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The advent of improved DNA sequencing technologies has allowed the analysis

of various microbial communities. Bloom-forming freshwater cyanobacteria can

produce toxins and taste-and-odor compounds that can negatively affect drinking

water supplies. Here, I have employed second- and third-generation sequencing

technologies to characterize bloom-forming freshwater cyanobacterial genomes and

their associated heterotrophic bacteria and viruses. These include nine novel fresh-

water Nostocaceae genomes, three genomes from heterotrophic bacteria associated

with Aphanizomenon in a communal culture, and two novel Microcystis phage

genomes.

• The genomes of three novel heterotrophic bacteria associated with Apha-

nizomenon flos-aquae in culture were sequenced and assembled to finished



quality with long-read sequencing. These genomes were sequenced together,

highlighting the potential for using long-read sequencing towards metage-

nomics of low-diversity microbial communities. These genomes were ana-

lyzed to assess interactions between Aphanizomenon flos-aquae and these

heterotrophs in culture. The presence of an ammonium-importer gene in

two of these genomes suggests a putative dependency on fixed nitrogen from

Aphanizomenon flos-aquae.

• The genomes of nine novel Nostocaceae genomes were sequenced and assem-

bled to draft quality. Five of these genomes were assembled and extracted

directly from three separate environmental short-read shotgun metagenomes.

The remaining four strains were cultured, one of which was from this study

(Aphanizomenon MDT14) and three that were provided by Gregory Dick’s

lab at the University of Michigan (Anabaena CPCC64, Anabaena LE011-

02, and Anabaena AL09). All novel genomes were characterized relative

to the rest of the Nostocaceae family to analyze evolutionary relationships

and identify differences in gene content to evaluate potential phenotypic pat-

terns/differences. Genes involved in toxin synthesis and sulfur metabolism

are variably present in these genomes, with no patterns relative to phyloge-

nomic relationships. Conversely, functionally diverse genes are present in

genomes with close phylogenomic relationships.

• The genomes of two novel Microcystis phages were sequenced and assem-

bled to finished quality from two separate environmental short-read shotgun



metagenomes. These novel genomes were similar to the previously sequenced

Microcystis phages Ma-LMM01 and MaMV-DC, and all four genomes were

characterized together to identify patterns of gene conservation in this ge-

ographically distributed phage group. Additionally, one of the completed

phages was present in samples across a 6-week time series of environmental

short-read shotgun metagenomes. Patterns of gene gain/loss and divergence

were then analyzed in this Microcystis phage across the time series. Host-like

genes involved in photosynthesis and phosphate starvation are present in all

genomes, while presence of other host-like genes is less conserved. Genomes

from the environmental time-series contain differences in presence/absence

of several hypothetical genes, as well as sequence divergence in the tail collar

gene, which may have implications for infection in the environment.
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Chapter 1 Introduction

1.0.1 Freshwater bloom-forming cyanobacteria

When conditions allow, aquatic cyanobacteria can grow to high densities, and

these populations are termed ”blooms.” Cyanobacterial blooms occur across the

world in aquatic systems including marine, brackish, and freshwater. Most re-

search to date has focused on the numerically abundant marine Prochlorococcus

and Synechococcus genera, whose sheer numbers drive a major portion of global

carbon fixation and oxygenation on Earth [Partensky et al. 1999]. Freshwater

bloom-forming cyanobacteria, in contrast, have been studied much less. There is

good reason to focus on freshwater cyanobacteria, especially since eutrophication

has caused increased frequency of cyanobacterial blooms in freshwater systems

over recent years [Oneil et al. 2012]. Bloom-forming cyanobacteria are also often

capable of producing toxic compounds known to cause liver toxicity or paralysis

[Nishiwaki-Matsushima et al. 1992; Carmichael et al. 1975; Cheung et al. 2013;

Otten and Paerl 2015], threatening drinking water supplies as a result [Falconer

1999]. Additionally, some strains can produce taste and odor compounds that

make drinking water supplies unpalatable [Jüttner and Watson 2007]. Cyanobac-

terial blooms also have major impacts on surrounding communities. For exam-

ple, high-density blooms are responsible for water deoxygenation leading to ”dead
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zones” following bloom degradation, as well as having major food web impacts

and preventing other organisms from photosynthesizing by shading out sunlight

[Paerl et al. 2001; Huisman et al. 2004]. Freshwater cyanobacteria can also pro-

duce a wide range of natural compounds that carry potentially valuable activities

[Harada 2004; Dittmann et al. 2015]. Taking these facts into consideration, it would

be useful to apply current DNA sequencing technologies and analytical techniques

to better understand environmental parameters that may be important for growth

of freshwater cyanobacteria.

1.0.2 Bloom-associated bacteria

Heterotrophic bacteria associated with algal blooms have been shown to play im-

portant roles in nitrogen, sulfur, carbon and phosphorus cycling [Ask et al. 2009;

González et al. 2000; Grossart et al. 2006; Grover 2000]. Some mutualistic inter-

actions between algae and bacteria have been identified. For example, the vita-

min B12 micronutrient is supplied to some eukaryotic algae by bacterial partners

in exchange for fixed carbon [Croft et al. 2005; Amin et al. 2012]. Another ex-

ample is the Richelia intracellularis cyanobacterium, which can fix nitrogen in

a symbiotic relationship with diatoms [Foster et al. 2011]. Interactions between

cyanobacteria and associated heterotrophic bacteria also occur. Cyanobacterial

growth can be enhanced by the presence of heterotrophic bacteria in culture [Berg

et al. 2009]. This may be a result of nutrient sharing. Alternatively, this may

be caused by dependencies generated by reductive evolution via the Black Queen
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Hypothesis, whereby gene loss in free-living organisms leaves them dependent on

co-occurring microbes for lost metabolic or other functions [Morris et al. 2012].

These interactions could also be unidirectional. For example, others have shown

that Aphanizomenon flos-aquae in the Baltic Sea fixes nitrogen, which is released

from the cell as ammonium, and is taken up by heterotrophic and phototrophic

bacteria with no identified benefit for A. flos-aquae [Ploug et al. 2010; Adam et al.

2016]. These interactions are important to understand as factors that potentially

enhance or hinder growth of cyanobacterial strains in the environment, likely affect

the overall microbial community composition, and may have an essential role in

how cyanobacterial blooms initiate, persist, or collapse.

1.0.3 Cyanobacterial genomics

While cyanobacterial genomics have been well-studied over the past decade, a

large majority of studied genomes belong to the marine genera Prochlorococcus

and Synechococcus due to their importance in global biogeochemical cycles. In

comparison, freshwater cyanobacterial genomes have been sequenced much less

(166 Prochlorococcus genomes compared with 19 Microcystis genomes in NCBI’s

Genome database as of July 2016), leaving a number of clades with fewer sequenced

representatives (22 genomes from entire Nostocaceae family in NCBI’s Genome

database as of July 2016). To better understand freshwater cyanobacterial evo-

lution, physiology, and population dynamics, more genome sequences are needed

from less-sequenced clades such as Nostocaceae. As more of these genomes are se-



4

quenced, we may begin to elucidate the distribution of toxin-synthesis genes, in ad-

dition to patterns of genes involved in niche differentiation. Freshwater cyanobac-

teria can also produce a number of secondary metabolites [Dittmann et al. 2015],

and sequencing more genomes could reveal novel pathways for synthesizing undis-

covered natural compounds.

A considerable amount of work has gone into studying the comparative ge-

nomics of cyanobacteria. This has included focus on primary metabolism [Beck

et al. 2012], secondary metabolism and natural product synthesis [Baran et al.

2013; Calteau et al. 2014; Dittmann et al. 2015], the core and pan-genome [Shi

and Falkowski 2008; Simm et al. 2014], phylogenomic characterization [Shih et al.

2013], and extracellular polysaccharide synthesis genes [Pereira et al. 2015]. How-

ever, most of these studies are phylum-wide analyses, which don’t focus on pat-

terns found in narrower groups such as genera. As a result, comparative studies

of freshwater bloom-forming cyanobacteria would be useful in identifying genomic

patterns that inform about their physiology and evolution.

In addition to characterizing functional gene content, comparative genomics

helps reveal phyletic relationships [Daubin et al. 2002; Delsuc et al. 2005; Cic-

carelli et al. 2006; Puigbo et al. 2010; Hug et al. 2016]. Single-gene phylogenies

have been previously used to characterize relationships within cyanobacteria, which

produces results inconsistent with current genus assignments of strains within the

Nostocaceae family [Gugger et al. 2002; Rajaniemi et al. 2005]. These assignments

are based on polyphasic classification, which takes into account morphological as

well as genetic similarity [Komárek 2016]. However, morphological classifications
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are subjective, and the genetic component relies solely on 16S rDNA phyloge-

nies, which have not been capable of resolving the placement of Anabaena, Aph-

anizomenon, Dolichospermum, and Nostoc strains in phylogenetic trees. Further

genome sequencing may allow for re-classification of these genomes, and proper

classification of future isolates.

1.0.4 Viruses of freshwater cyanobacteria

As top-down predators, viruses infecting algae can control population density in

the environment. For example, Emiliana huxleyi algal blooms in marine systems

collapse in response to viral infection [Bratbak et al. 1993; Jacquet et al. 2002;

Sorensen et al. 2009]. However, there are few instances of phage-induced freshwa-

ter cyanobacterial bloom collapse [Peduzzi et al. 2014]. Beyond controlling host

population numbers, phages of marine cyanobacteria have been shown to drive

host diversity and evolution as well [Rodriguez-Valera et al. 2009; Biller et al.

2015]. Since marine cyanophages play an important role in host ecology and evo-

lution, studying freshwater cyanophages could inform about population dynamics

and evolution of freshwater bloom-forming cyanobacteria.

However, as of June 2016, the genomes of only nine cyanophages that infect

freshwater cyanobacteria have been sequenced. Eight of these viruses are tailed

phages, while one (Planktothrix phage PaV-LD) is not tailed and is highly diver-

gent from the others based on capsid gene phylogeny, and has thus remained un-

classified [Gao et al. 2012]. The podoviruses, which consist of an Anabaena phage
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(A-4L [Ou et al. 2015b]), a polar Synechococcus-infecting phage (SEIV-1 [Chénard

et al. 2015]), and three Phormidium phages (PP-1 (unpublished), Pf-WMP3 [Liu

et al. 2008], and Pf-WMP4 [Liu et al. 2007]) cluster together and separately from

marine cyanopodoviruses based on a concatenated phylogeny of conserved genes

[Ou et al. 2015b]. The genomes of only three freshwater cyanomyoviruses have

been sequenced to date. One is a Cyanobium-infecting phage (S-CRM01) that is

more closely related to marine cyanomyoviruses [Dreher et al. 2011] than the two

other freshwater cyanomyoviruses which infect the potentially toxigenic Microcys-

tis aeruginosa (Ma-LMM01 and MaMV-DC) [Yoshida et al. 2006; 2008; Ou et al.

2013; 2015a]. Both Microcystis phages have been characterized in culture and

have fully sequenced genomes [Yoshida et al. 2006; 2008; Ou et al. 2013; 2015a].

About one-sixth of the MaMV-DC genome contains genes similar to host genes

[Ou et al. 2015a]. These studies have revealed these lytic phages carry a host-like

gene involved in regulating photosynthesis, nblA, which promotes phycobilisome

degradation during infection [Ou et al. 2015a; Gao et al. 2012]. NblA may provide

protection for the host photosystem II complex by preventing absorption of excess

light energy (and therefore photoinhibition) through phycobilisome degradation

[Yoshida-Takashima et al. 2012; Honda et al. 2014]. Alternatively, phycobilisome

degradation may provide additional amino acids for phage structural synthesis

[Yoshida-Takashima et al. 2012; Ou et al. 2015a], since phycobilisomes can consti-

tute a large proportion of soluble cellular protein [Grossman et al. 1993]. Together

with the psb genes found in other phages, this indicates that freshwater and ma-

rine cyanophages can employ different host-like genes in order to utilize resources
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related to photosynthesis in their respective hosts. However, as fewer freshwa-

ter cyanophages have been sequenced than marine cyanophages, more genome

sequences are needed to better understand the diversity and infection strategies

available to freshwater cyanophages.

1.0.5 DNA sequencing and analysis

The amount of DNA sequencing has increased exponentially over the last decade

[Buermans and Den Dunnen 2014]. Until recently, short-read DNA sequencing

technologies dominated genomic and metagenomic studies [Morozova and Marra

2008; Bragg and Tyson 2014]. However, parsing these complex datasets has re-

quired the development of novel informatic tools for processes such as assembling

genomes [Peng et al. 2012], calling and annotating genes [Delcher et al. 1999; See-

mann 2014], taxonomic assignment [Gregor et al. 2014; Darling et al. 2014], and

binning and evaluating whole genomes [Albertsen et al. 2013; Parks et al. 2015;

Kang et al. 2015]. Long-read sequencing technologies are taking an increasing

share of the market, and provide specific advantages not available to short-read

sequencers [Koren and Phillippy 2015]. Primarily, long reads span repetitive ge-

nomic regions that short-reads cannot assemble to prevent assembly breaks [Lee

et al. 2014]. As a result, finishing genome assemblies removes the need to bin draft

genomes or manually close gaps with Sanger sequencing. Additionally, long-read

sequences allow correct assembly of regions containing adjacent, short repetitive

genes [Brown et al. 2016]. However, there are drawbacks to using long-read se-
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quencers. They are much lower-throughput than short-read sequencers, which

means that cost per base pair is higher. As a result, bacterial long-read sequencing

has been primarily limited to cultured strains [Bashir et al. 2012; Zhang et al.

2016], with only a few exploratory steps into metagenomics [Frank et al. 2015;

Mosher et al. 2014]. Also, high concentrations of DNA are necessary for long-read

sequencing, which is sometimes difficult to obtain. These drawbacks are important

to keep in mind for long-read sequencing projects.

1.0.6 Overview of chapters

The dissertation research presented here has five chapters, all focusing on compar-

ative genomics of freshwater cyanobacteria, and the bacteria/viruses associated

with them. In Chapter 2, we investigated the interactions of bacteria associated

with Aphanizomenon flos-aquae from Upper Klamath Lake, OR by DNA sequenc-

ing a mixed-community culture. We employed long-read shotgun metagenome

sequencing to completely assemble three bacterial genomes. Our results show that

two genomes belong to the Proteobacteria phylum, and likely survive by importing

fixed nitrogen released by A. flos-aquae grown in a nitrogen-free culture medium.

We also discuss the possibility of sequencing microbial communities using long-read

technology in order to fully assemble bacterial genomes.

In Chapter 3, we sequenced nine novel freshwater cyanobacterial genomes be-

longing to the Nostocaceae family. This family is of particular interest since some

members have been shown to produce a variety of toxins (e.g. anatoxins, micro-
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cystin, saxitoxin), as well as allelopathic compounds that can affect local organ-

isms. As part of a collaborative study between four labs, we compared these nine

novel genomes with previously-sequenced Nostocaceae family genomes to identify

genes indicative of niche differentiation. Additionally, we sought to character-

ize the relationship of these novel genomes to the rest of the Nostocaceae family,

where taxonomic inconsistencies abound regarding the placement of Anabaena,

Aphanizomenon, and Dolichospermum strains. Five of the novel genomes were

binned directly from environmental shotgun metagenomes (Anabaena CRKS33,

Anabaena MDT14-2, Anabaena WA113, Aphanizomenon MDT14-1, and Aphani-

zomenon WA102), while the other four novel genomes were sequenced from cultures

(Anabaena AL09, Anabaena CPCC64, Anabaena LE011-02, and Aphanizomenon

MDT13), indicating the utility of available sequence analysis tools to sequence and

extract draft-quality bacterial genomes without the need for culturing.

Chapter 4 focuses on phages that infect bloom-forming cyanobacteria. We as-

sembled two novel strains of the Microcystis phage Ma-LMM01. Completing these

genomes brings the total number of sequenced strains of this globally distributed

phage type to four. We characterized these four genomes together to investigate

patterns of conservation and variance across these genomes, in addition to search-

ing for evidence of this virus in other freshwater metagenomes. This phage was

present in a two-month metagenomic time-series from samples collected once every

two weeks. We then compared fragmented genome assemblies of this phage over

this time series to assess detectable genome variants within the same environment.

Together, this research provides novel insights into the lifestyles of freshwa-
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ter bloom-forming cyanobacteria of the Nostocaceae family, as well as increasing

our understanding of genome evolution of a Microcystis phage across and within

environments.
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2.1 Introduction

Metagenomic sequencing is the process of sampling DNA sequences from multiple

genomes in a community of organisms, and has been applied to many environmen-

tal samples to assess both functional diversity and species richness of microbial

communities [Gilbert and Dupont 2011; Escobar-Zepeda et al. 2015]. Recently,

there has been a progression in metagenomic approaches associated with advances

in sequencing technologies. Next-generation sequencing (NGS) methods [Mardis

2008] such as 454 and Illumina HiSeq/MiSeq greatly reduced sequencing costs

per base relative to Sanger sequencing due to increased throughput, which facil-

itated high-throughput shotgun metagenomics (randomly sequencing all DNA in

a sample). This provided several advantages over amplicon sequencing, where all

variants of a single gene in a population are sequenced. For example, focus shifted

from assigning taxa using single genes to using multiple genes and/or sequence

composition instead [Escobar-Zepeda et al. 2015; Gregor et al. 2014]. It also per-

mitted functional characterization of individual representatives or whole microbial

communities [Sharon et al. 2013; Evans et al. 2015]. However, there are technical

hurdles associated with short-read sequencing. Specifically, assembling short reads

(50-300 bp) into contiguous sequences (contigs) rarely leads to complete genome

assemblies due to repetitive genomic elements such as 16S rRNA genes [Rainey

et al. 1996] and insertion sequence (IS) elements [Lawrence et al. 1992] that are 1

kb or greater in length. There are two consequences as a result. First, closing draft

genomes by primer walking requires considerable manual effort and time. Second,
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if closure is not possible, contigs must be clustered and binned using methods

like differential coverage [Albertsen et al. 2013], co-abundance [Sharon et al. 2013;

Imelfort et al. 2014; Kang et al. 2015], or gene/nucleotide composition [Cleary et al.

2015]. While useful, these methods are often not comprehensive and become even

more difficult to implement when used in a metagenomic context, where multiple

genomes (sometimes from closely related organisms) must be delineated [Hess et al.

2011]. Single-molecule real time sequencing (SMRT) technologies, such as PacBio

and Oxford Nanopore, are part of the third-generation sequencing wave [Koren

and Phillippy 2015]. These sequencers produce average read lengths in the 5-50

kb range, with 50% of reads longer than 14 kb [Lee et al. 2014], which exceed the

size of repetitive elements in the average bacterial genome. Although more error-

prone, these longer reads have proven advantageous for assembling closed genomes

if sequencing depth is high enough to allow error correction [Koren et al. 2012].

