

AN ABSTRACT OF THE THESIS OF

Taylor M. Finley for the degree of Master of Science in Robotics presented on

December 5, 2014.

Title: A Shared-Autonomy Heavy-Lift Assistive Robot for Manufacturing.

Abstract approved:

__

William D. Smart

Automating pick-and-place operations for large steel castings in a foundry is

challenging, particularly from a perception point of view. Accurately estimating the

identity and orientation of a given part is an open and complex problem, especially if

that part sits in a bin of very similar parts. The problem is made worse when the

castings are made in small mixed batches, where many parts appear very similar from

a variety of viewpoints.

In this dissertation, we investigate automating the identification and pose estimation

of large steel castings in a realistic foundry setting. We look at both fully-automatic

and human-assisted techniques, and compare their effectiveness. We report the

results of testing our system with foundry workers, wearing full personal protective

equipment, in their everyday work environment. By using human guidance in our

system we were able to raise part recognition rates from 40% to 98%, and were able

to estimate the pose of parts to within a few degrees 86% of the time.

©Copyright by Taylor M. Finley

December 5, 2014

All Rights Reserved

A Shared-Autonomy Heavy-Lift Assistive Robot for Manufacturing

by

Taylor M. Finley

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented December 5, 2014

Commencement June 2015

Master of Science thesis of Taylor M. Finley presented on December 5, 2014

APPROVED:

Major Professor, representing Robotics

Head of the School of Mechanical, Industrial, and Manufacturing Engineering

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Taylor M. Finley, Author

ACKNOWLEDGEMENTS

I would like to thank my advisor, Bill Smart, for his guidance and support throughout

my time at Oregon State. He exposed me to different paths when it was needed, but

allowed me the freedom to explore things on my own. I would like to thank the

members of the Personal Robotics Lab at Oregon State for their help over the last two

years. It was a welcoming environment from day one and it was a pleasure to work

with everyone on a daily basis. I would also like to thank ESCO Corporation for

funding my program. Without their support, this would not have been possible. My

colleague, Ryan Carpenter, was also a pleasure to work with over the last two years.

Thanks, Ryan. Last, but for sure not least, I would like to thank my loving wife,

Megan. I would not have been able to accomplish this without her support and

understanding.

TABLE OF CONTENTS

1 Introduction .. 1

1.1 Current State and Motivation ... 1

1.2 Prior Work ... 5

1.2.1 Robot Operating System (ROS) ... 5

1.2.2 ROS-Industrial ... 6

1.2.3 Point Cloud Library (PCL) .. 7

1.3 Project Structure ... 8

2 Phase One – Fully Autonomous Pick and Place .. 9

2.1 Scope Definition and System Requirements .. 9

2.2 System Design.. 9

2.3 Part Recognition Testing .. 12

2.4 Part Recognition Results .. 15

2.5 Part Recognition Discussion .. 16

3 Phase Two – Shared Autonomy Heavy Helper .. 17

3.1 Shared Autonomy Investigation... 17

3.2 Scope Definition and System Requirements .. 18

3.3 System Design.. 19

3.4 User Study .. 28

3.5 User Study Results ... 33

3.6 User Study Results Discussion .. 44

3.7 Physical Testing ... 46

3.8 Physical Testing Results .. 48

3.9 Physical Testing Results Discussion .. 51

4 Conclusion and Future Study ... 52

5 Bibliography ... 55

6 Appendix .. 58

LIST OF FIGURES

Figure Page

Figure 1: Manual casting manipulation using an overhead crane while wearing

personal protective equipment .. 2

Figure 2: Heavy helper concept process ... 3

Figure 3: Calibration of the calibration rod .. 10

Figure 4: Camera testing setup ... 11

Figure 5: Sample of casting used for part recognition initial testing. From left to right:

U20S, U25S, U20C, U25C, U20P, and U25P. ... 13

Figure 6: Data capture setup using a Steinbichler structured light scanner 14

Figure 7: Example snapshots of 3D data for object recognition testing 14

Figure 8: System diagram ... 20

Figure 9: Camera calibration setup. Left – workcell configuration with Kinect located

above. Right – calibration plate attached directly to robot. .. 22

Figure 10: Example of the system user interface with a successful pose estimation

(text boxes not shown in system interface) ... 24

Figure 11: Example of the system user interface with an unsuccessful pose estimation

(text boxe not shown in system interface) .. 24

Figure 12: Workcell model in MoveIt .. 26

Figure 13: A good approach position ready for final approach 27

Figure 14: A good final position ready to close the gripper jaws 27

Figure 15: User study interface showing the scene on the right and the target part in

the upper left ... 29

Figure 16: Example image of the two isometric views shown to the user to establish

the target part .. 31

Figure 17: User part recognition results from 20 users totaling 800 part identifications

... 35

Figure 18: Data acquisition using a Kinect sensor for part recognition testing 36

LIST OF FIGURES (Continued)

Figure Page

Figure 19: VFH part recognition testing results using the top rated match 37

Figure 20: VFH part recognition testing results using the top 5 results 38

Figure 21: Part recognition summary results .. 38

Figure 22: An example of a failed recognition using the Hypothesis Verification for

3D Object Recognition ... 40

Figure 23: Input device speed performance results .. 41

Figure 24: Input device accuracy performance results ... 41

Figure 25: Pose estimation results from ICP using user data 42

Figure 26: Success rate of ICP score for part recognition .. 43

Figure 27: ICP fitness scores for successful or unsuccessful pose estimations (smaller

is better) .. 44

Figure 28: 3D printed lifting eye sample part for physical testing 47

Figure 29: Physical testing results of system using the Motoman MH5F robot of

solved IK solutions ... 49

Figure 30: A successful grasp during physical testing.. 49

Figure 31: A failed grasp caused by collision ... 50

Figure 32: A failed grasp after a collision .. 50

LIST OF TABLES

Table Page

Table 1: VFH results from initial part recognition testing. Grey cells represent a

correct match (higher is better). .. 16

Table 2: ESF results from initial part recognition testing. Grey cells represent a

correct match (higher is better) ... 16

Table 3: User part recognition results breakdown. Grey cells represent a correct

match (higher is better). .. 35

Table 4: VFH part recognition testing using top match results breakdown. Grey cells

represent a correct match (higher is better). .. 39

Table 5: VFH part recognition using top 5 results breakdown. Grey cells represent a

correct match (higher is better). .. 39

1

1 Introduction

1.1 Current State and Motivation

The foundry industry is labor intensive. The automation of labor-intensive

processes can increase safety and reduce the overall costs of production. However,

automation solutions are not typically feasible in a foundry process with low batch

sizes and a large product library being manufactured in a single production line. This

type of manufacturing environment causes automation flexibility challenges. The

traditional industrial robotics method of hard fixturing all parts is not possible with a

large product offering through a single production line. In many scenarios within a

foundry, the cost and tooling management does not make a robotic system financially

feasible [1].

The finishing process of steel castings is major source of both labor costs as

well as ergonomic issues. The physical manipulation of castings during the finishing

processes is a waste and an automation opportunity to increase both efficiency and

safety. The current finishing process uses an overhead crane to lift parts from a pallet

or tub onto a workbench as previously discussed. The casting is raised, manually

positioned over the table by pushing the hanging casting and then lowered onto the

workbench shown in Figure 1.

2

Figure 1: Manual casting manipulation using an overhead crane while wearing personal protective

equipment

The worker must position the casting in an ergonomic manner to perform their

task. This manual manipulation and casting setup often involves straps, wooden

blocks and wedges. The irregular shapes of the casting make this task a serious

ergonomic challenge and create a risk to hand injury. The castings are required to

have a single lifting eye if they weigh more than 40 lbs. The lifting eye is generally

located in line with the center of mass to allow for an orientation conducive for

installation by the end-user. However, this single lifting eye does not make it easy

when the worker needs to position the casting in multiple orientations on the

workbench. The worker needs to position the casting in different orientations to gain

ergonomic access to accomplish their task during the finishing process. A time study

of a few different parts showed that casting manipulation and repositioning accounted

for 45% of the pitch time for the finishing process. This is a significant waste.

3

A heavy-lift assistive robot will reduce this part manipulation waste. The

heavy-lift assistive robot concept is diagramed in Figure 2. The robot grasps the part

off of a pallet while the worker was outside of the work zone. In order to comply with

safety standards, the work zone uses an area scanner or light curtain to ensure the

worker is not in the work zone while the robot was moving. Then the robot presents

the part in an ergonomic and stable position for the worker. The worker then enters

the work zone, which triggers the robot into a safe and locked-out state. The worker

then performs their task. After the task is completed, the worker steps outside the

work zone and indicates to the robot to either change orientation or to place the

casting back on the pallet. The whole process is completed without the worker having

to manually manipulate the casting.

