
AN ABSTRACT OF THE THESIS OF

RUDOLPH JOSEPH FRANK for the DOCTOR OF PHILOSOPHY
(Name of Student) (Degree)

in Electrical and. Electronics Engineering presented on 5 -3 -71
(Major) (Date)

Title: A FEASIBILITY STUDY ON THE USE OF ARITHMETIC-

MEMORY REGISTERS IN THE DESIGN OF DIGITAL

COMPUTER SYSTEMS

Redacted for privacyAbstract approved:
rProfessor Louis N. "Stone

The concept of combining arithmetic and memory capability on

a single semiconductor chip has become practical from a system's

viewpoint through the decreased cost of semiconductor memories and

high circuit densities achieved through large scale integration. This

paper describes a model for studying the feasibility of such systems.

An arithmetic-memory register is defined as the basic hard-

ware unit. A model consisting of instruction states and transition

states is developed. The model is then applied to both past and con-

temporary computer structures. A general purpose machine is

formulated from a set of arithmetic-memory registers. The feasi-

bility of this structure is studied with respect to both performance

and implementation.

The utilization of arithmetic-memory registers is also shown

to be applicable to special-purpose systems. A system designed to

compute power spectra is described. The state model proved to be a

useful technique in the design of the system. Cost estimates and mea-

sures of performance were significant factors influencing the feasi-

bility of the system. The structure was also found suitable for

real-time application.

A Feasibility Study on the Use of Arithmetic-Memory
Registers in the Design of Digital Computer Systems

by

Rudolph Joseph Frank

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

June 1972

APPROVED:

Redacted for privacy
Profespr of bepartment'of Electrical and Electronics

Enigneering
in charge of major

Redacted for privacy

Head o Department of Electrical and Electronics
meering

Redacted for privacy

Dean of Graduate School

Date thesis is presented

Typed by Il la W. Atwood for Rudolph Joseph Frank

ACKNOWLEDGEMENT

The author would like to thank Professor Louis N, Stone for his

guidance and direction in the preparation of this thesis. The author

also wishes to thank Oregon State University for their support of this

work. And lastly, the writer wishes to especially thank his wife,

Donna, and his parents, Mr. and Mrs. Joseph Frank, for their con-

stant encouragement.

TABLE OF CONTENTS

I. INTRODUCTION 1

II. BACKGROUND AND HISTORICAL DEVELOPMENT 4

Conventional Computer Systems 4
The Holland Machine 7

Modified Holland Machine 9

The SOLOMON System 9
ILLIAC IV 13
MARIA 14
Multiprocessing System s 15

III. DEVELOPMENT OF THE MODEL 16

Independent Elements 16
Dependent Elements 19
Size of the Memory Element 21
Structure of an Arithmetic-Memory Register 22
Transition States and Instruction States 24
Parallel Cycles 27

IV. APPLICATION OF THE MODEL 31

Model Applied to Conventional System 31
Model Applied to SOLOMON and Holland Machines 32
General-Purpose Model 36
Special-Purpose Model 37

V. GENERAL-PURPOSE SYSTEM 44

Hardware-Software Interdependence 44
Example 45
Feasibility of the System 48

VI. SPECIAL-PURPOSE SYSTEM 49

Digital Spectral Analysis 49
Basic Procedure 49
Discrete Versus Continuous 51

Application to Arithmetic-Memory Registers 55
Addition Routine 55
Autocorrelation Routine 57

TABLE OF CONTENTS (cont.)

Fast-Fourier Transform Routine 60
System Performance 65
Cost and Execution Time 70
Real Time Application 72

VII. CONCLUSIONS 76

BIBLIOGRAPHY 78

APPENDIX A 80

LIST OF FIGURES

Figure
1. The five basic elements of a conventional com-

puter system.

2. Parallel network computer with A-boxes and
4x6 array of modules.

Page

4

10

3. Processing element array for a 4x4 network
SOLOMON system. 11

4. ILLIAC IV system organization. 14

5. A typical instruction set consisting of 16 binary
coded instructions. 17

6. An arithmetic-memory register with independent
elements.

7. An arithmetic-memory register with dependent
elements.

18

19

8. Final model for the structure of an arithmetic
memory register. 23

9. Set of eight arithmetic-memory registers. 24

10. A typical transition state. 25

11. The associated interconnections for the transi-
tion state. 26

12. A typical instruction state for eight arithmetic-
memory registers using the instruction set
illustrated in Figure 5. 27

13. Binary representation of processors in a rec-
tangular array. 33

14. Interconnection of registers for the "identity's
transition. 38

15. Interconnection of registers for the "half- cross"
transition. 39

Figure

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

LIST OF FIGURES (cont.)

Page

Interconnection of the registers for the "pairing"
transition. 41

Interconnection of the registers for the "shift-
one" transition. 41

Interconnection of the registers for the "evens up
and odds down" transition. 42

Interconnection of the registers for the "perfect
shuffle" transition. 43

Transition and instruction states for computing
Z = (B +C) * (F+D) and W = (B*C) + (F*D). 47

Two procedures for calculating the power density
spectrum. 50

Flow diagram of the fast-Fourier transform
algorithm for the case n=8.

Flow diagram for the addition routine.

Flow diagram for the autocorrelation routine.

54

56

59

Required transition states for an eight point
fast-Fourier transform. 60

Flow diagram for the calculation of the fast-
Fourier transform.

Type and number of instructions used in the calcu-
lation of spectral estimates.

Plot of reduction ratio Rn for the execution times
given in Table 4.

Plot of G versus C for n = 1024 and variations
in X.

64

66

69

71

LIST OF FIGURES (cont.)

Figure Page

30. Plot of the supportable sampling rate for the
special-purpose system for corresponding vari-
ations in the number of points and multiplication
time. 74

31. Contents of registers at the termination of each
time-step for the case n=8. 81

32. Weights for n=8. 83

33. Weights for n=16. 84

LIST OF TABLES

Table Page

A tabulation of the number of parallel cycles
for a machine with n arithmetic-memory
registers and m operations in its instruction
set. 30

Neighboring groups for the processor array
illustrated in Figure 13. 34

3. The number of transition states for the con-
ventional system, rectangular array, and
general-purpose model for variations in the
number of elements in the state. 36

4. Tabulation of execution times D for the
conventional and special-purpose systems. 68

LIST OF SYMBOLS

A. Terms associated with ith stage of fast-Fourier transform.

B Upper bound for the number of possible interconnections for
rectangular arrays.

C Cost constant for arithmetic-memory registers.

CPU Central processing unit.

Dn Execution time to compute n-point spectral estimates.

f Frequency in hertzs,

G Number of signals analyzed by conventional system to match
price of special-purpose system.

i Designation for register identification.

I/O Input and output.

j Index for discrete frequency.

m Number of operations in instruction set.

n Number of arithmetic-memory registers,

PE Processor element.

P(f) Power spectral density.

P(i) Designation for input to register i.

R(T) Autocorrelation function.

Rn Reduction ratio for system execution times for n-point trans-
forms.

t Time or time step.

T Signal period.

x(t) Time varying signal.

X Cost per hour for computing time on conventional system.

X(f) Fourier transform.

V Multiplication execution time.

t Sampling interval.

T Delay time.

No-op command for instruction state and blank input for
transition state.

Multiplication command for instruction state.

A FEASIBILITY STUDY ON THE USE OF ARITHMETIC -
MEMORY REGISTERS IN THE DESIGN OF

DIGITAL COMPUTER SYSTEMS

I. INTRODUCTION

The speed of both past and contemporary computing systems

has been limited primarily by the interactions between the processor

and memory, and secondarily, by the pure arithmetic operations per-

formed by the processor. To combat this limitation, designers of

computer systems have relied on the following two methods:

1. Reducing the cycle time associated with the memory

of the machine.

2. Increasing the number of processors associated with

the machine.

Early attempts to increase computing speeds by these two

methods were curtailed by the high cost of random access core

memory and the increased complexity in the control of additional

processors. However, recent advances in solid state technology have

revealed the potential of semiconductor memories (Moore, 1971).

The advantage in speed is clearly evident when comparing the 1 p.sec.

cycle time of standard 20 mil cores to the 400 nsec. cycle time of

presently available semiconductor memories.

Projections indicate that semiconductor memories will also

provide a cost advantage for both small and large capacity memory

systems. Medium scale integration (MSI) introduced the capacity to

include significant amounts of logic in the design of these memory

systems. Large scale integration (LSI) holds even greater promises

of combining memory and logic at reasonable cost since a larger

number of logic elements can be squeezed on a chip.

The method of increasing computing speed by additional pro-

cessors involves an interdependence between the hardware and soft-

ware capabilities. From a hardware standpoint the potential of

producing a chip capable of storing information and performing a

limited amount of logic is certainly evident. The interconnection of

several such chips would be analogous to the interconnection of

several processors. Identical internal structure within a chip would

enhance the utilization of LSI techniques,.

From a software standpoint the utilization of more than one

processor creates additional overhead in system performance. A

case study on a multi-processing system undertaken by Rosenfeld

(1969) indicated that the performance of a system does not necessarily

increase linearly with the number of processors. Certain cases were

cited where the performance decreased due to the additional overhead.

Burnett, Koczela and Hokom (1967) studied the utilization of distri-

buted processors in various applications and illustrated the difficul-

ties encountered in the allocation of tasks for independent processors.

The problem of determining which tasks do and which do not require

3

preprocessing is a major cause of poor system performance.

This study formulates a model composed of units having both

arithmetic and memory capabilities. The characteristic which dif-

ferentiates this model from others rests in the concept that parallel

processing is extended to its limit. Each unit has a memory element

which acts as a single storage location together with an arithmetic

element which executes preset instructions. The interconnection of

these registers is universal, meaning that any unit can communicate

with any other unit. Several classic machine structures are formu-

lated by means of the model and the feasibility of special-purpose

applications are also investigated.

4

II. BACKGROUND AND HISTORICAL DEVELOPMENT

Conventional Computer System

Conventional computer systems are composed of five basic units

as illustrated in Figure 1. The central processing unit (CPU) controls

the interactions of the various units through control lines and interupt

routines. The memory unit is used only to store information. The

arithmetic and logic unit performs the actual arithmetic or logic

Input

Unit

Memory

Central

Processing
Unit

Arithmetic
and

Logic
Unit

Output

Unit

Figure 1. The five basic elements of a conventional computer system.

