3(I1+1,I4)=EA(3,1)*(X1(I1,I2)*(1.+TAU*H1 (K1))
+TAU*H1 (K1) *X3 (I1,I2))
+EA(3,2)*(X2(I1,I2)*(1.+TAU*H2 (K2)))
+EA(3,3)*(X3(I1,I2)*(1.+H1 (K1) *TAU)
+H1 (K1) *TAU*X1(I1,I2)
+H2 (K2) *TAU*X2 (I1,I2))
VDOT=DEV (X1 (I1+1,I4),X2(I1+1,I4),X3(I1+1,I4),
X1(1,1),X2(1,1),X3(1,1))
WRITE(6,101)I1,X1(I1+1,I4),X2(I1+1,I4),X3(I1+1,I4)
, VDOT
FORMAT (2X, 'TIME STEP No= ',I3,/,' X1l= ',E12.6,
' X2= ',El2.6,' X3= ',E12.6,/,
' VDOT = ',E20.8 )
WRITE(6,*)' PREVIOUS TIME STEP STATES'
WRITE(6,102)I1-1,X1(I1,I2),X2(I1,I2),X3(I1,I2)
FORMAT (2X, 'PREV. TIME STEP NO= ',I3,/,' X 1= ',E12.6,
' X 2= ',E12.6,' X 3= ',E12.6)
IF (VDOT.LT.0.0)THEN
I4=I4-1
ICOUNT=ICOUNT+1
ENDIF

CONTINUE
CONTINUE
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CONTINUE
WRITE(6,103) 14

FORMAT (3X, 'NO. OF CALC. OF VDOT = ',I10)
WRITE(6, *)

CONTINUE

CONTINUE

STOP

END

FUNCTION DEV(X1,X2,X3,X10,X20,X30)

REAL*8 DEV,X1,X2,X3,X10,X20,X30
DEV==(2./7.*X1*X1+9./238.%X1%X2~1./7.*X1%X3+

& 83./476.*X2*X2-11./238.*X2*X3+1./7.*X3*X3)
& +(2./7.*X10*X10+9./238.%X10%X20-1./7.*X10*X30+
& 83./238.*X20*X20-11./238.*X20%X30+1./7.%
& X30*X30)

RETURN

END
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APPENDIX C
Numerical Procedures and Computer Programs

for VTOL System

C.1 Procedures for solving the system equation:

The system equation is X = AxXx + Bu and all the matri-
ces are given as in section 4.4. The finite time is denot-
ed as T = nA and the discrete time state vector is ex-

pressed as
x(n) = e*{x(n-1) + A(AA + ABK) x(n-1)} .
The matrix AA has the elements Aa;, and Aa;, and the matrix

AB has the element Ab,,.

C.2 Computer programs to obtain robustness bounds:

c.2.1:

Program to obtain the matrix form of e with MACSYMA.

(Cl) A:MATRIX([-0.0366,0.0271,0.0188,-0.4555],
[0.0482,-1.01,0.0024,-4.0208],
(0.1002,0.3681,0.707,1.42],(0,0,1,01);

(C2) B:MATRIX([0.4422,0.1761],[3.5446,-7.5922],
[-5.52,4.49],[0,01);

(C3) K:MATRIX([-0.8143,-1.2207,0.266,0.826],
[-0.2582,1.178,0.0623,-0.212]);

(C4) Al:A+B.K;

) EA:IDENT(4)+A1*TIN+A1.A1*TIN~2/2+A1.A1.A1*TIN~3/6+Al.
Al.A1.A1*TIN"4/24+A1.A1.A1.A1.A1*TIN"5/120;
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c.2.2:

Program to solve ATP + PA = -I and to obtain V with

MACSYMA.

(C1)

(C2)
(C3)
(C4)
(C5)
(cé)
(C7)
(C8)
(C9)
(C10)
(C11)
(C12)
(C13)
(C14)
(C15)
(C16)
(C17)
(C17)
(C18)
(C19)
(C20)
(C21)
(C22)
(C23)
(C24)
(C25)

(C26)
(C27)

A:MATRIX([-0.0366,0.0271,0.0188,-0.4555],
{0.0482,-1.01,0.0024,-4.0208],
{0.1002,0.3681,-0.707,1.42},[0,0,1,01);

B:MATRIX({0.4422,0.1761],(3.5446,-7.5922],
[-5.52,4.49],[0,01);

K:MATRIX({-0.8143,-1.2207,0.266,0.826],
{-0.2582,1.178,0.0623,-0.212]);

FLOAT: TRUE;

Al:A+B.K;

