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INTRODUCTION

It has been found advantageous to use horizontally
curved beams or bow girders in bullding design and bridge
design. Recently many architects and designers have
become more interested in using them.

The difference in analysis and deslgn between the
beams curved in plan and the straight beams 1s malnly due
to the presence of torsional movement induced by vertical
lead. Therefore, for such members, 1t 1s necessary to
design for internal bending moment, and twistinzg moment as
well as transverse shear.

The capability of resisting torsional moment is
expressed by torsional rigidity which 1s defined as the
torsional moment which, when applied to one end which is
free to rotate, produces & unit angle of twist with respect
to the other end assumed to be completely fixed (2). The
greater the torsional rigidity, the greater the reslistance
to the torque. The value of torsional rigldity depends
on the shape of the sectlon. It was found that the box
sections have comparatively large values of torslonal
rigldity (7)and are widely used in bridge design. How-
ever, the rectangular section is also commonly used.

Horizontally curved beams, either made of steel or



reinforced concrete, can‘be continuous or monolithic at
both ends. Iﬁ this paper, equations for calculating
bending moments, torsional momentfgshearing stresses and
deflections are derived. These equations are solved by
digital computer for different types of loading conditions
and geometrical conditions. For details of the computer
programs, see Appendix I. For the deslgner's convenience,
tables and charts are provided. To solve for the problem
of continuous curved beams, & moment distribution method

is introduced.



II.

Assumptions

ASSUMPTIONS, NOTATIONS AND SIGN CONVENTIONS

In this analysis and design of horizontally curved

beams, the following assumptlions are used:

(1)
(2)

(3)

Notatlons

Material is homogeneous and isotroplc.

The material has linear stress-strain relation-
ships, so the principlé of superposition is
valid.

The cross section of the beam is uniform and

small compared with the radius of curvature.

= Bending moment about radlal axis. 1Its

gubscript indicates its location.

= Torsional moment. Its subscript indicates

its location.

= Vertical force. Its subscript indicates

its location.

= radius of curvature of the beam.
= Angle spanned by the beam.

= Angle distance of the section, where the

concentrated load acts, measured counter-

clockwise from the support.
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Angle distance of any sectlion of the beamn,
measured counterclockwise from the support.
Modulus of elasticity in tenslon or compression.
Modulus of elasticity in shear. G = E/2 (1 +a«)
Poisson's ratlo.

Moment of inertia of the cross sectlion of the
beam about centroidal axis.

Polar momentlof inertia of the cross sectlion.
EI/GJ. See later explanation.

Angle of rotation due to bending moment.
Angle of rotation due to torsional moment.
Vertical deflection, its subscript indicates
1ts location. |
Shear force.

Shearing stress due to vertical force.

Pure shear due to torsional moment.

Vertical concentrated load.

Vertical uniform load per unit length of the
beam.

Fixed end bending moment coefficlent.

Fixed end torsional moment coefficient.

Fixed end shear force coefficient.



Explanation of m:

The value of m, which depends. on the material and

shape of the section, can.be calculated in the following

mannerxr:
ET 2 (14+4) I

3; ' J
s 7

For rectangular sectlion, Figure 1a, I = bh” /12, Where

b, h are the dimension of the section parallel and perpendi-

cular to the radial axis respectively. §(h 0. 63b)bj,where

h is the long dimension and b 1s the short dimension of the

rectangular section. If the section is so placed that the

short side is parallel and the long side 1is pe?ﬁendigular
+u)

to the radial axis as shown in Figure 1a, m= > .
2b“ (h-0.63Db)

For sections composed of narrow rectangles, such as channels,

1
I or T sections, the value of Jwlll be J=-§"£hb3. Fig.1b.
122
For box section as shown in Figure 1lc. J= S(ds/t). (3)
In this equation, a is the shear area and equals to the
product of b and hy ds 1is a short increment of lenath, for

t1, t? as shown in Fig.lc ds=h, for t3, th’ ds=b.
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Sign Convention

Bending moment and torsional moment are expressed
by moment vectors. Vertical force acting upward 1s repre-
sented by a solid circle 6. An open circle O represents
the vertical force acting downward.

Bending moment will be taken as positive, if when
looking outward from the center of the curvature 1t pro-
duces clockwise rotation about the radial axis. Torsional
moments will be taken as positive, when looking along the
tangent of the beam in a counterclockwise direction it
produces a clockwlse rotation. Vertical force will be
taken as positive when it acts upward. Figure 2 shows

the sign convention used in this analysis.

-p

Figure 2. Silgn conventlon.



ITII. HORIZONTALLY CURVED BEAM FIXED AT BOTH
ENDS AND SUBJECTED TO CONCENTRATED LOAD

Statical analysis

Filgure 3a shows a beam composed of two equal stralght
portions at right angles, rigidly connected at the point
of intersection B and subjected to a force P which is

perpendicular to the x-y plane.

b4

P T

Y 7 Mx B 4
VX ;

B c F) c

A
A
Figure 3a. Figure 3b.

Load P wlll produce bending moment My and My at
point B. The bending moment MyAabout the y-axis will simul-
taneously cause 2 torsional moment Ty rotating about the
axis of BA, i.e., y-axis. Similarly, the bending moment
My about the x-axis also has a torsional effect Ty to the

portion BC, i.e., the x-axis as shown 1in Figure 3b.

By the same token, in a horizontally curved beam



if Mg 1s the bending moment at any section 6 about the
radial axls at that section, 1t can have a bending moment
component Mgy &nd a torsional moment component Tgx about
the x-axls, as shown in Figure 3c.

In Fig. 3¢ Similarly, at the same sectlon 8, &
torsional moment Tg also has a bending moment about fhe-

tangent of this section and a torsion component, as labeled

Moz and Tgy, about the x-axis.

2
Tex ™
e ex‘
Téx Ko
Mex
X
X
ry
(o}
Figure 3c.

Therefore, if a bending moment Mxy onthe x-y plane 1s
expected to exist 1t must be accompanied by a torsional
moment rotating about the z-axis and a certain amount of

loading perpeniicular to the x-zZ or y-z plane should beused.
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In a transversely loaded curved beam, since there 1is
no external load acting horizontally, there will not be
eny moment rotating about the z-axis, For such a loading
condition in a horizontally curved beam the moments
existing will be only those which bend or rotate in the z

direction and perpendicular to the x-y plane,

Bendine Moment and Torsional Moment

Mg
A
P Te &7 >
D C 3 %
A 8/
A
™N \¢
eO
O
Figure 4.

As shown in Figure 4, a concentrated load acts at
‘the point D with an angular distance ﬁo from support B.
Me and Té represent the bending moment and torsional

moment at any section C with an angular distance 6 from B.
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For portion BC (0=86=f,)

Mg = Mpcose + Tpsing - Fyrsind (1)

Tqg = -Mpsin® + Typcosé + Fpr(1 - cose) (2)
For portion CA(g,= 6 <¢)

Mg = Mpcos® + Tysind - Fyrsiné + Prsin(e - g,) (3)

Tg = -Mpsin® + Tycos6 + Fpr(1l - cose) - Pr(1-cos(6-¢,))

(4)
Applying Castigliano's theorem with U representing the

strain energy;

2
v =( (Mg)%rap + (Tg) rd
2EI 2Gd
At support BWy =9y =Ay =0
U _ dU  _au
oty o7y 5Fp
dU_ .o
oy
Mo o . Tg T
EI j MR eamy fﬁgﬁg =0
- EI aM oT
With m = '8 . cosh 928 = - sin ©
CT, 50, °77 5T

-%-{Jﬁ(mbcose + Tysin 6 - Fyrsine) coserdé + ?jg
0

[Mbcose + Typsin® - Fyprsiné + Prsin(e-ﬁ)]coserde
+q&§Mbsine + Tycos8 + Fbr(l-cose))(-sinerde)