To date, long-read sequencing has rarely been used for metagenomics for several

reasons: 1) the amount of sequence data returned is a fraction of an Illumina run

(up to 750 Gb/flow cell of Illumina HiSeq 3000 vs. up to 1 Gb/SMRT cell of

PacBio Sequel based on company specifications), 2) the sequencing cost per base

pair is higher, and 3) PacBio sequencing does not rely upon DNA amplification, so

high concentrations of raw DNA are required. Due to these limitations, long-read

metagenomics has so far been limited to whole-16S amplicon sequencing [Fichot

and Norman 2013] and to improving binning from fragmented (short-read) assem-

blies [Frank et al. 2015]. Here, we have generated a PacBio shotgun metagenome

from a non-axenic cyanobacterium culture established in summer 2013 originat-
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ing from Upper Klamath Lake (UKL), OR. In this freshwater lake, the N2-fixing

filamentous cyanobacterium Aphanizomenon flos-aquae blooms annually. These

blooms are harvested and sold as nutritional supplements. Little is known about

the co-occurring microbial community in this lake, whose composition could be

influenced by the presence of A. flos-aquae as the dominant primary producer

[Bagatini et al. 2014; Louati et al. 2015]. By applying a selective growth medium

lacking nitrogen, our goal was to sequence and assemble complete genomes from

a relatively simple community, in turn assessing the possibility for using PacBio

shotgun sequencing for environmental metagenomics. We closed three novel bacte-

rial genomes, which provide insight into putative metabolic dependencies of these

bacteria on A. flos-aquae in the co-culture. However, we were unable to close the

A. flos-aquae genome, which is in draft quality and will be discussed elsewhere.

2.2 Organism information

2.2.1 Classification and features

The taxonomic placement of each genome was assessed three ways (Table 2.1). We

used the SILVA SSU Ref NR database (accessed on March 9, 2016) to search for

significant 16S rDNA matches in the Silva database [Quast et al. 2012]. Also, we

generated 16S phylogenetic trees for each genome, using the SINA aligner [Pruesse

et al. 2012] and FastTree [Price et al. 2010], with all classified Alphaproteobacte-

ria, Betaproteobacteria, and Bacteroidetes representatives in SILVA, shown with
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their nearest groups (Figures 2.1, 2.2, 2.3). For the second taxonomic placement

method, we used PhyloPythiaS+ [Gregor et al. 2014], which searches for genomes

with similar k-mer composition. The third method, Phylosift [Darling et al. 2014],

is a pipeline that aligns 40 marker genes to generate a weighted probability score

for specific taxonomic assignments. Based on consistency across these classifica-

tion methods as well as confidence values from 16S trees, we named each genome

Hyphomonadaceae UKL13-1, Betaproteobacterium UKL13-2, and Bacteroidetes

UKL13-3, respectively. Minimum Information about the Genome Sequences is

summarized in Table 2.2. Although we initiated and maintained this mixed-

community culture for one year, the culture died and we did not obtain physio-

logical information regarding these organisms. Sustaining long-term A. flos-aquae

cultures is often difficult, and it is common for cultures to crash. Instead, we

discuss insights from the genome annotations regarding these features below.

2.3 Genome sequencing information

2.3.1 Genome project history

Cultures were initiated from UKL, where annual A. flos-aquae blooms constitute a

serious ecological disturbance but are also harvested and sold as nutritional supple-

ments. The genome sequences were deposited to DDBJ/EMBL/GenBank under

the accessions CP012156, CP012157, and CP012155 for the Hyphomonadaceae

UKL13-1, Betaproteobacterium UKL13-2, and Bacteroidetes UKL13-3 genomes,
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respectively. Project information is summarized in Table 2.3.

2.3.2 Growth conditions and genomic DNA preparation

One Aphanizomenon flos-aquae colony from a depth-integrated water sample from

the UKL MDT site collected during August 2013 was transferred to Bold 3N0

medium (https://utex.org/products/bold-3n-medium) without NaNO3. This medium

consisted of 0.17 mM CaCl2, 0.3 mM MgSO4, 0.43 mM K2HPO4, 1.29 mM KH2PO4,

0.43 mM NaCl, P-IV trace metals, and 0.4 µmol vitamin B12 at pH 8.0. The cul-

ture was maintained under cool white fluorescent light (20 µE m-2 s-1) with a

light/dark cycle of 16 h/8 h at 24◦C. Three separate DNA extractions were per-

formed from this culture (Table 2.4). A sample taken in November 2013 was

collected on a 1.2 µm GF/C filter (Whatman), and DNA extracted for Illumina

sequencing using a DNA extraction kit (GeneRite DNA-EZ RWOC1). A similarly

collected sample (Nov 2013) was extracted using phenol-chloroform [Sambrook

and Russell 2006] and pooled with phenol-chloroform extracted DNA from an un-

filtered sample of the culture collected during March 2015 (to balance proportion

of sequencing associated with cyanobacteria and heterotrophic bacteria). This

pooled sample was quantified with the Q32850 Quant-iT dsDNA BR Assay Kit.

Approximately eight µg of DNA was submitted for PacBio sequencing.
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2.3.3 Genome sequencing and assembly

The November 2013 sample was processed using a Nextera XT kit and sequenced

using the Illumina HiSeq 2000 at the Oregon State University Center for Genome

Research and Biocomputing (CGRB) to generate 17,617,259 paired-end reads (101

bp). The pooled (11/2013 & 3/2015) sample was processed for PacBio sequenc-

ing by the Molecular Biology and Genomics Core at Washington State Univer-

sity. Eight SMRT cells of PacBio RS sequencing generated 348,623 reads with

an average length of 7,737 bp. PacBio sequences were assembled using HGAP

[Chin et al. 2013] with three different parameter sets to optimize for assembly

of different genomes (Table 2.5). Initially, only the Bacteroidetes genome assem-

bled from 2 SMRT cells (167,289 PacBio reads), at a seed read length cutoff of

12.8 kb. The less abundant Hyphomonadaceae UKL13-1 and Betaproteobacterium

UKL13-2 genomes required all 8 SMRT cells to close (348,623 reads). While the

Betaproteobacterium genome closed with a seed read-length cutoff of 13.6 kb, the

Hyphomonadaceae genome only assembled completely when this cutoff was low-

ered to 6 kb, likely since it had the lowest coverage of the three genomes. A lower

cutoff directs more reads towards use in assembling, thereby improving chances of

completing low-coverage assemblies [Forde et al. 2014]. However, this also reduces

the number of reads used in error correction, which in turn increases the chances

of assembly errors. These tradeoffs should be considered before performing assem-

blies, but it is notable that we would not have completed the Hyphomonadaceae

UKL13-1 genome without lowering this cutoff. The Hyphomonadaceae, Betapro-
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teobacterium, and Bacteroidetes genomes were of finished quality (Tables 2.4, 2.6),

with each having average Phred scores (ASCII base 33) of 75.9, 76.0, and 81.9,

respectively. We were unable to complete other genomes in the culture, including

the draft-quality A. flos-aquae genome assembly. The Illumina-sequenced cul-

ture was assembled using the IDBA-Hybrid [Peng et al. 2012] software. We binned

Illumina-assembled contigs from the three completed genomes by differential cover-

age of reads from both PacBio and Illumina samples. That is, Illumina and PacBio

reads were separately mapped to each assembly using BWA-MEM [Li 2013] and

BLASR [Chaisson and Tesler 2012], respectively. Contigs were then binned using

the mmgenome R package [Albertsen et al. 2013] (Table 2.7).

2.3.4 Genome annotation

All genomes were annotated with the NCBI’s Prokaryotic Genome Annotation

Pipeline (PGAP) [Angiuoli et al. 2008] and PROKKA [Seemann 2014] (included

as additional files). Counts of features (Genes, CDS, pseudogenes,rRNAs, tRNAs,

ncRNAs, and CRISPR arrays) come from PGAP annotations. Amino acid se-

quences were assigned to COG categories by searching against the COG protein

database [Galperin et al. 2014] using RAPSEARCH [Zhao et al. 2012], taking

only the top hits above an E-value of 1E-30. Amino acid sequences from each

genome were also annotated using the KEGG database [Kanehisa et al. 2016] with

the GhostKOALA [Kanehisa et al. 2015] pipeline and the “genus prokaryotes”

database on September 3, 2015.
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2.4 Genome properties

Each genome assembled into one closed contig. The Hyphomonadaceae UKL13-1

genome consists of a single circular chromosome 3,501,508 bp long and a GC con-

tent of 56.12%. The genome contains a total of 3255 predicted genes, including

2934 predicted protein-coding sequences, 277 pseudogenes, and 44 RNA genes (40

tRNAs, one 16S-23S-5S rRNA operon, and 1 ncRNA) (Fig 2.4). The Betapro-

teobacterium UKL13-2 genome consists of a single circular chromosome 3,387,087

bp long and a GC content of 54.98%. The genome contains a total of 3087 pre-

dicted genes, including 2772 predicted protein-coding sequences, 265 pseudogenes,

and 50 RNA genes (43 tRNAs, two 16S-23S-5S rRNA operons, and 1 ncRNA) (Fig.

2.5). The Bacteroidetes UKL13-3 genome consists of a single circular chromosome

3,236,529 bp long and a GC content of 37.33%. The genome contains a total of

2850 predicted genes, including 2598 protein-coding sequences, 211 pseudogenes,

and 41 RNA genes (35 tRNAs and two 16S-23S-5S rRNA operons)(Fig. 2.6).

Properties and statistics of each genome are shown in Table 2.8. The distribution

of genes into COG functional categories is summarized in Table 2.9.

2.5 Insights from the genome sequence

2.5.1 PacBio metagenome and comparison to Illumina metagenome

The bacterial community associated with the Aphanizomenon flos-aquae culture

was subjected to metagenomic analysis with 8 SMRT cells of PacBio reads, re-
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sulting in three completed novel bacterial genomes: Hyphomonadaceae UKL13-1,

Betaproteobacterium UKL13-2, and Bacteroidetes UKL13-3 (Table 2.6). There

were insufficient reads to close the genome of A. flos-aquae, although 67 contigs

could be clustered to represent an estimated 97% of the genome (Table 2.6). Con-

tigs from partial genomes of two additional bacteria were also clustered: a novel

Flavobacterium (63% estimated genome completeness) and a novel Brevundimonas

(Caulobacterales) bacterium (17% estimated genome completeness) (Table 2.6),

which were identified via PhylopythiaS+. The Flavobacterium genome contained

16S rDNA genes with 98% similarity to Flavobacterium aquatile DSM 1132, but

no 16S gene was identified in the Brevundimonas contigs. Our results indicate

the presence of at least six separate bacterial taxa in this non-axenic culture. A

parallel Illumina HiSeq 2000 metagenome allowed comparison of PacBio-only and

Illumina-only assemblies. When assembled with Illumina reads, the three predom-

inant genomes separated into bins containing 100 or more contigs. The Betapro-

teobacterium genome bin contained more contigs than the Hyphomonadaceae and

Bacteroidetes genomes, although it was sequenced at the highest Illumina depth

of the three (63x coverage vs. 23x and 58x coverage, respectively). There was a

200 kb discrepancy between Illumina bin length and completed genome length for

each of the three genomes. The total binned contig lengths for the Bacteroidetes

and Betaproteobacterium were each shorter than the completed genomes, while the

Hyphomonadaceae bin length was longer (Table 2.7). The additional sequences in

the Hyphomonadaceae bin were primarily contigs shorter than 10 kb that were not

part of the PacBio-assembled Hyphomonadaceae genome. The bin quality control
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program CheckM [Parks et al. 2015] overestimated genome completeness or un-

derestimated contamination when compared with the finished genome size. For

example, CheckM estimated that the Hyphomonadaceae UKL13-1 bin contained

2% contamination, while comparing the bin length with the completed genome

length suggests 6% contamination (Table 2.7). These discrepancies indicate that

genome binning has a tendency to exclude important sequences or include extrane-

ous sequences, and reveals the difficulty of assessing binned genome completeness

and contamination without a reference. Incomplete binning is common for draft

genomes, particularly from metagenomic assemblies [Hess et al. 2011].

We also assessed the extent to which genome repeats affected Illumina assem-

blies. Repeats in each genome were identified by using BLASTN to align each

genome with itself, with a minimum E-value cutoff of 1E-30. Both intragenome

BLASTN hits and missing Illumina coverage were then visualized with a circular

genome plot (Figs. 2.7 - 2.9). Breaks in Illumina assemblies commonly co-localized

with intragenomic repeats in each genome. In particular, the Betaproteobacterium

UKL13-2 genome is enriched for repeat sequences relative to the other two genomes

and contains larger regions unassembled by Illumina reads, factors that possibly

contributed to the greater genome fragmentation (Table 2.7). We then analyzed

gene functions in sequences missing from Illumina bins to assess the extent to

which critical gene content was missing (Fig. 2.11). Most annotated genes in

these regions were assigned to the mobilome category (esp. transposases), although

genes from most other COG categories were also represented. Annotations within

these regions included essential genes such as tRNAs, rRNA operons, translation-
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associated genes (e.g. translation elongation factor Tu, ribosomal proteins L21,

L27), and nucleotide metabolism genes (DNA polymerase III alpha subunit), in

addition to a variety of enzymes and transporters (e.g., glycerol-3-phosphate de-

hydrogenase) (Tables 2.10-2.12). The presence of multiple rDNA sequences com-

monly produces breaks in short-read assemblies [Koren et al. 2013]. In such cases,

rDNA sequences confined to small contigs lose their linkage to other genes. This

makes assigning 16S sequences to draft genomes difficult when multiple organisms

are present in the same sample, and can make it difficult to link 16S amplicon in-

formation to shotgun metagenomes. Also, the functional variety of non-mobilome-

associated missing genes within these assembly breaks shows that they can hold

informative sequences regarding physiology or lifestyle.

2.5.2 Novel Completed Genomes

To functionally characterize the three novel genomes, we searched all protein-

coding sequences against the COG database using RAPSEARCH and a 1E-30 E-

value cutoff. We then repeated this for all bacterial genomes in GenBank (collected

on November 3, 2015) and compared these to our novel genomes to assess enrich-

ment of protein-coding sequences associated with each COG functional category.

These are shown as a percentage of all protein-coding sequences from each respec-

tive genome (Fig. 2.10). Our results indicate that the Hyphomonadaceae UKL13-1

genome contains more lipid metabolism (I) genes than most bacteria (at 5.01% vs.

a mean of 2.96%), while the Bacteroidetes UKL13-3 genome contains more cell
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wall/envelope/membrane biogenesis genes (M) (7.39%, vs. a mean of 4.61%) We

then searched the KEGG database to identify complete and partial pathways in

each genome. Identification of additional genes was aided by using Mauve whole- or

partial-genome alignments [Darling et al. 2004] to reference genomes (Cytophaga

hutchinsonii, Roseobacter denitrificans, Rubrivivax gelatinosis, and Rhodobacter

capsulatus) and between Hyphomonadaceae UKL13-1 and Betaproteobacterium

UKL13-2. The Hyphomonadaceae UKL13-1 and Betaproteobacterium UKL13-2

genomes contain anoxygenic photosynthesis and reaction center genes, as well as

genes for bacteriochlorophyll and carotenoid synthesis. The 16S rDNA genes from

these two genomes did not cluster near groups containing phototrophic bacteria

(e.g. Rhodobacter, Rhodoferax ) (Fig. 2.1, 2.2). Neither genome contains Ru-

BisCO genes, consistent with these bacteria being aerobic anoxygenic phototrophs

(AAP’s). These are a class of heterotrophs that use phototrophy as a source of ATP

production, but are unable to fix net carbon through photosynthesis [Moran and

Miller 2007]. For Betaproteobacterium UKL13-2, the presence of genes for thiosul-

fate or sulfite oxidation (soxABCDXYZ ), suggests that reduced sulfur compounds

can serve as electron donors for ATP synthesis, perhaps in addition to organic

compounds or during hypoxic conditions. Both A. flos-aquae and Betaproteobac-

terium UKL13-2 appear to be capable of assimilatory sulfate reduction of MgSO4

(provided as the only S source in the growth medium), which is often used for

amino acid synthesis. Photolithotrophic oxidation of reduced S compounds by

the Betaproteobacterium would be energetically advantageous when using reduced

S compounds derived from A. flos-aquae. Since neither genes for oxidation of re-
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duced sulfur nor nitrogen compounds are evident in the Hyphomonadaceae genome,

organic compounds likely serve as electron donors in this bacterium [Moran and

Miller 2007].

In contrast with the proteobacterial genomes, Bacteroidetes UKL 13-3 contains

no autotrophic genes, consistent with the typical lifestyle of these bacteria [Newton

et al. 2011]. However, fewer genes were annotated from Bacteroidetes UKL13-3,

and fewer completed KEGG pathway modules were identified than for the Hy-

phomonadaceae or Betaproteobacterium genomes (38 vs. 72 and 80, respectively).

This could be due to protein-coding sequences carrying distant homology to those

currently deposited in KEGG, limiting the ability to identify metabolic genes and

pathways.

The A. flos-aquae genome was the only identified source of nitrogen fixing genes

in the culture. Since the growth medium was nitrogen-deplete, all other bacteria

in the community likely depend on reduced N provided by the cyanobacterium.

Ploug et al. have shown that A. flos-aquae from the Baltic Sea fixes N2 and releases

it as NH4
+, which is then taken up by surrounding heterotrophic or phototrophic

bacteria [Ploug et al. 2010; Adam et al. 2016]. Both proteobacterial genomes

contain the ammonium transporter gene amtB, which would allow uptake of NH4
+

released by A. flos-aquae. No ammonia channel transport genes were annotated

in the Bacteroidetes UKL13-3 genome. The proteobacterial genomes contained

a number of chemotaxis and motility genes, which may be necessary for these

organisms to stay associated and obtain benefits from A. flos-aquae, similar to

other host-associated bacteria [Lertsethtakarn et al. 2011].
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We searched the novel genomes for the presence of other transporters to in-

form of the needs for survival and growth. Both proteobacterial genomes contain

transporters for alkanesulfonate, iron(III), phosphate, and phosphonate. The Hy-

phomonadaceae genome also contains a transporter for putrescine, while the Be-

taproteobacterium genome contains complete transporter modules for tungstate,

molybdate, glutamate/aspartate, and branched-chain amino acids. Few, and only

broadly functional transporter modules were identified in the Bacteroidetes genome.

All three genomes appear to carry complete genetic pathways for nucleotide biosyn-

thesis, as well as genes for synthesis of all 20 amino acids, indicating these organ-

isms are self-sufficient in this regard. Because the Flavobacterium and Brevundi-

monas genomes were so incomplete, their gene content is not reported here.

We were unable to identify any plasmids in the assemblies. Shintani et al. clas-

sified the distribution of all plasmids in GenBank, and showed that the majority

were found in Proteobacteria ( 47%), although most of these were associated with

Gammaproteobacteria ( 63%), rather than Alphaproteobacteria ( 22%) or Betapro-

teobacteria ( 8.7%) [Shintani et al. 2015]. Plasmids from Bacteroidetes were much

rarer at 1.6%. It may then be unsurprising that these bacteria lack plasmids.

2.5.3 Freshwater Bacteria Associated With Cyanobacterial Blooms

Bacteria from these three taxa are common in freshwater systems [Newton et al.

2011], are known to be commonly associated with cyanobacterial blooms, and can

directly influence the growth of cyanobacteria in culture [Berg et al. 2009]. Some
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Alphaproteobacteria have been identified in cyanobacterial-associated communi-

ties [Louati et al. 2015]. For example, Eiler et al. identified Alphaproteobacte-

ria 16S rDNA sequences associated with another nitrogen-fixing cyanobacterium,

Gloeotrichia echinulata [Eiler et al. 2006]. Interestingly, 16S rDNA from Hy-

phomonadaceae UKL13-1 shared significant identity (Table 2.6) with one of these

sequences (A0904), suggesting that bacteria related to Hyphomonadaceae UKL13-

1 are associated with various bloom-forming cyanobacteria. However, the extent

to which such co-occurrences reflect physiological interdependencies remains to be

explored.

