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Abstract The progress made in accelerating simulations of fluid flow using GPUs,
and the challenges that remain, are surveyed. The review first provides an introduc-
tion to GPU computing and programming, and discusses various considerations for
improved performance. Case studies comparing the performance of CPU- and GPU-
based solvers for the Laplace and incompressible Navier–Stokes equations are per-
formed in order to demonstrate the potential improvement even with simple codes.
Recent efforts to accelerate CFD simulations using GPUs are reviewed for laminar,
turbulent, and reactive flow solvers. Also, GPU implementations of the lattice Boltz-
mann method are reviewed. Finally, recommendations for implementing CFD codes
on GPUs are given and remaining challenges are discussed, such as the need to de-
velop new strategies and redesign algorithms to enable GPU acceleration.

Keywords Graphics processing unit (GPU) · Computational fluid dynamics (CFD) ·
Laminar flows · Turbulent flow · Reactive flow · CUDA

1 Introduction

The computational demands of scientific computing are increasing at an ever-faster
pace as scientists and engineers attempt to model increasingly complex systems and
phenomena. This trend is equally true in the case of fluid flow simulations, where
accurate models require large numbers of grid points and, therefore, large, expensive
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computer systems. In particular, high Reynolds numbers—the domain of many real-
world flows—require denser computational grids to resolve the scales of importance
or even turbulent flows. Modeling reactive flows, with realistic/detailed chemical
models involving large numbers of species and reactions, can increase the computa-
tional demands further by another order of magnitude. Due to the stringent hardware
requirements warranted by such computational demands, high-fidelity simulations
are typically not accessible to most industrial or academic researchers and designers.

In the past, we could rely on computational capabilities improving with time,
simply waiting for the next generation of central processing units (CPUs) to enable
previously inaccessible calculations. However, in recent years, the pace of increasing
processor speeds slowed, largely due to limitations in power consumption and heat
dissipation preventing further decreases in transistor size. Power consumption, and,
therefore, heat output, scales with processor area, while processor speed scales with
the square root of area. Adding cores allows processors to increase overall perfor-
mance via parallelism while minimizing larger power consumption by avoiding sig-
nificant increases in overall area. In order to keep up with Moore’s law—processor
speeds doubling roughly every year and a half—processor manufacturers are em-
bracing parallelism. Top-of-the-line CPUs used in personal computers and super-
computing clusters contain four to eight cores. Graphics processing units (GPUs),
on the other hand, consist of many hundreds to thousands of—albeit fairly simple—
processing cores, and fall in the category of “many-core” processors. This level of
parallelism matches that of large clusters of CPUs.

Regarding the need for parallel computing, it would depend on whether the types
of problems can be parallelized or whether they are fundamentally serial calcula-
tions. The key to parallel problems (sometimes termed “embarrassingly parallel”)
is data independence: multiple tasks must be able to operate on data independently.
Examples of embarrassingly parallel problems include matrix multiplication, Monte
Carlo simulations, calculating cell fluxes across space in the finite volume approach,
and calculating finite differences across a grid. In contrast, calculating the Fibonacci
sequence is inherently serial, as each term relies on the previous two. In general, iter-
ative solution methods are serial, although the internal calculations of each iteration
might be parallelizable.

As researchers identify computing problems with appropriate data parallelism,
GPUs are becoming popular in many scientific computing areas such as molecular
dynamics [5, 30, 34, 38, 108], protein folding [8], quantum chemistry [77, 114, 117],
computational finance [33, 82, 109], data mining [52], and a variety of computational
medical techniques such as computed tomography scan processing [11, 12, 70, 97],
white blood cell detection and tracking [15], cardiac simulation [73], and radiation
therapy dose calculation [87]. In 2007 and 2008, Owens et al. [80, 81] surveyed the
use of GPUs in general purpose computations, but as the popularity of GPU acceler-
ation exploded in recent years many more areas are under investigation. Most efforts
moving existing applications to GPUs demonstrated around an order of magnitude
(or more, in some cases) improvement in performance.

This survey is structured as follows. First, we introduce GPU computing and dis-
cuss topics related to programming and optimizing the performance of applications
running on graphics processors. Second, we present two case studies relevant to com-
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putational fluid dynamics (CFD): a finite-volume Laplace equation solver for heat
conduction in a square plate, and a finite-difference incompressible Navier–Stokes
solver for lid-driven cavity flow. We use these simple examples to demonstrate the
potential performance improvement of GPU codes relative to CPU versions, and also
discuss various methods to optimize GPU applications. Next, we review efforts to
both modify existing and create new CFD solvers for GPU acceleration, covering
laminar, turbulent, and chemically reactive flow solvers. In addition, we briefly re-
view efforts to accelerate the relatively new lattice Boltzmann method (LBM), for
simulating fluid flows, on GPUs. Finally, we discuss the progress made thus far to
exploit GPUs for CFD simulations as well as remaining challenges, and make some
recommendations.

Note that while the current work focused on GPUs, the developed approaches
can apply to future many-core processing architectures in general. In fact, in the case
of the OpenCL programming language [71], the same programs written for GPUs
now should be useable on whatever many-core processing standard is adopted—it
is designed for executing programs on heterogeneous computing platforms. There
is a trend toward massively parallel processors, and GPUs are an early entry in this
category.

2 GPU Computing

As their name suggests, GPUs were initially developed for graphics/video processing
and display purposes, and programmed with specialized graphics languages. In these
applications, where many thousands to millions of pixels need to be displayed on-
screen simultaneously, throughput is more important than latency. In contrast, CPUs
execute a single instruction (or few instructions, in the case of multiple cores) rapidly.
This led to the current highly parallel architecture of modern graphics processors. The
explosive growth of GPU processing capabilities—as well as diminishing costs in re-
cent years—has been propelled mainly by the video game industry’s demands for fast,
high-quality processing (both for onscreen images and physics engines), and these
trends will likely continue driven by commercial demand. Figure 1 demonstrates this
recent growth in performance, comparing the theoretical peak floating-point opera-
tions per second (FLOPS) of modern multicore CPUs and GPUs; the newest GPUs
offer more than an order of magnitude higher performance, although no data was
available for the most recent CPU models.

2.1 Programming GPUs

The current generation of GPU application programming interfaces (APIs), such as
CUDA [75] and OpenCL [71], enables a C-like programming experience while ex-
posing the underlying massively parallel architecture. Fortunately, this avoids pro-
gramming in the graphics pipeline directly. We will focus our discussion on CUDA,
a programming platform created and supported by NVIDIA, but OpenCL, an open-
source framework supported by multiple vendors, is similar so the same concepts
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Fig. 1: Theoretical peak performance of Intel CPUs and NVIDIA/AMD GPUs, mea-
sured in GFLOPS (gigaFLOPS, i.e., billion floating-point operations per second),
over the past decade. “SP” and “DP” refer to single and double precision, respectively.
Note that the performance is presented in logarithmic scale. Source: John Owens per-
sonal communication and vendor specifications.

apply (albeit with slightly different names for equivalent features). This section is not
intended to function as a complete reference for programming CUDA applications,
but only to give a brief overview of the CUDA paradigm. Interested readers should
see the textbooks, e.g., by Kirk and Hwu [55] and Sanders and Kandrot [94].

In CUDA, a parallel function is known as a “kernel,” which consists of many
threads that perform tasks concurrently. Functions intended for operation on the GPU
(the device) and the CPU (the host) are preceded with device and host ,
respectively. Kernel functions are indicated with global . Threads are organized
into three-dimensional blocks, which in turn are organized into a two-dimensional
grid.1 All threads in a grid execute the same kernel function. The specific location
(coordinate) of a thread inside the hierarchy of blocks and grids can be accessed
using the variables threadIdx and blockIdx; the dimensions of the block (i.e.,
the number of threads) and grid (i.e., the number of blocks) can be retrieved using
blockDim and gridDim, respectively.

Figure 2 shows a simple kernel function for adding two vectors, compared with
an equivalent CPU function. Note that instead of looping through the elements, the
threads of the kernel function independently and concurrently add the elements of the
two vectors. In general, parallelizing applications for use on GPUs follows this pat-
tern, replacing loops with kernel functions where data may be operated on indepen-
dently. In this example, both the addend vectors and the sum vector are stored in the

1 Recent GPU hardware allows a three-dimensional grid.
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// C vector addition

void vector_Add (int size , const float *a,

const float *b, float *c) {

for (int i = 0; i < size; ++i) {

c[i] = a[i] + b[i];

}

}

int main (void) {

int size = 10;

...

vector_Add (size , A, B, C);

...

}

// CUDA vector addition

__global__ void vector_Add_CUDA (int size ,

const float *a, const float *b, float *c) {

int ind = blockIdx.x * blockDim.x + threadIdx.x;

c[ind] = a[ind] + b[ind];

}

int main (void) {

int size = 10;

...

dim3 dimGrid (size , 1); dim3 dimBlock (1, 1);

vector_Add_CUDA <<<dimGrid , dimBlock >>>(size , Ad , Bd, Cd);

...

}

Fig. 2: Examples of vector addition on the CPU (top) and the GPU (bottom).

GPU’s global memory, which is accessible to all threads in a kernel. Memory on the
device must be allocated using the cudaMalloc function prior to the kernel launch,
and memory must be explicitly transferred between the host and the device outside
the kernel using the cudaMemcpy function. The structures of the thread blocks and
grid are specified using the dimBlock and dimGrid variables. In the example given
in Fig. 2, for simplicity, both are one-dimensional arrays, with the grid consisting of
one block for each element in the vector.

Another avenue for accelerating applications using GPUs is OpenACC [78, 91],
which uses compiler directives (e.g., #pragma) placed in Fortran, C, and C++ codes
to identify sections of code to be run in parallel on GPUs. This approach is sim-
ilar to OpenMP [21, 27, 79] for parallelizing work across multiple CPUs or CPU
cores that share memory. OpenACC is an open standard being jointly developed by
NVIDIA, Cray, the Portland Group, and CAPS. Since OpenACC is relatively new and
immature, only a few groups have used OpenACC thus far to accelerate their appli-
cations. Wienke et al. [115] found that OpenACC achieved 80% of the performance
of OpenCL in simulations of bevel gear cutting, but only 40% in solving the neuro-
magnetic inverse problem in the neuroimaging technique magnetoencephalography
(reconstructing focal activity in the brain). Reyes et al. [90] showed a similar range
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// OpenACC vector addition

#pragma acc kernels

void vector_Add (int size , const float *restrict a,

const float *restrict b, float *restrict c) {

for (int i = 0; i < size; ++i) {

c[i] = a[i] + b[i];

}

}

int main (void) {

int size = 10;

...

vector_Add (size , A, B, C);

...