+?J‘¢ ((-Mbsine + Tycose + Fbr(i-cose)-Pr(l;cos(e-goa
%o

(-sinbrdoe)
< Mbjgcoszede + mM?jgsinzede + ijgsinecosedo
Bl o (o) 0

+me‘5¢ (-cosBsinede) -~ Fbﬁjg sinfBcosede
o)
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¢ g
+Fbrm ¢cosesinede - Fbmfysinede +Pr ¢ sin(e-¢o)cosed9
(o] o O

+Prm g (1-cos(e-¢o))sinede =0
o

1
E%_[ Mb(% + Eﬁﬁgﬂ + mg -m§%23g) + Tb<-5(0082¢—1{

+%(cos(g¢“10 + EEE(i-m) (cos2¢g-1) + Fbmr(cos¢-1{

- %“f(m-n cosfl, (-Lcos2f-cos2f,)

sin2¢-sin2¢0-
b J

2
v Batng [(9-90) + (1) (G52 -

+ E§r2(008¢-008¢0)
[ mygan) - sin¢cos¢(m-1)] 55 Ty (sin?d(n-1))

2
42— Fp(sin?g(n-1) + 2m(cosg-1))

= g%%[(m-l)cos¢o(sin2¢—Sin2¢o) + sinfo(#-Fo) (m+1)

- sinf, i%:l)(sin2¢-$in2¢0) + 2m(cosff - cosﬁo)] (5)

Similarly
By 8U - 0 we obtain
oTy
T

- Eﬁf" Mpsin2@(m-1) + 55T [ g(m+1) + sinﬁcosﬁ(m-1)]

+ rzFb[stin¢ - #(m+1) - sin¢cos¢(m-14
= gﬁ%[-008¢0(¢—¢0) (m+1) - %cosﬁo(m-l) (sin2@-sin2f,)
—(m—l)sin¢o(sin2¢ - sinlfy)+2m (singd -sinﬁo)] (6)

oU _
By §FB = 0 we obtaln

r2 1 |sin2@(m-1) + 2m(cosg-1)| + r2ty, 2msing-@(m+1)
.Q_EI l‘b Sin m- 2EI ny= m !
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- sin ¢cos¢(m—1)] + Zgib[ﬁ(m+1) + sin Fcos@(m-1)

- Lmsing + 2mg ]: gﬁ% [(Qil)cosﬁo(sinzﬁ—sinzﬁ)

- 2m(1+cosfy) (sing - sin do) + 2msin¢o(cos¢-cos¢0ﬂ
| (7)

Let

a1 = g(m+1) - sinfcosf(m-1)

by = sin?fg(m-1)

cq = sin?g(m-1) + 2m(cosg-1)

8, = (m-1) cos@y (sin2g - sin2gy) + sin g (F-Fo) (m+1)
- sinfy (B51) (sin2g - sin2go) + 2m(cosg-cosdo)

a2 = by

by = #(m+1) + sindoos(m-1)

¢ = 2msing - g(m+l) - sinfcos@(m-1)

by = -cosfo(f-Fo) (m+1) - icosg (m-1) (sin2¢-sin2f,)

2
-(m-1)sing, (sin2¢ - sin2?@,) + 2m(sing - sinf,)

83 = cq
b3 = cp
c3 = #(m+1) + sinffcosf(m-1) - bmsing + 2mf
Co = (Egl)cosﬁo(sin2¢ - sin2g,) + (g-f,) (cosfo(m+1)+2m)
+ (m-1)singd; (sin?g - sin2gy) - 2m(1+cosd,) (sing
- sinf,) + 2msinf, (cosf - cosfy) (8)
Substitute the coefficlents in equation 8 into equations

5, 6, and 7 and we obtained the following simultaneous

equations
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ale—blTb+91Fbr = agbr
-b1Mp+b2Tp+C2Fpr = befr
CqMp+C2Tp+C3Fbr = C Pr (9)

Placing equation 9 in matrix form, the following results;

ay -bg C1
C; C2 C3

asfr b3 C1

|

My = 3] | PoPT bz C2| = PrCy

a1 a.Pr Cl

o
1
Ty = A -b1 boPr C2| = PrCy
Cqy CoPr C3
aq1 -by agPr
1
Fypr = & -b1 b2 bePr = PrCs

F, = pc; 1 ©2 CofT (10)

Solving equation 10 by digital computer, see
Appendix.I, and substituting the values of Mp, Tp and Fy
calculated from equation 10 into equations 1 through 4, we
can calculate the bending moment and torsional moment at
any section 9,i.e., Mg and Tg.

From equation 10 we understand that Mp, Ty and Fy

vary with ¢, ¥o, m, and r. These variations are expressed
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by coefficients Cp, Ct and Cr. The relationships between
the angle @ and the values of Cp and Cy for the load
acting at the mid-span are shown in Flgure. 5 and 6. To
obtain the maximum bending moment and torsional moment we
differentiate equations 1 through 4. Obviously the maximum
bending moment occurs at the section of & = fo.
max = Mo = MpcosPo + Tpsinf, - Fprsindo.

- Prey, | (11)

The values of Cpp varying with ¢ and m are shown in

Figure 7. _
Differentiating equations 2 and 4 and letting ?_'{g_: 0
-Mgcose - Tpsin® + Fprsing =0 °
Tand = zﬁm (0£8<d,) (12)

-Mpcosd - Tpsiné + Fprsind - cos@osinoPr

+sinf,cos6Pr = 0

_ Fpr-Tp-cosfoPr
T o) <
and Fo-Prsinfg (Fo< 6< ) (13)

Deflection

Neglecting the rotation of the sectlion due to the
torsional moment and the effect of deflectlion caused by
transverse shear, we can derive the equation of the
vertical deflection for & horizontally curved beam by the
moment érea method. |

EI1L = © M rsin(g 8)ds + m‘fe Tar(l-co (¢ 9 |

0 o o2 T o Tor(1-cos(z=6))ds (44

To solve for the vertical deflection under the load which
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is placed at the mid-span of the beam, we substitute

equations 1 and 2 into equation 14 and let ds=rde, 6=¢/2

g/2 g/2 o
NP E%Xo Merzsin(—g--e)de +%}1(o Ter‘(1-cos(g-e))de
r? M,z g sind
= 5 1-cos@) + (Tb-Fbr)( L -—)
r2
'+€%f [ Hb(cosg - 1) + (Tb-Fbr)(sing) + Fbr(g)
cosg( IEP(1 cos@) + (T,-F. r)(F+sing) /b4
TR T LI
' - Ty=FT
+ Fbrsing )= sing(:%p(ﬁ-sinﬁ) +-—E£i2»(1-cos¢)
- F r(cosg - 1) )}
b 2
Py |
= ——Cy4 (15)

BI
The vertical deflection calculated from equation 15 will
be the maximum deflection.only if the load is applied at
the mid-span of the beam° The downward deflection will De
teken as vositive. The values of Cy are plotted into curves

as shown in Figure 8.
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IV. HORIZONTALLY CURVED BEAM FIXED AT BOTH ENDS
AND SUBJECTED TO UNIFORM LOAD

Figure 9

Bending Moment and Torsional Moment

Because of the symmetry of the loading, the vertical

reaction Fb at support B 1s equal to:

Fb = W I‘ZQ

In Figure 9 the distance @G from the center of the curvature

to the center of gravity of arc BC 1s
oG = rsin%

~57r—
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BC = re

At any section C

’ 0
Mg = Mpcose + Tpsin® - FLrsiné + wre (£§%§§Z§ sin%2)
= Mpcose + Tpsing - (M8)rsine + wr2(1-cos8) (16)
Ty = Tpcos® = Mpsing + Fypr(1-cose)

0,
- wre (r-IEIB /2 c0s%2) = Tycose - iysine

+ E%_Q (1-cosB) - wr2 (6~sine) (17)

