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INTRODUCTION

It has been found advantageous to use horizontally

curved beams or bow girders in building design and bridge

design. Recently many architects and designers have

become more interested in using them.

The difference in analysis and design between the

beams curved in plan and the straight beams is mainly due

to the presence of torsional movement induced by vertical

load. Therefore, for such members, it is necessary to

design for internal bending moment, and twisting moment as

well as transverse shear.

The capability of resisting torsional moment is

expressed by torsional rigidity which is defined as the

torsional moment which, when applied to one end which is

free to rotate, produces a unit angle of twist with respect

to the other end assumed to be completely fixed (2). The

greater the torsional rigidity, the greater the resistance

to the torque. The value of torsional rigidity depends

on the shape of the section. It was found that the box

sections have comparatively large values of torsional

rigidity (7)and are widely used in bridge design. How-

ever, the rectangular section is also commonly used.

Horizontally curved beams, either made of steel or



2

reinforced concrete, can be continuous or monolithic at

both ends. In this paper, equations for calculating

bending moments, torsional moments;shearing stresses and

deflections are derived. These equations are solved by

digital computer for different types of loading conditions

and geometrical conditions. For details of the computer

programs, see Appendix I. For the designer's convenience,

tables and charts are provided. To solve for the problem

of continuous curved beams, a moment distribution method

is introduced.
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II. ASSUMPTIONS, NOTATIONS AND SIGN CONVENTIONS

Assumptions

In this analysis and design of horizontally curved

beams, the following assumptions are used:

(1) Material is homogeneous and isotropic.

(2) The material has linear stress-strain relation-

ships, so the principle of superposition is

valid.

(3) The cross section of the beam is uniform and

small compared with the radius of curvature.

Notations

M =

T =

F =

r =

Bending moment about radial axis. Its

subscript indicates its location.

Torsional moment. Its subscript indicates

its location.

Vertical force. Its subscript indicates

its location.

radius of curvature of the beam.

0 = Angle spanned by the beam.

= Angle distance of the section, where the

concentrated load acts, measured counter-

clockwise from the support.
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E =

G =

4

Angle distance of any section of the beam,

measured counterclockwise from the support.

Modulus of elasticity in tension or compression.

Modulus of elasticity in shear. G = E/2 (1 +A4)

A = Poisson's ratio.

Moment of inertia of the cross section of the

beam about centroidal axis.

Polar moment of inertia of the cross section.

EI/GJ. See later explanation.

Angle of rotation due to bending moment.

5
= Angle of rotation due to torsional moment.

A = Vertical deflection, its subscript indicates

its location.

V = Shear force.

u- = Shearing stress due to vertical force.

T = Pure shear due to torsional moment.

P = Vertical concentrated load.

w = Vertical uniform load per unit length of the

beam.

Cm = Fixed end bending moment coefficient.

Ct = Fixed end torsional moment coefficient.

Cf = Fixed end shear force coefficient.

I =

J =

m =

co =



5

Explanation of m:

The value of m, which depends. on the material and

shape of the section, can.be calculated in the following

manner:

EI EI

GJ

2(1;4)1
m =

2 (1 +f)

For rectangular section, Figure la, I = bh
3
/12. Where

b, h are the dimension of the section parallel and perpendi-
1

cular to the radial axis respectively. J=3(h-0.53b)b
3
,where

h is the long dimension and b is the short dimension of the

rectangular section. If the section is so placed that the

short side is parallel and the long side is perpendiqular
(1+4),h'

to the radial axis as shown in Figure la, m=
2192(h-0.63b)

For sections composed of narrow rectangles, such as channels,

1 3
I or T sections, the value of Jwill be J=-7-Ehb . Fig.lb.

k,2

For box section as shown in Figure lc. J- I(ds/t). (3)

In this equation, a is the shear area and equals to the

product of b and 14 ds is a short increment of length, for

ti, t2 as shown in Fig.lc ds=h, for t3, t4, ds=b.

4 1

h

Fig. 1a

hr

hj

Fig. lb

1,3

t3

It&

Fig. is
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Sign Convention

Bending moment and torsional moment are expressed

by moment vectors. Vertical force acting upward is repre-

sented by a solid circle O. An open circle 0 represents

the vertical force acting downward.

Bending moment will be taken as positive, if when

looking outward from the center of the curvature it pro-

duces clockwise rotation about the radial axis. Torsional

moments will be taken as positive, when looking along the

tangent of the beam in a counterclockwise direction it

produces a clockwise rotation. Vertical force will be

taken as positive when it acts upward. Figure 2 shows

the sign convention used in this analysis.

Figure 2. Sign convention.
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III. HORIZONTALLY CURVED BEAM FIXED AT BOTH
ENDS AND SUBJECTED TO CONCENTRATED LOAD

Statical analysis

Figure 3a shows a beam composed of two equal straight

portions at right angles, rigidly connected at the point

of intersection B and subjected to a force P which is

perpendicular to the x-y plane.

lz

Figure 3a. Figure 3b.

Load P will produce bending moment Mx and My at

point B. The bending moment My about the y -axis will simul-

taneously cause a torsional moment Ty rotating about the

axis of BA, i.e., y-axis. Similarly, the bending moment

Mx about the x-axis also has a torsional effect Tx to the

portion BC, i.e., the x-axis as shown in Figure 3b.

By the same token, in a horizontally curved beam
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if Me is the bending moment at any section 8 about the

radial axis at that section, it can have a bending moment

component Mox and a torsional moment component To about

the x-axis, as shown in Figure 3c.

In Fig. 3c Similarly, at the same section e, a

torsional moment To also has a bending moment about the -

tangent of this section and a torsion component, as labeled

Moz and Tex, about the x-axis.

Figure 3c.

Therefore, if a bending moment Mxy on the x-y plane is

expected to exist it must be accompanied by a torsional

moment rotating about the z-axis and a certain amount of

loading perpendicular to the x-z or y-z plane should be used.
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In a transversely loaded curved beam, since there is

no external load acting horizontally, there will not be

any moment rotating about the z-axis. For such a loading

condition in a horizontally curved beam the moments

existing will be only those which bend or rotate in the z

direction and perpendicular to the x-y plane.

Bending Moment and Torsional Moment

Figure 4.

As shown in Figure 4, a concentrated load acts at

the point D with an angular distance 00 from support B.

Me and Te represent the bending moment and torsional

moment at any section C with an angular distance 0 from B.
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For portion BC (04.:-94.40)

Mo = Mbcos0 + Tbsin8 - Fbrsin8 (1)

To = -Mbsin8 + ;cos() + Fbr(1 - cos()) (2)

For portion CA(004 8E50)

Mo = Mbcos8 + Tbsin8 - Fbrsin8 + Prsin(8 - 00) (3)

TG = -Mbsine + TbcosO + Fbr(1 - cos8) - Pr(1-cos(8-00))
(4)

Applying Castigliano's theorem with U representing the

strain energy;

U = f 0102rd° +f(T0)2
2E1 2GJ

At support BtJb =Tip .-Z1b = 0

au au au
aTb a7";amb

DU = 0
amb

1 r ma me (To Te 0
EI Tr-j 7711777

=

With m EI amo aTe - sin 8
5713

EI
[Y(Mbcose + Tbsin 8 - Fbrsin8) cosorde + mj

0.0

0

Mbcose + Tbsin9 - Fbrsin8 + Prsin(6-0)]cosOrde
[

+mj00

(-Mbsin0 + TbcosO + Fbr(1-cos8))(-sinerde)
0

+71250 0-Nbsine + Tbcos0 + Fbr(1-cos0)-Pr(1cos(e-Oo)