}

Fig. 3: Example of vector addition using OpenACC directives.

of performance, comparing OpenACC with CUDA implementations of LU decom-
position, a thermal simulation tool, and a nonlinear global optimization algorithm for
DNA sequence alignments. Recently, Levesque et al. [61] reported on their experi-
ence hybridizing Sandia National Laboratory’s massively parallel direct numerical
simulation code S3D from MPI-only to MPI/OpenMP/OpenACC for three levels of
parallelism; we will discuss their results in greater detail in Section 4.3.

Figure 3 shows the vector addition example with OpenACC compiler directives.
With the exception of the restrict keyword added to the function arguments, the
only modification to the original CPU version is the single #pragma acc line added
before the loop. The main benefit of the OpenACC approach (as well as OpenMP)
is that compatible programs may be accelerated without modifying the underlying
source code—a non-OpenACC-enabled compiler would treat the directives as com-
ments. Fortran code is handled similarly, albeit with a different directive indicator
syntax (C$ACC or !$acc rather than #pragma acc). This contrasts greatly with port-
ing applications written for the CPU to either CUDA or OpenCL, which must be
completely rewritten. This convenience comes at the cost of slightly degraded per-
formance, but OpenACC allows researchers to accelerate existing code in a matter
of hours, rather than days or weeks. We will compare the performance of OpenACC
implementations of our case studies in Section 3.

2.2 GPU performance considerations

In this section we will discuss some topics related to GPU performance, with an em-
phasis on configuring appropriate device memory and thread execution. For a more
comprehensive source, see the textbook by Kirk and Hwu [55]. As before, we focus
on CUDA programming and its naming conventions, while the same principles apply
to OpenCL.

Selecting appropriate memory types for different data is the first place to begin
improving the performance of a GPU program. Global memory, which the CPU uses
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to transfer data to and from the GPU, is accessible to all threads in a grid. However,
accessing the global memory is fairly slow, and many threads attempting to access the
global memory will build up traffic congestion—further slowing communication. In
fact, one measure of the performance of a GPU application is the compute to global
memory access (CGMA) ratio, which is the ratio of floating point computations to
global memory access calls. If the CGMA ratio is around one, then the performance
of a GPU application will be limited by the global memory access latency rather
than the floating-point processing speed of the particular GPU hardware. A GPU
application can only achieve best performance if the CGMA ratio is much higher
than one. Typically, excess global memory use is eliminated by using other, faster
GPU memory types.

Constant memory offers one alternative to global memory when global access is
needed. This is read only, and offers high bandwidth when all threads access the same
memory location simultaneously. The CPU transfers data to constant memory on the
device before a kernel is executed, and this data cannot be modified by the GPU.
Similar to constant memory is texture memory, which is also read-only and available
to all threads. Texture memory is cache-optimized for two-dimensional access, as it
is a descendent of the GPU’s display capabilities (textures map a two-dimensional
image to a three-dimensional surface).

There are also device memory types accessible at the block and thread levels.
Shared memory is allocated for each thread block, and is an efficient way for threads
in the same block to cooperate—it is roughly 100 times faster than global memory.
Registers are private memory blocks available to each thread which also offer fast
access. In addition, threads have access to private local memory, which is actually
stored in the global memory (and has the corresponding slow access time). Auto-
matic arrays (arrays declared with non-constant size) are stored in the local memory
in CUDA, so these should be avoided. Instead, only arrays with a constant size when
compiling should be used. Since each GPU offers a limited amount of memory, prop-
erly configuring memory is an important task in designing an application. In general,
memory will be the limiting factor governing the number of concurrent threads; for
example, each thread block offers a limited amount of shared memory and registers.

Another performance consideration relates to the execution of threads. Recall that
threads are organized into blocks, which are in turn organized in a grid. Thread blocks
can be executed by the GPU in any order, but blocks are not necessarily execution
units themselves. Instead, blocks are partitioned into “warps” for execution. In the
current generation of CUDA devices, each warp consists of 32 threads. If a block
consists of more than 32 threads, the block is partitioned into multiple warps based
on the thread index (e.g., threadIdx). A block whose size is not divisible by 32 will
be padded with extra threads. All threads in a warp must follow the same instruction
path, otherwise threads will diverge and reduce performance significantly. For exam-
ple, if some threads in warp execute the if statement in an if-then-else construct,
while others follow the else path, the GPU can no longer execute the threads con-
currently and multiple passes are required (in this example, doubling the execution
time). To avoid thread divergence, thread blocks should be organized so that warps
follow the same control paths.
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It is impossible to avoid using global memory since it is the primary route to
transferring data between the CPU and GPU. One way to improve the performance
of global memory access is to exploit “memory coalescing” techniques. Understand-
ing coalescing requires some insight into the physical nature of global memory. On
CUDA-enabled GPU devices, global memory is typically implemented using dy-
namic random access memory (DRAM), the same type used on personal comput-
ers and workstations. DRAM stores bits of data as tiny electrical charges in small
capacitors; reading memory from DRAM cells requires a sensor to share and mea-
sure these charges. In order to speed up this relatively slow procedure, the sensor
accesses consecutive memory locations around the requested location to increase the
data read rate. This hardware behavior can be exploited by instructing threads in the
same warp to access consecutive memory locations. If this is detected, the GPU will
automatically coalesce (or combine) these memory accesses into a single operation,
allowing much higher global memory bandwidth. Interested readers should see Kirk
and Hwu [55] and Jang et al. [50] for more detail and examples.

Current-generation GPUs have limited bandwidth to process instructions (e.g.,
floating-point calculations, conditional branches). One common way to improve per-
formance by removing unnecessary instructions is to perform loop unrolling. This
avoids both conditional branch instructions (checking if the loop is finished) and the
loop counter update. Also, the indices of accessed arrays are now constants rather
than changing variables, enabling further optimization. In some compilers, this can be
achieved with a #pragma unroll compiler directive preceding the loop, but, where
practical, manual unrolling ensures high performance.

Another consideration that is particularly relevant to scientific computations on
the GPU is the use of hardware-accelerated transcendental functions, which are sig-
nificantly faster than corresponding software versions. These can be called by pre-
fixing functions with “ ”, e.g., cos() becomes cos(). Currently, these hardware
functions are limited to single-precision calculations; only the software versions of
double-precision functions are available, although this may change in the future. The
enhanced performance comes at the cost of slightly reduced accuracy. For example,
the maximum ulp (“units in the last place”) errors of the software exp(x) and hard-
ware exp(x) are 2 and 2+floor(|1.16x|), respectively. The CUDA Programming
Guide describes the error of all the available hardware and software functions [75].
Automatic use of the hardware functions can also be achieved with the compiler
flag “-use fast math,” which automatically converts all potential (single-precision)
functions to their hardware equivalents.

3 Case studies

We performed two case studies, relevant to CFD, in order to demonstrate the poten-
tial acceleration of CFD applications using graphics processors. For both studies, four
versions were compared: single-core CPU, six-core CPU using OpenMP, native GPU
using CUDA, and GPU-accelerated using OpenACC. The GPU performance exper-
iments were performed using an NVIDIA Tesla c2075 GPU with 6 GB of global
memory. An Intel Xeon X5650 CPU, running at 2.67 GHz with 256 kB of L2 cache
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memory per core and 12 MB of L3 cache memory, served as the host processor for
the GPU calculations and ran the single-core CPU and OpenMP calculations.

We used the GNU Compiler Collection (gcc) version 4.6.2 (with the compiler
options “-O3 -ffast-math -std=c99 -m64”) to compile the CPU programs, the
PGI Compiler toolkit version 12.9 to compile the OpenMP (“-fast -mp”) and Ope-
nACC (“-acc -ta=nvidia,cuda4.2,cc20 -lpgacc”) versions, and the CUDA
5.0 compiler nvcc version 0.2.1221 (“-O3 -arch=sm 20 -m64”) to compile the GPU
version. The functions cudaSetDevice() and acc init() were used to hide any
device initialization delay in the CUDA and OpenACC implementations, respec-
tively.

3.1 Laplace solver

3.1.1 Methodology

The first case study we performed consisted of solving Laplace’s equation for heat
conduction in a square plate. The boundary conditions were a constant zero (nondi-
mensionalized) temperature along the sides and bottom, and a constant temperature
of one along the top. Laplace’s equation alone is a fairly trivial example, but due to
its relevance to many approaches to solving the pressure term in the Navier–Stokes
equations we included it here. Using the finite volume method with a constant grid,
the discretization of the equation is:

∇
2T =

∂ 2T
∂x2 +

∂ 2T
∂y2 = 0 (1)

aPTP = aW TW +aETE +aSTS +aNTN +Su (2)
aP = aW +aE +aS +aN−SP (3)

aW = aE = k
δy
δx

(4)

aS = aN = k
δx
δy

(5)

where k is the thermal conductivity, δx and δy are the grid spacing in the x and
y directions respectively, and Su and SP represent source terms used for boundary
conditions. All quantities are dimensionless. For the given boundary conditions,

x = 0 : aW = 0 (6)
x = 1 : aE = 0 (7)
y = 0 : aS = 0 (8)

y = 1 :


aN = 0
Su = 2kw δx

δy

SP =−2kw δx
δy

(9)

where w is the thickness of the plate.
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We solved Eq. (2) iteratively using the red-black Gauss–Seidel (GS) method with
successive over-relaxation (SOR). Traditional GS or SOR approaches are not suit-
able for use on parallel CPU or GPU systems since the order of operations is neither
known nor controllable, and conflicts in accessing and writing to memory may occur
(although Jacobi iteration is suitable for parallel/GPU implementation, since calcula-
tion of new values depends only on old values). Red-black SOR solves this problem
by coloring the grid like a checkerboard, alternating red and black cells. First, the
algorithm updates values at red cells—which depend only on black cells—then black
cells—which depend only on red cells. Both of these operations can be performed in
parallel. Red-black SOR was first used to solve a system of linear equations on vector
and parallel computer systems by Adams and Ortega [1], although introduced earlier
(e.g., by Young [119]). Liu et al. [65] provided a more detailed analysis of red-black
SOR implemented on GPUs.