Applying Castigliano's theorem

2 2
J.§ET rdso 28J rde

al‘-'Ie _ : aTe EI ok -
S5 - cosd 5E§ = (-sind) m = o7 aTg = sinég
2Ty _

St =W@b = 0

o

E§_:5Z[Mbcose + Tystng - ¥I2 sing wrz(l-coseﬂcosede
m g i 2

. T.cos® - My.sind + ¥T2Z (1-cose
-75?150 [ BCO psin 5 ( 0s6)

- wr? (e-sine)]sinede = 0

which gives

2
Lwr [a (m41) + P (11cosp) - 1 Fsin®d(u-1)

-2sing(m+1) - sing cosﬁ(m-l)] 0 (18)

le[ﬁ(m + 1) - sing cos¢ (m- 1)]- —Lbsin ¢ (m -1)

Similarly, @.Fl =gy =

g
E%\S [Mbcose + Tysing - E%Z rsing + wrz(l—coseﬂsinede
o .
+2T g [T cos® - Mysing + wrff (1-cosB) - wr2(0-sind)lcossds
ET), |'P b 2

= 0
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which gives
- %Mbsinzﬁ(m-l) + 1 [g(m+1)'+ sinﬁcosﬁ(m-lﬂ

2°b
- lrz[%ﬁz(m+1) + %ﬁsingcosﬁ(m-l) - sin2¢(m-1)
2
+ mffsing - 2(m-1) (1-cos¢)]= 0 (19)
Cancelling the 1/2 and substituting as follows
a = ﬁ(m+1)

b = sin?@(m-1)

¢ = sinfcosg(m-1)

d = Plut1) + of (1+cosp) - Lo1nd(n-1) - 2sing(m+1)
-sinf cos@(m-1)

e = %ﬁz(m+1) + gsinﬁ cosf(m-1) - sing (m-1)

+ m@singd - 2(m+1j (1-cosfd)
Equations 18 and 19 become
Mb(a-c) - Tpb -wr2d = 0

M (b) + Tp(a+c) -wrle = 0 , (20)

Solving for Mp and Ty

be + d(a+g)
-aZ + bl + c<

Mb = -wrz

T, =—wr?2 bd + e(a-c)
b -a2 + p2 + o2

After substituting the values of the various terms for

a, b, ¢, d, e, the fixed end bending moment and torsional

moment become

v _ ool 2(m+1) sing - mf(1 + cos®)_ 4
Mp = Mrp =-wr 7(m+1) ensinﬁzm—lj . 1}

wr? Cp (21)

"
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T, = T =- 2 2(m+1) (J—COSVJ) - m¢ sin@' “
P fo =7 g(m+1) - sing (m-1) - %}

= wr? Oy (22)
Substituting the values of My and Ty into equations 17 and
18, Mg and Tg cna be expressed as follows

Mg = wr2 Cmo

Tg = wr? Cig (23)
The values of Mp Ty, and thus the values of lMg and Tg are
functions of m, § for a certain value of radius r. The
values of Cp and Cy varying with different m, g, are
plotted into curves as shown in Figure 10 and Figufe 11
respectively.

The maximum bending moment occurs at the middle of.
the span, that is, at the section of € = g/2

2¢

Mpnax = WM(g/2) = Mbcosg + Tbsing - E%_— sing

+ wrz(l—cos%)= wr?2 [Cmcosg + Ctsing - gsing
g 2 ,
+ (1-COSu) = wWr Cmm (21&)
The values of Cp, are shown in Figure 12.

By differentiating equation 17 with respect to 8 and setting

dTq
de

=0
2
- Tbsine - Mbcose + Eléﬁ sing - wr2 + wrzcose =0

(-Tp + WE%Q) sin6 - (liy-wr?) cosé - wr? = 0

v wr?2 R 1
Tane = Mo * 55mg o (Cp1) + oo

(wrzﬂ - TIp) (% - Cg) (25)



24

Deflection

By the moment-area method the vertical deflection can

be calculated as follows:
1 ° M rsin(g 8)d ~E:[e g
8 = ET o ) z-8)ds + 3 o Te(ds)r(l—oos(2 -8)
Under uniform load the maximum deflection occurs at the mid-
dle of the span,i.e.,when 0=@/2, Substituting equations 15

and 17 into the above equation the maximum deflection will be:

~cosd
nax =gt | Stne—( (Brsing) (c, 1)/ + (cp-f) (2220

+ m -m(1l-cos@)/4 )-cos g( Cm(l-cosﬁ)(1+m)/4

(1-cos®) (1-m) /4 + (ct-g) (#-sing+nd+msing) /4

2
+ (150032)(1+m) ) + m ( (cosg-l)(cm—l) + g )
+ sing_( 1-m+m(Cpy~1) (F-sing) /4 )]
3
WY (26)

= C
EX d

In equation 26, Cn and Ct are bending moment and torsional
coefficients'respeotively; the values of Cp and Ct are shown
in Figures 10 and 11. Upward deflection is negative and
downward deflection is positive. The values of Cq are plot-

ted into curves as shown in Pigure 13.
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V. ANALYSIS OF SHEARING STRESS IN HORIZONTALLY
CURVED BEAM

The existance of torsional moment makes the distri-
bution of shearing stress on a section of the curved beam
more complicated than that of a straight beam. Generally
speaking, two types of sections are used for horizontally
curved beams: (a) rectangular sections and (b) box or
closed sections. On either type of section the shearing
stresses are eventually composed of two parts; i.e., those
causzsd by vertical shear and those caused by tprsion.

This analysis will be concerned only with these two types

of shearing stresses,

Shearing Stress due to Vertical Shear

This type of shear can be calculated by the

formula

c
where Q =j;'ydA
. ]
The variations of shearing stress on a rectangular and a

box section are shown in Figure 14,
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The maximum shearing stress distributes uniformly along the
‘width at neutral axis. The shearing stress 1is signified
as positive when it acts upward and as negative when it
acts downward. Cn another hand, the positive shearing

force produces positive shearing stress. This 1s 1llus-

trated in Figure 15.

___________ pu— '/ﬂf
S Y o S o : N. A ! { }_} ) ;
______________ l {7 |
\ k} &(D
ELEVATION A-A B-B
+
= 1
V- DIAGRAM

Figure 15.
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As an example, in a horizontally curved beam of

rectangular section
v %
Vmax = 2 “on

Where V is value of shear force which can be determined as
follows
(1) When the beam 1s subjected to uniform load
Vg = Fy -wre.
(2) When the beam is subjected to concentrated load
-U’e = Fy (0= Oéﬁo)
—Ife = Fb - P (¢049é¢)
#¥This formula 1s used only for analysis. In practical
design v = . or V= Eg_ (1) for reinforced concrete

bdJ
rectangular beams.

Shearing Stress Caused by Torsion

Torsional moment produces pure shear which distributes
around the whole section and theoretically varies with the
polar distance measured from the centroid of the section

for gn isotropic material.

On rectansular section. Figure 16 shows the pattern

of shearing stress distribution on a rectangular cross

section ﬁhen the beam is subjected to torsion (9).
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The maximum values of shearing stress will occur at the
center of each side. The shearing stress at the mid-point

of the longer side, such és‘BA, has the maximum value:

I

o 1

(27)

In equation 27 the values of oL are listed in Table I.*¥

TABLE I. VALUES CFdl.