Figure 2: Heavy helper concept process

4

This heavy helper concept can be broken down into two systems. There is a

pick and place system integrated with a work-holder system. The work-holder system

can be accomplished with the industrial robot controller. Additional features such as

customizable ergonomic settings per worker could be added with off-the-shelf

solutions. The pick and place system is more difficult. New sensor technology is

allowing for industrial robots to be intelligent and sense their environment. In some

cases, this allows for the elimination of fixturing by implementing the necessary

feedback into a closed-looped system. This feedback is typically derived from of a

2D or 3D camera with computer vision programmed into the system for decision

making. The task of picking up a part in a batch or randomly oriented parts is known

as bin-picking. Bin-picking with industrial robots is a challenge many researchers are

developing solutions for [2]–[4]. Off-the-shelf solutions are available, but are

expensive and require extensive engineering programming time for each part [5]. A

large product library makes this option less attractive. Also, it restricts the scope of

the heavy helper concept to the functionality of off-the-shelf solution.

A custom solution allows for an unrestricted scope but can be technically

challenging or even unachievable. A good option for a custom solution is to use open

source tools to shorten the project timeline. Often open source solutions are state of

art technology that require little to no research and development cost. This option

shifts the project workload to the research and development of extending technology

rather than recreating it. We aimed our research efforts at an open source solution for

a pick and place system that would have the intelligence to adapt to low batch sizes

5

and a large product library [6]. We were able to identify open source tools for robot

hardware control as well as and integrated robot perception solution.

1.2 Prior Work

1.2.1 Robot Operating System (ROS)

The Robot Operating System (ROS)[7] is an open source software framework

for programming and operating robots. It has grown into the standard for robot

research and development within the community of researchers. The open source

development process was well thought out when the framework was established. It is

a powerful communication protocol of topics and message that are communicated

between ROS programs through a central core allows for modularity in the use of

different robotic subsystems. For instance, one developer can quickly reuse a

package written by another developer by identifying the communication topic. Others

have attempted to establish a standard operating system for robots, but ROS

ultimately prevailed as the dominant standard [7]–[9].

ROS was originally named Switchyard when it was developed by Morgan

Quigley at Stanford University in the Stanford Artificial Intelligence Laboratory.

Swtichyard was later renamed ROS at Willow Garage and the first official release

was in 2010. In 2013, ROS found a stable home at the Open Source Robotics

Foundation (OSRF) [7].

Within an hour a new user can install and configure ROS on a Linux platform.

A few minutes after that they can be teleoperating a simulated robot with the help of

online tutorials. That same teleoperation program that is used to control a simulated

robot can later be used to control a physical robot. ROS can be used for all different

6

types of robots. It doesn’t matter the shape, size, number of arms, legs, wheels, or

sensors. ROS is a very capable platform which led us to investigating its capabilities

with industrial robots.

1.2.2 ROS-Industrial

The team at Southwest Research Institute (SWRI) in San Antonio, Texas

recognized the power of ROS and decided to extend this capability to industrial

robots. Industrial robot manufacturers have typically locked down their controllers to

keep their functionality and communication proprietary. However, the team at SWRI

convinced the robot original equipment manufacturers (OEM) that the benefit of

opening their controllers up to communication to ROS would be beneficial to their

bottom line. In exchange for opening their controllers, the OEM would essentially be

receiving free R&D for their products and extending their market by adding optional

functionality to their products [10].

Industrial robot controllers are a black box of proprietary hardware and

software. This subset of ROS by SWRI became known as ROS-Industrial. It aimed to

open this black box, or at least bypass it after getting the approval from the robot

OEM. ROS-Industrial turned the black box controller into a slave and gave control of

the robot to a computer running ROS. By using the backbone of ROS, ROS-Industrial

was built on a well-established base. It was able to utilize the robust architecture and

program availability that is being actively developed by the ROS community.

ROS-Industrial aims to tackle problems that are seen in real production

environments. In order to accomplish this, they are working to partner with

companies in industry in a manner that allows them to collaborate and solve actual

7

issues such as cast part material handling [11]. These partnerships formed into

consortium of research institutes and industrial companies working with ROS-

Industrial. The consortium serves as a steering committee as well as a research

partnership opportunity for many of its members [7].

1.2.3 Point Cloud Library (PCL)

The Point Cloud Library (PCL) is an open source toolkit for processing 3D

point clouds that is well integrated with ROS. The toolkit “contains state-of-the art

algorithms for: filtering, feature estimation, surface reconstruction, registration,

model filtering and segmentation” [12]. The PCL object recognition pipeline is a

powerful set of algorithms to sense and determine the world using 3D point clouds:

keypoint detection, feature extraction, descriptor matching, correspondence grouping,

pose estimation, pose refinement, and hypothesis verification [13]. This recognition

pipeline is supported through online tutorials and forums. It gives the user the ability

to trial different configurations and test which one works best with their scenario. For

instance, their global recognition framework program is preprogrammed to use

different classification algorithms for its feature extraction: ensemble of shape

functions descriptor and the viewpoint feature histogram descriptor.

The viewpoint feature histogram (VFH) is a descriptor that uses a histogram

to describe the set of angles between the point cloud cluster's centroid and the normal

estimated for each point. The method is able to describe a point cloud using 308 bins

in a histogram [14]. This allows for the classification to be much less computationally

expensive when using this descriptor to classify a point cloud.

8

The ensemble of shape functions (ESF) is another descriptor used by the

global recognition framework program. It also uses a histogram as a descriptor. The

64-bin histogram consists of angle, point distance, and area shape functions values

that used to describe the point cloud. Unlike VFH, the descriptor does not require

preprocessing, such as normal estimation [15].

1.3 Project Structure

Our project was conducted in two phases. The initial phase focused on a fully

autonomous solution for a pick and place operation. It relied on the success of a part

recognition and six degree of freedom pose estimation program. After testing, we

determined that this recognition program was not reliable enough to meet our needs.

This led us to our second phase, which focused on a shared autonomy approach to a

pick and place operation. The approach incorporates the worker into the system as a

key component to one or more tasks in a semi-autonomous system. In this phase, we

developed a system with the worker integrated in the decision making process of part

and pose recognition. We designed, conducted and analyzed a user study to test the

functionality and intuitive design of the system. We then performed physical testing

with an industrial robot. This paper will discuss both of these phases of the project

and close with project conclusions and future work suggestions.

9

2 Phase One – Fully Autonomous Pick and Place

2.1 Scope Definition and System Requirements

The initial system design started with a scope definition. The scope was

focused on the automated pick and place task for the heavy helper concept as depicted

previously in Figure 2. An operator was available to troubleshoot the system if the

system encountered an error, but the system was designed to be fully autonomous.

The end of arm tooling for the robot was not a part of the scope. The system

requirements for this scope were as follows:

1. Determine the identity of steel castings on a pallet.

2. Estimate the pose of the identified casting.

3. Execute a grasp plan with an industrial robot.

4. Provide a human intervention interface for error troubleshooting.

2.2 System Design

The system was designed to use ROS as its backbone. The ROS-Industrial

packages allowed for the external control of the industrial robot. Open Natural

Interaction (OpenNI) was a non-profit organization that established a framework for

communication with open source devices. Using an OpenNI-compliant device for our

system allowed point clouds to be easily captured and processed with standard

programs within ROS. There were two OpenNI-compliant devices that were readily

available: the Microsoft XBOX Kinect and the Primesense Carmine 1.08 [16]. We

performed an accuracy test to determine the proper camera for our system. We

created a calibration tool using two spherical balls at the end of a carbon fiber rod

(Figure 3).

10

Figure 3: Calibration of the calibration rod

We measured the rod with a coordinate measuring machine to confirm its roundness

as well as determine the exact distance between spheres. We then used our test robot

to position the spheres in various locations within the working area of the robot

(Figure 4).

11

Figure 4: Camera testing setup

For each position we measured the distance between the spheres using the

different cameras. The measurements were performed by using a color segmentation

algorithm to create two clusters. The color segmentation process is similar to a

passthrough filter. Each point in the point cloud has not only has 3 values for its

position (X,Y,Z), it also has a 3 values for its color (R,G,B). We adjusted the filter to

allow for a range color values that were captured on the red spheres. We then used the

RANSAC [17] sphere shape detection to determine the locations. The RANSAC

algorithm randomly selected 3 points in the point cloud and constructs a sphere. It

then determined how many points fall within a range of that sphere. For each cluster,

we used 500 iterations within the algorithm to identify the best fit sphere [17]. We

12

determined that both cameras had an equal accuracy of ±1.8mm when determining

the location of two objects within the work envelope of our workcell. Shortly after the

test, the manufacturer of the Primesense Carmine stopped manufacturing the sensor.