In order to show the importance of redesigning algorithms for GPUs, we enabled
flags in the code for various optimization steps. The initial, naively implemented GPU
code matched the original serial CPU version: two GPU kernel functions updated the
temperatures in the red and black cells, returning residual values for every cell each
iteration (in order to determine when the SOR algorithm stops). In a first optimiza-
tion step, we organized the thread blocks such that threads in the same warp access
adjacent locations in global memory to activate coalescing. Next, we improved this
coalesced memory access by storing the temperature values for the red and black
cells in two arrays—such that read and write operations always accessed neighbor-
ing memory locations, rather than every other. Finally, to minimize the GPU-CPU
memory transfer each iteration, we used shared memory to calculate the maximum
residual of each block, such that only a single value per block needed to be trans-
ferred back to the CPU rather than values for all threads. Additionally, in order to
avoid thread divergence caused by conditional statements for boundary conditions,
“ghost cells” that held constant temperatures of zero surrounded the computational
domain. Therefore, at the boundaries these cells could be accessed instead of needing
a conditional statement to avoid an out-of-bounds array access error.

We also explored using texture memory to store the constant coefficient arrays
(e.g., aP, aW , etc.), but found the performance to be equivalent or worse than coa-
lesced global memory. In addition, for single-precision calculations “atomic” mem-
ory operations can be used to allow threads in different blocks to access the same
points in global memory. This enables global reduction operations, in this case al-
lowing a single residual value to be transferred from the GPU to the CPU per itera-
tion rather than one per block as with the shared memory alone. We found that using
atomic operations improved performance about 5% or less; the savings in memory
transfer likely balanced the generally low performance of such operations.

The OpenACC solver was based on the CPU solver, with directives instructing the
compiler to use the GPU on loops matching the kernel functions of the GPU solver—
no other changes to the underlying CPU code were made. The OpenMP solver was
created the same way, using the appropriate compiler directives. No specific opti-
mization instructions were given to either the OpenMP or OpenACC solver; rather,
we allowed the compiler to manage this automatically.



Recent progress and challenges in exploiting graphics processors in CFD 11

In order to study the performance of the native GPU and OpenACC solvers
against the CPU versions, we varied the mesh size from 1282 to 81922. The source
code was written in standard and CUDA C for the CPU and GPU versions, respec-
tively, with compiler directives added to the CPU version to create OpenMP and
OpenACC versions.2 In the fully optimized (corresponding to the shared-memory
implementation) CUDA-based GPU version, we kept a constant block size of 128 ×
1 (except for the case of the mesh size being 128, where we used 64 × 1), aligned
with either the vertical or horizontal directions depending on if the global memory
coalescing flag was enabled (arranged so that thread warps aligned with adjacent
locations in memory, as described above). The naive, coalesced global memory, and
improved coalescing configurations used grid sizes of N×N/B, N/B×N, and N/2B×N,
respectively, where N is the number of mesh cells in one direction (e.g., 512) and B
is the block size (e.g., 128). The fully-optimized, shared memory configuration built
on the improved coalescing configuration and thus used the same grid size. In order
to perform a fair comparison, the serial CPU code—and, therefore, the OpenMP and
OpenACC versions—used the red-black SOR algorithm, with separate arrays for the
red and black pressure values in the same manner as the optimized GPU versions.

3.1.2 Results

First, we demonstrate the importance of redesigning algorithms for GPU computing,
taking into consideration GPU-specific performance improvements. Figure 4 shows
the performance of the naive GPU solver and with various optimization steps for
double-precision calculations. Single-precision results showed similar trends, requir-
ing about half the computational time. By specifically optimizing the code for exe-
cution on graphics cards, we increased the performance of the GPU code by up to a
factor of nearly 19 compared to the naive implementation.

Next, we compared the performance of the single-core CPU, six-core CPU, fully
optimized CUDA-based GPU, and OpenACC-based GPU solvers over a wide range
of mesh sizes for double-precision calculations, shown in Fig. 5. At mesh sizes of
10242 and above, the GPU solver ran faster than the CPU solver on either one or six
cores; at most, the GPU solver performed up to about 10 and 4.6 times faster than the
single-core and six-core CPU solvers, respectively, for double precision. The single-
precision code performed similarly: the CUDA-based GPU solver ran about 16 and
4.6 faster than the single- and six-core CPU versions, at best.

At smaller mesh sizes, the OpenACC implementation ran nearly five times slower
than the native, fully optimized GPU version, but as the mesh size increased this
gap decreased to nearly zero, demonstrating almost equal performance at the largest
grid sizes. This behavior was replicated in single-precision calculations, although the
OpenACC solver performed about 8% slower at the largest grid sizes and 6.9 times
slower at the smallest mesh sizes.

Note that we did not optimize the block size for the GPU solver, but left it constant
for this simple demonstration. Similarly, we allowed the OpenACC compiler to de-
termine the optimal configuration, rather than manually adjust its equivalents (“gang”

2 The full source code is available: http://github.com/kyleniemeyer/laplace_gpu

http://github.com/kyleniemeyer/laplace_gpu
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and “vector” sizes). More in-depth optimization could further improve performance
for both implementations.

Finally, we observed that while the native fully optimized GPU solver showed
the best performance for larger grid sizes, the OpenACC version performed nearly
as well, especially for double-precision calculations. These results suggest that Ope-
nACC is a good alternative to writing native GPU code, especially considering the
fact that porting CPU applications to CUDA can require days to weeks of work while
adding the OpenACC compiler directives takes only hours or even minutes. How-
ever, OpenACC support is currently limited, and can only be applied to applications
that already favor parallelization—such as those based on loops with independent
iterations—and where functions may be inlined. With this in mind, OpenACC is a
good choice to quickly accelerate existing code and determine potential speedup,
while writing native GPU applications offers the highest potential performance if
fully optimized. In either case, algorithms may need to be redesigned in order to sup-
port massive parallelization, although this was not necessary in the current example.

3.2 Lid-driven cavity flow

3.2.1 Methodology

The second case study consisted of solving the two-dimensional, laminar incompress-
ible Navier–Stokes equations based on the finite difference method, using the solution
procedure given by Griebel et al. [36]. The domain was discretized with a uniform,
staggered grid (i.e., the pressure values are located at the centers of grid cells while
velocity values are located along the edges). Briefly, the discretized momentum (as-
suming no gravity/body-force terms) and pressure-Poisson equations are:
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u(n+1)
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, (13)
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i, j

)
, (14)

i = 1, . . . , imax, j = 1, . . . , jmax−1,

where i and j indicate the x and y cell coordinates, respectively, (n) indicates the time
step (i.e., corresponding to time tn), u and u are the velocity components in the x
and y directions, respectively, p is the pressure, Re is the Reynolds number, and δ t
is the time-step size. The second derivatives in Eqs. (10) and (11) were treated with
central differences, while the first derivatives were treated with a mixture of central
differences and the donor-cell discretization (see Griebel et al. [36] for details).

In this example, we used the above procedure to solve the case of lid-driven flow
in a square cavity, corresponding to no-slip boundary conditions on the vertical sides
and bottom and a unit horizontal velocity along the top. Boundary conditions were
treated numerically as described by Griebel et al. [36]. As with the Laplace solver
above, we used boundary cells to avoid conditional statements and the associated
potential thread divergence. Kernel functions evaluated the boundary conditions for
both velocity and pressure values.

The GPU code contained 11 kernel functions: one to set the velocity boundary
conditions, two corresponding to Eqs. (10) and (11), one to calculate the L2-norm
of the pressure (for a relative SOR tolerance), two to set the horizontal and vertical
pressure boundary conditions, two for the red and black portions of the SOR algo-
rithm solving Eq. (12), one to calculate the pressure residual for each SOR iteration,
and two corresponding to Eqs. (13) and (14) (which also return the maximum u- and
v-velocities). All memory remained on the GPU during the simulation (e.g., arrays
holding Fi j, pblack, ui j), except for that needed to evaluate the stopping criterion for
the SOR iteration and the maximum velocities to calculate the time-step size based
on stability criteria (see Griebel et al. [36]). Learning from our experiences with the
Laplace solver, we used shared memory for these global reduction operations such
that only one value per block needed to be transferred back to the CPU. Performance
timing included all these memory transfers, including those needed to initialize all
variables on the GPU at the beginning and return the pressure and velocity values at
the end of the simulation.

In the same manner as the Laplace solver, the OpenACC solver was based on
the CPU solver, with directives instructing the compiler to use the GPU on loops
matching the kernel functions of the GPU solver. The OpenMP solver was created
the same way, using the appropriate compiler directives. No specific optimization in-
structions were given to either the OpenMP or OpenACC solvers; rather, we allowed
the compiler to manage this automatically.

In order to study the performance of the GPU and OpenACC solvers against the
CPU versions, we varied the mesh size from 642 to 20482. The source code was
written in standard and CUDA C for the CPU and GPU versions, respectively, with
compiler directives added to the CPU version to create OpenMP and OpenACC ver-
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sions.3 In the native, CUDA-based GPU version, we kept a constant block size of
128 × 1 except for the cases of the mesh size being 642 or 1282, where we used half
the mesh size in one direction (e.g., 32 × 1 for a mesh size of 642). Based on our
experience with the Laplace solver, we used grid configurations of N/2B×N for the
pressure solver and N/B×N for the velocity portions, where N is the number of mesh
cells in one direction (e.g., 512) and B is the block size (e.g., 128).

For each mesh size, we performed a single time step integration—the initial time
step. Due to the stability criteria for selecting the time-step size, the finer mesh sizes
required increasingly smaller time-step sizes. All calculations were performed in dou-
ble precision.

3.2.2 Results

Figure 6 shows the performance comparison of the solvers over a wide range of mesh
sizes, for a single time step. Qualitatively, the results demonstrated similar trends
to those of the Laplace solver shown in Fig. 5. This was due to the computational
intensity of the red-black SOR solution of the pressure-Poisson equation, which was
solved in the same manner in both the Laplace solver and this finite-difference-based
Navier–Stokes solver. At mesh sizes smaller than 1282, the single- and six-core CPU
solvers ran faster than either GPU solver, but with increasing mesh size the native,
optimized GPU solver became 8.1 and 2.8 times faster than the single- and six-core
CPU solvers, respectively, at a mesh size of 20482.