5

operations on the desired information. The input unit is used to

transfer information into the computer memory, and the output unit

is used to transfer information from the computer to the user.

The operation of the conventional type system is usually char-

acterized by the following sequence of operations:

1. Sequential loading of memory with program and data.

2. Sequential computation of program instructions.

A. Access of memory for instruction.

B. Access of memory for data.

C. Execution of instruction on data.

D. Access of memory to store results.

3. Sequential unloading of computed results from memory.

When a user's program is, to be processed, the CPU transfers

control to a subroutine called the loader. This subroutine is resident

in the memory and its function is to store the user's program and data

into memory by means of some input device. During the loading

process, the address of the first instruction is stored in the program

counter. The function of the program counter is to keep account of

the next instruction to be performed. The program instructions are

loaded sequentially until a terminating instruction is detected, this

initiates the loading of the program data. At the end of the loading

routine, the complete user's program and data will be stored sequen-

tially in the memory.

6

The actual execution of the user's program is initiated by a

command from the CPU to fetch the instruction whose location is

specified by the contents of the program counter. This instruction is

transferred from memory into the program register. The function of

the program register is to store the current instruction being exe-

cuted. Once the instruction transfer is completed, the program

counter is incremented to the address of the next instruction.

The contents of the program register is then decoded by the

CPU to determine the nature of the instruction to be performed. The

instruction usually consists of an operation code plus an operand.

Since the arithmetic unit has the task of actually performing the

operation, the data or information whose address is specified by the

operand must be transferred from memory into the accumulator of

the arithmetic unit. The accumulator is the heart of the arithmetic

unit in the sense that nearly all instructions are performed with

reference to its contents.

Once the current instruction and data have been accessed and

transferred from memory, the accumulator performs the execution

of the instruction on the data. The results of this instruction are now

resident in the accumulator. Therefore, if these results are not

needed in the next instruction, the memory must be accessed once

again in order to store the results. The acquisition of results from

memory also necessitates an access of memory. The data must be

7

unloaded in a sequential manner from the memory onto an output

device. This cycle of accessing memory to fetch instructions, fetch

data, store results and retrieve output is repeated until the termina-

ting instruction ends the program.

The speed of conventional computer systems has increased with

the technology. The transition from vacuum tubes to transitors and

from discrete components to integrated circuits has increased the

speed of the arithmetic unit. However, the time to access and trans-

fer a word from memory to an accumulator (referred to as a memory

cycle) is several orders of magnitude greater than the time to com-

plete logic or arithmetic operations. Therefore nearly all gains in

logic speed are overshadowed by the time allocated for memory trans-

fers. This problem is compounded by the necessity of two memory

cycles for nearly every instruction executed. One memory cycle for

the instruction fetch and one memory cycle for the acquisition of the

operand.

The Holland Machine

The Holland machine is a parallel network computer possessing

an array of modules. Each module is provided with relatively inde-

pendent sections. One section serves as a memory unit which con-

sists of binary storage registers. The other section governs the

general communication functions which link each module with its

8

neighbors. The network of modules is rectangular in shape and fixed

in size. The original model proposed by Holland (1959) had a limited

amount of circuitry associated with each module so that special

instructions could be executed.

The normal operation of the Holland network is to perform

instructions in- time - steps. At each time-step a module may, be either

active or passive. An active module normally interprets the contents

of its storage register as an instruction and proceeds to execute it.

If a given module is active at time-step t, then at time-step t +1, its

communication section selects one of its four neighbors as its succes-

sor. This leaves the original module in the inactive status and one of

its neighbors in the active status. In this manner a line of successors

is established in the system since each instruction required a module,

and therefore a sequence of instructions requires a sequence of

modules.

This sequence of successors corresponds to a given subprogram

of the computer. Since more than one module can be active at the

same time, the computer can execute several subprograms simul-

taneously. However, limiting conditions do exist:

1. A module may not belong to more than four paths.

2. For a given time-step a module may be active in only

one path.

These restrictions do limit the number of subprograms which a

Holland machine can simultaneously execute.

Modified Holland Machine

A parallel machine proposed by Comfort (1963) has features

quite similar to the Holland machine. Its organization is structured

around a rectangular array of modules, and its instruction sequencing

is governed by the communicating capability of the modules with their

neighbors. However, the array modules provide only data and instruc-

tion storage. The actual arithmetic and logic computations are all

performed by accumulators called A-boxes. The A-boxes are con-

nected to the modules through a switch as illustrated in Figure 2.

An instruction sequence must start with an A-box. The line of

successors through the module array is then determined. During

instruction execution, the instruction in an active module is sent back

through the line of predecessor modules to the original A-box. This

sequence is continued until the instruction located within the termina-

ting module is completed.

The SOLOMON System

The SOLOMON (Simultaneous Operation Linked Ordinal Modular

Network) proposed by Slotnick, Borch, and McReynolds (1962) was a

parallel network computer under a central control unit. The system

10

A-Boxes

Switch

Array
of

Modules

Figure 2. Parallel network computer with A-boxes and 4x6 array of
modules.

consisted of many identical processing elements (PE's) in a matrix

or mesh arrangement. The interconnections and programming of

these elements were under the supervision of the central control.

Figure 3 illustrates how the processing element array for a 4x4 net-

work is structured.

The central control unit contains program storage in the form

of large capacity random access memory. The stored instructions

Central Control Program Storage

Branching Levels

11

PE PE

P PE

PE

PE

PE

PE

PE

Figure 3. Processing element array for a 4x4 network SOLOMON
system.

are retrieved and interpreted by the control unit and execution is per-

formed within the processor array. The flow of the control informa-

tion is illustrated in Figure 3 through the lines extending from the

branching level. A given instruction is interpreted and translated

into a sequence of signals which are transmitted from central control

to the processing elements.

Each processing element can transmit and receive data serially

from its four nearest neighbors. These elements basically consist of

two parts:

12

I. A memory unit which provides 4096 bits of core storage.

2. An arithmetic and logic unit which provides the capability

for arithmetic operations and direction of program flow.

A flow of information occurs between processing elements during net-

work operation through this communication with neighboring elements.

The parallel operation of the SOLOMON system is shown in its

capability of performing the same instruction on operands stored in

the same memory location of each processing element. These

instructions, however, may all be different and the system would

still have the capability of parallel operation from central control.

A limited amount of local control at the individual processing element

level was obtained by permitting each element to enable or disable

the execution of the central control instructions according to local

tests. In other words, the direction of an instruction stream through

the PE array could be altered by the logic portion of a single process-

ing element in the array.

Studies with the original SOLOMON indicated that such a parallel

approach was applicable to a variety of important computational areas.

These areas included solutions of linear systems, the calculation of

inverses of eigenvalues of matrices, correlation and autocorrelation,

and numerical solution of systems of ordinary and partial differential

equations.

13

ILLIAC IV

The ILLIAC IV computing system proposed by Barnes et al.

(1968) consists of 256 processing elements arranged, in four

SOLOMON-type arrays of 64 processors each. The individual pro-

cessors have a 240 nsec. add time and 400 nsec. multiply time for 64

bit operands. Each processor is also provided with 2048 words of

240 nsec. cycle time thin-film memory.

Each processor array possesses a common control unit which

decodes the instructions and generates control signals for all process-

ing elements in the array. Constants and operands used in common

by all the processors are fetched and stored locally by the central

control and broadcasted to the processors in conjunction with the

instruction using them. The system can also be united by forming

two arrays of 128 processors each or a single array of 256 process-

ors. This capability is quite useful for matching problem dimensions

with machine dimensions.

Figure 4 illustrates the system organization of ILLIAC IV. A

large disk system is directly coupled to the arrays to provide back-up

memory. The system program resides in a general-purpose B6500

computer which supervises program loading and array configuration

changes. An I/O switch provides a real-time data linkage for the

ILLIAC IV.

Array 1
64 PE's

Array 2
64 PEs

Array 3
64 PEs

Array 3
64 PEs

Real-time link 1/0 Switch

Parallel
Access
Drum

14

General
Purpose

Computer
B6500

Peripherals

Figure 4, ILLIAC IV system organization,

MARIA

The multiple arithmetic iterative array computer (MARIA)

proposed by Watson, Hansa lik, and Emerson (1964) used a unique

systems concept to achieve an increase in computational ability, The

operands or data for specific problems were grouped into blocks

15

where each block could be considered an operand for a block of

instructions. For example, a simple block operation would be to add

block A to block B. Since the iterative array of the arithmetic sec-

tion was a three dimensional array of cells, the additions could be

performed in a parallel fashion on a two dimensional plane within this

array. This system is especially efficient for problems involving

matrix manipulations.

Multiprocessing Systems

The SOLOMON and Holland machines are classic structures in

the area of multiprocessing systems. The systems are similar in

that both utilize a rectangular processing array. However the two

systems differ in that the SOLOMON system employs a central con-

trol and the Holland system emphasizes local control at the processor

level. The tremendous programming problems associated with both

machines caused the development of many modified models.

Most multiprocessing systems including the ILLIAC IV and

MARIA are designed upon the rectangular or mesh array of proces-

sors. This limitation of directional communcation among the proces-

sors is a primary cause of the intolerable programming problems

encountered in such machines. An investigation of other processor

structures may lead to fewer programming difficulties and more

efficient machine performance.

16

III. DEVELOPMENT OF THE MODEL

To investigate the structure of a computer system, the limita-

tions and characteristics of the arithmetic and memory capabilities

must be defined. The following definitions will be the framework for

a model which will be used to investigate computer structures.

Definition 3.1 A word is a set of n binary bits of information.

Definition 3.2 A memory element is a device capable of storing

m words of information.

Definition 3.3 An arithmetic element is a device capable of

operating on one or two input words to produce a single output word

through a given instruction set.

Definition 3.4 An instruction set is a group of operations which

can be executed by the logic or hardware contained in the arithmetic

element. Figure 5 illustrates a typical instruction set consisting of

16 commands.

