#### AN ABSTRACT OF THE THESIS OF

<u>Jose D. Nunez</u> for the degree of <u>Doctor of Philosophy</u> in <u>Fisheries</u> presented on <u>December 21, 1987</u>

# Title: <u>The Fishery Biology of the Weathervane Scallop</u> [Pecten (Patinopecten) caurinus Gould, 1850] in Oregon <u>Coastal Waters</u>

# **Redacted for Privacy**

Abstract approved:

Howard F. Horton

Samples of weathervane scallops taken on Oregon Department of Fish and Wildlife cruises off Oregon waters during 1981-1982 were analyzed for a comparative growth study. No evidence of internal growth marks were found in the shell structure when analyzed by the acetate peel technique. Internal growth lines formed in the ligament lateral layers were reliable for age determination purposes; each band was formed by 12 striae deposited at fortnightly intervals and spaced close together during periods of slow growth. The von Bertalanffy growth model fit the observed data in most cases. At any given age, scallops from Coos Bay were larger than those from off Tillamook Head, Cape Kiwanda, Yaquina Head and Heceta Head. Scallops from Yaguina Head grew slowest. Differences in growth were associated with food availability and temperature. The weathervane scallop fishery currently is a sporadic fishery following a successful beginning in 1981. Dropping CPUE and increased availability of shrimp in Oregon waters can partly explain the dramatic decline of the weathervane scallop fishery.

# The Fishery Biology of the Weathervane Scallop [Pecten (Patinopecten) caurinus Gould, 1850] in Oregon Coastal Waters

by Jose D. Nunez

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

٠

Doctor of Philosophy

Completed: December 21, 1987

Commencement: June 1988

APPROVED

# **Redacted for Privacy**

Howard F. Horton, in Charge of major

# Redacted for Privacy

Richard A. LUDD, Head of Department of Figneries and Wildlife

Redacted for Privacy

Lyle D. Calvin Dean of Graduate School

 Date thesis is presented:
 December 21, 1987

 Typed by LaVon Mauer for:
 Jose D. Nunez

#### ACKNOWLEDGEMENTS

I wish to thank my major professor, Dr. Howard F. Horton, for guidance, counsel, friendship, and encouragement throughout the entire period I worked for my doctorate. I wish to thank my committee members, Dr. Richard Tubb, Dr. Frederick Smith, Dr. John Rohovec, and Dr. David McIntire for their advice and review of the manuscript.

I wish to thank Mr. Rich Starr of the Oregon Department of Fish and Wildlife, Newport, Oregon, for providing the data for my research and his valuable help while I was processing the data. I am grateful to Jean McRae also from the ODFW for her help.

I am in debt to the Instituto Profesional de Osorno (IPO), Chile, for its support and also to the Tinker Foundation for its financial aid.

I am grateful to the Horton family for their hospitality and support when I was far away from my family.

I wish to thank LaVon Mauer who kindly gave shape to the final copy of the thesis.

I am particularly indebted to my wife, Teresa, for her support, patience and the hope and strength she inspired over the years it took to complete my doctoral program.

#### TABLE OF CONTENTS

•

|                                                                                                                                                                                | <u>Page</u>                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|
| INTRODUCTION                                                                                                                                                                   | 1                                         |  |
| LITERATURE REVIEW<br>Oregon Coast Environment<br>Circulation<br>Temperature<br>Salinity<br>Density<br>Waves<br>Turbidity<br>Chemical Characteristics<br>Oxygen<br>Productivity | 5<br>5<br>7<br>8<br>9<br>9<br>9<br>9<br>9 |  |
| Oregon Scallop Research                                                                                                                                                        | 11                                        |  |
| Life History<br>Taxonomy<br>Reproduction                                                                                                                                       | 13<br>13<br>16                            |  |
| Shell Morphology                                                                                                                                                               | 19                                        |  |
| The Ligament                                                                                                                                                                   | 22                                        |  |
| Biographical Variations                                                                                                                                                        | 24                                        |  |
| Oregon Scallop Fishery                                                                                                                                                         | 25                                        |  |
| MATERIALS AND METHODS<br>Shell Morphology: Age and Growth<br>Fitting A Growth Model                                                                                            | 27<br>27<br>31                            |  |
| RESULTS                                                                                                                                                                        | 34<br>34<br>34<br>39                      |  |
| The Ligament                                                                                                                                                                   | 41                                        |  |
| Size Characteristics of Scallops                                                                                                                                               | 41                                        |  |
| Age and Growth                                                                                                                                                                 | 55                                        |  |
| Fitting A Growth Model                                                                                                                                                         | 57                                        |  |
| The Scallop Fishery 1981-1986                                                                                                                                                  | 87                                        |  |
| DISCUSSION 10                                                                                                                                                                  |                                           |  |
| CONCLUSIONS 12                                                                                                                                                                 |                                           |  |
| LITERATURE CITED 1                                                                                                                                                             |                                           |  |
| APPENDICES                                                                                                                                                                     |                                           |  |

#### LIST OF FIGURES

.

| <u>Fiqure</u> |                                                                                                                                                                                                                                                                              | <u>Page</u> |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1             | Oceanographic characteristics off the Oregon coast:<br>A) and B) wind; C) currents; D) sea level; and E)<br>temperature.                                                                                                                                                     | 6           |
| 2.            | The areas surveyed for scallops off the Oregon coast<br>in 1963 and 1967. (After Ronholt and Hitz 1968).                                                                                                                                                                     | 12          |
| 3.            | Location of scallop study areas: A) R/V Chapman<br>cruise, Nov. 1981; B) F/V Granada cruise, Aug. 1982.<br>(After Stern and McRae 1983).                                                                                                                                     | 14          |
| 4.            | Weathervane scallop life cycle. Modified from<br>Kaydak (1972). (After AEIDC 1975).                                                                                                                                                                                          | 17          |
| 5.            | Larval and juvenile stages of the scallop. (After<br>Mottet 1979).                                                                                                                                                                                                           | 18          |
| 6.            | Orientation and morphology of scallop shell: A)<br>lateral view; B) exterior of opened scallop; C)<br>ventral view. (After Mottet 1979).                                                                                                                                     | 20          |
| 7.            | Diagrammatic cross section of a bivalve shell and<br>the underlying mantle. (After Johnson et al.<br>1977).                                                                                                                                                                  | 21          |
| 8.            | Umbonal region of <u>Pectinids</u> : A) interior of the<br>dorsal region of the right valve with the ligament<br>cut in longitudinal section; B) transverse section<br>through the center showing the structure of the<br>central and lateral regions. (After Trueman 1953.) | 23          |
| 9.            | External features and techniques used in aging<br>scallop shells: a) concentric rings (age 2) on<br>external surface; b) depressions on auriculae; c)<br>change in texture on internal face of shell; d)<br>transmitted light applied to the shell.                          | 29          |
| 10.           | Different cuts performed on the shell: A) on the<br>axis: a) height axis; b) width axis; c) and d)<br>diagonal axis; B) acetate peel technique: a)<br>peeling off; b) acetate peel for microscopic<br>observation.                                                           | 30          |
| 11.           | External view of <u>P</u> . <u>caurinus</u> showing annual growth<br>marks.                                                                                                                                                                                                  | 35          |
| 12.           | External view of scallop right valves: A)<br>comparison between infested and non-infested<br>shells; B) detail of infestation.                                                                                                                                               | 36          |

#### <u>Fiqure</u>

| 13. | Internal view of scallop right valves: A)<br>comparison between infested and non-infested shells;<br>B) detail of infestation.                                                                                                                                  | 37 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 14. | Details of infested shells: A) through transmitted<br>light B) x-ray photograph.                                                                                                                                                                                | 38 |
| 15. | Internal structure of <u>P</u> . <u>caurinus</u> shell as viewed in<br>an acetate peel. A) Periostracum, B) prismatic<br>layer, C) myostracum, D) nacreous layer.                                                                                               | 40 |
| 16. | Detail of the myostracal layer observed on an acetate peel under the light microscope.                                                                                                                                                                          | 42 |
| 17. | <u>P. caurinus</u> ligament. A) Frontal view of the<br>lateral layer, B) lateral view of the ligament.                                                                                                                                                          | 43 |
| 18. | Scallop shell height distributions at different<br>depths off Tillamook Head.                                                                                                                                                                                   | 46 |
| 19. | Scallop shell height distributions from five<br>localities on the Oregon coast.                                                                                                                                                                                 | 47 |
| 20. | General scallop shell height distribution on the<br>Oregon coast.                                                                                                                                                                                               | 48 |
| 21. | Scallop age distribution at the five studied localities.                                                                                                                                                                                                        | 49 |
| 22. | Scallop year-class distribution on the five studied localities.                                                                                                                                                                                                 | 50 |
| 23. | Number of ribs on scallop shells collected off<br>Tillamook Head: A) 82 m; B) 92 m; C) 96 m; D)<br>101 m.                                                                                                                                                       | 51 |
| 24. | Number of ribs on scallop shells collected off: A)<br>Yaquina Head; B) Heceta Head; C) Cape Kiwanda, D)<br>Coos Bay.                                                                                                                                            | 52 |
| 25. | Fitted scallop growth curves at different depths off<br>Tillamook Head.                                                                                                                                                                                         | 53 |
| 26. | Fitted scallop growth curves on the five studied localities.                                                                                                                                                                                                    | 67 |
| 27. | Weathervane scallop growth pattern relationships:<br>A) between localities and depths; B) between<br>localities. Th: Tillamook Head at 82, 92, 96 and<br>101 m; CK: Cape Kiwanda; CB: Coos Bay; Tall: All<br>Tillamook Head; HH: Heceta Head; YH: Yaquina Head. | 86 |

<u>Page</u>

### <u>Figure</u>

| 28. | Oregon scallop fishery landings in round weight for<br>the 1981-1986 period.                                                                                                                                                                                  | 89  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 29. | Oregon scallop fishery landings in metric tons round<br>weight by months during the 1981-1986 fishing<br>period.                                                                                                                                              | 90  |
| 30. | Oregon scallop fishery landings in metric tons round<br>weight by months during the 1982-1986 fishing<br>period.                                                                                                                                              | 92  |
| 31. | Percent by year of total scallops landed in Oregon<br>during the 1981-1986 period.                                                                                                                                                                            | 93  |
| 32. | Oregon scallop fishery landings by port during the<br>1981-1986 period. As: Astoria; Ti: Tillamook; Ne:<br>Newport; Wi: Winchester Bay; Co: Coos Bay.                                                                                                         | 97  |
| 33. | Fishing effort (hr) for the scallop fishery by<br>Oregon statistical area for the period 1981-1986.                                                                                                                                                           | 101 |
| 34. | Expanded scallop catch (metric tons) by Oregon statistical area for the period 1981-1986.                                                                                                                                                                     | 102 |
| 35. | Catch of scallops per unit of effort by Oregon<br>statistical area for the 1981-1986 period.                                                                                                                                                                  | 103 |
| 36. | Growth of the shell margin in <u>Pecten diegensis</u> : A)<br>mantle extended and crystals formation; B) mantle<br>withdrawn, crystal carried under the shell; C)<br>crystals have coalesced into solid shell. (After<br>Clark 1973).                         | 107 |
| 37. | Annual cycle of gonadal development of the female<br><u>Pecten caurinus</u> on the Oregon coast. (Modified<br>from Robinson and Breese 1984.)                                                                                                                 | 113 |
| 38. | Historical distributions of: A) hydrography; B)<br>photic depth; C) chlorophyll <u>a</u> (mg m <sup>-2</sup> ) along NH<br>line; D) chlorophyll <u>a</u> (mg m <sup>-2</sup> ) along composite N,<br>CH, SF, and SB lines. (After Small and Menzies<br>1981.) | 116 |
| 39. | Relationships of the growth patterns of <u>P</u> . <u>caurinus</u><br>from different localities on the Oregon coast.                                                                                                                                          | 119 |

| <u>Table</u> |                                                                                                                                                                                  | <u>Page</u> |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 1.           | State statistical areas and expanded catch (tons) of<br>the scallop fishery in 1981 (modified from Starr and<br>McRae 1983).                                                     | 26          |
| 2.           | Number of annuli on the shell and ligament, and the<br>correlation coefficient between them. Cape Kiwanda,<br>1982.                                                              | 44          |
| 3.           | Shell height in 5 mm intervals and percent<br>composition of weathervane scallops ( <u>P</u> . <u>caurinus</u> )<br>from the Oregon coast, 1981-1983.                            | 45          |
| 4.           | Age composition of the weathervane scallops ( <u>P</u> .<br><u>caurinus</u> ) from the Oregon coast, 1981-1983.                                                                  | 54          |
| 5.           | Mean shell height, average number of ribs and the<br>correlation of shell height to rib number for <u>P</u> .<br><u>caurinus</u> off the Oregon coast 1981-1983.                 | 58          |
| 6.           | Parameter estimates and standard errors of the<br>estimates derived from the Von Bertalanffy growth<br>model for <u>P</u> . <u>caurinus</u> off the Oregon coast, 1981-<br>1983. | 60          |
| 7.           | Measured average height value, predicted height at<br>age, and correlation coefficient between these<br>values at 82 m for Tillamook Head, 1982.                                 | 61          |
| 8.           | Measured average height value, predicted height at<br>age, and correlation coefficient between these<br>values for Cape Kiwanda, 1982.                                           | 62          |
| 9.           | Measured average height value, predicted height at<br>age, and correlation coefficient between these<br>values for Yaquina Head, 1982.                                           | 63          |
| 10.          | Measured average height value, predicted height at<br>age, and correlation coefficient between these<br>values for Coos Bay, 1981.                                               | 64          |
| 11.          | Measured average height value, predicted height at<br>age, and correlation coefficient between these<br>values for Heceta Head, 1983.                                            | 65          |
| 12.          | Average size at age for Tillamook Head scallops at<br>82 m.                                                                                                                      | 68          |
| 13.          | Average size at age for Tillamook Head scallops at<br>92 m.                                                                                                                      | 69          |

• .

## <u>Table</u>

| 14. | Average size at age for Tillamook Head scallops at<br>96 m.                                                                                         | 70  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 15. | Average size at age for Tillamook Head scallops at<br>101 m.                                                                                        | 71  |
| 16. | Average size at age for Cape Kiwanda scallops.                                                                                                      | 72  |
| 17. | Average size at age for Yaquina Head scallops at<br>110 m.                                                                                          | 73  |
| 18. | Average size at age for Heceta Head scallops.                                                                                                       | 74  |
| 19. | Average size at age for Coos Bay scallops, 1981.                                                                                                    | 75  |
| 20. | Mean growth increments of scallops by location and depth.                                                                                           | 76  |
| 21. | Mean growth increments for scallops by location and depth.                                                                                          | 80  |
| 22. | Hotelling's T <sup>2</sup> statistic values for samples of <u>P.</u><br><u>caurinus</u> 1981-1983 (tabulated 5% values in<br>parenthesis).          | 83  |
| 23. | Hotelling's T <sup>2</sup> statistic values for localities of<br><u>P</u> . <u>caurinus</u> 1981-1983 (tabulated 5% values in<br>parenthesis).      | 85  |
| 24. | Oregon scallop fishery landings in round weight by<br>month, 1981-1986. Values in metric tons.                                                      | 88  |
| 25. | Oregon scallop fishery landings by port (metric<br>tons), 1981-1982 (transformed from Starr and McRae<br>1983).                                     | 95  |
| 26. | Oregon scallop fishery landings by port (metric<br>tons), 1983-1984.                                                                                | 96  |
| 27. | Expanded catch and effort estimates for scallops<br>listed by Oregon statistical area for 1981 and 1982<br>(transformed from Starr and McRae 1983). | 99  |
| 28. | Scallop catch and effort data by Oregon statistical<br>area derived from analysis of fishermen's logbooks<br>for the years 1983-1986.               | 100 |

.

# THE FISHERY BIOLOGY OF THE WEATHERVANE SCALLOP [PECTEN (PATINOPECTEN) CAURINUS GOULD, 1850] IN OREGON COASTAL WATERS

#### INTRODUCTION

The weathervane scallop (<u>Pecten [Patinopecten] caurinus</u>, Gould 1850) is a benthic marine bivalve found in the Northeastern Pacific Ocean. It occurs on soft muddy bottoms and is distributed from the Aleutian Islands to Point Reyes in northern California (Abbott 1974).

This species represents a new fishery resource in Oregon since 1981, and little is known about its biology and its response to fishing activity. This study was designed to analyze scallop samples taken during two research cruises in 1981 and 1982 on the main fishing grounds along the Oregon coast. The study was conducted at the Oregon State University Department of Fisheries and Wildlife during the 1986-1987 academic year and was oriented to increasing the understanding of the weathervane scallop biology and stock dynamics.

On the Oregon continental shelf, <u>P</u>. <u>caurinus</u> is distributed between 50 and 160 m depth, with the juvenile scallops generally found in deeper water than the adults (Carey and Ruff 1985). These authors found that the juveniles probably have high mortality and are highly variable in space and time, suggesting that recruitment varies greatly from area to area and from year to year.

Age determination methods are needed for evaluation of age composition in assessment studies of animal populations. Seasonal variations occur in the rate of growth of many marine organisms and give rise to distinctive annual marks on their hard structures. Such marks have been widely used to identify year-classes in studies of populations of fish and lamellibranchs, and together with suitable criteria of size, have facilitated growth studies of a variety of animals (Stevenson and Dickie 1954; Johannessen 1973; Thompson et al. 1980).

The most popular method of estimating growth rates in bivalve molluscs has been to identify annual growth checks, or lines, on the exterior of shells (Kerswill 1944; Stevenson and Dickie 1954; Caddy and Billard 1976). This method has been considered misleading in some bivalve studies, because with increasing age and size the earlier bands are often obliterated by erosion. Later bands may also become too crowded at the valve margins and produce unverifiable and incomplete records for age analysis (Ropes 1985).

New methods based on the study of internal shell deposits, which form growth lines or bands that are relatively unaffected by external environmental conditions, have been described by Ropes (1985). These techniques were intended for use in this study for a comparison with previous studies on <u>P</u>. <u>caurinus</u> using external shell characteristics

Historically, the U.S. Pacific Coast scallop fishery has been incidental to fishing for other species and of minor economic significance (Ronholt and Hitz 1968). Despite large fluctuations in abundance and distribution, commercial fisheries of varying size and duration have developed in Puget Sound, Washington (1935-52), the Gulf of Alaska (1967-present), and the offshore waters of Washington, Oregon and California (1981-present) (Ronholt and Hitz 1968; Capps 1981; Kaiser 1986).

The Oregon scallop fishery began in the spring of 1981 when two 29-m vessels enroute to Alaskan scallop grounds discovered dense populations of <u>P</u>. <u>caurinus</u> off Coos Bay and landed large quantities of scallops (Starr and McRae 1983). This was the beginning of an apparently promising fishery in which after a few weeks more than 100 boats from Washington, Oregon, California, and the East coast were fishing for scallops.

Unfortunately, the Oregon scallop fishery developed and declined very rapidly during a period when very little biological information was available. In the last few years, valuable information on this fishery has been produced mainly on the distribution, abundance, and ecology of the species (Carey and Ruff 1985).

After six years of <u>P</u>. <u>caurinus</u> exploitation, it is important to review the status of knowledge on the Oregon weathervane scallop fishery to consolidate the available information, and to generate new information oriented toward a better understanding of this resource and its fishery. Thus, the general objective of my study was to analyze the biology and fishery for <u>P</u>. <u>caurinus</u> in Oregon from its begining in 1981 until 1986.

Specific objectives of this study are:

- To characterize the oceanographic environment occupied by <u>P</u>. <u>caurinus</u>.
- 2. To summarize the exploration and research on <u>P</u>. <u>caurinus</u> in Oregon during 1963-1986.
- 3. To review the known life history of the weathervane scallop.