The OpenACC implementation for this problem also behaved similarly to that
in the Laplace case study. With increasing problem size, the OpenACC solver ap-
proached the performance of the native GPU version, running 1.3 times slower than
the native GPU code at the largest problem size. At smaller problem sizes, it ran
nearly four times slower than the native GPU version. It is clear, however, that Ope-
nACC offers nearly the same performance as native GPU code at large problem sizes.

4 GPUs in computational fluid dynamics

The heavy computational demands of high-fidelity fluids simulations typically pre-
vent industrial or academic researchers from performing and using such studies. CFD
applications in particular stand to benefit from GPU acceleration due to the inherent
data parallelism of calculations for both finite difference and finite volume methods,
and as GPU hardware and software matured more researchers exploited the applica-
tion of GPU computing in their respective areas of interest. While Vanka et al. [113]
reviewed some of the literature on using GPUs for CFD applications, we attempt to
provide a more comprehensive survey and discuss recent advances, particularly for
laminar-, turbulent-, and reactive-flow modeling. In addition, we review efforts to
accelerate solvers based on the lattice Boltzmann method for simulating fluid flows.

3 The full source code is available online: http://github.com/kyleniemeyer/lid-driven-

cavity_gpu

http://github.com/kyleniemeyer/lid-driven-cavity_gpu
http://github.com/kyleniemeyer/lid-driven-cavity_gpu
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Fig. 6: Performance comparison of a single time step of the lid-driven cavity problem
using the CPU solver on one core and six cores (via OpenMP), the fully optimized
CUDA-based GPU solver, and OpenACC-based GPU solver, for a wide range of
mesh sizes.

4.1 Laminar flow

We first survey efforts to develop GPU-accelerated laminar flow solvers, both in-
compressible and compressible. Most of the early work involved transferring some
or all calculations to the GPU, leaving the CPU to initialize and drive the simula-
tion. This can minimize expensive memory transfer between the CPU and GPU, but
balancing the loads on each processor is important for optimal performance. In other
words, optimal codes will avoid leaving either processor idle. In addition, most GPU-
accelerated CFD codes were limited to structured meshes, with notable recent excep-
tions to be discussed later.

Bolz et al. [14], Harris and coworkers [39, 40], and Krüger and Westermann [56]
first implemented real-time, physics-based fluids simulation on GPUs using the stable
fluids approach of Stam [106] for solving the incompressible Navier–Stokes equa-
tions. Liu et al. [66] used the same approach to solve flow around complex bound-
aries. In these approaches, the finite difference equations were parallelized such that
the discretized derivatives for each grid point were solved concurrently. In other
words, instead of looping over each point in a serial fashion, the derivatives were
solved simultaneously. However, the stable fluids approach includes excessive nu-
merical dissipation—it is limited to physics-based animations rather than accurate,
numerical simulations.

Following these initial efforts, researchers began to develop more accurate Navier–
Stokes solvers for GPUs. Scheidegger et al. [96] demonstrated a GPU-based incom-
pressible flow solver using the Simplified Marker and Cell approach on a structured
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grid. This work was performed before the release of CUDA, so Scheidegger et al. [96]
used the graphics programming languages OpenGL and Cg, and stored data struc-
tures (e.g., velocities, pressure, temperature) in GPU texture memory elements, such
as pixel buffers, which are used in GPUs to perform graphics rendering tasks. On the
classical lid-driven cavity problem, the GPU performed up to 21 times faster than
the CPU at a Reynolds number of 1000 and a grid size of 1282. They also demon-
strated their code using simulations of flow through a domain with obstacles, flow
through a wind tunnel with vehicle object, smoke trails, and natural convection with
heated walls. Interestingly, the GPU simulations ran fast enough to allow real-time
flow visualization, which was made easier since the graphics pipeline was already
being utilized for flow calculations.

Hagen et al. [37] were the first to develop a GPU solver for the three-dimensional
Euler equations using a high-resolution finite volume method. The GPU executed
the cell flux evaluation and time integration, implemented using the Cg and OpenGL
programming languages, while the CPU drove the calculation and evaluated the time-
step size based on stability considerations. On the GPU, grid cells and their associated
properties were represented as fragments (pixels that have not been displayed on-
screen), while combinations of grid cell properties (e.g., cell averages, fluxes) were
given as textures, processed using fragment shaders (i.e., kernels). Hagen et al. [37]
compared their GPU solver against a mature CPU solver using a number of test
cases, including a two-dimensional bubble-shock interaction and three-dimensional
Rayleigh–Taylor instability, and showed a speedup of more than 10 times for both
cases. For their tests, the CPU code was highly optimized while the GPU code was
not, suggesting that greater acceleration might be possible.

Brandvik and Pullan [16, 17] also developed two- and three-dimensional GPU
solvers for the compressible, inviscid Euler equations, which they used to simu-
late flows through turbines. This was one of the first CFD applications to use the
general-purpose programming languages BrookGPU and CUDA for the two- and
three-dimensional solvers, respectively, rather than the specialized graphics languages
of earlier studies. Using the finite volume approach, the controlling CPU handled pre-
and post-processing while the GPU performed the actual computations. For example,
the CPU constructed the grid and evaluated face areas and cell volumes, while the
time steps (e.g., evaluating cell fluxes) were performed on the GPU. In the BrookGPU
implementation, texture memory contained node information and kernels performed
the computations on these values (e.g., flux calculation). With CUDA, the global grid
was split into smaller three-dimensional chunks associated with thread blocks, us-
ing the efficient shared memory to store cell values. In this case, the shared memory
of each block could hold 16 kB, so a typical sub-grid size was 16 × 10 × 5. The
BrookGPU-based two-dimensional solver was evaluated using a study of transonic
flow over a turbine, showing a speedup of 29 times over an equivalent Fortran CPU
code; both the CPU and GPU codes produced identical results. The CUDA-based
three-dimensional solver was tested on simulation of flow over a low-speed linear
turbine cascade and showed a 16 times speedup over an equivalent single-core CPU
version.

Elsen et al. [31] transferrred the steady, compressible Euler portions of the Navier–
Stokes Stanford University Solver to the GPU, using BrookGPU. Elsen et al. [31] first
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tested their GPU-accelerated code on a simulation of flow over the traditional NACA
0012 airfoil, showing a 14 times speedup for third-order accuracy compared with op-
timized code running on a single CPU core. They also demonstrated the GPU code on
a study of hypersonic flow (Mach 5) over a vehicle, considering cases with 720,000
and 1.5 million nodes. In this case, the GPU solver ran about 16 times faster than the
CPU code, reducing the wall-clock time from around four hours for CPU to only 15
minutes for GPU.

Molemaker et al. [69], hoping to improve upon the stable fluids approach used in
animation, developed a solver for the simulation of incompressible flows using the
quadratic upwind interpolation for convection kinetics (QUICK) advection scheme
and a projection method to solve the Poisson pressure equation. QUICK was chosen
to reduce numerical dissipation. Cohen and Molemaker [25] later showed a second-
order, double precision, finite volume code solving the incompressible flow equations
with the Boussinesq approximation. Both codes ran nearly an order of magnitude
faster than equivalent CPU versions, noting that Cohen and Molemaker [25] per-
formed their comparison in parallel on an eight-core CPU.

Phillips et al. [85] also developed a GPU-based solver for the compressible Euler
equations, and additionally were the first to accelerate a portion of an existing CPU-
based multi-block CFD solver, MBFLO, by moving the unsteady flow and laminar
stress calculations to the GPU. The Euler code, simulating subsonic flow through a
nozzle, ran up to 20 times faster on a single GPU against an equivalent version run-
ning on a single CPU. The GPU-accelerated MBFLO, simulating low-speed flow over
a cylinder, also showed nearly the same improvement, 14 times, compared against
the CPU-only version. Phillips et al. [85] found that (1) for the Euler solver, the
GPU code became more efficient (i.e., able to process more grid cells in the same
time) as the domain size was increased, while the CPU became less efficient; and (2)
the performance enhancement of the GPU-accelerated MBFLO improved as more
subroutines were moved to the GPU from the CPU. The boundary condition and
block-to-block communication routines were the only portions not accelerated.

Shinn and Vanka [102] implemented a multigrid method using the semi-implicit
method for pressure linked equations (SIMPLE) algorithm to solve the incompress-
ible Navier–Stokes equations. Using the classical lid-driven cavity problem, their
GPU code performed over an order of magnitude faster than the CPU version for finer
meshes (e.g., 5122). Steady-state calculations with an extremely fine mesh (40962)
could be performed on the GPU in around one minute.

Thibault and Senocak [110] developed a CUDA-based GPU solver for the in-
compressible Navier–Stokes equations. Similar to the work of Phillips et al. [85], this
code could run on multiple GPUs by decomposing the domain into smaller blocks
of cells. Following the trend of validation using the lid-driven cavity problem, they
demonstrated a 13 times speedup running their code on one GPU compared against
an equivalent version running on one CPU core. They also compared the perfor-
mance of the accelerated code on multiple GPUs against the serial version running
on a single CPU core; however, this is an unfair comparison, equivalent to comparing
performance on a CPU cluster against a single CPU. The same group extended their
code to run on multiple clusters of GPUs using Message Passing Interface (MPI). In
this case, the performance of multiple GPUs was compared against parallelized code
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running on an eight-core CPU. A single GPU ran 11 times faster than the eight-core
CPU, while eight GPUs performed up to 68 times faster.

Griebel and Zaspel [35] developed the first GPU solver capable of simulating
two-phase unsteady three-dimensional incompressible flows, based on a level-set
approach. This code was based on an existing in-house CPU solver, NaSt3DGPF,
which discretized the Navier–Stokes equations using a finite-different approach. The
most computationally expensive parts of the CPU code were ported to the GPU: (1)
the Jacobi-preconditioned conjugate gradient solver for the Poisson equation and (2)
the reinitialization process for the level set function. Simulating an air bubble rising
through water, the GPU code performed about 10 times faster than the original CPU
version, comparing one GPU to one CPU core with a grid resolution of 3003.