Definition 3.5 An arithmetic-memory register is a device

consisting of both an arithmetic element and a memory element.

Independent Elements

The internal connection of an arithmetic-memory register can

be implemented in many ways. Figure 6 illustrates a register in

17

Binary Coding Instruction

Arithmetic

0000 Add

0001 Subtract

0010 Multiply

0011 Divide

Branching

0100 Unconditional Jump

0101 Jump if Equal

0110 Jump if Not Equal

0111 Jump if Less Than

Loading

1001 Load from Register

1010 Load from Device

Shifting

1011 Shift (right or left one bit)

Logical

1100 Logical And

1101 Logical Or

1110 Exclusive Or

1111 Complimentation

Figure 5. A typical instruction set consisting of 16 binary coded
instructions.

Memory
Inputs

Arithmetic
Inputs

.11,1

01.11
Memory
Element

Arithmetic
Element

18

Memory
Outputs

Arithmetic
Output

Figure 6. An arithmetic-memory register with independent elements.

which both inputs to the arithmetic element are free of connections to

the memory element. In theory, an independent internal connection

between the elements would make it possible to perform an instruc-

tion on two words residing in separate registers which are distinct

from the operating register.

In applications where memory protection is needed, such a

design would free the arithmetic element associated with any memory

protected register. However this internal connection is not consis-

tent with the concept of an arithmetic-memory register because the

arithmetic element and memory element are independent and there-

fore the necessity of a common structure is eliminated. In short,

this implementation is identical to the present concept of a memory

module separate from the processing module.

19

Dependent Elements

Another structure for the connection between the elements of an

arithmetic-memory register is to specify that one input to the arith-

metic element is a word contained in its associated memory element.

Figure 7 illustrates such a structure.

Memory
Inputs

Arithmetic
Input

Memory
Element

Arithmetic
Element

Memo ry
Outputs

Arithmetic
Output

Figure 7. An arithmetic-memory register with dependent elements.

The advantage of this structure is that for single input instruc-

tions there is no transfer of information between registers. The

arithmetic element has the needed information resident within the

memory of the register. Examples of such instructions include the

test instructions for greater than, equal to, or less than zero. The

shift instruction and logical complementation are also appropriate

examples.

zo

A difficulty may occur in determining which word of the associ-

ated memory element is the desired input. For this problem an

addressing scheme must be devised for each arithmetic-memory

register. A control mechanism must also be developed whereby any

word of the memory element is capable of being connected to the

arithmetic element. Each register therefore must have a control

section for selecting the proper address and transmitting its contents

to the arithmetic element. This capability introduces a memory cycle

time and some form of local programming for each register. A sys-

tem consisting of a number of these arithmetic-memory registers

would perform in the same fashion as an identical number of conven-

tional single accumulator computers linked together under a common

structure.

The above case can be altered to a design in which a specific

word of the memory element is dedicated as the input to the arith-

metic element. This internal structure for the dependent elements

of the arithmetic-memory register would be less complicated. How-

ever, some means of transferring words within the memory element

would be required so that the needed information would be stored at

the dedicated location prior to instruction execution.

In any event the latter case is less complicated and demands a

simpler internal structure for the arithmetic-memory register.

Unlike the independent element configuration, this structure is

21

consistent with the concept of an arithmetic-memory register and it

requires only one external input to the arithmetic element.

Size of the Memory Element

If it is assumed that a fixed location or a dedicated word among

the n words of the memory element is to be designated as one input

to the arithmetic element. Then the utility of the other n- 1 storage

locations associated with the memory element is in question.

The residual storage can be utilized in the following ways:

1. For larger problems, instruction coding storage may need

to be divided among the residual storage associated with the

memory elements of the individual registers. However, in

most cases the instruction code and operand addresses are

used only for decoding and information transfers respective-

ly. Therefore only trivial manipulations or indexing is per-

formed on the coding and operands of these instructions and

there is no real necessity to link this coding with an element

containing more powerful arithmetic capabilities.

This utilization would also tend to destroy program

unity and introduce addressing problems since the program

would be scattered among the arithmetic-memory registers

of the system.

2. The thought of using the residual n- 1 locations for data

22

storage also deserves consideration. One reasonable

method discussed previously was to transfer the contents of

one of the residual locations into the dedicated location

whenever necessary. This utilization has two drawbacks.

It introduces a memory cycle for the location of the resi-

dent input to the arithmetic element, and if more than one

word within the memory element is needed for instruction

execution it hinders the speed of parallel processing.

If it is assumed that simplicity of internal structure and facility

in the area of parallel processing are the prime priorities, the most

beneficial structure for the concept of arithmetic-memory registers

appears to be the utilization of memory elements consisting of only

one word.

Structure of an Arithmetic-Memory Register

The final model for a single arithmetic-memory register con-

sists of a memory element and an arithmetic element as illustrated

in Figure 8. The arithmetic element has two inputs, a resident input

and an external input. The memory element is used as a storage

location for a single word of information. This location also acts as

the resident input of the arithmetic element. For instructions utiliz-

ing only the resident information of the memory element, no external

inputs are needed. For instructions performed on two words residing

External
Input

Memory Element

Arithmetic Element

23

Outputim
Figure 8. Final model for the structure of an arithmetic-memory

register.

in different registers, one of the registers must be selected to per-

form the operation and the external input to its arithmetic element

must come from the memory element of the other register. The

result will be stored in the memory element of the operating register.

The final model for an arithmetic-memory register will there-

fore have one input and one output. To store initial information into

the memory element, the load instruction is performed. This instruc-

tion will load one word into the memory element through the external

input of the arithmetic element. Once the memory element is loaded,

it acts as a buffer to the arithmetic element. The external input also

has a buffer in the arithmetic element.

To illustrate the utilization of these registers, assume the

logical "and" and "or" operations are to be executed on the variables

A and B in registers 1 and 2 respectively. Initially the load instruction

24

would be used to store the binary representation of the values A and

B into the memory elements of registers 1 and 2. The "and" instruc-

tion, associated with an operand designating that the external input is

from register 2, is performed by register 1. Simultaneously an "or"

instruction, associated with an operand designating that the external

input is from register 1, is performed by register 2. The resulting

nand" and" or" outputs will therefore be resident in the memory ele-

ments of registers 1 and 2 respectively.

Transition States and Instruction States

A computing system composed entirely of arithmetic-memory

registers can be described in terms of transition states and instruc-

tion states.

Definition 3.6 A transition state for a set of n arithmetic-

memory registers is defined as a column vector of n elements

representing the interconnection of the registers. The first element

of the column vector identifies the external input to the first register.

The second element of the vector identifies the external input of the

second register, and so forth, until the nth element of the vector

identifies the external input of the nth register.

If a binary addressing system is assumed for a computer com-

posed of eight arithmetic-memory registers as illustrated in Figure 9,

three binary bits will be required for input addressing. Figure 10

000

001 (000)

010 (001)

011

100

(010)

(011)

101 (100)

Figure 9. Set of
eight arithmetic
memory registers.

(101)

(110)

25

Figure 10. A typical Figure 11. The asso-
transition state. ciated interconnections

for the transition
state.

26

illustrates a typical transition state for this system and Figure 11

illustrates the corresponding interconnection of the registers.

This example simply defines the external input to register (n)

to be from the memory element of register (n-1) with the output

appearing in the memory element of register (n). This transition

state can be utilized for any calculations requiring this particular

interconnection between registers.

To completely describe the structure of a computing system,

an instruction state must also be defined in order to specify the type

of operation each register is to perform.

Definition 3.7 An instruction state for a set of n arithmetic-

memory registers is defined as a column vector of n elements repre-

senting the particular instruction each arithmetic-memory register is

to execute. The first element of the column vector identifies the

instruction to be executed by the first register. The second element

of the vector identifies the instruction to be executed by the second

register, and so forth, until the nth element of the vector identifies

the instruction to be executed by the nth register.

For a binary operating code of n bits there can be 2n possible

instructions. The 16 instructions in Figure 5 are represented by a

four bit binary code varying from (0000) representing the add, instruc-

tion to (1111) representing the logical complimentation instruction.

Figure 12 illustrates a typical instruction state for eight registers

27

using these instructions. The first two registers will perform addi-

tions, the second two registers will perform subtractions, the third

two registers will perform loading operations, and the last two regis-

ters will perform logical complementations,.

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 1

1 0 0 1

1 0 0 1

1 1 1 1

1 1 1 1

Figure 12. A typical instruction state for eight arithmetic-memory
registers using the instruction set illustrated in Figure 5.

Parallel Cycles

Any parallel operation of the complete set of arithmetic-

memory registers is specified by both the transition state and the

instruction state. The transition state and instruction state vectors

contain an identical number of elements. Each transition state must

have an associated instruction state, and each instruction state must

have an associated transition state. This restriction does not mean

that a particular state cannot possess a null element. The occurrence

28

of a null element within a state simply indicates that the associated

register will not be used when the other operations specified by that

state are executed.

Definition 3.8 A parallel cycle for a set of n arithmetic-

memory registers is defined as any pair of states consisting of one

transition state and one instruction state each of whose column vec-

tors contain n elements,

Theorem 3.1 If there are n arithmetic-memory registers

associated with a given machine, then there are n: different transi-

tion states associated with that machine.

Proof

1. The input to the first register can be obtained from any one

of the n registers, therefore, there are n possible choices

for its input.

2. Given that the first register's input is selected, the second

register has n-1 possible choices for its input.

3. If an arbitrary register such as the pth register is selected,

it will have n-(p-1) possible choices for its input.

4. The last or nth register has n-(n-1) = 1 possible input.

5. The total number of possible transition states is therefore

equal to (n)(n-1)(n-2,), , (1) = n; .

Theorem 3.2 If there are n arithmetic-memory registers

associated with a given machine and there are m instructions in its

29

instruction set, then there are mn different instruction states asso-

ciated with that machine.

Proof

1. The first register can perform one of m instructions.

2. The second register can likewise perform any one of the m

instructions.

3. The nth register has m possibilities for its instruction also.

4. The total number of possible instruction states is therefore

equal to (m)(m)....(m) = Tr m = mn.
i=1

Theorem 3.3 If there are n arithmetic-memory registers

associated with a given machine and there are m instructions con-
n.tained in its instruction set, then there are () different parallel

cycles associated with that machine.