10 1.5 2.0 2.5 3.0 kO 60 100 e°
0.208 0.231 0.246 0.256 0. 267 0.282 0.299 0.312 0.333

h/b
ol

¥The valﬁes of ol in this table are extrapted from reference

(9), p. 271.
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The shearing stress at any point P on ;he longer side
of the section with a distance X from the mid-point A 1is
calculated by the formula
2, = Ta (1 - (352) | (28)
The shearing stress at point B will be proportional
to 4 and equal to
Tp = (B) (Ta) = ( D) ( o) (29)
The shearing stress at any point Q on the shorter
side of the section with a distance ¥y from the mid-point
B is
Tq = TB ((1 - (_%1_)2)

=2 ((1 - (—%"—)2>@A (30)

The pure shear will be slgnified as positive when 1t is
produced by positive torsional moment. That 1s, when
looking along the tangent of the beanm in a counterclock-

wise sense it flows in a clockwise direction.

On Box Section

The shearing stress on a box section, or on a hollow
tube of rectangular cross section, can be analyzed by means

of the membrane or "soap-film" analogy theory (9).
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T
2 aH H =-é—-g

the torsional moment
the area enclosed by mean perimeter of the wall
of the tube. For instance, the section 1n

Figure 17 will have the value of tat' equal to

bxh.

the height of the flat part of the surface along

the hollow portion of the cross section.



35

The shearing stress will be
\

T _ H _ _T
L = t - 2at
T, = T
AT ZTPm 3
TB = T
2D h t (31)

7

From equations 31 for a tube section the maximum shearing
stress is inversely proportional to the thickness of the
tube 't'.

Combination of Shearing Stresses due to Vertlical Shear
Force and Torsional Moment

Figure 18 shows the general pattern of bending
moment and torsional moment for a horizontally curved beam

subjected to uniform load.

BEREEEEN RNy
ELEVATION
42 - 42
. M
§°¢ e
6/‘ ¢/2 elo
25 -r 25

Figure 18 M and T - Diagram
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We assume that at 64 the torsional moment is equal to zero
in the portion 046 £961. Te is positive and produces a
positive shear flow around the section that is, the shear
will act upward on the inside face of the section and down-
ward on the outside face. In the portion eiézeérﬁ/z the
torsional moment is negative and cauées a negative shear
flow, that is, the shear will act downward on the inside
face and upward on the outside face of the section.

As both the bending moment and torsional moment vary
with 6, the combination of the shearing stresses wlll vary
with 6. |

T-v+? (32)
where |

T' - combined shearing stress

U = vertical shearing stress due to vertical
shear
T = pure shear due to torsional moment

The values of ‘é'can be summarized as follows.,

TABLE II.
Sign Combined shegrings stress ¢
Portion U (4 inside face outside face
0<6<6; - |+ T =T+ U 2 =C-V
p1<6<g/2 - - 2' =0 -V 2 =0 +V
g/2<e<(g - 01)|+ | + ?=2-v =T +V
(¢ - 6p=0<¢g + - 2V =72+7 2 =2-v
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In the same way the combination of shearing stresses for

different loading conditions can be obtained.

Combination of Shearine Stress and Bending Stress

On the top or bottom of the section, the vertical
shearing stress equals zero, but the shearing stress due to
torsional moment 1s not zero and can be calculated by
equation 29 and 31. This type of shear can be combined

with the fiber stress. The combined stresses are expressed

as follows

6 = S0 % / ()2 + T2 (33)

where

6, = the combined stress, tension is positive and
compression is negative
6g = fiber stress dﬁe to bending moment at ¢, tension
1s positive and compression is negative.
© = pure shear due to torsional moment at o.
As the value of 6y and g vary with 8, the combined stress

varies with €.
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VI. ANALYSIS OF CONTINUOUS HORIZONTALLY
CURVED BEAM

Figure 19. Continuous horizontally curved beam

A moment distribution method for the analysis of
continuous horizontally curved team 1s hére introduced. Be-
cause of the presence of torsional moment there will be
two sets of distribution and carry over factors, one for
bending and one-for torsion. The stiffness coefficlents of
e curved beam for bending moment or torsional moment are
interpreted as the bending moment or the torsional moment
that produces a unit rotation about the axis it rotates.

Applying Castigliano's theory and assuming that deformatlons
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at supports due to vertical force are negligible we can

derive the following equations.

2 U
2 My,
2

U

[\V]
=
log

and

2 Fp

=W, = 1
=¥p = 0
=z>b = 0
=W, = 0
=y = 1
=Ay = 0

Substituting the coefficients

we obtain

ag My - by Ty + Cq Fpr

- by Mp + b2 Tp + Co Fy

Cq4 Mp + C2o Tp + C3 Fp

and

ale-blTb+C1Fbr

- by Mp + bp Ty + Co Fy

C1Mb+C2Tb+C3FbI‘

in equation 8 into'34

= 2 ET _
= g)b = =
= 2 EI _ 2 EI
I‘-—‘)obr = TF
2 EI
=Ab T =0

Solve equation 35 for My Ty and Fy Te

Tb =

bp C3 - Cp

Iy

(34)

(35)

and 35

(38)
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- (b1Co+ bgC1)F

Fr =
b
Cybe- G2 P (39)
My &g - b, (b1C3 - C1Q3)_ C1(b2Cq1 + b1€2)= KT '
b2C3- Co2 C3by - Co2 T

( 2 (bpC3- C22) )

EI

T (40)

Solve equation 37 for My, Ty and Fyr.

M, = 2103 * C2C1

aiC3 - €12 P (41)

Fpr = - (P1C1 + 24Cp o
Ty = 2 ((21C3- C1 ) EL
by(a1C3- C12) - b1(b1€3+ €C2C1) - C2(b1C1+a1Cp) T
(43)

With ﬁb, Ty and Fy known, the bending moment and torsional
moment at any angle © from support B can be found by
equations 1 and 2 listed as follows

Mg = Mpcos® + Tpsing - Fprsiné

Tg =-Mpsin® + Tpcos® + Fyr(l-coss)
By making 6 = @, Mg = Ma, Ty = Ta will be the bending moment
and torsional moment at another support.

Expressing Ty, Fgr in terms of Mp

¥a = Mpcosf + Tpsing - Fprsinf = NMp(cos#

+ b1C3+ C1C (b1C2+ b2C1q)
bZCB‘ a2 sinf + C3b2- szrsinﬁ)

= Mplba | (44)
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Expressing Mp, Fpr in terms of Tp

Ma = Tb (2123.'- gzgj cosg + Sing + b101+ 3102 sinQ’)
13- €1 a1C3- €12

=Ty tp mg (45)

Expressing I in terms of Tg from equation 41

Mg = P1C3 * C2C1 o

=T
a1C3— C12 a a a Ta (46)

Expressing My, Fpr in terms of Ty, from equation 2

‘b4 Cat+ CHC
Tg = Tb[ 1°3 221 (-sin @) + cosy
a1C3~ Cq

- 2102 + b1C1 (4 _ ],= Tt
2105 — 012 o)™ o ba (47)

t

Expressing Tg in terms of Mg from equation 38

T, = P1C3 + C1C2 , _ ¢
= fg Data
baC3 - Co2 (48)

Expressing Ty and Fpr in terms of Mp from equation 2

Tg = Mb[- sing + (P1C3 + C1C2) cosyg

b2C3 - C22
_(yé%%Ej:E%%%) (1-cos¢)]= MpMpte (49)

Using subscript 1 indicating the left-hand support and
subscript 2 indicating the right-hand support of the curved
beam, we may summarize the stiffness factors and carry over
factors as follows.