Recently, Zaspel and Griebel [121] updated their solver to run fully on multi-
ple GPUs—rather than just the Poisson solver and level-set reinitialization portions.
This eliminated most CPU-GPU memory transfer during the simulation and led to
a more than 30% improvement in performance over their previous GPU-accelerated
code [35]. In addition, they used MPI to parallelize over multiple GPUs, overlap-
ping most communication with computations to hide the data transfer time. Zaspel
and Griebel [121] advocated not only measuring the raw performance of code on one
GPU against one CPU socket (i.e. multiple cores), rather than the common compari-
son of one GPU vs. a single CPU core, but also comparing performance normalized
by hardware cost and power consumption (performance per dollar and watt, respec-
tively). Using the same benchmarking problem as in their previous study, Zaspel and
Griebel [121] found that their new code performed around three times faster on a sin-
gle NVIDIA Tesla c2050 GPU than on two six-core CPUs, together priced similarly
to the GPU. In addition, the single GPU consumed less than half the power of both
CPUs combined—with a total of 12 cores. They also reported the scalability of the
GPU code on a cluster of many GPUs, showing nearly 20 times the performance on
48 GPUs than on a single GPU for an overall problem size of 2563. The somewhat
low scaling efficiency of around 40% might be explained by the small problem size
each GPU handled (around 703); GPUs tend to perform better compared to CPUs on
larger problem sizes.

Up to this point, all of the GPU-accelerated CFD codes discussed here relied on
structured grids, limiting the complexity of potential objects in the domain. Corrigan
et al. [26] developed the first GPU-accelerated solver for unstructured grids, capable
of simulating three-dimensional compressible, inviscid flows. Structured grids allow
easier optimization due to regular memory access patterns; Corrigan et al. [26] used
the memory coalescing feature of modern GPUs, where high memory access per-
formance can be achieved by ensuring that consecutive threads access consecutive
memory locations. They realized this by ensuring that neighboring elements were lo-
cated consecutively in memory, using a bin numbering scheme. In addition, in order
to limit potential thread divergence by the necessarily different treatment of boundary
elements compared to neighboring non-boundary elements, boundary elements were
stored consecutively in memory. Corrigan et al. [26] first tested their code on a simu-
lation of supersonic flow over a NACA 0012 airfoil, showing an average performance
speedup of about 32 and 9 compared against a CPU code running on one core and
four cores, respectively. In addition, they simulated supersonic flow over a missile,
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demonstrating similar speedups of about 34 and 10, respectively. In both cases, the
number of elements ranged from around 100,000 to nearly two million.

Block et al. [13] developed a GPU-accelerated compressible flow solver using
the finite volume evolution Galerkin method with both regular and adaptive meshes,
targeted at geophysical flow simulations. Rather than the entire code, they trans-
ferred only the most expensive portion—the evolution Galerkin operator—to the
GPU. Compared to a single CPU core, this procedure ran nearly 30 times faster on
the GPU, resulting in an overall code speedup factor of around six for simulations
with over 16,000 cells. Block et al. [13] demonstrated their code using simulations
of free convection: (1) a warm air bubble and (2) a small cold air bubble on top of a
larger warm bubble.

Following the work of Hagen et al. [37], Brandvik and Pullan [16, 17], and
Phillips et al. [85], Lefebvre et al. [60] developed GPU solvers for the two-dimensional
and three-dimensional Euler equations on structured grids. In order to achieve higher
performance, they undertook a number of specific implementation techniques, includ-
ing (1) favoring redundant computation over global memory access, which improved
performance by about 20–30%; (2) optimizing thread block dimensions to maximize
thread occupancy; and (3) the use of pinned memory to reduce CPU-GPU mem-
ory transfer times by a factor of three. Lefebvre et al. [60] demonstrated their two-
dimensional solver using simulations of a shock tube and supersonic wind tunnel,
showing speedup factors of 60—for the second-order spatial discretization—against
a single CPU core. Their three-dimensional Euler solver ran 10 times faster on a sin-
gle GPU than an equivalent version on a six-core CPU. All cases were performed
using single precision computations.

In addition to the traditional Navier–Stokes solver based on the finite difference
or finite volume methods, some groups used alternative approaches. Ran et al. [89]
developed a GPU solver for the one-dimensional Euler equations using the conserva-
tion element and solution element (CESE) [22] method. CESE is a different approach
to solving conservation laws that is especially useful for flow problems with discon-
tinuities (e.g., shocks, boundaries), where it doesn’t require as fine a grid as tradi-
tional approaches such as the finite difference method. Ran et al. [89] used shared
memory to store data from the previous time step—needed to perform the time-step
integration—but this approach posed difficulties as points on the boundaries of blocks
need to access this data in the adjacent block, while shared memory is private to each
block. To solve this, they organized the thread blocks to contain an extra thread for
use as a cache, storing in the block’s shared memory the data needed at the inter-
block boundary location. Simulating condensation in a shock tube, the GPU-based
CESE solver performed up to 71 times faster than a single CPU core executing a
serial version.

Arguing that traditional solution methods do not work well on the thread par-
allelism of GPUs, Kuo et al. [57] developed a new approach: the split Harten, Lax
and van Leer (SHLL) method. The original HLL method [41] computes fluxes across
cell interfaces by assuming the presence of two propagating waves and integrating
their governing equations. The SHLL variant modifies the flux expressions into a
vector-split form that is ideal for parallel computation—particularly on GPUs—due
to higher locality. In order to achieve better performance, Kuo et al. [57] implemented



Recent progress and challenges in exploiting graphics processors in CFD 21

their solver such that after initialization the entire simulation ran on the GPU with-
out any interaction—and therefore no memory transfer—with the CPU. However,
this approach might not be feasible in more traditional CFD solution methods, where
global reduction operations may be necessary (e.g., to stop Jacobi/GS iterations, or
determine the next time-step size based on fluid velocity values). Demonstrated using
the (1) Euler equations for a simulation of two-dimensional shock/bubble interaction
and (2) inviscid shallow equations for a simulation of a two-dimensional dam break
problem, the GPU solver performed more than 60 times faster for larger meshes,
compared with a single CPU core.

Chabalko et al. [20] implemented a GPU-based solver for the two-dimensional
unsteady vortex lattice method, used to compute the inviscid aerodynamic forces and
resulting flow fields around solid bodies (e.g., airfoils, aircraft, wind turbines). This
method is based on the conservation of circulation, and focuses on tracking the circu-
lation of bound and free vortices. Chabalko et al. [20] used the GPU to accelerate the
most computationally intensive portion of the method: the evaluation of the influence
of all free vortices on all other free vortices (governed by the Biot–Savart law). Using
simulations of (1) a flat plate moving in a cnoidal ground effect and (2) the roll up of
a vortex filament, they demonstrated nearly two orders of magnitude speedup over an
equivalent serial CPU version.

4.2 Turbulent flow

Most real-world fluid flow problems, and in particular those relevant to engineering
applications such as flow through turbomachinery and engines, and over cars and
aircraft, are turbulent. However, due to the difficulty in transferring CFD codes to
operation on graphics processors, only recently have researchers begun to acceler-
ate turbulent-flow simulations using GPUs. Ironically, this is one of the areas that
need acceleration the most due to the added expense of accurate turbulence models.
Furthermore, reactive flow simulations are arguably in greater need of speedup—this
will be discussed in the next section.

Phillips et al. [86] developed one of the first GPU solvers capable of simulat-
ing turbulence using the k–ω model, extending on the group’s previous work porting
portions of the existing MBFLO solver to the GPU [85]. In addition, their new solver
was capable of running on a cluster of multiple CPU/GPU nodes, using a domain
decomposition technique to give each node responsibility for a block of the overall
domain. The entire time-step loop, including the calculations of laminar stress, tur-
bulent viscosity coefficient, and cell flux integration, was performed on the GPU in
order to minimize slow CPU-GPU memory transfer. The CPU only drove the simula-
tion and passed information between the blocks of the domain, using MPI to transfer
information between independent cluster nodes. Phillips et al. [86] also improved
performance by implementing a novel asynchronous memory transfer using CUDA
streams; in their previous work, the GPU remained idle while the CPU transferred
memory between different blocks (i.e., subdomains). Here, each block was further
divided in half such that the GPU could continue to perform calculations on one half
while the CPU transferred memory associated with the other half of the block; this
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improved performance up to 40%. Phillips et al. [86] tested their code using a simu-
lation of unsteady turbulent flow over a cylinder, finding that a cluster of eight GPUs
performed about nine times faster than an equivalent parallel code running on eight
quad-core CPUs.

Jespersen [51] accelerated the existing turbulent CFD code OVERFLOW by mov-
ing a portion of the code to the GPU. OVERFLOW solves the Reynolds-averaged
Navier–Stokes equations using the finite difference method, with an implicit time-
stepping scheme to avoid stability issues. Jespersen [51] ported the Jacobian algo-
rithm used to solve the resulting large, sparse linear system to the GPU, while the
rest of the code remained on the host CPU. This hybrid solver demonstrated a 25%
improvement in performance by using the GPU and CPU together, over the CPU
alone.

Kampolis et al. [53] developed a GPU-accelerated unstructured grid-based tur-
bulent flow solver, modeling turbulence using the one-equation Spalart–Allmaras
model, and integrated it within an evolutionary algorithm-based optimization algo-
rithm. This approach differed from the unstructured grid work of Corrigan et al. [26]
in that this implementation is based on the vertex-centered finite difference approach.
They also implemented a mixed-precision version of their solver that offered nearly
the same level of accuracy as double- but with the speed approaching that of single-
precision. The GPU-accelerated CFD code performed up to around 28, 25.2, and 19.6
times faster than a serial CPU code for single, mixed, and double precision, respec-
tively, for two-dimensional flow over a NACA 4415 airfoil. Simulations of three-
dimensional flow around an aircraft and within a supersonic compressor cascade per-
formed similarly. This efficient GPU code was then used to optimize airfoil shapes,
showing the potential utility of GPU-accelerated applications to design. Asouti et
al. [6] extended this unstructured grid approach, restructuring the code and investi-
gating schemes to optimize memory access on the GPU. They reported a maximum
factor of speedup of approximately 45 compared to equivalent Fortran code running
on a single CPU core, for double-precision calculations.