Proof

1, There are n: different transition states associated with the

machine as stated in Theorem 3.1.

2. There are mn different instruction states associated with

the machine as stated in Theorem 3.2.

3. Therefore since each parallel cycle is composed of an

instruction state and a transition state, there are !)(mn)

possible parallel cycles associated with the machine.

30

Table 1 is a tabulation of the number of possible parallel cycles

in machines with a varied number of arithmetic-memory registers

and different sized instruction sets.

Table 1. A tabulation of the number of parallel cycles for a machine
with n arithmetic-memory registers and m operations in
its instruction set.

m = 1 m = 2 m = 4

n= 0

1

2

3

4

5

6

8

10

20

50

100

1 1

1 2

2 8

6 48

24 384

120 3.8X 103

720 4.5 x 104

4.0 X 104 1.0 X 107

3.6X 106 3.6X 109

2.4X 102
42.4X 1018

3.0 X 10793.0 X 1064

1.0 X 101889.0 X 10157

1

4

32

384

6 x 103

1.2X 10 5

2.9 X 106

2.6 X 109

3.6X 1012

2.4X 1030

3.6 X 1094

1.0 X 10218

n

m

=

=

number of arithmetic-memory registers
number of operations in the instruction set

31

IV. APPLICATION OF THE MODEL

Model Applied to Conventional Computer System

The conventional computer system of Figure 1 can be modeled

by transition states and instruction states. The transition state vec-

tor and instruction state vector for the conventional system have the

same number of elements as the system to be modeled has words of

memory. Assume a 1K memory which would correspond to a transi-

tion state vector of 1000 elements and an instruction state vector of

1000 elements. Since the conventional system requires that all

instructions be executed through a single accumulator, only a single

element among the 1000 elements of the instruction state is capable of

performing an instruction. The other 999 elements of the instruction

state can theoretically perform only no-op commands since every

instruction must be performed through the one arithmetic element.

If there are m operations in the instruction set, then there are m

different instructions which that arithmetic element is capable of

executing. Therefore only m different instruction states are asso-

ciated with the system.

In a similar manner the transition state vector has 1000 ele-

ments of which only one is capable of receiving an input address.

The number of different transition states is 1000 since the single

input can originate from any one of the 1000 memory locations. The

32

product of the number of different transition states and instruction

states gives the number of possible parallel cycles. Therefore for

this system there are 1000 times m possible parallel cycles.

All conventional systems can be modeled in this manner. The

number of possible parallel cycles is equal to the product of the

memory size and the number of operations in the instruction set. The

limitations of the conventional system are brought out in the model by

the fact that only one of the elements of the transition state and

instruction state vectors may be utilized. This demonstrates the

"bottleneck effect" that can take place in a computing system with a

single accumulator and a tremendous amount of memory capability.

Model Applied to SOLOMON and Holland Machines

The application of the transition state and instruction state

model to the SOLOMON machine and Holland machine is discussed

simultaneously because both machines have neighbor-to-neighbor

communication within their processor arrays. The number of ele-

ments in the instruction state and transition state is equal to the num-

ber of total processors contained in their respective arrays. It is the

structure of these arrays that pose the limiting conditions on the

parallelism of the system.

The SOLOMON and Holland processor arrays are rectangular

in shape. This means that each processor has communication with

33

each of its four adjacent neighbors. This structure is reflected in

the positioning of the elements in the transition state vector. Assume

that the processors within the rectangular array are ordered in a

binary representation such that adjacent processors in the same row

differ in at most one bit position, and adjacent processors in the same

column differ by at most one bit position. Such a binary representa-

tion of these processors is illustrated in Figure 13.

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

Figure 13. Binary representation of processors in a rectangular
array.

The utility of this representation is exhibited in the ease in

which neighboring processors can be specified. All neighbors will

differ in at most one bit position of their binary representations. For

34

instance, the neighbors of processor (0111) are processors (0011),

(0110), (1111) and (0101).

Let a neighboring group for a particular processor be defined as

all possible communicating elements with that processor. Each

neighboring group will consist of the processor itself plus its four

neighbors. For a set of n processors there are n distinct neighbor-

ing groups. Each processor will belong to five different neighboring

groups. For the case of Figure 13 with n = 16, the 16 neighboring

groups are listed in Table 2. The five neighboring groups associated

with processor (0000) are 1, 2, 3, 5 and 9.

Table 2. Neighboring groups for the processor array illustrated in
Figure 13.

Neighboring
Group Neighboring Processors

1 0000 0001 0100 0010 1000
2 0001 0011 0101 0000 1001
3 0010 0110 0011 1010 0000
4 0011 0010 0111 0001 1011
5 0100 0000 0101 1100 0110

9 1000 1100 0000 1001 1010

16 1111 0111 1011 1101 1110

35

Within a neighboring group an initial processor has five possi-

ble inputs. The next processor has four possible inputs, and so forth,

until the fifth processor of the neighboring group has only one possi-

bility for its input. This makes a total of 5 possible input intercon-

nections within a neighboring group. If this concept is extended to a

square array of n = s2 processors with n distinct neighboring groups,

the fact that each processor belongs to five separate neighboring

groups complicates the generalization. However, an upper bound (B)

for the number of possible interconnections for a square array of

n = s2 processors is given by the following equation.

B = 5n Equation 4.1

The concept of limiting the interconnections among processors

to only those processors among a neighboring group reflects upon the

structure of the transition state vector. Since the elements within the

transition state vector are inputs to the arithmetic-memory registers,

an upper bound for the number of different transition states for n = s2

processors is identical to the number B given in Equation 4.1. The

number of possible instruction states is equal to mn, where m is the

number of operations in the instruction set. Therefore the SOLOMON

and Holland structures with n = s 2 processors have at most (B)(mn)

possible parallel cycles.

36

General-Purpose Model

A general-purpose computer consisting of a set of n arithmetic-

memory registers and an instruction set of m operations can be

modeled in terms of instruction states and transition states. Let the

interconnection between these registers be universal, meaning that

the output of any register can be connected to the input of any regis-

ter. Then such a machine structure would be capable of all possible

n: transition states.

Table 3 lists the number of transition states for the conventional

model, the rectangular model, and the general purpose model for

variations in the number of transition state elements.

Table 3. The number of transition states for the conventional system,
rectangular array, and general-purpose model for varia-
tions in the number of elements in the state.

State Conventional Rectangular
Elements System Array

General Purpose
Model

n = 1

4

9

16

25

36

49

64

81

100

1

4

9

16

25

36

49

64

81

100

1

6

1.9x 106

1.
115 X 10

3.0 x 1017

1.5 X 1025

1.8 X 1034

5.4 X 1044

4.1 X 1056

7.9 X 1069

1

24

3.6X 105

2.1 X 1013

1.5X 1025

3.7 X 1041

6.1 X 1062

1.3 X 1089

5.8 x 10120

9.0 x 10 157

37

The utilization of the number of possible transition states as a

measure of the parallel capability of a machine should not be confused

with the efficiency in which such machines perform tasks. In other

words, the general-purpose model with 4 arithmetic memory regis-

ters can not perform 6 times faster or more efficiently than a con-

ventional system with a single accumulator and 4 words of memory.

The fact that there are 6 times as many transition states simply

indicates that there are 6 times as many ways to manipulate the

information. The efficiency of performance for such a system will

depend predominately on the application and the programming of the

machine. In Chapter 5 the performance and practicality of the

general-purpose model will be discussed.

Special-Purpose Model

The concept of arithmetic-memory registers can be extended to

special-purpose computers by allowing only a selected number of

transition states and limiting the number of operations contained in

the instruction set. The allowable number of transition states and

the particular interconnections selected will depend upon the applica-

tion. Clearly it would not be practical to examine all n: possible

transition states. However, some examination of the application of

certain transition states together with selected instruction sets is of

interest.

38

The "identity" transition state for a set of n arithmetic-memory

registers is defined in Equation 4.2.

P(i) = i 0 < i < n Equation 4.2

where i is the designation for the register number, and P(i)

is the designation for the input to register i.

The "identity" transition is the interconnection of the registers

such that each register's output is tied back to its own

external input. In reality the memory element contains the result of

the last instruction and its contents are merely transferred into the

external input of the arithmetic element. Figure 14 illustrates the

interconnection of the registers for this transition.

The "identity" transition is obviously useful for calculations and

0 > 0

1 > 1

2 2>

> 33

Figure 14. Interconnection of registers for the "identity" transition.

39

logical operations utilizing only the contents of the register's

memory element. Operations such as shifting and complementation

can be executed using this transition. If the multiply instruction is

used, the square of the memory contents can be obtained, In binary

representation, shifting each register's contents right or left n posi-

tions is equivalent to dividing or multiplying the contents of each

memory element by 2n.

The "half-cross" transition for a set of n arithmetic-memory

registers is defined in Equation 4.3.

P(i) = i + n/2 1 < n/2
Equation 4.3

= i - n/2 1 > n/2

The interconnection of the registers for this transition is illus

trated in Figure 15. This transition is useful if a set of calculated

(n/2) (n/2)
(n/2)+1 (n/2)+1

n-1

Figure 15, Interconnection of registers for the *rhalf cross" transi-
tion.

40

values needs to be stored for use in preceding parallel cycles. If the

first half or upper half registers contain the appropriate values, the

"half-cross" transition could then be used with the load instruction to

store the values of the upper half registers into the lower half regis-

ters. This infers that the instruction set contains no-op instructions

for the lower half registers so that their contents are not transferred

into the upper registers.

If the above load instruction for the "half-cross" transition is

followed by a sequence of m multiply instructions, the lower half

registers would contain the contents of the upper half registers

raised to the mth power.

The "pairing" transition for a set of n arithmetic-memory

registers is defined in Equation 4.4.

P(i) = i + 1 if i is even
Equation 4.4

.= - 1 if i is odd

The interconnection of this transition state is illustrated in

Figure 16. This transition is useful in adding or multiplying a set of

numbers. Since a single arithmetic-memory register is limited to

operating on only two words at one time, it is sometimes convenient

to operate on adjacent words. Redundant values can also be obtained

using this transition by utilizing the same instruction for the pair of

registers.