Betaproteobacteria are often co-cultured with algae [Pernthaler et al. 2001],

and have been seen physically associated with cyanobacteria [Louati et al. 2015;

Eiler et al. 2006]. However, Betaproteobacteria are abundant in freshwater lakes

[Hiorns et al. 1997], and their presence in co-culture may be due to their ability

to survive off cell turnover. For example, many Betaproteobacteria are highly

efficient at dissolved organic matter (DOM) degradation [Worm and Sondergaard

1998]. Betaproteobacterium UKL13-2 may thrive during increased A. flos-aquae

cell turnover, which would provide DOM for survival. Based on 16S similarity

searches, Betaproteobacterium UKL13-2 is not part of the widely distributed bet

or Pnec clades found in freshwater lakes across the world (Table 2.1) [Newton et al.

2011]. With predicted chemotaxis and flagellar and twitching motility genes, both

Hyphomonadaceae UKL13-1 and Betaproteobacterium UKL13-2 may actively seek

out alive or dead A. flos-aquae cells as sources of nutrition. We have detected

no genes by which these photoheterotrophic bacteria could obviously benefit A.
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flos-aquae.

Bacteria from the Bacteroidetes phylum are commonly identified in, and some-

times dominate, freshwater lake systems [Pernthaler et al. 2004]. They are also

frequently found in particle-associated communities and commonly degrade extra-

cellular polysaccharide matrices that are grazed via bacteria that move through

gliding motility [Lemarchand et al. 2006]. Bacteroidetes UKL13-3 possesses an-

notated gliding motility genes, which may indicate physical association with the

originally isolated A. flos-aquae colony. Extracellular mucilage, as well as a range

of nutrients (reduced C, N and S compounds) released by A. flos-aquae, may sup-

port the growth of Bacteroidetes UKL13-3, whose genome seems to lack many

functionally annotated pathways. Bacteroidetes UKL13-3 has the only annotated

extracellular peroxidase gene in the three genomes, which could protect against

reactive oxygen species generated by photosynthesis in A. flos-aquae. Also, there

are no annotated peroxidase genes in the A. flos-aquae genome. This may indicate

a mutual benefit for both bacteria, and conform to the Black Queen Hypothesis

defined for interactions between the unicellular cyanobacterium Prochlorococcus

with other interacting bacteria [Morris et al. 2012]. On the other hand, large

populations of Bacteroidetes bacteria are often observed following cyanobacterial

bloom decline [Eiler and Bertilsson 2007] due to subsequently favorable conditions

for copiotrophs [Zeder et al. 2009]. A. flos-aquae cell turnover may have provided

dissolved organics for Bacteroidetes UKL13-3 growth in co-culture, as for the two

Proteobacteria.
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2.5.4 Metagenome Search

We also searched for the occurrence of these bacteria in 62 freshwater lake metagenomes

from 8 sampling sites across the United States, including Oregon, Washington

state, California, Texas, and Kansas (BioProject accessions: PRJNA312985, PR-

JNA282166, PRJNA312830, PRJNA312986, and PRJNA294203, respectively). To

do so, we mapped reads from these metagenomes to the references with BWA-MEM

with default parameters ( 0.067% error rate) and calculated average genome cov-

erage. Matches were found in two samples. A metagenome from Copco Reservoir,

CA on the Klamath River downstream of UKL on September 19, 2007 contained

86x read coverage of the Hyphomonadaceae UKL13-1 genome and 151x coverage

of the Bacteroidetes UKL13-3 genome from 398,356,734 Illumina read pairs. Ad-

ditionally, a metagenome from Cranberry Lake, WA on August 11, 2014 contained

the Betaproteobacterium UKL13-2 genome at 99x coverage in from 13,955,857 Il-

lumina read pairs. We also searched in 50 additional freshwater lake metagenomes

in the IMG, MG-RAST, and SRA databases. The only detection found was the

Betaproteobacterium UKL13-2 genome at 19x coverage in a metagenome consist-

ing of 319,415,720 Illumina read pairs labeled “vibrio metagenome HEM-04” from

a freshwater lake (BioProject accession: PRJNA64039). This initial analysis shows

that the three novel bacteria are found elsewhere in freshwater habitats, although

they do not appear to be ubiquitous or widely abundant.
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2.6 Conclusions

Here, we have shown that completing multiple genome assemblies is possible from

a simple microbial community using PacBio sequencing, a feat that is nearly im-

possible with short-read shotgun sequencing alone. There are several advantages

to this approach. Completing genome assemblies from a shotgun metagenome

avoids genome gaps and excludes contaminant sequences, which are significant

issues with binned draft genomes. Absent sequences can contain functionally rele-

vant information, such as gene clusters encoding secondary metabolites [Harrison

and Studholme 2014] or antibiotic resistance genes near mobile elements [Zowawi

et al. 2015]. Here we observed that key essential genes (Tables 2.10-2.12) were

missing from each short-read assembly. Also, short-read assemblers can compress

small repeats, potentially removing important functional information [Brown et al.

2016]. In addition to providing more complete genomic information, long-read se-

quencing of communities such as mixed cultures or environmental samples creates

possibilities for new experimental designs. For example, complete genomes from

novel organisms sequenced from the environment can be used as new references for

culture-free resequencing efforts, such as to explore gene linkage patterns among

alleles in a population. Further, long-read sequencers often detect DNA mod-

ifications, such as methylation, allowing capture of epigenetic information from

environmental sequencing runs. Although PacBio sequencing is low-throughput

compared with short-read sequencers, our results suggest that the current state of

this technology allows genome sequencing from communities with relatively low di-
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versity, such as those in extreme environments [Méndez-Garćıa et al. 2015] or when

dominated by one or a few organisms [Lin et al. 2015]. Platform improvement, such

as the recently released PacBio Sequel instrument, is expected to make long-read

sequencing increasingly desirable for shotgun metagenomics in the future. Here,

we have sequenced three novel genomes that may be associated with A. flos-aquae

as part of the cyanobacterial phycosphere. Based on gene annotations and growth

medium, both Proteobacteria are motile aerobic anoxygenic phototrophs that may

utilize fixed nitrogen and carbon provided by A. flos-aquae. Bacteroidetes UKL13-

3 is a heterotroph that likely has similar nutritional requirements, and may exist

in a mutual relationship with A. flos-aquae through provision of an extracellular

peroxidase. In future work, it will be interesting to explore the possible existence

and nature of dependencies between these novel bacteria and A. flos-aquae colonies

in blooms in Upper Klamath Lake and elsewhere.
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Figure 2.1: Hyphomonadaceae UKL13-1 1 16S phylogenetic tree.
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Figure 2.2: Betaproteobacterium UKL13-2 16S phylogenetic tree.
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Figure 2.3: Bacteroidetes UKL13-3 16S phylogenetic tree.
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Figure 2.4: Circular map of the chromosome of Hyphomonadaceae UKL13-1. Cir-
cles from outermost radius to innermost: Predicted proteins encoded on the for-
ward strand, colored by COG category; Predicted proteins encoded on the negative
strand, colored by COG category; RNA genes; GC%, with peaks and troughs show-
ing deviations from the average; GC skew, where green curves are positive skew
values and purple curves represent negative skew values.
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Figure 2.5: Circular map of the chromosome of Betaproteobacterium UKL13-2.
See Fig. 2.4 caption for explanation.
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Figure 2.6: Circular map of the chromosome of Bacteroidetes bacterium UKL13-3.
See Fig. 2.4 caption for explanation.
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Hyphomonadaceae
UKL13-1

Betaproteobacterium
UKL13-2

Bacteroidetes
bacterium UKL13-3

Code Value % of total Value % of total Value % of total COG category
J 184 4.91 187 5.07 175 5.34 Translation
A 1 0.03 1 0.03 1 0.03 RNA processing and modification
K 128 3.41 100 2.71 85 2.6 Transcription
L 109 2.91 100 2.71 126 3.85 Replication
B 2 0.05 2 0.05 1 0.03 Chromatin structure and dynamics
D 25 0.67 46 1.25 28 0.85 Cell cycle control
Y 0 0 0 0 0 0 Nuclear structure
V 69 1.84 77 2.09 74 2.26 Defense mechanisms
T 216 5.76 168 4.56 81 2.47 Signal transduction mechanisms
M 165 4.4 181 4.91 242 7.39 Cell wall/membrane/biogenesis
N 66 1.76 80 2.17 18 0.55 Cell motility
Z 0 0 18 0.49 1 0.03 Cytoskeleton
W 11 0.29 30 0.81 2 0.06 Extracellular structures
U 49 1.31 58 1.57 34 1.04 Intracellular trafficking
O 131 3.49 121 3.28 124 3.79 Posttranslational modification
C 135 3.6 187 5.07 114 3.48 Energy production and conversion
G 133 3.55 95 2.58 79 2.41 Carbohydrate transport and metabolism
E 197 5.25 224 6.08 127 3.88 Amino acid transport and metabolism
F 66 1.76 68 1.85 74 2.26 Nucleotide transport and metabolism
H 137 3.65 134 3.64 94 2.87 Coenzyme transport and metabolism
I 188 5.01 120 3.26 96 2.93 Lipid transport and metabolism
P 153 4.08 143 3.88 85 2.6 Inorganic ion transport and metabolism
Q 101 2.69 66 1.79 38 1.16 Secondary metabolites biosynthesis
R 223 5.95 213 5.78 211 6.44 General function prediction only
S 125 3.33 98 2.66 95 2.9 Function unknown
NA 1104 29.44 1083 29.39 1201 36.67 Not in COGs

Table 2.9: Number and proportion of genes associated with COG functional cate-
gories
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1 Mbp

2 Mbp

3 Mbp

Figure 2.7: Hyphomonadaceae UKL13-1 genome repeats and Illumina breaks. Blue
lines signify intragenomic repeats (based on BLASTN with a minimum E-value
cutoff of 1E-30), and red bars mark sequences missing from Illumina assemblies.
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1 Mbp

2 Mbp

3 Mbp

Figure 2.8: Betaproteobacterium UKL13-2 genome repeats and Illumina breaks.
See Fig. 2.7 caption for explanation.
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Figure 2.9: Bacteroidetes UKL13-3 genome repeats and Illumina breaks. See Fig.
2.7 caption for explanation.
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Figure 2.11: COG categories missing from Illumina assemblies determined by com-
parison to the closed genomes. Categories assigned with Rapsearch2. X is the
mobilome COG category, while the rest of the category labels are annotated in
Table 2.9
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Genome
start position

Genome
end position

Annotation

105087 105752 Gram-negative bacterial tonB protein
314755 316659 magnesium chelatase subunit D
525899 526879 Cold shock-like protein 7.0
528897 528973 tRNA-Arg(acg)
635884 636315 Inosine-5’-monophosphate dehydrogenase
636962 638425 16S ribosomal RNA
659206 659775 cytochrome b561
659804 660520 Sensory transduction protein regX3
660517 661668 putative sensor histidine kinase TcrY
1093221 1094357 Anhydro-N-acetylmuramic acid kinase
1138645 1139184 Ribosomal large subunit pseudouridine synthase E
1163972 1165297 Multidrug export protein MepA
1210401 1213946 DNA polymerase III subunit alpha
1831751 1832941 Elongation factor Tu
2667538 2667849 50S ribosomal protein L21
2667873 2668142 50S ribosomal protein L27
3382686 3383465 Sulfite exporter TauE/SafE

Table 2.10: Notable annotated genes in Hyphomonadaceae UKL13-1 Illumina
breaks (i.e., missing from Illumina assemblies). Genes called and annotated with
PROKKA.
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Genome start position Genome end position Annotation
409081 409818 Cytochrome c4
409906 411195 Glutamate-1-semialdehyde 2%2C1-aminomutase
411222 411950 Thiamine-phosphate synthase
411934 412848 Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase
413135 413317 Rubredoxin
712503 714033 16S ribosomal RNA
714162 714238 tRNA-Ile(gat)
714282 714357 tRNA-Ala(tgc)
714679 717940 23S ribosomal RNA
718207 718315 5S ribosomal RNA
1247149 1248405 Cobalt-zinc-cadmium resistance protein CzcB
1259988 1263734 rpt family=CRISPR
1549239 1550837 All-trans-zeta-carotene desaturase
1551350 1554268 Vitamin B12 transporter BtuB
1734848 1734923 tRNA-Asn(gtt)
1809827 1810864 DNA ligase
1812260 1812910 DNA ligase
1819452 1820982 16S ribosomal RNA
1821111 1821187 tRNA-Ile(gat)
1821231 1821306 tRNA-Ala(tgc)
1821628 1824889 23S ribosomal RNA
1825156 1825264 5S ribosomal RNA
2345784 2346506 Lipoprotein-releasing system ATP-binding protein LolD
2346487 2347197 Lipoprotein-releasing system transmembrane protein LolE
2347402 2347869 Lipoprotein-releasing system ATP-binding protein LolD
2348328 2349311 Lipoprotein-releasing system transmembrane protein LolC
2349316 2350401 cofactor-independent phosphoglycerate mutase
2350471 2352180 Single-stranded-DNA-specific exonuclease RecJ
2356035 2357276 Anaerobic sulfatase-maturating enzyme
2587089 2588792 DNA repair protein RecN
2588806 2589681 putative inorganic polyphosphate/ATP-NAD kinase
2632025 2634364 Vitamin B12 transporter BtuB
2634720 2634809 tRNA-Ser(tga)
2873478 2877125 DNA polymerase III subunit alpha
2891997 2893424 GMP synthase [glutamine-hydrolyzing]
2898939 2899481 aldehyde dehydrogenase
3319589 3320779 Elongation factor Tu
3337015 3338205 Elongation factor Tu

Table 2.11: Notable annotated genes in Betaproteobacterium UKL13-2 Illumina
breaks. Genes called and annotated with PROKKA.
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Genome start position Genome end position Annotation
174030 174104 tRNA-Asn(gtt)
763067 763948 putative chromosome-partitioning protein ParB
764032 764742 Response regulator UvrY
846021 846407 S23 ribosomal protein
951944 953464 16S ribosomal RNA
953672 953746 tRNA-Ile(gat)
953760 953836 tRNA-Ala(tgc)
953954 956812 23S ribosomal RNA
956909 957014 5S ribosomal RNA
1372915 1373316 30S ribosomal protein S6
1373319 1373597 30S ribosomal protein S18
1373619 1374059 50S ribosomal protein L9
1374155 1374874 Riboflavin synthase
2109603 2109788 50S ribosomal protein L32
2109812 2110771 Phosphate acyltransferase
2110771 2111766 3-oxoacyl-[acyl-carrier-protein] synthase 3
2111864 2112343 Biotin carboxyl carrier protein of acetyl-CoA carboxylase
2112436 2113782 Biotin carboxylase
2411292 2412356 RNA polymerase-binding transcription factor DksA
3022790 3023815 Glycerol-3-phosphate dehydrogenase [NAD(P)+]

Table 2.12: Notable annotated genes in Bacteroidetes UKL13-3 Illumina breaks.
Genes called and annotated with PROKKA.
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3.1 Introduction

Cyanobacteria are a diverse set of primary producers that are important for ecosys-

tems and global biogeochemical cycles. They have played an important role in at-

mospheric oxygen accumulation through oxygenic photosynthesis, while providing

fixed carbon and occasionally nitrogen depending on the species [Karl et al. 1997;

Canfield 2005]. Their diversity allows them to grow in a range of environments, in-

cluding saltwater, freshwater, soil, and even deserts [Biller et al. 2014; Cheung et al.

2013; Lyra et al. 2001; Garcia-Pichel et al. 2001]. The Nostocaceae family primar-

ily includes nitrogen-fixing filamentous cyanobacteria such as Anabaena, Aphani-

zomenon, and Dolichospermum, which commonly bloom in freshwater or brackish

ecosystems around the world [Ikawa et al. 1982; Wang et al. 2012; D’Agostino et al.

2016b]. Some members of the Nostocaceae family threaten drinking-water supplies

and recreational ecosystem use through production of harmful secondary metabo-

lites [Cheung et al. 2013]. This issue is compounded by global climate change which

facilitates increased frequency and duration of blooms (Paerl, 2009). Some mem-

bers of the Nostocaceae family produce microcystin, cylindrospermopsin, or the

potent saxitoxin or anatoxin neurotoxins [MacKintosh et al. 1990; Cheung et al.

2013]. A phylum-wide analysis of cyanobacterial genomes revealed widespread

presence of non-ribosomal peptide synthetase (NRPS) and polyketide synthase

(PKS) pathways, although most are associated with unknown end products [Cal-

teau et al. 2014].

Previous studies attempting to connect morphological and genetic characteri-
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zations of organisms belonging to this family have revealed taxonomic anomalies.

Most prominently, Anabaena and Aphanizomenon strains are intermixed in phylo-

genies although their colony morphologies are visibly different [Gugger et al. 2002;

Rajaniemi et al. 2005], while at least one Anabaena isolate has been reclassified and

renamed as Nostoc [Shih et al. 2013]. Taxonomic revision proposals have affected

this group over recent years, collecting many of the planktonic members into the

genus Dolichospermum (leaving benthic species in the genus Anabaena) [Wacklin

et al. 2009], but also creating two additional genera Sphaerospermum [Zapomělová

et al. 2009] and Chrysosporum [Zapomělová et al. 2012]. These proposals have

been based on polyphasic classification, which combines morphological and ge-

netic information to create a taxonomy [Komárek 2016]. This approach has short-

comings, since morphological classification is subjective and colony morphologies

are not always clearly distinguishable. Further, the genetic component underlying

these proposed revisions has been narrow, relying solely on 16S rDNA phylogenies.

These revisions have led to continual expansion of the Nostocaceae family through

regular additions of putative novel genera. However, these classifications should be

considered with caution pending genomic-level sequence information from a larger

number and diversity of members of the clade.

The members of this family originate from diverse environments and exhibit

varying lifestyles. For example, while almost all members fix nitrogen, Raphidiopsis

brookii D9 does not [Stucken et al. 2010]. Also included in the family are a number

of symbionts (Richelia [Gómez et al. 2005], Nostoc punctiforme PCC 73102 [Ran

et al. 2007], and Nostoc azollae 0708) [Ran et al. 2010], the soil microbe Cylin-
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drospermum stagnale PCC 7417, and saltwater-tolerant Aphanizomenon flos-aquae

2012/KM1/D3 [Šulčius et al. 2015] and Nodularia spumigena CCY9414 from the

Baltic Sea. However, most members of this family were originally isolated from

various freshwater systems.

Here, we have sequenced nine novel genomes consisting entirely of Anabaena

and Aphanizomenon strains. Five of these genomes were computationally ex-

tracted from three separate environmental metagenomes, while the remaining six

derive from cultures established from natural blooms. We assessed the phyloge-

nomic relationships within these thirty-one genomes and assessed the distribution

of secondary metabolite gene clusters. We also compared functional gene content

to better understand cellular capabilities. In the process, we have identified a

well-populated clade containing several subgroups that may represent a previously

undersampled, but geographically widespread cyanobacterial lineage.