(1) Stiffness factors

for bending moment
2 (b2C3 - C22) EI
Sm = 7{b,C3- ©3C2) -b1(b1C3+ C1C2) + C1(b2C] +h1b3)(r )
50
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_ .
for torsional moment
2 (agC3 - C12) EI

Sy = -
b T B,(a1C3 - €12) = B1(b1C3¥ C1Cz) = Cp(b1C1#arCz) T (51

(2) Carry over factors

Mpq = (cosff + biC3 + C41Cp sing + P1C2+ sz12 sing) (52)

tom = P1C3 + C2Cy cosg + sing + P1C1+ a1Cp
timg = P1C3 + C2C4 |
8.1C3 - 012 (5“’)
b4Ca + CoC
tpy = 2123 2-1 sing + cosg - 81C2 + b1Cy
a1€3- Cq2 ach_ Ci2 (1-cosg)
(55)
mj_tj_ - b1C3 + C%CZ
b2C3- C2 (56)
- bi1C3 + C1C boCot boC
mpty = 21~3 122 cosg - sing - P2C2+ b2Cy -
b2C3 - C22 C3b2~ C22 (1-cosf)
(57)
My = Mpmpq
M1 = Totomg
My = Tq1tqmq
Ty = Totyg
T1 = M1m1t1

Tq = Mpmpty (58)
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Mo = N4 mqo

Mo = T4 t1 mq

M2 = T2 t2 mz

T2 = T1 t12

T2 =Mz mp t2

T2 =M m t2 (59)
To apply the moment distribution method to the horizontally
curved beam design i1t would be necessary to review the
sign convention. Figure 20 shows the positive sign con-
ventlion that could be applied to the end of any horizontally

curved beam.

Figure 20. Positive sign conventicn.
By using this convention the following relationships

ajre obvious.

Wiy  =mHpg
t12 = t2g
tl m1 =-t2 mz

my ti =-mp to



Ly
mq fZA = -to my
ty mp = - mp tg . (60)
Figure 21 shows the application of the above carry-
over factors. The sign before the factor indicates 1its
proper sign. The stiffness factors and carry-over factors
for different values of 6 and m are calculated by digital

computer; see appendix, and listed in Table IIT.

-m,t, %\ s +myt,
‘t‘ﬁ\@ %& '
-tlm| +tamz

Figure 21. Proper signs for carry-over factors.
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COEFFICIENTS.

TABLE III. STIFFNESS ANKD CARRY-CVER

m Sp S¢ Mo1q tomq tim t21 mit1 motg

1 15.175 3.907 -0.505 -0.001 .254 .967 .065 .000

2 15.140 1.996 -0.507 -0.003 496 .935 ,065 .000
%3 15.106 1.359 -0.508 -0.007 .726 .905 .065 .,001
~|4 15,073 1.041 -0.510 -0.011 .945 ,877 .065 .001
4|5 15,039 .849 -0.512 -0.016 1.154 .850 .065 .001
<l 6 15.006 .722 -0.513 -0.021 1.354 .825 .065 .001
7 14.973  .630 -0.515 -0.028 1.545 .800 .065 .001

8 14.940 .562 -0.517 -0.035 1.727 .777 .065 .001

1 7.433 2.081 -0.521 -0.009 AL67 .877 .131  .002

2 7.368 1.123 -0.527 =0.023 .855 .777 .130 .004
ol3 7.305 .802 -0.533 -0.042 1,182 .695 .130 .005
Qb 7.28h 640 -0.539 -0.065 1.462 .626 .129 .006
5 7,184  ,542 -0.545 -0.090 1.706 .567 .129 .007
Mg 7.127 476 -0.551 -0.116 1.920 .517 .128 .008
w7 7,070 .428 -0.556 -0.144 2.110 473 .128 .009
8 7.015 .391 -0.561 -0.173 2.281 .435 .127 .010

1 4.789 1.524 -0.546 -0.026 .617 .755 .196 .008

2 4.700 .878 -0.560 -0.064 1.040 .596 .194 012
ol3 4.616 .657 -0.572 -0.107 1.353 .484 .193 .015
Wk 4,537 .543 -0.583 -0.154 1.595 .403 .191 .018
5 4,463 472 -0.594 -0.201 1.791 .342 .190 .021
g 4.392 423 -0.604 -0.249 1.953 .294 ,188 .024
w7 4,324 .386 -0.613 -0.297 2,090 .257 .187 .027
8 4.260 .358 -0.622 -0.344 2,210 .227 .186 .029

1 3.426 1.279 -0.582 -0.053 .700 .627 .261 .020

2 3.320 .781 -0.603 -0.118 1.093 .438 .257 .028
ol3 3.225 .604 -0.621 -0.186 1.352 .327 .253 .035
2|% 3.138 .509 -0.638 =-0.252 1.541 .256 .250 041
NERENTY L8 -0.652 -0.316 1.687 .209 .2h7 .0L6
& 2.983 .4O4 -0.665 -0.378 1.806 .176 .245 051
w|7 2,914 .371 -0.676 -0.437 1.905 .152 .242 056
8 2.849  .344 -0.687 -0.493 1.991 .136 .240 .060

1 2.580 1.153 -0.627 -0.089 .729 .509 .326 .040

2 2.466 .735 -0.655 -0.180 1.067 .319 .318 .054
N3 2.367  .579 -0.678 -0.266 1.275 .225 .312 .065
~|L 2.279 492 -0.697 -0.345 1.422 .174 ,307 .07k
W{s 2.200 .43% -0.713 -0.418 1.535 .143 .302 .082
w|6 2.128 .391 -0.727 -0.486 1.626 .125 .299 .089
7 2,062 .358 -0.739 -0.548 1.702 .115 .295 .095

8 2.001 .332 -0.749 -0.606 1.767 .109 .293 .100
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TABLE III (Continued)

b7

il Sm St M21 tomq timqy t21 mit1 m2tq
1 .655 ,894 -0,982 -0.358 .Ls9 ,237 .626 .L489
ol2 .576 .589 -0.986 -0.ko4  .509 204 .612 .505
nf3  .514 456 -0.988 -0.579 682 .,217 .,605 .514
Sl4  .465 .378 -0.989 -0.639 .739 .236 .601 .519
a5 .42h (324 -0.990 -0.683 .782 .253 .598 .522
6 .390 .285 -0.991 -0.718 .814 .269 .595 ,.525
™7 .361 .255 -0.991 -0.746  .840 .282 .594 527
8 .335 .231 -0.992 -0.768 .861 .293 .592 .528
1 .535 .854 -1,000 -0.399 .399 .254 .637 .637
°l2 .462 .,558 -1.000 -0.526 .526 .240 .637 .637
©|3 406 .430 -1.000 -0.601 601 .259 .637 .637
14,362 .354 -1.000 -0.652 .652 .280 .637 .637
LN .327 .302 -1,000 -0.689 .689 .298 .637 .637
w6 .298 .265 -1.000 -0.716 .716 .313 .637 .637
7 .274 ,236 -1,000 -0.738 .738 .326 .637 .637
8 .253 .,213 -1.000 -0.756 .756 .336 .637 .637
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VII. ILLUSTRATED EXAMPLES

Example 1. Application of the Moment Distribution Method

A continuous beam loaded uniformly is shown in
Figure 13. The loading and geometrical conditions are
given as follows. Apply the moment distribution method to

calculate bending and torsional moments at each support.
Vh=3%”f.\

W= 155/t
—

Given:
I4 =1
I, =2 I4 =2
m = g%. myg = mcp = 1
mpc = 2
Eap = EBC = Egp

Reg'd: Mp, Mp, Mg, Mp, Ta, Ty, Tc, Tp.
Solution:
From Table III the stiffness factors and carry-over

factors are listed as follows:



Span AB, CD Span BC

71 = 30° m=1 g . = 60° m=2
8¢ = 2,081 8¢ = 0.781

Moq = 0.521 Moq = 0.603
tomg = 0.009 to m = 0.118

to mpy = 0.467 t2 mp = 1.093

toq = -0.877 toq = -0.438

m2 t2 = 0.131 mp to = 0.257

mp t4 = -0.002 mp tq = -0.028

Distribution factor for bending moment

member Sm I/r D. F.
AB 7.433 x 1/20 = 0.37165 0.527
BC 3.320 x 2/20 = 0.3320 0.473

Total = 0.70365 1.000

Distribution factor for torsional moment

member St I/r D. F.
AB 2.081 x 1/20 = 0.10405 0.571
BC 0.781 x 2/20 = 0.0781% 0.429

Total = 0.18215 1.000
fixed end moments from Figure 10.
Kap = Mgy =wr2 Cp = 1.5 x (20)% x 0.0231 = -13.9
K - ft.
Moo = -Hcp = 3.0 x (20)% x 0.0971 = - 116.5 k - ft.



fixed end

Tag
Tye

= Tpa =
=TCB=

torsional moments from Figure 11.

r2 ¢t = 1.5 x 202 x 0.0005 = 0.3 k - ft.