We decided to move forward with the Microsoft XBOX Kinect for its popularity and

support within the open source community [16], [18].

The PCL 3D object recognition framework was chosen to use as a guide for

the part recognition and pose estimation subsystems. The PCL framework nicely

integrated with standard ROS programs [7]. RVIZ, a visualization tool of ROS, was

selected as the operator interface for troubleshooting [19]. The PCL recognition

framework gave us the ability to test both VHF and ESF classification as previously

discussed [20].

As the part recognition program was being created, it was tested using sample

castings. The initial results were not impressive. We wanted to investigate the part

recognition performance in a scientific manner before proceeding with building the

system. We did not want to build a system that relied on the part recognition, only to

have it fail after the entire system was completed.

2.3 Part Recognition Testing

The primary goal of the initial testing was to determine if the object

recognition solutions provided by PCL were capable of properly identifying a set of

castings. To make the identification challenging and as real as possible, 6 castings

were chosen from the same part family. This meant that the parts were of similar

shape and size. Specifically, 3 part shapes and 2 sizes were chosen to determine if

size, shape or both could cause issues in the part recognition. The back half of each

13

shape is similar and the size varies between 229 mm long on the largest to 176 mm

long on the smallest (Figure 5).

Figure 5: Sample of casting used for part recognition initial testing. From left to right: U20S, U25S, U20C,

U25C, U20P, and U25P.

To eliminate the accuracy of the 3D camera as a factor in the performance of

the system, a more accurate camera was used to gather data. Point clouds of each

casting were obtained using a Steinbichler structured light scanner. Its accuracy is

approximately ±0.02 mm which is around 100 times more accurate than the proposed

scanner, the Microsoft XBOX Kinect. The castings were set up on turntable in front

of the camera which was mounted on a tripod (Figure 6). 3D snapshots were taken at

different angles to simulate a random orientation in front of the robot (Figure 7). A

single piece setup was also chosen to eliminate any occlusions which would impact

the ability to easily segment the individual part.

14

Figure 6: Data capture setup using a Steinbichler structured light scanner

Figure 7: Example snapshots of 3D data for object recognition testing

The 3D images were converted into point cloud data (pcd) files which is the

native file format for PCL programming and processed [21]. The point clouds were

then processed to segment the casting from the table using the RANSAC plane

segmentation and cluster extraction algorithm. The RANSAC plane segmentation

works very similar to the sphere recognition as we discussed earlier. Instead of fitting

a sphere to random point, it fit a plane. Then all inliers within a specified distance to

15

the plane were removed from the scene. The cluster extraction algorithm used a

search method to identify groups of points and segment them into individual point

clouds [17], [22].

The recognition program needed a library to reference in order for the casting

to be identified. We used the Steinbichler scanner to create a complete surface point

cloud of each casting. These point clouds were used to build the reference library.

The library was built by taking snapshots around point cloud from different angles.

The recognition program used this library to compare and identify the closest match

from the library. There were two different descriptors used in the recognition

program. These two descriptors that were trialed were ESF and VFH as previously

discussed.

The PCL open source program example was setup for live streaming. The

program was reconfigured to systematically load pcd files captured from the

Steinbichler scanner. The program loaded each of the snapshots and compared it to

the library to recognize the part. The two algorithms with the two different descriptors

were run using this same data and a report was generated.

2.4 Part Recognition Results

Table 1 shows the part recognition using the VFH method. We created 32

point clouds from a different viewpoints around the casting. The actual target casting

is represented in the rows of the table. The values in the cell represent the number of

times the part was recognized as the parts labeled in each column. Successful match

percentages are shown in the grey cells along the diagonal. The average part

recognition success rate for the VFH classifier in our test was 47.3%. VFH results

16

from initial part recognition testing. Grey cells represent a correct match (higher is

better).

Table 1: VFH results from initial part recognition testing. Grey cells represent a correct match (higher is

better).

VFH
Part Recognition Estimation

U20C U20P U20S U25C U25P U25S

A
ct

u
a
l

P
a
rt

U20C 53.1% 3.1% 6.3% 21.9% 6.3% 9.4%

U20P 3.1% 59.4% 0.0% 9.4% 25.0% 3.1%

U20S 9.4% 0.0% 53.1% 9.4% 6.3% 21.9%

U25C 28.1% 6.3% 3.1% 53.1% 0.0% 9.4%

U25P 12.5% 37.5% 6.3% 18.8% 28.1% 0.0%

U25S 0.0% 3.1% 40.6% 9.4% 3.1% 43.8%

The same 3D point clouds were processed using the ESF classification

method and the results are shown in Table 2. The average part recognition success

rate for the ESF classifier in our test was 31.3%.

Table 2: ESF results from initial part recognition testing. Grey cells represent a correct match (higher is

better)

ESF
Part Recognition Estimation

U20C U20P U20S U25C U25P U25S

A
ct

u
a
l

P
a
rt

U20C 21.9% 18.8% 21.9% 9.4% 12.5% 15.6%

U20P 21.9% 9.4% 6.3% 3.1% 50.5% 9.4%

U20S 0.0% 6.3% 50.5% 6.3% 12.5% 25.0%

U25C 12.5% 3.1% 21.9% 12.5% 25.0% 25.0%

U25P 12.5% 6.3% 12.5% 9.4% 40.6% 21.9%

U25S 0.0% 3.1% 28.1% 12.5% 3.1% 53.1%

2.5 Part Recognition Discussion

The VFH classification success rate was greater than the ESF classifier, but

well below an acceptable level. It was evident that the accuracy of the 3D camera did

not have an impact. The results achieved with the Steinbichler scanner were not

17

materially better than those achieved with the Kinect in early testing. From the results

of the U25S, both classification methods had problems with differentiating size, but

did an acceptable job differentiating shape. However, the results of the U25P show a

poor result of differentiating both size and shape for both of the classifiers.

As we discussed earlier, we could not move forward with an autonomous

system that depended on the success of a part recognition system to be reliably

accurate. While we knew that there were some off-the-shelf systems that have proven

capable of part recognition at a reliable rate, they were not available as an open

source option. This caused us to rethink our approach.

3 Phase Two – Shared Autonomy Heavy Helper

3.1 Shared Autonomy Investigation

If a fully autonomous solution for a pick and place operation was not feasible,

we explored alternative solutions involving the worker as an integrated part of the

system. Typical systems are either fully autonomous or fully teleoperated systems

[23]. We didn't want to depend on the workers ability to teleoperate our system. We

also didn't want to depend on a worker for failure recovery if the main recognition

program of the system was unreliable [24]. We looked at where a human workers

perform well and where they perform poorly [25]. We also then looked at where the

computer would perform well and where it would perform poorly. Many roboticits

have investigated the shared autonomy approach with robot perception [23], [24],

[26], [27]. With this new thinking of a shared autonomy approach, we looked to

narrow the scope and determine the appropriate autonomy level [26], [28], [29].

18

3.2 Scope Definition and System Requirements

We narrowed the scope of the project to include only casting with lifting eyes.

This simplified the requirements of the perception system by only requiring it to

identify the pose of a known geometric shape. Because most lifting eye geometry is

standardized, this reduced the scope even further. However, even with a known shape

to look for, the perception system still needed to make a few decisions. This included

identifying the rough location of the lifting eye. The system also needed to know

which part the operator wanted to work on next. The alignment algorithm was not

able to determine the part orientation from symmetric geometry of the lifting eye. The

orientation decision was dependent on the worker. The worker identified the

orientation and communicated it to the system. The key to these decisions was to

utilize the capabilities of the worker in this shared autonomy system. The challenge in

the design of this shared autonomy system was making it simple for the operator to

communicate with the robot in an intuitive interface. It was important to distribute

task responsibilities according to strengths of the worker and the computer. IOt was

seen that workers were good at identifying castings and deciding on which part to

work on next. They were also good at estimating where the lifting eye is on the

casting. However, they were not good at identifying the exact location and orientation

of the lifting eye with respect to the robot. This is where the perception system

performed well. The computer vision algorithms were very good at identifying an

exact pose of an object (with good reference geometry), however it needed a rough

estimation of where to start. Computer vision has come a long way with initial

estimation by using such tools as RANSAC to randomly guess and check. While

19

these tools are available, they system was more robust when the worker provided the

estimate.