3.2 Methods

3.2.1 Genome selection and isolation

Novel genomes included in our analyses originated from a number of sites in the US,

with each assembled from either environmental metagenomes or sequenced cultures

(Table 3.1). Genomes obtained from environmentally sampled metagenomes (Aph-

anizomenon MDT14, Anabaena CRKS33, Anabaena MDT14, Aphanizomenon

WA102-2, and Anabaena WA113) and the cultured Aphanizomenon MDT13 were
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binned by differential coverage using the mmgenome R package [Albertsen et al.

2013]. Other genomes were binned with ESOM [Dick et al. 2009](Anabaena CPCC64,

Anabaena AL09, and Anabaena LE011-02). The number of contigs, bin N50, and

essential gene counts from mmgenome for each bin are listed in Table 3.2. We used

CheckM to assess genome completeness and contamination [Parks et al. 2015](Ta-

ble 3.3). Binned genomes were taxonomically classified using PhylopythiaS+ [Gre-

gor et al. 2014].

3.2.2 Phylogenomic tree and group assignments

We generated a phylogenomic tree of the Nostocaceae family using the Hal pipeline

[Robbertse et al. 2011]. In brief, this identifies orthologous protein clusters with

all-vs-all BLASTP followed by MCL (Markov Cluster algorithm) clustering. Or-

thologous clusters are then aligned with MUSCLE, and the alignments are edited

to remove segments that are poorly aligned. Each individual alignment is then

concatenated into a single, super-alignment. An alignment model is then assigned

with ProTest, and phylogenetic reconstructions performed with RAxML. The re-

sult is a phylogenomic tree built from alignments of all single-copy orthologues

shared between all genomes.

Highly similar genomes were grouped based on whole-genome average nu-

cleotide identity (gANI) and the fraction of each genome pair that is alignable

(AF) [Varghese et al. 2015]. Varghese et al. suggest a cutoff for species assign-

ments of 96.5% gANI and 0.6 AF. Here, we used a 95% gANI and 0.6 AF cutoff to
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group genomes since Anabaena CRKS33 falls just outside the Varghese-suggested

parameters, although we are not designating our groups as shared-species.

3.2.3 Core and pan-genome analysis

The core genome of the 31 Nostocaceae genomes were analyzed using the GET HOMOLOGUES

software package [Contreras-Moreira and Vinuesa 2013]. Homologous gene families

were identified using the OrthoMCL clustering algorithm (OMCL) with sequence

cluster reporting of t=0 and no Pfam-domain composition requirements [Vinuesa

and Contreras-Moreira 2015; Contreras-Moreira and Vinuesa 2013; Fischer et al.

2011]. Core genome size was calculated using the exponential decay models of

Tettelin and Willenbrock [Tettelin et al. 2005; Willenbrock et al. 2007] and the

pan-genome size was estimated with the exponential model of Tettelin.

Additionally, a binomial mixture model [Snipen et al. 2009] classified genes

based on distribution within all 31 analyzed genomes into four categories [Koonin

and Wolf 2008]; core (occurring in all genomes), soft core (occurring in 95% of

genomes and including core genes; [Kaas et al. 2012], shell (genes found in 3-18

genomes), and cloud (genes present in 1-2 genomes). A phylogenetic tree was

produced by the PARS program of the PHYLIP suite [Felsenstein 2005] which

used presence/absence data of the OMCL pan-genomic matrix [Contreras-Moreira

and Vinuesa 2013].

The gene contents of individual taxa were compared using the parse pangenome matrix.pl

script in GET HOMOLOGUES.
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3.2.4 Genome annotations

All genomes were annotated with GenBank’s Prokaryotic Genome Annotation

Pipeline (PGAP) [Angiuoli et al. 2008]. This pipeline includes rRNA and tRNA

annotations by BLAST, and tRNAscan, respectively. In addition, all gene clusters

from the pan-genome analysis were annotated with KEGG’s BLASTKOALA using

the genus prokaryotes database (March 23, 2016) [Kanehisa et al. 2015]. Differ-

ences in gene content were assessed by the distribution of KO annotations, while

specific gene categories (e.g., sulfur metabolism and photosynthesis) were also an-

alyzed. Carotenoid-, vitamin-, and glutathione-synthesis pathways were assessed

through KEGG annotations as well. All protein-coding sequences were also as-

signed to COG categories using Rapsearch 2.16 [Zhao et al. 2012] with the COG

database and a 1E-30 E-value cutoff.

We searched through novel genomes for toxin synthesis gene clusters by BLASTN

using a custom database containing secondary metabolite synthesis gene clusters

as identified in Dittmann et al. [Dittmann et al. 2015]. This BLASTN search used

an E-value cutoff of 1E-30, and clusters were identified where the total proportion

of genes in a cluster were similar to greater than 50% of the reference cluster.

In addition, we identified and counted gene clusters by using antiSMASH 3.04

without the inclusive option for all genomes [Weber et al. 2015].

All buoyancy genes were identified from PGAP annotations, including the pre-

viously characterized gvpA and gvpC genes. Peroxiredoxin, catalase, and super-

oxide dismutase genes were also identified from PGAP annotations. Insertion
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sequences (IS) were identified using HMMSEARCH [Finn et al. 2011] with the

TnPred IS Hidden Markov Model database (http://www.mobilomics.cl/downloads.html)

and a 1E-30 E-value cutoff. This database contains 47 HMMs for 19 IS families.

Extracellular polymeric synthesis (EPS) genes previously characterized by Pereira

et al. [Pereira et al. 2009; 2015] were identified by BLASTP alignment against

EPS genes in GenBank found in the Nostocaceae family with an E-value cutoff

of 1E-30. The components of restriction-modification (R-M) systems within the

genomes were identified by performing protein sequence searches with TBLASTN

(e-value of 1E-100) against known R-M system protein sequences obtained from

REBASE database (accessed on May 8, 2016) [Roberts et al. 2009].

3.3 Results

3.3.1 Evaluating binned genomes

There are benefits to analyzing binned genomes directly from environmental sam-

ples. Studies have shown that mutations occur in culture that affect the fitness of

bacteria, often through reductive processes [Koskiniemi et al. 2012; Cooper et al.

2001; Wang et al. 2012]. By removing the bias of changes from cultivating these

bacteria in a lab environment, we are able to observe these genomes in their nat-

ural state. This also reduces the effort necessary to establish difficult-to-culture

organisms. Here we have included five novel genome bins extracted from three

metagenomes, in addition to 4 novel cultured genomes.



63

While some of these genomes are completed, five were binned from metagenomes,

and most others are draft quality (Table 3.1). We used CheckM on all genomes

and the mmgenome R package to obtain universal gene counts and copy numbers

for binned genomes (see Methods) (Tables 3.2, 3.3). In addition, contigs identified

as contaminants by NCBI’s WGS submission pipeline were removed. These results

indicate low levels of contamination (0-4.22%), and each bin contains on average

>97% of universal genes, with the exception of Aphanizomenon 2012/KM1/D3 and

the three Richelia genomes (Table 3.3). Upon closer inspection we identified mul-

tiple, unique rDNA genes in some of these bins, which we subsequently removed

from the respective bins. Our binning process could cluster contigs containing

similar sequences from other bacteria, but our mmgenome, NCBI, and CheckM

contamination measurements suggest this is minimal. Regardless, it is important

to keep in mind there may be some small error in gene copy number counts within

these bins. In addition, previous work has shown that draft genomes can exclude

functionally relevant gene content, although at the level of single genes and not

entire pathways (See Chapter 2).

3.3.2 Nostocaceae family phylogenomic characterization

In total, we have provided nine novel sequenced genomes belonging to the Nos-

tocaceae family, bringing the total number up to 31 (as of September 2015). We

assessed the evolutionary relationships within this family by generating a phyloge-

nomic tree based on alignments of all single-copy shared orthologues from these
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genomes [Robbertse et al. 2011] (Figure 3.1). In addition, we used pairwise ge-

nomic ANI and alignment fraction (AF) calculations to assign genomes to potential

species groups [Varghese et al. 2015](Figure 3.1, Table 3.4). All but one of the new

genomes (Anabaena CPCC64) formed a clade comprised of 4 or 5 species-level

groups consisting of Anabaena, Aphanizomenon, and Dolichospermum strains. We

refer to this clade as Clade AAD. We then grouped seventeen genomes into five

separate groups (Figure 3.1), two of which (groups 3 and 4) contained representa-

tives from both Anabaena and Aphanizomenon genera that were previously char-

acterized by morphology [Brown et al. 2016; Šulčius et al. 2015; Cao et al. 2014].

In addition, gANI/AF grouping cutoffs were consistent with clusters in the phy-

logenomic tree. Nostoc and Anabaena genomes also don’t clearly separate. For

example, both Anabaena CPCC64 and Anabaena variabilis ATCC 29413 separate

out with Nostoc PCC 7120 (also known as Anabaena PCC 7120).

Some of the other genomes also cluster together. For example, the nitrogen-

fixing Cylindrospermopsis raciborskii CS-505 and the non-nitrogen-fixing Raphid-

iopsis brookii D9, which carry some of the smallest genomes for free-living fila-

mentous cyanobacteria (3.9 and 3.2 Mb, respectively), form a monophyletic group,

consistent with previous reports [Stucken et al. 2010; Shih et al. 2013]. The Riche-

lia genomes also form a monophyletic cluster, although Richelia intracellularis

RC01 is well separated from HH01 and HM01. Also, the large difference in size

between these genomes indicates they are considerably diverged (5.4 Mb for RC01

compared with 3.2 and 2.2 Mb for HH01 and HM01, respectively). Alternatively,

several genomes do not cluster closely with other genomes. These include Nos-
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toc azollae 0708, Cylindrospermum stagnale PCC 7417, Nostoc punctiforme PCC

73102, and Nodularia spumigena CCY9414. The placement of these genomes in-

dicate these groups are currently underrepresented and that there is likely more

room for sequencing new members closely related to these strains.

Fifteen of the thirty-one genomes prominently belong to a single clade, includ-

ing all but one of the novel genomes presented here (Anabaena CPCC64) (Figure

3.1). Within this clade, there are four subclades with high similarity over large

portions of their genomes based on gANI calculations (Table 3.4). Each contained

members from diverse geographic origins (Table 3.1). For example, group three

included Anabaena WA93 and Anabaena WA102 from Washington State Lakes

in the USA, while Aphanizomenon flos-aquae NIES-81 and Aphanizomenon flos-

aquae 2012/KM1/D3 were isolated from Lake Kasumigaura in Japan and in the

Baltic Sea, respectively. The variability of geographic origin and water-body in-

dicates that these groups consist of strains that have in the past carried (or have

obtained over time) the capability to survive in different environmental conditions.

While it is likely the less-populated clades are underrepresented compared to this

larger group, it still seems the strains of the 15-member clade are part of a closely-

related, globally widespread group of genome-types that are separate from the

remainder of the Nosocaceae family.
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3.3.3 Core and pan-genome

The core genome for all Nostocaceae members was estimated by orthologous gene

clustering. We identified 576 and 463.6 core genes with residual standard errors of

442.18 and 392.37 for Tettelin and Willenbrock fits, respectively (Figure 3.2). The

pan-genome, estimated by Tettelin fit, was 16,298.3 genes with a residual standard

error of 572.45 (Figure 3.3). Additionally, the binomial mixture model estimates

349 core (1.30%), 1372 soft core (5.13%), 6803 shell (25.41%), and 18,596 cloud

genes (69.46%). These pan-genome numbers are likely underestimates, since the

pan-genome curve is not asymptotic (Figure 3.3), which corresponds to the large

size of the flexible genome and the shared taxonomic level of genomes included in

this analysis.

Of the 349 core gene clusters, which are found in all thirty-one genomes, 322

(92.2%) were assigned to KEGG functional groups. The most prevalent core

gene function is associated with the ribosome, of which there are 38 unique gene

clusters in total (Figure 3.4). Genes associated with amino acid biosynthesis,

photosynthesis, carbon metabolism, porphyrin/chlorophyll metabolism, and nu-

cleotide metabolism are also common. Of the 1372 soft core genes, 585 (42.6%)

were assigned to KEGG functional categories. These genes are found in all but

one of the thirty-one genomes, and include the core genome set. More soft core

genes are associated with amino acid biosynthesis than any other functional cate-

gory. Carbon metabolism, ribosomal, ABC transporter, photosynthesis, and por-

phyrin/chlorophyll metabolism gene counts are abundant for this set.
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Out of the 6803 shell genes (present in 3-18 genomes), 1510 (22.2%) were as-

signed to KEGG functional categories. ABC transporter genes are the most preva-

lent identified functional category in the shell genome, while amino acid biosyn-

thesis and two-component systems are also found often. Only 1896 (10.2%) of the

18,596 genes in the cloud genome (present in 1-2 genomes) were assigned to KEGG

functional categories. The distribution of genes were similar to the shell genome,

where ABC transporter and two-component system genes are abundant, although

carbon metabolism genes are more abundant here.

Overall, ribosomal genes, which are expected to be conserved, are found most

often in the core gene sets [Shi and Falkowski 2008]. Genes whose presence are

expected to be more variable (ABC transporters, two-component systems) are

much more abundant in the shell and cloud genomes. Multiple functional categories

are present in the shell and cloud, suggesting either variation in shared pathways,

or similar function from paralogous genes which are assigned to different gene

clusters. In particular, nitrogen metabolism genes are found more often in the shell

and cloud genomes. Closer inspection suggests this is due to the lack of nitrogen

fixation genes in Raphidiopsis brookii D9, which does not fix nitrogen, as well as the

lack of transporters for nitrogenous compound uptake in the Richelia genomes as

well as Nostoc azollae 0708. Anabaena MDT14 does not seem to contain nitrogen

fixation genes, although it’s possible these genes were not assembled.

From gene clustering, a total of 16,387 genes were identified as unique to a sin-

gle genome. Of these genes, only 1477 genes were assigned to KEGG orthologues,

leaving a large majority without functional annotation. The majority ( 5.8%) of



68

annotated unique sequences were assigned to ABC transporters, 23% of which were

annotated as amino acid transporters. There is sometimes overlap in annotated

functions across genomes (some of the livGKM branched-chain amino acid trans-

porter gene clusters, for example), although sequence identity is low between these

separate clusters. This suggests these genes either diverged while retaining func-

tion, or they are paralogs which have obtained new functions. This could explain

why Nostoc PCC 7120 contains six copies of a putative iron complex transport

system and Anabaena MDT14 carries four copies of the sulfonate transport gene

ssuA. In addition, there are nitrogen, sulfur, iron, molybdate, and cobalt/nickel-

related transport enzymes found uniquely throughout these genomes. The next

largest group of annotated unique genes were annotated as carbon metabolism

genes. Previous studies have shown that cyanobacterial central carbon metabolism

is highly fragmented, which may be due to overlap in carbon metabolism pathways

[Beck et al. 2012].

3.3.4 Toxin synthesis and secondary metabolite genes

Toxin synthesis in Nostocaceae members is of particular concern, since many of

these strains grow in globally distributed freshwater systems and therefore may

pose a threat to public health [Beltran and Neilan 2000; Bolch et al. 1999]. Addi-

tionally, secondary metabolites produced by cyanobacteria have allelopathic effects

that can impact other organisms [Leão et al. 2009; Rzymski et al. 2014]. Previ-

ously sequenced Nostocaceae members have been characterized for their ability
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to produce toxic compounds, so we identified toxin synthesis gene clusters in the

novel genomes here by using BLASTN alignments against previously character-

ized nucleotide sequences. Of the nine novel genomes, none contained putative

toxin biosynthesis gene clusters (Figure 3.5). However, we identified a number

of other secondary metabolite synthesis clusters in all genomes. Geosmin synthe-

sis genes, which encode the enzymes for synthesis of a taste-and-odor compound

affecting drinking-water supplies [Jüttner and Watson 2007], were identified in

six genomes, one of which was a novel genome (Anabaena CRKS33). Both An-

abaena AL09, Anabaena LE011-02, and Anabaena 90 contain genes for synthesiz-

ing the protease inhibitor anabaenopeptolide [Rouhiainen et al. 2000], while these

genomes and Aphanizomenon flos-aquae NIES-81 carry genes for anabaenopeptin

synthesis [Itou et al. 1999; Murakami et al. 2000]. Genes for synthesizing the

cyanobactin anacyclamide are found in Anabaena AL09, Anabaena LE011-02, An-

abaena 90, Anabaena AL93, Anabaena WA102, and Aphanizomenon flos-aquae

2012/KM1/D3 [Leikoski et al. 2010]. Cylindrospermum stagnale PCC 7417 carries

cylindrocyclophane synthesis genes, which encode for a proteasome inhibitor with

measured cytotoxic effects [Chlipala et al. 2010]. Anabaena 90 contains a putative

gene cluster for synthesis of hassallidin , which has been demonstrated to have

antifungal properties [Vestola et al. 2014].

We also identified other secondary metabolite synthesis clusters. Polyketide

synthase and terpene synthesis clusters were found in all genomes (Table 3.5).

In addition, almost all genomes contained non-ribosomal peptide synthesis genes

with the exception of the Richelia symbionts. Bacteriocins are found in sixteen
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of the thirty-one genomes, although they are not exclusive or ubiquitous to any

groups. Bacteriocins are toxic proteins that inhibit growth of other, sometimes

closely related, bacteria that are often encoded in cyanobacterial genomes [Wang

et al. 2011].

In addition, several genomes contain gene clusters for the synthesis of cyanobactins,

which are bioactive cyclic peptides that are potential leads for novel antitumor,

antimalarial, or other compounds [Donia et al. 2008]. Eleven of the thirty-one

genomes analyzed here contained putative cyanobactin synthesis gene clusters, and

in total fifteen were identified across all genomes. No more than two cyanobactin

synthesis clusters were found in each genome (Table 3.5). Also, none were asso-

ciated with predicted chemical structures by antiSMASH. Of the eleven putative

clusters, nine were identified in the AAD clade, including all genomes in groups

1 and 2. Only the Anabaena genomes in group 3 carry cyanobactin synthesis

genes, while no genomes from group 4 contain these genes. This suggests there

may be group-specific patterns within the AAD clade in their ability to produce

cyanobactins.

Other secondary metabolite gene clusters were identified, although they were

not as prevalent. Lantipeptide synthesis genes were identified in six of the thirty-

one genomes, with four found in genomes related with and part of group 5. Lan-

tipeptides are another group of potentially valuable bioactive peptides that include

the lantibiotic antimicrobials [Knerr and van der Donk 2012]. Their increased pres-

ence in Nostoc and related genomes indicates the potential for identifying novel

lantipeptides produced by Nostoc strains. Microviridin synthesis genes were iden-
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tified in three genomes (A. flos-aquae NIES-81, N. spumigena CCY 9414, and An-

abaena/Nostoc PCC 7120). Microviridins are a group of serine-protease inhibitors,

some of which can kill grazers [Rohrlack et al. 2004; Ziemert et al. 2010]. Lad-

derane synthesis genes were identified in seven genomes, although the distribution

was inconsistent with the phylogenomic tree. Ladderane lipids may provide denser

membranes than conventional cell membrane lipids, and are used by annamox bac-

teria to enclose the annamoxasome [Rattray et al. 2010]. Other clusters putatively

synthesize proteusin, resorcinol, arylpolyene, lassopeptides, and thiopeptides, al-

though these were identified in four or fewer genomes each.