- 4. To determine body-structural morphology oriented toward gaining a better understanding of the growth process.
- 5. To determine the usefulness of schlerochronology techniques to assess age and growth of <u>P</u>. <u>caurinus</u>:  $H_0$ : internal growth banding structures are more accurate than external growth criteria for aging scallops.
- 6. To determine whether structural characteristics of the shell and ligament can be used as a reliable basis for age determination:  $H_0$ : growth banding of the shell is correlated with growth marks in the ligament.
- 7. To determine if differences in growth patterns of <u>P</u>. <u>caurinus</u> concentrations in Oregon waters can be used for stock differentiation.
- 8. To characterize the 1981-86 Oregon scallop fishery with regard to its development, geographical locations, commercial catch and effort statistics, vessel descriptions, gear types, and fishing methods.

#### LITERATURE REVIEW

#### Oregon Coast Environment

The Pacific Northwest coastal waters, the environment of  $\underline{P}$ . <u>caurinus</u>, have been characterized as an extremely dynamic oceanographic system, in which the physical and chemical properties fluctuate seasonally, weekly, and even daily due to the action of winds, currents, and biological, biochemical, and chemical processes (Atlas et al. 1977). A general description of this system is presented in the following paragraphs as general background information which will be utilized and discussed later in assessing the growth patterns of  $\underline{P}$ . <u>caurinus</u> at the different locations studied.

#### <u>Circulation.</u>

Circulation of shelf waters is influenced by the winds. Winds along the Oregon coast are non-seasonal, although southwesterly winds prevail during the winter from October through March, and northwesterly winds prevail during the summer from May through September (Petersen 1980). Currents usually are almost near parallel to the local isobath with an alongshore component, and are also highly variable in direction and speed. This variability is correlated with fluctuations in the alongshore component of the wind and in the sea level (Huyer 1977). The alongshore component of the current seems to present a significant seasonal variation generally being southward during spring and summer, and northward during fall and winter (Fig. 1C) (Huyer 1977). Specifically, there is a cycle that can be characterized by northward currents at all depths in winter with little or no shear; southward currents at all depths in spring with strong vertical shear in the



Figure 1. Oceanographic characteristics off the Oregon coast: A) and B) wind; C) currents; D) sea level; and E) temperature.

lower half of the water column; and southward surface currents over northward undercurrents in summer, with a weak vertical shear (Huyer 1977). Mean circulation velocity values are estimated to be around 8-10 cm/sec, but extreme currents at depths greater than 20 m have been measured around 50 cm/sec in summer and around 100 cm/sec in winter (Huyer 1977).

The seasonal prevailing wind (Fig. 1A, 1B) also affects the system in the onshore-offshore-bottom surface direction; thus, northerly winds in summer cause the warm surface water to be driven offshore and be replaced by cool water from depth called, "upwelling". Southerly winds produce the opposite effect when warm offshore surface water is brought onshore creating, "downwelling". This phenomenon, plus the influence of the Columbia River plume (with its relatively warm, low salinity waters) oriented northward in winter and southward in summer, make this particular environment quite different from a typical northern temperate sea (Huyer 1977).

#### <u>Temperature</u>

Changes in water temperatures follow quite different patterns according to depth. Thus, surface temperatures vary from about  $10^{\circ}$  C in late spring, to about  $14^{\circ}$  C in early summer, decreasing in summer due to the upwelling process to about  $10^{\circ}$  C, increasing again in early fall to about  $15^{\circ}$  C, and returning later to the  $10^{\circ}$  C winter temperature. At depths where scallops live on the bottom, temperatures oscillate from  $10^{\circ}$  C in winter to a low of  $6.5^{\circ}$  C during summer. Thus, temperature at that depth is highest in winter and lowest in summer (Fig. 1E) (Huyer 1977).

#### <u>Salinity</u>

Salinity also shows different patterns at the surface than at the bottom. Surface salinity decreases in spring to about 31.6 %, from its winter value of about 32.5 %, and increases to about 33 %, in summer. At the bottom, salinity increases from about 32.8 %, in winter to about 33.8 %, in summer.

Water mass characteristics given by temperature-salinity (TS) diagrams, show a seasonal pattern, too. In winter during the northward advection over the continental shelf, the halocline temperatures are warmer due to the presence of water of southern origin; in summer, during the southward advection, the water shows strong subarctic characteristics with a minimum temperature at the top of the halocline (Huyer 1977).

#### <u>Density</u>

Sea water density is a function of temperature and salinity and it is described in terms of Sigma-t (the specific gravity anomaly multiplied by one thousand); it is inversely correlated with temperature and directly correlated with salinity.

Stratification varies in response to wind fluctuations, and patterns of stratification vary with time of the year. In winter, significant density changes occur down to 100 m or more; thus, the surface mixed layer often exceeds 50 m in depth. During the summer, density changes occur in the upper 20 m in a coastal zone of 10-15 km wide, and during this period the surface mixed layer seldom exceeds 10 m. As a general pattern, Sigma-t values are 25.0 in winter and summer, and approximately 23.0 during spring and fall (Huyer 1977).

#### <u>Waves</u>

The waves of Oregon coastal waters are much higher in winter, with significant wave height values up to 5 m; in summer, significant waves height values are always less than 2.5 m (Huyer 1977).

#### <u>Turbidity</u>.

Ocean turbidity is due to material in suspension in the water column. This can be of organic origin, usually chlorophyll, and of inorganic origin from river run-off and wave action in the surf zone. The depth of the euphotic zone, with at least 1% of the light intensity surface value, has been determined for a location off Newport to oscillate between 30 and 60 m through the year (Huyer 1977).

#### <u>Chemical characteristics</u>.

Chemical characteristics of the coastal waters of Oregon are influenced mainly by three factors: the Columbia River plume, the upwelling, and the intense biological activity, with the largest change in chemical properties occurring in summer (Atlas et al. 1977). The Columbia River introduces water of low salinity, moderate nitrogen, comparable phosphate, and high silicate into the Northeast Pacific Ocean. The Columbia River plume effect on Oregon waters is confined to shallow areas during the summer time, having little effect during the winter (Atlas et al. 1977).

#### <u>Oxyqen</u>.

Oxygen percent saturation values vary according to location and season. Surface waters influenced by the Columbia River plume are over 100% saturated during spring, summer, and fall. Some locations on the central Oregon coast (i.e., Yaquina Bay) exhibit values of about 40% saturation in summer and <75% saturation during the fall (Atlas et al. 1977). The O<sub>2</sub> maxima for December to April are about 10 m below the surface, where values of about 6.7 ml/l in January increase by photosynthetic activity to 7.2 ml/l in July (Atlas et al. 1977).

#### Productivity.

Seasonal upwelling is a common feature in Oregon coastal waters. Thus, the typical mid-latitude cycle of primary productivity in the ocean with its low production in winter and summer, large production peak in spring, and a small peak in fall is not accomplished in the same manner here.

Primary production in Oregon waters is related to the interaction of daily radiation and degree of upwelling in summer, and it is a function of photic depth and daily usable radiation through the year (Small, et al. 1972). The winter phytoplankton community is well adapted to low light intensity, showing higher daily chlorophyllspecific production at comparable light intensities than spring phytoplankton communities, and on a non-chlorophyll basis, winter and spring production rates are relatively similar at given light levels (Small 1972).

Upwelling induced chemical changes occur in a more pronounced fashion in coastal waters (approx. 13 km offshore) and in the surface layer (0-20 m). During the upwelling process, Columbia River water disappears and is replaced by inshore waters at the same time that inshore waters are replenished by cool waters. These upwelled waters have low  $O_2$ , high nutrients, high alkalinity, low pH, and high PCO<sub>2</sub> (Atlas 1973).

#### <u>Oregon Scallop Research</u>

Before 1960, a few attempts were made to harvest the weathervane scallop resource, even though the presence of scallops off the Oregon coast had been known for many years through the reports from commercial fishermen.

During the 1960's, two exploratory surveys (1963, 1967) were made by the Bureau of Commercial Fisheries to delineate concentrations of scallops along the Oregon coast (Ronholt and Hitz 1968). The 1963 survey spent seven weeks exploring the grounds from Cape Arago to Heceta Head, from Alsea Bay to Yaquina Head, and from Cape Falcon to the Columbia River at depths from 52 to 120 m (Fig. 2). The 1967 three-week cruise covered areas between Cape Falcon and Cascade Head and just north of the Columbia River, plus previous 1963 surveyed areas off Tillamook Head (Fig. 2) (Ronholt and Hitz 1968). The largest concentrations of scallops detected came from hauls along the 74-101 m depth contours, and from areas between Cape Falcon and Tillamook Head (1963), and off Sand lake (1967). In both surveys, a 2.4-m New Bedford-type, scallop dredge was used.

A complete lack of studies occurred between these early surveys and 1981, the date in which the scallop fishery explosively began. Because of this lack of information the Oregon Department of Fish and Wildlife (ODFW) quickly began placing log books on all scallop fishing vessels, sent personnel to observe fishing operations and to obtain biological samples, and later performed two new exploratory and research cruises, one in November, 1981, and the other in August, 1982.

In 1981, the cooperative research cruise on board the National Marine Fisheries Service vessel R/V Chapman (10/19-11/14) covered two



Figure 2. The areas surveyed for scallops off Oregon coast in 1963 and 1967. (After Ronholt and Hitz 1968).

areas, one west of Coos Bay and one west of Tillamook Head (Fig. 3A) (Starr and McRae 1983). A 2.5-m wide New Bedford scallop dredge without rock chains was used in two transects perpendicular to the depth contours in both areas. This survey was designed to gather information about those aspects of the scallop's population and life history which were needed to develop a management plan, and to compare scallop stocks in selected areas.

In 1982, the ODFW chartered the F/W Granada to survey the area off Tillamook Head, Cape Kiwanda, and Yaquina Head (Fig. 3B) (Starr and McRae 1983). A 3.7-m wide New Bedford dredge outfitted with tickler chains was used to try to test methods for catching juvenile scallops. Since 1982, no other field studies of the Oregon scallop populations have been conducted.

#### Life History

#### <u>Taxonomy</u>

The weathervane scallop is a benthic, marine bivalve, belonging to the family Pectinidae. According to modern taxonomists, and following Barnes (1980), the higher classification is as follows:

Phylum Mollusca Class Bivalvia Subclass Pteriomorphia Order Mytiloida Family Pectinidae, Rafinesque, 1815

It is important to point out that this classification follows that in the Treatise of Invertebrate Paleontology which has been widely adopted by malacologists, including Abbott (1974). The old subclasses of bivalvia (Protobranchia, Lamelibranchia and Septibranchia) are still



Figure 3. Location of scallop study areas: A) R/V Chapman cruise, Nov. 1981; B) F/V Granada cruise, Aug. 1982. (After Starr and McRae 1983).

used in many text book discussions due to simplicity and easy reference (Barnes 1980).

The Pectinidae are a large and heterogeneous family of marine pelecypod molluscs, worldwide in distribution, having a known geological history dating from the Triassic period (several thousands species described as fossils), and recorded living at a maximum depth of 4,550 m (Grau 1959). This family at the present time is represented by about 350 species, occurring most abundantly in shallow, warm waters like those off Japan, the East Indies and Caribbean regions (Hertlein 1969).

Genus Pecten Muller, 1776:

Shell equilateral or nearly so; right valve moderately convex and left flattish or slightly inflated; auricles rather large and nearly equal, convex on right valve and convex on left; byssal notch small, hinge with cardinal crura extending from each side of ligament pit, radial ribs well developed, usually flat topped, radial ridges often on/or between ribs, also fine concentric lamellae, usually more prominent on left valve (Grau 1959; Hertlein 1969).

Subgenus <u>Patinopecten</u> Dall, 1898:

The holotype came from the type locality of Port Townsend, Admiralty Inlet, Puget Sound, Washington and it is in the Museum of Comparative Zoology, Harvard College (Grau 1959).

Species <u>Pecten</u> (<u>Patinopecten</u>) <u>caurinus</u> Gould, 1850:

<u>P. caurinus</u> was referred to as a closely related species to <u>Patinopecten Yessoensis</u> Jay (Mottet 1979), and Grau (1959) mentioned <u>Pecten caurinus Vessoensis</u> as a Japanese subspecies of <u>Pecten caurinus</u> Masuda (1963), in a revision of the Japanese subspecies of <u>Patinopecten</u>, said that almost all species of the so called <u>Patinopecten</u> of Japan can be distinguished from the true scallops of North America by the lack of auricular crurae with conspicuous distal denticle, rounded radial ribs in the right valve, very shallow byssal notch and large auricles. In his paper he proposed a new genus, <u>Mizuhopecten Mosuda</u> n. gen, including the older <u>P. yessoensis</u> as <u>Mizuhopecten vessoensis</u> (Jay 1857).

The four common scallops found on the West coast of North America are, <u>Chlamys rubida</u> (Hinds 1845) the pink scallop, <u>C</u>. <u>hastata hericia</u> (Gould, 1850) the spiny scallop, <u>Hinnites multirugosus</u> (Gale) the rock scallop, and <u>Pecten</u> (<u>Patinopecten</u>) <u>caurinus</u> the weathervane scallop. The later is the largest scallop in the world and can exceed 288 mm in length and 198 mm in height (Grau 1959).

#### <u>Reproduction</u>.

Pecten (Patinopecten) caurinus is a dioecious animal. The gametes are produced in follicles of the gonad epithelium and when mature are spawned into the mantle cavity and discharged into the sea by clapping movement of the valves. Spawning takes place from mid January to late June (Robinson and Breese 1984) on the continental shelf in scallop beds and fertilization takes place after the sperm are activated by contact with sea water (Mottet 1979). Fertilized eggs settle to bottom in deeper depths (Fig. 4) and start embryonic development. A few days later, after the ciliated blastula and gastrula stages, a planktonic trochophora stage is produced (Fig. 5 b, c) while drifting with tides and currents near surface waters (Fig. 4). Then a metamorphosis occurs producing a larvae with a ciliated velum in which the body is enclosed in two straight-hinge valves called



Figure 4. Weathervane scallop life cycle. Modified from Kaydak (1972). (After AEIDC 1975).





the veliger or D-stage larvae (Fig. 5d). During the late veliger phase, the velum becomes reduced and the umbos are formed, the foot develops and the larva use it to crawl on the ocean bottom; after a few days a dissoconch stage with byssal threads is produced (Fig. 5f, g, h) by which the larvae can attach to the hard substrates on the bottom. The dissoconch metamorphoses to give a post-larva with radiating ribs known as the plicated stage (Fig 5i). This is the last larval stage and after a few months, the transparent shell of the juvenile becomes pigmented and they assume the adult physonomy (Mottet 1979). <u>P</u>. <u>caurinus</u> reach maturity after three years (Hennick 1970).

#### <u>Shell morphology</u>

Three distinct parts characterize a bivalve shell; two calcareous valves, laterally compressed, and the conchiolinic ligament that join the two valves together by the dorsal region (Fig. 6A). The bivalve shell structure is composed of a dark, horny (organic conchiolin) periostracum, covering two calcareous layers. The middle layer, or prismatic layer, of calcium carbonate has crystals arranged perpendicular to the surface of the shell, and the innermost nacreous layer has sheets of calcium carbonate laid down parallel to the surface of the shell (Fig. 7) (Johnson et al. 1977).

The periostracum and prismatic layer are secreted by the edge of the mantle, while the nacreous layer is secreted by the entire outer surface of the mantle. As a whole, the shell grows by the accretion of calcium carbonate and conchiolin around the valve margins in a very dynamic way (Rhoads and Lutz 1980). The calcium carbonate in the shell can be either aragonite, calcite or both, and in modern molluscs



Figure 6. Orientation and morphology of scallop shell: A) lateral view; B) exterior of opened scallop; C) ventral view. (After Mottet 1979).



Figure 7. Diagrammatic cross section of a bivalve shell and the underlying mantle. (After Johnson et al. 1977).

the former is generally restricted to calcified portions of ligaments and at sites of shell-muscle attachment (myostracal layers) (Rhoads and Lutz 1980). When these compounds occur in the same shell, they form clearly defined, separated layers.

A common feature on bivalve shells is the presence of defined concentric rings or bands which are associated with the process of growth. Lutz and Rhoads (1977) have suggested that these growth surfaces or bands on molluscan shells are a reflection of alternative periods of aerobic shell deposition and anaerobic shell dissolution, with the later accounting for the growth line formation. These growth patterns are thus generated by physiological responses of the animal to the changing physico-chemical variables of the environment (Rhoads and Lutz 1980).

#### <u>The Ligament</u>

The ligament is a horny structure which holds the dorsal margins of the valves together. In Pectinacea, the valves are joined together dorsally along a hinge line and the ligament operates in opposition to the adductor muscle thus causing the valves to open when the adductor muscle relaxes (Fig. 8A) (Trueman 1953).

The ligament consists of two main layers secreted by the mantle (Fig. 8B), the outer and inner layers, and represent local modifications of the same two layers of the shell (Florkin and Scheer 1972). The outer layer, covered by a thin layer of periostracum, is laminated and composed of tanned proteins (Trueman 1953), and contains no calcium carbonate; its main function appears to be the prevention of the rotation of the valves, one about the other, and operates as a



Figure 8. Umbonal region of <u>Pectinids</u>: A) interior of the dorsal region of the right valve with the ligament cut in longitudinal section; B) transverse section through the center showing the structure of the central and lateral regions. (After Trueman 1953).

rigid hinge structure (Trueman 1953). The inner layer, or resilium, is housed in a depression, the resilifer, and it is divided in three parts: a central fibrous of rubbery-like non-calcareous protein, and two lateral mineralized aragonitic layers (Merril 1961, Floorkin and Scheer 1972).

#### Biographical Variations

Biogeographical variations in age and growth have been suggested for this species in Eastern Pacific waters; thus, Haynes (1970) studying the Alaskan resource showed that scallops from the Kodiak Island area grew faster and to a larger size than scallops from other areas of the Gulf of Alaska. Scallops from Southeast Alaska grew much slower and did not reach as large sizes as scallops from the Kodiak Island area. Scallops living in areas between Southeastern Alaska and Kodiak Island had intermediate growth rates. The same phenomenon was observed by Haynes and Hitz (1971) on the <u>P</u>. <u>caurinus</u> populations from the Strait of Georgia and outer Washington coast. Thus, scallops from the Strait of Georgia grew faster and to a much larger size than those from the outer coast; for any given age they were about 1.5 times as large. These authors concluded, by comparison, that <u>P</u>. <u>caurinus</u> from Kodiak Island are more like scallops from the Strait of Georgia than scallops from the outer coast. Between ages II and V, Kodjak scallops were slightly smaller than those from the Strait of Georgia, while older Kodiak scallops were slightly larger than those from the Strait of Georgia. In my study, possible depth and geographical variations in growth will be analyzed for scallops from Oregon waters.

#### <u>Oregon</u> <u>Scallop</u> <u>Fishery</u>

During the early developmental period of the Oregon scallop fishery, vessels of various sizes (6-m to >33-m) and types (mainly shrimp trawlers) were converted to scallop fishing. Scallops were harvested with various kind of gear, including modified beam and otter trawls, shrimp nets, traditional New Bedford type dredges, and several modified dredges (Starr and McRae 1983).

Prices above \$9.00/kg of scallop meat were paid at the time. This caused the fishery to spread both to Washington waters where the catch was the first recorded since 1952 (Kaiser 1986), and to Northern California where 136 metric tons were landed (Carey and Ruff 1985). This fleet landed over 9,000 metric tons of scallop meats in 1981, of which over 7,000 metric tons came from Oregon beds. The ODFW divided these Oregon fishing grounds into eight statistical areas (Starr and McRae 1983) as shown in Table 1 and Appendix 3.