P:MATRIX([P11,P12,P13,P14],[P21,P22,P23,P24],
(P31,P32,P33,P34],[P41,P42,P43,P44]);

LHS:P.A1+TRANSPOSE (Al) .P;

EQ1:P12=P21;

EQ2:P13=P31;

EQ3:P14=P41;
EQ4:P23=P32;
EQ5:P24=P42;
EQ6:P34=P43;
EQ11:3.435818*P31~-0.877862*P21+3.435818*P13
-0.877862*P12-0.884305*%P11=-1;
EQ12:3.435818*%P32~-0.877862*P22+12.39558*P13
=-14.72265*%P12-0.305248*P11=0;
EQ13:3.435818*P33~-0.877862*P23+P14-2.337745%P13
+0.47227*%P12+0.147396%P11=0;
EQ14:3.435818*P34-0.877862*P24-0.442152*P14
-4.0914%P13+0.516586*P12~0.127576%P11=0;
EQ22:12.39558*%P32+12.39558*%P23-28.56101%*P22
-0.305248%P21-0.305248*P12=~-1;
EQ23:12.39558*%P33+P24-16.17609*P23+0.47227*P22
+0.147396* P21-0.305248*P13=0;
EQ24:12.39558%P34-14.2805*%P24-4.0914*%P23+0.516586*P22
—0.127576*%P21-0.305248*P14=0;
EQ33:P43+P34-3.791186*P33+0.47227*P32+0.147396%P31
+0.47227*%P23+0.147396*%P13=-1;
EQ34:P44-1.895593%P34~4.0914*P33+0.516586*P32
=-0.127576*P31+ 0.47227*%P24+0.147396%P14=0;
EQ44:-4.0914*P43+0.516586%P42-0.127576%P41-4.0914*P34
+0.516586* P24-0.127576*P14=-1;
LIST OF_EQS:[EQ1,EQ2,EQ3,EQ4,EQ5,EQ6,EQ11,EQ12,
EQ13,EQ14,EQ22,EQ23,EQ24,EQ33,EQ34,EQ4419%
LIST OF_VARS:(P11,P12,P13,P14,P21,P22,P23,P24,
P31,P32,P33,P34,P41,P42,P43,P44]1%
ELEM_P:LINSOLVE(LIST_OF_EQS,LIST_OF_VARS,
GLOBALSOLVE:TRUE) ;
P:BFLOAT (ELEM_P) ;
P:MATRIX([2.365108,0.19027,0.207453,~-1.215635],
{0.19027,0.348726,0.366103,0.079727],



(0.207453,0.366103,0.460888,0.170179],
(-1.215635,0.079727,0.170179,2.187138]) ;

(C28) X:MATRIX([X1],[X2],[X3],[X4]);

(C29) DELA:MATRIX([0,0,0,0],{0,0,0,0],
(0,A32,0,A34],[0,0,0,0]);

(C30) DELB:MATRIX(([0,0],(B21,0],([0,0],[0,0]);

(C31) DELA1l:DELA+DELB . K;

(C32) Al 1:A1+DELA1;

(C33) VDOT:TRANSPOSE(X) . (TRANSPOSE (Al 1).P+P.Al 1).X;

(D16) X3 ((0.366103 (0.826 B21 + 0.516586)

+ 0.079727 (0.266 B21 + 0.47227)

+ 0.460888 (A34 - 4.0914) + 1.658902) X4

+ (0.732206 (0.266 B21 + 0.47227) =- 1.345799) X3

+ (0.348726 (0.266 B21 + 0.47227)

+ 0.366103 (- 1.2207 B21 - 14.2805)

+ 0.460888 (A32 + 12.39558) - 0.649535) X2

+ (0.19027 (0.266 B21 + 0.47227)

+ 0.366103 (- 0.8143 B21 - 0.877862)

+ 0.231528) X1) + X2 ((0.348726 (0.826 B21 + 0.516586)

+ 0.079727 (- 1.2207 B21 - 14.2805)

+ 0.366103 (A34 - 4.0914)

+ 0.170179 (A32 + 12.39558) + 0.346796) X4

+ (0.348726 (0.266 B21 + 0.47227)

+ 0.366103 (- 1.2207 B21 - 14.2805)

+ 0.460888 (A32 + 12.39558) - 0.649535) X3

+ (0.697452 (- 1.2207 B21 - 14.2805)

+ 0.732206 (A32 + 12.39558) - 0.116159) X2

+ (0.348726 (- 0.8143 B21 - 0.877862)

+ 0.19027 (- 1.2207 B21 - 14.2805)

+

0.207453 (A32 + 12.39558) + 0.451791) X1)
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+ X1 ((0.19027 (0.826 B21 + 0.516586)