After the conclusion of phase one, the reinvestigation, and the research into

shared autonomy, a new set of system requirements were established:

1. Provide a live visual of the workspace in front of a robot for the user to

identify the appropriate part.

2. Provide an intuitive communication interface for the user to communicate the

approximate location of the lifting eye of the part identified.

3. Estimate the 6 degree of freedom pose of the lifting eye on a casting selected

by user.

4. Provide intuitive communication to adjust the orientation of the pose

generated by the computer vision system.

5. Provide intuitive communication to confirm or reject the computer vision’s

pose output.

6. Physically move the industrial robot to grasp the lifting eye.

3.3 System Design

The system was designed around ROS for its open yet robust platform that

allows for the communication necessary in a multi-subsystem solution. As seen in

Figure 8, the system was a non-sequential mixture of different subsystems. These

subsystems were made up of one or multiple programs that communicate using the

ROS platform. These programs are referred to as nodes by ROS. These nodes

communicate with one another through a central hub called roscore. The powerful

feature of ROS’s communication structure is that a node does not care which node

produces the communication message as long as it is in the proper format coming

from roscore. This allows for nodes to be swapped out with little reconfiguration.

This makes repurposing nodes amongst the open source community much easier. For

instance, we did not have to write our own 3D camera node. We were able to write

20

the computer vision node such that it was not dependent on the source of the point

cloud. This allowed us to reuse previously written programs that are shared amongst

the ROS community. It also allowed us to write an offline program to simulate a live

feed from a camera. All ROS nodes were written to operate and communicate with

the Hydro version of ROS.

Figure 8: System diagram

The 3D camera subsystem was based on the openni_launch package from

ROS. It allowed for an OpenNI-compliant device such as the Kinect to generate a 3D

point cloud and 2D image by the same device [30]. This was important because the

user needed the 2D image to select the location of the lifting eye. By using the same

21

device, the individual pixels of the 2D image corresponded to a 3D point in space

within the same point cloud that was being published by this node.

Initially, the 3D point cloud data was located with respect to the coordinate

frame of the camera itself. In order to transform the point cloud data to be usable by

the robot, a calibration was needed. We were able to use an intrinsic calibration

method [30] to calibrate the intrinsic parameters of the individual Kinect hardware.

We then used those intrinsic parameters in the industrial extrinsic calibration to

calibrate the camera position to the robot workcell [31]. We constructed a fixture that

mounted directly to the wrist of our Motoman MH5F industrial robot (Figure 9). The

calibration routine was able to determine the location of the fixture from the grid of

circles with respect to the camera. Then, using the robot geometry and joint states, the

routine was able to calculate the location of the fixture with respect to the robot.

Then it was able to calculate the transform from the robot base to the Kinect

coordinate frame. With this transform known, we were able to apply this to the raw

data of the Kinect output in order to provide a usable point cloud for the system.

22

Figure 9: Camera calibration setup. Left – workcell configuration with Kinect located above. Right –

calibration plate attached directly to robot.

The human machine interface (HMI) subsystem used RVIZ as its base. We

customized the configuration of RVIZ to make the interface as intuitive as possible.

We were able to overlay the 2D image from the Kinect onto the calibrated point cloud

which looked no different than a normal 2D camera image as seen in Figure 10. We

were able to use the publish point tool from the standard set of tools to give the user

the ability to pick a point on the image. When the publish point tool was used in the

HMI, it communicated the 3D picked point to the computer vision program. The

computer vision program used the 3D point to generate an initial alignment for the

location of the lifting eye by simply translating the source cloud to the picked

location. After the computer vision program finishes its alignment routine, it

communicated the 6 DOF pose to the HMI. The cycle time for this alignment is

23

approximately 1 second. When the HMI received the 6 DOF pose it overlaid the

lifting eye geometry over the 2D image. We configured the overlay to have enough

transparency that the pose could be compared to the 2D image and determine if the

pose is correct or not. This allowed the user to determine if the computer vision

generated a successful or unsuccessful pose estimation. A successful pose is shown

in Figure 10, and an unsuccessful pose outcome is shown in Figure 11. An arrow was

also overlaid on the image that showed the initial guess of the direction of the front of

the part. Because the lifting eye is symmetrical the user had the ability to reverse the

orientation of the pose by 180° by selecting the arrow on the screen. The arrow was

generated using the interactive markers ROS package [32]. The interactive marker

arrow was a button that communicated with the computer vision program as seen in

system diagram in Figure 8. Another set of interactive markers were used to create

red and green buttons as seen in upper corners of Figure 10 and Figure 11. These

buttons were used to allow the user to accept or reject the pose as seen on the screen.

If the user rejected the pose estimation, they then reselected a point and start the

process again.

24

Figure 10: Example of the system user interface with a successful pose estimation (text boxes not shown in

system interface)

Figure 11: Example of the system user interface with an unsuccessful pose estimation (text box not shown in

system interface)

25

The computer vision subsystem was simplified because of the shared

autonomy approach. The node loaded the reference point cloud of the lifting eye. It

received the calibrated point cloud from the camera node and waited for the user to

pick the 3D point of the lifting eye. When the node received the picked point by the

user, it translated the reference cloud using a transform value equal to the picked

point values. It then ran the iterative closest point (ICP) algorithm from PCL. ICP is

an algorithm that systematically translates one point cloud to match another. For each

point in the source cloud, it searches within a distance radius to identify the closest

point in the target cloud. Then it applies an incremental translation to the source cloud

to reduce summation of these distances [33]. We used the routine in a forced loop

with an iteratively decreasing search radius. When the ICP loop finished, the node

sent the final pose of the lifting eye to the HMI. If the computer vision node received

a pose adjustment from the HMI, the pose is transformed 180° along the z-axis with

respect to the pose of the lifting eye and resent to the HMI.

The move commands subsystem was based on the ROS Industrial package

[34] which utilized the MoveIt platform of ROS. We were able to use MoveIt to

create a Universal Robot Definition File (URDF) for the robot workcell. The URDF

includes the robot visual geometry, collision geometry, workcell visual geometry,

workcell collision geometry, joint limits and other information to build an accurate

workcell model (Figure 12). Our URDF model gave ROS the ability to create an

Inverse Kinematic solution to avoid collisions with both the robot itself as well as the

workcell around the robot. Collision avoidance using point cloud data was available

as a standard tool within MoveIt, but it was not a part of this scope.

26

Figure 12: Workcell model in MoveIt

The move command program used the URDF, configuration files [35], pose

estimation and the confirmation notification from the HMI to generate three different

poses. An approach pose was calculated based on the pose message received. The

pose was calculated by transposing the final pose 100mm in the direction that it

normal to the surface of the lifting eye. This approach pose allowed for robot to

approach the lifting eye with as much gripper clearance as possible as seen in Figure

13.

27

Figure 13: A good approach position ready for final approach

The robot then moved to the pose estimated by the computer vision subsystem

and paused for the gripper to close (Figure 14).

Figure 14: A good final position ready to close the gripper jaws

28

Gripper I/O control was not a part of this scope because I/O control was not

available for this robot controller at the time of our research. After the gripper was

closed, the program then moved the robot up vertically 100mm and then to a

preprogrammed “work holding” position as described in the concept of the heavy-

helper.

3.4 User Study

The performance of the system was reliable in a controlled environment.

However, there are many factors in a foundry environment that impact the

performance of such systems:

 Ability of a worker to identify castings on a screen from a single camera view

 Ability to accurately use a computer input device (mouse, joystick, etc.)

 Effect of wearing personal protective equipment (PPE)

 Speed of worker to use input device

 Environmental issues such as dirt and dust

The pose estimation program relied on the user to estimate the location of the

lifting eye and the accuracy required for this operation was unknown. Without good

user data to test with, we could only estimate. We also did not know how often the

program would produce a good pose estimate and how often the user would have to

retry. The shared autonomy approach was relying on the user’s ability to identify the

casting on a screen. User data was needed to compare the user performance to a

previously tested VFH recognition program. After defining the purpose and desired

outcome of the user study a protocol was formed. The user study was titled “HMI

Part Identification and the Effect of PPE” and was approved by the Oregon State

University Intuitional Review Board (Study 6276).

29

For the user study, we selected four castings to be used throughout the study.

There were two castings from two different product families. This was done to add

difficulty to the part identification task of the user study. As seen in Figure 15, there

was only a small shape difference between the two points on the right side of the

pallet. The user was given instructions on how to differentiate the castings in the

tutorial video which was given at the start of the user study. The four castings were

positioned on a pallet together similar to how they are now in the foundry. As seen in

Figure 15, there were some occlusions in the scene, but all lifting eyes were visible

for all parts in all scenes recorded by the Kinect.