3.3.5 Functional gene comparisons

To assign function to protein-coding sequences in each genome, we annotated clus-

ters generated from the pan-genome analysis with the KEGG database and com-

pared differences across the family (Figure 3.5). Some exceptions for more specific

searches were used for some groups, as detailed in Methods. We then highlighted

differences in annotated gene content between genomes.

3.3.5.1 Photosynthesis-associated genes

The distribution of photosynthetic genes associated with photosystem complex II

(PSII) assembly is either dispersed or sparse depending on the genes in question,

with no phylogenomic pattern. Twenty to thirty-one genomes contain the psbOP-
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TUVXYZ, psb27, and psb28 genes, suggesting presence of these genes is generally

conserved in this family. In contrast, fewer genomes contain the psbJKLM and

psb28-2 genes, which are non-essential photosystem genes whose presence can af-

fect photoautotrophic growth rates in cyanobacteria [Lind et al. 1993; Ikeuchi et al.

1991; Sakata et al. 2013; Bentley et al. 2008].

Twenty-seven of these genomes contain complete genes for synthesis of phy-

cocyanin (cpcABCDEFG), a light-harvesting pigment ubiquitous in cyanobacteria

which absorbs primarily orange/red light at 620 nm [Myers and Kratz 1955]. An-

abaena MDT14 contained no cpc genes, although we hypothesize these were lost

during the assembly/binning process. Phycoerythrin synthesis genes (cpeABCRSTUYZ )

were identified in only four of the genomes, all of which were symbionts (the three

Richelia strains and the plant symbiont Nostoc punctiforme PCC 73102) [Meeks

et al. 2001]. Genes encoding the green-light harvesting pigment phycoerythro-

cyanin (pecABCEF ) are dispersed among eleven of the genomes, and are found in

group 5 as well as other Nostoc and Anabaena strains, while only found in two

genomes from the AAD clade (Anabaena LE011-02 and Anabaena WA93). These

genes are likely carried in strains that are in highly competitive environments for

red-light absorption, or perhaps in deeper or more opaque aquatic systems [Ting

et al. 2002]. The differential distribution of light-harvesting and photosynthesis

genes suggests they are under differential selection depending on their respective

environments, which likely vary in light availability.
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3.3.5.2 Sulfur metabolism genes

Of the thirty-one genomes, sixteen carry all or most of the ssuABCDE operon,

which is involved in organic sulfur uptake [van der Ploeg et al. 1999]. The tauD

gene, involved in metabolizing taurine to sulfite for sulfur metabolism, was found in

the same sixteen genomes in addition to Anabaena PCC 7108. Notably, these genes

are entirely absent from group 4 genomes.This indicates there may be differential

dependencies on sulfur in certain strains, or variation in sulfur availability in some

environments. Some or all of the genes for assimilatory sulfate reduction (cysCH,

sat, sir) in addition to the sulfate transporter cysP are found in all genomes but

Richelia intracellularis HM01.

3.3.5.3 Nitrogen metabolism genes

The nifV gene was found in all genomes except C. stagnale CS-505, R. brookii

D9, and Anabaena MDT14. This gene encodes for a homocitrate synthase which,

when present, increases nitrogen fixation efficiency in Nostoc PCC 7120 [Stricker

et al. 1997]. Additionally, twenty-one of the thirty-one genomes contain the cydAB

genes, which encode for an oxidase essential for Nostoc PCC 7120 growth under

nitrogen-limiting conditions [Mikulic 2013]. Previous work has also raised the

possibility this oxidase scavenges oxygen in heterocysts to prevent nitrogenase

oxidation. However, cydAB genes are present in Raphidiopsis brookii D9, which

neither forms heterocysts nor encodes for nitrogenases [Stucken et al. 2010].
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3.3.5.4 Phototaxis genes

We also identified the pixJ gene in fourteen of the genomes, although it is notably

absent from most of the AAD clade with the exception of three of the group 3

genomes. The pixJ gene is essential for type IV pili-directed positive phototaxis

in Synechocystis PCC 6803, and in the Nostocaceae genomes, is commonly found

near annotated putative chemotaxis homologs cheWAY genes, indicating their

importance for phototaxis in these genomes [Schuergers et al. 2016; Campbell et al.

2015]. However, most strains in the AAD clade lack pixJ, suggesting they are either

non-motile or are using a currently unannotated protein(s) for phototaxis.

3.3.5.5 Transporters

Several transporters are found throughout many of these genomes. The neutral

amino acid complex genes natCDE and the manganese transporter genes manRS

are nearly ubiquitous, while the vitamin B12-importer gene, btuB, is commonly

found throughout these genomes as well [Picossi et al. 2005; Yamaguchi et al.

2002; Köster 2001]. Genes encoding the urea transporter complex (urtABCDE )

[Beckers et al. 2004] are found in nearly all of the fifteen-member clade with the

exception of Anabaena 90. Iron transport genes (ABC.FEV.AP) [Katoh et al. 2001]

are less frequently found, although they are spread throughout the family. The

presence of these transporters indicates that Nostocaceae strains can use external

sources of amino acids, manganese, and vitamin B12, while fewer strains utilize

iron uptake. This may indicate a form of mixotrophy in this group, similar to
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how some marine picocyanobacteria are capable of taking up organic compounds

to fuel growth [Zubkov et al. 2003].

3.3.5.6 Group-specific functional genes

Several genes associated with amino acid transport and retention were identified

in group 1 and 5 genomes, as well as two Nostoc genomes and Cylindrospermum

PCC 7417. One, found in 14 genomes including group 1 strains, is a gamma-

glutamyltransferase (ggt) which increases non-polar amino acid solubility and may

prevent the loss of non-polar amino acids via gamma-glutamylation [Suzuki et al.

2007; Baran et al. 2011]. Also, nine genomes, including group 1 strains, contain

all or most components of the high-affinity branched-chain amino acid transport

system (livGHKM ). These genomes already contain the genes necessary to syn-

thesize these amino acids, so the presence of uptake/retention genes suggests their

requirements for these amino acids may be greater than their capacity for syn-

thesis. Alternatively, this may be a way to shunt cellular resources towards other

growth-related processes or could provide a mechanism of competitive exclusion

against co-occurring bacteria.

Thirteen genomes encode the tynA gene, including all four genomes in group

2 (Anabaena MDT14, Anabaena 90, Anabaena AL09, and Anabaena LE011-02),

as the only members of the AAD clade. The tynA gene encodes a primary-amine

oxidase, which catalyzes oxidative deamination of aromatic amines to aldehydes

[Elovaara et al. 2015]. Previous work in E. coli revealed tynA confers the ability to



76

grow in the presence of phenylethylamine [Elovaara et al. 2015]. Further analysis

of environmental bacterial genomes suggests this gene is found more often when

nutrients are less abundant, indicating tynA may encode an alternative metabolic

enzyme when carbon or nitrogen availability is low [Elovaara et al. 2015]. A trade-

off of this growth is that H2O2 is produced, and there is a net release outside of

the cell [Kumar and Imlay 2013]. Cyanobacteria already undergo increased ox-

idative stress due to photosynthesis, and therefore require various strategies to

mitigate reactive oxygen species [Paerl and Otten 2013]. As a result, this may

increase oxidative load and require devoting more cellular resources to addressing

this problem. Alternatively, increasing extracellular H2O2 could increase lethality

for surrounding organisms, thereby reducing resource competition or predation and

possibly promoting initiation or sustenance of high-density blooms [Jansen et al.

2002; Selva et al. 2009].

Nine of the genomes, contain mocA, a molybdenum cytidylyltransferase that

is necessary for creating the molybdopterin cytosine dinucleotide cofactor (MOC)

[Neumann et al. 2009]. Another set of genes found in eight of these nine genomes

is yagTRS. These encode a xanthine dehydrogenase which requires MOC to func-

tion; this is consistent with the presence of mocA in many of the same genomes

[Neumann et al. 2009]. Of the 15-member clade, only group 3 genomes (Anabaena

WA93, Anabaena WA102, Aphanizomenon 2012/KM1/D3, and Aphanizomenon

NIES-81) contain these genes, which may provide a distinguishing trait in com-

parison with the rest of the clade. These genes convert xanthine into urate to

create NADH, possibly for reducing agent [Self 2002]. Previous studies indicate
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that purines can act as the sole source of nitrogen or carbon in Klebsiella pneumo-

niae and the unicellular algae Chlorella [Ammann and Lynch 1964; Tyler 1978].

Alternatively, a similar pathway in E. coli was revealed to salvage purines rather

than use them as a nitrogen source [Xi et al. 2000]. Group 3 genomes may then

use purines as either another form of NADH synthesis, as a nitrogen source, or as

recycled organic matter.

Group 4 genomes contain a type I-C CRISPR-Cas system encoding Cas5d,

Csd1, and Csd2. A similar Bacillus halodurans Cas5d nuclease has been char-

acterized, which revealed specific RNA nuclease activity [Punetha et al. 2014].

However, it also carries out a metal-dependent, non-specific DNase activity, hint-

ing at a more generalized defense strategy. For example, promiscuous restriction

mechanisms can increase bacterial fitness in the presence of phage or plasmid DNA

through degradation without sequence specificity [Vasu et al. 2012]. Polyamines

or proteins attached to cellular DNA may protect the host’s genome, allowing for

nucleation of newly introduced DNA. This generalized defense mechanism may

then provide this group with a selective advantage for protection against parasitic

plasmids or phages.

Eight of the thirty-one genomes contain fruB, a gene that is part of a fructose

phosphotransferase system, which uses phosphoenolpyruvate to power fructose im-

port [Geerse et al. 1989]. Notably, six of these eight genomes are Anabaena and

Nostoc strains including the symbiont Nostoc azollae 0708, and none of the eight

genomes belong to the AAD clade. Since some cyanobacteria have shown the

ability to utilize external carbon sources [Anderson and McIntosh 1991], it’s pos-
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sible the presence of these fructose importers indicate an optional heterotrophic

phenotype not seen in the AAD clade.

We also looked for unique genes found in all members of the AAD clade relative

to all 31 genomes to identify signature genes for this group. However, no genes were

ubiquitously and uniquely found in the AAD clade. Also, there were no annotated

genes unique within genomes isolated from the same sampling sites, nor were there

genes unique to Aphanizomenon genomes in comparison with Anabaena genomes

that might explain morphological differences.

3.3.5.7 Buoyancy genes

Excluding genomes from symbiotic bacteria (Nostoc azollae 0708, Nostoc puncti-

forme PCC 73102, and all Richelia), the number of gvpA copies is highly variable

(mean = 3.0, SD = 3.5) (Table 3.6). This may be due to artifacts of assembly,

where short arrays of highly similar genes can lead to assembly errors [Brown

et al. 2016]. The same is true for counts of all gas vesicle-related genes (mean

= 6.4, SD = 5.2). Previous work in Anabaena and Microcystis cultures revealed

that gene loss or rearrangements within the gas vesicle operon led to observable

losses in buoyancy in culture [Wang et al. 2012; Mlouka et al. 2004]. To see if this

happened with the genomes analyzed here, we extracted and aligned GvpG trans-

lations to compare with the truncated sequence from Anabaena sp. 90. While

variable in length, there is no evidence suggesting any have lost their function.

To investigate this further, we compared gas vesicle gene counts between genomes
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from cultured (18 genomes) and uncultured (8 genomes) strains. The uncultured

group on average contained 5.0 more gas vesicle-related genes than the cultured

group (independent sample t-test; mean diff. = 5.0, p-value = 0.038). Addition-

ally, we found that GvpC protein predicted molecular weight was variable across

these genomes (15-27 kDa). Previous work has suggested that GvpC size is nega-

tively correlated with ability for gas vesicles to withstand greater pressures, which

may explain the variation seen here [Bright and Walsby 1999]. As a result, strains

such as Anabaena CPCC64 may have more durable gas vesicles than strains such

as Anabaena WA113.

3.3.5.8 Genes for ROS defense

Photosynthetic electron transport in cyanobacteria generates harmful reactive oxy-

gen species (ROS) that phototrophic cyanobacteria must defend against [Latifi

et al. 2009]. To assess patterns in the strategies used by the Nostocaceae family

(including novel strains), we searched for genes associated with oxidative stress

responses. We identified superoxide dismutase (SOD) genes in all genomes, and

most also carry peroxiredoxin (Prx-s) genes (with the exception of the complete An-

abaena sp. 90 and Anabaena WA102 genomes, which indicate true absences)(Table

3.7). SOD is essential for countering superoxide activity, while Prx-s reduces H2O2

and other ROS [Latifi et al. 2007]. Rubrerythrin-encoding genes are also commonly

found in these genomes. This enzyme uses an electron from NADPH or NADH

to convert H2O2 to water, and experiments in Anabaena PCC 7120 have demon-
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strated its role as a peroxidase and protector of nitrogenase in heterocysts [Kurtz

2006; Zhao et al. 2007]. Other genes encoding peroxidase and catalase are also

found in some of the genomes, although they are found less than previously de-

scribed ROS-mitigating genes. Catalases only dismutate H2O2, while peroxidases

can target different types of peroxides [Chelikani et al. 2004].

In addition to enzymatic oxidative stress relievers, nonenzymatic antioxidants

can also reduce the burden of ROS in cyanobacteria [Latifi et al. 2009]. We iden-

tified genes necessary for synthesis of the carotenoids zeaxanthin and myxoxan-

thophyll in all of these genomes. Myxoxanthophyll protects against peroxidation,

while mutants of Synechococcus PCC 7942 lacking zeaxanthin have been shown

to be more susceptible to high light and oxidative stress [Schäfer et al. 2005]. Vi-

tamin E synthesis genes are also present in most of these genomes. Vitamin E

protects membrane lipids from peroxidation in plants, and previous work in Syne-

chocystis PCC 6803 suggests a similar role in cyanobacteria as well [Havaux et al.

2005; Maeda et al. 2005]. We also identified the glutathione synthesis pathway

in all genomes except Richelia HM01; glutathione is a nonribosomal peptide that

contributes to oxidative stress resistance, as observed in Synechocystis PCC 6803

[Cameron and Pakrasi 2010].

3.3.5.9 Extracellular polymeric substance synthesis and export genes

Cyanobacteria can produce extracellular polymeric substances (EPS) which often

associate with the outside of cells in the form of sheaths or capsules. They provide
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a number of benefits, including protection against desiccation or UV damage, and

can assist in maintaining an anoxic environment in heterocysts [Pereira et al. 2009;

Kehr and Dittmann 2015]. Most of the genomes characterized here contain genes

associated with the three characterized EPS pathways in cyanobacteria, which in-

clude the wzy and bcsA genes (hallmarks of the Wzy- and Synthase-dependent

pathways, respectively) (Table 3.8) [Pereira et al. 2015]. Genes encoding extracel-

lular polysaccharide biosynthesis proteins are nearly ubiquitously found in these

genomes, while seven strains also contain putative capsular synthesis genes (Table

3.8). These putative genes may be involved in sheath/capsule/mucilage biosyn-

thesis, and if so may indicate strains that contain this extracellular feature.

3.3.5.10 RNA genes

The Nostocaceae genomes contain from 1 to 12 rRNA operons, although some of

the draft genomes have no copies of some of the rRNA genes (Table 3.9). Binning

fragmented assemblies can exclude rRNA genes entirely, which may explain why

some genomes contained no identified rRNA genes (See chapter 2). As a result,

we are unable to determine true number of rRNA operons in these genomes. In

addition, the Nostocaeae genomes contain to from 26 to 76 tRNA genes, which is

highly variable, with larger genomes carrying more tRNAs (Table 3.10). The least

variable tRNA genes were tRNA-His, tRNA-Cys, and tRNA-Trp (Std. Dev. =

0.18, 0.34, and 0.37, respectively), likely since they are commonly found in only

1-2 copies per genome. On the other hand, the most variable tRNA genes were
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tRNA-Ala, tRNA-Leu, and tRNA-Ile (Std. Dev. = 1.70, 1.60, 1.33, respectively).

3.3.5.11 IS elements

We identified the number of insertion sequence (IS) elements found throughout the

genomes using the TnPred database. The distribution of total insertion sequences

is variable across all thirty-one genomes, with a range of 0-251 per genome (Table

3.11). Genomes lacking IS elements are the symbiotic Richelia HH01 and HM01

genomes, which are highly reduced. In contrast, the largest number of IS sequences

reside in Richelia RC01, which has a much larger genome than strains HH01 and

HM01, and which presumably has not undergone as much reductive evolution.

The distribution of characterized IS sequences is varied across these genomes,

including those isolated from the same sites (e.g., Aphanizomenon MDT13 and

Aphanizomenon MDT 14). This, in addition to the majority of IS sequences being

uncharacterized, suggests there is a large diversity of these mobile genes within

and between environments. However, it is important to keep in mind that these

sequences may be underestimated in draft genomes due to assembly breaks at

repetitive elements.

3.4 Discussion

Here, we have characterized nine novel Anabaena and Aphanizomenon genomes

relative to the rest of the Nostocaceae family. We focused on identifying novel
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toxin or taste-and-odor compound synthesizing genes, assessing consistency be-

tween phylogenomic signal and morphological characterization, and searching for

differences in functional gene content.

3.4.1 Phylogenomics reveals morphology-phylogeny inconsistencies

Previous reports based on single-copy gene phylogenies of filamentous cyanobac-

teria have revealed inconsistencies in the placements of the Anabaena, Aphani-

zomenon, and Nostoc genera [Gugger et al. 2002; Rajaniemi et al. 2005; Shih et al.

2013]. Supporting these reports, these genomes again do not cleanly separate into

distinct clusters by genus in our phylogenomic tree, and placement of the novel

genomes presented here introduces new inconsistencies in phylogenomic and mor-

phological classification (Figure 3.1). All of these results conflict with taxonomic

assignment of filamentous cyanobacteria using polyphasic approaches that often

weigh heavily towards subjective colony or cell morphology characterizations [Za-

pomělová et al. 2009; 2012; Komárek 2016]. This suggests that current genus-level

assignments may need to be reconsidered, especially those characterized primarily

by morphology. While polyphasic taxonomic assignments may include relevant

phenotypic information, these descriptors do not adequately reflect evolutionary

relationships [Stanier and Niel 1962; Sapp 2005]. As a result, morphological clas-

sifications should be considered uncertain at best and should routinely require

genetic information to verify. We believe our phylogenomic tree better indicates

evolutionary relationships within this family because it evaluates the similarity
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of 279 single-copy orthologues found across all genomes presented here. In-depth

assessment of the trends in prokaryotic gene evolution have revealed patterns of

dominant vertical inheritance with low amounts of HGT for widely-shared genes

[Puigbo et al. 2010], and since our tree is built from family-wide shared genes, we

believe this supports the branch assignments. Some patterns in phylogenomic re-

lationships emerge from these analyses. Notably, Nostoc genomes are never found

in the AAD clade, suggesting a clear distinction between Nostoc and many An-

abaena/Aphanizomenon/Dolichospermum. Additionally, the Anabaena genomes

that cluster with Nostoc strains may be more Nostoc-like, suggesting that re-

classification of these strains to distinguish between Nostoc-like Anabaena and

potentially toxigenic AAD-like Anabaena may be prudent. It is important to note

that of our genome set, none are part of the benthic Anabaena’s [Surakka et al.

2005], revealing the potential for future work to expand the phylogenomics pre-

sented here.

3.4.2 Distribution of toxic/secondary metabolite synthesis genes

Toxicity of strains in this family is a relevant phenotype that must be addressed.