During the first year of the fishery, 43.9% of the catch came from the region between Cascade Head and the Columbia River. The other significant amount harvested (30.7%) came from the region between Cape Blanco and the Umpqua River (Table 1). The hauls were made at depths between 55 and 114 m. The main landing ports were Coos Bay, Astoria, and Newport where scallops were landed either as round weight or shucked meats (Starr and McRae 1983). The 1981 fishery peaked in June (above 800 metric tons), and thereafter landings steadily declined until October when levels well below 200 kilograms per month were reached.

| Area | Location                      | Landings |
|------|-------------------------------|----------|
| 19   | California border-Rogue River | ===      |
| 20   | Rogue River-Cape Blanco       | ===      |
| 21   | Cape Blanco-Cape Arago        | 336.2    |
| 22A  | Cape Arago-Umpqua River       | 2,009.7  |
| 22B  | Umpqua River-Cape Perpetua    | 1,506.1  |
| 24   | Cape Perpetua-Cascade Head    | 437.1    |
| 26   | Cascade Head-Cape Falcon      | 1,391.5  |
| 28   | Cape Falcon-Columbia River    | 1,965.4  |
|      | TOTAL                         | 7,646.1  |

Table 1. State statistical areas and expanded catch (tons) of the scallop fishery in 1981 (modified from Starr and McRae 1983).

.
### MATERIAL AND METHODS

Two sets of data obtained from the Oregon Department of Fish and Wildlife were used in my study. The first set corresponds to two cooperative research cruises carried out by personnel of the ODFW, the Oregon State University, and the National Marine Fisheries Service in 1981 and 1982, on board of the R/V Chapman and R/V Granada, respectively. These data were utilized in the age and growth studies which follow. The areas of Coos Bay, Tillamook Head, Cape Kiwanda, and Yaquina Head were sampled for scallops by these research cruises as described previously in the literature review. Additionally, a sample from Heceta Head (N=66) captured by the R/V Tatiana in October, 1983, was analyzed.

# <u>Shell Morphology: Age and Growth</u>

Age determinations on a timely basis are needed for evaluations of age composition in assessment studies of populations. In molluscs, this process has evolved from a relatively simple visual examination of external marks on the shell to rather complex but accurate microstructural examinations. The enumeration of the concentric annual growth rings formed on the valves sometimes can produce misinterpretations because of the inability to distinguish true periodic structures from random disturbance marks; extreme crowding of annuli and external growth structures at the edge of old shells can also lead to incorrect estimates of age.

The right valve (or bottom valve in <u>Pecten</u> <u>caurinus</u>), was used for the analysis of shell structure and for age and growth determinations. This valve offers better characteristics in terms of cleanliness and preservation of growth features because it is less affected by parasites than the left value.  $\cdot$ 

In this study both external and internal schlerochronology techniques were used in aging scallop shells. Techniques for external observation included: 1. The determination and counting of growth concentric rings from the umbonal region to the ventral shell margin (Fig. 9a). These concentric marks were assumed to be formed annually following the procedures of Stevenson and Dickie (1954), Haynes and Hitz (1971), and Starr and McRae (1983). 2. Determination and counting of depression marks on the auriculae (Fig. 9b). 3. Change in tactile texture of the internal face of the shell (Fig. 9c). 4. Observation of the growth marks through transmitted light (Fig. 9d). 5. Changes in coloration on the shell. 6. X-ray photography.

Internal schlerochronology techniques require the preparation of acetate peels from which growth can be determined (Steward and Taylor 1965; Ropes 1985). In this procedure, the shell was cut from the ventral edge to the umbo along the height axis with a diamond blade (Fig. 10). The sectional surfaces were ground and polished using wettable silicon carbide paper and a cloth-covered disc polisher coated with cerium oxide. Polished surfaces were etched with 1% formic acid for 30 seconds and dried completely. Clear acetate peels (0.076 mm thick) were carefully melted on each etched surface with acetone and air dried for at least one hour. The peels were then removed from the shell and stored between glass microscope slides for subsequent analysis (Steward and Taylor 1968; Ropes 1985) (Fig. 10B). The optical analysis was performed using stereomicroscopy with a magnification of 20x and 50x.



Figure 9. External features and techniques used in aging scallop shells: a) concentric rings (age 2) on external surface; b) depressions on auriculae; c) change in texture on internal face of shell; d) transmitted light applied to the shell.



Figure 10. Different cuts performed on the shell: A) on the axis: a) height axis; b) width axis; c) and d) diagonal axis; B) acetate peel technique: a) peeling off; b) acetate peel for microscopic observation. Several cuts were also made in different parts of the shell as indicated in Fig. 10 A. The acetate peel technique was also applied to the shell ligament. In this procedure the dried ligament was removed from the resilifer and cut, polished, and etched as previously described.

# Fitting a Growth Model:

For the scallops in each sample, the mean shell height at every annulus was computed (Appendix 1). Because a sigmoid growth pattern has been demonstrated for scallops (Greenough and Haynes 1974, the Von Bertalanffy growth model was used according to:

 $lt = l_{\infty} [1 - e^{-k(t - t_0)}]$ 

where lt is the length at age t, and  $l_{\infty}$ , k and  $t_0$  are parameters to be estimated. Least-squares estimates of the three parameters were accomplished by iterative methods using the Fishparm computer program (Michael H. Prager, National Marine Fisheries Service. Southwest Fisheries Center, La Jolla, California). In addition, the BMDP statistical package was used to run a non linear regression betweem height and age as a way to determine the correlation matrix of the parameters, which is not available in the Fishparm output. These values are necessary to run the Hotelling's T<sup>2</sup> test (see below).

To determine if biogeographical differences in growth occur between localities and depth, the fitted growth curves for each locality were plotted and compared. The variability was determined both graphically and using the Hotelling's T<sup>2</sup> test described by Bernard (1981) to compare the growth regression lines. This test was performed using a Lotus 1-2-3 template kindly provided by Dr. David Bernard. The  $T^2$  values were transformed logarithmically and used to plot dissimilarity dendrograms by using the unweighted group average fusion technique (Sneath and Sokal 1973).

The second set of data provided by the ODFW came from the original logbooks of the commercial fishermen who participated in the fishery from 1981 to 1986. A standard logbook sheet includes the date of the trip, number of drags, the time the gear was set and retrieved, the depth of the drag in fathoms, the LORAN reading in microseconds at these times, and the estimated weight or bushels of scallops caught.

Using a minutes to hours conversion table, the hours fished per drag were calculated; the depth in fathoms was converted to meters by multiplying the values by 1.84. From the LORAN readings, the statistical area of each drag was estimated. The hauls for each area were converted to pounds round weight by multiplying the number of bushels of scallops times 55 pounds (Rick Starr, ODFW, Newport, Or., personal communication). The catch per haul in pounds round weight was converted to metric tons by multiplying by 0.00045359.

The ODFW uses official catch records for each boat to adjust the estimated catch (hauls) to actual catch reported; thus, the adjusted catch from logbooks for each area was added to get a total catch for the state. By dividing this value by the actual catch for the state (official landing records), a ratio R was obtained and this value was used to calculate the actual catch for each state area according to:

Actual catch = 
$$\frac{\log b \log k \operatorname{catch} for state area}{R}$$

These values constitute the expanded values used in the present study and also are the values that appear in the national fisheries statistics.

Expanded hours fished were calculated according to:

Ac. hrs fished = <u>hrs fished logbook \_ actual landings</u> landings from logbooks

The catch per unit of effort (CPUE) was calculated according to:

$$CPUE = \frac{reported catch}{hrs. fished}$$

Also an analysis of the landings by port and landings per month was conducted for every year of the fishery.

#### RESULTS

### Shell Characteristics.

# External Aspects:

The morphology of the shells examined in this study is in agreement with the taxonomic characteristics given by Gould (1850) for <u>Pecten (Patinopecten) caurinus</u>. The most conspicuous external features observed are the ribs which range in number from 17 to 23 with an average of 18 ribs per shell. Also prominent are the fine concentric circuli that constitute annual growth marks (annuli) when they crowd together during periods of slower growth.

In Figure 11, both circuli and annuli are evident in the auriculae and in the posterior region of the shell. The thin, brown, external periostracum is also evident. These features are easily observed on the right valves, but are usually obscured on the left valves by heavy infestation of the driller worm <u>Polydora websteri</u> (Annelida; Polychaeta) (Fig. 12A, B). In extreme cases of infestation, shells show drastic erosion of the margins and the internal face of the shell is also affected by invasion of the parasite (Fig 13A). Figure 13B shows how the worm invasion impairs the normal, smooth inner face of the scallop shell, while Figure 14A shows a portion of an infested shell through transmited light where the <u>Polydora</u> are easily seen. The x-ray picture in Figure 14B clearly shows the internal damage caused by the <u>Polydora</u> infestation to the scallop shell.



Figure 11. External view of P. caurinus showing annual growth marks.



Figure 12. External view of scallop right valves: A) comparison between infested and non-infested shells; B) detail of infestation.



Figure 13. Internal view of scallop right valves: A) comparision between infested and non-infested shells; B) detail of infestation.



Figure 14. Details of infested shells: A) through transmitted light, B) x-ray photograph.

#### <u>Internal</u> <u>Aspects</u>:

The three common layers that form a typical bivalve shell are present in <u>P</u>. <u>caurinus</u> and can be visualized in a cross-section cut made perpendicular to the shell (Fig. 15). The periostracum is the thin outer colored layer that overlays the prismatic (middle) layer. The prismatic layer consists of an arrangement of crystals that form sublayers oriented parallel to the boundary of the shell (Fig. 15). These layers are composed of finer elements which diverge anteriorly in sublayers in some shells and posteriorly in others in an orderly alternating way. These sublayers gradually increase in number from one (in the umbonal region) to five at the level of the first external growth annulus; at the same time they travel down from the outer surface to the inner part of the shell. The portion of the middle layer on top of these sublayers is filled with a more foliated kind of crystal arrangement, which gives the top part of the shell a more porous appearance.

The inner or nacreous layer is built up of irregular parallel leaves which appear as a disorderly foliated structure (Fig. 15). This layer is thickest at the umbo level and becomes thinner when approaching the first external growth annulus. From this area, the nacreous layer is homogeneously thin until it reaches the posterior border.

An additional layer is located between the prismatic layer and the nacreous layer, and represents a distinctive feature between the umbonal region and the area of the first growth annulus. This layer runs from the upper umbonal region, down and parallel to the prismatic sublayers, with sharp and distinct boundaries (Fig.15). This layer



Figure 15. Internal structure of <u>P. caurinus</u> shell as viewed in an acetate peel. A) Periostracum, B) prismatic layer, C) myostracum, D) nacreous layer. fractures on a vertical plane with respect to the shell surface, and the arrangement of the crystals appears to be relatively more homogeneous when viewed under the light microscope (Fig. 16).

Internal growth marks which could be clearly associated with periodic growth processes were not found in <u>P</u>. <u>caurinus</u> shells in any of the cuts made.

### <u>The Ligament</u>.

The outer and inner ligament described by Trueman (1953) were present in <u>P</u>. <u>caurinus</u>, and their characteristics are in agreement with Trueman's description.

The two lateral mineralized aragonitic layers of the inner ligament show clearly defined growth marks as seen in Figure 17A. These marks appear as dark bands formed by the confluence of circuli during periods of slow growth and they extend deeply into the lateral layer as shown in Fig. 17B.

Table 2 shows the counts of annuli found in both the external shell surface and the lateral inner ligament layer of random subsample of Cape Kiwanda scallops. A correlation coefficient (r value) of .99 suggests a strong relationship between the counts under study.

# <u>Size Characteristics of Scallops</u>.

The size (height) of each scallop in 5 mm intervals is presented in Table 3 for each collection analyzed in this study. The frequency of each size class in a collection was converted to a percentage of the total number and plotted in Figures 18 to 25. These figures show graphically much of the information contained in Table 4.



Figure 16. Detail of the myostracal layer observed on an acetate peel under the light microscope.



Figure 17. P. caurinus ligament. A) Frontal view of the lateral layer, B) lateral view of the ligament.

| Shell     | Number | of Annuli |      |
|-----------|--------|-----------|------|
| Number    | Shell  | Ligament  | r    |
| 99        | 11     | 11        | 0.99 |
| 109       | 8      | 8         |      |
| 64        | 8      | 8         |      |
| 88        | 10     | 10        |      |
| 76        | 8      | 8         |      |
| 108       | 8      | 8         |      |
| 32        | 11     | 11        |      |
| 113       | 11     | 10        |      |
| 70        | 10     | 10        |      |
| 63        | 10     | 10        |      |
| 22        | 12     | 12        |      |
| 7         | 8      | 7         |      |
| 100       | 11     | 11        |      |
| 24        | 8      | 8         |      |
| 54        | 8      | 8         |      |
| 136       | 3      | 3         |      |
| 83        | 10     | 10        |      |
| 119       | 9      | 9         |      |
| 131       | 9      | 8         |      |
| 134       | 9      | 9         |      |
| 48        | 11     | 11        |      |
| 132       | 8      | 8         |      |
| 28        | 6      | 6         |      |
| 15        | 4      | 4         |      |
| 37        | 12     | 12        |      |
| 89        | /      | 7         |      |
| 55        | 9      | 9         |      |
| 120       | 8      | 8         |      |
| 14        | 12     | 12        |      |
| 23        | 9      | 9         |      |
| 51        |        | 11        |      |
| 90        | 11     | 11        |      |
| 12        | 9      | 9         |      |
| 120<br>61 | 0<br>6 | ð<br>c    |      |
| 01<br>27  | 0      | D         |      |
| 61<br>A A | 0<br>7 | 3         |      |
| 17<br>06  | 3      | 9<br>10   |      |
| 102       | 10     | 10        |      |
| 20        | 0<br>Q | 0         |      |

| Table | 2. | Number of annuli at the shell and ligament, and the       |
|-------|----|-----------------------------------------------------------|
|       | •  | correlation coefficient between them. Cape Kiwanda, 1982. |

| TH82                                                                          |                                                        | TH82                                                                                  | TH                           | 92                                      | 1                                | 196  | T   | 'H101 | Tł  | ALL  |     | YQ   |    | HH   |    | СВ   | 1<br>Loc | otal<br>alities |
|-------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|-----------------------------------------|----------------------------------|------|-----|-------|-----|------|-----|------|----|------|----|------|----------|-----------------|
| Height                                                                        | N                                                      | *                                                                                     | N                            | *                                       | N                                | *    | N   | *     | N   | *    | N   | *    | N  | *    | N  | *    | N        | *               |
| 75                                                                            |                                                        |                                                                                       |                              |                                         |                                  |      |     |       |     |      | 5   | 3.3  |    |      |    |      | 5        | 0.5             |
| 80                                                                            |                                                        |                                                                                       |                              |                                         |                                  |      |     |       |     |      | 6   | 3.9  |    |      |    |      | 6        | 0.7             |
| 85                                                                            |                                                        |                                                                                       |                              |                                         |                                  |      |     |       |     |      | 12  | 7.8  |    |      |    |      | 13       | 1.4             |
| 90                                                                            |                                                        |                                                                                       |                              |                                         | 1                                | 1.2  |     |       | 1   | 0.2  | 23  | 15.0 |    |      |    |      | 25       | 2.7             |
| 95                                                                            |                                                        |                                                                                       | 1                            | 0.6                                     | 3                                | 3.5  |     |       | 4   | 0.8  | 21  | 13.7 |    |      |    |      | 26       | 2.8             |
| 100                                                                           | 4                                                      | 2.6                                                                                   | 8                            | 4.8                                     | 6                                | 7.1  | 8   | 7.8   | 26  | 5.1  | 45  | 29.4 |    |      | 1  | 1.7  | 72       | 7.8             |
| 105                                                                           | 22                                                     | 14.1                                                                                  | 29                           | 17.3                                    | 14                               | 16.4 | 27  | 26.2  | 92  | 18.0 | 30  | 19.6 | 1  | 1.5  | 1  | 1.7  | 124      | 13.4            |
| 110                                                                           | 36                                                     | 23.1                                                                                  | 53                           | 31.7                                    | 30                               | 35.2 | 45  | 43.6  | 164 | 32.0 | 9   | 5.8  | 5  | 7.6  | 6  | 10.3 | 184      | 19.9            |
| 115                                                                           | 45                                                     | 28.8                                                                                  | 55                           | 32.9                                    | 22                               | 25.8 | 19  | 18.4  | 141 | 27.5 | 2   | 1.3  | 25 | 37.8 | 7  | 12.0 | 177      | 19.2            |
| 120                                                                           | 29                                                     | 18.6                                                                                  | 15                           | 9.0                                     | 5                                | 5.9  | 4   | 3.9   | 48  | 9.3  |     |      | 20 | 30.3 | 15 | 25.8 | 93       | 10.1            |
| 125                                                                           | 16                                                     | 10.3                                                                                  | 2                            | 1.2                                     | 3                                | 3.5  |     |       | 23  | 4.5  |     |      | 9  | 13.6 | 11 | 18.9 | 66       | 7.2             |
| 130                                                                           | 3                                                      | 2.0                                                                                   | 3                            | 1.8                                     | 1                                | 1.2  |     |       | 9   | 1.7  |     |      | 6  | 9.1  | 10 | 17.2 | 69       | 7.5             |
| 135                                                                           | 1                                                      | 0.7                                                                                   | 1                            | 0.6                                     |                                  |      |     |       | 3   | 0.6  |     |      |    |      | 5  | 8.6  | 40       | 4.3             |
| 140                                                                           |                                                        |                                                                                       |                              |                                         |                                  |      |     |       |     | •    |     |      |    |      | _  |      | 11       | 1.2             |
| 145                                                                           |                                                        |                                                                                       |                              |                                         |                                  |      |     |       |     |      |     |      |    |      | 1  | 1.7  | 11       | 1.2             |
| 150                                                                           |                                                        |                                                                                       |                              |                                         |                                  |      |     |       |     |      |     |      |    | •    | -  |      |          |                 |
| 155                                                                           |                                                        |                                                                                       |                              |                                         |                                  |      | •   |       |     |      |     |      |    |      | 1  | 17   | 1        | 0 1             |
|                                                                               | 156                                                    | 100                                                                                   | 167                          | 100                                     | 85                               | 100  | 103 | 100   | 511 | 100  | 153 | 100  | 66 | 100  | 58 | 100  | 923      | 100             |
| <sup>1</sup> TH 45<br>TH 50<br>TH 52<br>TH 55<br>CK =<br>YQ =<br>HH =<br>CB = | = T;<br>= T;<br>= T;<br>Cape<br>Yaqu;<br>Hece;<br>Coos | illamook<br>illamook<br>illamook<br>illamook<br>Kiwanda<br>ina Head<br>ba Head<br>Bay | Head<br>Head<br>Head<br>Head | ,82 m d<br>,92 m d<br>,96 m d<br>,101 m | lepth<br>lepth<br>lepth<br>depth |      |     |       |     | ·    |     |      |    |      |    |      |          |                 |

| Table 3. | Shell height in 5 mm<br>coast, 1981-1983. <sup>1</sup> | intervals and | percent composition | of weathervane | scallops | ( <u>P. caurinus</u> ) | from the Oregon |
|----------|--------------------------------------------------------|---------------|---------------------|----------------|----------|------------------------|-----------------|
|----------|--------------------------------------------------------|---------------|---------------------|----------------|----------|------------------------|-----------------|

•



Figure 18. Scallop shell height distributions at different depths off Tillamook Head.



Figure 19. Scallop shell height distributions from five localities on the Oregon coast.



Figure 20. General scallop shell height distribution on the Oregon coast.



Figure 21. Scallop age distribution at the five studied localities.



Figure 22. Scallop year-class distribution on the five studied localities.



Figure 23. Number of ribs on scallop shells collected off Tillamook Head: A) 82 m; B) 92 m; C) 96 m; D) 101 m.



.

Figure 24. Number of ribs on scallop shells collected off: A) Yaquina Head; B) Heceta Head; C) Cape Kiwanda, D) Coos Bay.