Shinn et al. [104] developed the first (to our knowledge) direct numerical simula-
tion (DNS) solver for the GPU, using it to study turbulent flow through a square duct.
The solution of the pressure-Poisson equation was performed on the GPU, using the
red-black GS scheme (a parallel version of the traditional GS, as discussed in Sec-
tion 3.1.1). A multigrid algorithm enhanced the convergence of the Poisson equation
solution; each iteration was performed on the GPU. In order to reduce global mem-
ory access, they used texture memory to fetch the pressure values during the Poisson
solution, improving performance by 10%. The GPU-accelerated solver performed
over an order of magnitude faster than the equivalent CPU version, with increasing
speedup as the mesh size increased (from about 12 times using a 128 × 322 mesh to
nearly 16 times with a 512 × 1282 mesh).

Following this effort, Shinn and Vanka [103] also demonstrated the first GPU
solver capable of performing large-eddy simulation (LES) of turbulent incompress-
ible flows. Unfortunately, they did not provide details on their GPU implementation,
or compare the performance against an equivalent CPU version. However, their ap-
proach appears to be based their earlier DNS work [104] described above, using the
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same discretization and integration schemes and the red-black GS method for the
pressure-Poisson equation.

Alfonsi et al. [3] also developed a GPU-based DNS solver for incompressible
flow. Their discretization was based on a mixed spectral-finite difference approach.
The GPU performed the core of the algorithm, including the fast Fourier transform
used in the spectral portion of the approach to transform the velocity field to and
from spectral space. They optimized memory access by (1) ensuring coalesced access
throughout, which involved modifying the Thomas (i.e., tridiagonal matrix) algorithm
for the Poisson equation; and (2) using constant memory to store the diagonal matri-
ces used in that algorithm. Alfonsi et al. [3] used their code to study wall-bounded
turbulence in a plane-channel domain, with a mesh of size 2562 × 181. The GPU-
accelerated solver performed nearly 25, 13.2, and 7.8 times faster than single-, two-,
and four-CPU versions, respectively.

Brandvik and Pullan [18], building upon their earlier work described above, de-
signed a new three-dimensional Navier–Stokes solver for graphics processors, TUR-
BOSTREAM, based on an existing class of CPU codes for simulating flows in turbo-
machinery. In this solver, the equations were discretized using a finite-volume method
with a structured grid; turbulence was modeled with a simple mixing-length model.
The new code—executed entirely on the GPU—ran approximately 19 times faster
on a single GPU than the original code on a quad-core CPU, using a grid with one
million nodes. The code was also validated with a high-resolution simulation (4.5
million grid cells) of steady-state flow through a three-stage turbine with leakage
paths, executing in less than 10 minutes on a cluster of four GPUs.

DeLeon and coworkers [28, 29] recently demonstrated another GPU-based solver
for LES of turbulent incompressible flows. The subgrid-scale terms were modeled us-
ing the Lagrangian dynamic Smagorinsky model. DeLeon et al. [29] parallelized their
solver to run on a cluster of multiple GPUs using MPI, such that the overall code con-
tained two levels of parallelism. The overhead of communication between blocks was
minimized by using the same asynchronous memory transfer as Phillips et al. [86].
They did not compare the performance of their LES GPU solver to an equivalent
CPU version, but simulations of turbulent channel flow with approximately 9.4 mil-
lion grid cells took 45 hours to complete running on a cluster with eight total GPUs.
However, previous comparisons of their flows solver with the lid-driven cavity bench-
marking problem showed that the GPU version running on two Tesla S1070 cards ran
26 times faster than the version running in parallel on eight CPUs [49, 111]. Jacobsen
and Senocak [48] discussed in detail the multi-level parallelization strategies used in
these efforts for incompressible flow simulations, including hybrid MPI-CUDA and
MPI-OpenMP-CUDA.

Iman Gohari et al. [47] developed a solver for the incompressible, turbulent Navier–
Stokes equations, where both the grid generation stage and flow solver were per-
formed on the GPU, and used it to simulate flow over airfoils. Using the stream
function-vorticity formulation, they modeled turbulence using the Balwin–Lomax
closure method. Systems of linear equations present in both stages were solved us-
ing Jacobi iteration, which, unlike the GS method, does not require special treatment
for parallelization, although convergence may occur more slowly. As with other ap-
proaches using structured grids, Iman Gohari et al. [47] exploited global memory co-
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alescing to improve performance, and focused on optimizing memory performance
in detail. Using single-precision calculations, they demonstrated an overall speedup
(grid construction + flow solution) of up to around 40, comparing a single GPU and
single CPU core.

Recently, a number of groups developed GPU-based DNS solvers. Salvadore et
al. [93] demonstrated such a code for turbulent, compressible flows, based on the
finite-difference method. Profiling of the original serial CPU version revealed that
the code spent more than 90% of the computational time on calculating the convec-
tive and viscous fluxes—however, to minimize CPU-GPU memory transfer, rather
than transferring just the most expensive portions, all of the code was moved to the
GPU. In order to improve the performance of these sections on the GPU, Salvadore et
al. [93] presented a number of optimization steps, including coalescing global mem-
ory through shared memory use, eliminating use of slower local memory, and increas-
ing the amount of work per thread. These optimization steps increased the speedup
factor over a quad-core CPU from 4.5 to 22. They used the final GPU solver to per-
form DNS simulations of a spatially evolving compressible mixing layer, with a grid
consisting of 1536 × 128 × 140 points; a total of eight quad-core CPUs were neces-
sary to meet the performance of a single GPU, while consuming nearly 2.4 times the
power.

Khajeh-Saeed and Perot [54] also recently developed a DNS solver for GPU clus-
ters. The Poisson pressure equation was solved using a polynomial-preconditioned
conjugate gradient (CG) method, with GPU-specific optimizations such as using
shared memory to reduce non-coalesced global memory access during the Laplacian
matrix evaluation. They used MPI for inter-GPU communication, overlapping GPU
computation with CPU-GPU and MPI communications. Khajeh-Saeed and Perot [54]
compared the performance speedup of multiple GPUs against the same number of
CPUs over a wide range of mesh sizes, demonstrating a maximum speedup of 25
times for 4–8 GPUs/CPUs. In addition, they found that for all but the largest prob-
lem sizes, MPI communication—rather than computation—became the performance
scaling bottleneck.

Xu et al. [116] used GPUs to accelerate the expensive portions of a spectral-finite-
difference DNS solver: the fast Fourier transform (FFT) and sparse linear equation
solution. For the linear equation solver, they implemented both the standard GS and
CG methods. While the standard GS is not appropriate for typical solution methods
as discussed in Sec. 3.1.1, the spectral-finite-difference approach results in a number
of independent systems of linear equations, where only the equations corresponding
to pairs of wavenumbers are interdependent. Xu et al. [116] exploited this data in-
dependence for their GS implementation, using individual GPU threads to solve the
linear equations for the wavenumber pairs. Their GPU implementation of the CG al-
gorithm relied on NVIDIA’s CUSPARSE library to accelerate sparse matrix-vector
multiplications; similarly, their FFT implementation—combined with the GS and CG
algorithms for the linear equation solution—used the CUFFT library for forward and
backward FFTs. Xu et al. [116] used both implementations to solve the scalar dif-
fusion equation for problem sizes ranging over 643–2403. The GS implementation
performed up to 20 times faster than a serial CPU version, while the CG version
demonstrated practically no speedup due to the small problem sizes involved in the
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sparse matrix operations. Xu et al. [116] then applied the GS implementation to solv-
ing the three-dimensional Navier–Stokes equations, and demonstrated a performance
speedup of nearly 26 times. However, due to memory limitations, they cautioned that
their GS approach may not be suitable for larger problem sizes.

4.3 Reactive flow

In order to design the next-generation of engines and combustors, accurate and effi-
cient simulations of reactive flow are vital. Traditionally, chemistry was represented
in a simple manner, using one- or multiple-step global reaction mechanisms to cap-
ture the overall fuel oxidation and heat release. Unfortunately, the inability to capture
pressure dependence, vital in high compression-ratio internal combustion engines, is
one of the fundamental issues with such global mechanisms. In addition, as emis-
sions regulations become more stringent, simulations must be able to predict con-
centrations of pollutant species and soot precursors for the development of advanced
high-efficiency, low-emissions combustors.

Including detailed chemistry in simulations of reactive flow induces greater com-
putational expense for two primary reasons: (1) chemical stiffness, caused by rapidly
depleting species and/or fast reversible reactions, requires specialized integration al-
gorithms (traditionally, high-order implicit solvers based on backward differentiation
formulae); and (2) the large and ever-increasing size of detailed reaction mechanisms
for transportation fuels of interest. While mechanisms for fuels relevant to hyper-
sonic engines, such as hydrogen or ethylene, may contain 10–70 species [19, 88], a
recent surrogate mechanism for gasoline consists of about 1550 species and 6000 re-
actions [68]; a mechanism for biodiesel surrogates contains almost 3300 species and
over 10,000 reactions [44]. Incorporating such large, realistic reaction mechanisms
in reactive flow simulations is beyond the scope of this survey; Lu and Law [67]
recently reviewed the subject. In brief, mechanism reduction is typically performed
on large mechanisms to decrease the size from hundreds or thousands of species (and
many more reactions) to a manageable size (e.g., < 100 species); unfortunately, high-
fidelity simulations using reaction mechanisms of this size are still too demanding to
be performed on average computer systems. By utilizing the massively parallel archi-
tecture of relatively low-cost GPUs, previously inaccessible reactive-flow simulations
may be performed on such systems. Though GPUs offer the potential of significant
performance enhancement, researchers are only beginning to explore GPU accelera-
tion of reactive-flow solvers.

Spafford et al. [105] made the first foray into this area by porting the species
rate evaluation of Sandia National Laboratory’s massively parallel DNS code S3D to
the GPU. S3D is capable of solving the fully compressible Navier–Stokes equations
combined with detailed chemistry [23, 42]. The CPU performed the time integra-
tion of the chemical source terms with an explicit fourth-order Runge–Kutta method,
where each integration step requires four species rate evaluations and consequently
four GPU kernel invocations—and the associated memory transfer. In addition to cal-
culating the rates for all grid points in parallel, the evaluation of reaction rates was ac-
celerated by the GPU’s hardware-accelerated transcendental function calls. Using an
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ethylene reaction mechanism with 22 species, they achieved a performance speedup
of around 15 and 9 for single- and double-precision calculations, respectively.