From our analysis, none of the novel genomes contain putative toxin synthesis

genes, although we identified geosmin synthesis genes in Anabaena CRKS33. Over-

all, six of the thirty-one strains produce toxic compounds (identified by toxin mea-

surements previously), and there is a broad range of synthesized toxin types for

those that do. In addition, closely related strains sometimes contain toxic and non-
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toxic members, which has also been previously reported [D’Agostino et al. 2016a].

This supports the possibility that toxins are not consistently vertically inherited

and are often lost in certain lineages, similar to discussions by others that toxic

gene clusters are horizontally transferred, although specific instances have yet to

be identified [Stucken et al. 2010; Jiang et al. 2012]. The inconsistent distribution

of toxin synthesis genes, especially within the AAD clade, supports this possibility.

Toxic strains may gain these genes through lateral transfer events, and retain them

due to some selective advantage, but analysis of more closely-related genome pairs

with and without toxin synthesis genes is necessary to address these possibilities.

Although common, the scattered presence of bacteriocins in these genomes in-

dicates they are not conserved. Aharonovich et al. recently identified bacteriocin

genes that were upregulated in Prochlorococcus when co-cultured with a marine

heterotroph, indicating putative utility for controlling co-occurring bacterial pop-

ulation growth [Aharonovich and Sher 2016]. Carrying bacteriocin genes could

provide an advantage to bloom-forming cyanobacteria by inhibiting competitors

for nutrient acquisition. However, their lack of conservation across these genomes

from similar geographic origin may indicate any advantage from retaining these

genes is not environment-specific.

Of the eleven genomes which carry cyanobactin synthesis clusters, nine are part

of the AAD clade. Previous work has shown that Anabaena strains produce a range

of diverse cyanobactins, indicating the potential for biomining these genomes to

look for valuable new compounds [Leikoski et al. 2010]. Further analysis indicates

that six of these clusters are anacyclamide synthesis genes, a diverse group of
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cyanobactins [Sivonen et al. 2010]. However, the bioactivity of anacyclamides are

still unknown.

3.4.3 Functional gene content comparisons

Freshwater systems are often distinct from each other due to physical separation

with no direct linkage. As a result, the environmental parameters from different

systems can be drastically different. Most of the genomes analyzed here come from

geographically disparate freshwater systems (Table 3.1). By comparing functional

gene content of these genomes, we revealed variation in presence of genes associated

with multiple pathways. These included genes encoding auxiliary photosystem

components, pigments, sulfur metabolism enzymes, transporter, and phototaxis

proteins. Differential environmental parameters from each respective isolation site

may mediate selective pressures that drive either retention or loss of these genes,

and could indicate their persistence in some genomes after acquisition through

horizontal gene transfer.

In addition, several of the groups within the AAD clade carry genes unique

from the rest of the clade, suggesting physiological differences that may provide

specific advantages in a range of environments. These unique genes may then

indicate strategies by which certain groups retain an advantage relative to co-

occurring bacteria in their respective environments. For example, group 1 genomes

contain genes associated with amino acid uptake and retention, which may benefit

these strains by allowing resources to shift from amino acid synthesis to other
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growth-related processes. Additionally, other group-specific genes are associated

with alternative metabolic pathways for utilizing purines or phenylethylamine,

and a non-specific targeting CRISPR system. Overall, this suggests that these

groups may use functionally diverse strategies to obtain niche-specific competitive

advantages across environments.

3.5 Conclusions

Here, we have sequenced nine novel Anabaena and Aphanizomenon genomes, and

compared them with all sequenced genomes from the Nostocaceae family. Phyloge-

nomic analyses of these strains indicates that eight of the nine novel genomes belong

to a single, newly expanded clade, adding to the availability of sequenced genomes

from this group. Consequently, fifteen of the thirty-one Nostocaceae genomes be-

long to this clade, which consists entirely of planktonic bloom-forming strains

of Anabaena, Aphanizomenon, and Dolichospermum. Within this fifteen-member

clade are four distinct subclades consisting of highly similar genomes (>95% nu-

cleotide identity over >60% of their genome). These genomes consist of mixed

genera previously classified by morphology, and indicates the utility in acquiring

genomic information as a cautious step towards validating taxonomic assignments.

There are no clear patterns of toxin gene presence throughout the Nostocaceae

family, indicating the possibility that these genes are transferred horizontally.

Additionally, we identified genes unique to genomes from each group relative to

the AAD clade. These genes varied widely in function and included amino acid
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transport/retention, utilization of alternative nitrogen sources, and a DNA/RNA-

targeting CRISPR system. Genes for organic sulfur uptake are variable across

these genomes. As a result, variation in these pathways suggests some Nostocaceae

strains utilize multiple strategies for acquisition of sulfur and nitrogen. These

genomic comparisons can serve as a guideline for future classifications of bloom-

forming, filamentous cyanobacteria, in addition to informing about the important

and unique genomic characters that may help to better understand these poten-

tially toxigenic cyanobacteria.
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Genome
Estimated

Completeness (%)
Estimated

Contamination (%)
Taxon

Anabaena 90* 99.67 0 Cyanobacteria
Anabaena AL09 98.11 0 Cyanobacteria
Anabaena CPCC64 99.33 0 Cyanobacteria
Anabaena CRKS33 99.44 1.78 Cyanobacteria
Anabaena cylindrica PCC 7122* 99.44 0 Cyanobacteria
Anabaena LE011-02 99.22 0.11 Cyanobacteria
Anabaena MDT14 97.17 4.22 Cyanobacteria
Anabaena PCC 7108 99.63 0.3 Cyanobacteria
Anabaena variabilis ATCC 29413* 99.33 0 Cyanobacteria
Anabaena WA102* 99.78 0.22 Cyanobacteria
Anabaena WA113 99.89 0.44 Cyanobacteria
Anabaena WA93 99.67 0.52 Cyanobacteria
Aphanizomenon flos-aquae 2012/KM1/D3 87.52 7.22 Cyanobacteria
Aphanizomenon flos-aquae MDT13 culture 99.67 0.37 Cyanobacteria
Aphanizomenon flos-aquae MDT14 99 1 Cyanobacteria
Aphanizomenon flos-aquae NIES-81 99.67 0.56 Cyanobacteria
Aphanizomenon flos-aquae WA102 99.89 3.6 Cyanobacteria
Cylindrospermopsis raciborskii CS-505 99.85 0 Cyanobacteria
Cylindrospermum stagnale PCC 7417* 99.78 0.68 Cyanobacteria
Dolichospermum circinale AWQC131C 99.56 0 Cyanobacteria
Dolichospermum circinale AWQC310F 99.56 0 Cyanobacteria
Nodularia spumigena CCY 9414 99.78 0.67 Cyanobacteria
Nostoc azollae 0708* 98.89 0 Cyanobacteria
Nostoc PCC 7107* 99.28 0.36 Cyanobacteria
Nostoc PCC 7120* 99.19 0 Cyanobacteria
Nostoc PCC 7524* 99.28 0 Cyanobacteria
Nostoc punctiforme PCC 73102* 99.56 0.22 Cyanobacteria
Raphidiopsis brookii D9 99.37 0 Cyanobacteria
Richelia intracellularis RC01 94.34 1.85 Cyanobacteria
Richelia intracellularis HH01 93.44 0.11 Cyanobacteria
Richelia intracellularis HM01 64.75 0.56 Cyanobacteria

Table 3.3: CheckM results on binned genomes. Bolded genomes are novel genomes
presented in this study. *’s denote genomes that are finished-quality, while the
remainder are draft-quality.
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Genome
No.

GvpA
No.

GvpC
GvpC length

(AA)
GvpC estimated

MW (Da)
Isolation site

max depth (meters)
Vesicle
Genes

Richelia intracellularis RC01 0 0 Unknown 0
Richelia intracellularis HH01 0 0 Unknown 0
Richelia intracellularis HM01 0 0 5267 1
Raphidiopsis brookii D9 1 1 220 24844.51 19 3
Cylindrospermopsis raciborskii CS-505 2 1 220 24985.54 13.4 3
Nostoc azollae 0708 0 0 Unknown 1
Anabaena cylindrica PCC 7122 0 0 Unknown 0
Anabaena PCC 7108 0 0 Unknown 1
Anabaena CRKS33 1 1 193 22084.74 12.8 6
Dolichospermum circinale AWQC131C 0 1 226 25847.76 6 4
Dolichospermum circinale AWQC310F 1 1 226 25955.71 Unknown 5
Anabaena AL09 0 0 244.1 3
Anabaena LE011-02 1 1 211 24087.75 64 7
Anabaena MDT14 2 1 193 22028.54 15.2 7
Anabaena 90 7 1 193 21984.52 6 7
Anabaena WA93 7 1 193 22042.56 27 12
Anabaena WA102 7 1 194 22042.56 7.6 17
Aphanizomenon flos-aquae 2012/KM1/D3 3 1 127 14616.73 5 4
Aphanizomenon flos-aquae NIES-81 4 1 197 22484.95 7 5
Aphanizomenon flos-aquae MDT14 12 1 193 22187.8 15.2 17
Aphanizomenon flos-aquae MDT13 culture 4 1 193 22187.8 15.2 10
Anabaena WA113 11 1 193 22217.77 11.6 17
Aphanizomenon WA102 8 1 193 22217.77 7.6 14
Cylindrospermum stagnale PCC 7417 0 0 None (soil, greenhouse) 1
Nostoc punctiforme PCC 73102 1 1 235 27339.55 None (symbiotic with cycad) 6
Nodularia spumigena CCY 9414 0 0 458.7 4
Anabaena CPCC64 2 1 129 15282.4 244.1 8
Anabaena variabilis ATCC 29413 2 1 129 15282.4 Unknown 5
Nostoc PCC 7120 0 0 Unknown 0
Nostoc PCC 7524 0 0 Unknown 1
Nostoc PCC 7107 2 1 129 15218.12 Unknown 4

Table 3.6: Buoyancy genes
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AAD
Clade

Nostoc PCC 7107
Nostoc PCC 7524
Nostoc PCC 7120
Anabaena variabilis ATCC 29413
Anabaena CPCC64

Nodularia spumigena CCY9414
Nostoc punctiforme PCC 73102
Cyindrospermum stagnale PCC 7417

Aphanizomenon WA102-2
Anabaena WA113
Aphanizomenon MDT13
Aphanizomenon MDT14
Aphanizomenon flos-aquae NIES-81

 Aphanizomenon flos-aquae 2012/KM1/D3
Anabaena WA102
 Anabaena WA93
 Anabaena 90
 Anabaena MDT14-2
 Anabaena LE011-02
 Anabaena AL09
Dolichospermum circinale AWQC310F
 Dolichospermum circinale AWQC131C
 Anabaena CRKS33

Anabaena PCC 7108
 Anabaena PCC 7122

 Nostoc azollae 0708
Cylindrospermopsis raciborskii CS-505
Raphidiopsis brookii D9

Richelia intracellularis HM01
 Richelia intracellularis HH01

 Richelia intracellularis RC01

Group 1

Group 2

Group 3

Group 4

Group 5

* Novel Genome

Substitutions/site

Figure 3.1: Phylogenomic tree of Nostocaceae clade. The tree was built using the
HAL pipeline, which uses a concatenated alignment of all single-copy orthologues
that are found in all genomes. Genome names are colored based on groupings,
which are specified by genomic ANI (gANI) >95% and the aligned genome fraction
(AF) with a 0.6 minimum cutoff. Genomes new to this study are highlighted with
an asterisk.
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Figure 3.2: The core genome curve from the thirty-one Nostocaceae genomes de-
termined by the OrthoMCL algorithm. The red line is the Tettelin exponential
decay model estimate, while the blue line is the Willenbrock exponential decay
model estimate. Number of genomes sampled are on the x-axis, while the num-
ber of genes included in the core genome are on the y-axis. Dots represent single
iterations of core genome calculation.
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Figure 3.3: The flexible genome curve from the thirty-one Nostocaceae genomes
determined by the OrthoMCL algorithm. Number of genomes sampled are on the
x-axis, while the number of genes included in the core genome are on the y-axis.
Dots represent single iterations of core genome calculation.
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ABC Transporters

Biosynthesis of amino acids

Carbon Metabolism

Core Soft Core Shell Cloud

Two-component system

Purine metabolism

Photosynthesis

Ribosome

Pyrimidine metabolism

Porphyrin and chlorophyll metabolism

Oxidative phosphorylation

Homologous recombination

Sulfur metabolism

Fatty acid metabolism

Nitrogen metabolism

DNA replication

0 0 0 030 60 90 30 60 90 30 60 90 30 60 90

Counts

Figure 3.4: Counts of gene clusters associated with KEGG categories in the core
(present in all genomes), soft core (core genes + genes absent in one genome), shell
(genes in 3-18 genomes), and cloud (genes in 1-2 genomes) genomes.
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Genome
No.
wzy

No.
kpsT

No. BcsA
(alg8/alg44)

No. Exopolysaccharide
biosynthesis genes

No. Capsular
Exopolysaccharide genes

Richelia intracellularis RC01 1 0 1 0 0
Richelia intracellularis HH01 1 0 1 0 0
Richelia intracellularis HM01 5 1 2 1 0
Raphidiopsis brookii D9 1 0 2 1 0
Cylindrospermopsis raciborskii CS-505 2 1 6 1 0
Nostoc azollae 0708 5 3 5 7 5
Anabaena cylindrica PCC 7122 2 5 3 4 3
Anabaena PCC 7108 3 2 3 1 0
Anabaena CRKS33 4 2 6 1 0
Dolichospermum circinale AWQC131C 3 3 4 1 0
Dolichospermum circinale AWQC310F 2 2 4 1 0
Anabaena AL09 2 2 4 2 0
Anabaena LE011-02 2 2 3 2 0
Anabaena MDT14 2 2 5 2 0
Anabaena 90 2 2 6 6 2
Anabaena WA93 3 1 4 2 0
Anabaena WA102 3 1 5 5 2
Aphanizomenon flos-aquae 2012/KM1/D3 2 3 2 0
Aphanizomenon flos-aquae NIES-81 3 2 3 2 0
Aphanizomenon flos-aquae MDT14 2 1 5 2 0
Aphanizomenon flos-aquae MDT13 culture 2 1 4 2 0
Anabaena WA113 2 2 4 2 0
Aphanizomenon WA102 2 2 4 2 0
Cylindrospermum stagnale PCC 7417 5 2 5 12 5
Nostoc punctiforme PCC 73102 4 1 6 1 0
Nodularia spumigena CCY 9414 3 3 3 0 0
Anabaena CPCC64 5 1 7 2 0
Anabaena variabilis ATCC 29413 5 1 7 1 0
Nostoc PCC 7120 2 2 3 2 2
Nostoc PCC 7524 2 3 5 9 4
Nostoc PCC 7107 4 3 6 1 0

Table 3.8: EPS genes
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Genome 5S 16S 23S
Richelia intracellularis RC01 1 1 1
Richelia intracellularis HH01 1 1 2
Richelia intracellularis HM01 1 1 1
Raphidiopsis brookii D9 3 2 3
Cylindrospermopsis raciborskii CS-505 3 3 3
Nostoc azollae 0708 4 4 4
Anabaena cylindrica PCC 7122 4 4 4
Anabaena PCC 7108 4 3 3
Anabaena CRKS33 2 1
Dolichospermum circinale AWQC131C 2 1
Dolichospermum circinale AWQC310F 2 1 2
Anabaena AL09
Anabaena LE011-02
Anabaena MDT14 5 8 4
Anabaena 90 5 5 5
Anabaena WA93 5 5 3
Anabaena WA102 5 5 5
Aphanizomenon flos-aquae 2012/KM1/D3 5 5 4
Aphanizomenon flos-aquae NIES-81 5 6 3
Aphanizomenon flos-aquae MDT14 5 12 9
Aphanizomenon flos-aquae MDT13 culture 3 3
Anabaena WA113 8 15 11
Aphanizomenon WA102 10 11 14
Cylindrospermum stagnale PCC 7417 4 4 4
Nostoc punctiforme PCC 73102 4 4 4
Nodularia spumigena CCY 9414 4 5 2
Anabaena CPCC64 1
Anabaena variabilis ATCC 29413 12 12 12
Nostoc PCC 7120 4 4 4
Nostoc PCC 7524 5 5 5
Nostoc PCC 7107 4 4 4

Table 3.9: rRNA genes
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4.1 Introduction

Microcystis aeruginosa is a toxic, bloom-forming cyanobacterium present in glob-

ally distributed eutrophic freshwater systems [Wu et al. 2007; Marmen et al. 2016].

It can produce microcystins, a group of potent hepatotoxins that have been im-

plicated in the deaths of livestock and humans, and may also cause hepatocellular

carcinoma [Nishiwaki-Matsushima et al. 1992; Yoshizawa et al. 1990]. As a result,

freshwater systems at risk for Microcystis blooms must be monitored for water

management purposes.

Cyanophages are a diverse set of viruses that infect cyanobacteria in both ma-

rine and freshwater systems across the world [Mann et al. 2005; Brussaard and

Martinez 2008; Dreher et al. 2011]. The marine cyanophages have been shown to

play an important role in biogeochemical cycles, as well as regulating cyanobac-

terial populations and mediating horizontal gene transfer events between hosts

[Clokie and Mann 2006; Mann 2003; Mühling et al. 2005; Mann and Clokie 2012].

Core and pan-genome analysis of marine cyanophages has revealed a set of core

shared genes, which are frequently host-associated genes such as phoH, mazG, and

psbA in addition to structural and replication genes [Sullivan et al. 2010]. Sim-

ilar analyses of closely related T4 strains identified the presence of interspersed

hyperplastic genome regions [Comeau et al. 2007]. These genomic segments often

contain unique genes (ORFans) that are found in novel phage genomes [Yin and

Fischer 2008]. However, their origin, role in natural phage population dynamics,

and their gain or loss over time in natural systems has not been characterized.
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Previously studied cyanophages primarily have been isolated from the marine

picocyanobacteria (Prochlorococcus and Synechococcus), while fewer freshwater

cyanophage genomes have been sequenced [Chen and Lu 2002; Millard et al. 2009;

Sullivan et al. 2005; 2010]. Thus far, three freshwater cyanomyoviruses have been

isolated and sequenced. One was isolated from a Synechococcus strain from Copco

Reservoir in the USA [Dreher et al. 2011]. Also, two strains of a phage that infects

M. aeruginosa have been isolated and sequenced. The first, Ma-LMM01, is a Mi-

crocystis-specific phage isolated from Lake Mikata, Japan which only infected M.

aeruginosa NIES-298 out of nine tested Microcystis strains [Yoshida et al. 2006].

The second, MaMV-DC, was isolated from Lake Dianchi, China and only infected

M. aeruginosa FACHB-524 out of nine tested Microcystis strains [Ou et al. 2013].

Both have an icosahedral head and a contractile tail, and have been characterized

as myoviruses based on these morphological features [Yoshida et al. 2006; Ou et al.

2013]. While both are lytic, they each carry putative prophage antirepressor genes,

which may suggest a possible lysogenic lifestyle [Lemire et al. 2011]. Their stringent

host specificity indicates a significant hurdle complicating freshwater cyanophage

isolation, and suggests the necessity of culturing both host and phage from the

same environment to increase the likelihood of successful isolation.