+ 0.079727 (- 0.8143 B21 - 0.877862)

+ 0.207453 (A34 - 4.0914) + 0.820469) X4

+ (0.19027 (0.266 B21 + 0.47227)

+ 0.366103 (- 0.8143 B21 - 0.877862)

+ 0.231528) X3 + (0.348726 (- 0.8143 B21 - 0.877862)
+ 0.19027 (- 1.2207 B21 ~ 14.2805)

+ 0.207453 (A32 + 12.39558) + 0.451791) X2

+ (0.38054 (- 0.8143 B21 - 0.877862) - 0.665935) X1)
+ X4 ((0.159454 (0.826 B21 + 0.516586)

+ 0.340358 (A34 - 4.0914) + 0.310172) X4

+ (0.366103 (0.826 B21 + 0.516586)

+ 0.079727 (0.266 B21 + 0.47227)

+ 0.460888 (A34 - 4.0914) + 1.658902) X3

+ (0.348726 (0.826 B21 + 0.516586)

+ 0.079727 (- 1.2207 B21 - 14.2805)

+ 0.366103 (A34 - 4.0914)

+ 0.170179 (A32 + 12.39558) + 0.346796) X2

+ (0.19027 (0.826 B21 + 0.516586)

+ 0.079727 (- 0.8143 B21 - 0.877862)

+ 0.207453 (A34 - 4.0914) + 0.820469) X1)

C.2.3:

Program to check the areas which do not satisfy
V < 0.

PROGRAM TESTVAIR

REAL*8 TPI,PIN,THE1l,THE2,THE3,X1,X2,X3,X4,6VDOT
REAL*8 A32,A34,B21
OPEN(6,FILE='VDAIR.RES',STATUS='NEW')
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WRITE(*,*) 'ENTER A32,A34,B21'
READ (*,*)A32,A34,B21
TPI=4.*ATAN(1.0)
PIN=TPI/10.
WRITE(6,100)
100 FORMAT (2X, 'THE1',3X,'THE2',3X, 'THE3',3X, 'X1',3X,
& 'X2',3X,'X3',3X,'X4',5X,'dv/dt’', /)
DO 1 I=0,100
THE1=I*PIN
DO 2 J=0,100
THE2=J*PIN
DO 3 K=0,100
THE3=K*PIN
X1=COS (THE1) *COS (THE2) *COS (THE3)
X2=SIN(THE1) *COS (THE2) *COS (THE3)
X3=SIN(THE2) *COS (THE3)

X4=SIN(THE3)
VDOT=(0.131709%B21+0.340358*%A34-1.0) *X4*X4
+(0.647217%B21+0.921776%A34) *X3*X4

+(0.38145%B21+0.732206%A34+0.340358%A32) *X2%X4
+(0.184483%B21+0.414906%A34) *X1*X4
+(0.194767%B21~1.0) *X3*X3
+(-0.708282%B21+0.921776%A32) *X2*X3
+(~0.495012%B21) *X1*X3
+(-0.85138%B21+0.732206%A32-1.0) *X2%X2
+(-1.03246%B21+0.414906%A32) *X1*X2
+(-0.309874%B21-1.0) *X1*X1
IF (VDOT.GT.0.0) THEN
WRITE(6,101) THE1l, THE2,THE3, X1, X2,X3,X4,VDOT
101 FORMAT(1X,7(F7.4,2X),E12.5)
ELSE
ENDIF
3 CONTINUE
CONTINUE
1 CONTINUE
STOP
END

R R R R

\S]

C.2.4:
Program to obtain new robustness bounds with proposed
techniques.

PROGRAM THESIS3

C THIS IS THE PROGRAM TO IMPROVE THE PARAMETERS

C OF THE AIRCRAFT SYSTEM THAT COMES FROM SINGH PAPER.
REAL*8 EA(4,4),THE1(100),THE2(100),THE3 (100)
REAL*8 X1(2,50000),X2(2,50000),X3(2,50000)
REAL*8 X4 (2,50000),VDOT,X1I,X2I,X3I,X4I
REAL*8 T,TIN,TAU,A32(2),A34(2),B21(2)