In a different approach, Shi et al. [99] used the GPU to simultaneously calculate
all the reaction rates for a single kinetic system (i.e., a single computational volume/
grid point) and accelerate the matrix inversion step of the implicit time integration
using the GPU linear algebra library CULA [45]. Initially, they demonstrated this
using homogeneous autoignition simulations—essentially, the integration of a sys-
tem of ordinary differential equations (ODEs) for temperature and the species rates.
Overall, Shi et al. [99] demonstrated a speedup of up to 22 for large chemical reaction
mechanisms (>1000 species), but for moderate-size mechanisms (<100 species) the
GPU version performed similarly or even slower than the CPU-only version.

Shi et al. [100] later implemented their GPU-based chemistry solver, paired with a
dynamic mechanism reduction algorithm [64, 98], into the existing engine simulation
code KIVA-Chemkin. Unlike the approach of Spafford et al. [105], the species rates
for each grid cells were evaluated in serial across the grid. In this case, acknowledg-
ing the poor performance of the GPU-based ODE solver on smaller mechanisms, the
CPU performed the species integration when the mechanism size dropped below 300
species due to the dynamic reduction; the GPU-based solver only took over for mech-
anisms with >300 species. Using a large detailed mechanism for methyl decanoate
(2877 species and 8555 reactions) to represent biodiesel [43, 44], Shi et al. [100]
simulated a two-dimensional homogeneous-charge compression-ignition engine. The
GPU-accelerated code performed nearly 20 times and twice as fast as the CPU-only
version without and with the dynamic reduction, respectively. Therefore, if dynamic
reduction is used, combining the GPU acceleration with this approach may not be
needed since the mechanism size is sufficiently small during most of the simulation.

Building upon the work of Spafford et al. [105], Niemeyer et al. [72] developed
a GPU-based explicit integration algorithm for nonstiff chemistry that integrated the
species rate equations for all grid cells concurrently. In order to minimize memory
transfer between the CPU and GPU, the entire time integration step of a fourth-order
Runge–Kutta method was performed on the GPU. Contrast this with the approach
of Spafford et al. [105], where CPU-GPU communication must occur before and af-
ter each of the four species rate calculations. Using a compact hydrogen mechanism
with 9 species and 38 irreversible reactions [118], Niemeyer et al. [72] demonstrated a
computational speedup of up to 75 compared to a single-core CPU over a wide range
of independent spatial locations (i.e., cell volumes/grid points), as shown in Fig. 7.
The performance of the GPU over the CPU implementation improved with increas-
ing number of computational cells, so this approach would be beneficial for large-
scale simulations. Unlike the GPU-accelerated CFD approaches discussed above, the
chemistry integration of the strategy of Niemeyer et al. [72] would be performed on
the GPU simultaneously with CPU transport calculations, so no portion of the calcu-
lation waits for the other to finish.

Shi et al. [101] presented a hybrid CPU/GPU chemistry integration strategy where,
similar to the formulation of Niemeyer et al. [72], the GPU explicitly integrated non-
stiff chemistry in many grid cells concurrently. In their work, though, a standard im-
plicit integrator on the CPU handled spatial locations with stiff chemistry. This com-
bined approach achieved a performance speedup of 11–46. However, Shi et al. [101]
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Fig. 7: Performance comparison of CPU and GPU explicit integration of a nonstiff
hydrogen mechanism. Note that both axes are displayed in logarithmic scale.

performed CPU transport calculations in serial with the CPU stiff chemistry integra-
tions, limiting the potential performance.

Le et al. [59] developed the first reactive-flow solver that evaluated both the fluid
transport and chemical kinetics terms on the GPU. As with most other approaches,
they used operator splitting to decouple and independently solve the fluid trans-
port and chemistry terms. They employed a first-order implicit method (the implicit/
backward Euler method) to solve the stiff chemical kinetics terms, using a direct
Gaussian elimination to solve the resulting linear system of equations. To implement
their algorithms on the GPU, Le et al. [59] employed the same thread-per-cell ap-
proach as recent efforts [72, 101, 105]. In the chemical kinetics kernel, Le et al. [59]
attempted to use shared memory to store the system of variables as well as the Ja-
cobian matrix (necessary for the Euler time integration), but could only store two
rows of the matrix at a time due to the limited size of shared memory. Unfortunately,
this led to excessive memory transfer between the global and shared memories, neg-
atively impacting performance; using coalesced global memory alone offered better
performance. Compared against an equivalent CPU version executed on a single pro-
cessor core, their combined GPU solver performed up to 40 times faster using a reac-
tion mechanism for methane with 36 species and 308 reactions, on a grid with over
104 cells. However, the low accuracy of the chemistry solver—first order—should be
noted.

Recently, Levesque et al. [61] presented their experiences hybridizing S3D from
one level of parallelism using MPI to three levels, combining MPI (CPUs across
multiple nodes), OpenMP (CPUs sharing memory on the same node), and OpenACC
(GPUs on a node). Rather than developing native GPU code using CUDA or OpenCL,
they used OpenACC paired with MPI and OpenMP to ensure architecture-agnostic
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code. To our knowledge, this was the first production CFD code ported to the GPU
using OpenACC. Contrasted with the earlier work accelerating S3D [105], Levesque
et al. [61] moved all calculations to the GPUs, using the host CPUs to perform com-
munication and boundary treatments.

In order to better parallelize the code on both OpenMP and OpenACC, Levesque
et al. [61] made a number of changes to the structure of the code—although the ac-
tual algorithms and computations remained the same. For example, they separated
the source term and derivative calculations, moved these terms into the same loop
to maximizing spatial granularity and allowed overlapping of computation and com-
munication. In another example, they developed a novel derivative queuing system
that split the derivative computation into a number of tasks that could be overlapped
with other calculations and communication. A number of other restructuring changes
involved reduced memory operations and vectorized loops. In fact, optimizations tar-
geted at GPU acceleration also resulted in improved CPU-only performance with
OpenMP. The CPU-based MPI+OpenMP version ran up to around 1.4 times faster
than the MPI version—using the same number of CPU cores. Levesque et al. [61]
then compared the performance of the OpenMP and OpenMP+OpenACC codes on
a single node and found that the GPU-accelerated version paired with a single 16-
core CPU performed around 1.5 times faster than the OpenMP-only version on dual
16-core CPUs (32 total cores).

Stone et al. [107] implemented two chemistry integrators on the GPU: (1) a
fourth-order adaptive Runge–Kutta–Fehlberg (RKF45) method and (2) the standard
fifth-order accurate implicit DVODE method. They applied these integrators to a re-
duced mechanism for ethylene with 19 species and 15 global reaction steps [120].
Compared against equivalent single-core CPU versions over a range of ODE num-
bers, the RKF45 and DVODE methods on the GPU achieved speedup factors of up
to 28.6 and 7.7, respectively. The lower relative performance increase of the implicit
DVODE method is likely due to thread divergence induced by the complex logical
flow inherent in the algorithm; the GPU-based DVODE method would demonstrate
even less improvement compared against a parallelized CPU version operating on
multiple cores (e.g., six). Stone et al. [107] also compared the performance of the
one-thread-per-ODE approach [72, 105] against a new one-block-per-ODE approach,
but found that the thread-based approach performs up to twice as fast for larger num-
bers of ODEs. At lower numbers of ODEs (e.g., <1000), the one-block-per-ODE
approach is more efficient.

In a different manner from the direct evaluation of chemistry studied in prior
efforts, Sankaran [95] presented a new approach for accelerating the chemistry in
turbulent combustion modeling that used the GPU to solve the unsteady laminar
flamelet equations. Flamelet models [83, 84] approximate the turbulent flame as a col-
lection of embedded laminar flames. In the unsteady flamelet approach, rather than
solving the equations for the species rates of change, certain controlling variables
(e.g., mixture fraction, scalar dissipation rate) were used to determine the averaged/
filtered species mass fractions through a probability density function (PDF) method.
In Sankaran’s [95] proposed approach, the CPU performed the main flow solver and
tracked the distributions of mixture fraction and scalar dissipation rate. These val-
ues were then sent to the GPU, which integrated the unsteady flamelet equations
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explicitly. The resulting state variables were then integrated through a presumed PDF
approach and returned to the host CPU. Sankaran’s [95] method involved three levels
of concurrency on the GPU: the solutions of (1) species reaction rates, thermochemi-
cal properties, and molecular transport rates; (2) the discretized flamelet equations in
an regular grid in the mixture fraction space; and (3) multiple flamelets.

4.4 Lattice Boltzmann method

The lattice Boltzmann method (LBM), reviewed by Chen and Doolen [24] and more
recently by Aidun and Clausen [2], developed as an alternative approach to simu-
lating fluid flows. Rather than solving the Navier–Stokes equations, the macroscopic
dynamics of the fluid are represented using a collection of microscopic particles.
A simplified version of the full Boltzmann kinetic equation—the lattice Boltzmann
equation—is then solved to determine the movement and collisions of each parti-
cle. Compared to more traditional Navier–Stokes-based solvers, LBM solvers allow
easier treatment of complex flows and boundary conditions. In addition, the method
is much less computationally expensive for high-Knudsen-number flows [2]. Since
the core of the method relies on tracking a large number of independent particles,
with only local movement and collision operations, it is well-suited to parallelism
and shows highly scalable parallel performance [2]. As such, LBM is also suitable
for operation on GPUs, and a number of researchers recently developed GPU-based
implementations of such codes.

As with standard Navier–Stokes solvers, early efforts to implement the LBM on
GPUs predated the development of programming environments such as CUDA and
so required mapping computations to graphical operations such as that of the raster-
ization units and the frame buffer. Li et al. [62, 63] developed (to our knowledge)
the first implementation of the LBM on graphics hardware. With a grid size of 643,
simulations ran fast enough to be performed in real time, while larger grids (1283)
remained interactive. Compared to a single-core CPU, the GPU version ran up to 15
times faster for single-precision computations. In another pre-CUDA work, Fan et
al. [32] developed an LBM solver for a cluster of GPUs, using it to study the disper-
sion of contaminants in Times Square. For a domain size of 480 × 400 × 80, their
solver ran 4.6 times faster on a cluster of 30 GPUs than on the same number of CPUs.
Zhao [122] followed the approach of Li et al. [62, 63], developing an LBM solver on
the GPU to solve the diffusion, Laplace, and Poisson equations—although directed
at modeling and visualization applications, such as the volume smoothing used in
medical imaging techniques. Comparing with equivalent applications running on a
single CPU core, Zhao [122] demonstrated a speedup factor of up to 184, although
admittedly the CPU code was neither highly optimized nor parallelized.