00

(-sinOrde)J = 0

EI[ M ..?cos20(149 + mM4Cdsin20(10 + TfsinecosAdO
EI b 0 o b

+mT13.5° (-cosesinGdO) - Fbrj °(:) sinGcosed0
o
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+Florm*osOsinede - Flomr5s0 inGdO +Pr10 sin(0-00)cosOde
0 wo

+Prmjd (1-cos(0-00))sinede = 0
o

EI D 2
Ek(g pinag m! mEknag) Tb(4(cos20-1)

li(cos(20-1)) 521:(1-m) (cos20_1) Fbmr(cos0-1)J

#= 'ED (m-1) cos00(-11(cos20-cos200))

pi!
EI 'si3O

[(0-0 (gig) sin20-sin200]
2 2o ) 4

+
EI
mPr

2
(cos0-cos00)

2L
r2

Mb(°(m+1)
- sinOcos0(m-1)] 21E:1 Tb(sin20(m-1))

+2E1
Fb(sin20(m-1) + 2m(cos0-19

= .111[(m-1)00s00(sin20-sin200) + sin00(0-00) (m+1)
2E1

- sin0o (121-1)(sin20-sin200) + 2m(cos0 - cos00)] (5)

Similarly

By = 0 we obtain
aTb

2E1
Mbsin20(m-1) + 7ET I 0(m+1) + sinOcos0(m-1)]

+ gch[2msin0 - 95(m+1) - sinOcos0(m-1)]

= cos00(0-0) (m+1) - 2 os00(m-1) (sin20-sin20o)

-(m-1)sin00(sin20 - sin20 )+2M (sinO -sinOo) (6)

(9UBy = 0 we obtain
c5-b

r2.

2E1mi-in20(m-1) + 2m(cos0-1)] + TI2msin0-0(m+1)
uL" 2E1
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- sin Ocos0(m-1)] + r3Fb[0(m+1) + sin Ocos0(m-1)
2E1

- 4msin0 + 2m0 1(11-1)cos00(sin20-sin20)

2m(l+cos00) (singf - sin 00) + 2msin00(cos0-cos00)]

(7)

Let

al = 0(m+1) - sinOcos0(m-1)

bi = sin20(m-1)

01 = sin20(m-1) + 2m(cos0-1)

ao = (m-1) coao (sin20 - sin200) + sin 00 (0-00)(m+1)

sin00 (121) (sin20 - sin200) + 2m(cos0-coao)

a2 = bi

b2 = 0(m+1) + sinOcos0(m-1)

02 = 2msin0 - 0(m+1) - sinOcos0(m-1)

bo = -oos00(04 ) (m+1) - 2 os00(m-1) (sin20-sin200)

-(m-1)sin00 (sin20 - sin200) + 2m(sin0 - sin0o)

a3 = c1

b3 = 02

03 = 0(m+1) + sinOcos0(m-1) - 4msin0 + 2m0

co = (m-i)cos00(sin20 - sin200) + (0-00)(cos0 (m+1)+2m)

+ (m-l)sinfiro (sin20 - sin200)- 2m(1 +cos00)(sin0

- sin00) + 2msin00 (cos0 - cos0o) (8)

Substitute the coefficients in equation 8 into equations

5, 6, and 7 and we obtained the following simultaneous

equations



alMb-blTb+ClFbr = aoPr

-biEb+b2Tb+C2Fbr = boPr

CiMb+C2Tb+C3Fbr = CoPr

13

(9)

Placing equation 9 in matrix form, the following results;

al -b1 Ci

-b1 b2 C2=

1Mb=rib 1.A.1

1
Tb = tki

C1 C2 C3

aoPr

boPr

CoPr

-b1 C1

b2 C2

C2 C3

a1 aoPr C1

boPr C2

C1 CoPr C3.

= PrCm

= PrCt

Fbr =1/71

al

-b1

C1

-b1 aoPr

b2 boPr

C2 CoPr

= PrCf

(10)

Solving equation 10 by digital computer, see

Appendix I, and substituting the values of Mb, Tb and Fb

calculated from equation 10 into equations 1 through 4, we

can calculate the bending moment and torsional moment at

any section e,i.e., Me and TS.

From equation 10 we understand that Mb, Tb and Fb

vary with 0 00, m, and r. These variations are expressed
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by coefficients Cm, Ct and Cf. The relationships between

the angle 0 and the values of Cm and Ct for the load

acting at the mid-span are shown in Figure 5 and 6. To

obtain the maximum bending moment and torsional moment we

differentiate equations 1 thiough 4. Obviously the maximum

bending moment occurs at the section of 0 = 00.

;flax = 1100 =
Mbcos00 + TbsinOo - Fbrsin00.

= PrC (11)

The values of C varying with 0 and m are shown in

Figure 7.

Differentiating equations 2 and 4 and letting aTe= 0

a 9
-mbcos0 - TbsinG + Fbrsine =.0

Tang = -0,,br_Tb) (04 4 00) (12)

-Mbcoso - TbsinO + Fbrsin0 - cos00sin9Pr

+sin00cosePr = 0

TanO Fbr-Tb-cos00Pr fd d, (13)
Mb-Prsin00

\p0- - PI

Deflection

Neglecting the rotation of the section due to the

torsional moment and the effect of deflection caused by

transverse shear, we can derive the equation of the

vertical deflection fora horizontally curved beam by the

moment area method.

0 re

InJo
,0

EILS,=" 0 Mersin(' - O)ds Ter(1-coskf-9))ds
o (14)

To solve for the vertical deflection under the load which
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is placed at the mid-span of the beam, we substitute

equations 1 and 2 into equation 14 and let ds=rdO, 0=0/2

1 °5/2 2 0 1
2c/2 2 0

=A0/2 El Mgr sin(i-0)d0 + r (1-cos(-0))d0
-do Te

r2

=-== H u
l-cos0) + (T,--Fb 4r)( 91 - s

Ei
ire)]

mr2
+====-- [14(cosrl - 1) + (Tb-Fbr) (sing) + Flor4)

EI 0 2

- cos-0
b

( -r(1-cos0) + (Tb-Flor)(0+sin0)/4
2

0 0 -Nbfd
+ F rsin- )- sin-(-r-tp-s1n0) +

Tb-Fbr
(1-cosh)

b 2 2 4 4

0
- Fb

r(cosi - 1) )]

Pr3r,=
EI

(15)

The vertical deflection calculated from equation 15 will

be the maximum deflection only if the load is applied at

the mid-span of the beam. The downward deflection will be

taken as positive. The values of Ca are plotted into curves

as shown in Figure 8.
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IV. HORIZONTALLY CURVED BEAM FIXED AT BOTH ENDS
AND SUBJECTED TO UNIFORM LOAD

0

476

20

Figure 9

Bending Moment and Torsional Moment

Because of the symmetry of the loading, the vertical

reaction Fb at support B is equal to:

Fb w r
2

In Figure. 9 the distance GG from the center of the curvature

to the center of gravity of arc BC is

0
OG r sin z

6/2
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BC = re

At any section C

/
Me = MbcosO + ;sin() - FbrSin6 + wre (rsine2 /2 sing/2) 2)

9

= Mbcds9 + Tbsin6 - (Hia)rsinG + wr2(1-cose) (16)

TG = TbcosO = MbsinO + Fbr(1-cose)

- wre (r_rsin /2 cos!/2) = Tbcos9 - MbsinGe/2

+ wr20 (1-cose) - wr2 (6-sine) (17)
2

Applying Castiglianols theorem

U
=Pe2)rde +,51(ig)rde
2E1

8TO - (-sine) m =aMe cos0 g aEe = sinb
aMb alb

s2Z.2. cos()
alb

au
= =

..51

2
Mbcose + TbsinG - wr2 sing wr2(1-coseicosede

Jot

- [Tbcos6 - Mbsine + /422° (1-cos0)