50

3.0 x 202 x 0.00232 = 2.78 k - ft.

Because of the symmetry of the beam, we only operate the

method for the left-half,.

A B
+0.52] [o.527 [o.¢13] +0.603
M “13.9 + 54 +139 -116.5 1485
[ +39.5 t+15.4 - 292 +138
t256 t 4.4 - 83 +39
+ 1.3 - 2.4 <+ 1.1
t 0.4 - 07 ¢+ 03
+ 0.2 + 08 - 1.2 +02
+758 + 141 -1583 +41.8
+905 - 90.5
- ~
a || Q
o o
+ ]
% ° © '§
o 4 N B
) o ° °
A + T ’
-0.877 [e57i | 6429] -c. 438
T | te3 +1.44 to0.3 [ +2.718 +1.08
=15 +9.9 |-11.4
- 0.2 + 1.9
-4 +0.27 - 0.4] 40.20
t 171 +10.2 [-13.19 +1.28
+11.91 -1.9]
Figure 23. Moment distribution method
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In Figure 23 the distribution and carry-over4of the
bending moments are shown at the top and are primarily
carried out in a manner similar to that for a straight beam.
The distribution and carry-overs of the torsional moments
are shown at the bottom of the figure. To illustrate how

to carry out the distribution and carry-overs, we consider

Joint B.
The unbalanced moment is - 116.5 + 13.9 = - 102.6
k - ft.

The distributions are:

]

Mpa

[}
Mpe

The first carry-over from joint C is (- 48.5) x

0.527 x (+ 102.6)

+ 54,1

0.473 x (+ 102.6) = + U48.5

0.603 = 29.2.
The distributions of this carry-over are:

0.527 x (429.2) = +15.4

Mpa

Mpe = 0.473 x (+ 29.2) = + 13.8.

Then the next carry-over from Joint C is calculated
and distributed and so on.

The total distributed bending moments Mpas and Mpc
are added up and equal to 75.6 k¥ - ft. and 67.6 k - ft
respectively. They are then carried over to the torsional
moment area and recorded. |

These carry-overs are:

from Mpa = 0.131 x (+ 75.6) = + 9.9
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from Mpg' = (- 0.257) x (+67.6) =-17.4.

Carry over from Jjoint C_@&B; (- 0.028) x (- 67.6)

=+ 1.9.

The first distributions for torsion are

Tpa' = - (0.571) x ( 0.3 + 9.9 +2.78 - 17.4 + 1.9)
=+ 1.44

Tgc' = (0.429) x (2.52) = + 1.08,

The first carry-over from joint C 1is
(- 0.438) x (+1.08) = - 0.47,
which is distributed to spans BA and BC.

Tpa' = (0.571) (+ 0.47) = + 0.27

+ 0.19.

Then the total distributed torsional moments are
carried over back to the bending moment area. One cycle
of distribution and carry-over is completed. For different
accuracy requirements, these cycles can be carried out any
number of times. But it is found that because the values
converge rapidly, not more than two cycles will give
sufficient accuracy for deslgn purposes.

Then, the total distributed bending moment and
torsional moment are carried over to the end support A
as follows:

MA:A

fixed end moment 13.9
+39.5

carry over from MﬁA = 0.521 x (+ 75.8)

0.0

]
carry over from Tpa 0.009 x (+ 1.71) .
y B e

total



Ta:

fixed end torsional

carry over from Mgy

'
carry over from Tpa

moment

"

(-0.002) x (+ 75.8)
(-0.877) x (+ 1.71)
Total

53

+0.3

-1.5

-0.2

-1.4
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EXAMPLE 2.

P=I5K

Figure 24,

A reinforced concrete bow girder 1is designed to resist
the loads shown in Figure 2L, Select a proper section and
determine the required reinforcement. Polsson's ratio for

concrete 1s 0.125, E = 2.25G, fg = 20000 psi, fo = 3000 psi.
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Solution
By Working Stress Design method
1. Bending moments and torsional moments

assume d/b = 2.0

_ba3 _ 2 b
I= 12 3 b

J = % (d - 0.63 b) b3 = %ﬁ (1.37) =-0.457 b*

From equations 10, 22 and 23
My =P r Cy Ty, =P rocyg Mpax = P T Cpp

Mp = wI‘2 Cn Ty = wr Cy Mmax= w Tl Cmm

From figures 5,6,7,10, 11, and 12, with m = 3.285

For uniform load

Cm = 0.233 Ct = 0.018 Cmm = 0.085
For concentrated load
Cp = 0.229 C¢ = 0.022 Cmm = 0.176

Try d = 281in,b = 14 in,, the overall depth =28 + 2
=30 1in.
D.L. = iﬂ%ﬁéft x 150 = 425 1b/ft. = 0.425k/ft.
Fixed end bending moment
My = - (0.425 +1) x 20% x 0.233 + 15 x 20 X 0.299
= - (132 + 89.6)
= - 221.6 ft - kips.



Mid-span bending moment
M, = 1.425 x 202 x 0,085 + 15 x 20 x 0.175

Fixed end torsional moment
T = -7, = 1,425 x 202 x 0,018 + 15 x 20 x 0,022

B A
10.2 + 5.7

16,9 ft-kips.

Check the assumed d value

I
/¥y
4 =/ Txorg /2

f, = 1350 psi k = 0,383 j = 0.872

d = = 28,2 in,
/ﬁ 236 x 14

Use d = 29 in. and b = 14 in,

2. Determine the reinforcement required to resist
bending moments.

(1) at support
M 221.6 x 12 5
A5 = 7 3a ~20%0.572xzg = 5o n
2

Use 2#8 and 25711 round bars, A = 5.12 in .,

(2) at mid-span

221,95 ’
Use 3 #8 round bars, Ag = 2.37 in .
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Shearing stresses

(1) at support

2
From Table I. with h _ &2 = 2.1 o = 0,25
b 14
1 7 1 16.9 x 12000

T o= F () = (s )

b h 0.25 14 x 29

wrd
V = 0.5P + >

n

T
0.15 x 15 + 1.425 x 20 x m

7.5 +22.4 = 29,9 Xips.

_ _V _ 29900 ___
v = F{ = 12‘ < 29 - 7)07 pSi°
!

The combined shearing U=T+ v = 290.7 psi.

n

Tne allouable shearing stress

Ve = 1.1 [T = 60 psi

The shearing stress carried by the web reinfor-

cerent will be
V' =T- v, = 290.7 - 50 = 230.7 psi.
i stirrups will be used for the web reinforcement

2

T A 2 x 0.20 = 0.40 in",

‘7’

The required stirrup spacing is
A fyd AL, 0.34 x 20000

vibd  v'' b~ 230.7 x 14
Use s = 3 in.

= 2.7 in.

(2) in span 0<6< J/2 measured from support B.