Figure 25. Fitted scallop growth curves at different depths off Tillamook Head.

|     | 1   | H 82 | 1   | 192   |    | rH96  |     | 1101 |     | СК   |     | YQ   |    | HH   |    | СВ   | To<br>Loca<br> | otal<br>alities<br>— |
|-----|-----|------|-----|-------|----|-------|-----|------|-----|------|-----|------|----|------|----|------|----------------|----------------------|
| λge | N   | *    | N   | *     | N  | *     | ท   | *    | ท   | *    | N   | *    | ท  | ¥    | N  | ¥    | N              | ۲                    |
| 1   |     |      |     |       | _  |       |     |      |     |      |     |      |    |      |    |      |                |                      |
| 2   |     |      |     |       |    |       |     |      |     |      |     |      |    |      |    |      |                |                      |
| 3   |     |      |     |       | 1  | 1.2   |     |      | 1   | 0.7  |     |      |    |      |    |      | 2              | 0.2                  |
| 4   | 3   | 1.9  | Э   | 1.8   | 7  | 8.2   |     |      | 3   | 2.2  | 2   | 1.3  |    |      | 2  | 3.7  | 20             | 2.2                  |
| 5   | 37  | 23.7 | 19  | 11.4  | 9  | 10.6  |     |      |     |      | 19  | 12.4 | 1  | 1.5  | 7  | 12.1 | 92             | 10.0                 |
| 6   | 40  | 25.6 | 25  | 15.0  | 5  | 5.9   |     |      | 6   | 4.4  | 15  | 9.8  | 13 | 19.7 | 15 | 25.9 | 119            | 12.9                 |
| 7   | 7   | 4.5  | 25  | 15.0  | 17 | 20.0  | 10  | 9.7  | 10  | 7.4  | 12  | 7.8  | 18 | 27.3 | 14 | 24.1 | 113            | 12.2                 |
| 8   | 16  | 10.3 | 36  | 21.6  | 33 | 38.8  | 36  | 35.0 | 27  | 20.0 | 34  | 22.2 | 11 | 16.7 | 15 | 25.9 | 208            | 22.5                 |
| 9   | 32  | 20.5 | 40  | 24.0  | 10 | 11.8  | 46  | 44.7 | 40  | 29.5 | 49  | 32.0 | 2  | 3.0  | 5  | 8.6  | 224            | 24.3                 |
| 10  | 17  | 10.9 | 15  | 9.0   | 2  | 2.4   | 9   | 8.7  | 22  | 16.3 | 21  | 13.7 | 3  | 4.5  |    |      | 89             | 9.7                  |
| 11  | 4   | 2.6  | 3   | 1.8   | 1  | 1.2   | 2   | 1.9  | 18  | 13.3 | 1   | 0.7  | 3  | 4.5  |    |      | 32             | 3.5                  |
| 12  |     |      | 1   | 0.6   |    |       |     |      | 6   | 4.4  |     |      | 8  | 12.1 |    |      | 15             | 1.6                  |
| 13  |     |      |     |       |    |       |     |      | 1   | 0.7  |     |      | 3  | 4.5  |    |      | 4              | 0.4                  |
| 14  |     |      |     |       |    |       |     |      | 1   | 0.7  |     |      | 2  | 3.0  |    |      | 3              | 0.3                  |
| 15  |     |      |     |       |    |       |     |      |     |      |     |      | 1  | 1.5  |    |      | 1              | 0.1                  |
| 16  |     |      |     |       |    |       | •   |      |     |      |     |      | 1  | 1.5  |    |      | 1              | 0.1                  |
|     | 156 | 100  | 167 | 100.2 | 85 | 100.1 | 103 | 100  | 135 | 99.6 | 153 | 99.9 | 66 | 99.8 | 58 | 100  | 923            | 100.0                |

Table 4. Age composition of the weathervane scallops (P. caurinus) from the Oregon coast, 1981-1983.

.

.

Tillamook Head, 96 m deptn TH 55 = Tillamook Head, 101 m depth CK = Cape Kiwanda YQ = Yaquina Head -

HH = Heceta Head

CB = Coos Bay

. .

.

All Tillamook samples are plotted in Figure 18, in which it is evident that scallops are generally smaller at deeper depths. Scallops taken in 1981 were smaller than those captured in 1982. The general pattern for the Tillamook scallops is they appear to be concentrated in the 101-105, 106-110, and 111-115 mm size interval, with a unimodal, bell-shape type of a curve for each collection. Collections from Coos Bay (1981), Yaquina Head, Cape Kiwanda (1982), and Heceta Head (1983), are plotted together with the Tillamook general curve in Figure 19. Scallops at Yaquina Head are smaller than the scallops from the other locations, with a main distribution from 71-75 to 111-115 mm height interval. Tillamook scallops are smaller than scallops from Coos Bay, Cape Kiwanda, and Heceta Head whose sizes range from 96-100 to 151-155 mm height interval (with a peak at 126-130 mm), and 101-105 to 126-130 mm (with a peak at 111-115 mm), respectively. The same trend of scallops concentrated in a few size classes is evident from these four locations, although in Coos Bay the trend is weakest.

Figure 20 is included to show the general scallop size distribution along the Oregon coast and the sizes that would be expected when using a traditional New Bedford dredge in sampling scallops.

### Age and Growth.

The scallop age distribution for the 1981 Chapman cruise and 1982 Granada cruise are tabulated in Table 4.

In 1981, the Tillamook area was represented by individuals 3 to 11 years old and dominated by the 1973 year-class (8 years old). Yearclasses from 1972 and 1974 were moderately represented, while yearclasses for 1970, 1971, 1975, 1976, 1977, and 1978 were poorly represented. The Coos Bay area showed individuals 4 to 9 years old with age-classes for 1973, 1974, and 1975 (8, 7, and 6 year-olds) dominating the distribution.

In 1982, a similar age structure was found at the Tillamook, Cape Kiwanda and Yaquina Head areas, with a clear dominance of the 1973 year-class; the 1974 age-class was also well represented in these three locations at similar percentage frequencies. Commonly, year-classes were not equally abundant in the same areas at different depths. Thus, the Tillamook Head collection at 82 m has a bimodal distribution of age with a main peak at 6 years old, a secondary one at 9 years old, and a low representation of the 1975 year-class (7 years old). At deeper depths, the 1973 year-class dominated the area. Size distributions ranged from 4 to 11 years old at 82 m, 4 to 12 years old at 92 m, and 7 to 11 years old at 101 m depth.

As a whole, the more common age-classes along the Oregon coast during the 1981-1983 sampling period were ages 6, 7, 8, and 9 with the later being dominant (Fig. 21). The most common year-classes were the 1972, 1973, 1974, 1975, and 1976, with 1973 being the most important at four of the five locations (Fig. 22).

The aging procedures described in this study were used to generate the data presented in Appendices 1 and 2. Appendix 1 contains the tables for each locality, date, and depth, and includes the shell identification number, shell height, sampling date, the height at each annulus, number of ribs per shell, age of the shell, and the cohort in which each belongs. Figures 23 to 24 were generated from Appendix 1 to analyze the number of ribs on the shells of the populations of Oregon coast scallops. Figure 23 shows the percent frequency distribution of the number of ribs on shells from the Tillamook area. The number of ribs varied from 16 to 23 at this location and are distributed in a bellshaped curve having a peak at 18 ribs per shell for all depths except 96 m (Fig. 23C) in which the peak was located at 20 ribs per shell.

Yaquina Head (Fig. 24A) and Heceta Head (Fig. 24B) scallops show a similar bell-shape distribution with a peak at 18 ribs per shell, while at Cape Kiwanda this peak is found at 19 ribs per shell (Fig. 24C). Coos Bay scallops have a more even distribution of rib numbers with a good representation for 18, 19, 20 and 21 ribs per shell (Fig. 24D).

The average number of ribs per shell at different localities is presented in Table 5 which also includes the average size of scallops and the correlation found between the height of the shell and the number of ribs.

There is no correlation between the height of the shell and the number of ribs per shell in Oregon scallops.

### Fitting A Growth Model.

The observed shell heights at age at each locality and depth are plotted in Appendix 2. Growth was described mathematically by fitting the mean of all shell heights at each annulus above the first inflection point to the Von Bertalanffy growth equation:

 $Lt = L_{\infty} [1-Exp -k(t - t_0)]$ 

| Locality     | Depth<br>(m)          | N                       | Mean<br>height<br>(mm)           | Ribs                         | r <sup>2</sup>                   |
|--------------|-----------------------|-------------------------|----------------------------------|------------------------------|----------------------------------|
| Tillamook    | 82<br>92<br>96<br>101 | 156<br>167<br>85<br>103 | 116.5<br>113.6<br>112.2<br>110.9 | 18.5<br>18.4<br>19.4<br>18.2 | 0.0001<br>0.0001<br>0.01<br>0.01 |
| Cape Kiwanda | 82                    | 135                     | 132.2                            | 18.3                         | 0.0001                           |
| Yaquina Head | 110                   | 153                     | 8.7                              | 18.0                         | 0.01                             |
| Heceta Head  |                       | 66                      | 120.5                            | 18.4                         | 0.01                             |
| Coos Bay     | 82                    | 58                      | 124.5                            | 19.4                         | 0.003                            |

Table 5. Mean shell height, average number of ribs and the correlation of shell height to rib number for <u>Pecten</u> <u>caurinus</u> off the Oregon coast 1981-1983.

where Lt is shell height in years;  $L_{\infty}$  is the theoretical maximum shell height; k is a constant expressing the rate of change in height increments with respect to t; and t<sub>0</sub> is the hypothetical age at zero height. Table 6 shows the parameter estimates and the asymtotic standard errors of the estimates derived from the Von Bertalanffy equation.

The Von Bertalanffy growth equations for scallops from the five localities and depths studied are:

Til. Head 82 m: Lt= 132.30  $[1 - \exp-0.2731 (t - 0.4126)]$ Til. Head 92 m: Lt= 139.30  $[1 - \exp-0.2250 (t - 0.0839)]$ Til. Head 96 m: Lt= 143.41  $[1 - \exp-0.2142 (t - 0.0773)]$ Til. Head 101 m: Lt= 118.28  $[1 - \exp-0.2791 (t - 0.1735)]$ Cap. Kiw. 82 m: Lt= 149.33  $[1 - \exp-0.2549 (t - 0.3373)]$ Yaq. Head 110 m: Lt= 111.50  $[1 - \exp-0.2348 (t + 0.0252)]$ Coos Bay 82 m: Lt= 160.92  $[1 - \exp-0.1579 (t + 2.3111)]$ Hec. Head : Lt = 127.27  $[1 - \exp-0.2865 (t - 0.2736)]$ 

Observed and fitted mean shell height values are presented in Tables 7 to 11 for all localities, showing a good correlation between the observed and fitted values.

| Locality     | Year | Depth | L      | K     | to     | S.E. L | S.E.K  | S.E. to |
|--------------|------|-------|--------|-------|--------|--------|--------|---------|
| Tillamook H. | 1982 | 82    | 132.30 | 0.273 | 0.413  | 2.054  | 0.084  | 0.880   |
|              | 1982 | 92    | 139.30 | 0.225 | 0.084  | 1.544  | 0.010  | 0.954   |
|              | 1981 | 96    | 143.41 | 0.214 | 0.077  | 3.163  | 0.018  | 1.244   |
|              | 1982 | 101   | 118.28 | 0.279 | 0.174  | 9.186  | 0.330  | 5.848   |
| Cape Kiwanda | 1982 | 82    | 149.33 | 0.255 | 0.337  | 2.166  | 0.029  | 0.360   |
| Yaquina Head | 1982 | 110   | 111.50 | 0.235 | -0.025 | 4.028  | 0.109  | 1.235   |
| Heceta Head  | 1983 |       | 127.27 | 0.287 | 0.274  | 2.983  | 0.110  | 3.277   |
| Coos Bay     | 1981 | 82    | 160.92 | 0.158 | -2.311 | 9.650  | 0.0206 | 4.327   |

r

Table 6. Parameter estimates and standard errors of the estimates derived from the Von Bertalanffy growth model for <u>Pecten</u> <u>caurinus</u> off the Oregon coast, 1981-1983. Lt = calculated shell height (mm) at age; L $\omega$  = calculated terminal (asymtotic) shell height; k = growth constant; t = age; t<sub>0</sub> = time when shell height is theoretically zero (i.e. Lt = 0).

| Estimated      | Heig     | ht        |                            |
|----------------|----------|-----------|----------------------------|
| Age<br>(years) | Measured | Estimated | Correlation<br>coefficient |
| 1              | 25.0     | 25.04     | 0.97                       |
| 2              | 40.7     | 46.98     |                            |
| 3              | 59.5     | 64.61     |                            |
| 4              | 83.6     | 78.79     |                            |
| 5              | 99.8     | 90.18     |                            |
| 6              | 107.8    | 99.34     |                            |
| 7              | 112.6    | 106.70    |                            |
| 8              | 116.2    | 112.62    |                            |
| 9              | 118.6    | 117.38    |                            |
| 10             | 120.8    | 121.20    |                            |
| 11             | 122.2    | 124.27    |                            |

•

| Table | 7. | Measured average height | value, predicted value at age, and |
|-------|----|-------------------------|------------------------------------|
|       |    | correlation coefficient | between these values at 82 m for   |
|       |    | Tillamook Head, 1982.   |                                    |

| Estimated          | Heig     | ht        |                            |
|--------------------|----------|-----------|----------------------------|
| Age<br>(years)<br> | Measured | Estimated | Correlation<br>coefficient |
| 1                  | 28.1     | 23.21     | 0.99                       |
| 2                  | 46.4     | 51.60     |                            |
| 3                  | 67.1     | 73.59     |                            |
| 4                  | 90.9     | 90.64     |                            |
| 5                  | 109.0    | 103.85    |                            |
| 6                  | 117.9    | 114.08    |                            |
| 7                  | 124.1    | 122.02    |                            |
| 8                  | 128.0    | 128.17    |                            |
| 9                  | 132.0    | 132.93    |                            |
| 10                 | 134.7    | 136.62    |                            |
| 11                 | 138.3    | 139.49    |                            |
| 12                 | 141.5    | 141.70    |                            |
| 13                 | 144.0    | 143.42    |                            |

Table 8. Measured average height value, predicted height at age, and correlation coefficient between these values for Cape Kiwanda, 1982.
| Estimated          | Heig     | ht        |             |
|--------------------|----------|-----------|-------------|
| Age<br>(years)<br> | Measured | Estimated | coefficient |
| 1                  | 24.6     | 23.85     | 0.99        |
| 2                  | 40.8     | 42.19     |             |
| 3                  | 56.3     | 56.70     |             |
| 4                  | 68.9     | 68.16     |             |
| 5                  | 77.7     | 77.22     |             |
| 6                  | 83.9     | 84.40     |             |
| 7                  | 89.8     | 90.06     |             |
| 8                  | 95.4     | 94.55     |             |
| 9                  | 99.0     | 98.09     |             |
| 10                 | 99.9     | 100.90    |             |

Table 9. Measured average height value, predicted height value at age, and correlation coefficient between these values for at 82 m for Yaquina Head, 1982.

| Estimated      | Heig     | ht        |                            |
|----------------|----------|-----------|----------------------------|
| Age<br>(years) | Measured | Estimated | Correlation<br>coefficient |
| 1              | 25.7     | 23.02     | 0.99                       |
| 2              | 44.7     | 48.32     |                            |
| 3              | 66.6     | 69.18     |                            |
| 4              | 87.9     | 86.40     |                            |
| 5              | 103.5    | 100.61    |                            |
| 6              | 113.4    | 112.33    |                            |
| 7              | 121.7    | 122.01    |                            |
| 8              | 129.0    | 129.99    |                            |
| 9              | 136.0    | 136.58    |                            |

Table 10. Measured average height value, predicted height value at age, and correlation coefficient between these values for Coos Bay, 1981.

| Estimated      | Heig     | ht        |             |
|----------------|----------|-----------|-------------|
| age<br>(years) | Measured | Estimated | coefficient |
| 1              | 26.9     | 23.88     | 0.99        |
| 2              | 45.6     | 49.61     |             |
| 3              | 65.5     | 68.92     |             |
| 4              | 83.6     | 83.43     |             |
| 5              | 98.0     | 94.32     |             |
| 6              | 106.9    | 102.50    |             |
| 7              | 111.3    | 108.64    |             |
| 8              | 113.6    | 113.25    |             |
| 9              | 114.3    | 116.72    |             |
| 10             | 117.0    | 119.32    |             |
| 11             | 119.1    | 121.27    |             |
| 12             | 122.2    | 122.74    |             |
| 13             | 125.1    | 123.84    |             |
| 14             | 125.7    | 124.67    |             |
| 15             | 124.5    | 125.29    |             |
| 16             | 127.0    | 125.75    |             |
|                |          |           |             |

Table 11. Measured average height value, predicted value at age, and correlation coefficient between these values for Heceta Head, 1983.

Fitted growth curves for Tillamook at all depths and for all localities are displayed in Figures 25 and 26, respectively. At Tillamook, scallops from deeper waters (i.e. 101 m) grew slower and to a shorter size than those from shallower depths. The larger sizes are reached faster in shallower waters (Fig. 25).

A comparison of the five localities in Figure 26 shows that scallops from Coos Bay grew faster than scallops from Yaquina Head, Tillamook, and Cape Kiwanda at all ages, and also grew faster than Heceta Head populations after the fifth year. Scallops from Yaquina Bay had the slowest growth and they were smaller at all ages compared to the scallops from the other locations. The Tillamook population grew at an intermediate rate and reached intermediate sizes compared with the Coos Bay and Yaquina Head populations. The fastest growth between the second and sixth year of age was exhibited by the Cape Kiwanda population, but declining growth rate thereafter resulted in a smaller asymtotic length at older ages than that of the Coos Bay population.

A cohort analysis of the mean shell height at each annulus is presented in Tables 12 to 19 for all localities and depths. Rosa Lee's phenomenon (in the positive sense), when the mean size at a given early age decreases as the age of the individuals upon which observations are made increases, is only apparent at some annulus numbers for Tillamook in the 82 and 92 m samples (Table 12 and 13).

Mean growth increments were calculated (Table 20) to analyze how a given cohort grew at different locations and depths. For all localities, first year growth ranged from 21 to 30 mm, with the mean around 25 mm. After the first year, growth rate decreased at varying



Figure 26. Fitted scallop growth curves on the five studied localities.

|               |      |      |      | Å    | NNU   | LUS   | NUM   | BER   |       |       |       |    |    |
|---------------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|----|----|
| Cohort-age    | 1    | 2    | 3    | 4    | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12 | N  |
| Cohort78-(4)  | 25.0 | 50.0 | 75.6 | 94.3 |       |       |       |       |       |       |       |    | 3  |
| Cohort77-(5)  | 25.5 | 44.0 | 67.4 | 92.2 | 104.0 |       |       |       |       |       |       |    | 37 |
| Cohort76-(6)  | 24.5 | 39.1 | 54.6 | 80.2 | 100.0 | 110.2 |       |       |       |       |       |    | 40 |
| Cohort75-(7)  | 25.7 | 41.1 | 59.5 | 71.5 | 97.7  | 107.7 | 115.2 |       |       |       |       |    | 7  |
| Cohort74-(8)  | 25.0 | 40.5 | 60.2 | 82.8 | 99.1  | 108.1 | 113.3 | 117.6 |       |       |       |    | 16 |
| Cohort73-(9)  | 25.1 | 38.8 | 56.1 | 81.4 | 97.3  | 106.5 | 112.5 | 116.3 | 119.1 |       |       |    | 32 |
| Cohort72-(10) | 25.1 | 39.7 | 58.4 | 79.1 | 95.8  | 105.5 | 111.8 | 115.3 | 118.0 | 121.1 |       |    | 17 |
| Cohort71-(11) | 24.7 | 40.7 | 53.5 | 74.7 | 90.7  | 102.7 | 109.2 | 136.5 | 116.7 | 119.5 | 122.0 |    | 4  |

Table 12. Average size at age for Tillamook scallops at 82 m.