- wr2 (6-sine)] dsinOcIG = 0

which gives

IMID[0(m + 1) - sing cos0 (m-1)1- iTbsin20 (rn -1)

_2wr2[0 (m+1) + Om (l+cosa Osin20(m-1)

-2sing(m+1) - sing cos0(m-I)1 = 0 (18)

Similarly, a-1-1 .440, = 0
aTb

Jo [Mbcose + TbsinO -
2

rsine + wr2(1-cosGlsin9d9zr
+INJO [TbcosG - MbsinG + 1Tg (I-cosi:3) wr2(0-sinG)]cosGdG
o
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which gives

- 124bsin20(m-1) + T
b
[0(m+1) + sinOcos0(m-11

2

- 1r21102(m+1) + lOsinOcos0(m-1) - sin20(m-1)
2 L2 2

+ mOsin0 - 2(m-1) (1-cosO)J = 0 (19)

Cancelling the 1/2 and substituting as follows

a = O(m+1)

b = sin20(m-1)

c = sinOcos0(m-1)

d = O(m+1) + mO (1 +cos0) - sin20(m-1) - 2s1n0(m+1)

-sink cos0(m-1)

e = 102(m+1) + gsin0 cos0(m-1) - sin20 (m-1)
2 2

+ mOsin0 - 2(m+1) (1-cos0)

Equations 18 and 19 become

Mb(a-c) - Tbb -wr2d = 0

-Mb(b) + Tb(a+c) -wr2e = 0 (20)

Solving for Mb and Tb

Mb '-wr2 13:2+ d(a+'11-7+ b2 + c

Tb =-wr2 bd + e
-a b2 + c2

After substituting the values of the various terms for

a, b, c, d, e, the fixed end bending moment and torsional

moment become

=_wr21 2(m+1) sing - m0(1 + cos0) 11

I O(m+1) = sin0(m-1)

= wr2 Cm (21)



Tb = Tfb =_wr212(m+1) (1-cos0) - m0 sing
0(m+1) - sin0 (m-1)

= wr2 Ct

23

(22)

Substituting the values of Mb and Tb into equations 17 and

18, Me and Te cna be expressed as follows

Me = wr2 Cme

TO = wr2 Ct8 (23)

The values of Mb Tb and thus the values of Me and Te arc

functions of m, 0 for a certain value of radius r. The

values of Cm and Ct varying with different m, 0, are

plotted into curves as shown in Figure 10 and Figure 11

respectively.

The maximum bending moment occurs at the middle of

the span, that is, at the section of A = 0/2

Mmax = M(0/2) = Mbcos! + Tbsin! - ELY sin
2

g g
+ wr2(1-cosg)= wr2 [Cmcos! + Ctsin2 - 2sin2

+ (1-cosq= wr2 C
4 mm (24)

The values of Cmm are shown in Figure 12.

By differentiating equation 17 with respect to 6 and setting

dT6

de
- Tbsin9 - Mbcose +

2

0f

sine - wr2 + wr2cos0 = 0

(-Tb + ) sin() - (Nb-wr2) cosh - wr2 = 0

Tan° = (Nb-wr2) WTCOSR = (CM-1) 1co8
2

(wr2 -
lib ) (Z. Ct)

2

(25)
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Deflection

By the moment-area method the vertical deflection can

be calculated as follows:
6 1

e
_

EI
Mers in 4-6 ) ds + ir T

e
(ds )r (1-cos ( i - 6 )

0

Under uniform load the maximum deflection occurs at the mid-

dle of the span,i.e.,when 6=0/2. Substituting equations 16

and 17 into the above equation the maximum deflection will be:

max
writ 0 0 1 -cost

( (0+sin0)(0m-1)/4 + (Ct-)(EI sing

+ m - m(1- cosO) /4 )-cos (21( Cm(1-cos0)(1+m)/4

(1-cos0)(1-m)/4 + (C._-2 )(0-sin0+m0+msin0)/4
(-

2

(1-cos!)(1+m) ) + m ( (cos0--1)(C
m
-1) + )

2

sinL( 1-m+m(Cm-1)(0-sin0)/4 )1
2

"L cd
EI

(26)

In equation 26, Cm and Ct are bending moment and torsional

coefficients respectively; the values of Cm and C
t

are shown

in Figures 10 and 11. Upward deflection is negative and

downward deflection is positive. The values of Cd are plot-

ted into curves as shown in Figure 13.
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V. ANALYSIS OF SHEARING STRESS IN HORIZONTALLY
CURVED BEAM

The existance of torsional moment makes the distri-

bution of shearing stress on a section of the curved beam

more complicated than that of a straight beam. Generally

speaking, two types of sections are used for horizontally

curved beams: (a) rectangular sections and (b) box or

closed sections. On either type of section the shearing

stresses are eventually composed of two parts; i.e., those

caused by vertical shear and those caused by torsion.

This analysis will be concerned only with these two types

of shearing stresses.

Shearing Stress due to Vertical Shear

This type of shear can be calculated by the

formula

VQV = --Ib

c
where Q =jr

,

ydA

The variations of shearing stress on a rectangular and a

box section are shown in Figure 14.
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Figure 14

The maximum shearing stress distributes uniformly along the

width at neutral axis. The shearing stress is signified

as positive when it acts upward and as negative when it

acts downward. Cn another hand, the positive shearing

force produces positive shearing stress. This is illus-

trated in Figure 15.

ELEVATION

V- DIAGPAM

Figure 15.

t

A-A

t
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As an example, in a horizontally curved beam of

rectangular section
1 V

Irmax = 2 bh

.Where V is value of shear force which can be determined as

follows

(1) When the beam is subjected to uniform load

-Vb = Fb -wre.

(2) When the beam is subjected to concentrated load

= b

_bre = Fb - P

(o o.400)

(Pfc, 9-40)

*This formula is used only for analysis. In practical

Vdesign ur=
bd.!

or V= (1) for reinforced concrete

rectangular beams.

Shearing Stress Caused by Torsion

Torsional moment produces pure shear which distributes

around the whole section and theoretically varies with the

polar distance measured from the centroid of the section

for an isotropic material.

On rectangular section. Figure 16 shows the pattern

of shearing stress distribution on a rectangular cross

section when the beam is subjected to torsion (9).



i
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Figure 16

The maximum values of shearing stress will occur at the

center of each side. The shearing stress at the mid-point

of the longer side, such as CA, has the maximum value:

re

1 ) ( T
A

I

a 1721.7'
)

In equation 27 the values ofet are listed in Table I.*

TABLE I. VALUES CF cd,.

(27)

h/b =

ot ...-

1.0 1.5 2.0 2.5 3.0 4.0 6.0 10.6

0.208 0.231 0.246 0.256 0. 267 0.282 0.299 0.312

a-
0.333

*The values ofotin this table are extracted from reference

(9), p. 271.
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The shearing stress at any point P on the longer side

of the section with a distance x from the mid-point A is

calculated by the formula

P
= r.A

(1 _ (2
h
x)2) (28)

The shearing stress at point B will be proportional

to A and equal to

TB = (TA) = ( 3t) ( (29)

The shearing stress at any point Q on the shorter

side of the section with a distance y from the mid-point

B is

Tr, =TB - ( 2Y ) )

=h _2_y__ \
h b

(3o)

The pure shear will be signified as positive when it is

produced by positive torsional moment. That is, when

looking along the tangent of the beam in a counterclock-

wise sense it flows in a clockwise direction.