C REAL*8 AK11,AK12,AK13,AK14
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INTEGER*4 IN,ICOUNT,ID,IT,I1,I2,I4,IM,IM1,K1,K2,K3
C READ THE DATA
AK11=-0.8143
AK12=-1.2207
AK13=0.266
AK14=0.826
WRITE(*,*) 'INPUT SAMPLING TIME T & ITERATION NUMBER
& IN. "
READ(*,*) T,IN
WRITE(*,*) 'INPUT NO. OF INITIAL STATES
READ (*,*) ID
TIN=T/IN
TAU=ABS (TIN)
WRITE(*,*) 'INPUT PURTURBATION A32,A34,B21'
READ (*,*)A32(1),A34(1),B21(1)
A32(2)=-A32(1)
A34(2)=-A34(1)
B21(2)=-B21(1)
C COMPUTE THE EXP(A*LAMDA) MATRIX.
EA(1,1)=4.255473*TIN**4-1.34924*TIN**3
& +0.484945*%TIN#*%2-0.442152*TIN+1.
EA(2,1)=132.3068*TIN**4-35.95812*TIN**3
& +7.273546*TIN**2~0.877862*TIN
EA(3,1)=-125.5919*TIN**4434.24123*TIN**3
& -9.45684*TIN*%2+3.435818*TIN
EA(4,1)=8.560309*TIN**4-3,15228*TIN**3
+1.717909*TIN**2
EA(1,2)=60.39193*TIN**4-16.36739*TIN**3

& +3.16056*TIN**2-0.305248*TIN
EA(2,2)=1898.448*TIN**4-515.671*%TIN**3
& +105.0274*TIN**2-14.2805*TIN+1.
EA(3,2)=-1811.248*TIN**4+492.8055*TIN**3
& =100.7804*TIN**2+12.39558*TIN
EA(4,2)=123.2013*TIN#**4-33,.59349*%TIN**3
& +6.197792*TIN**2
EA(1,3)=-2.029926*TIN**4+0.598695*TIN**3
& -0.308155*TIN*¥*2+0.147396*TIN
EA(2,3)=-64.89269*TIN**4+17.64945%TIN**3
& =3.626143*TIN**24+0.47227*TIN
EA(3,3)=61.74137*TIN**4-15,89514*TIN**3
& +2.931178*TIN*#*2-1.895593*TIN+1.
EA(4,3)=-3.973787*TIN**4+0.97706*TIN**3
& =0.947797*TIN**2+TIN
EA(1,4)=-2.683134*TIN**%4+0.943873*TIN**3
& -0.352168*TIN**2-0.127576*TIN
EA(2,4)=-83.50298*TIN**4+22,.72125*TIN**3
& ~4.598678*TIN*¥*2+0.516586*TIN
EA(3,4)=78.81034*TIN**4-20.94931*TIN*%*3
& +6.860342*TIN**2-4,0914*TIN
EA(4,4)=-5.237328*TIN**4+2.286781*TIN**3
& =2.0457*TIN**2+1.

C READ THE INITIAL STATES
OPEN(UNIT = 5,FILE = 'VDAIR1.DAT',STATUS = 'OLD')
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OPEN (UNIT = 6,FILE = 'VDAIR1.RES',STATUS = 'NEW')

DO 1 I=1,ID
WRITE(*,*)' INPUT THE DATA THETA & PHI'

READ (5, *) THE1 (I) , THE2 (I) ,THE3 (I)
X1(1,1)=COS(THE1(I))*COS(THE2 (I))*COS (THE3 (I))
X2(1,1)=SIN(THE1(I))*COS(THE2 (I))*COS(THE3 (1))
X3(1,1)=SIN(THE2(I))*COS(THE3 (I))

X4 (1,1)=SIN(THE3 (I))

X1I=X1(1,1)

X2I=X2(1,1)

X3I=X3(1,1)

X4I=X4(1,1)
WRITE(6,10)I,THE1(I),THE2(I),THE3 (I)

FORMAT(/,1X, 'INITIAL STATE NO.= ',bI3,1X,'THETAl=
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',E10.5,1X, 'THETA2= ',6E10.5,1X, 'THETA3= ',E10.5)

WRITE(6,100)X1TI,X2I,X3I,X41
FORMAT (2X, 'X1= ',E12.5,2X,'X2= ',E12.5,2X, 'X3=
',E12.5,2X, 'X4= ',E12.5,//)

IM=1

ICOUNT=0

IT=1

DO 2 Il=1,IN

IM=8% (IM-ICOUNT)