.

|               |      |      |      | X    | NNUL  | U S   | NUMB  | ER    |       |       |       |       |    |
|---------------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|----|
| Cohort-age    | 1    | 2    | 3    | 4    | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    | N  |
| Cohort78-(4)  | 23.3 | 51.0 | 76.0 | 92.6 |       |       |       |       |       |       |       |       | 3  |
| Cohort77-(5)  | 25.7 | 44.3 | 65.7 | 89.9 | 101.2 |       |       |       |       |       |       |       | 19 |
| Cohort76-(6)  | 27.2 | 44.6 | 64.7 | 83.4 | 97.0  | 105.4 |       |       |       |       |       |       | 25 |
| Cohort75-(7)  | 26.1 | 46.3 | 64.7 | 81.2 | 93.2  | 103.4 | 110.0 |       |       |       |       |       | 25 |
| Cohort74-(8)  | 25.9 | 45.6 | 64.8 | 80.9 | 92.4  | 100.4 | 106.8 | 111.8 |       |       |       |       | 36 |
| Cohort73-(9)  | 25.1 | 43.6 | 62.8 | 78.9 | 90.7  | 98.9  | 104.9 | 110.0 | 114.0 |       |       |       | 40 |
| Cohort72-(10) | 27.2 | 44.5 | 62.7 | 79.8 | 93.5  | 102.2 | 107.6 | 112.6 | 116.2 | 119.9 |       |       | 15 |
| Cohort71-(11) | 21.3 | 38.6 | 60.6 | 78.3 | 91.7  | 99.3  | 104.0 | 109.0 | 112.3 | 115.0 | 117.0 |       | 3  |
| Cohort70-(12) | 21.0 | 33.0 | 56.0 | 82.0 | 101.0 | 113.0 | 121.0 | 125.0 | 128.0 | 131.0 | 133.0 | 134.0 | 1  |

Table 13. Average size at age for Tillamook scallops at 92 m.

|               |      |      |      |      |       |       | ANN   | ULUS  | NUM   | BER   |       |    |
|---------------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|----|
| Cohort-age    | 1    | 2    | 3    | 4    | 5     | 6     | 7     | 8     | 9     | 10    | 11    | N  |
| Cohort78-(3)  | 25.0 | 50.0 | 80.0 |      |       |       |       |       |       |       |       | 1  |
| Cohort77-(4)  | 24.2 | 49.7 | 74.7 | 96.4 |       |       |       |       |       |       |       | 7  |
| Cohort76-(5)  | 26.6 | 45.7 | 63.0 | 84.2 | 101.0 |       |       |       |       |       |       | 9  |
| Cohort75-(6)  | 26.0 | 43.0 | 58.8 | 73.2 | 87.6  | 98.6  |       |       |       |       |       | 5  |
| Cohort74-(7)  | 26.3 | 47.6 | 66.6 | 82.8 | 92.5  | 100.3 | 106.3 |       |       |       |       | 17 |
| Cohort73-(8)  | 25.8 | 48.5 | 67.5 | 82.7 | 92.6  | 99.9  | 105.9 | 111.6 |       |       |       | 33 |
| Cohort72-(9)  | 25.7 | 45.5 | 65.7 | 83.6 | 95.5  | 103.0 | 108.6 | 112.4 | 115.0 |       |       | 10 |
| Cohort71-(10) | 25.5 | 50.0 | 72.0 | 91.5 | 98.0  | 103.5 | 111.0 | 115.5 | 119.0 | 122.0 |       | 2  |
| Cohort70-(11) | 23.0 | 39.0 | 56.0 | 69.0 | 89.0  | 107.0 | 116.0 | 122.0 | 125.0 | 128.0 | 131.0 | 1  |
|               |      |      |      |      |       |       |       |       |       |       |       | 35 |

Table 14. Average size at age for Tillamook scallops at 96 m.

r

|               |      |      |      |      | A N I | NULU | S N   | UMBE  | R     |       |       |    |
|---------------|------|------|------|------|-------|------|-------|-------|-------|-------|-------|----|
| Cohort-age    | 1    | 2    | 3    | 4    | 5     | 6    | 7     | 8     | 9     | 10    | 11    | N  |
| Cohort75-(7)  | 26.6 | 46.2 | 64.4 | 77.9 | 89.4  | 97.8 | 104.1 |       |       |       |       | 10 |
| Cohort74-(8)  | 25.8 | 75.5 | 63.1 | 77.5 | 87.2  | 94.3 | 101.1 | 106.5 |       |       |       | 36 |
| Cohort73-(9)  | 25.2 | 46.2 | 64.9 | 78.6 | 88.0  | 95.0 | 100.6 | 105.8 | 110.0 |       |       | 46 |
| Cohort72-(10) | 24.0 | 43.6 | 62.6 | 78.0 | 87.8  | 94.2 | 98.8  | 103.5 | 108.0 | 111.1 |       | 9  |
| Cohort71-(11) | 23.5 | 44.0 | 59.5 | 71.5 | 85.5  | 92.5 | 97.5  | 102.0 | 105.5 | 108.5 | 111.5 | 2  |

Table 15. Average size at age for Tillamook scallops at 101 m.

|               |      |      |      |       |        |       | A N N | υιυς  | NU    | MBER  |       |       |       |        |    |
|---------------|------|------|------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|--------|----|
| Cohort-age    | 1    | 2    | 3    | 4     | 5      | 6     | 7     | 8     | 9     | 10    | 11    | 12    | 13    | 14     | N  |
| Cohort79-(3)  | 30.0 | 52.0 | 74.0 |       |        |       |       |       |       |       |       |       |       |        | 1  |
| Cohort78-(4)  | 26.0 | 47.3 | 71.0 | 89.7  |        |       |       |       |       |       |       |       |       |        | 3  |
| Cohort76-(6)  | 28.3 | 51.0 | 71.0 | 98.8  | 111.8  | 120.0 |       |       |       |       |       |       |       |        | 6  |
| Cohort75-(7)  | 28.1 | 45.9 | 64.8 | 90.7  | 110.0  | 119.0 | 123.8 |       |       |       |       |       |       |        | 10 |
| Cohort74-(8)  | 28.7 | 45.8 | 66.1 | 89.2  | 107.9  | 116.1 | 122.5 | 126.4 |       |       |       |       |       |        | 27 |
| Cohort73-(9)  | 28.2 | 46.9 | 67.6 | 90.9  | 109.0  | 117.4 | 123.9 | 128.1 | 131.7 |       |       |       |       |        | 40 |
| Cohort72-(10) | 27.3 | 45.9 | 66.0 | 90.8  | 108.0  | 117.8 | 124.0 | 127.6 | 130.7 | 133.2 |       |       |       |        | 22 |
| Cohort71-(11) | 28.5 | 46.2 | 66.8 | 93.9  | 111.1  | 120.0 | 126.9 | 130.3 | 133.4 | 135.8 | 138.2 |       |       |        | 18 |
| Cohort70-(12) | 28.0 | 46.0 | 63.1 | 88.0  | 106.87 | 118.1 | 124.5 | 129.5 | 133.1 | 135.8 | 138.1 | 140.5 |       |        | 6  |
| Cohort69-(13) | 30.0 | 55.0 | 75.0 | 102.0 | 121.0  | 129.0 | 134.0 | 136.0 | 139.0 | 142.0 | 144.0 | 146.0 | 147.0 |        | 1  |
| Cohort68-(14) | 30.0 | 46.0 | 63.0 | 82.0  | 100.0  | 117.0 | 124.0 | 127.0 | 131.0 | 134.0 | 137.0 | 140.0 | 142.0 | .144.0 | 1  |

Table 16. Average size at age for Cape Kiwanda scallops.

|               |      |      |      | A N I | NULU | S N  | UMBE | R    |       |       |      |     |
|---------------|------|------|------|-------|------|------|------|------|-------|-------|------|-----|
| Cohort-age    | 1    | 2    | 3    | 4     | 5    | 6    | 7    | 8    | 9     | 10    | 11   | N   |
| Cohort78-(4)  | 31.5 | 48.5 | 71.5 | 81.5  |      |      |      |      |       |       |      | 2   |
| Cohort77-(5)  | 24.6 | 39.8 | 55.5 | 74.1  | 82.8 |      |      |      |       |       |      | 19  |
| Cohort76-(6)  | 23.2 | 35.8 | 50.4 | 65.1  | 79.5 | 87.3 |      |      |       |       |      | 15  |
| Cohort75-(7)  | 24.0 | 42.7 | 60.8 | 72.5  | 79.9 | 87.6 | 94.3 |      |       |       |      | 12  |
| Cohort74-(8)  | 25.8 | 43.5 | 59.6 | 72.2  | 80.3 | 87.3 | 93.6 | 99.6 |       |       |      | 34  |
| Cohort73-(9)  | 24.7 | 41.0 | 56.6 | 67.7  | 75.7 | 82.3 | 89.0 | 95.2 | 100.0 |       |      | 49  |
| Cohort72-(10) | 23.6 | 38.4 | 51.0 | 61.6  | 71.6 | 78.1 | 83.4 | 89.4 | 95.1  | 100.0 |      | 21  |
| Cohort71-(11) | 25.0 | 41.0 | 55.0 | 64.0  | 72.0 | 78.0 | 84.0 | 90.0 | 93.0  | 95.0  | 97.0 | 1   |
|               |      |      |      |       |      |      |      |      |       |       |      | 153 |

Table 17. Average size at age for Yaquina Head scallops at 110 m.

Table 18. Average size at age for Heceta Head scallops.

.

|               |      |      |      |      |       |       | A N N | ULUS  | ט א           | NBEI  | R     |       |       |       |       |       |    |
|---------------|------|------|------|------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|-------|-------|-------|----|
| Cohort-age    | 1    | 2    | 3    | 4    | 5     | 6     | 7     | 8     | 9             | 10    | 11    | 12    | 13    | 14    | 15    | 16    | N  |
| Cohort78-(5)  | 23.0 | 39.0 | 62.0 | 84.0 | 101.0 |       |       |       |               |       |       |       | •     | _     |       |       | 1  |
| Cohort77-(6)  | 27.7 | 46.9 | 70.0 | 93.1 | 105.4 | 112.9 |       |       |               |       |       |       |       |       |       |       | 13 |
| Cohort76-(7)  | 21.1 | 45.7 | 67.2 | 84.8 | 99.6  | 109.8 | 115.5 |       |               |       |       |       |       |       |       |       | 18 |
| Cohort75-(8)  | 26.6 | 44.8 | 63.1 | 77.5 | 94.7  | 106.5 | 114.5 | 119.3 |               |       |       |       |       |       |       |       | 11 |
| Cohort74-(9)  | 29.0 | 48.5 | 67.5 | 87.0 | 99.0  | 105.0 | 109.0 | 112.5 | 115.5         |       |       |       |       |       |       |       | 2  |
| Cohort73-(10) | 29.6 | 51.3 | 73.6 | 89.3 | 98.0  | 104.3 | 109.6 | 114.6 | 119.0         | 121.6 |       |       |       |       |       |       | 3  |
| Cohort72-(11) | 25.3 | 40.6 | 57.0 | 76.3 | 90.3  | 98.0  | 104.3 | 109.3 | 112.0         | 115.0 | 117.3 |       |       |       |       |       | 3  |
| Cohort71-(12) | 26.0 | 44.3 | 62.0 | 80.0 | 94.6  | 101.8 | 106.2 | 110.0 | 113.0         | 115.8 | 119.1 | 121.6 |       |       |       |       | 8  |
| Cohort70-(13) | 24.3 | 45.6 | 61.6 | 78.0 | 90.7  | 97.3  | 102.3 | 109.6 | 115.0         | 118.6 | 121.6 | 125.0 | 127.3 |       |       |       | 3  |
| Cohort69-(14) | 30.5 | 48.5 | 61.5 | 74.0 | 90.5  | 105.0 | 112.5 | 115.5 | 118.0         | 120.5 | 122.5 | 125.0 | 127.0 | 129.5 |       |       | 2  |
| Cohort68-(15) | 24.0 | 38.0 | 61.0 | 80.0 | 95.0  | 102.0 | 105.0 | 108.0 | 110.0         | 112.0 | 115.0 | 118.0 | 121.0 | 123.0 | 125.0 |       | 1  |
| Cohort67-(16) | 26.0 | 44.0 | 56.0 | 75.0 | 90.0  | 97.0  | 102.0 | 106.0 | 1 <b>10.0</b> | 113.0 | 115.0 | 117.0 | 119.0 | 121.0 | 124.0 | 127.0 | 1  |

|                  |       |      | A    | N N U | LUS   | NUMBEI      | R       |       |     |
|------------------|-------|------|------|-------|-------|-------------|---------|-------|-----|
| Cohort-age       | 1     | 2    | 3    | 4     | 5     | 67          | 8       | 9     | N   |
| <br>Cohort77-(4) | 25.2  | 48.2 | 72.5 | 96.0  |       |             |         |       | 2   |
| Cohort76-(5)     | 22.87 | 42.1 | 67.8 | 97.5  | 113.0 |             |         |       | 7   |
| Cohort75-(6)     | 28.4  | 46.8 | 68.2 | 88.3  | 102.0 | 113.7       |         |       | 15  |
| Cohort74-(7)     | 26.8  | 45.7 | 67.0 | 86.5  | 98.7  | 111.2 119.9 | 5       |       | 14  |
| Cohort73-(8)     | 23.7  | 43.5 | 73.8 | 83.7  | 103.0 | 113.4 122.3 | 1 128.2 |       | 15  |
| Cohort72-(9)     | 24.2  | 40.4 | 86.8 | 86.8  | 107.0 | 119.2 126.0 | 5 131.2 | 136.0 | 5   |
|                  |       |      |      |       |       |             |         |       | 5.8 |

Table 19. Average size at age for Coos Bay scallops, 1981.

.

|                 | -        |      |       |      |               |              |      |      |              | -            |
|-----------------|----------|------|-------|------|---------------|--------------|------|------|--------------|--------------|
| Age<br>Interval | 1970     | 1971 | 1972  | 1973 | 1974          | 1975         | 1976 | 1977 | 1978         | Average      |
| Tillamook       | Head 82. | 82 m |       |      |               | _            |      |      |              |              |
| 0-1             |          | 24.7 | 25.1  | 25.1 | 25.0          | 25 7         | 24 5 | 25.0 | 25.0         | 25.0         |
| 1-2             |          | 16.0 | 14.5  | 13.6 | 15.5          | 15.4         | 14.5 | 18.4 | 25.0         | 16 6         |
| 2-3             |          | 12.7 | 18.7  | 17.3 | 19.6          | 18.4         | 15.5 | 23.4 | 25.6         | 18.9         |
| 3-4             |          | 21.2 | 20.6  | 25.2 | 22.6          | 22.0         | 25.6 | 24.7 | 18.6         | 22 6         |
| 4-5             |          | 16.0 | 16.4  | 15.9 | 16.2          | 16.1         | 20.3 | 12.2 |              | 16.2         |
| 5-6             |          | 12.0 | 9.7   | 9.5  | 9.0           | 10.0         | 9.6  |      |              | 9.9          |
| 6-7             |          | 6.5  | 6.3   | 5.9  | 5.3           | 7.6          |      |      |              | 6.3          |
| 7-8             |          | 4.2  | 3.5   | 3.8  | 4.3           |              |      |      |              | 4.0          |
| 8-9             |          | 3.2  | 2.6   | 2.8  |               |              |      |      |              | 2.9          |
| 9-10            |          | -2.7 | 3.1   |      |               |              |      |      |              | 2.9          |
| 10-11           |          | 2.7  |       |      |               |              |      |      |              | 2.7          |
| Tillancok       | Head: 92 | 8    |       |      |               |              |      |      |              |              |
| 0-1             | 21.0     | 21.3 | 27 2  | 25.1 | 25 9          | 26 1         | 27 2 | 25 7 | <b>21 1</b>  | 74 4         |
| 1-2             | 12.0     | 17.3 | 17.2  | 18.4 | 19 7          | 20 2         | 17 4 | 18 5 | 27 6         | ∠4-8<br>10 7 |
| 2-3             | 23.0     | 22.0 | 18.2  | 19.2 | 19.2          | 18.4         | 20.0 | 21_4 | 25 0         | 20.7         |
| 3-4             | 26.0     | 17.6 | 17.0  | 16.0 | 16.0          | 16.4         | 18.6 | 24.1 | 16.6         | 18.7         |
| 4-5             | 19.0     | 13.3 | -13.3 | 11.7 | 11.4          | 12.0         | 13.6 | 11.3 |              | 11 2         |
| 5-6             | 12.0     | 7.6  | 8.6   | 8.2  | 8.0           | 10.2         | 8.4  |      |              | 9 0          |
| 6-7             | 8.0      | 4.6  | 5.5   | 6.0  | 6.4           | 6.6          |      |      |              | 6.2          |
| 7-8             | 4.0      | 5.0  | 5.0   | 5.1  | 5.0           |              |      |      |              | 4.8          |
| 8-9             | 3.0      | 3.3  | 3.6   | 4.0  |               |              |      |      |              | 3.5          |
| 9-10            | 3.0      | 2.6  | 3.6   |      |               |              |      |      |              | 3.1          |
| 10-11           | 2.0      | 2.3  |       |      |               |              |      |      |              | 2.2          |
| 11-12           | 1.0      |      |       |      |               |              |      |      |              | 1.0          |
| Tillamook       | Head 81: | 96 m |       |      |               |              |      |      |              |              |
| 0-1             | 23_0     | 25 5 | 25 7  | 25 0 | 76 .1         | 26.0         | 76 6 |      |              |              |
| 1-2             | 16.0     | 24.5 | 19.8  | 22 6 | 21 2          | 17.0         | 19 1 | 24.2 | 25.U<br>25.0 | 25.3         |
| 2-3             | 17.0     | 22.0 | 20.2  | 19 0 | 19 0          | 15.9         | 17 2 | 20-4 | 20.0         | 21.2         |
| 3-4             | 13.0     | 19.5 | 17.9  | 15.1 | 16-1          | 14 4         | 21 2 | 23.0 | 30.0         | 20.0         |
| 4-5             | 20.0     | 6.5  | 11.9  | 9.9  | 9.8           | 14.4         | 16 7 | £1,  |              | 12 0         |
| 5-6             | 18.0     | 5.5  | 7.5   | 7.2  | 7.8           | 11.0         | 10.7 |      |              | 14.0         |
| 6-7             | 9.0      | 7.5  | 5.6   | 6.0  | 6.0           |              |      |      |              | 5.5          |
| 7-8             | 6.0      | 4.5  | 3.8   | 5.7  |               |              |      |      |              | 5.0          |
| 8-9             | 3.0      | 3.5  | 3.0   |      |               |              |      |      |              | 3.2          |
| 9-10            | 3.0      | 3.0  |       |      |               |              |      |      |              | 3.0          |
| 10-11           | 3.0      |      |       |      |               |              |      |      |              | 3.0          |
| Tillamook H     | lead 101 | D    |       |      |               |              |      |      |              |              |
| 0-1             |          | 21-5 | 24 0  | 25.2 | 25 87         | 26.6         |      |      |              |              |
| 1-2             |          | 20.5 | 19 6  | 21 0 | 40.0/<br>10 K | 40.0<br>10 4 |      |      |              | 25.0         |
| 2-3             |          | 15.5 | 19_0  | 18_6 | 17 6          | 18 3         |      |      |              | 20.1         |
| 3-4             |          | 12.0 | 15.3  | 13 7 | 14 4          | 13 5         |      |      |              | 17.8         |
| 4-5             |          | 14.0 | 9.8   | 9.4  | 9 7           | 11 5         |      |      |              | 10.0         |
| 5-6             |          | 7.0  | 6.3   | 7.0  | 7 0           | 8 4          |      |      |              | 10.9         |
| 6-7             |          | 5.0  | 4.5   | 5_6  | 6 9           | 6 1          |      |      |              | /.1          |
| 7-8             |          | 4.5  | 4.7   | 5.1  | 5.1           |              |      |      |              | 5./          |
| 8-9             |          | 3.5  | 4.4   | 4.2  | 2             |              |      |      |              | 4.7          |
| 9-10            |          | 3.0  | 3.1   |      |               |              |      |      |              | 4.0          |
| 10-11           |          | 3.0  |       |      |               |              |      |      |              | 3.1          |
|                 |          |      |       |      |               |              |      |      |              | J.U          |

Table 20. Mean growth increments for scallops by location and depths.