‘From equation 27, 7 = 120007y . = 8.6T6
0.248 x 29 x 14
From equations 2 and 16
2 .
= M 5] T = - - -si:
Te_ _hb31n9 + -bcose + -br(l cosé) " (0-sind)
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-(221.,6-1.425 x 202)sin® + 16.9c0s6

TQ =
+29.9 x 20(1-cos8) - 1.425 x 20%0
= 348.Lksin® + 15.9cos6 + 598 -598co0s6 - 5700
= 348.4 sin® - 581.1 cos® + 598 -~ 57060
To = 8.6 Ty

2980s1in® -49%0cos6 + 5130 - 43908

v 1000 . 2 .15

Fb - Wro
29.9 -1.425 x 208 = 29.9 - 28.5 ©
Vo = 2,45 V = 2.,45(29.9-28.5 8) = 73.5 -70.2 8

<
]

The combined shearing stress will be
=7+ v = 2980sin6 -4990cos6® +5204 - 4950 &
The maximum shearing stress will occur at 9=27O54'.

T'hax = 2980 x 0.4679 - 4990 x 0.8833 + 5204
- 4950 x 0.4305 = -195 psi.

vl ={'-v, =195 - 60 = 135

# 4 stirrup spacing is
_ 0.4L4 x 20000

135 x 14 = 4,65 in. Use 4.5 in,

For detaills of reiforcement see Figure 25.
L, Deflection
E, = 3.3 W2 /T¢ = 3,150,000 psi
 Eg =29,000,000 psi n= 29/3.16 = 9.2
Use n =9
The moment of inertia for the transformed

section is calculated as follows.



e o—— - —€- J
A. N\ ‘ ~_
As 2 Aq
d t 3/11

AS al A’

t///f\\G ‘ —l—vafij:214;

Ca— T

Section at support Section at center

Figure 25.

In figure 25 let

Ag
Ag
P

U

area of steel near tension surface

area of steel near compressive surface

1]
As pr= 245
bt bt

distance from compressive surface to gravity
aexis of transformed sectlion
moment of inertia of transformed section

Io + ( n-1 )Ig
£/2 + P(n-1")d + P'( n-1 )d’

1 4+ P(n-1) + P'( n-1)

% b[U3 + ( t-U )3]

2 2
Ac( d-U ) + AL U-d" )

59
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At support the moment of inertla in denoted as Itl'
1.58 5.12

T S LA 1 TR
a' = 2 in, d = 29 in, (n-1) = 8
° + 0087 + 00191"'
y = M3 - 13.3
1 4+ 0,03 + 0.0968 L
Ic=14 (2540 + 5100)/3 = 36100 in .
I_ = 1.58 (15.2)2 + 5.12 (11.8)2
It1 = 35100 + 8 x 1071 = Liy170 1n4.
At the center, the moment of inertia 1s It2'
_ 237 _ ) . 1.8
P IE_§T§1 = 0,005% P —-IE—E—Ei = 0,00376
14,5 + 1.3 + 0,05
U = = 14.8
1 4+ 0,0436 + 0.03 '
I, = % x 14 (3220 + 4290) = 35500 1n4.

I_ = 2.37 x 200 + 1.58 x 164 = 733 in".

It2 = 35500 + 8 x 733
= 41350 1nL.
The moment of inertia for calculating the deflection

at the center will be the average value of Iy and

VItZ' .
I,= (I, + Iyp)/2 = 42765 in 5.3 it
From equations 15 and 16 A =-——-Cd +—C42
er 41 g1
From Figures 8 and 13
for concentrated load Cq1 = 0.0253
for uniform load Ca2 = 0,0198



=

2£x1ﬁ

3160 x42755

) x 15 x 0.0253

1.425 x 20" X 124
+ (73180 x 42765 ) x 0,0193
0.039 + 0.7
0.739 in. < L/360. O0.X.
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. =
4-9» SECTION A SECTION B

LCONCRETE IS OF 3000 PsS.I. IN
STRENGTH REINFORCEMENT TO

BE OF 50000 pS.I IN YIELD
STRENGTH,

Figure 26.

Horizontally curved girder.
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VIII. CORCLUSIONS

The main difference in the analysis and design
between g horizontally curved beam and a straight bean
subjected to vertical loads is the presence of torsional
moments, which, to some extent, will have influence on the
bending, shear and deflection. The magnitude of torsion in
a horizontally curved beam is a function of the span angle
g and 1t is also noticeably influenced by the shape of the
section. This influence can be espressed by the ratio of
flexural rigidity to the torsional rigidity, i.e., by the

EI
term m = GJ *

From the results of the theoretical analysis, see

Figures 5 through 8 and Figures 10 through 13, the following

conclusions are obtained.

1. As the ratiom increases, the fixed end bending
moment, the fixed end torsional moment and the vertical
deflection increase, but the maximum Spban moment decreases,

2, Bending moments, torsional moments and deflection
increase as the span angle ¢ increases up to 1800. The rates
of increase “ecome larger as the span angle ¢ increases,

3. Comparing the stralght beam of a length equal to
gr the following statements are made. %hen both straight
beam and curved beam are subjected to the same amount of ver-
tical load, a straizht beam has smaller fixed end bending mo-

ment, smaller vertical deflection, and greater maximum span



moment. When the span angle @ of a curved beam is small
( less than 150 ), all the variables such as Mo Ty Mooy
and will be close to that of a stralight beamn.

L, The analysis of multi-span continuous beans curved
in plan can be made without difficulty by the introduced
moment distribution method, if both fixed end bending moments
and torsional moments are known. The mathematical operations
are not difficult but attention should be paid to the sizns
of the carry-over factors.

As long as the material is homogeneous and isotropic
as assumed, the formulas derived in this paper can te used.
In the preparation of this paper it was found tnat there were
many factors affecting the actual behaviour of the curved
beam, such as the degree of curvature, the degree of fixity
at support, the shape of section and so on., This analysis
is only expected to be a theoretical approach to solving

the problem of a horizontally curved beam and should be ve-

rified by more experiments.
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. The following notations used in the programs repre-

sent those used in the text.

Programs Text
TX g
TXZ %o
P,M m
CTD, DTXZ Ca
CMC Cme

CTC ' Cto



10

Lo DTXZ=3Ixs
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PROGBRAM 1. CONCENTRATED LOADED CURVED BEAM

PROGRAM WON

REAL I, MMAX

CONCEKTRATE LOAD

DIMENSION A(3,3),X(3),B(3)

EQUIVALENCE (X,B)

KCOUNT=1

WRITE(10,10)

FCR¥AT(1H1,////////)

DO 60 III= 30 180,30

TX=111*0.01745329

DO 60 1MN=1,8

M=MN

DO 70 JJ=15,180,30

TXZ=JJ*%0.01745329

IF (TXZ.GT.TX) GO TO 70

CALCULATICN OF CONSTANTS
A(1,1)=TX¥(M+1,)-SIN(TX)¥COS(TX)*(li-1.)
A(2,1)=SIN(TX)*%2%(M-1.)

A(3,1)=SIN(Tx)** 2*(“-1 ) +2 . %1% (COS(TX) -1.)
A(1,2)=4(2,1)
A(2,2)=TX*(M+1.)+SIN(TX)*COS(TK)*(M—1.)