On Box Section

The shearing stress on a box section, or on a hollow

tube of rectangular cross section, can be analyzed by means

of the membrane or "soap-film" analogy theory (9).



where

t1

T = 2 a H H=

Figure 17

T
2 a

b

34

T = the torsional moment

a = the area enclosed by mean perimeter of the wall

of the tube. For instance, the section in

Figure 17 will have the value of 'a' equal to

bxh,

H = the height of the flat part of the surface along

the hollow portion of the cross section.



The shearing stress will be

12 H
= -7711-tt

11%. 2 b h t3

LB = 2 b h t2

3_5

( 31 )

From equations 31 for a tube section the maximum shearing

stress is inversely proportional to the thickness of the

tube 't'.

Combination of Shearing Stresses due to Vertical Shear
Force and Torsional Moment

Figure 18 shows the general pattern of bending

moment and torsional moment for a horizontally curved beam

subjected to uniform load.

4Z

4--
4--

0
6

25

1111Tilli111

ELEVATION

Figure 18 M and T - Diagram
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We assume that at 01 the torsional moment is equal to zero

in the portion 0 4 0 0 i . To is positive and produces a

positive shear flow around the section that is, the shear

will act upward on the inside face of the section and down-

ward on the outside face. In the portion 014134.0/2 the

torsional moment is negative and causes a negative shear

flow, that is, the shear will act downward on the inside

face and upward on the outside face of the section.

As both the bending moment and torsional moment vary

with e, the combination of the shearing stresses will vary

with 0.

"ri v+ (32)

where

V. combined shearing stress

ur= vertical shearing stress due to vertical

shear

T = pure shear due to torsional moment

The values of 'I can be summarized as follows.

TABLE II.

Portion
Sign

V V
Combined shevinv stress
inside face outside face

-.-S0 e.501

01, 0 0/2

0/24e 4(95 el)
(0 -

= V

= +

n =
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In the same way the combination of shearing stresses for

different loading conditions can be obtained.

Combination of Shearing Stress and Bending Stress

On the top or bottom of the section, the vertical

shearing stress equals zero, but the shearing stress due to

torsional moment is not zero and can be calculated by

equation 29 and 31. This type of shear can be combined

with the fiber stress. The combined stresses are expressed

as follows

A7 - 6.0 ± )( ( 6-(3 )2 + X82
`' n -2---- 2 ' 0 (33)

where

6n = the combined stress, tension is positive and

compression is negative

6-0 = fiber stress due to bending moment at 0, tension

is positive and compression is negative.

T. = pure shear due to torsional moment at 0.

As the value of 60 and 1_2(1) vary with 8, the combined stress

varies with 0.
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VI. ANALYSIS OF CONTINUOUS HORIZONTALLY
CURVED BEAM

Figure 19. Continuous horizontally curved beam

A moment distribution method for the analysis of

continuous horizontally curved beam is here introduced. Be-

cause of the presence of torsional moment there will be

two sets of distribution and carry over factors, one for

bending and one for torsion. The stiffness coefficients of

a curved beam for bending moment or torsional moment are

interpreted as the bending moment or the torsional moment

that produces a unit rotation about the axis it rotates.

Applying Castiglianots theory and assuming that deformations



at supports due to vertical force are negligible we can

derive the following equations.

and

2U
2 Mb ('31) =

U
Z Tb lb =

B U -L
Fb b

U = (A7b =
Mb

3 u
Tb =

U
B Fb

- Ab

1

0

0

0

1

0
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(34)

(35)

Substituting the coefficients in equation 8 into 34 and 35

we obtain

and

al Pib Tb + Ci Fb r = e
2

)b
EI 2 EI

r

- b1 Mb + b2 Tb 4- C2 Fb r
2rEI =0

C1 Fib + C2 Tb + C3 Fb r = Ab 2rEI = 0 (36)

Mb C1 2rEI 0

- b1 Mb + b2 Tb + C2 Fb r 2rEI _2r EI

Ci Mb + C2 Tb + c3 Fb r = Ls b
2rEI

Solve equation 35 for Mb Tb and Fb r.

b1
C3

c1 c3
b

b2 c3 - 2 1113

(37)

(38)



Fbr =
(101C2+ b2C1)

mbC3b2-

Mb ai
b1(b1C3 - C1C3) Ci(b2C1 + b1C2) 2E1

b2C3- C22 C3b2 - C22

2 (b2C3- C22)
Mb = (a (h c _ C22) h (11 c 4 c c ) C (h Ci+ b1C2)1.-2-3 2 -1 -1-3 . -1 2 1 -2 '-

4o

(39)

EI
r

Solve equation 37 for Mb, Tb and Fbr.

M
b1C1 + C2C1

b =
a1C3 - C12

T
b

Fbr = - (b1C1 + a1C2
Tb

a1C3- C12
2,

Tb = 2 ( a103- Ci EI
b2(a1C3- C12) - bi(b1C3+ C2C1) C727370-aic2. r

(43)

With Mb, Tb and Fb known, the bending moment and torsional

moment at any angle 9 from support B can be found by

equations 1 and 2 listed as follows

MG = Mbcos9 + Tbsine - FbrsinO

TA =-Mbsin9 + Tbcose + Fbr(1-cose)

By making 9 = 0, MO = Ma, TO = To will be the bending moment

and torsional moment at another support.

Expressing Tb, Fbr in terms of Mb

Na = Mbeos0 + Tbsin0 Fbrsin0 = Mb(cos0

b1C3+ C1C2
sin +

(b1C2+ b2c1)ropf)
0b2C3- C22 C3b2- C22 -i-'-''

(4o)

(41)

(42)

= Mbraba (44)



Expressing Mb, Fbr in terms of Tb

Ma = Tb (111C3+ C2C1 cosh{ + sin0 + b1Cj+ a1C2
a1C3- C12

a1C3- C12
sin0)

=Tb tb ma

Expressing terms of Ta from equation 41

Ma
biC3 + C2C1

Ta
Ta to ma

a1C3- C12

41

(45)

(46)

Expressing Mb, Fbr in terms of Tb, from equation 2

Ta = Tb piC3+ C2C1 + cosh
a1C3_. C12

a1C2 + b1C1
(1-cos0)1 Tb tba

a1C3 - C12

Expressing Ta in terms of Ma from equation 38

Ta
b1C3 + C1C2

= Ma mataa
b2C3

(47)

(48)

Expressing Tb and Fbr in terms of Mb from equation 2

Ta = Mb[- sink! + (b1C3 + C1C2) cosh
b2C3 - C22

(b1C2 b2c1) (1 -cosy= MbMbta
C3b2 - C22 (49)

Using subscript 1 indicating the left-hand support and

subscript 2 indicating the right-hand support of the curved

beam, we may summarize the stiffness factors and carry over

factors as follows.