0

1

2

3

n-2

n-1

0

1

2

3

n-2

n-1

41

Figure 16. Interconnection of the registers for the "pairing" transi-
tion.

The "shift one" transition for a set of n arithmetic-memory

registers is defined, in Equation 4.5.

P(i) = i + 1 i # 0
Equation 4.5

= n - 1 i = 0

The interconnection for this transition is illustrated in Figure

17. This transition can be used for any calculations requiring delays

or shifts in a set of numbers. A typical application would be in the

area of correlation calculations.

0
1 1

2 2

n-1 n-1

Figure 17. Interconnection of the registers for the "shift one" transi-
tion.

42

The "evens up and odds down" transition for a set of n

arithmetic-memory registers is defined in Equation 4.6.

P(i) = i/2 if i is even
Equation 4.6

= (n+i-1)/2 if i is odd

The interconnection for this transition is illustrated in Figure

18. This transition can be used after the "pairing" transition to place

results back into adjacent registers for further applications of the

"pairing" transition.

3

(/2)+1

n-4
n-3
n-2 n-2
n-1 n -1

Figure 18. Interconnection of the registers for the "evens up and
odds down" transition.

The "perfect shuffle" transition for a set of n arithmetic-

memory registers is defined in Equation 4.7.

43

P(i) = Zi i < (n/2)-1
Equation 4.7

= 2i+l-n i > (n/2)

The interconnection for this transition is illustrated in Figure

19. This transition was initially discovered by Pease (1968) and later

applied by Stone (1971) in the field of transform theory.

Figure 19. Interconnection of the registers for the "perfect shuffle"
transition.

44

V. GENERAL-PURPOSE SYSTEM

A general-purpose computing system is amachine

which has the capability of performing a wide range of tasks. The

efficiency of these systems is usually quite moderate in comparison

to special-purpose machines designed for a specific purpose. Tra-

ditionally the moderate performance of general-purpose systems has

not been questioned from a hardware-software viewpoint. Software

algorithms have been developed to perform tasks in an optimal fash-

ion, and hardware technology has made tremendous developments;

however, advances in both areas have been independent for the most

part. The following section is an examination of the general-purpose

system for a hardware-software viewpoint.

Hardware-Software Interdependence

Let a general-purpose computer system consisting of n

arithmetic-memory registers be structured in such a way that the

output of any register can be connected to the input of any other

register. In other words, there exist a universal set of intercon-

nections between the registers.

This structure represents a hardware development in that each

word of memory is associated with a dedicated processor. The con-

ventional approach is for a group of words to share a single processor.

45

The software development rests in the ability of the programmer to

utilize this processor-word pair as efficiently as possible.

The hardware-software interdependence is demonstrated by the

fact that the programmer is solely responsible for the selection of the

interconnections that are going to ultimately solve his problem. In

most multiprocessing systems the selection of a particular processor

to perform a given task is under system's control. The utilization of

the transition state and instruction state model for a general-purpose

system composed of arithmetic-memory registers allows the pro-

grammer to control processor operations.

Intuitively, since parallel operations must be independent, the

element controlling the selection of processors must have some means

of determining independent operations. Because the programmer

determines the dependence and independence of tasks by the very

nature of his program, he must have primary control over processor

selection if parallel processing is to extend to its limit.

Example

Assume that a conventional system is to perform the task of

computing Z and W by means of the following equations.

(B+C) (D+F)

W = (B*C) + (D*F)

46

The normal sequence of instructions for the conventional sys-

tem would be as follows:

Program

Instruction

Z = (B+C) (D+F)

Operation

1. LDA B Loads B into the accumulator
2. ADA C Adds C to B

3. STA X Stores (B+C) into X

4, LDA D Loads D into the accumulator
5. ADA F Adds F to D
6. M X Multiplies (F+D) and (B+C)

7. STA Z Stores the result in Z

Program W = (B*C) + (D*F)

8. LDA B Loads B into accumulator

9. M C Multiplies B and C
10. STA X Stores (B*C) in X

11. LDA D Loads D into the accumulator
12. M F Multiplies D and F
13. ADA X Adds (B*C) to (D*F)

14. STA W Stores the result in W

This program requires 14 memory cycles to fetch the instruc-

tions plus 14 memory cycles to fetch the operands. This corresponds

to a total of 28 memory cycles.

If the system were composed of four arithmetic-memory regis-

ters with the values B, C, D and F residing in registers 00, 01, 10

47

and 11 respectively, the transition and, instruction states illustrated

in Figure 20 can be utilized to calculate Z and W.

Register Transition States
(1) (2)
01 10B ° }00
00 11C 01

D 10 11
10F 11

Instruction States
(1) (2)

Figure 20. Transition and instruction states for computing
Z = (B+C) * (F+D) and W = (B*C) + (F*D).

The task requires 2 parallel cycles, the first cycle computes

the values (B+C) in register 00, (C*B) in register 01, (D+F) in

register 10, and (F*D) in register 11. The second cycle computes

the values (B +C) (D+F) in register 00 and (C*B) + (F*D) in regis-

ter 11. The notation corresponds to a no-op command in the

instruction state and a blank input in the transition state. It can be

shown that such a system is optimal for the given task.

48

Feasibility of the System

For systems limited to operations involving two inputs, such a

general-purpose system would extend parallel processing to its limit.

However, if such a system were implemented for n arithmetic-

memory registers, some technique for handling the n! distinct

transition states would have to be developed.

A straight forward wired-in approach would provide each regis-

ter with dedicated inputs from the other n-1 registers. Practical

values of word size range from 8 to 64 input bit positions for each

register. In order that the proper input word be selected for each

register, a decoding network would be required to distinguish between

the n: different transition states. For a system consisting of 100

registers, such a network would have to distinguish between approxi-

mately 10158 different transition states so that the proper intercon-

nections between the registers could be provided. The implementation

of the decoding network together with the hardware required to control

such a tremendous number of interconnections would make this struc-

ture unfeasible.

It should be noted that the cost of the registers has not affected

the feasibility of this system. The pitfall for such a structure rests

in the implementation of the control and interconnections between the

registers.

49

VI, SPECIAL-PURPOSE SYSTEM

Digital Spectral Analysis

Spectral estimates derived from finite length time functions

involve a considerable amount of computational effort and permit a

relatively high degree of parallelism in their computations. By utiliz-

ing these characteristics, special-purpose digital computers can calc-

ulate these estimates at much greater speeds than conventional

general-purpose machines. The following discussion concerns the

application of arithmetic-memory registers in the design of a special-

purpose computer for the calculation of power spectra.

Basic Procedure

The Fourier transform X(f) of a signal x(t) in the time domain

represents the distribution of the signal strength in the frequency

domain. The continuous Fourier transform is defined by Equation 6. 1.

X(f) = x(t) e-i2lrftdt,
-oo

where i = 47-1, -00 < t < oo, -co < f < 00.

Equation 6. 1

The power spectral density P(f) is defined in terms of the

transform in Equation 6.2.

P(f) = Lim 1/T I X(f) 12,
T co

where T is the period of the signal x(t).

50

Equation 6.2

There are two procedures which yield the factor I X(f) I

2

These procedures are illustrated in Figure 21. The first procedure

involves computing the autocorrelation function R('T) directly using

Equation 6.3, and then Fourier transforming the autocorrelation func-

tion to obtain the power spectral density.

R(T) = Lim
T00

x(t)

Autocorrelation

R(T)

T /2

T J x(t)

-T/2

Transform

t-T) dt, Equation 6.3

X(f)

Multiplication

Transform
X(f) 12

Figure 21. Two procedures for calculating the power density
spectrum.

51

The second procedure involves computing the transform X(f)

plus its complex conjugate X (f) and performing an additional multi-

plication to obtain the 1X(f)12 term. If desired the autocorrelation

term can also be obtained by taking the inverse transform of 1X(012.

Discrete Versus Continuous

The continuous transform is defined in Equation 6. 1. However,

if the time varying function x(t) is sampled every A t seconds such

that n discrete samples are available, then the discrete Fourier

transform and autocorrelation function are given by Equations 6.4

and 6.5 respectively.
n-1

k=0

where j = 0, 1, n-1 and n = T/At.

X(j) =
1

n-1

k=v

x(k) e -(2Trijk)/n Equation 6.4

x(k) x(k+v), Equation 6. 5

where v = 0, 1 , , n-1.

If the expression Wn = e -2Tri/n is substituted into Equation

6.4, then the discrete Fourier transform takes the form of Equation

6.6. n-1

X(j) = x(k) Wik1

n n
k=0

Equation 6.6

52

The fast Fourier transform algorithm derived by Cooley and

Tukey (1965) requires that the number of sample points be a power of

2, such that n = 2m. The following notation can be utilized to

derive an algorithm for computing Equation 6.6.

Let

then

and

X(j)

Assume j = 0,1,...,n-1 and k = 0,1,...,n-1.

jm-1 = 0,1 and k ,k
2,'

km-1 m- 0 = 0,1,

m-2
j = jm-12m-1 im -22

+ . + j12 + j0

k = k 2m-1 + km-22m-2
m-1

. + k12 + k
0.

Using this representation for j and k, Equation 6.6 becomes

k
0

=0 k
1

=0

1 Equation 6.7
x(km-1' km-2 k0)0

k =0M-

(j 2m-l+jm m-2+... +j) (k 2
m-1+

k 2m--2+.. +k)
m-1 0 m-1 m -2

n

The above equation can be computed from the following set of

equations.