•

Table 20. (Continued)

| hge<br>Interval     | 1968    | 1969       | 1970    | 1971   | 1972 | 1973 | 1974 | 1975 | 1976         | 1977    | 1978 | 1979 | Average |
|---------------------|---------|------------|---------|--------|------|------|------|------|--------------|---------|------|------|---------|
| Cape Kiwa           | nda: 82 | 2 m        |         |        |      |      |      |      |              |         |      |      |         |
| 0-1                 | 30.0    | 30_0       | 28.0    | 28.5   | 27.3 | 28.2 | 28.7 | 28.1 | 28.3         |         | 26.0 | 30.0 | 28.5    |
| 1-2                 | 16.0    | 25 0       | 15.0    | 17 7   | 18.5 | 17.7 | 14.1 | 17.8 | 22.6         |         | 21.3 | 22.0 | 19.2    |
| 2-1                 | 17.0    | 20 0       | 20 1    | 20 6   | 20.0 | 20.7 | 20.2 | 22.8 | 20.0         |         | 23.6 | 22.0 | 20.7    |
| 3-4                 | 19 0    | 27 0       | 24 8    | 27 0   | 24.7 | 23.2 | 23.0 | 22.0 | 22.8         |         | 18.6 |      | 23.2    |
| 4-5                 | 18 0    | 10 0       | 12 9    | 17 2   | 17 3 | 18 1 | 18 7 | 19 3 | 18.0         |         |      |      | 18.2    |
| 4-5                 | 17.0    | 19.0       | 11 1    | 2 0    | 0.9  | 8 4  | 8 2  | 9 0  | 8.2          |         |      |      | 9_9     |
| 5-0                 | 11.0    | 0.0<br>E A | 11.3    | 6.9    | 5.0  | 6.4  | 6.4  | A 8  | <b>V</b> .14 |         |      |      | 6.1     |
| 0-1                 | 7.0     | 5.0        | 0.0     | 0.0    | 3 6  | 4.2  | 1 0  | 4.0  | •            |         |      |      | 3.6     |
| 7-8                 | 1.0     | 2.0        | 5.0     | 3.4    | 1.0  | 4.4  | 7.0  |      |              |         |      |      | 34      |
| 8-9                 | 4.0     | 3.0        | 1.0     | 3.1    | 3.1  | 3.1  |      |      |              |         |      |      | 2 7     |
| 9-10                | 3.0     | 1.0        | 2.0     | 2.7    | 4.5  |      |      |      |              |         |      |      | 2.4     |
| 10-11               | 3.0     | 2.0        | 2.3     | 2.3    |      |      |      |      |              |         |      |      | 2.4     |
| 11-12               | 3.0     | 2.0        | 2.3     |        |      |      |      |      |              |         |      |      | 2.4     |
| 12-13               | 2.0     | 1.0        |         |        |      |      |      |      |              |         |      |      | 1.5     |
| 13-14               | 2.0     |            |         |        |      |      |      |      |              |         |      |      | 2.0     |
| Yaquina H           | end: 1  | 10 🛋       |         |        |      |      |      |      |              |         |      |      |         |
| 0-1                 |         |            |         | 25.0   | 23.6 | 24.7 | 25.8 | 24.0 | 23.2         | 24.6    | 31.5 |      | 25.3    |
| 1-2                 |         |            |         | 16.0   | 14.8 | 16.3 | 17.7 | 18.4 | 12.6         | 15.2    | 17.2 |      | 6.1     |
| 2-3                 |         |            |         | 14.0   | 12.5 | 15.6 | 16.0 | 18.0 | 14.5         | 15.6    | 10.0 |      | 14.5    |
| 3-4                 |         |            |         | 9.0    | 10.6 | 11.0 | 12.5 | 11.7 | 14.7         | 18.5    |      |      | 12.6    |
| 4-5                 |         |            |         | 8.0    | 9.9  | 8.0  | 8.1  | 7.3  | 14.4         | 8.7     |      |      | 9.2     |
| 5-6                 |         |            |         | 6.0    | 6.5  | 6.6  | 6.9  | 7.7  | 7_8          |         |      |      | 7.0     |
| 6-7                 |         |            |         | 6_0    | 5.3  | 6.6  | 6.3  | 6.6  | 5            |         |      |      | 6.2     |
| 7-8                 |         |            |         | 6.0    | 5.9  | 6.3  | 6.0  |      |              |         |      |      | 6.1     |
| e_0                 |         |            |         | 3 0    | 5 8  | 5.6  |      |      |              |         |      |      | 4.8     |
| 0- <i>3</i><br>0_10 |         |            |         | 2 0    | A 9  |      |      |      |              |         |      |      | 3.5     |
| 9-10                |         |            |         | 2.0    | 4.7  |      |      |      |              |         |      |      | 2.0     |
| 10-11               |         |            |         | 2.0    |      |      |      |      |              |         |      |      | 2       |
| Coos Bay            | 81: 82  | <b>B</b>   |         |        |      |      |      |      |              |         |      |      |         |
| Age                 | 1969    | 1970 1     | 971 197 | 2 1973 | 1974 | 1975 | 1976 | 1977 | 1978 19      | 79 1980 | -    | 1982 | Åverage |
|                     |         | 1970 1     |         |        |      |      |      |      |              |         |      |      |         |
| 0-1                 |         |            | 24.     | 2 23.7 | 26.8 | 28.5 | 22.8 | 25.5 |              |         |      |      | 25.3    |
| 1-2                 |         |            | 16.     | 2 19.8 | 18.9 | 18.3 | 19.2 | 23.0 |              |         |      |      | 19.2    |
| 2-3                 |         |            | 24.     | 6 20.2 | 21.2 | 21.4 | 25.7 | 24.5 |              |         |      |      | 22.9    |
| 3-4                 |         |            | 21      | 8 20.0 | 19.5 | 20.1 | 29.9 | 23.5 |              |         |      |      | 22.5    |
| 4-5                 |         |            | 20.     | 4 19 4 | 12.2 | 14.0 | 16.1 |      |              |         |      |      | 16.4    |
| 5-6                 |         |            | 12      | 0 10   | 12.4 | 11_4 |      |      |              |         |      |      | 11.5    |
| 6-7                 |         |            | 7       | 4 8    | 8.4  |      |      |      |              |         |      |      | 8.2     |
| 7-8                 |         |            |         | 6 6 1  |      |      |      |      |              |         |      |      | 5.4     |
| 9_0                 |         |            | 4       | A      | •    |      |      |      |              |         |      |      | 4.8     |
| 0-3                 |         |            | 4.      | . •    |      |      |      |      |              |         |      |      |         |

.

.

## Table 20. (Continued)

• .

## Heceta Head 83

| Age<br>Interval | 1967 | 1968 | 1969 | 1970 | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | Average |
|-----------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
| 0+1             | 26.0 | 24.0 | 30.5 | 24 3 | 25.0 | 25.3 | 29.6 | 29.0 | 26.6 | 28.6 | 27.2 | 23.0 |      |      | 26.7    |
| 1-2             | 18 0 | 14.0 | 18 0 | 21 3 | 18 1 | 15.3 | 21.6 | 19_1 | 18_1 | 18.6 | 19.1 | 16.0 |      |      | 18.1    |
| 2-1             | 12 0 | 23 0 | 13.0 | 16 0 | 17.6 | 16.3 | 22.3 | 19.0 | 18.3 | 21.4 | 23.1 | 23.0 |      |      | 18.8    |
| 3-4             | 19 0 | 19.0 | 12 5 | 16 3 | 18.0 | 19.1 | 15.6 | 19.5 | 14.3 | 17.6 | 23.0 | 22.0 |      |      | 18.0    |
| 4-5             | 15 0 | 15.0 | 16 5 | 12.6 | 14.6 | 14_0 | 8.6  | 12.0 | 17.1 | 14.6 | 12.6 | 17.0 |      |      | 14.1    |
| 5-6             | 7 0  | 7 0  | 14 5 | 6.6  | 7.2  | 7.6  | 6.3  | 6.0  | 11.8 | 10.3 | 7.1  |      |      |      | 8.3     |
| 5-7             | 5 0  | 3 0  | 7 5  | 5.0  | A A  | 6.1  | 5.3  | 4.0  | 8.0  | 5.6  |      |      |      |      | 5.4     |
| 7_9             | 1 0  | 1 0  | 1 0  | 7 1  | 1 7  | 5.0  | 5.0  | 15   | 4.8  |      |      |      |      |      | 4.4     |
| 9-0<br>9-9      | 4.0  | 2 0  | 2.5  | 5.1  | 3.0  | 2.6  | 4.3  | 3.0  |      |      |      |      |      |      | 3.3     |
| 0.3             | 3.0  | 20   | 2.5  | 1 6  | 2.9  | 3.0  | 2.6  | 2    |      |      |      |      |      |      | 2.8     |
| 10-11           | 2.0  | 1 0  | 2.0  | 1 0  | 3 2  | 2 1  |      |      |      |      |      |      |      |      | 2.6     |
| 11-12           | 2.0  | 1.0  | 2.5  | 1 1  | 2.5  |      |      |      |      |      |      |      |      |      | 2.7     |
| 12 13           | 2.0  | 3.0  | 2.0  | 2 1  | 4.5  |      |      |      |      |      |      |      |      |      | 2.3     |
| 12-14           | 2.0  | 2.0  | 2.0  | 4.3  |      |      |      |      |      |      |      |      |      |      | 2.2     |
| 14-16           | 2.0  | 2.0  | 4.3  |      |      |      |      |      |      |      |      |      |      |      | 2.5     |
| 15-15           | 3.0  | 2.0  |      |      |      |      |      |      |      |      |      |      |      |      | 3.0     |

rates. Scallops at Coos Bay had the fastest growth rate at all ages, while scallops at Yaquina Head grew slowest at all ages. Between cohorts there were no clear differences in growth rates within localities. The 1977 age-class grew best at Tillamook Head at 82 and 96 m depth (when comparing the first four years where growth was most consistent); the cohort also did well the fifth year at 92 m depth. The 1977 age-class grew well the second year of age at Coos Bay and the fifth year of age at Yaquina Head.

In an attempt to describe years of exceptional growth, the mean growth increment tables for each locality were rearranged as shown in Table 21. Years of better growth at Tillamook Head were 1974, 1975, 1976, 1977, 1980, and 1981, in which values at most ages were above average. At Cape Kiwanda the best years for scallop growth were 1974, 1975, and 1980; at Yaquina Head 1977 and 1980 were good years for growth; the better years for Heceta Head scallops were 1975, 1976, 1981, and 1982; and the best years for Coos Bay scallops were 1975 and 1980. The criterium for selecting the good years was matching those years that appeared at least three times per locality in being above the average in a given age.

The Hotelling's  $T^2$  statistic was used to test for differences (at 5% level) in growth among samples within a locality, and between localities. Table 22 is a matrix showing both the calculated  $T^2$  when comparing these samples, and the 5% tabulated  $T^2$  value for the corresponding degrees of freedom in making the comparison.

Growth was not significantly different between the Tillamook stations at 82-92 m, 82-96 m, 92-101 m, and 96-101 m, but was significantly different between the 82-101 m stations. Growth for

| Age<br>Interval                                                                       | 1971    | 1972         | 1973                 | 1974                         | 1975                                 | 1976                                         | 1977                                               | 1978                                                      | 1979                                                             | 1980                                                            | 1981                                                            | 1982                                                          | Average                                                                               |
|---------------------------------------------------------------------------------------|---------|--------------|----------------------|------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Tillanco                                                                              | K Head  | 82. 8        | 32 m                 |                              |                                      |                                              |                                                    |                                                           |                                                                  |                                                                 |                                                                 |                                                               |                                                                                       |
| 0-1<br>1-2<br>2-3<br>3-4<br>4-5<br>5-6<br>6-7<br>7-8<br>8-9<br>9-10<br>10-11          |         | 24.7         | 25.1<br>16.0         | 25.1<br>14.5<br>12.7         | 25.0<br>13.6<br>18.7<br>21.2         | 25.7<br>15.5<br>17.3<br>20.6<br>16.0         | 24.5<br>15.4<br>19.6<br>25.2<br>16.4<br>12.0       | 25.0<br>14.5<br>18.4<br>22.6<br>15.9<br>9.7<br>6.5        | 25.0<br>18.4<br>15.5<br>22.0<br>16.2<br>9.5<br>6.3<br>4.2        | 25.0<br>23.4<br>25.6<br>16.1<br>9.0<br>5.9<br>3.5<br>3.2        | 25.6<br>24.7<br>20.3<br>10.0<br>5.3<br>3.8<br>2.6<br>2.7        | 18.6<br>12.2<br>9.6<br>7.6<br>4.3<br>2.8<br>3.1<br>2.7        | 25.0<br>16.6<br>18.9<br>22.6<br>16.2<br>9.9<br>6.3<br>4.0<br>2.9<br>2.9<br>2.9<br>2.7 |
| Tillamook                                                                             | : Head: | 92 1         | L                    |                              |                                      |                                              |                                                    |                                                           |                                                                  |                                                                 |                                                                 |                                                               |                                                                                       |
| 0-1<br>1-2<br>2-3<br>3-4<br>4-5<br>5-6<br>6-7<br>7-8<br>8-9<br>9-10<br>10-11<br>11-12 | 21.0    | 21.3<br>12.0 | 27.2<br>17.3<br>23.0 | 25.1<br>17.2<br>22.0<br>26.0 | 25.9<br>18.4<br>18.2<br>17.6<br>19.0 | 26.1<br>19.7<br>19.2<br>17.0<br>13.3<br>12.0 | 27.2<br>20.2<br>19.2<br>16.0<br>13.3<br>7.6<br>8.0 | 25.7<br>17.4<br>18.4<br>16.0<br>11.7<br>8.6<br>4.6<br>4.0 | 23.3<br>18.5<br>20.0<br>16.4<br>11.4<br>8.2<br>5.5<br>5.0<br>3.0 | 27.6<br>21.4<br>18.6<br>12.0<br>8.0<br>6.0<br>5.0<br>3.3<br>3.0 | 25.0<br>24.1<br>13.6<br>10.2<br>6.4<br>5.1<br>3.6<br>2.6<br>2.0 | 16.6<br>11.3<br>8.4<br>6.6<br>5.0<br>4.0<br>3.6<br>2.3<br>1.0 | 24.8<br>18.7<br>20.7<br>18.7<br>9.0<br>6.2<br>4.8<br>3.5<br>3.1<br>2.2<br>1.0         |
| Tillamook                                                                             | t Head  | 81: 9        | 96 m                 |                              |                                      |                                              |                                                    |                                                           |                                                                  |                                                                 |                                                                 |                                                               |                                                                                       |
| 0-1<br>1-2<br>2-3<br>3-4<br>4-5<br>5-6<br>6-7<br>7-8<br>8-9<br>9-10<br>10-11          | 23.0    | 25.5<br>16.0 | 25.7<br>24.5<br>17.0 | 25.8<br>19.8<br>22.0<br>13.0 | 26.3<br>22.6<br>20.2<br>19.5<br>20.0 | 26.0<br>21.2<br>19.0<br>17.9<br>6.5<br>18.0  | 26.6<br>17.0<br>19.0<br>15.1<br>11.9<br>5.5<br>9.0 | 24.2<br>19.1<br>15.8<br>16.1<br>9.9<br>7.5<br>7.5<br>6.0  | 25.0<br>25.4<br>17.2<br>14.4<br>9.8<br>7.2<br>5.6<br>4.5<br>3.0  | 25.0<br>25.0<br>21.2<br>14.4<br>7.8<br>6.0<br>3.8<br>3.5<br>3.0 | 30.0<br>21.7<br>16.7<br>11.0<br>6.0<br>5.7<br>3.0<br>3.0<br>3.0 |                                                               | 25.3<br>21.2<br>20.6<br>17.4<br>12.8<br>9.5<br>6.9<br>5.0<br>3.2<br>3.0<br>3.0        |
| Tillamook                                                                             | Eead    | 101 🖬        | ı                    |                              |                                      |                                              |                                                    |                                                           |                                                                  |                                                                 |                                                                 |                                                               |                                                                                       |
| 0-1<br>1-2<br>2-3<br>3-4<br>4-5<br>5-6<br>6-7<br>7-8<br>8-9<br>9-10<br>10-11          | 23.5    | 24.0 20.5    | 25.2<br>19.6<br>15.5 | 25.8<br>21.0<br>19.0<br>12.0 | 26.6<br>19.6<br>18.6<br>15.3<br>14.0 | 19.6<br>17.6<br>13.7<br>9.8<br>7.0           | 18.2<br>14.4<br>9.4<br>6.3<br>5.0                  | 13.5<br>9.7<br>7.0<br>4.5<br>4.5                          | 11.5<br>7.0<br>5.6<br>4.7<br>3.5                                 | 8.4<br>6.9<br>5.1<br>4.4<br>3.0                                 | 6.3<br>5.3<br>4.2<br>3.1<br>3.0                                 |                                                               | 25.0<br>20.1<br>17.8<br>13.8<br>10.9<br>7.1<br>5.7<br>4.9<br>4.0<br>3.1<br>3.0        |

Table 21. Mean growth increments for scallops by location and depths.