(1) Stiffness factors

for bending moment
2 (b2C3 - C22) EI

0Sm- b3C2)-b1(b1C3+ C1C2) + C1(b2C1 +bib3)
(50)



for torsional moment
2 (a1C3 - C12) EI

St
'2(a1C3 - C12) - b1(b1C3+ C1C2) - C2(b1C1 +a1C2) r (9)

42

(2) Carry over factors

+ b1C3 + C1C2
sing + b1C2+ b2C1N21 = (cosg + sing)(52)b2C3 - C22 C3b2 - C22

t2m1 = b1C3 + C2C1
a1C3 -

cosg + sing + b1C1+ a1C2sina
a1C3 C12

)(d

tlml =
a1C3

CC
al1C3 - C122

1

(54)

+ C2C1 a at21 = b3 -C3 sing + Go - lC2 +
a1c3- C12

a1c3- C12
(1-cosg)

biC3 + C1C2
mitt

b2C3-. C22

(55)

(56)

m2t1 = b1C3 C1C2
cosg - s1/10 - b2C2+ b29; (1-cosg)b2C3 - C22 C3b2- C22

(57)

M1 = m2m21

Ni = T2t2m1

141 = Titimi

T1 = T2t21

Ti = Mimiti

T1 = M2m2t1 (58)



N2 = N1 m12

142 = T1 t1 ml

M2 = T2 t2 m2

T2 = T1 t12

T2 = 142 m2 t2

T2 = mi t2

43

(59)

To apply the moment distribution method to the horizontally

curved beam design it would be necessary to review the

sign convention. Figure 20 shows the positive sign con-

vention that could be applied to the end of any horizontally

curved beam.

Figure 20. Positive sign convention.

By using this convention the following relationships

are obvious.

11_2 = M21

t12 = t21

t1 t1 =-t2 m2

mi ti =m2 t2



t2 -4t2 mi

ti m2 = - m2 ti

44

(60)

Figure 21 shows the application of the above carry-

over factors. The sign before the factor indicates its

proper sign. The stiffness factors and carry-over factors

for different values of 0 and m are calculated by digital

computer; see appendix, and listed in Table III.

+ 11 ig rn2

1. 2

- t, + rnz tz

-t, m,
T

Itarnz

tit
- tv

Figure 21. Proper signs for carry-over factors.
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TABLE III. STIFFNESS AND CARRY-OVER COEFFICIENTS.

m 3n2 St 1i21 t2m1 t1m1 t21 miti m2t1

IrN
0

1-4

1 15.175 3.907 -0.505 -0.001
2 15.140 1.996 -0.507 -0.003
3 15.106 1.359 -0.508 -0.007
4 15.073 1.041 -0.510 -0.011
5 15.039 .849 -0.512 -0.016
6 15.006 .722 -0.513 -0.021
7 14.973 .63o -0.515 -0.028
8 14.940 .562 -0.517 -0.035

.254 .967

.496 .935

.726 .905

.945 .877
1.154 .850
1.354 .825
1.545 .800
1.727 .777

.o65 .000

.065 .000

.065 .001

.065 .001

.065 .001

.065 .00l

.065 .001

.065 .001

0
0

1 7.433 2.081 -0.521 -0.009 .467 .877 .131 .002
2 7.368 1.123 -0.527 -0.023 .855 .777 .130 .004

3 7.305 .802 -0.533 -0.042 1.182 .695 .130 .005
4 7.244 .640 -0.539 -0.065 1.462 .626 .129 .006

5 7.184 .542 -0.545 -0.090 1.706 .567 .129 .007
6 7.127 .476 -0.551 -0.116 1.920 .517 .128 .008

7 7.070 .428 -0.556 -0.144 2.110 .473 .128 .009
8 7.015 .391 -0.561 -0.173 2.281 .435 .127 .010

0
1.1-

15k

1 4.789 1.524 -0.546 -0.026 .617 .755 .196 .008
2 4.700 .878 -0.560 -0.064 1.040 .596 .194 .012
3 4.616 .657 -0.572 -0.107 1.353 .484 .193 .015
4 4.537 .543 -0.583 -0.154 1.595 .403 .191 .018
5 4.463 .472 -0.594 -0.201 1.791 .342 .190 .021
6 4.392 .423 -0.604 -0.249 1.953 .294 .188 .024
7 4.324 .386 -0.613 -0.297 2.090 .257 .187 .027
8 4.260 .358 -0.622 -0.344 2.210 .227 .186 .029

0
0

1 3.426 1.279 -0.582 -0.053 .700 .627 .261 .020
2 3.320 .781 -0.603 -0.118 1.093 .438 .257 .028
3 3.225 .604 -0.621 -0.186 1.352 .327 .253 .035
4 3.138 .509 -0.638 -0.252 1.541 .256 .250 .041

5 3.057 .448 -0.652 -0.316 1.687 .209 .247 .o46
6 2.983 .404 -0.665 -0.378 1.806 .176 .245 .051
7 2.914 .371 -0.676 -0.437 1.905 .152 .242 .056
8 2.849 .344 -0.687 -0.493 1.991. .136 .240 .060

0
1f)

1 2.580 1.153 -0.627 -0.089 .729 .509 .326 .040
2 2.466 .735 -0.655 -0.180 1.067 .319 .318 .054

3 2.367 .579 -0.678 -0.266 1.275 .225 .312 .065
ti 4 2.279 .492 -0.697 -0.345 1.422 .174 .307 .074

5 2.200 .434 - 0.71.3 -0.418 1.535 .143 .302 .082

6 2.128 .391. -0.727 -0.486 1.626 .125 .299 .089
7 2.062 .358 -0.739 -0.548 1.702 .115 .295 .095
8 2.001 .332 -0.749 -0.606 1.767 .109 .293 .100
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TABLE III (Continued)

m Sm St M21 t2m1 timi t21 mitt m2t1
1 .655 .894 -0.982 -0.358 .459 .237 .626 .489
2 .576 .589 -0.986 -0.494 .599 .204 .612 .505
3 .514 .456 -0.988 -0.579 .682 .217 .605 .514
4 .465 .378 -0.989 -0.639 .739 .236 .601 .519
5 .424 .324 -0.990 -0.683 .782 .253 .598 .522
6 .390 .285 -0.991 -0.718 .814 .269 .595 .525
7 .361 .255 -0.991 -0.746 .840 .282 .594 .527
8 .335 .231 -0.992 -0.768 .861 .293 .592 .528

0
0
c0

1 .535 .854 -1.000 -0.399 .399 .254 .637 .637
2 .462 .558 -1.000 -0.526 .526 .240 .637 .637
3 .406 .430 -1.000 -0.601 .601 .259 .637 .637
4 .362 .354 -1.000 -0.652 .652 .280 .637 .637
5 .327 .302 -1.000 -0.689 .689 .298 .637 .637
6 .298 .265 -1.000 -0.716 .716 .313 .637 .637
7 .274 .236 -1.000 -0.738 .738 .326 .637 .637
8 .253 .213 -1.000 -0.756 .756 .336 .637 .637
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VII. ILLUSTRATED EXAMPLES

Example 1. Application of the Moment Distribution Method

A continuous beam loaded uniformly is shown in

Figure 13. The loading and geometrical conditions are

given as follows. Apply the moment distribution method to

calculate bending and torsional moments at each support.

Given:

= 1

12 = 2 I1 = 2

IBBC

Figure 22.

EI
= GJ mAB = mCD = 1

= 2

EAB = EBC = ECD

Regtd: MA, MB, Mc, MD, TA, TB, Tc, TD.

Solution:

From Table III the stiffness factors and carry-over

factors are listed as follows:
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Span AB, CD

01 = 30° m =

sm = 7.433

st = 2.081

M21 = 0.521

t2 mi = 0.009

t2 m2 = 0.467

t21 = -0.877

m2 t2 = 0.131

m2 t1 = -0.002

1 02 .

sm

st

M21

t2 mi

t2 m2

t21

m2 t2

m2 tl

Span BC

_60° m =

= 3.320

= 0.781

= 0.603

= 0.118

= 1.093

= -0.438

= 0.257

= -0.028

2

Distribution factor for bending moment

member Sm I/r D. F.

AB 7.433 x 1/20 = 0.37165 0.527

BC 3.320 x 2/20 = 0.3320 0.473

Total = 0.70365 1.000

Distribution factor for torsional moment

member St I/r D. F.