IM1=IM/8

I4=0

ICOUNT=0

DO 3 I2=1,IM1

DO 4 Ki=1,2

DO 5 K2=1,2

DO 6 K3=1,2

I4=14+1

X1(IT+1,I4)=(EA(1,1)+EA(1,2)*TAU*B21 (K3)*AK11)
*X1(IT,I2)+(EA(1,2)*(1.+TAU*B21 (K3)*AK12)
+EA(1,3) *TAU*A32 (K1) ) *X2 (IT,I2)
+(EA(1,2)*TAU*B21 (K3) *AK13+EA (1,3) ) *X3 (IT,I2)
+(EA(1,2)*TAU%*B21 (K3) *AK14+EA(1,3) *TAU*A34 (K2)
+EA(1,4))*X4 (IT,I2)
X2 (IT+1,I4)=(EA(2,1)+EA(2,2)*TAU*B21 (K3) *AK11)
*X1(IT,I2)+(EA(2,2)*(1.+TAU*B21 (K3)*AK12)
+EA(2,3) *TAU*A32 (K1) ) *X2 (IT, I2)
+(EA(2,2)*TAU*B21 (K3) *AK13+EA (2,3) ) *X3 (IT, I2)
+(EA(2,2)*TAU*B21 (K3) *AK14+EA (2,3) *TAU*A34 (K2)
+EA(2,4))*X4 (IT,I2)
X3 (IT+1,I4)=(EA(3,1)+EA(3,2)*TAU*B21 (K3)*AK11)
*X1(IT,I2)+(EA(3,2)*(1.+TAU*B21 (K3)*AK12)
+EA(3,3) *TAU*A32 (K1) ) *X2 (IT, I2)
+(EA(3,2) *TAU*B21 (K3) *AK13+EA(3,3) ) *X3 (IT, I2)
+(EA(3,2)*TAU*B21 (K3) *AK14+EA (3, 3) *TAU*A34 (K2)
+EA(3,4))*X4 (IT,I2)
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X4 (IT+1,14)=(EA(4,1)+EA(4,2)*TAU*B21 (K3) *AK11)

& *X1(IT,I2)+(EA(4,2)*(1.+TAU*B21(K3)*AK12)
& +EA(4,3)*TAU*A32 (K1) ) *X2 (IT,I2)
& +(EA(4,2)*TAU*B21 (K3)*AK13 +EA(4,3))*X3(IT,I2)
& +(EA(4,2)*TAU*B21 (K3) *AK14+EA (4,3) *TAU*A34 (K2)
& +EA(4,4))*X4(IT,I2)
VDOT=DEV (X1 (IT+1,I4),X2(IT+1,I4),X3(IT+1,I4)
& , X4 (IT+1,I4),X1I,X2I,X3I,X41)
WRITE(6,101)I1,X1(IT+1,I4),X2(IT+1,I4),X3(IT+1,14)
& , X4 (IT+1,I4),VDOT
101 FORMAT (2X,'TIME STEP No= ',I3,/,' X1l= ',E12.6,
& ' X2= ',E12.6,' X3= ',E12.6,' X4=
& ' ,E12.6,/,
& ' VDOT = ',E20.8 )

WRITE(6,*)' PREVIOUS TIME STEP STATES'
WRITE(6,102)I1-1,X1(IT,I2),X2(IT,I2),

& X3 (IT,I2),X4(IT,I2)
102 FORMAT (2X,'PREV. TIME STEP NO= ',I3,/,' X 1=
& ',El2.6,' X 2= ',E12.6,' X 3= ',E12.6,"

& X 4= ',E12.6)

IF (VDOT.LT.0.0) THEN
I14=I4-1
ICOUNT=ICOUNT+1
ENDIF

CONTINUE

CONTINUE

CONTINUE

CONTINUE

DO 11 IT4=1,I4

X1(IT,IT4)=X1(IT+1,IT4)

X2 (IT,IT4)=X2(IT+1,IT4)

X3 (IT,IT4)=X3(IT+1,IT4)

X4 (IT,IT4)=X4 (IT+1,IT4)

WRITE(6,*)X1(IT,IT4),X2(IT,IT4),X3(IT,IT4),X4(IT,IT4)

11 CONTINUE
WRITE(6,103) I4

103 FORMAT (3X,'NO. OF CALC OF VDOT(+) = ',I10)
WRITE (6, *)

2 CONTINUE

1 CONTINUE

STOP

END

FUNCTION DEV(X1,X2,X3,X4,X10,X20,X30,X40)

REAL*8 DEV,X1,X2,X3,X4,X10,X20,X30,X40

DEV=-(2.369620%X1*X1+0.348741%X2*X2+0.460902*X3*X3
+2.187332%X4*X4+2.%(0.190129%X1*X2+0.207394*X1*X3
-1.216408*X1*X4+0.366117*X2*X3+0.079767*X2*X4
+0.170208%X3*X4))
+(2.369620%X10*X10+0.348741%X20*X20
+0.460902%X30*X30+2.187332*X40%X40
+2.%(0.190129*%X10%*X20+0.207394*X10%X30
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-1.216408*%X10*X40+0.366117*%X20*X30
+0.079767*X20*X40+0.170208*X30%X40))
RETURN
END

80