Following the introduction of CUDA, a number of groups developed GPU-based
LBM solvers, following implementation strategies similar to those found in the above
Navier–Stokes-based solvers. Tölke and Krafczyk [112] developed an efficient solver
and demonstrated it with simulations of a moving sphere in a pipe at a wide range
of Reynolds numbers. In addition, they discussed optimization strategies for porting
LBM codes to GPUs, resulting in a performance speedup of nearly two orders of
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magnitude. Bailey et al. [7] developed a GPU solver that ran over 28 times faster
than an equivalent CPU version running on a quad-core CPU, via OpenMP. They
achieved such high performance by (1) increasing GPU multiprocessor occupancy,
(2) cutting memory requirements in half through a new memory access technique,
and (3) exploiting global memory coalescing by judicious use of shared memory.

Bernaschi et al. [9] accelerated the LBM portion of MURPHY, a multi-scale sim-
ulation code for fluids with embedded particles that combines LBM to capture fluid
flow with a modified molecular dynamics solver for suspended solid particles. Unlike
pure LBM solvers, in this coupled code some information must be transferred back to
the CPU during the simulation for the molecular dynamics portion. Data representing
the large population of fluid particles remained on the GPU, while a smaller number
of hydrodynamic variables were transferred each time step. Compared to a CPU ver-
sion running on a quad-core processor, the LBM portion ran eight to ten times faster
on a GPU. In a later work, Bernaschi et al. [10] ported the molecular dynamics por-
tion of MURPHY such that the code ran fully on the GPU, which further improved
performance by a factor of five to six over the prior GPU version.

Kuznik et al. [58] used a GPU-based LBM solver to simulate flow in a lid-driven
cavity, showing that single-precision results were nearly indistinguishable—as well
as being almost four times faster—than double-precision calculations. Obrecht et
al. [76] also used the lid-driven cavity case to demonstrate techniques for optimiz-
ing the LBM on GPUs, reaching 86% of the theoretical global memory throughput
for their GPU card.

Rinaldi et al. [92] developed a number of novel techniques for implementing
LBM solvers on GPUs, in addition to benefitting from lessened restrictions on mem-
ory access in a new CUDA version. In order to minimize data transfer, the particle
collision and propagation steps were merged into a single loop. In addition, the en-
tire algorithm was performed in fast shared memory before being written to global
memory to return to the host CPU. In simulations of the familiar three-dimensional
lid-driven cavity problem, this optimized solver performed 92–130 times faster than
a CPU version running on a single core, for single-precision calculations.

4.5 Summary of findings

Table 1 summarizes our findings for specific optimization techniques that have been
employed in GPU-accelerated CFD applications. Specific improvement factors for
each technique are included where reported. Interested readers should peruse the
listed references for specific implementation details, although many were described
in general here.

Regarding precision, CUDA-capable GPUs with a compute capability of at least
1.3 (since 2007) mostly support the IEEE 754 standard [46], with a few deviations.
When first introduced, double-precision operations suffered a severe performance
decrement compared to single precision, but recent GPU hardware [74] offers nearly
the same relative double-to-single precision performance as CPUs. Certain applica-
tions, such as solving the Euler equations [31, 37], do not require double precision,
but others may need the higher precision. Elsen et al. [31] reported that, for single-
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Topic Technique Improvement References

Memory Coalesced global memory 1.4–1.7× [6, 7, 25, 26, 35, 47, 53, 54, 59, 86, 93, 112]
Avoiding local memory - [35, 37, 93, 121]
Shared memory 1.8–2.2× [3, 6, 7, 16, 17, 53, 54, 60, 85, 89, 93, 111, 112, 121]
Texture memory 1.1–1.4× [6, 16, 17, 25, 31, 37, 53, 57, 96, 104, 113]
Constant memory - [3, 6, 53, 54]
Overlap memory
access/computation

1.1–3.9× [26, 60]

Communication Asynchronous
communication

1.4× [10, 29, 35, 37, 48, 54, 60, 61, 86, 121]

Move entire code to GPU 1.3–5× [10, 16–18, 31, 47, 60, 61, 86, 89, 93, 121]
Pinned memory 3× [60, 121]

Boundary
treatment

Group all boundary/ghost
nodes

2× [85]

Precision Single over double 1.4–4.5× [26, 53, 58, 105, 111]
Mixed over double 1.3–1.4× [53]

Thread workload One block/ODE 0.8–2× [107]

Table 1: Summary of techniques to improve performance in GPU-based CFD codes.
The factor of improvement refers to the value reported for the specific technique
employed, rather than the speedup of the entire GPU code. A “-” indicates no value
was reported.

precision calculations, GPU results compared closely with those from the CPU up
to five or six digits. Judicious choice of precision, contrasting specific needs with
desired performance, is warranted based on the application.

5 Concluding remarks

In this article, we reviewed the progress made in developing GPU-based computa-
tional fluid dynamics solvers, covering efforts capable of simulating laminar, turbu-
lent, and reactive flows, in addition to solvers based on the lattice Boltzmann method.
Initial efforts took existing applications and transferred some or most of the calcula-
tions to the GPU for acceleration, demonstrating promising speedup of computations.
Later works used the GPU to perform nearly all calculations, leading to improved
performance by minimizing data transfer. In addition, using case studies of heat con-
duction in a plate and lid-driven cavity flow, we demonstrated a systematic manner
to optimize GPU codes. These case studies also served to show the importance of re-
designing numerical algorithms for execution on GPUs, even for simple applications,
as well provide examples of potential performance increase. In general, we observed
trends of around an order of magnitude improvement in performance compared to
versions running on multicore CPUs.

In a number of early efforts, comparisons were made between the performance of
a GPU code and a serial CPU code running on a single processing core. Since nearly
all modern CPUs consist of at least two—and commonly four or more—cores, and
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parallelization via OpenMP or MPI is common in scientific computing, future com-
parisons made should include a CPU version running in parallel on multiple cores. In
addition, comparing the performance normalized by both hardware cost and power
consumption, as suggested by Zaspel and Griebel [121], provides even more insight
to the benefits of moving computationally expensive CFD codes to graphics proces-
sors.

Through analyzing the patterns of GPU implementations surveyed here as well
as the demonstrated case studies, a number of successful strategies emerged:

– Global memory should be arranged to coalesce read/write requests, which can
improve performance by an order of magnitude (theoretically, up to 32 times: the
number of threads in a warp).

– Shared memory should be used for global reduction operations (e.g., summing
up residual values, finding maximum values) such that only one value per block
needs to be returned.

– Use asynchronous memory transfer, as shown by Phillips et al. [86] and DeLeon
et al. [29] when parallelizing solvers across multiple GPUs, to limit the idle time
of either the CPU or GPU.

– Minimize slow CPU-GPU communication during a simulation by performing all
possible calculations on the GPU.

A number of challenges remain in developing GPU solvers for simulations of
flows with more complex physics. For reactive-flow calculations, most strategies pre-
sented so far [72, 99–101, 105] performed the integration of the chemistry terms on
the GPU while the controlling CPU handled transport calculations. Solvers based on
this approach necessarily perform repeated CPU-GPU memory transfer of the ther-
mochemical and species mass fraction variables, and suffer from the corresponding
added latency. This could be balanced by the performance increase of calculating
these expensive terms on the GPU, but it should be investigated whether migrating
all calculations to the GPU would result in even higher performance, at the risk of
leaving the CPU unnecessarily idle. Furthermore, no practical demonstration of a
GPU chemistry solver capable of handling stiff chemistry has yet been made. This is
one area where efforts need to be focused.

Only two studies, from the same group, have shown a GPU-based solver capable
of simulating of two-phase, incompressible flows using level-set methods [35, 121],
related to a rising air bubble in water. However, other than these efforts, no GPU-
accelerated simulations with other complex physical models such as multiphase flows
have yet been demonstrated, even though such phenomena are important in a number
of applications. Physical models that rely on Lagrangian schemes (e.g., for sprays
or particles) in particular stand to benefit from GPU acceleration due to the data
independence of tracking the movement of notional particles or droplets.

A common question regarding GPU computing may be, “How much can an ap-
plication benefit from GPU acceleration?” Amdahl’s law [4] gives the answer, stating
that the overall speedup achievable N, if a proportion P of the code can be accelerated
by a factor of S, is

N =
1

(1−P)+ P
S

. (15)
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Using this equation, if 50% of the application can be GPU-accelerated then the over-
all speedup is 2S/(1+ S). Even if the portion performed on the GPU can be accel-
erated by a factor of 100, the overall application will only perform about twice as
fast. On the other hand, if 99% of the application is parallelizable, then the overall
potential speedup is around 100S/(99+ S). Taking the case of Niemeyer et al. [72]
as an example, for larger grid sizes the evaluation of the reactive source terms could
be accelerated by a factor of 75. In this case, the overall speedup could reach about
43 times. Therefore, taking full advantage of GPU acceleration can only be achieved
if most of the application is parallelizable.

Early GPU work in many areas tackled “low-hanging fruit” problems that re-
quired little to no significant change in program structure. For example, an application
that involves frequent large matrix inversions could simply replace the subroutine call
from the CPU version to the GPU version. However, most software was designed to
run on traditional, sequential processors (e.g., CPUs), so this “incremental” approach
can only help so far. In order to truly harness the massive parallelism of many-core
processors (and GPUs in particular), new programming strategies and new algorithms
must be designed specifically targeted at massively parallel processors. In particu-
lar, reactive-flow solvers that require complex, implicit integration methods for stiff
chemistry at every spatial location cannot be simply ported to the GPU, so alterna-
tive approaches must be developed in order to achieve a more useful improvement
in performance. By developing new solvers for fluid flow simulations using GPUs
to significantly improve performance, we can facilitate the transition of high-fidelity
CFD from a tool of science to that of technology and design, enabling previously
inaccessible levels of detail and parametric variation in modeling studies.
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13. Block BJ, Lukáčová-Medvid’ová M, Virnau P, Yelash L (2012) Accelerated
GPU simulation of compressible flow by the discontinuous evolution Galerkin
method. Eur Phys J Special Topics 210:119–132
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