Table 21. (Continued)

| Age<br>Interval | 1969   | 1970  | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | λverage |
|-----------------|--------|-------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
| Cape Kiwa       | anda:  | 82 m  |      |      |      |      |      |      |      |      |      |      |      |      |         |
| 0-1             | 30.0   | 30.0  | 28.0 | 28.5 | 27.3 | 28.2 | 28.7 | 28.1 | 28.3 |      | 26.0 | 30.0 |      |      | 28.5    |
| 1-2             |        | 16.0  | 25.0 | 15.0 | 17.7 | 18.5 | 17.7 | 14.1 | 17.8 | 22.6 |      | 21.3 | 22.0 |      | 19.2    |
| 2-3             |        |       | 17.0 | 20.0 | 20.1 | 20.6 | 20.0 | 20.7 | 20.2 | 22.8 | 20.0 |      | 23.6 | 22.0 | 20.7    |
| 3-4             |        |       | •    | 19.0 | 27.0 | 24.8 | 27.0 | 24.7 | 23.2 | 23.0 | 22.0 | 22.8 |      | 18.6 | 23.2    |
| 4-5             |        |       |      |      | 18.0 | 19.0 | 18.8 | 17.2 | 17.3 | 18.1 | 18.7 | 19.3 | 18.0 |      | 18.2    |
| 5-6             |        |       |      |      |      | 17.0 | 8.0  | 11.3 | 8.9  | 9.8  | 8.4  | 8.2  | 9.0  | 8.2  | 9.9     |
| 6-7             |        |       |      |      |      |      | 7.0  | 5.0  | 6.3  | 6.8  | 6.1  | 6.4  | 6.4  | 4.8  | 6.1     |
| 7-8             |        |       |      |      |      |      |      | 3.0  | 2.0  | 5.0  | 3.4  | 3.6  | 4.2  | 3.8  | 3.6     |
| 8-9             |        |       |      |      |      |      |      |      | 4.0  | 3.0  | 3.6  | 3.1  | 3.1  | 3.7  | 3.4     |
| 9-10            |        |       |      |      |      |      |      |      |      | 3.0  | 3.0  | 2.6  | 2.7  | 2.5  | 2.7     |
| 10-11           |        |       |      |      |      |      |      |      |      |      | 3.0  | 2.0  | 2.3  | 2.3  | 2.4     |
| 11-12           |        |       |      |      |      |      |      |      |      |      |      | 3.0  | 2.0  | 2.3  | 2.4     |
| 12-13           |        |       |      |      |      |      |      |      |      |      |      |      | 2.0  | 1.0  | 1.5     |
| 13-14           |        |       |      |      |      |      |      |      |      |      |      |      |      | 2.0  | 2.0     |
| Yaquina H       | lead:  | 110 m |      |      |      |      |      |      |      |      |      |      |      |      |         |
| 0-1             |        |       |      | 25.0 | 23.6 | 24.7 | 25.8 | 24.0 | 23.2 | 24.6 | 31.5 |      |      |      | 25.3    |
| 1-2             |        |       |      |      | 16.0 | 14.8 | 16.3 | 17.7 | 18.4 | 12.6 | 15.2 | 17.2 |      |      | 6.1     |
| 2-3             |        |       |      |      |      | 14.0 | 12.5 | 15.6 | 16.0 | 18.0 | 14.5 | 15.6 | 10.0 |      | 14.5    |
| 3-4             |        |       |      |      |      |      | 9.0  | 10.6 | 11.0 | 12.5 | 11.7 | 14.7 | 18.5 |      | 12.6    |
| 4-5             |        |       |      |      |      |      |      | 8.0  | 9.9  | 8.0  | 8.1  | 7.3  | 14.4 | 8.7  | 9.2     |
| 5-6             |        |       |      |      |      |      |      |      | 6.0  | 6.5  | 6.6  | 6.9  | 7.7  | 7.8  | 7.0     |
| 6-7             |        |       |      |      |      |      |      |      |      | 6.0  | 5.3  | 6.6  | 6.3  | 6.6  | 6.2     |
| 7-8             |        |       |      |      |      |      |      |      |      |      | 6.0  | 5.9  | 6.3  | 6.0  | 6.1     |
| 8-9             |        |       |      |      |      |      |      |      |      |      |      | 3.0  | 5.8  | 5.6  | 4.8     |
| 9-10            |        |       |      |      |      |      |      |      |      |      |      |      | 2.0  | 4.9  | 3.5     |
| 10-11           |        |       |      |      |      |      |      |      |      |      |      |      |      | 2.0  | 2.0     |
|                 |        |       |      |      |      |      |      |      |      |      |      |      |      |      |         |
| Receta He       | ead 83 |       |      |      |      |      |      |      |      |      |      |      |      |      |         |
| Age             |        |       |      |      |      |      |      |      |      |      |      |      |      |      |         |

| Interval | 1968 | 1969 | 1970 | 1971  | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 | 1980 | 1981 | 1982 | 1983 | Average |
|----------|------|------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|---------|
| 0-1      | 26.0 | 24.0 | 30.5 | 24.3  | 26.0 | 25.3 | 29.6 | 29.0 | 26.6 | 28.6 | 27.2 | 23.0 |      |      |      |      | 26.7    |
| 1-2      |      | 18.0 | 14.0 | 18.0  | 21.3 | 18.3 | 15.3 | 21.6 | 19.1 | 18.1 | 18.6 | 19.1 | 16.0 |      |      |      | 18.1    |
| 2-3      |      |      | 12.0 | 123.0 | 13.0 | 16.0 | 17.6 | 16.3 | 22.3 | 19.0 | 18.3 | 21.4 | 23.1 | 23.0 |      |      | 18.8    |
| 3-4      |      |      |      | 19.0  | 19.0 | 12.5 | 16.3 | 18.0 | 19.3 | 15.6 | 19.5 | 14.3 | 17.6 | 23.0 | 22.0 |      | 18.0    |
| 4-5      |      |      |      |       | 15.0 | 15.0 | 16.5 | 12.6 | 14.6 | 14.0 | 8.6  | 12.0 | 17.1 | 14.6 | 12.6 | 17.0 | 14.1    |
| 5-6      |      |      |      |       |      | 7.0  | 7.0  | 14.5 | 6.6  | 7.2  | 7.6  | 6.3  | 6.0  | 11.8 | 10.3 | 7.1  | 8.3     |
| 6-7      |      |      |      |       |      |      | 5.0  | 3.0  | 7.5  | 5.0  | 4.4  | 6.3  | 5.3  | 4.0  | 8.0  | 5.6  | 5.4     |
| 7-8      |      |      |      |       |      |      |      | 4.0  | 3.0  | 3.0  | 7.3  | 3.7  | 5.0  | 5.0  | 3.5  | 4.8  | 4.4     |
| 8-9      |      |      |      |       |      |      |      |      | 4.0  | 2.0  | 2.5  | 5.3  | 3.0  | 2.6  | 4.3  | 3.0  | 3.3     |
| 9-10     |      |      |      |       |      |      |      |      |      | 3.0  | 2.0  | 2.5  | 3.6  | 2.9  | 3.0  | 2.6  | 2.8     |
| 10-11    |      |      |      |       |      |      |      |      |      |      | 2.0  | 3.0  | 2.0  | 3.0  | 3.2  | 2.3  | 2.6     |
| 11-12    |      |      |      |       |      |      |      |      |      |      |      | 2.0  | 3.0  | 2.5  | 3.3  | 2.5  | 2.7     |
| 12-13    |      |      |      |       |      |      |      |      |      |      |      |      | 2.0  | 3.0  | 2.0  | 2.3  | 2.3     |
| 13-14    |      |      |      |       |      |      |      |      |      |      |      |      |      | 2.0  | 2.0  | 2.5  | 2.2     |
| 14-15    |      |      |      |       |      |      |      |      |      |      |      |      |      |      | 3.0  | 2.0  | 2.5     |
| 15-16    |      |      |      |       |      |      |      |      |      |      |      |      |      |      |      | 3.0  | 3.0     |

| Table | 21. | (Continued) |
|-------|-----|-------------|
|-------|-----|-------------|

Coos Bay 81: 82 m

| Age<br>Interval                                             | 1969 | 1970 | 1971 | 1972 | 1973 | 1974         | 1975                 | 1976                         | 1977                                 | 1978                                         | 1979                                        | 1980                                       | 1981                                      | 1982 | Average                                                           |
|-------------------------------------------------------------|------|------|------|------|------|--------------|----------------------|------------------------------|--------------------------------------|----------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------|------|-------------------------------------------------------------------|
| 0-1<br>1-2<br>2-3<br>3-4<br>4~5<br>5-6<br>6-7<br>7-8<br>8-9 |      |      |      |      | 24.2 | 23.7<br>16.2 | 26.8<br>19.8<br>24.6 | 28.5<br>18.9<br>20.2<br>21.8 | 22.8<br>18.3<br>21.2<br>20.0<br>20.4 | 25.5<br>19.2<br>21.4<br>19.5<br>19.4<br>12.0 | 23.0<br>25.7<br>20.1<br>12.2<br>10.2<br>7.4 | 24.5<br>29.9<br>14.0<br>12.4<br>8.7<br>4.6 | 23.5<br>16.1<br>11.4<br>8.4<br>6.1<br>4.8 |      | 25.3<br>19.2<br>22.9<br>22.5<br>16.4<br>11.5<br>8.2<br>5.4<br>4.8 |

|                                                                    | TH82                                                                          | TH <b>92</b>                                                          | TH96                                          | TH101                                     | СК     | YQ     | НН     | CB |
|--------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|--------|--------|--------|----|
| TH82                                                               | 1                                                                             |                                                                       |                                               |                                           |        |        |        |    |
| TH <b>92</b>                                                       | 12.3                                                                          | 1                                                                     |                                               |                                           |        |        |        |    |
|                                                                    | (10.3)                                                                        |                                                                       |                                               |                                           |        |        |        |    |
| TH <b>96</b>                                                       | 8.8                                                                           | 0.1                                                                   | 1                                             |                                           |        |        |        |    |
|                                                                    | (10.3)                                                                        | (10.3                                                                 |                                               |                                           |        |        |        |    |
| TH101                                                              | 37.5                                                                          | 9.5                                                                   | 5.1                                           | 1                                         |        |        |        |    |
|                                                                    | (10.3)                                                                        | (10.3)                                                                | (10.3)                                        |                                           |        |        |        |    |
| СК                                                                 | 129.0                                                                         | 592.2                                                                 | 293.0                                         | 616.2                                     | 1      |        |        |    |
|                                                                    | (10.2)                                                                        | (10.2)                                                                | (10.3)                                        | (10.3)                                    |        |        |        |    |
| YH                                                                 | 283.8                                                                         | 106.5                                                                 | 44.8                                          | 83.0                                      | 872.8  | 1      |        |    |
|                                                                    | (10.2)                                                                        | (10.2)                                                                | (10.3)                                        | (10.3)                                    | (10.2) |        |        |    |
| HH                                                                 | 1.3                                                                           | 1.2                                                                   | 1.2                                           | 37.9                                      | 266.8  | 188.4  |        |    |
|                                                                    | (10.3)                                                                        | (10.3)                                                                | (10.3)                                        | (10.3)                                    | (10.3) | (10.3) |        |    |
| СВ                                                                 | 99.5                                                                          | 140.8                                                                 | 71.7                                          | 70.0                                      | 9.7    | 182.1  | 57.9   | 1  |
|                                                                    | (10.3)                                                                        | (10.3)                                                                | (10.3)                                        | (10.3)                                    | (10.3) | (10.3) | (10.4) |    |
| <sup>1</sup> TH82<br>TH92<br>TH96<br>TH101<br>CK =<br>YQ =<br>HH = | = Tilla<br>= Tilla<br>= Tilla<br>1 = Tilla<br>Cape Kiw<br>Yaquina<br>Heceta H | mook Hea<br>mook Hea<br>mook Hea<br>mook Hea<br>vanda<br>Head<br>lead | ad, 82 m<br>ad, 92 m<br>ad, 96 m<br>ad, 101 m | depth<br>depth<br>depth<br>depth<br>depth |        |        |        |    |

Hotelling's  $T^2$  statistic values for samples of P. <u>caurinus</u> 1981-1983 (tabulated 5% values in parentheses).<sup>1</sup> Table 22.

HH = Heceta HeadCB = Coos Bay

Heceta Head scallops were not significantly different from the three shallowest stations of Tillamook (82, 92, and 96 m), but were significantly different from the 101 m Tillamook station. Coos Bay scallop growth was not significantly different from the Cape Kiwanda area growth, but growth was significantly different when comparing Yaquina Head with Coos Bay, and when Cape Kiwanda, Yaquina Head and Coos Bay were compared with the Tillamook Head stations.

A general comparison among localities is displayed in Table 23, where all Tillamook Head stations are considered together. Again, growth did not differ significantly between the Coos Bay and Cape Kiwanda stations, and scallop growth was significantly different between the Heceta Head and Tillamook stations. All the other comparisons among localities reflected a significant difference in scallop growth at the 5% level using the  $T^2$  statistic.

The multivariate cluster analysis using the  $T^2$  statistic as a dissimilarity criterium gave the relationships shown in Figure 27. A smaller  $T^2$  value means less dissimilarity, thus in Fig. 27A the Tillamook stations are clustered together with similar patterns of growth which are also similar to the Heceta Head pattern of growth. Growth is almost identical in Tillamook at 92 and 96 m, and this pattern is less similar when compared to the shallower 82 m and deeper 101 m stations. The Tillamook - Heceta Head cluster shows a relatively high dissimilarity with the Yaquina Head station, which at the same time appears quite dissimilar to the cluster formed by the Cape Kiwanda and Coos Bay stations, the later cluster showing the most similar pattern of growth.

|       | THall   | СК     | YH     | HH     | СВ |
|-------|---------|--------|--------|--------|----|
| THall | 1       |        |        |        |    |
| СК    | 1,388.9 | 1      |        |        |    |
|       | (10.2)  |        |        |        |    |
| YH    | 165.2   | 872.88 | 1      |        |    |
|       | (10.2)  | (10.2) |        |        |    |
| HH    | 18.1    | 266.8  | 188.1  | 1      |    |
|       | (10.2)  | (10.3) | (10.3) |        |    |
| ĊB    | 242.5   | 9.7    | 182.1  | 58.0   | 1  |
|       | (10.2)  | (10.3) | (10.3) | (10.3) |    |

Table 23. Hotelling's  $T^2$  statistic values for locatlities of <u>P</u>. <u>caurinus</u> 1981-1983 (tabulated 5% values in parentheses).<sup>1</sup>

<sup>1</sup> THall = All Tillamook Head sample CK = Cape Kiwanda YQ = Yaquina Head HH = Heceta Head CB = Coos Bay



Figure 27. Weathervane scallop growth pattern relationships; A) between localities and depths; B) between localities. Th: Tillamook Head at 82, 92, 96 and 101 m; CK: Cape Kiwanda; CB: Coos Bay; Tall: All Tillamook Head; HH: Heceta Head; YH: Yaquina Head. Figure 27 shows clearly that scallop growth is more similar between Cape Kiwanda and Coos Bay than among Tillamook Head as a whole and Heceta Head. Growth at Yaquina Head is different from all the stations considered, but its pattern is more closely related to the Tillamook Head - Heceta Head pattern than to the Cape Kiwanda - Coos Bay pattern of scallop growth.

## The Scallop Fishery 1981-1986.

Weathervane scallops have been harvested off the coast of Oregon since 1981. The landing records in metric tons of round weight for the first six years of the fishery, listed by months, are displayed in Table 24. The 1981 values were estimated from Starr and McRae (1983) and transformed to metric tons (mt). From these data it is evident that the fishery began in April, 1981, and continued with a 12-month fishing period through 1984. There were 10 monthly landings in 1985, and only three monthly landings in 1986.

Figure 28 shows the annual landing values from Table 24. The first year of the weathervane scallop fishery had the highest landing values, with more than 7000 mt. The following year (1982) shows a drastic decline in scallop landings, with a consistent improvement during 1983 and 1984 when more than 1500 mt were landed. In 1985, landings decreased to less than 400 mt, and finally in 1986 only 48 mt were landed (Fig. 28).

In Figure 29, the monthly values from Table 24 are plotted for the six years of data. The 1981 fishery dominated the catches. In the second month of the fishery, the largest landing of the 6-year fishery was produced when over 1900 mt were landed. Values over 1000 mt also

|           |         |        | Years   | -       |        |       |
|-----------|---------|--------|---------|---------|--------|-------|
| Month     | 1981*   | 1982   | 1983    | 1984    | 1985   | 1986  |
| January   |         | 52.22  | 60.20   | 125.58  | 105.01 | 0.00  |
| February  |         | 156.23 | 29.57   | 56.75   | 25.13  | 7.32  |
| March     |         | 25.99  | 89.50   | 117.30  | 29.16  | 40.63 |
| April     | 588.75  | 25.90  | 29.16   | 77.87   | 33.31  | 0.00  |
| May       | 1918.17 | 41.91  | 40.83   | 184.62  | 44.04  | 0.00  |
| June      | 1498.00 | 36.69  | 153.30  | 157.51  | 29.04  | 0.00  |
| July      | 1009.26 | 48.11  | 143.30  | 238.98  | 43.55  | 0.00  |
| August    | 694.80  | 142.23 | 138.18  | 210.69  | 11.10  | 0.00  |
| September | 1275.90 | 56.94  | 212.25  | 179.35  | 0.00   | 0.00  |
| October   | 280.91  | 15.06  | 181.05  | 119.47  | 0.00   | 0.03  |
| November  | 196.80  | 49.54  | 3.60    | 27.15   | 17.57  | 0.00  |
| December  | 183.51  | 24.12  | 120.40  | 14.72   | 33.55  | 0.00  |
| TOTAL     | 7646.10 | 674.94 | 1201.34 | 1509.99 | 371.46 | 47.98 |

Table 24. Oregon scallop fishery landings in round weight by month, 1981-1986. Values in metric tons.

\* Values estimated from Starr and McRae (1983), Fig. 6.



Figure 28. Oregon scallop fishery landing in round weight for the 1981-1986 period.



Figure 29. Oregon scallop fishery landings in metric tons round weight by months during the 1981-1986 fishing period.

were produced in June, July and September that year. The year ended with landings in the order of 200 mt.

Figure 30, in which the 1981 landing values were excluded, permits a better visualization of the fishery landing trends in the next five years (1982-1986). In 1982, there were landings in every month, from the lower October value of 15 mt to the larger February value of 156 mt; other than February, August was the only month that shows more than 100 mt landed.

In 1983, June, July, August, September, October, and December produced landing of over 100 mt, with the highest landing of over 200 mt produced in September, followed by October with 181 mt landed. The winter months (with the exception of December) were below 100 mt. The poorest landing was in October with only 3.6 mt.

In 1984, only November, December, February and April were below 100 mt landed, with December being the lowest with only 15 mt. The summer months of July and August were above 200 mt in landings, followed by May and June when over 150 mt of scallops were landed.

Scallop landings declined drastically in 1985, with no landings during September and October, and with only January having over 100 mt of scallops landed. None of the remaining months had landings over 50 mt.

The 1986 situation was even worse, when landings were only produced in the months of February, March, and October, with 48 mt being the total for that year (Table 24).

Figure 31 shows that for all the scallops caught from the beginning of the fishery, 67% were landed in the first year. Also



Figure 30. Oregon scallop fishery landings in metric tons round weight by months during the 1982-1986 fishing period.



Figure 31. Percent by year of total scallops landed in Oregon during the 1981-1986 period.

shown is the decline in 1982 landings, and the partial recovery in 1983 and 1984, and the lower catches in 1985 and 1986.

The scallops referred to in Table 24 and Figures 28 to 31 were landed in different ports of the Oregon coast. Table 25 lists the ports and the landings of scallops received in 1981 and 1982. In 1983, Port Orford received a small number of scallops and the ports of Astoria, Tillamook, Newport, and Coos Bay remained as important places for receiving scallops. This was repeated in 1984 for these four ports, and in 1985 only Tillamook and Newport received scallops. The complete catch of scallops in 1986 was landed in the Port of Newport (Table 26).

Figure 32 shows the relative importance of these ports in receiving scallop landings during the 1981-1986 fishing period. Thus, in 1981 Coos Bay was the port that received the highest (55%) amount of scallops from the commercial fishery, followed by Astoria (36%), Newport (6%), and the other six ports (1%).

In 1982, Newport and Coos Bay received about 93% of the landings, with Newport being the most important port with 54.4% of all the scallop landed (Fig. 32). In 1983, Newport alone received 87% of the landings, followed by Astoria with 7.1% and Coos Bay with 5.3% (Fig. 32). In 1984, Tillamook became an important port in Oregon by receiving almost 30% of the scallop landings, surpassed only by Newport with over 61% of the landings (Fig. 32). In 1985, Newport received over 82% of the landings and the remaining 17% was landed in Tillamook (Fig. 32). In 1986, all the scallops caught in Oregon waters by the commercial fishery were landed in Newport (Fig. 32).

|                |         | Landings m tons |
|----------------|---------|-----------------|
| Port           | 1981    | 1982            |
| Astoria        | 2755.49 | 0.03            |
| Tillamook      | 37.75   | 6.19            |
| Newport        | 450.06  | 367.54          |
| Florence       | 0.23    |                 |
| Winchester Bay | 122.84  | 18.13           |
| Coos Bay       | 4250.06 | 283.03          |
| Port Orford    | 1.57    |                 |
| Gold Beach     | 0.37    |                 |
| Brookings      | 23.14   |                 |
| TOTAL          | 7641.51 | 674.92          |

Table 25.Oregon scallop fishery landings by port (metric tons),............

|               |        | 1983   |     | 1984   |    | 1985   | 1986 |        |  |
|---------------|--------|--------|-----|--------|----|--------|------|--------|--|
| Port          | NL     | m tons | NL  | m tons | NL | m tons | NL n | ı tons |  |
| Astoria       | 15     | 85.5   | 37  | 122.7  |    |        |      |        |  |
| Tillamook     | 3      | 3.3    | 10  | 444.5  | 7  | 64.6   |      |        |  |
| Newport       | 113    | 1048.1 | 57  | 924.5  | 41 | 307.0  | 8    | 47.9   |  |
| Coos Bay      | 25     | 64.1   | 12  | 18.4   |    |        |      |        |  |
| Port Orford   | 1      | 0.6    |     |        |    |        |      |        |  |
| TOTAL         | 157    | 1201.6 | 116 | 1510.1 | 48 | 371.5  | 8    | 47.9   |  |
| Mi – Numbon a | f land | inge   |     |        |    |        |      |        |  |

Table 26. Oregon scallop landings by port (metric tons), 1983-1986.