AO (km-1

A
1

(j
0,

km-2

'..,ko) =

A0(km-1, km-2 ,...,k
m_1=0

jokm_12m-1

A ,j1,...,

53

(42-Fj0)km_22
m-2

= (j0, km -2'
, k0)Wn

k =0m-2

-P-1
k

111-p-2",k0)

1

A kp- 1 0 p-2 m-p
k =0na-p

Am(j0,4,,im_1) = Am_

k
0

=0

(j

Wnp-

X(jm -1'

13-1+...+j0)km-p2m-P

(j 2m-l-f...+jm-1 +j0)k0

'il". im -2' kO)Wn

..... jo) = Am(jo,j/...,jm_i)

The fast Fourier Transform algorithm applied to a series of

n points, where n = 2m, requires m iterations of the algorithm for

evaluating the A0, A1, ..., Am terms. This procedure is followed by

a bit reversal on the last A term to arrange the transform compo-m

nents in the proper order. Figure 22 illustrates the use of the algo-

rithm for the case where n = 8. Each node is a sum of two terms

and the number adjacent to a path is the power of Wn which is to be

multiplied with the associated term prior to summation. For instance,

A 1(000) = A
0

(000)W° + A
0
(100)W° and A2(101) = A 1(101) W°

+ Al (111) WZ.

x(000) x(001) x(010) x(011) x(100) x(101) x(110) x(111)

1
A 0(000) A

0
(001) AO(010) AO(O11)

0

A(100) A
0(101)

A0(110) A (111)

0 0 0
,--r

In 4 0:4 -ul 4 ----AI 4

A1(000) A1(001) A1(010) A1(011) A1(100)

0 4 -__ 4 OL
Az(000) A2(001) A2(010) A2(011) A2(100)

0
N

() 4 0 2 o 6 0 1

A3(000) A3(001) A3(010) A3(011) A3(100)

X(000) X(001) X(010) X(011) X(100)

A1(101) A1(110)

0 "I °., 6
-.....

...----, _
.....> ...---.....

..---..- ..--, _----...---

A2(101) A2(110)

0 3 (N.75 0

A3(101) A3(110) A3(111)

X(101) X(110) X(111)

Figure 22. Flow diagram of the fast-Fourier transform algorithm for the case N = 8.

55

Application to Arithmetic-Memory Registers

In order to calculate the estimates of a power spectrum, a

special-purpose system composed of arithmetic-memory registers

must have the following capabilities:

1. An addition routine for calculating the sum of n numbers.

2. An autocorrelation routine.

3. A fast-Fourier transform routine.

These three routines will require certain interconnections

between the arithmetic-memory registers. In the case of the addi-

tion and autocorrelation routines the necessary interconnections are

easily determined. However, in the case of the fast-Fourier trans-

form routine, the necessary interconnections between the registers

are not readily apparent. It will be shown that a set of workable

interconnection.s for this routine can be determined through an

examination of the required transition states.

Addition Routine

The "identity," "pairing," and "evens up and odds down"

transitions discussed in Chapter 4 can be combined to form a routine

for the addition of n numbers. A flow diagram for this routine is

illustrated in Figure 23 for the case where n=8. During the time

step 1, the "identity" transition is used to load the registers from the

56

Transition States
I = Identity

EU = Evens up and odds down
P = Pairing

(L) (A) (L)
EU

(A)

P EU

Instructions
(L) = Load
(A) = Add

(L) (A)
P

100

101

110

111

2

Time
4 5 6 Steps

Figure 23. Flow diagram for the add routine.

input device. During time-step 2, the "pairing" transition is used to

add adjacent pairs. The third time-step is used to load the resulting

pair summations into the upper registers through the "evens up and

odds down" transition. The latter two transitions are then alternately

applied using the add and load instructions until the result of the sum-

mation is contained in the top register.

If the addition routine were generalized for n numbers, it

would require 2 (loge) parallel cycles for the summation. This is

57

twice the lower bound (log 2n)
for the number of parallel cycles neces-

sary to complete the summation. The performance of this special-

purpose machine is indeed inferior to the previously mentioned

general-purpose machine which is capable of achieving the lower

bound for the summation calculation. However, it should be noted

that only, three different transition states were required for the

special-purpose system while the general-purpose system requires

log2n different transition states for the calculation.

Autocorrelation Routine

The "identity", "half-cross" and "shift one" transitions can be

combined with the addition routine to calculate the autocorrelation

function. This routine requires twice as many registers as points to

be calculated because the original signal values are needed for pre-

ceding calculations and therefore must be stored in registers separate

from the operating registers. A flow diagram for this routine for the

case of n = 8 is illustrated in Figure 24. The sequence of transitions

and commands which are performed during the various time-steps are

explained as follows:

Time Step 1. The eight signal samples are loaded into the upper

eight registers by means of the "identity" transition.

2. The "half-cross" transition is used to load the values

into the eight lower registers.

58

3. The "'half - cross" transition is again utilized to multi-

ply the upper and lower registers.

4 to 10. The addition routine is utilized on the upper half regis-

ters yielding the first autocorrelation value correspond-

ing to a shift of zero.

11. The upper registers are loaded once again with the

original values by means of the "half-cross" transition.

12. The "shift one" transition is used to shift the values in

the proper order.

13. The "half cross" transition is used to form the appro-

priate products.

14 to 20. The addition routine is used to sum the products for

the second term of the autocorrelation function corre-

sponding to a shift of one.

20 to 80. This cycle is repeated until the autocorrelation term

corresponding to a shift of eight is computed.

If the autocorrelation routine were generalized for n numbers,

it would require n(3+21og2n) parallel cycles for the calculation. The

multiplication operation would be required in n parallel cycles and

the add routine would account for n(2 log2n) of these cycles. Five

different transition states would be required for the routine.

Transitions
I = Identity

HC = Half-cross
SO = Shift One

Instructions
(L) = Load instruction
(M) = Multiply instruction

(L) (L) (M) (L) (L) (M)
I HC HC HC SO HC

59

a

1 2 3 4 to 10 11 12 13
Time Steps

Figure 24. Flow diagram for calculating autocorrelation function.

60

Fast-Fourier Transform Routine

The arithmetic-memory register interconnections required to

calculate the fast-Fourier transform are not readily apparent. How-

ever, it will be shown that the utilization of the transition state and

instruction state model will lead to a workable set of interconnections

for a system of arithmetic-memory registers.

The transition states necessary for the implementation of the

algorithm for an eight-point transform are given in Figure 25.

Register Transition
State

1

Transition
State

2

Transition
State

3

000 100 010 001
001 101 011 000
010 110 000 011
011 111 001 010
100 000 110 101
101 001 111 100
110 010 100 111
111 011 101 110

Figure 25. The required transition states for an eight-point fast-
Fourier transform.

Transition state 1 is required to compute the Al terms appear-

ing in the flow diagram of Figure 22. Transition states 2 and 3 are

required for the A2 and A3 terms respectively.

Let (X
3

X
2

X
1
) be the binary representation for a given register,

where X1, X2 and X3 are binary variables.

Let (Y
3

Y
2
Y1) be the binary representation for the input to

register (X
3

X
2
X1).

For transition state 1,

Y3 = 0 if X3 = 1
thus Y

Y3 = 1 if X3 = 0

Y = 0 if X =
2 thus Y2

Y
2

= 1 if X2 = 1

Y
1

= 0 if X
1

= 0
thus Y1 = Xl.

Y1 = 1 if X
1

= 1

Therefore = (X3 x x)

61

In other words, transition state 1 is merely the interconnection

of the registers such that the most significant bit is complemented, in

the binary representation of each register. By inspection of Figure

15 in Chapter 4, it can be shown that transition state 1 is identical to

the "half-cross" transition for eight registers.

In a similar manner, transition state 2 can be represented by

the following equation,

(Y
3

Y
2

Y
1

) = (X
3

5?
2
X).

Transition state 3 can be represented by the equation,

62

(Y
3

Y
2

Y
1

) = (X
3

X
2

).

If the analysis were generalized for the case n = 2m points,

the binary representation for each register would be of the following

form

(Xm Xm-1. . . X1).

The fast-Fourier transform algorithm would require m distinct

transition states defined by the following equations.

Transition State

(YmYm_i ...

(Ym Yrn-1

Equation

1.

Z.

Y1) = mXm-1... X1)1

Y) = (XmRm-1... x
1)

m. (YmYrn_i Y1) = (Xm Xm-1... 5(1)

For large values of n, the number of transitions required may

become impractical. Therefore some method of manipulating the

transition states in order to reduce the required number of intercon-

nections would be desirable. One common characteristic among the

m required transition states is the presence of the complementation

operation. If the transition state which complements the most signi-

ficant bit position is combined with a transition state which shifts the

binary representation one bit position to the right, all m transition

63

states could be attained. This results in a significant reduction in

the number of required interconnections.

By inspection of Figure 19 in Chapter 4, it can be shown that the

"perfect shuffle" transition is identical to the transition required to

shift the binary representation one bit position to the right.

The fast-Fourier transform can be computed using the "half-

cross" and "perfect shuffle" transitions. Figure 26 illustrates the

complete operation for an eight-point transform. The flow diagram

for this operation is explained as follows:

Time step 1.. The time domain samples are loaded into the

registers. These values correspond to the A0

term s.

2. The "half-cross" transition is used to calculate

the Al terms.

3. The "perfect shuffle" is used to shift the Al

terms one bit position to the right.

4. The weights Wjk which are resident in other

registers are multiplied with the Al terms.

5. The "half-cross" transition is utilized, to calcu-

late the A2 terms.

6. The "perfect shuffle" arranges the A2 terms

in the proper order.

7. Weights Wjk are multiplied with the A2 terms.

X
1

1

Transition State

2 3 4 5 6 7 8 9 10

Time-Steps

Transition States
I = Identity

HC = Half-Cross
S = Perfect Shuffle 1

BR = Binary Reversal

Figure 26. Flow diagram for the calculation of the fast-Fourier transform.

1 It should be noted that the "perfect shuffle" transition was originally derived by Pease (1968) and developed by Stone (1971). The technique of
utilizing the transition state to derive a workable set of interconnections is the point stressed by the author. This technique is considerably
simpler and more intuitive than the complex technique used by Pease.

65

8. The "half-cross" transition is used to calculate

the A3 terms.

9. The "perfect shuffle" arranges the A3 terms

in the proper order.

10. The transition to arrange the A3 terms in

reverse order is utilized to align the spectral

estimates.

The transitions and instructions used to derive the weights are

given in Appendix A. If the given fast-Fourier transform were gen-

eralized for n = 2m points, there would be a total of 3 log2n parallel

cycles required for the transform. The multiplication instruction

would be utilized in log2n
cycles, the add instruction would be uti-

lized in log2n
cycles, and the remaining login cycles would involve

the load command.