AB 2.081 x 1/20 = 0.10405 0.571

BC 0.781 x 2/20 = 0.0781 0.429

Total = 0.18215 1.000

fixed end moments from Figure 10.

NAB = -MBA =1"Ir2 Cm = 1.5 x (20)2 x 0.0231 = -13.9

k - ft.

NBC = -MCB = 3.0 x (20)2 x 0.0971 = - 116.5 k - ft.
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fixed end torsional moments from Figure 11.

TAB = TBA = r2 Ct = 1.5 x 202 x 0.0005 = 0.3 k - ft.

TBC = TCB = 3.0 x 202 x 0.00232 = 2.78 k - ft.

Because of the symmetry of the beam, we only operate the

method for the left-half.

M

T

+o.52I 0.521 1 0.473 4 0. 603
-13.9

+39.5
+54.1 +13.9
+15.4
t 4.4
+ 1.3
+ o.4
t 0.2 + 0.8

- 116.5 +48.5
- t9.2 +13.8
- 8.3 + 3.9
- 2.4 + 1.1

- 0.7 + 0.3
- 1.2 4- 0.2

0 o

O

- o.4.38

+ 25.6

O
O'

41\
6
A-

-0.877

+75.8 + 14.7

+90.5

6
4

r--
470

Nt
ci
#

- 158.3 +67.8

- 9o.5
+.--.

!ij
o
i

(1)
cr
0
g

1.6.571 04291
to.3 +1.44 + 0.3 1.2.73 1.1.01;

-1.5 +9.9 -17.4
- 0.2 + 1.9
- 1.4 +0.27 - 0.47 4 0.20

t1.71 +10.2 -13.19 +1.28

+11.91 -11.91

Figure 23. Moment distribution method
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In Figure 23 the distribution and carry-over of the

bending moments are shown at the top and are primarily

carried out in a manner similar to that for a straight beam.

The distribution and carry-overs of the torsional moments

are shown at the bottom of the figure. To illustrate how

to carry out the distribution and carry-overs, we consider

joint B.

The unbalanced moment is - 116.5 + 13.9 = - 102.6

k - ft.

The distributions are:

MBA = 0.527 x (+ 102.6) = + 54.1

MI;c = 0.473 x (+ 102.6) = + 48.5

The first carry-over from joint C is (- 48.5) x

0.603 = 29.2.

The distributions of this carry-over are:

MBA = 0.527 x (+29.2) = +15.4

MBC = 0.473 x (+ 29.2) = + 13.8.

Then the next carry-over from joint C is calculated

and distributed and so on.

The total distributed bending moments MBA and MBC

are added up and equal to 75.6 k - ft. and 67.6 k - ft

respectively. They are then carried over to the torsional

moment area and recorded.

These carry-overs are:

from MBA' = 0.131 x (+ 75.6) = + 9.9
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from MBC = (- 0.257) x (+67.6) =-17.4.

Carry over from joint C MLI= (- 0.028) x (- 67.6)

= + 1.9.

The first distributions for torsion are

TBA' = - (0.571) x ( 0.3 + 9.9 + 2.78 - 17.4 + 1.9)

= + 1.44

TBC1 = (0.429) x (2.52) = + 1.08.

The first carry-over from joint C is

(- 0.438) x (+1.08) = - 0.47.

which is distributed to spans BA and BC.

TBA' = (0.571) (+ 0.47) = + 0.27

TBC1 = (0.429) (+ 0.47) = + 0.19.

Then the total distributed torsional moments are

carried over back to the bending moment area. One cycle

of distribution and carry-over is completed. For different

accuracy requirements, these cycles can be carried out any

number of times. But it is found that because the values

converge rapidly, not more than two cycles will give

sufficient accuracy for design purposes.

Then, the total distributed bending moment and

torsional moment are carried over to the end support A

as follows:

MA:

fixed end moment 13.9

carry over from MBA = 0.521 x (+ 75.8) = +39.5

carry over from TBA 0.009 x (+ 1.71) = 0.0
+25.6total =
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TA:

fixed end torsional moment +0.3

carry over from IAA = (-0.002) x (+ 75.8) = -1.5

carry over from TEA = (-0.877) x (+ 1.71) = -0.2

Total = -1.4



EXAMPLE 2.
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0

Figure 24.

A reinforced concrete bow girder is designed to resist

the loads shown in Figure 24. Select a proper section and

determine the required reinforcement. Poisson's ratio for

concrete is 0.125, E = 2.25G, fs = 20000 psi, f = 3000 psi.



Solution

By Working Stress Design method

1. Bending moments and torsional moments

assume d/b = 2.0

T bd3 = 2 1.,4=
12 3

1J = (d - 0.63 b) b3 =
3
12 (1.37) =.0.457 b4

From equations 10, 22 and 23

Mb = P r Cm Tb = P r ct

Mb = w r2 Cm Tb = w r Ct
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Mmax =PrC

Mmax = wr2 Cmm

From figures 5,6,7,10, 11, and 12, with m = 3.285

For uniform load

Cm = 0.233 Ct = 0.018 Cmm = 0.085

For concentrated load

Cm = 0.229 Ct = 0.022 Cmm = 0.176

Try d = 28 in.,b = 14 in., the overall depth =28 + 2

=3o in.

D.L. - x 150 = 425 lb/ft. = 0.425k/ft.
144

30 x 14

Fixed end bending moment

Mb = (0.425 +1) x 20
2 x 0.233 + 15 x 20 x 0.299

= - (132 + 89.6)

- 221.6 ft - kips.
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Mid-span bending moment

M
c
= 1.425 x 20 2 x 0.085 + 15 x 20 x 0.176

= 48.6 + 52.8

= 101.4 ft-kips.

Fixed end torsional moment

TB = -TA = 1.425 x 20
2
x 0.018 + 15 x 20 x 0.022

= 10.2 + 6.7

= 16.9 ft-kips.

Check the assumed d value

d

=/b

jkbfe /2

fo = 1350 psi k = 0.383 j = 0.872

/221600 x 12
d - = 28.2 in.

236 x 14

Use d = 29 in. and b = 14 fn.

2. Determine the reinforcement required to resist

bending moments.

(1) at support
221.6 x 12

As

2
= 5.14

s fsjd -20x0.872x29

Use 2#8 and 2#11 round bars, As = 5.12 in
2

.

(2) at mid-soan

As = 5.14
101.4

221.6
-2.4 in2.

Use 3 #8 round bars, As = 2.37 in



3. Shearing stresses

(1) at support

From Table I. with h
= 2.1

b 14

1
1

( ) -
T 1 16.9 x 12000

1 =
b-h 0.25 14

2
x 29

= 217 psi.

wr0
V = 0.5P +

= 0.25
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= 0.15 x 15 + 1.425 x 20 x

= 7.5 +22.4 = 29.9 kips.

IT 29900
v bd 14 x 29 - 73.7 psi.

The combined shearingt=f+ v = 290.7 psi.

The allowable shearing stress

v
c = 1.1)77r = 60 psi

The shearing stress carried by the web reinfor-

cement will be

v' =1"- ve = 290.7 - 60 = 230.7 psi.

#4 stirrups will be used for the web reinforcement

= 2 x 0.20 = 0.40 in
2

.

The required stirrup spacing is
Avfvd Avfv 0.44 x 20000

s = -
vlbd v' b 230.7 x 14

2.7 in.

Use s-= 3 in.

(2) in span 0 8 ._0/2 measured from support B.