Figure 15: User study interface showing the scene on the right and the target part in the upper left

 The user study interface, as shown in Figure 15, was designed to be as close

to the real interface as possible. The only difference was the instructions shown on

the left side of the screen. A target casting was communicated to the user by

displaying two views of the part in the upper left of the interface. The task of the user

was to identify the target casting on the pallet and click a point on the lifting eye.

30

When the user clicked a point on the screen, a red dot was shown to give the user

feedback of which point was picked. If the user was satisfied with the point that was

picked they clicked the green ball, but if they were not satisfied the red ball was used

to reset the picked point. There were instructions on the lower left of the interface to

help the user through the steps if necessary. After the green ball was selected, the

target casting in the upper left and scene of parts on the right were changed to a

random selection. The task was performed 8 times for each input device and the

device order was randomized.

RVIZ was used for the main program interface. It used the same controls as

the main system. The user used the publish point tool to select a point on the lifting

eye similar to the designed system. However, they were not be seeing a live feed from

a Kinect. We utilized the rosbag package to simulate a live feed from the Kinect [36].

Rosbag allowed us to record the data generated by the Kinect and replay it to simulate

a live feed. The rest of the sub-system were not affected by the difference. Similar to

the main system, the user study interface displayed a 2D image on top of the 3D point

cloud. A master program for the user study was written to control the different scenes

of Kinect data that were replayed. These scenes were randomized from a list of 20

different scenes. This node also randomized which part it asked the user to identify

and select on the scene. This image, as seen in Figure 16 and in the upper left of

Figure 15, did not have part numbers or names. The image showed the part in two

isometric views to help the viewer identify the casting in the scene. The master

program also recorded all information for each task: user number, target part number,

31

HMI number, scene number, picked point (x,y,z), duration of task, and reset

instances.

Figure 16: Example image of the two isometric views shown to the user to establish the target part

We were intentionally vague with our instructions to the user on how close to

the top center of the lifting eye was considered “good.” We did not want to skew the

results by giving them a tolerance to shoot for. The tutorial video showed that if a

user selected a point that was not on the lifting eye, the system to fail. However, an

accuracy target was not given. We also, decided not to give feedback to the user

(other than the red dot) on exactly how close the picked points were to the top center

of the lifting eye to reduce the effect of learning during the study duration.

The user study was conducted at the foundry with factory workers who were

potential system operators. It was on a volunteer basis and the user study was

conducted during their work hours while they were “on the clock.” They were not

compensated for their time or effort in addition to their normal pay and all users

followed the same protocol.

32

The user was brought into an office environment where they were given a

consent form and time to review and sign. They were given a short pre-questionnaire

that gave us context of the user. A copy of this is shown in the appendix. All

information was anonymous and users were given a number with no ties to names or

contact information. Then they watched a 3 minute video tutorial that gave them

context of the user study and instructions on the task they will be performing on the

computer. To establish a baseline, they performed the task of selecting the lifting eye

using the mouse with no PPE. This first session lasted approximately 10 minutes and

they then returned to their jobs. After approximately 3 hours the users were then

pulled back into another session. This time the computer and monitor were located

outside in the foundry environment. The users kept their PPE on for this session. The

minimum PPE worn was leather gloves, hard hat and face shield. Some users also

had safety glasses under the face shield. Some users wore thin gloves under their

large leather welding gloves. We decided to let them wear their own PPE equipment

to give the results a more realistic effect rather than standardize on a single PPE setup

that they were not used to. During this second session, the users performed the same

task as before but with different input devices. The devices were roller-ball mouse,

joystick, touchscreen, and mouse. The device order was randomized for each user.

The user performed the task 9 times for each input device. The initial task was not

recorded because the time measured to perform the task would not be accurate. The

timer was started as soon as we started the program and this would be different for

each user. After the all tasks were completed with each input device the user was

given a post-questionnaire to compete. A copy of this questionnaire is also in the

33

appendix. After this session, which lasted approximately 10 minutes, the user

returned to their job.

3.5 User Study Results

There were 20 people over three shifts that volunteered to participate. There

were 7 participants from the first shift (6am – 2pm), 7 participants from the second

shift (2pm-10pm) and 6 participants from the third shift (10pm – 6am). Each task

during the sessions created an individual text file on the computer. The text file was

named for both user number and input device number. Inside the text file, both data

about the scene (part number, scene number) and user task performance (input device,

picked point, task duration) were recorded.

The post processing of the user study data started with creating a ground truth

pose for each of the 4 parts in the 20 different scenes. This was done using an

industry leading point cloud processing software, PolyWorks. The point cloud from

the Kinect was imported into PolyWorks along with the CAD model for the casting.

The CAD model was aligned to the point cloud using PolyWorks’ proprietary Best-

Fit alignment tool. The position (xyz) and orientation (quaternion) of each lifting eye

was determined and recorded to create a key for each scene. This would be used as

the ground truth for each pose generated by the system.

A program was written to generate the system results from the user study data.

The program stepped through each text file for each task created by the user. It loaded

the data into the system parameters. The appropriate rosbag file for the scene was

played to generate the point cloud. The point picked by the user was published as if it

was picked from RVIZ in the real system. Then the computer vision node used the

34

picked point to translate the reference cloud to the picked point of the point cloud. It

then ran ICP as described in the system design. The output pose was recorded. The

ground truth pose was then loaded from the key file and the delta transform from the

ground truth to the estimated pose was recorded. Because the user was not in the loop

during this process to determine if the orientation needed to be flipped or not

(symmetric geometry), the estimated pose was flipped and compared to the ground

truth. The one that was closer to the ground truth was saved to the report.

Previously we had made the assumption that the actual geometry of the lifting

eyes were close enough to use a generic lifting eye geometry as a reference.

However, each casting lifting eye geometry is slightly different. To test if this

influences the results of the pose estimation results, the ICP routine was completed 5

times or each data point. It was run using the generic lifting eye geometry as well as

the actual geometry of each lifting eye that was created using a Stienbechlier white

light scanner that is accurate to within 0.02mm. After each ICP routine, the fitness

score of the ICP routine as also recorded. This was done to determine if the fitness

score would correlate with either the part matching the reference geometry or delta

transform (pose accuracy).

The part identified by the user was determined by calculating the shortest

distance between lifting eye locations in the key file and the point picked by the user.

This was then compared to the target part to determine if the user identified the

casting correctly or incorrectly. As seen in Figure 17, of the 800 parts identified, the

user identified the correct casting in the scene 98% of the time.

35

Figure 17: User part recognition results from 20 users totaling 800 part identifications

Table 3 breaks the identification down further by each casting. It shows that

users had a slight issue with differentiating the difference between the point castings.

Table 3: User part recognition results breakdown. Grey cells represent a correct match (higher is better).

Human
Part Recognition Estimation

Point 1 Point 2 Wear Cap 1 Wear Cap 2

A
ct

u
a
l

p
a
rt

Point 1 99.0% 1.0% 0.0% 0.0%

Point 2 5.8% 94.2% 0.0% 0.0%

Wear Cap 1 0.0% 0.0% 100.0% 0.0%

Wear Cap 2 0.0% 0.0% 0.5% 99.5%

As a comparison, we ran each scene through a similar part recognition

program as we tested in Phase 1. We modeled our program after the VFH recognition

and pose estimation solution from PCL [14]. We trained our VFH library using 30

snapshots from each casting. The snapshots were taken in a uniform distribution

around the top hemisphere of the casting, which was the only orientation of the

castings on the pallets. The snapshots were created using the Kinect, as seen in Figure

18, at a similar distance compared to the scenes of parts on the pallet.

98%

2%

User Part Recognition

Correct

Incorrect

36

Figure 18: Data acquisition using a Kinect sensor for part recognition testing

The snapshots were taken on a flat concrete floor which made cluster

extraction simple using the RANSAC plane segmentation [17]. The VFH classifier

relied on parts in the scene to be able to be extracted into an individual point cloud

cluster. The VFH was then created for each part cluster view and the library was

created. We found when processing the scene of the parts on the pallet that the cluster

extraction method is not a trivial task. Initial cluster extraction methods were failing

because the RANSAC plane extraction method was not able to identify the pallet as a

plane on a consistent basis. This might have been attributed to the irregularity of the

boards on an uneven plane or if it identified the concrete floor as the primary plane.

The cluster extraction was also failing as a result of the plane segmentation issues.

Because we cloud not easily remove the data on the pallet, we were forced to

decrease the maximum distance between clusters. This was causing the casting to be

split into two point cloud clusters. To eliminate this cluster extraction issue as a factor

in the benchmarking result, we used the known lifting eye location and a passthrough

37

filter to segment the data prior to the cluster extraction method. In an autonomous

cluster extraction and part identification, this work-around would not be available.