System Performance

The performance of the special-purpose system can be com-

pared with a conventional computer system utilized to calculate the

same spectral estimates. Figure 27 gives the type of instructions

required and the number of times these instructions must be executed

for the general case of n = 2m points. Using these figures the per-

formance of the special-purpose system can be estimated with respect

to the conventional system.

Autoc o rrelation

Function

Fast-Fourier
T ran sfo rm

Total

66

Conventional
System

Special- Purpose
System

Multiply

Add

Load

Store

2n

n2

n2

n2

n

n(loge)
2n + n(log2n)

Multiply

Add

Load

Store

n(log
2n)

n(log2n)

n(log2n)

n(log2n)

log
2n

log n
2

log
2n

0

Multiply

Add

Load

Store

n2 + n(log 2n)

n2 + n(log2n)

n2 + n(log2n)

n2 + n(log2n)

Zn + (n+l)log2n
0

Figure 27. Type and number of instructions used in the calculation
of spectral estimates.

Since the execution of the multiplication command requires the

greatest amount of execution time, its frequency of occurrence will

have a significant effect on the performance of the system. The con-

ventional system requires n times as many multiplications as the

special purpose system. For even relatively small values of n, the

corresponding reduction in the number of multiplications required of

67

the special-purpose system could represent a significant increase in

speed.

The special-purpose system also requires approximately n2

fewer additions and n(n-2) fewer load instructions. Another factor

affecting the relative speeds in which these system operate is the fact

that the transition states of the arithmetic-memory registers are com-

pletely wired interconnections. This means that access times in the

order of 100 nsec. are appropriate. The conventional system requires

a memory cycle in the p.sec. range for each instruction executed.

Therefore the special-purpose system from its very structure offers

an order of magnitude increase in speed.

The true performance of the special-purpose system can be

illustrated by comparing the times required for computing the spec-

tral estimates for various length data records. Typical instruction

execution times taken from an EAI 680/640 hybrid computing system

which is frequently utilized for spectral analysis are as follows:

Load 3.3

Store 3.3 p.s

Add 3.3 p.s

Multiply 18.5 i-t.s

The total execution times (Dn) required to compute n-point

spectral estimates are listed in Table 4 for the conventional and

special-purpose systems assuming the above instruction execution

68

Table 4. Tabulation of execution times Dn for the conventional and
special-purpose systems.

Conventional
System

Special-Purpose
System

n =

Dn (p..sec.) Dn (p.sec.)

2 168 120

4 675 293

8 2,440 660

16 9,000 1,470

32 33,500 3,265

64 126,000 7,260

128 485,000 16,000

256 1,900,000 34,900

512 7,500,000 76,800

1,024 29,500,000 167,600

2,048 119,000,000 212,000

Dn = Time required to compute n-point spectral estimates.

times. A record containing 1024 data points would require approxi-

mately 29.5 seconds on the conventional system as compared to less

than one second execution time on the special-purpose system.

Figure 28 is a plot of the reduction ratio for the execution time

associated with the special-purpose system relative to the conven-

tional system.

Rn 74-- Ratio of the execution time of the
0. 7 special-purpose system to the execu-

tion time of the conventional system.

69

0.6

0.5

0. 4

0. 3

0.2

0. 1

0 8 16 32 64 128 256 512 1024 2048

Figure 28. Plot of the reduction ratio R for the execution times
given in Table 4.

70

Cost and Execution Time

Assume the cost of the special-purpose system is directly pro-

portional to the number of registers which it contains. Let C denote

the cost constant. For analyzing n points, the system requires 2n

arithmetic memory registers. Therefore the total cost for the sys-

tem is approximately equal to 2nC.

For the conventional system assume that computing cost is set

at X dollars per hour. Then the conventional system would have to

operate for (2nC)/X hours in order to match the cost of the special-

purpose system. Let G designate the number of signals which can be

analyzed by the conventional system before the cost of the special-

purpose system is matched. The number G can be expressed, by the

relationship

G = (3600) (2nC)/(X) (Dn)

where Dn is the time required to analyze n-point estimates for the

conventional system. A plot of G versus C is illustrated in Figure

29 for variations in X.

Assume a worst case condition where the conventional system's

time is priced at $100/hr. and the arithmetic-memory registers are

priced at $500 each. Under such conditions the conventional system

would have to analyze 1-,250,000 signals consisting of 1024 points

each to match the approximate cost of the special-purpose system.

1400K-

1200K

1000K

800K

600K

400K

200K

71

G = Number of signals analyzed on the conventional
system to match the cost of special-purpose system
for n=1024.

X = $100/Hr.

X = $200/Hr.

1100 200 300 400 500

= $500/Hr.

C = Cost of a single arithmetic-memory register.

Figure 29. Plot of G versus C for n=1024 and variations in X.

". C

72

The special-purpose system can complete a set of spectral estimates

for a 1024 point signal in 167 milliseconds. This means that the

special-purpose system can match its cost in approximately 210,000

seconds or 60 hours of continuous operation.

A similar worst case analysis for n= 128 points assuming the

same instruction execution times requires approximately 9, 600, 000

signals analyzed on the conventional system to match the cost of the

dedicated system. This corresponds to 110,000 seconds or approxi-

mately 30 hours of continuous operation.

Real-Time Application

The function of the special-purpose system previously described

is to compute spectral estimates from discrete samples of time-

varying signals. If this system is to operate in real time, the capa-

bility of computing the complete set of estimates for a given signal

within the signal time period (T) would be advantageous. Such a

machine organization would allow spectral estimates to be computed

continuously.

The system initiates operation upon the collection of a complete

set of samples for a given signal. During the time required for com-

puting spectral estimates for this set of samples, the next set is

loaded into the system. Assuming the time necessary for computing

the initial set of estimates is less than the signal period of the latter

73

set, the system can operate continuously in real time.

Let 2m be the number of points sampled in the signal time

period T. Assuming the execution time (V) of the multiplication

instructions is dominant, the spectral estimates require V(n+log 2n)

seconds for completion. This means that such a system can support

sampling rates up to n/(V)(n+logzn).

Figure 30 illustrates the sampling rates which can be supported

by the special-purpose system for variations in the number of

samples and time required for multiplication.

The supportable sampling rate increases as the number of

samples increases. However, an upper bound of 1/V exists for large

values of n. This upper bound is expected since each sample point

requires at least one multiplication in the calculation of a spectral

estimate.

The utilization of a conventional computer system for real-time

applications in the area of spectral analysis is quite limited. To

illustrate this point, assume a data record of 1024 points is to be

analyzed. For Table 4 the conventional system requires 29.5

seconds for completing the analysis. This corresponds to support-

ing sampling rates up to 36 samples per second. The Sampling

Theorem states that the sampling rate must be at least twice the

highest signal frequency in order to prevent aliasing. Thus the con-

ventional system would be impractical for signals containing

Sampling
Rate

(thousands)

1, 200

1,10

1, 000

900

800

700

600

500

400

300

200

100

V = Multiplication execution time

V =

V = 2usec.

V = 5usec.
0 t 0

V = lOusec.

74

16 32 64 128 256 512 1024 2048
n = number of points

Figure 30. Plot of the supportable sampling rate for the special-
purpose system for corresponding variations in the
number of points and multiplication time.

75

frequencies above 18 Hz. Besides the limitation on frequency, the

conventional system also places a second restriction that the signal

period be greater than 29.5 seconds for continuous operation.

The special-purpose system for data records containing 1024

points is capable of supporting signal periods greater than 168 milli-

seconds as found in Table 4. This corresponds to supporting sampling

rates up to 6150 samples per second. Thus such a system is practi-

cal for signals containing frequencies up to approximately 3 KHz. As

shown in Figure 30, if 1 p.sec. multiplication is available, the special-

purpose system will support sampling rates up to <500K samples per

second and signals with frequency components up to 250 KHz.

The high supportable sampling rates and speed in computing

spectral estimates is especially desirable in applications character-

ized by burst or pulse signals. Typical signals may last only a few

milliseconds and repeat every second. The dead time between burst

signals is usually unpredictable. The requirements on analysis are

not as severe for these signals since the sum of the signal period and

dead time is available for computing estimates before the next signal

occurs. But even with the additional dead time, the conventional sys

tem would not be practical for these signals since a small signal

period is characterized by high frequencies and large data records.

76

VII. CONCLUSIONS

The concept of an arithmetic-memory register has been exam-

fined in this paper. From this concept a model composed of instruction

states and transition states was developed. It was shown that such a

model could be applied to both past and contemporary computing

systems.

The number of possible parallel cycles was used to measure the

parallel capability of a machine. The general-purpose machine com-

posed of arithmetic-memory registers was shown to be superior to

both conventional systems and systems structured upon rectangular

arrays. However, the implementation of such a general-purpose sys-

tem was found unfeasible due to the tremendous number of intercon-

nections required.

The concept of arithmetic-memory registers together with the

state model was shown to be applicable to special-purpose systems.

A special-purpose system for computing power spectra was examined.

The application of the transition state model proved to be a straight-

forward but useful technique in the determination of a workable set of

interconnections between the registers. The special-purpose system

exhibited the following characteristics:

1. Required fewer loading, addition, and multiplication instruc-

tions as compared with the conventional system.

77

2. For data records characterized by a large number of

samples, the system's speed in computing spectral esti-

mates was several orders of magnitude faster than the con-

ventional system.

3. The cost estimates for the special-purpose system were

very competitive when compared to similar costs estimated

for the conventional system.

4. The special-purpose system was suitable for real-time

applications and supported sampling rates as high as 500,000

samples per second for a 1 ilsec. multiplication execution

time.

Through the use of a model consisting of instruction states and

transition states, the concept of utilizing arithmetic-memory regis-

ters in the design of digital computing systems has proven unfeasible

in the case of general-purpose systems, and feasible in the case of a

special-purpose system. The special-purpose system used in this

study is by no means unique. Other dedicated systems such as in the

areas of matrix manipulation, solving systems of differential equa-

tions, and the general area of real-time applications have character-

istics which complement such a structure and requirements which

demand it.