From equation 27, V = 12000T0
= 8.6T

0.248 x 29 x 14`
,

From equations 2 and 16

T
e

= sine + T cos0 + 7
br(1-COSe) - wr

2
(8-sine)
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T
o
= -(221.6-1.425 x 202)sin0 + 16.9cos0

29.9 x 20(1-cosh) - 1.425 x 2020

= 348.4sine + 16.9cos0 + 598 -598cos0 - 5700

= 348.4 sine - 581.1 cos0 + 598 - 5700

1:0 = 8.6 Te

= 2980s1ne -4990cos0 + 5130 - 48900
V 1000

-70 14 x 29
= 2.46 V

V = Fb wr0

= 29.9 -1.425 x 200 = 29.9 - 28.5 0

vo = 2.46 V = 2.46(29.9-28.5 0) = 73.6 -70.2 6

The combined shearing stress will be

e= + v = 2980sin0 -4990cos0 +5204 - 4960 0

The maximum shearing stress will occur at 0=27054'.

max = 2980 x 0.4679 - 4990 x 0.8833 + 5204

- 4960 x 0.4805 = -195 psi.

v' = ve = 195 - 60 = 135

# 4 stirrup spacing is

0.44 x 20000
s = - 4.65 in. Use 4.5 in.

135 x 14

For details of reiforcement see Figure 26.

4. Deflection

c
W1.5 /FT= 3,160,000 psi

.Es =29,000,000 psi n= 29/3.16 = 9.2

Use n =9

The moment of inertia for the transformed

section is calculated.as follows.
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Section at support

Figure 25.

Section at center

In figure 25 let

As = area of steel near tension surface

AL = area of steel near compressive surface

P = pt_t bt

U = distance from compressive surface to gravity

axis of transformed section

It = moment of inertia of transformed section

It = Ic + ( n-1 )Is
t/2 P( n-1-)d + P'( n-1 )di

U - 1 + P( n-1 ) + P'( n-1 )

1c = 3 b[U3 + ( t-U )3]

Is = As( d-U + AL( U-d' )2



At support the moment of
1.58

P = = 0.00376
14 x 31
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inertia in denoted as Itl
Pi =

5.12 = 0.0121
14 x 31

di = 2 in. d = 29 in. (n-1) = 8

14.5 + 0.87 + 0.194
U = = 13.8

1 + 0.03 + 0.0968 4
Ic =14 (2640 + 5100/3 = 36100 in.

Is = 1.58 (15.2)2 + 5.12 (11.8)2

= 1071 in
4

I
tl

= 36100 + 8 x 1071 = 44170 in
4

.

At the center, the moment of inertia is it2

2.37
P =

14 x 31
0.0056

14.5 + 1.3 + 0.06
U = = 14.8

1 + 0.0436 + 0.03

c
= x 14 (3220 + 4290) = 3550o in

4
.

Is = 2.37 x 200 + 1.58 x 164 = 733 in4.

I
t2

= 35500 + 8 x 733

1.58

Pt 14 x 31
= 0.00376

= 41360 in
4

.

The moment of inertia for calculating the deflection

at the center will be the average value of Iti and

it2.

It= (1.0. + It2)/2 = 42765 in4.
wr4

From equations 15 and 162N =-
EI
-C

dl
+ Cd2

EI

From Figures 8 and 13

for concentrated load

for uniform load

Cdl = 0.0253

Cd2 = 0.0198
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_ 203x 12-'
1

x 15 x 0.02533160 x42765)
1.425 x 204 x 124

+ ( ,3100 x 42765 ) x 0.0198

= 0.039 + 0.7

= 0.739 in. < L/360. O.K.
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SECTION A
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SECTION B

wOTES:

(.CONCRETE 15 OF 3000 R3.1, iNJ

STRENGTH REINiropecEmENT TO

BE OF 50,000 P5! IN YIELD
STRENGTH.

Figure 26. Horizontally curved girder.
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VIII. CONCLUSIONS

The main difference in the analysis and design

between a horizontally curved beam and a straight beam

subjected to vertical loads is the presence of torsional

moments, which, to some extent, will have influence on the

bending, shear and deflection. The magnitude of torsion in

a horizontally curved beam is a function of the span angle

0 and it is also noticeably influenced by the shape of the

section. This influence can be espressed by the ratio of

flexural rigidity to the torsional rigidity, i.e., by the
EI

term m = GJ

From the results of the theoretical analysis, see

Figures 5 through 8 and Figures 10 through 13, the following

conclusions are obtained.

1. As the ratio m increases, the fixed end bending

moment, the fixed end torsional moment and the vertical

deflection increase, but the maximum span moment decreases.

2. Bending moments, torsional moments and deflection

increase as the span angle QI increases up to 180°. The rates

of increase become larger as the span angle 0 increases.

3. Comparing the straight beam of a length equal to

Or the following statements are made. When both straight

beam and curved beam are subjected to the same amount of ver-

tical load, a straight beam has smaller fixed end bending mo-

ment, smaller vertical deflection, and greater maximum span
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moment. When the span angle 0 of a curved beam is small

( less than 15° ), all the variables such as Mb, Tb,
'max

and will be close to that of a straight beam.

4. The analysis of multi-span continuous beams curved

in plan can be made without difficulty by the introduced

moment distribution method, if both fixed end bending moments

and torsional moments are known. The mathematical operations

are not difficult but attention should be paid to the signs

of the carry-over factors.

As long as the material is homogeneous and isotropic

as assumed, the formulas derived in this paper can be used.

In the preparation of this paper it was found that there were

many factors affecting the actual behaviour of the curved

beam, such as the degree of curvature, the degree of fixity

at support, the shape of section and so on. This analysis

is only expected to be a theoretical approach to solving

the problem of a horizontally curved beam and should be ve-

rified by more experiments.
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The following notations used in the programs repre-

sent those used in the text.

Programs Text

TX 0

TXZ 00

P,M

CTD, DTXZ Cd

CMC Cme

CTC Cte
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PROGRAM 1. CONCENTRATED LOADED CURVED BEAM

PROGRAM WON
REAL r 'i, NNAX

CON cEr TRATE LOAD
DIMENSION A(3,3),X(3),D(3)
EQUIVALENCE (X,B)
KCOUNT=1
WRITE(10,10)

10 FORY.AT(1H1,////////)
DO 60 111=30,180,30
TX=III*O.01745329
DO 60 MM=1,8
E=MM
DO 70 JJ=15,180,30
TXZ=JJ*0.01745329
IF (TXZ.GT.TX) GO TO 70

C CALCULATION OF CONSTANTS
A(1,1)=TX(E+1.)-SIN(TX)*COS(TX)*(M-1.)
A(2,1)=SIN(TX)**2*(Y-1.)
A(3,1)=SIN(TX)**2*(M-1.)+2.*N*(COS(TX)-1.)
A(1,2)=A(2,1)
A(2,2)=TX*(M+1.)+SIN(TX)*COS(TX)*(M-1.)
A(3,2)=2.*M*SIN(TX)-TX*(M+1.)-SIN(IX)*C0S(TX)*(X-1.)
A(1,3)=A(3,1)
A(2,3)=A(3,2)
A(3,3)=TX*(M+1.)+SIN(TX)*COS(TX)*(M-1.)-4.*M*SIN(TX)
1+2.*E*TX
B(1)=(M-1.)*COS(TXZ)*(SIN(TX)**2
2-SIN(TXZ)"2)+SIN(TX2)(TX-TX2)
3*(M+1.)-(SIN(TXZ)*(M-1.)/2.)*(SIN(2.*TX)-SIN(2.*TXZ))
4+2.*M*(COS(TX)-COS(TXZ))
B(2)=-COS(TXZ)*(TX-TXZ)*(E+1.)-COS(TXZ)*(M-1)*
5(SIN(2.*TX)-SIN(2.*TXZ))/2.-(M-1 .)*SIN(TXZ)*(SIN(TX)
6**2-SIN(TXZ)**2)+2.*M*(SIN(TX)-SIN(TXZ))
B(3)=(M-1.)*COS(TXZ)*(SIN(2.*IX)-SIN(2.*TXZ))/2.
7+(TX-TXZ)*(COS(TXZ)*(M+1.)+2.*M)+(M-1.)*SIN(TXZ)*
8(SIN(TX)**2-SIN(TXZ)**2)-2.*P1*(1.+COS(TXZ))*(SIN(TX)
9-SIN(TXZ))+2.*M*SIN(TXZ)*COS(TX)-CCS(TXZ))
CALL SIMQ(A,B,3,0.00001,0)t
HMAX=X(1)*COS(TXZ)+X(2)*SIN(TXZ)-X(3)*SIN(TXZ)
WRITE(10,101)III,JJ,M,(X(I),I=1,3),MMAX
IF(TXZ.EQ.TX/2,) 40,70