However, after the work-around, we were able to get a good cluster for each casting

in the scene. Each VFH for each cluster was processed and compared to the library

and the top 5 VFH matches were recorded. Two identification methods were used. In

one method, the part was identified using the top rated match from the library lookup.

In the second method, the most occurring match in the top 5 was determined to be the

most likely match. As seen between Figure 19 and Figure 20 the second method of

using average of the top 5 matches performs slightly (4%) better than just using the

top rated match.

Figure 19: VFH part recognition testing results using the top rated match

36%

64%

VFH Part Recognition by Top
Rated Match

Correct

Incorrect

38

Figure 20: VFH part recognition testing results using the top 5 results

To summarize the part recognition results, the three methods were combined

in Figure 21. The part recognition success rate of 98% by the users in the user study

show a significant performance difference compared to the automated part

recognition that we tested at only 40%.

Figure 21: Part recognition summary results

A further breakdown of the VFH matching can be seen in Table 4 and Table

5. The actual target casting is represented in the rows of the table. The values in the

40%

60%

VFH Part Recognition by
Average of Top 5 Matches

Correct

Incorrect

98%

40%

0%

2%

60%

100%

USER PART RECOGNITION VFH PART RECOGNITION
(TOP 5 AVERAGE)

OBJECT RECOGNITION WITH
HYPOTHESIS VERIFICATION

Part Recognition Summary

Correct Incorrect

39

cell represent the number of times the part was recognized as the parts labeled in each

column.

Table 4: VFH part recognition testing using top match results breakdown. Grey cells represent a correct

match (higher is better).

VFH Top Match
Part Recognition Estimation

Point 1 Point 2 Wear Cap 1 Wear Cap 2

A
ct

u
al

 p
ar

t Point 1 60.0% 35.0% 5.0% 0.0%

Point 2 75.0% 25.0% 0.0% 0.0%

Wear Cap 1 40.0% 15.0% 45.0% 0.0%

Wear Cap 2 60.0% 10.0% 15.0% 15.0%

Table 5: VFH part recognition using top 5 results breakdown. Grey cells represent a correct match (higher

is better).

VFH Top 5
Part Recognition Estimation

Point 1 Point 2 Wear Cap 1 Wear Cap 2

A
ct

u
al

 p
ar

t Point 1 55.0% 35.0% 10.0% 0.0%

Point 2 50.0% 50.0% 0.0% 0.0%

Wear Cap 1 45.0% 10.0% 45.0% 0.0%

Wear Cap 2 25.0% 30.0% 35.0% 10.0%

We performed a second attempt at an automated part identification method

using PCL’s more recent recognition pipeline, global hypothesis verification. It works

by first identifying keypoints in the point cloud. It then estimates features such as

point cloud normals. Using these keypoints and features, it generated a list of possible

matches, then filtered through these matches to identify groupings of similar

geometric clusters. This is called correspondence grouping. From there it used ICP to

identify the best pose from its initial match. Then through a series of filters and cost

functions, the system identified which hypothesis pose is correct [37].

We found that there are a significant number of configuration settings for this

process. Each step in the program took some fine tuning for the unique scenario.

40

Many factors such as point density, part size, number of clusters in the scene and

others played a role in determining the right balance of settings to produce a good

hypothesis in a reasonable amount of time. The more restrictive the configuration

settings, the less likely to get a result. The less restrictive the settings are, the more

computing is necessary to identify a correct hypothesis from a much larger list. We

tuned our settings to produce between 8-20 potential poses which took approximately

2-3 minutes per scene. An example of the different potential poses generated can be

seen in Figure 22. Using these settings we did not see a single confirmed hypothesis

through all 20 scenes for any of the parts.

Figure 22: An example of a failed recognition using the Hypothesis Verification for 3D Object Recognition

The user study master program recorded the duration of each task. The data

was sorted by input device and displayed in Figure 23 as box plots with the inner

quartiles represented by the boxes and the range dipected by the wiskers.

41

Figure 23: Input device speed performance results

Each picked point by the user was compared to the ground truth and a

deviation was calculated. These distances were then sorted by input device. The data

is displayed in Figure 24 in the same box plot form as Figure 23.

Figure 24: Input device accuracy performance results

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

Mouse (No PPE) Ball Mouse Joystick Touchscreen Mouse

D
U

R
A

TI
O

N
 T

O
 S

EL
EC

T
LI

FT
IN

G
 E

YE
 (

SE
C

O
N

D
S)

INPUT DEVICES

Input Device Speed Performance

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Mouse (No PPE) Ball Mouse Joystick Touchscreen Mouse

D
IS

TA
N

C
E

TO
 C

EN
ER

 O
F

LI
FT

IN
G

 E
YE

 (
M

M
)

INPUT DEVICES

Input Device Accuracy Perfrmance

42

As previously discussed, the ICP algorithm was run on each part 5 different

times with different reference geometry. Each time the ICP algorithm was run, it was

compared to the ground truth pose. The threshold for a successful pose was estimated

given the geometry of the lifting eye. We estimated that a good grasp would be

achieved if the gripper was within 20mm and within 15 degrees of the actual pose (in

all directions) of the lifting eye. Given these estimations, we were able to compare the

output of ICP to the ground truth and classify the result as success or failure. These

success rates can be seen in Figure 25. The success rate using the generic lifting eye

reference geometry showed a 51.5% success rate while a success rate of 86% was

achieved when the actual part geometry was used to identify the lifting eye using ICP.

A third option was shows on the right by using a single geometry per part family. For

both point castings, a single reference geometry was used and for both wear caps, a

single wear cap geometry was used. This produced a success rate of 78.9%.

Figure 25: Pose estimation results from ICP using user data

The ICP algorithm produces a fitness score when it converges to an outcome.

This score was recorded for all ICP runs with the different reference geometry. We

51.5%

86.0%
78.9%

Generic Lifting Eye
Reference

Preselect Part Reference
(Indivual)

Preselect Part Reference
(Part Family)

P
ER

C
EN

TA
G

E
O

F
P

O
SE

S
 W

IT
H

IN
 T

H
R

ES
H

O
LD

O

F
G

R
O

U
N

D
 T

R
U

TH

ICP Success Rate from User Data

43

then use these scores to estimate the actual part as a pseudo part recognition test. We

found that the ICP score method was 57% successful in identifying the proper part as

shown in Figure 26.

Figure 26: Success rate of ICP score for part recognition

Each ICP routine produced a fitness score with the pose estimation. Lower

values represent a better fit. A score of zero would represent a perfect fit between the

two point clouds. The fitness scores were sorted into successful and unsuccessful

categories for the ICP pose outcome compared to the ground truth. These two

categories represent the ICP using the matching part’s geometry. As shown in Figure

27, there is a strong correlation between high fitness scores and unsuccessful final

poses. There is no overlap between the inner quartiles, which makes classifying an

estimated pose’s success based on ICP score a viable option.

57%

43%

Success Rate of ICP Score for Part
Recognition

Correct

Incorrect

44

Figure 27: ICP fitness scores for successful or unsuccessful pose estimations (smaller is better)

The users were consistent in their post-task questionnaire. All users agreed or

strongly agreed that the system was intuitive. The joystick and mouse received the

lowest and highest score respectfully for the different input devices. The average user

agreed that the system would increase both their safety and efficiency.

3.6 User Study Results Discussion

There is a significant difference between the computer vision part recognition

and the user’s ability to recognize a part from an image. With a 98% success rate, it is

justifiable to base a system off of the assumption that a user will be able to recognize

the correct part from a 2D image. With additional experience or training, it is not out

of the question to assume an average better than 99% for a future system. We are

satisfied that we made the decision to use a shared autonomy approach rather than

rely on a system that gave only a 40% success rate.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Good Pose Outcome Failed Pose Outcome

IC
P

 F
IT

N
ES

S
SC

O
R

E
(X

1
0

^5
)

ICP OUTCOME

ICP Fitness Score vs Pose Outcome

45

The performance of ICP with the generic lifting eye geometry was lower than

expected. The performance during initial trials was considerably higher than the

51.5% outcome from user data. This shows the reason why it is important to test the

system with data from real users in a typical system environment rather than in an

office by someone who wrote the program. The 86% success rate of the ICP

algorithm with matching part geometry was significantly higher than using the

generic lifting eye geometry. While this complicates the interface and requires one

more step for the operator, preselecting the part from a list prior to selecting the

lifting eye would not impact the pitch time of the system considerably. The time that

it would take to preselect a part prior to picking the lifting eye would be less than the

time it would take to adjust a bad pose, or the time it would take to troubleshoot a bad

grasp.