Here, we used a culture-independent approach to sequence and assemble two

novel phage genomes sharing high similarity with phages Ma-LMM01 and MaMV-

DC from shotgun metagenomes of geographically disparate Microcystis blooms in

North America. We compared these genomes to better understand gene conser-

vation and host-phage evolution in this widespread phage-type. In addition, one
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of the novel phages was present in four samples collected two weeks apart from

Cheney Reservoir, KS, USA. We compared these genomes to assess population

variability or gene gain/loss in the environment.

4.2 Methods

4.2.1 Sequenced samples and assembly

The MaCRKS23 genome originated from a depth-integrated, 0.2 µm filtered sam-

ple collected from Cheney Reservoir, Kansas on July 8, 2013 at 37.7597◦ latitude,

-97.835◦ longitude. MaSF12 originated from a depth-integrated, 0.2 µm filtered

sample collected from near Mildred Island (38.9860◦ latitude, -121.5204◦ longitude)

in the San Francisco Delta on August 27, 2012. Total DNA was extracted from

filters with Gene-Rite DNA-EZ RW01 extraction kits. Libraries were prepared

with Nextera XT library kits, and samples were sequenced with Illumina HiSeq

2000. Reads were assembled with IDBA-UD with default parameters [Peng et al.

2012], and contigs with significant similarity (¡1e-30 BLASTN E-value) to phage

Ma-LMM01 were extracted. These fragmented assemblies were completed using

PriceTI [Ruby et al. 2013] with the following parameters: PriceTI -icf inputcon-

tigs.fasta 1 1 2 -fpp Fwdreads.fastq Revreads.fastq 500 90 -nc 81 -nco 5 -rqf 95

0.998 0 14 -rqf 95 0.99 14 6 -rqf 95 0.9 20 10 -rqf 90 0.9 30 10 -rqf 80 0.6 40 20

-trim 25 2 -trim 35 2 -trim 45 2 -trim 55 2 -trim 65 3 -trim 70 2 -lenf 60 1 -lenf 70

5 -lenf 80 20 -reset 5 10 14 18 20 25 30 35 40 45 50 55 59 60 63 65 70 75 -target 90
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3 2 2.

All assemblies were then validated by manual assessment of paired read-mapping

from each original metagenome read-set using BWA-MEM with default parameters

[Li 2013].

4.2.2 Genome annotation and gene clustering

Genomes were annotated with Prokka [Seemann 2014], and the resulting GenBank

files were used for input to the BYU implementation of Phamerator ([Cresawn

et al. 2011], https://github.com/byuphamerator/phamerator-dev/). This process

uses ClustalOmega [Sievers and Higgins 2014] and BLASTP to align protein se-

quences within and between genomes. Then, sequences are clustered into ”pham-

ilies” using specified lower minimum cutoff parameters (we used 32.5% identity

and an E-value of 1e-50). Conserved domains in each protein were identified using

the cddSearch.py script that is part of the BYU implementation of Phamerator

to compare proteins against the Conserved Domain Database (CDD). Protein se-

quences were then searched against the non-redundant protein (nr) database using

BLASTP with a 1e-10 maximum E-value cutoff.

4.2.3 Phylogenetic tree

The protein-coding sequences for the large terminase subunit were extracted from

each genome, including a set of previously-sequenced freshwater and marine cyanophages.
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These were subsequently used for multiple sequence alignment with PROMALS3D,

which uses a combination of sequence-similarity alignments with predicted sec-

ondary structures [Pei et al. 2008]. A maximum-likelihood tree was then generated

using FastTree with default parameters [Price et al. 2010].

4.2.4 Metagenome search

We searched for evidence of these genomes in 62 freshwater metagenomes we pre-

viously collected from eight sampling sites in different states across the USA,

including Oregon, Washington state, California, Texas, and Kansas (BioProject

accessions: PRJNA312985, PRJNA282166, PRJNA312830, PRJNA312986, and

PRJNA294203, respectively). Additionally, we searched through 50 additional

freshwater metagenomes from the IMG [Markowitz et al. 2012], MG-RAST [Glass

et al. 2010], and SRA [Leinonen et al. 2010] databases. All metagenome searches

were performed using BWA-MEM using default parameters [Li 2013].

4.2.5 Cheney metagenome comparisons

Metagenomes from Cheney Reservoir samples consisting of 100bp paired-end Illu-

mina HiSeq 2000 reads which contained >10x read coverage over the MaCRKS23

genome were assembled with IDBA-UD [Peng et al. 2012]. Sequences associated

with MaCRKS23 were extracted from each assembly, and assemblies improved us-

ing PriceTI with the same parameters as mentioned earlier [Ruby et al. 2013]. As-
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semblies were annotated with Prokka [Seemann 2014]. Additionally, MaCRKS23-

like phage reads from each metagenome were mapped and extracted with BWA-

MEM with default parameters. These reads were subsequently mapped back to

each genome to identify genomic variants/missing genomic sequences with Bre-

seq [Deatherage and Barrick 2014], and these variants were manually verified by

comparing assemblies between each time point using progressiveMauve alignments

[Darling et al. 2010]. Genes between these assemblies were compared by creating

codon alignments with Pal2Nal [Suyama et al. 2006], using both Clustal Omega

amino acid alignments [Sievers and Higgins 2014] and DNA sequences as input.

Then, PAML was used to calculate dN/dS, and non-synonymous and synonymous

substitutions using these codon alignments [Yang 2007].

4.3 Results

4.3.1 Isolating assembled sequences from metagenomes

The two novel genomes here were assembled from cellular fraction metagenomes,

suggesting the likelihood that these phage sequences have been extracted from

cells undergoing an active phage infection cycle. Previously, fosmid clones from

environmental DNA have contained phage DNA sequences [DeLong et al. 2006;

Ghai et al. 2010; Zhao et al. 2013], while analysis of cellular shotgun metagenomes

has revealed an abundance of phage-derived sequences [Mizuno et al. 2013]. Since

we have also identified phages from cellular metagenomes, our results indicate
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the identification of actively infecting phages in the population may be possible

through cellular metagenomics.

4.3.2 General characteristics

Both genomes were assembled into circular contigs, which is consistent with the

linear, circularly permuted genomes reported from the previously sequenced strains

[Yoshida et al. 2008; Ou et al. 2015a]. The genome sizes of both MaCRKS23 and

MaSF12 (173,787 and 176,940 bp, respectively) are larger than those of Ma-LMM01

and MaMV-DC (162,109 and 169,223, respectively). The number of protein-coding

genes is variable (Table 4.1), likely as a result of the genome size differences and

variation in certain genes, some of which are found in hyperplastic genomic regions

(Figure 4.1). The Ma-LMM01 genome contains 21 small ORFs in this region,

while the MaMV-DC genome contains 10 small ORFs, the MaCRKS23 genome

contains 15 small ORFs, and the MaSF12 genome contains 25 small ORFs in

their respective hyperplastic regions. This suggests this hyperplastic region is

undergoing expansion and contraction events likely through indels of these small

ORFs. Analyses of hyperplastic regions of marine cyanophages indicates the small

ORFs are often host-derived [Millard et al. 2009]. However, the genes within these

regions do not share significant similarity to known Microcystis genes.

The average GC-content of these genomes is stable at near 46% (Figures 4.2 and

4.3). Also, the number of tRNA-encoding genes in these genomes are mostly con-

sistent, with each carrying tRNA’s for methionine and tyrosine, and MaCRKS23
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carrying an extra methionine tRNA.

Pairwise ANI comparison of the Ma-LMM01-like phages revealed a range of

92.60%-97.04%, with Ma-LMM01 and MaMV-DC sharing the highest similarity,

and the American strains sharing the least similarity (Table 4.2). This suggests

the Japanese and Chinese strains are more closely related than any other pair,

while the North American strains are the most divergent two genomes.

4.3.3 Phylogenetic characterization

We characterized these genomes by phylogenetic analysis of the conserved TerL

protein-coding sequences from all currently-sequenced freshwater cyanophages and

several representative marine cyanophages (Figure 4.4). All Microcystis phages

clustered closely together in a single clade, reflecting their close relationship and

separation from other known myophages. They separate into a larger clade with the

marine and freshwater Synechococcus-infecting myoviruses and the uncharacterized

Planktothrix phage PaV-LD, while the Anabaena phage A-4L and the Phormidium

podoviruses separate into a diverse clade, with the T7-like marine viruses clustering

together. As a result, a similar diversity of freshwater cyanomyoviruses may arise

as more genomes are sequenced.
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4.3.4 Gene content

Using Phamerator, we compared shared phams, or clustered protein sequences

from each completed genome (Table 4.3). Of the 238 total gene clusters identified

here, 124 (52%) are in all four genomes, 24 (10%) are in three genomes, 24 (10%)

are in two genomes, and 66 (28%) are unique to a single genome. Similar to

the previously-annotated Ma-LMM01 and MaMV-DC genomes, MaCRKS23 and

MaSF12 consist primarily of hypothetical genes (156/201 = 78% of MaCRKS23

genes; 157/210 = 75% of MaSF12 genes) (Figures 4.2 and 4.3). The genes in the

hyperplastic regions are generally clustered together.

4.3.4.1 Conserved genes

All genes identified as being associated with replication and virion structure are

conserved across these four genomes (Table 4.3). A putative prophage antirepressor

was also conserved across all genomes (pham 9), while Ma-LMM01 and MaCRKS23

each carried an additional putative antirepressor gene (pham 161) that is non-

homologous with the first. Although conserved across these genomes, the gene

encoding the ribonucleotide reductase alpha subunit (nrdA, pham 6) is interrupted

by an in-frame intein sequence in MaSF12. Previously-sequenced phage nrd genes

contain in-frame introns and inteins, suggesting these sequences are particularly

susceptible to interruption by these mobile elements [Dwivedi et al. 2013].

Several host-like sequences are found in all four genomes. Each genome encodes

multiple host-like serine/threonine protein kinase genes (pham 39) with the excep-



115

tion of a single copy found in MaCRKS23. Additionally, each genome encodes a

single serine/threonine protein phosphatase gene (pham 24), although there was

not significant similarity to any host genes. This suggests these phages are capable

of modulating the phosphorylation state of host or other protein(s). For example,

phage T7 encodes a serine/threonine kinase which phosphorylates multiple host

proteins, while the lambdoid phage 933W expresses a kinase gene in response to

co-infection by phage HK97 [Gone and Nicholson 2012; Robertson 2011]. However,

the advantages to carrying these genes is not known.

The nblA gene is found in all genomes, although these sequences can diverge

as shown previously [Ou et al. 2015a; Nakamura et al. 2014]. Aligning them re-

veals that the Ma-LMM01 and MaCRKS23 copies are most similar, since they

both contain similar fourteen-residue N-terminal extensions relative to the copies

in MaMV-DC and MaSF12 (Figure 4.5). Ou et al. showed that gene expression

of nblA in MaMV-DC is associated with reduced phycocyanin levels during phage

maturation and release in vivo [Ou et al. 2015a]. They suggest this is to recycle

the abundant host phycobilisome proteins to create amino acid supplies neces-

sary for phage growth. Others have suggested the nblA gene increases rates of

photosynthesis by preventing absorption of excess light energy (and therefore pho-

toinhibition) through phycobilisome degradation [Yoshida-Takashima et al. 2012;

Honda et al. 2014]. The presence of this gene in all genomes suggests it is an

important component driving successful infection of Microcystis.

Both a putative chitinase and chitin-binding protein are found in each of these

genomes. Previous characterization of chitinase genes suggests there is structural
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similarity with chitinase sequences in plants and lysozymes in phages [Holm and

Sander 1994]. Furthermore, overexpression in E. coli of a putative chitinase from

a Ralstonia myovirus revealed lytic-like activity in which rod-shaped cells became

round and aggregated [Yamada et al. 2010]. This may suggest the putative chiti-

nase sequences in these genomes provide lytic activities for these phages.

Additionally, all genomes carry a Cas4-like nuclease-encoding gene. Cas4-

like genes have been identified in Campylobacter phages, and previous work by

Hooton and Connerton identified that infection with these phages led to increased

host-derived spacer acquisition [Hooton and Connerton 2015]. This may act as a

phage-driven form of autoimmune activation, whereby host CRISPR-Cas activity

is diverted towards host DNA degradation, and not phage [Hooton et al. 2016].

Other conserved genes include a putative L-lysine 6-monooxygenase gene and the

phosphate-starvation gene phoH that is commonly found in marine cyanophages.

4.3.4.2 Variable genes

Several gene clusters with annotated functions are present in some, but not all

of these genomes. A putative host-like pentapeptide repeat protein (pham 31)

is present in MaCRKS23, MaSF12, and is present in two copies in MaMV-DC.

Pentapeptide-repeat proteins in cyanobacteria have a variety of functions, includ-

ing heterocyst maturation and differentiation [Black et al. 1995; Liu et al. 2002],

and manganese uptake [Chandler et al. 2003].

There are six putative transposase gene clusters found throughout these four
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genomes. Three are unique to single genomes (phams 165, 194, and 213), while

others are in two or three genomes (phams 123, 164, and 195). These genomes

carry between one and five putative transposase genes, with MaSF12 carrying the

greatest number. All transposase sequences are similar to putative transposases in

Microcystis genomes, indicating that phage-encoded transposases are often shut-

tled between cells by these phages.

Three genomes contain putative antitoxin genes. MaCRKS23 uniquely car-

ries a putative higA antitoxin (pham 235), while MaMV-DC and MaSF12 both

carry an XRE family antitoxin (pham 33). Some instances have been shown where

toxin-antitoxin (TA) systems in bacteria can protect against phage infection. For

example, TA systems can function as abortive infection (Abi) systems which in-

crease time to phage maturation and diminish burst size [Pecota and Wood 1996],

probably due to skewed toxin:antitoxin ratios following phage-altered translational

levels [Fineran et al. 2009; Koga et al. 2011]. To counteract this, phage can carry

antitoxin-mimicking genes that protect against Abi systems. For example, phage

T4 encodes a broadly effective antitoxin which protects against multiple toxins

[Otsuka and Yonesaki 2012].

Both MaMV-DC and MaCRKS23 contain putative selenoprotein O homologs

(pham 13), which share 97% amino acid identity with the identically-annotated

protein sequence from Microcystis panniformis FACHB-1757. Selenoproteins can

provide antioxidative functions, which may be beneficial for infecting photosyn-

thetic organisms. Orthologues of this protein are found in many different bacterial

and eukaryotic genomes, and recent work identified these proteins engaging in re-
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dox reactions with unknown proteins in mammalian cell mitochondria [Han et al.

2014]. Additionally, they may also be protein kinases [Lenart and Paw lowski 2013].

If true, it’s possible these proteins play a role in intracellular signaling associated

with photosynthesis-induced ROS build-up. Furthermore, others have suggested

that phages may promote host resistance to oxidative stress by increasing produc-

tion of host-encoded selenoproteins [Szemes et al. 2012].

4.3.5 Environmental metagenome search and time-series compar-

isons

To further assess the geographic distribution of this virus, we searched through 50

metagenomes from freshwater environments in the MG-RAST, SRA, and IMG

databases by mapping reads, but were unable to identify samples with reads

mapped to Ma-LMM01-like genomes. We also searched through 62 freshwater

metagenomes collected by our laboratory. We only identified consistent, ≥20x

coverage in three metagenomes from Cheney Reservoir, KS, USA. These sam-

ples (CRKS24, CRKS25, CRKS27) are derived from the same environment and

sampling site as the completed MaCRKS23 genome. Additionally, these samples,

starting with CRKS23, are part of a time-series with two week intervals in-between

(July 8, 2013 to August 19, 2013). While phage CRKS23 was present throughout

the 6-week period in summer 2013, we did not identify reads associated with these

phage genomes in samples from the following year (February 19,2014 - December

16, 2014; 26 samples), suggesting these phages are not consistently abundant from
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year-to-year. As a result, we have identified a 6-week-long period where this phage

is present in this system, indicating the persistence of infection in this environment

during this time.

Further, we assembled portions of these genomes from each time point and

compared to each other to better understand genomic variants and population

dynamics in the environment. We employed read-mapping to identify regions

of low coverage, indicating which segments of the genome may have significant

changes, and then compared across genome assemblies.

In comparing read-mapping and assemblies in the time series, we identified gene

insertion/deletions and sequence divergence in certain genes (Table 4.4). These

genes were primarily annotated as hypothetical proteins. Of the eight gene inser-

tions identified, three of the best hits are to genes found in MaMV-DC. The others

include transposases with best hits to Microcystis and Oscillatoria genes, and a

lysine-tRNA gene, while the remainder had no significantly similar sequences in

the nr database.

In particular, one annotated gene that is different in sequence composition

between the time-series assemblies is a putative tail collar domain protein (Fig.

4.6). We calculated pairwise dN/dS ratios of the tail collar gene annotated from

each time point (Table 4.5). For comparison, we also calculated dN/dS for the

major capsid gene, which is expected to be highly conserved. The average pairwise

dN/dS ratio is much higher for the tail collar gene compared with the major capsid

gene pairwise dN/dS ratio (1.0912 vs. 0.04945, respectively). However, the range

of dN/dS values for each gene comparison is notably different (0.5213-1.6975 for
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the tail collar gene, 0.001-0.1131 for the major capsid gene). Additionally, there is

a significant difference in the ratio of non-synonymous to synonymous mutations

between these genes (Fisher’s exact test, p-value = 2.2e-16). These results indicate

the capsid gene is under strong purifying selection. On the other hand, selective

pressures on the tail collar gene may vary over time, as indicated by the range

in dN/dS values from pairwise comparisons, but overall are neutral or slightly

positive.

4.4 Discussion

4.4.1 Novel genomes add to undersampled freshwater cyanophage

genomes

Including these novel genomes, only eleven freshwater cyanophage genomes have

been sequenced to date, indicating the potential for future research. These four

are currently the only sequenced Microcystis-infecting phage genomes available.

In comparison to mycobacteriophages, which are the most well-sampled group of

sequenced phage genomes available [Hatfull 2010], these four Microcystis phages

are in the upper end ( 94%) of genome similarity based on ANI values in com-

parison with clustered mycobacteriophage genomes from geographically distant

isolation sites [Pope et al. 2011]. Notably, these genomes also come from geograph-

ically distributed environments (East Asia and North America). The similarity in

these genomes suggests this is a successful phage group that is broadly capable
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of infecting Microcystis strains across the world. Comparisons of new freshwa-

ter cyanophages with the similarities within the Ma-LMM01-like group may con-

tribute to our understanding of the forces affecting the evolution of freshwater

cyanophages, and may help identify new, globally distributed phage archetypes

infecting bloom-forming freshwater cyanobacteria.

A search through environmental metagenomes yielded positive hits for Ma-

LMM01-like viruses in the Cheney Reservoir in several samples following the July

8, 2013 sample. Our search also included metagenomes from the 2014 year during

a Microcystis bloom. In these metagenomes, we did not detect read-coverage for

the Ma-LMM01-like viruses. This suggests that the virus is either not present

in the population at this time, or is present at such a low level so as not to be

detected by shotgun sequencing. Previous work by Kimura et al. employed QPCR

to track abundance of Ma-LMM01 and Microcystis cells in Hirosawanoike Pond,

Japan [Kimura et al. 2012]. Their results suggest that Ma-LMM01 abundance

is variable, but it persists across a seven-month time span in this environment.