A(3,2)=2 ,¥F*¥SIN(TX) -TX*(M+1.) -SIN(TX)*COS(TX)*(¥-1.)
A(1,3)=A(3,1)

A(2,3)=A(3,2)
A(3,3)=TX*(M+1,)+SIN(TX)*COS(TX)*(M~1.) -4, *M*¥SIN(TX)
142, ¥*TX

B(1)=(M-1.)%COS(TXZ)*(SIN(TX)**2
2-SIN(TXZ)*¥2)+SIN(TXZ)*(TX-TXZ) :
FE(M+1, ) =(SIN(TXZ) ¥ (H-1.)/2.) % (SIN(2.%TX) -SIN(2.%¥TXZ))
L+2 ,#11%(COS(TX) -COS(TXZ))
B(2)=-CC3(TXZ)*(IX-TXZ)*(l+1.) ~COS(TXZ) *(M-1)*
5(SIN(2.%TX)-SIN(2,%TXZ))/2.-(¥-1,)*SIN(TXZ)*(SIN(TX)
6%%2-SIN(TXZ)**2)+2 . *M¥* (SIN(TX) -SIN(TXZ))
B(3)=(M-1.)*COS(TXZ)*(SIN(2.%TX)-SIN(2.%¥TXZ))/2.
7+(TX-TXZ)*(COS(TXZ)*(M+1.)+2.%¥M) +(M-1.)*SIN(TXZ)*
S(SIN(TX)¥#2-SIN(TXZ)*%¥2) -2 *N*(1.4COS(TXZ) ) *(SIN(TX)
9-SIN(TXZ))+2,#M*SIN(TXZ) ¥COS(TX) -CCS(TXZ))

CALL SIMQ(A,B,3,0.00001,0)t
MMAX=X(1)%COS(TXZ)+X(2)*SIN(TXZ)-X(3)*SIN(TXZ)
WRITE(10,101)III,JJ,M,(X(I),I=1,3),MMAX

IF(TXZ.EQ.TX/2 40
( ?lli/é ) (1? (T&*‘QII\(.LK))/[« +(X(2)-X(3))*

1(1.—COS(T¥))/4 ) O8(TX/2.)#(X(1)%(1.-C0S(TX)) /L.
2+(X(2)- X(3)) (Tx/u ~3I¥(TX)/h.))

341% (X (1) #(COS(TK/2. )=1. )+(X(2)-%(3))*3Iu(TL/2.)+X(3)
L (14/2.))-1%C03(T%/2. )% (~4(1)#(1.-203(TX) ) /4. +(x(2)-
54(3) )% (TX4STH(TK) ) /. +:5(3)%STe(T/2, ) ) =u*SIH(TL/2.)
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6% (=X (1)¥(TX~-SIH(TX) )/ 4.+ (X(2)-4(3))*
7(1.-COS(TX))/b.~-X(3)*(COS(Tx/2.)=1.)
WRITZ (10,101) III,JJ,#,(X(I), I=1,3), KiAX, DTXZ
KCOUNT=KCOUNT+1
IF(KCOUNT.EQ.49) 50, 70
50 WRITE( 10, 10 )
KCOUNT=1
101 FORFAT(I 12, I5.1, 3F7.4, 2F9.4)
70 CONTINUR
60 CONTINUE
END

*SINQ is a subroutine program for solution of
simultaneous linear equation. For detail of this program
see Ho, F4-INDU-SIKQ, Computer library, Orezon State
University.



69

PROGEAM 2, UNIFORNLY LOADED CURVED BEAM

PROGEAN WON
UNIFORi! LOAD
KCOUNT=1

WRITE(10,10)

10 FORMAT(1H,///////)

50

20
30
4o

DO 40 I=15,180,15

TX-1%0.0174533

Do §) J=1,8

P=J

DO 30 K=16,181,15

KK=(X-1)

TXC=KX*0,0174533

IF(TXC.GT.TX) GO TO 40

CH=—=((2.,%(P+1.)¥SIN(TX) -P*¥TX*(1,+C0S(TX)))/
1(TX¥(P41.) -SIN(TX)#(P-1.))-1.)

CT=-((2.%(F+1.)%(1.-COS(TX))-P¥TX*#SIN(TX))/
2(TX*(P+1.) -SIN(TX)*(P-1.))-TX/1.)

CMC=CK*COS (TXC)+CT*SIN(TXC) -TX*SIN(TXC)/2.4(1.-COS(TXC))

CMM=CK¥*COS(TX/2.)+CT*SIN(TX/2.) ~(TX/2.)¥SIN(TX/2.)
3+(1.-COS(TX/2.))

CTC=CT*COS(TXC) -CM*SIN(TXC)+TX*(1.-COS(TXC))/2.
L_(TXC-SIN(TXC))

CTD=SIii(Tx/2.)% ((TX+SIN(TX))*(Cii=1.)/b.+(CT-TX/2.)*
1((1.-COS(TX))/l.+P=-2%(1.~-CO3(TX))/b.)+SIi(TL/2.)*
2(1.4P)+P*(Clim=1, ) ¥ (TX~-SIK(TX))/b.~TX*P/2.)-C0OS(TX/2.)
3 (Clt (1. =CO0S(TL) ) ¥ (1.-2)/8.-(1.-CO3(TX) )#(1.-P)/ L.+
L(CT-TX/2.)# (TX=SIN(TX)+P*TL+P*SIi(TX))/b.+(1.~
5CO0S(TX/2.) )% (1.4P))+P=*((COS(TL/2.)~1.)%(Ci=1.)
6+TX#*%2/8,

WRITE(10,20) I,P,XX,CHK,CT,CiC,CTC,CTD

XCOURT=XCOUNT+1

IF (XCOUNT.2Q.51) 50,30

WRITE(10,10)

KCOUHT=1

FORIAT(I5,F5.1,15,5F0.4)

CONTIHUE

CONTINUZE

STOP

END
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50

20
30

70

PROGRAIl 3. NOMENT DISTRIBUTION FACTORS FOR
HOBIZONTALLY CURVED EBEAM

PROGRAIT WON

REAL l21,M1T1,M2T2

MOMENT DISTRIBUTION FACTORS

KCOUNT=1

WRITE(10,10)

FORMAT(1H1,////////)

DO 30 I=15,180,15

TX=I%0,0174533

DO 30 J=1,8

P=J

A1=TX¥(P+1.,) -SIN(TX)*COS(TX)*(P-1.)
B1=SIN(TX)*¥*2%(P-1.)
C1=SIN(TX)*%2%(P-1.)+2.%¥P*(COS(TX)-1.)

A2=11

B2=TX*(F+1.,)+SIN(TX)*COS(TX)*P-1.)

C2=2 ,¥P*SIN(TX) -TX*(P+1,) -SIN(TX)*COS(TX)*(_-1.)
A3=C1

B3=C2

C3=TX*(FP+1,) +SIN(TX)*COS(TX)*(P-1,) -4 ,¥P*SIN(TX)+
2., ¥P¥TX

SH=2,%(B2¥C3-C2%%2) /(A1¥(RB2%C3-B3%C2)-B1¥(B1#C34C1%*CZ)
1-C1%(B2%C1+B1%C2))

ST=2,%(A1%C3-C1%%2) /(B2¥(A1%C3-C1¥%2)
2-B1¥*(B1¥C3+C1%C2) -C2% (B1¥C1+4A1%C2))
M21=COS(TX)+(B1*C3+C1¥C2)¥SIN(TX)/(B2%C3 C2%¥%2)
F+{B1¥C2+B2¥C1) *SIN(TX) /(C3%#B2-C2%#2)
T2M1=SIN(TX)+(B1¥C3+C2%C1)*COS(TX)/(A1¥C3-Ca¥*¥%2)
B+(B1¥C1+A1%¥C2)¥SIN(TX) /(A1#C3-C1¥%2)
T111=(B1*C3+C2%C1) /(A1%¥C3-C1%*%2)
T21=COS(TX)-(B1¥C3+C2%C1)*SIN(TX)/(A1*C3-C1%%2)
5-(A1%C24B1%C1)%(1,-COS(TX))/(A1¥C3-C1¥%2)
M1T1=(B1¥C34C1%C2)/(RB2%C3-C2¥%2)
M2T1=-SIN(TX)+(B1¥C3+C1%C2)*CC3(TX) /(B2%C3-C2%%2)
6-(B1%C24B2%C1)*(1,-COS(TX))/(C3%B2-C2%%2)
WRITE(10,20) I,P,SM,ST,M21,T2M1, T1M1, T21,MI1T1,M2T1
KCOUNT=KCOUN T+1

IF (XCOUNT.EQ.46) 50,30

WRITE(10,10)

KCOUNT=1

FORMAT(19,F5,1,8F6.3)

CCNTINUE

STCP

END