There was not a considerable effect on performance by users wearing their

PPE. With regard to speed, the average task duration was better with PPE than

without, save the joystick (Figure 23). This can be attributed to learning during the

user study. In hindsight, efforts should have been taken to better offset the effect of

learning. However, the accuracy of points picked was worse with all input devices

with PPE compared to the mouse without PPE. Because the performance differences

between devices were not enough to effect the systems output, the appropriate device

for the final system was determined by the user feedback from the questionnaire. The

final system was designed to use a touchscreen with a wireless mouse option.

According to the questionnaire this provides an intuitive interface according to 100%

of the users we tested.

46

One more data point that was not measured was the morale of the workers

when we first brought up the idea of using industrial robots in the foundry. It was

obvious that many were concerned with losing their job to a robot. While we

reassured them that the robot system that we were designing was going to use a robot

as an assistive robot and not one to replace their jobs, many were not convinced. We

think the majority of people who did not volunteer did so because they felt like they

would be helping to replace their own jobs.

3.7 Physical Testing

Physical testing was completed using a Motoman MH5F robot in the

Motoman Education Cell. The workcell used the Motoman FS100 controller, which

has a small form factor compared to the more standard DX100 controller. The

workcell was also powered from a standard 110V outlet, which made testing much

easier to setup. The robot had an integrated Shunk parallel jaw gripper as an end

effector with customized 3D printed jaws. The MH5F had a 5kg payload, which

meant testing with steel castings was not possible. A spinning top toy was the

inspiration for the test part we designed as seen in Figure 28. We designed it so it

would be stable in multiple orientations but always give the robot access to the lifting

eye. We made the bottom rounded to help randomize the location and orientation of

the lifting eye for each test. The lifting eye scale was identical to the lifting eyes on

the castings from the user study. A Stratysis Dimension 1200es 3D printer was used

to create the test part. By making the part out of plastic we were able to keep the

weight down under the payload limit. However, because the part was such a uniform

color, it was hard to identify the lifting eye on camera, which was not the case with

47

real castings. A black stripe was marked on the lifting eye of the plastic test part to

help identify it on camera.

Figure 28: 3D printed lifting eye sample part for physical testing

The gripper did not provide a rigid connection to the casting, but the design of

such a gripper was not a part of this project’s scope. The MotoPlus ROS application

was installed on the FS100 controller. This was the server application that provided

the link between the controller and ROS. Communication between the controller and

the computer was over an Ethernet cable with dedicated IP assignments. All software

was configured as previously described in the System Design.

The Kinect was calibrated to the workcell world coordinate frame prior to

testing using the industrial extrinsic calibration as previously described. The test part

was randomly in the middle 60% of the table in front of the robot to give the robot a

reasonable chance of not crashing against the side walls or with itself. The ROS

system was started and RVIZ showed a 2D image looking down on the workcell. We

then selected a point on the screen on the lifting eye. The overlaid lifting eye

48

geometry was shown on the image. The arrow gave us a chance to adjust the

orientation of the pose. The ICP algorithm used the generic lifting eye geometry,

which was the same geometry the test part was designed with. If we were satisfied

with the result, we selected the green button on the screen. Then the move commands

subsystem used the final pose to create the initial approach pose which was sent to the

controller first. This gave the gripper the best chance of making a good grasp when it

made its final path into the final pose. Feedback from the controller allowed for the

move commands node to send sequential moves between the different poses. We

programmed delays into the routine to allow us to confirm the alignments of each

pose. Also, because the I/O functionality was unavailable the current MotoPlus

application, we manually opened and closed the Shunk gripper via soft buttons on the

teach pendant. After the jaws were closed, the part was lifted straight upwards to a

hanging position. Then the part was brought to the center of the table, turned to a

random position along the vertical axis and dropped from approximately 1 inch above

the table. This did an adequate job of randomizing the location of the next trial. Then

the robot was moved to position in the back corner that provided good visual

clearance to the workspace.

3.8 Physical Testing Results

The routine described previously was competed 40 times. As seen in Figure

29, the ROS-Industrial kinematic solver failed to generate a collision free solution for

one or more of the poses 50% of the time. Of the trials where the kinematic solver

generated a solution, a successful grasp occurred 80% of the time.

49

Figure 29: Physical testing results of system using the Motoman MH5F robot of solved IK solutions

A grasp was classified a success if the gripper closed completely through the

lifting eye and was able to lift the part as show in Figure 30.

Figure 30: A successful grasp during physical testing

80%

20%

Physical Testing Results

Successful Grasps

Unsucessful Grasps

50

An unsuccessful grasps occurred if the open gripper jaws collide with the

lifting eye on approach to the final pose as shown in Figure 31. This typically resulted

in the plastic part being pushed and the gripper failing to close through the lifting eye

as seen in Figure 32.

Figure 31: A failed grasp caused by collision

Figure 32: A failed grasp after a collision

51

3.9 Physical Testing Results Discussion

The IK solver success rate was lower than expected. Prior to all trials, we used

our best judgment to determine if we thought the part was in a location that would

allow for the robot to pick it up without colliding with the walls or itself. This is why

we were surprised that the IK solver did not provide a solution for 50% of the trials.

This could be caused by a number of things: an over-conservative collision avoidance

model of the workspace and robot links, incorrect joint limit values, an incorrect

configuration of the IK solver, or an improperly configured MoveIt package.

Unsuccessful grasps occurred mainly when the pose estimate was off side to

side and the parallel jaw gripper did not have enough clearance to accommodate the

misalignment as shown in Figure 31. All instances of this failure occurred in the back

half of the workspace. The viewpoint of the Kinect was as good in this area as it was

for the front of the workspace where this failure did not occur. While further testing

would be needed to prove this, a poor calibration of the Kinect to the world

coordinate system was most likely the root cause. While a gripper with a larger jaw

opening travel could accommodate this error, it is likely solved by a more accurate

calibration. The calibration routine used only a single fixed target. A possible solution

would be to perform the calibration routine holding the target (Figure 9) in different

locations and orientations and then creating an average transform from the multiple

routines.

52

4 Conclusion and Future Study

We have presented an alternative solution to the object recognition pipeline

with a shared autonomy approach. We showed that a system reliant on an

unsuccessful object recognition system needs constant human intervention to

maintain uptime. Our solution leverages the strengths of both the human operator and

the automated system.

In general, the ROS framework and open source tools made this project

possible. Without the availability of the tools or the plug and play capability of the

tools, the scope of this project would have been restricted to a fraction of the final

project. We were able to expand on the building blocks created by other researchers

that came before us. The time spent troubleshooting and configuring open source

software is much less than the R&D time to start from scratch. The open source

community was also helpful during the troubleshooting phases. This allowed us to

quickly filter out the different tools and programs that would and would not work for

our scope without much time invested. Without the open source community of PCL,

our entire scope might have been for product recognition, which ended up being a

failure. However, because of the open source tools and documentation, we were able

to quickly recreate the program for our situation and quickly determine a better path

for our project. Because of this, the work that we have completed may be useful to

someone else in the future. By publishing our project and source code, we give

another student the chance to build off our work and take it another step further. For

instance, future testing for this project would be needed before taking it into a

production environment. An extrinsic calibration that was accurate and consistent in

53

all areas of the workcell would be needed before moving forward. This could be

created by an averaged transform calculated by multiple instances of the same routine

that was described earlier.

The mechanical design of the lifting eye gripper was not a part of this scope.

The design of a rigid and secure device would not be trivial. It would have to be

compliant enough to account for the inaccuracy of the Kinect, while maintaining its

rigidity to hold the casting while work was conducted on the part. It would have to be

durable enough to withstand crashes when they occur.

Another option to ICP that was discussed during the project was to create a

RANSAC torus program that was able to identify torus geometry in a point cloud

similar to the RANSAC plane segmentation routine. While the lifting eye is not a

perfect torus in all instances, the torus is the closest geometry shape that would

identify the lifting eye. The RANSAC torus estimator has been in the PCL queue for

a while, but has not been solved.

Future refinement in the ICP algorithm should be considered to increase the

pose outcome success rate to closer to 100%. We propose two solutions for this. The

first solution is to use a down-sampled point cloud that was segmented around the

picked point and do a systematic guess and check of different rotations after the cloud

had been translated. This step would be inserted directly before the ICP process in the

current process. The second is to create a "bump" out of a local minima during ICP.

For instance, if the ICP score was below a certain threshold, the pose was "bumped"

to a random orientation within a volumetric window and ICP was started again. Each

solution could be implemented and tested with the data gathered by the user study.