Other studies have also shown the presence of Ma-LMM01-like DNA sequences

in freshwater samples in Lake Ontario, Canada and Sulejow Reservoir, Poland

[Mankiewicz-Boczek et al. 2016; Rozon and Short 2013]. The same may be true

in Cheney Reservoir across these two sampling seasons, where the 2013 season

harbored more abundant, detectable phage numbers than the 2014 season.
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4.4.2 Conserved and variable genes inform about consistency and

differences in lifestyle

The novel genomes presented here are similar to previously-sequenced Microcystis

phages (Ma-LMM01 and MaMV-DC) (Figure 4.4, Table 4.2). In total, there are

124 gene clusters in these four genomes, about 52% of which were identified in all

four strains. Clusters found in all four strains, on average, make up 65% of the

number of predicted ORFs in each genome. As a result, as much as a third of

the ORFs in any given Ma-LMM01-like genome are part of the ”shell” genome for

these strains. The percent of conserved phams across the four strains is relatively

small in comparison with mycobacteriophage clusters with a similar number of

sequenced genomes [Hatfull et al. 2010], some of which are clustered at much

lower ANI (as low as 54%) compared with the Microcystis phages analyzed here.

These 124 conserved gene phamilies may then represent the core or essential gene

content for this globally distributed group of phages, and inform about processes

necessary for this group to infect Microcystis. The remaining 48% of non-conserved

gene phamilies may represent genes in a state of flux, that are gained or lost within

or between populations. Many of these genes are small ORFans, which are part of

hyperplastic regions of the genome [Comeau et al. 2007].

Putatively essential genes consist of structural- and recombination-associated

genes. They also include host-like genes such as nblA and phoH, suggesting that

regulating cellular phosophate uptake and phycobilisome degradation are impor-

tant, if not essential, for successful infection. Marine cyanophage replication is
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strongly affected by diurnal cycles [Lindell et al. 2005], and Kimura et al. showed

that Ma-LMM01 gp91 copy numbers in the environment increased between 6 to 9

hours after dawn [Kimura et al. 2012], which is similar to the latent period in cul-

ture (6 to 12 hours) [Yoshida et al. 2006]. Also, transcript analysis of Ma-LMM01

infection in culture by Honda et al. revealed the upregulation of stress-induced

genes involved in protecting the photosynthetic apparatus [Honda et al. 2014]. Al-

ternatively, nblA may provide recycled amino acids for phage growth [Ou et al.

2015a]. It’s possible these genes could provide both functions during infection,

although further work is necessary to determine if this is the case.

Additionally, a Cas4-encoding gene is conserved in these four strains, similar to

Campylobacter phages [Hooton and Connerton 2015]. Microcystis genomes con-

sistently harbor CRISPR-Cas gene arrays, and many carry the Type I-D system

which requires the Cas4 protein [Yang et al. 2015]. While CRISPR protospacer

mutations have been shown in Ma-LMM01-like viruses [Kimura et al. 2013], alter-

native mechanisms may be necessary for phages to infect Microcystis strains which

encode diverse CRISPR systems [Kuno et al. 2012]. Infection of Campylobacter

with a phage encoding a cas4 -like gene led to increased acquisition of host-like

spacer sequences in the host CRISPR [Hooton and Connerton 2015]. The role of

this during phage infection is unknown, but it may act as an alternative CRISPR

escape mechanism [Hooton et al. 2016]. Although host-derived CRISPR spacers

may control gene expression, this is unlikely since Ma-LMM01 has experimentally

been shown to alter the expression of few host genes during infection [Honda et al.

2014].
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Additionally, all genomes analyzed contain putative prophage antirepressor

genes, and closer inspection of these genes using HHPRED further supported these

annotations. Antirepressor proteins play a role in prophage induction, which may

indicate that these phages exhibit a temperate lifestyle [Lemire et al. 2011]. How-

ever, this is the only lysogeny-related gene found in these genomes (the previously-

annotated site-specific integrase in Ma-LMM01 is actually more similar to a trans-

posase). Also, these phages have not shown any evidence of lysogeny in vivo.

Further experiments are needed to verify the function of these genes.

Phams found in three or fewer genomes consist of the shell genome of this phage

group. Genes in this group include host-like toxin antidote genes, a pentapeptide

repeat gene, and a selenoprotein. These genes may provide benefits for infect-

ing certain Microcystis strains, perhaps for escaping strain-specific TA systems

or protecting against excess oxidative damage from Microcystis strains found in

high-light environments. As a result, these genes may be under variable selection

based on environment-specific host strain differences.

4.4.3 Ma-LMM01-like phages in the environment show evidence of

gene gain, loss, and divergence

The Ma-LMM01-like phages identified in the Cheney Reservoir time-series carry

differences in their respective genomes at each time point. These differences may be

due to existing variation in the population. Alternatively, these differences may be

due to mutations occurring in the time between each sampling. Phage genomes are
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known to be mosaic, and are susceptible to gene gain, loss, and swapping through

HGT events [Sullivan et al. 2006; Hatfull et al. 2010]. Here, we identified variable

presence or absence of some genes over the time-series that were most closely-

related to genes found in Ma-LMM01 or MaMV-DC. In particular, genes newly

present in later time points may indicate their persistence in a common genetic

pool that spans different environments, and is made available to phage genomes

through frequent HGT events. In turn, this could support the idea of a large

common genetic pool available to all dsDNA phage genomes proposed by Hendrix

et al. [Hendrix et al. 1999]. Additionally, genes that appear and later disappear in

these genomes (Table 4.4, CRKS24 00035-00036, CRKS24 00043, CRKS27 00014-

00015) may indicate these genes persist at some level in the phage population over

this time span.

There are also patterns of divergence in some genes between these samples.

Notably, the tail collar-encoding gene seems to be under positive selection in stark

contrast to the major capsid gene (Fig. 4.6). Phage tail collar proteins act as

environmental sensors that bind to tail fibers to sequester them from binding host

receptors until certain conditions (pH, ionic strength) are reached [Conley and

Wood 1975]. An alignment of tail collar genes from the Cheney time-series indi-

cates that most variation occurs in the C-terminal sequence. Previous structural

studies of the T4 phage neck indicate the N-terminus of tail collar genes associate

with the phage head, while residues closer to the C-terminus interact with the tail

fibers [Fokine et al. 2013]. The variation in this gene may then be due to neu-

tral or positive selection at segments of the gene encoding the protein C-terminus.
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Tail fiber proteins allow tailed phages to bind to host cell receptors [Duplessis and

Moineau 2001; Heller 1984; Rakhuba et al. 2010], and these genes tend be variable

relative to host range [Tetart et al. 1998]. If so, positive selection in tail collar genes

could allow co-evolution of the tail fiber and tail collar genes so phages retain ad-

equate control over infection. This could protect untimely activation of the phage

injection machinery from particulate matter in the environment. These variants

may co-exist in the population, or arise during the observed sampling period. Re-

gardless, genotype dominance may change over time depending on selective forces,

similar to previous reports of the Ma-LMM01 tail sheath gene [Kimura et al. 2013;

Mankiewicz-Boczek et al. 2016]. As a result, the tail collar gene in these Ma-

LMM01-like phages may be integral to the co-evolutionary ”arms race” between

these viruses and their hosts [Hall et al. 2011].

4.5 Conclusions

Here we present two novel genomes that are very similar to previously characterized

and sequenced Microcystis phage genomes. Together, these Microcystis phages

comprise a globally distributed group of viruses with a similar genomic archetype.

These genomes encode a variety of genes to escape host defenses. While some

are conserved, others are variable, suggesting that certain genes may provide an

advantage for infecting particular strains of Microcystis. In a single environment

over a short time-period, some gene content varies relative to the MaCRKS23

genome. In addition, selective pressures on different structural genes are variable,
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indicating genes encoding components of the virion structure are more susceptible

to mutation than others.
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Genome Ma-LMM01 MaMV-DC MaCRKS23 MaSF12
Ma-LMM01 100 97.02 94.12 94.06
MaMV-DC 97.04 100 93.38 94.24
MaCRKS23 94.18 93.92 100 92.61
MaSF12 94.23 94.3 92.6 100

Table 4.2: Pairwise ANI calculations for Ma-LMM01-like phages.
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Ma-LMM01

MaCRKS23
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Figure 4.1: Phamerator-generated genome maps of Ma-LMM01 phage strains
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Figure 4.2: Circular genome plot of MaCRKS23. Outermost, black circle rep-
resents the genome, with outside marks showing forward orientation ORFs, and
inside marks showing reverse orientation ORFs. Grey marks are coding sequences
with no known function, while yellow marks show sequences with replication func-
tion, green marks sequences encoding virion structural components, and blue marks
sequences indicative of viral lifestyle. Further towards the center, red marks show
tRNA-encoding sequences. The next circle shows GC% of genome regions relative
to the average GC%.
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Figure 4.3: Circular genome plot of MaSF12. Each circle is as described in the
Figure 4.2 caption.
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Figure 4.4: TerL phylogeny of freshwater and some marine cyanophages relative to
the newly sequenced MaSF12 and MaCRKS23 phages. Bolded genome labels are
freshwater cyanophages. Grey boxes indicate phages classified as either T4-like or
T7-like.
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Figure 4.6: MUSCLE alignment of tail collar protein sequences assembled from
Cheney time series. Colors indicate similarities based on amino acid sequence and
properties.
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Chapter 5 Conclusion

The work presented in this dissertation analyzes the genomics of freshwater bloom-

forming cyanobacteria, as well as associated heterotrophic bacteria and viruses.

Second- and third-generation sequencing technologies were employed to generate

novel genomic sequences that were subsequently compared to increase understand-

ing of microbes in freshwater bloom habitats.

Three novel heterotrophic bacterial genomes, Hyphomonadaceae UKL13-1, Be-

taproteobacterium UKL13-2, and Bacteroidetes UKL13-3 were assembled from a

long-read shotgun metagenome derived from a non-axenic Aphanizomenon flos-

aquae culture grown in medium without nitrogen. The presence of an ammonium

transporter gene, amtB, in Hyphomonadaceae UKL13-1 and Betaproteobacterium

UKL13-2 suggests these bacteria are obtaining fixed nitrogen from Aphanizomenon

flos-aquae, which likely releases fixed nitrogen in the form of ammonium, similar

to previous reports [Ploug et al. 2010]. Based on gene content, Hyphomonadaceae

UKL13-1 and Betaproteobacterium UKL13-2 both contain the genes necessary

for aerobic anoxygenic photosynthesis, but not RuBisCO, which indicates their

mixotrophic lifestyle.

Nine novel genomes from strains in the Nostocaceae family were sequenced and

assembled to draft quality by our lab and Gregory Dick’s lab at the University

of Michigan. The relationships of these novel strains to all other sequenced Nos-
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tocaceae genomes indicates that eight of these nine strains belong to one large

clade. This clade is named the AAD clade because it consists entirely of glob-

ally distributed, bloom-forming Anabaena, Aphanizomenon, and Dolichospermum

strains. Also, this clade separates into four separate groups of closely-related

strains, and these groups have unique gene signatures relative to the remainder of

the AAD clade involved in amino acid transport and retention, alternative nitro-

gen metabolism, and CRISPR-mediated defense. The novel genomes do not carry

toxin synthesis genes, although Anabaena CRKS33 does contain genes for synthe-

sis of the taste-and-odor compound geosmin. The distribution of toxin synthesis

genes throughout the Nostocaceae family is scattered, and five separate toxin syn-

thesis gene clusters are found in eight of the genomes. This indicates the lack of

any pattern of descent for these toxin synthesis clusters as seen by others [Stucken

et al. 2010; Jiang et al. 2012], and raises the questions of how these genes are

retained or obtained by these strains, as well as what advantages are conferred by

the production of each toxin.

Finally, two novel phage strains similar to the Microcystis phages Ma-LMM01

and MaMV-DC were assembled directly from environmental short-read shotgun

metagenomes. These strains are part of a globally distributed Microcystis phage

genome archetype, perhaps indicating their success infecting Microcystis strains

worldwide. Comparison of these genomes indicates that host-like nblA and phoH

genes are conserved, while genes putatively involved in escaping host defenses

can be more variable (a Cas4-encoding gene is conserved across all genomes, while

antitoxin genes are not). Comparison of fragmented genomes from an environmen-
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tal metagenomic time-series revealed the presence of certain genes were variable.

Also, the sequence encoding the tail collar gene, which encodes a structural compo-

nent that sequesters the receptor-binding protein to control initiation of infection

[Conley and Wood 1975; Fokine et al. 2013], was variable across this time-series.

Together, these results suggest the existence of variation in the phage population,

and raises the possibility of succession events where particular genomic variants

may become fixed or dominant in the population over short time-spans.

The techniques employed throughout this work include long-read metagenomic

sequencing as well as assembling and binning genomes from short-read environ-

mental shotgun metagenomes. Several of the genomes analyzed were binned or

completely assembled from environmental short-read shotgun metagenomes, in-

cluding five draft-quality cyanobacterial genomes and two complete cyanophage

genomes. This was possible due to novel techniques for parsing DNA sequencing

data from complex microbial communities which have become available over the

last decade. As a result, culturing these strains was not necessary. Additionally,

since culturing bacteria can lead to genomic evolution, genomes extracted directly

from environmental sequencing data are in their natural state.

If possible, completely assembling genomes obviates the need for binning frag-

mented genomes and assessing contamination. The three novel heterotrophic bac-

teria associated with Aphanizomenon flos-aquae were sequenced and assembled

from a single mixed community culture with long reads alone. Since long-read se-

quencing is much lower-throughput than short-read sequencers, assembling these

genomes was possible due to the low diversity of the culture. As a result, long-
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read sequencing of relatively non-diverse communities towards assembling complete

genomes is possible, and may become more feasible as the comparative depth of

long-read sequencers increases.

This body of work includes advances in understanding the genomics of bloom-

forming cyanobacteria and their associated organisms through applying current

analytical techniques. Altogether, this lays the groundwork for genomics-based

methods by which cyanobacterial blooms may be studied to better understand

factors driving bloom formation and collapse.
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Chapter 6 Contributions from authors

6.1 Chapter 2: Towards long-read metagenomics: complete assem-

bly of three novel genomes from bacteria dependent on a dia-

zotrophic cyanobacterium in a freshwater lake co-culture

Connor B. Driscoll and Theo W. Dreher conceived and designed the experimental

plan, and wrote the manuscript with input from other authors. Connor B. Driscoll

conducted most of the experiments and bioinformatic analyses. Timothy G. Otten

initiated sequenced cultures, and provided extracted DNA for Illumina sequencing.

Nathan M. Brown provided some data analysis scripts.

6.2 Chapter 3: Nine novel Anabaena and Aphanizomenon genome

sequences reveals the existence of a closely-related clade of glob-

ally distributed, bloom-forming cyanobacteria within the Nos-

tocaceae family

Connor B. Driscoll and Theo W. Dreher conceived and designed the experimen-

tal plan, with input from the remaining authors. Connor B. Driscoll conducted

most of the experiments. Connor B. Driscoll and Theo W. Dreher wrote the
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manuscript. Connor B. Driscoll, Nathan M. Brown, and Gregory J. Dick provided

genome sequences for analysis. Timothy G. Otten performed DNA extractions and

assembled metagenomes. Kevin Meyer performed core- and pan-genome analyses,

and provided gene clusters. Yanbin Yin conducted secondary metabolite analysis.

Zachary C. Landry performed phylogenomic analysis.

6.3 Chapter 4: Genome sequencing of two novel Ma-LMM01-like

strains reveals patterns of conservation and divergence in a glob-

ally distributed Microcystis phage type

Connor B. Driscoll and Theo W. Dreher conceived and designed the experimental

plan. Connor B. Driscoll conducted most of the experiments. Timothy G. Otten

performed DNA extractions and arranged DNA metagenome datasets. Connor

B. Driscoll performed bioinformatic analyses. Connor B. Driscoll and Theo W.

Dreher wrote the manuscript.
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and Glöckner, F. O. (2012). The SILVA ribosomal RNA gene database project:
improved data processing and web-based tools. Nucleic Acids Research, page
gks1219.

Rainey, F. A., Ward-Rainey, N. L., Janssen, P. H., Hippe, H., and Stackebrandt, E.
(1996). Clostridium paradoxum DSM 7308T contains multiple 16S rRNA genes
with heterogeneous intervening sequences. Microbiology, 142 ( Pt 8):2087–2095.

Rajaniemi, P., Hrouzek, P., Kastovska, K., Willame, R., Rantala, A., Hoffmann,
L., Komarek, J., and Sivonen, K. (2005). Phylogenetic and morphological eval-
uation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nos-
tocales, Cyanobacteria). International Journal of Systematic and Evolutionary
Microbiology, 55(Pt 1):11–26.

Rakhuba, D., Kolomiets, E., Dey, E. S., and Novik, G. (2010). Bacteriophage
receptors, mechanisms of phage adsorption and penetration into host cell. Polish
Journal of Microbiology, 59(3):145–155.

Ran, L., Huang, F., Ekman, M., Klint, J., and Bergman, B. (2007). Proteomic
analyses of the photoauto-and diazotrophically grown cyanobacterium Nostoc
sp. PCC 73102. Microbiology, 153(2):608–618.

Ran, L., Larsson, J., Vigil-Stenman, T., Nylander, J. A., Ininbergs, K., Zheng, W.-
W., Lapidus, A., Lowry, S., Haselkorn, R., and Bergman, B. (2010). Genome
erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular
cyanobacterium. PLoS One, 5(7):e11486.



169

Rattray, J. E., van de Vossenberg, J., Jaeschke, A., Hopmans, E. C., Wakeham,
S. G., Lavik, G., Kuypers, M. M., Strous, M., Jetten, M. S., Schouten, S.,
et al. (2010). Impact of temperature on ladderane lipid distribution in anammox
bacteria. Applied and Environmental Microbiology, 76(5):1596–1603.

Robbertse, B., Yoder, R. J., Boyd, A., Reeves, J., and Spatafora, J. W. (2011).
Hal: an automated pipeline for phylogenetic analyses of genomic data. PLoS
Currents Tree of Life.

Roberts, R. J., Vincze, T., Posfai, J., and Macelis, D. (2009). REBASEa database
for DNA restriction and modification: enzymes, genes and genomes. Nucleic
Acids Research, page gkp874.

Robertson, E. S. (2011). Survival of the fittest: a role for phage-encoded eukaryotic-
like kinases. Molecular Microbiology, 82(3):539–541.

Rodriguez-Valera, F., Martin-Cuadrado, A.-B., Rodriguez-Brito, B., Pašić, L.,
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Rzymski, P., Poniedzia lek, B., Kokociński, M., Jurczak, T., Lipski, D., and Wik-
torowicz, K. (2014). Interspecific allelopathy in cyanobacteria: Cylindrosper-
mopsin and Cylindrospermopsis raciborskii effect on the growth and metabolism
of Microcystis aeruginosa. Harmful Algae, 35:1–8.

Sakata, S., Mizusawa, N., Kubota-Kawai, H., Sakurai, I., and Wada, H. (2013).
Psb28 is involved in recovery of photosystem II at high temperature in Syne-
chocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA)-Bioenergetics,
1827(1):50–59.

Sambrook, J. and Russell, D. W. (2006). Purification of nucleic acids by extraction
with phenol: chloroform. Cold Spring Harbor Protocols, 2006(1):pdb–prot4455.

Sapp, J. (2005). The prokaryote-eukaryote dichotomy: meanings and mythology.
Microbiology and Molecular Biology Reviews, 69(2):292–305.
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