40 DTXz=sIi,;(rix/2.MX(1)*(Tx+siN(TX))/4.+(x(2)-X(3))*
1(1.-COS(TX))/4.)-COS(TX/2.)*(X(1)*(1.-COS(TL))/4.
2+(X(2)-X(3))*(TX/4.-SIN(TX)/4.))
3+M*(X(1)*(COS(TX/2.)-1.)+(K(2)-X(3))*SI(TL/2.)+X(3)
4*(TX/2.))-IT.'COS(TV2.)*(-2L(1)*(1.-0O3(M:))/4.+(x(2)-
5X(3))*(TX+SI(TX))/4.+-i(3)*SIZ(I.V2.))-::*SIL7.(TX/2.)
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6*(-X(1)-:,(TX-SIN(TX))/4.+(X(2)-X(3))*
7(1.-COS(TX))/4.-X(3)*(COS(TX/2.)-1.))
WRITE (10,101) III,JJ,M,(X(I), I=1,3), NEAX, DTXZ
KCOUI,T=KCOnT+1
IF(KCOUNT.EQ.49) 50, 70

50 WRITE( 10, 10 )

KCOM=1
101 FORi'AT(I 12, 15.1, 3F7.4, 2F9.4)
70 CONTINUE
60 CONTINUE

END

ISIXQ is a subroutine program for solution of
simultaneous linear equation. For detail of this program
see No. F4-INDU-SIMQ, Computer library, Oregon State
University.
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PROGRAM 2. UNIFORMLY LOADED CURVED BEAM

PROGRAM WON
UNIFORM LOAD
KCOUNT =1
WRITE(10,10)

10 FORMAT(1H,///////)
DO 40 1=15,180,15
TX-I*0.0174533
DO $) J=1,8
P=J
DO 30 K=16,181,15
KK=(K-1)
TXC=KK*0.0174533
IF(TXC.GT.TX) GO TO 40
CM=-((2.(P+1.)*SIN(TX)-P*TX*(1.+COS(TX)))/
1(TX*(P+1.)-SIN(TX)*(P-1.))-1.)
CT=-((2.*(P+1.)*(1.-COS(TX))-P*TX*SIN(TX))/

2(TX*(P-1-1.)-SIN(TX)*(P-1.))-TX/1.)
CMC=CM*COS(TXC)+CT*SIN(TXC)-TX*SIN(TXC)/2.+(1.-COS(TXC))
OMM=CM*COS(TX/2.)+Ol*SIN(TX/2.)-(TX/2.)*SIN(TX/2.)

34-(1.-COS(TX/2.))
CTC=CT*COS(TXC)-CM*SIN(TXO)+TX*(1.-COS(TXC))/2.

4-(TXC-SIN(TXC))
CTD=SI.ii(TX/2.)*((TX+SII'T(TX))*(CM-1.)/4.+(CT-TX/2.)*
1((1.-COS(TX))/4.+P-P*(1.-COS(TX))/4.)+SI::(TX/2.)*
2(1.+P)+P*(C::-1.)(TX-SII;(TX))/4.-TX.-:-P/2.)-COS(IX/2.)

3*(C.,;*(1.-COS(TX))*(1.-7)/4.-(1.-0O3(TX))*(1.-P)/4.4.
4(CT-TX/2.)*(TL-SIN(TX)+P*TA+P*SII,,(T_K))/4.+(1.-
5cos(Tx/2.))*(1.+P))+13*((cos(Tx/2.)-1.)*(ciJ_-1.)
6+Tx**2/8.
wRITE(10,20) I,P,KR,CM,CT,CMC,CTC,CTD
KCOUKT=KCOUNT+1
IF(KCOUT.EQ.51) 50,30

50 WRITE(10,10)
KCOU.f:T=1

20 FOHHAT(15,F5.1,I5,6F9.4)
30 CONTINUE
40 CONTINUE

STOP
END
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PROGRAM 3. MOMENT DISTRIBUTION FACTORS FOR
HORIZONTALLY CURVED BEAM

PROGRAM WON
REAL M21,M1T1,M2T2

C MOMENT DISTRIBUTION FACTORS
KCOUNT=1
WRITE(10,10)

10 FORMAT(1H1,////////)
DO 30 1=15,180,15
TX=I*0.0174533
DO 30 J=1,8
P=J
A1=TX*(P+1.)-SIN(TX)*COS(TX)*(P-1.)
B1=SIN(TX)**2*(P-1.)
C1=SIN(TX)**2*(P-1.)+2.*P*(COS(TX)-1.)
A2=B1
B2=TX*(P+1.)+SIN(TX)*COS(TX)*P-1.)
C2=2.*P*SIN(TX)-TX*(P+1.)-SIN(TX)*COS(TX)*(_-1.)
A3=C1
B3=C2
C3=TX*(P+1.)+SIN(TX)*COS(TX)*(P-1.)-4.*P*SIN(TX)+
2.*P*TX
SM=2.*(B2*C3-C2**2)/(A1*(B2*C3-B3*C2)-B1*(B1 *C3+C1 *C2)

1-C1*(B2*C14-B1*C2))
ST=2.*(Al*C3-C1**2)/(B2*(A1 *C3-C1**2)
2-B1*(Bl*C3+Cl*C2)-C2*(Bl*C1+Al*C2))
M21=COS(TX)+(B1 *C3+C1 *C2)*SIN(TX)/(B2*C3 C2**2)
3+(B1*C2+B2*C1)*SIN(TX)/(C3*32-C2**2)
T2M1=SIN(TX)+(B1*C3+C2*C1)*COS(TX)/(A1 *C3-Ca**2)

4+(B1*C1+A1 *C2)*SIN(TX)/(A1*C3-C1**2)
T1M1=(B1*C3+C2*C1)/(Al*C3-C1**2)
T21.COS(TX)-(B1*C3+C2*C1)*SIN(TX)/(A1 *C3-C1**2)
5-(Al*C2+Bl*C1)*(1.-COS(TX))/(Al*C3-C1**2)
m1 TIABl*C3+C1 *C2)/(B2*C3-C2**2)
M2T1.-SIN(TX)+(B1*C3+C1 *C2)*COS(TX)/(B2*C3-C2**2)
6-(B1*C2+B2*C1)*(1.-COS(TX))/(C3*B2-C2**2)
WRITE(10,20) I,P,SM,ST,M21,T2M1, T1M1, T21,M1T1,M2T1
KCOUNT=KCOUNT+1
IF (KCOUNT.EQ.46) 50,30

50 WRITE(10,10)
KCOUNT=1

20 FORMAT(19,F5,1,8F6.3)
30 CONTINUE

STOP
END