54

These alternative solutions are recommended to be tested prior to taking our proposed

solution to a production environment.

55

5 Bibliography

[1] “Investment is the key to sweden’s foundry automation: introduction,” Prod.

Eng., vol. 58, no. 3, p. 26–, Mar. 1979.

[2] A. Pochyly, T. Kubela, V. Singule, and P. Cihak, “3D vision systems for

industrial bin-picking applications,” in MECHATRONIKA, 2012 15th

International Symposium, 2012, pp. 1–6.

[3] K. Kim, J. Kim, S. Kang, J. Kim, and J. Lee, “Vision-based bin picking system

for industrial robotics applications,” in 2012 9th International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI), 2012, pp. 515–516.

[4] A. Pochyly, T. Kubela, M. Kozak, and P. Cihak, “Robotic Vision for Bin-Picking

Applications of Various Objects,” in Robotics (ISR), 2010 41st International

Symposium on and 2010 6th German Conference on Robotics (ROBOTIK), 2010,

pp. 1–5.

[5] Heping Chen, George Zhang, Hui Zhang, and Thomas A. Fuhlbrigge, “Integrated

robotic system for high precision assembly in a semi‐structured environment,”

Assem. Autom., vol. 27, no. 3, pp. 247–252, Aug. 2007.

[6] U. Berger and R. Lepratti, “Intelligent PC-based user control interface for on-line

correction of robot programs,” in 7th International Conference on Control,

Automation, Robotics and Vision, 2002. ICARCV 2002, 2002, vol. 1, pp. 276–281

vol.1.

[7] L. Garber, “Robot OS: A New Day for Robot Design,” Computer, vol. 46, no. 12,

pp. 16–20, Dec. 2013.

[8] T. Fong, C. Kunz, L. M. Hiatt, and M. Bugajska, “The Human-robot Interaction

Operating System,” in Proceedings of the 1st ACM SIGCHI/SIGART Conference

on Human-robot Interaction, New York, NY, USA, 2006, pp. 41–48.

[9] J. Kerr and K. Nickels, “Robot operating systems: Bridging the gap between

human and robot,” in 2012 44th Southeastern Symposium on System Theory

(SSST), 2012, pp. 99–104.

[10] M. T. Hoske, “ROS industrial aims to open, unify advanced robotic

programming,” Control Eng., vol. 60, no. 2, p. 20, Feb. 2013.

[11] S. M. Edwards, W. C. Flannigan, and P. T. Evans, “6DOFF Pose Estimation:

The Need for Standardization in Industrial Applications,” in Proceedings of the

10th Performance Metrics for Intelligent Systems Workshop, New York, NY,

USA, 2010, pp. 267–270.

[12] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),”

presented at the Robotics and Automation (ICRA), 2011 IEEE International

Conference on, 2011, pp. 1–4.

[13] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl,

R. B. Rusu, S. Gedikli, and M. Vincze, “Tutorial: Point Cloud Library: Three-

Dimensional Object Recognition and 6 DOF Pose Estimation,” IEEE Robot.

Autom. Mag., vol. 19, no. 3, pp. 80–91, Sep. 2012.

[14] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D recognition and

pose using the Viewpoint Feature Histogram,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2010, pp. 2155–2162.

56

[15] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3D object

classification,” in 2011 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2011, pp. 2987–2992.

[16] R. A. El-laithy, J. Huang, and M. Yeh, “Study on the use of Microsoft Kinect

for robotics applications,” in Position Location and Navigation Symposium

(PLANS), 2012 IEEE/ION, 2012, pp. 1280–1288.

[17] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm

for Model Fitting with Applications to Image Analysis and Automated

Cartography,” Commun ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[18] S. Kahn and A. Kuijper, “Fusing Real-Time Depth Imaging with High

Precision Pose Estimation by a Measurement Arm,” in 2012 International

Conference on Cyberworlds (CW), 2012, pp. 256–260.

[19] D. Hershberger, D. Gossow, and J. Faust, rviz. ROS.org, 2013.

[20] A. Aldoma, “3D Object Recognition and 6DOF Pose Estimation,” presented

at the ICRA 2013, Karlsruhe, Germany, 10-May-2013.

[21] D. Holtz, “PCL Basics,” presented at the ICRA 2013, Karlsruhe, Germany,

10-May-2013.

[22] A. Trevor, “Organized Segmentation,” presented at the ICRA 2013,

Karlsruhe, Germany, 13-May-2013.

[23] T. Witzig, J. M. Zollner, D. Pangercic, S. Osentoski, R. Jakel, and R.

Dillmann, “Context aware shared autonomy for robotic manipulation tasks,” in

2013 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2013, pp. 5686–5693.

[24] B. Sankaran, B. Pitzer, and S. Osentoski, “Failure recovery with shared

autonomy,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2012, pp. 349–355.

[25] J. C. F. de Winter and D. Dodou, “Why the Fitts list has persisted throughout

the history of function allocation,” Cogn. Technol. Work, vol. 16, no. 1, pp. 1–11,

Feb. 2014.

[26] P. Michelman and P. Allen, “Shared autonomy in a robot hand teleoperation

system,” in Proceedings of the IEEE/RSJ/GI International Conference on

Intelligent Robots and Systems ’94. “Advanced Robotic Systems and the Real

World”, IROS ’94, 1994, vol. 1, pp. 253–259 vol.1.

[27] B. Pitzer, M. Styer, C. Bersch, C. DuHadway, and J. Becker, “Towards

perceptual shared autonomy for robotic mobile manipulation,” in 2011 IEEE

International Conference on Robotics and Automation (ICRA), 2011, pp. 6245–

6251.

[28] D. A. Mindell, “Telerobotics, automation, and human supervisory control

[Review],” IEEE Technol. Soc. Mag., vol. 12, no. 3, p. 7–, Fall 1993.

[29] T. Kaupp and A. Makarenko, “Measuring human-robot team effectiveness to

determine an appropriate autonomy level,” in IEEE International Conference on

Robotics and Automation, 2008. ICRA 2008, 2008, pp. 2146–2151.

[30] P. Mihelich, rgbd_launch. ROS.org, 2013.

[31] industrial_extrinsic_cal. SWRI, 2013.

[32] D. Gossow, interactive_markers. ROS.org, 2013.

57

[33] D. Holz, “PCL::Registration,” presented at the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) 2011, San Francisco,

California, USA, 25-Sep-2011.

[34] S. Edwards, industrial_core. SWRI, 2013.

[35] I. Sucan, S. Chitta, and A. Pooley, MoveIt. ROS.org, 2013.

[36] T. Field, J. Leibs, and J. Bowman, rosbag. ROS.org, 2013.

[37] A. Aldoma, F. Tombari, L. D. Stefano, and M. Vincze, “A Global Hypotheses

Verification Method for 3D Object Recognition,” in Computer Vision – ECCV

2012, A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds.

Springer Berlin Heidelberg, 2012, pp. 511–524.

58

6 Appendix

ESCO HMI PPE Study Pre-Questionnaire

Age:

Years working at ESCO:

Current job at ESCO:

Years at current job:

Gender:

Height:

Weight:

Average Computer Use (per week):

Average Tablet Use (per week):

Do you have gaming experience? If so, how much?

Are you a pet owner?

Do you wear glasses (not contacts)?

PPE Requirements (circle all that apply for current position):

 Steel Toe Shoes

 Ear Plugs

 Ear Muffs

 Light Gloves

Heavy Gloves

Safety Glasses

Safety Goggles

Face Shield (Papper Units)

Silvers

Other: __

Health issues at work (circle all that apply)

 Sore Muscles

Back Pain

Time off because of an ergonomic injury (back, shoulder injury, etc.)

 Crush/Hand Injuries

 Time off because of crush/hand injury

 Time off because of other work related injury: _________________________

59

ESCO HMI PPE Study Post-Questionnaire

This system was intuitive:

 Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

The mouse was easy to use:

 Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

The roller-ball mouse was easy to use:

 Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

The joystick was easy to use:

 Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

The touchscreen was easy to use:

 Strongly Disagree | Disagree | Neutral | Agree | Strongly Agree

What kind of an affect would this system have on the safety of your job?

 Strong Negative | Negative | Neutral | Positive | Strong Positive

What kind of an affect would this system have on your efficiency as a worker?

 Strong Negative | Negative | Neutral | Positive | Strong Positive

If this system was optional over the typical crane hook, how likely would you choose

this new system?

 No Chance | Not Likely | Neutral | Somewhat Likely | Most Likely

Open-ended question:

What kind of a robotic/automated system would make you more safe or efficient at

work?