78

BIBLIOGRAPHY

1. Barnes, B, H., et al. The ILLIAC IV computer. IEEE Trans-
actions on Computers C-17:746-757. 1968.

2. Berg land, G. D. A guided tour of the fast-Fourier transform.
IEEE Spectrum. 6:41-52. 1969.

3. Bingham, C., M. D. Godfrey and J. W. Tukey. Modern tech-
niques of power spectrum estimation. IEEE Transactions on
Audio and Electroacoustics. AU-15:56=66. 1967.

4. Blackman, R. B. and J. W. Tukey. The measurement of power
spectra from the point of view of communications engineering.
New York, Dover, 1958. 190 p.

5. Brigham, E. 0. and R. E. Morrow. The fast-Fourier trans-
form. IEEE Spectrum. 4:63-70. 1967.

6. Burnett, G. J., L. J. Koczela and R. A. Hokum. A distributed
processing system for general purpose computing. In: Pro-
ceedings of the Fall Joint Computer Conference of the American
Federation of Information Processing Societies, Anaheim, 1967.
Vol. 31. Washington, D. C., Thompson, 1967. p. 757-768.

7. Comfort, W. T. A modified Holland machine. In: Proceeding
of the Fall Joint Computer Conference of the American Federa-
tion of Information Processing Societies, Las Vegas, 1963.
Vol. 24. Baltimore, Spartan, 1963. p. 481-488.

8. Cooley, J. S. and J. W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Mathematics of Computa-
tion. 19:297-301. 1965.

9. Gentleman, W. M. and G. Sande. Fast-Fourier transforms- -
for fun and profit. In: Proceedings of the Fall Joint Computer
Conference of the American Federation of Information Process-
ing Societies, San Francisco, 1966. Vol. 29. Washington, D. C.,
Spartan, 1966. p. 563-578.

10. Gold, B., et al. The FDP, a fast programmable signal pro-
cessor. IEEE Transactions on Computers. C-20:33-38. 1971.

79

11. Holland, J. W. A universal computer capable of executing an
arbitrary number of sub-programs simultaneously. In: Pro-
ceeding of the Eastern Joint Computer Conference, Boston,
1959. Vol. 16. p. 108-113.

12. Kuck, D. J. ILLIAC IV software and applications programing.
IEEE Transactions on Computers. C-17:758-770. 1968.

13. Moore, G. E. Semiconductor RAMS--a status report. Corn-
puter 4:6-10. March, 1971.

14. Pease, M. C. An adaptation of the fast-Fourier transform for
parallel processing. Journal of the Association for Computing
Machinery. 15:252-263. 1968.

15. Richards, P. I. Computing reliable power spectra. IEEE
Spectrum. 4:83-90. January, 1967.

16. Rosenfeld, J. L. A case study in programming for parallel
processors. Communication of the Association for Computing
Machinery. 12:645-655. 1969.

17. Slotnick, D. L., W. C. Borck and R. C. McReynolds. The
SOLOMON computer. In: Proceedings of the Fall Joint Com-
puter Conference of the American Federation of Information
Processing Societies, 1962. Vol. 22. Washington, D. C.
Spartan, 1962. p. 97-107.

18. Stockham, T. G. High-speed convolution and correlation. In:
Proceedings of the Spring Joint Computer Conference of the
American Federation of Information Processing Societies, 1966.
Vol. 28. Washington, D. C., Spartan, 1966. p. 229-233.

19. Stone, H. S. Parallel processing with the perfect shuffle.
IEEE Transactions on. Computers. C-20:153-623. 1971.

20. Watson, G. A., W. E. Hansalik and H. B. Emerson. Multiple
arithmetic iterative array computer. In: National Electronics
Conference, Chicago, 1964. Vol. 20. Chicago, 1964. p. 669-
674.

APPENDIX

80

APPENDIX A

Transition States and Instruction States Used
to Formulate the Weighting Coefficients

The flow diagram for the fast-Fourier transform is illustrated

in Figure 22. The required interconnections between the arithmetic-

memory registers are illustrated in Figure 26. The contents of the

various registers at the termination of each time-step is illustrated

in Figure 31.

Instruction State for "Half-Cross" Transition

The contents of the registers following the "half-cross" transi-

tions of time-steps 2, 5 and 8 were attained using the instruction state

consisting of the addition operation for the upper half registers and

the subtraction operation, for the lower half registers. Since the

second time step computes terms using W 0 in the upper half register

and W4 in the lower half register, the relationship W4 = -W 0 is

utilized in the lower registers. The fifth time-step utilizes the rela-

tionships W4 = -W and W6
= -W2. Therefore the subtraction opera-

tion performed by the lower half registers reduces the number of

required weights by means of the general relationship Wi = -W i±n./2

Registers

000

001

010

011

100

101

110

111

I

1

2

3

4

5

6

7

8

HC

(1+5)

(2+6)

(3+7)

(4+8)

(5-1)

(6-2)

(7-3)

(8-4)

S

(1+5)

(1-5)

(2+6)

(2-6)

(34-7)

(3-7)

(4+8)

(4-8)

HC
0

W (1+5)
0

W (1-5)
0

W (2+6)

W
0

(2-6)

W
0

(3+7)

W
0

(3-7)
0

W (4+8)

W
0

(4-8)

0
W (1+5)+W

0
(3+7)

0 2
W (1-5)+W (3-7)

0 0
W (2+6)+W (4+8)

0
W (2- 6) +W2(4 -8)

0
W (3+7)--W

0(1+5)

2 0
W (3-7)-W (1-5)

0
W (4+8)-W°(2+6)

2
W (4-8)-W

0(2-6)

1 2 3 4 5

S

6 7

O 0 0
W (W (145)+W (3+7))

0
-W

0
(3+7)-W

0(1+5))

O 2
W (W (1-5)+W (3-7))

O 2 0
-W (W (3 -7) -W (1-5))

O 0 0
W (W (2+6)+W (4+8))

2 0 0
- W (W (44-8)-W (2+6))

W
1 (W(2-6)+W 2

(4-8))
3 2 0

- W (W (4-8)+W (2-6))

O 0 0 0 0 0
000 W (W (1+5)+W (3+7))+W (W (2+6)+W (4+8))

O 0 0 0
001 -W (W (3+7)-Wo(14-5))-W

2
(W (4+8)-W (2+6))

O 0 2 1 0 2
010 W (W (1-5)+W (3-7))+W (W (2-6)4-W (4-8))

O 2 0 3 2 0
011 -W (W (3-7)-W (1-5))-W (W (4-8)-W (2-6))

O 0 0 0 0 0
100 W (W (2+6)+W (44-8))-W (W (1+5)+W (3+7))

0 0 0
101 -W2(W0(44-8)-W (2+6))+W (W (3+7)-W

0
(1+5))

0
110 W1 (W0(2-6)+W

2
(4-8))-W

0
(W (1-5)+W

2
(3-7))

111 -W3(W2(4-8)-W 0 (2-6))+WO(W2(3-7)-Wo(1-5))

S BR
O 0 0 0 0 0 0 0

1+W 2+W 3+W 4+W 5+W 6+W 7+W 8

W01+W12+W 23+W 34+W 45+W 56+W 67+W 78

W01+W22+W43+W 64+W
0

54-W
2
6+W

4
7+W

68

W01+W
32+W 63+W 14+W 45+W 76+W 27+W 58

W
01+W 4

2+W
0

3+W
4

4+W
05+W 4

6+W
07+W 48

O 5 2 7 4 1 6 3
W 1+W 2+W 3+W 4+W 5+W 6+W 7+W 8

W01+W
62+W 4

3+W
2

4+W
0

5+W
6
6+W

4
7+W

28

W01+W72+W 63+W54+W 45+W 36+W 27+W18

9 10 Time Steps

Figure 31. Contents of registers at the termination of each time-step for the case n=8,

Transition State Instruction State
HC = Half Cross (upper registers add and lower registers substract)
S = Perfect Shuffle (change sign of odd numbered registers)
I = Identity (load instruction for all registers)
BR = Binary Reversal (load instruction for all registers)

82

'Perfect Shuffle" Transition

As illustrated in Figure 31, the "perfect shuffle" transition is

utilized in time-steps 3, 6 and 9. During these transitions the odd

numbered registers are required to make a sign change during the

shuffle. This change is clearly indicated between time-steps 7 and 8

by the negative sign preceding the odd terms. The sign change asso-

ciated with time-step 3 is indicated by a reversal in the order of the

terms appearing in odd numbered registers. This sign reversal is

needed because the input is inherently subtracted from the contents

of the register and the exact reverse is desired.

Weighting Coefficients

Since the autocorrelation function required 2n registers for

analyzing n-point data records while the transform requires only n

registers for computing its estimates, the remaining n registers

used to compute the autocorrelation function can be utilized to store

the weighting coefficients.

The weighting coefficients are applied during time-steps 1, 4

and 7. The weights applied during time-step 1 are the W 0 weights

corresponding to unity. The weights applied during time-step 4 are

W
0 and W2; and for the general case these will be W0 and Wn/4

0Time-step 7 requires W , W2, WI and W3; and in the general case

83

WO, Wn/4, Wn/4-n/8 and Wn/4+n/8. A system for generating these

weights for n registers need only operate on the lower half registers

since the upper half registers are all multiplied by the weight WO = 1.

Assume the set of n/Z registers contain the weights WO. Dur-

ing time-step I, the lower half of these registers is multiplied by the

term Wn/4. The "evens up and odds down" transition is used during

time-step 2 to rearrange the terms. A multiplication by Wn/8 on

the lower half is accomplished during time-step 3. The above cycle

is repeated until a multiplication by Wn/n = WI is completed.

Figures 32 and 33 illustrate that the proper weights will be generated

for the cases n=8 and n=16 respectively.

Figure 31 can be used to verify the fast-Fourier transform

algorithm. With the term W° = 1, the first term will indeed corre-

spond to the DC component since it is the average value of the signal.

The other seven terms correspond multiples of the fundamental

frequency.

WO
WO w0

WO
w0 W2

W0 W2 w0

WO W2 W2

1

W2

W 1

W3

Figure 32. Weights for n= 8.

Time-step