NL = Number of landings



Figure 32. Oregon scallop fishery landings by port during the 1981-1986 period. As: Astoria; Ti: Tillamook; Ne: Newport; Wi: Winchester Bay; Co: Coos Bay.

In Tables 27 and 28, the effort, expanded catch, and the catch per unit of effort (CPUE) for the Oregon scallop fishery is listed by statistical areas (defined in Table 1). Table 27 was developed from the data in pounds that appear for 1981-1982 in Starr and McRae (1983); while Table 28 shows comparable data for 1983-1986 obtained from the analysis of fishermen's logbooks.

Most of the data from Tables 27 and 28 is displayed graphically in Figures 33, 34, and 35. Figure 33 shows the total effort (hours fished) expended by the scallop fishery by Oregon statistical area for the period 1981-1986. In 1981, statistical area 28, received the most effort with more than 5000 hr fished, followed by statistical areas 22B, 26, and 22, with over 4000 hr fished. The average effort for all areas was 3493.3 hr fished in 1981.

In 1982, effort as a whole declined to an average of 592.5 hr fished, with the strongest effort exerted in area 24 with about 1200 hrs fished. The effort in 1983 showed an average of 1191 hrs fished, with area 24 again supporting the heaviest effort of close to 3500 hrs fished (Fig. 33). During 1984, the average effort was 1285 hr fished and area 22B showed the strongest effort with over 2400 hr fished. In 1985, the average effort for the Oregon scallop fishery was 526.1 hr fished and only areas 22B and area 28 received an effort above the average value (Fig. 33). In 1986, the lowest value of average effort for the scallop fishery occurred with only 67.75 hr fished. Area 22B supported the strongest effort with 251 hr fished (Fig.33). In the 1981-1986 period the areas most heavily fished were areas 22B and 28, when both accounted for over 50% of the effort applied on the Oregon scallop beds.
| Year         | Area  | Effort in<br>hr fished | Expanded<br>to MT | CPUE<br>kg/hr |
|--------------|-------|------------------------|-------------------|---------------|
| 1981         | 21    | 1121.1                 | 336.2             | 299.9         |
|              | 22A   | 4046.1                 | 2009.7            | 496.7         |
|              | 22B   | 4465.8                 | 1506.1            | 337.3         |
|              | 24    | 1518.8                 | 437.1             | 287.8         |
|              | 26    | 4317.4                 | 1391.5            | 322.3         |
|              | 28    | 5490.3                 | 1965.4            | 358.0         |
|              | TOTAL | 20959.6                | 7646.0            | 364.8         |
| 1 <b>982</b> | 21    | 94.1                   | 17.8              | 189.4         |
|              | 22A   | 781.1                  | 182.2             | 233.3         |
|              | 22B   | 642.2                  | 140.2             | 218.3         |
|              | 24    | 1227.7                 | 212.7             | 173.2         |
|              | 26    | 516.9                  | 80.0              | 154.9         |
|              | 28    | 292.9                  | 42.0              | 143.3         |
|              | TOTAL | 3554.9                 | 674.9             | 189.8         |

| Table | 27. | Expanded catch and effort estimates for scallops listed by  |
|-------|-----|-------------------------------------------------------------|
|       |     | Oregon statistical area for 1981 and 1982 (transformed from |
|       |     | Starr and McRae, 1983).                                     |

| Year             | Area                                           | N tows                                              | Effort in<br>hr fished                                                | Expanded<br>to MT                                             | CPUE<br>kg/hr                                                    |
|------------------|------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|
| 1<br>9<br>8<br>3 | 21<br>22A<br>22B<br>24<br>26<br>28<br>29       | 133<br>29<br>916<br>1156<br>658<br>69<br>435        | 479.8<br>55.3<br>1815.6<br>3466.4<br>1598.8<br>144.9<br>775.5         | 22.8<br>4.0<br>277.2<br>565.6<br>216.4<br>13.0<br>102.6       | 47.6<br>71.8<br>152.7<br>463.2<br>135.4<br>89.6<br>132.3         |
| TOTAL            |                                                | 3396                                                | 8336.3                                                                | 1201.6                                                        | 144.1                                                            |
| 1<br>9<br>8<br>4 | 19<br>21<br>22A<br>22B<br>24<br>26<br>28<br>29 | 8<br>19<br>315<br>1256<br>264<br>903<br>2163<br>325 | 10.3<br>28.8<br>418.3<br>2428.5<br>551.9<br>2173.6<br>4268.0<br>399.8 | 0.0<br>1.3<br>39.3<br>318.5<br>65.9<br>307.9<br>732.2<br>45.1 | 0.0<br>46.5<br>94.0<br>131.2<br>119.4<br>141.6<br>171.6<br>112.7 |
| TOTAL            |                                                | 5253                                                | 10279.2                                                               | 1510.1                                                        | 147.0                                                            |
| 1<br>9<br>8<br>5 | 21<br>22A<br>22B<br>24<br>26<br>28<br>29       | 1<br>151<br>743<br>199<br>315<br>295<br>14          | 1.8<br>281.8<br>1565.0<br>412.4<br>684.0<br>713.3<br>24.8             | 0.1<br>33.3<br>137.8<br>47.9<br>64.0<br>80.1<br>6.4           | 38.9<br>118.0<br>88.1<br>116.2<br>96.4<br>112.3<br>257.7         |
| TOTAL            |                                                | 1718                                                | 3683.1                                                                | 371.5                                                         | 100.9                                                            |
| 1<br>9<br>8<br>6 | 22B<br>24<br>26<br>28                          | 134<br>27<br>23<br>3                                | 256<br>66.0<br>61.0<br>10.0                                           | 35.7<br>7.1<br>4.6<br>0.5                                     | 142.1<br>107.3<br>75.2<br>53.0                                   |
| TOTAL            |                                                | 187                                                 | 388                                                                   | 47.9                                                          | 123.4                                                            |

Table 28. Scallop catch and effort data by Oregon statistical area derived from analysis of fishermen's logbooks for the years 1983-1986.



Figure 33. Fishing effort (hr) for the scallop fishery by Oregon statistical area for the period 1981-1986.



Figure 34. Expanded scallop catch (metric tons) by Oregon statistical area for the period 1981-1986.



Figure 35. Catch of scallops per unit of effort by Oregon statistical area for the 19861-1986 period.

The expanded catch estimates for the Oregon statistical areas appears in Figure 34. As a whole in 1981, all the areas showed a higher catch than subsequent years of the fishery. The average catch was 1274 mt and areas 22A and 28 produced a similar harvest of around 2000 mt. In 1982, the average catch was 112.5 mt; in 1983, the average was 171.6 mt for all areas; in 1984, the average was 188 mt; in 1985, the average catch was 53 mt per area; and in 1986, the average catch per area was 11.9 mt. In the 1981-1986 period, area 22B produced the highest catch.

The CPUE curves plotted in Figure 35 show that the highest values obtained for the fishery in all statistical areas occurred in 1981. The average CPUE for 1981 was above 350 kg/hr; for 1982 the average CPUE was around 190 kg/hr; for 1983 the average CPUE value was 144 kg/hr; for 1984 the average CPUE value was 146 kg/hr; for 1985 the average CPUE value was 100 kg/hr; and in 1986 the average CPUE value was around 120 kg/hr (Fig. 35).

## DISCUSSION

Malacologists have known for a long time that the typical lamellibranch shell is composed of calcium carbonate in the mineral form of calcite and aragonite which characterize the different layers of the shell (Barker 1962). Calcite is softer than aragonite, and enhances shells strength and resistance to abrasion. While calcite tends to break along well-defined cleavage planes, it gives the shell a more porous consistency and helps to reduce density of the shell (Rhoads and Lutz 1980).

Following Taylor et al. (1969), the middle layer of <u>P</u>. <u>caurinus</u> corresponds to the crossed lamellar aragonite layer, which has the appearance of having a series of sublayers running parallel to the shell boundary. The portion of the middle layer on top of these sublayers corresponds to the foliated calcite outer layer of these authors, and the inner layer corresponds to the foliated calcite inner layer. In the same manner, the additional layer visible only at the umbo-first annulus level corresponds to the adductor myostracum prismatic layer of aragonite.

The layer distribution in <u>P</u>. <u>caurinus</u> seems to be very functional. The strongest parts of the shell are the umbonal region with a thick inner layer, a strong myostracum layer, and an apparent extra thin layer as an intrusion into the thick inner layer of the umbonal region. This later structure could correspond to a prismatic pallial myostracum layer of aragonite (Taylor et al. 1969). In the region of the adductor muscle where the modified mantle epithelium originates, the adductor myostracum is located (Merril 1961). The relative importance of these layers, in terms of thickness, change when going from the anterior to the ventral margin of the shell. Thus, the outer foliated calcite and the crosslamellar aragonite layers are approximately equally distributed in the mid region of the shell. Following the first external annulus and close to the ventral margin, the foliated calcite layer dominates the shell thickness.

The ligament of <u>P</u>. <u>caurinus</u> is pyramidal in shape, with a base that bulges ventrally between the valves. It has a non-calcareous central region that is black in color with a rubber-like consistency, and two smaller lateral calcified regions of aragonite which attach the former to the valves (Taylor et al. 1969) (Fig.17). The ligament is formed by secretions from the mantle and is subject to the same general growth patterns as the shell. This growth is reflected by the clearly defined marks that are evident in its lateral calcified zones (Fig. 17).

It is widely accepted that growth in lamellibranchs results from marginal increment due to the action of the mantle edge, which is responsible for the form of the shell (Owen 1953). The marginal growth of the molluscan shell was initially explained as the accumulation of new material on a substrate, which usually consists of the part of the shell that is in contact with the mantle. It is recognized that the organic component of the shell acts as a precursor to mineralization and that it may serve as a matrix to control the mineralization and direction of growth (Clark 1973). Clark (Ibid.) maintains that scallop marginal growth is produced by the movement of the mantle edge well beyond the calcified margin of the shell (Fig. 36A), and the subsequent withdrawal of it into the shell (Fig. 36B)



Figure 36. Growth of the shell margin in <u>Pecten</u> <u>diegensis</u>: A) mantle extended and crystals formation; B) mantle withdrawn, crystal carried under the shell; C) crystals have coalesced into solid shell. (After Clark 1973). leaving a new projection of the edge beyond the shell margin (Fig. 36C). During the process, new crystals of  $CaCO_3$  coalesce to form a new margin in the growing shell (Clark 1974).

In <u>P</u>. <u>caurinus</u>, this proposed mechanism can explain the formation of the typical striae (circuli) present on the shell. Thus, the shell grows as the mantle deposits lamellae, each of which emerge at the edge of the shell following the previous one. The annuli are the build-up of a number of small growth increments (striae) that from time to time are compressed closely together.

The ribs that characterize the scallop shell topography represent a sector of the shell which, during growth, has been secreted by the same, ever widening, region of the mantle (Owen 1953). The number of ribs per shell has been used as the main criteria to differentiate western Atlantic scallop populations that showed apparent differences in growth (Clark 1972). By this method, Clarke (1965) was able to separate four subspecies of <u>Aequipecten irradians</u> (Lamark) inhabiting the waters from Nova Scotia to Colombia.

Oregon coast weathervane scallops are quite uniform with respect to the number of ribs per shell, with a peak and mean of around 18 counts per shell. However, the Coos Bay population had a mean of 19.4 ribs per shell, and ranged of from 18 to 21 ribs without any defined peak. This is probably due to the small sample size (N = 58). Considering that the distribution of ribs in <u>P</u>. <u>caurinus</u> seems to be normal, we can assume that the mean number of ribs in the Coos Bay population is truly higher than in the scallops of the other areas studied. The number of ribs per shell in <u>P</u>. <u>caurinus</u> is completely independent of the size of the shell, but could be a function of the rate of growth. For example in the case of <u>A</u>. <u>irradians</u> the faster growing population was the one with the higher mean value for the number of ribs per shell, as was the case in the Coos Bay population of <u>P</u>. <u>caurinus</u>. Architecturally, ribs add strength to the shell; thus, a higher number of ribs should be explained by the need to increase shell strength in animals that put more energy into increasing shell height rather than shell thickness, as is the case of the faster growing population of Coos Bay.

Several groups of organisms that have an additive mode of hard structure formation (as in bivalves), stop growing at times of environmental or biological stress. Such a pause usually leaves a distinct line of disturbance on the hard structure and is often accompanied by very close spacing of the growth lines. Generally these growth marks appear at regular intervals, giving the idea of a cyclical growth pattern. These patterns result from variable rates of  $CaCO_3$ deposition or dissolution or both (Rhoads and Lutz 1980), causing alternation of  $CaCO_3$ -rich layers and organic-rich layers, respectively.

Lutz and Rhoads (1977) point out that shell deposition is produced during aerobic respiration when the valves of the mollusc are open and water is being pumped over the gills. Shell dissolution is the product of anaerobic metabolism that occurs during periods of shell closure. The alternation of shell deposition and shell dissolution result in growth increments in the shell.

The cyclical growth patterns could be semidiurnal or diurnal, fortnightly, lunar-month (cluster of tidal cycles), or annually (Rhoads and Lutz 1980). Diurnal periodicity was recorded for several species of corals (Knudson et al. 1972) and <u>Anospora palmata</u> (Wells 1963); and for the bivalves <u>Mercenaria mercenaria</u> (Panella and MacClintock 1968), <u>Pecten irradians</u> (Davenport 1938), and <u>P. diegensis</u> (Clark 1968). Fortnightly intervals of growth patterns have been recorded for several intertidal and shallow subtidal organisms (Panella and MacClintock 1968; Rhoads and Panella 1970; Kennish 1976). Various species of molluscs show a monthly microgrowth pattern within the shell as in <u>M. mercenaria</u> (Panella and MacClintock 1968), <u>Nucula proxima</u> (Rhoads and Panella 1970), and <u>Nautilus macromphalus</u> (Martin et al. 1977).

Seasonal variations in growth usually result in the formation of microgrowth increments with an annual periodicity (Rhoads and Lutz 1980). This variation is closely associated with seasonal temperature changes. Growth rate of poikilothermic animals tends to increase with temperature as a result of the increase in metabolic rate, provided enough food is available (Broom and Mason 1978). Thus, annual line formation (slow growth or no growth at all) has been attributed to low winter temperatures (Green 1973; Broom and Mason 1978; Shaul and Goodwin 1982; Starr and McRae 1983; Kaiser 1986) resulting in the term "winter annuli" becoming common in the literature.

Annual growth patterns have been described for <u>Arctica islandica</u> (Thompson et al. 1980); <u>Tridagna gigas</u> (Bonhom 1965); <u>Panope generosa</u> (Shaul and Goodwin 1982); <u>Macoma balthica</u> (Green 1973); <u>Spisula</u> <u>solidissima</u> (Jones et al. 1978); <u>Chlamys opercularis</u> (Broom and Mason 1978); <u>C. islandica</u> (Johannessen 1973); <u>Placopecten magellanicus</u> (Merril et al. 1962), and for <u>P</u>. <u>caurinus</u> (Hennick 1970; Starr and McRae 1983; Carey and Ruff 1985; Kaiser 1986).

Spawning has been implicated as a stimulus for deposition of growth lines in <u>Spisula solidissima</u> (Ropes 1985; Jones et al. 1978), a species that shows no winter growth rings.

Temperature and spawning represent environmental conditions and a biological-clock mechanism that generate cyclical growth patterns. Different non-cyclical growth breaks can be produced by the action of environmental and physiological stress, freeze shock in winter, heat shock in summer, and severe storms (Rhoads and Lutz 1980). These factors are yet to be determined as affecting the growth pattern of  $\underline{P}$ . <u>caurinus</u> due to the depth of distribution of the species in Oregon waters. Thus, the <u>P</u>. <u>caurinus</u> shells analyzed show, in most cases, only growth marks that represent annual periods of shell deposition.

Growth breaks, when found, were not a serious problem in aging scallops shells because usually they appeared only in the external shell surface. In that case, the use of the ligament resulted in an accurate assessment of age for that particular shell, because growth breaks generally were not reflected in the ligament lateral zones. The annuli in the ligament appeared as dark brown bands, each constituted by approximately 12 thin, dark brown lines (representing the striae or circuli of the external shell) spaced closely together, indicating a period of slow growth. Interbands, or periods of faster growth, were lighter in color than the annuli, and the thin striae appeared more widely spaced (Fig. 17).

Although not so clear though direct observation of the external shell, a careful examination of acetate peels applied to an annulus

zone can reveal the 12 striae composition of the annulus. <u>P. caurinus</u> forms around 24 striae per year at fortnightly intervals. The meaning of this is not yet clear to me, because fortnightly periodicity of growth patterns is associated with the spring and neap tide effects on intertidal and shallow subtidal animals (Barker 1964; Rhoads and Lutz 1980). Options are that <u>P. caurinus</u> growth periodicity is generated by an endogenous biological-clock functioning coincidentally with these tidal periods, or that <u>P. caurinus</u> is sensitive to the centrifugal-gravitational forces that operate on the earth generating the tidal patterns.

The Oregon coast oceanographic features are complex and need to be taken into account in trying to understand the growth processes of the invertebrate fauna. Considering the temperature regime in the depth range occupied by <u>P</u>. <u>caurinus</u>, it is possible to infer that as a poikilotherm animal the weathervane scallop growth rate must follow the temperature variations throughout the year with faster growth during the warmer months and with slower growth during the colder months. This means that <u>P</u>. <u>caurinus</u> forms it "winter rings" during the summer months in which water temperature is at it minimum, and conversely it may produce faster growth during the winter season when temperature values are at a maximum.

A clearer picture is obtained when considering the weathervane scallop reproductive cycle. <u>P. caurinus</u> exhibits a distinct annual reproductive cycle (Fig. 37) (Robinson and Breese 1984). Gonad growth and maturation take place between July and December when the bottom water temperature is increasing, and spawning occurs from mid January to June when the bottom temperature is decreasing. Thus, there are at



Figure 37. Annual cycle of gonadal development of the female <u>Pecten</u> <u>caurinus</u> on the Oregon coast. (Modified from Robinson and Breese 1984).

least two good reasons for a decrease in growth during the summer months - the lower temperature and the investment of energy for maturation and growth that otherwise would be invested in only growth and maintenance.

Another factor that must be considered is food availability. <u>P</u>. <u>caurinus</u> is a herbivorous pectinid that feeds by filtering phytoplankton and organic detritus from the water. The abundance of food at depth is dependent on the productivity of surface waters and productivity in Oregon waters is a function of solar radiation, bathymetry, and upwelling conditions (Small and Menzies 1981). Sometimes modest winter blooms occur in January or February, but the major spring phytoplankton bloom begins in April and lasts through October in years of strong upwelling (Peterson 1980). Small and Menzies (1981) indicated, however, that greater productivity can be achieved during relaxation of upwelling than during strong upwelling. In any case, phytoplankton is abundant in the upper 20 m of the water column from January to October (Peterson 1980).

If spawning is not an effective factor causing the cessation of growth in <u>P</u>. <u>caurinus</u>, as was documented for <u>Pecten maximus</u> (Mason 1957) and <u>Chlamys opercularis</u> (Broom and Mason 1978), the faster growing season for <u>P</u>. <u>caurinus</u> occurs from January to April when temperature is adequate and there is some food availability due to the modest blooms in January or February. Even though temperature is low in April, the sudden food increase can still stimulate growth. From May to September, growth is at its lowest rate because of the minimum temperature and the energy reallocation for gametogenesis. Growth probably begins to increase slowly at the end of October when temperature is increasing and there is some food still available, but does not reach high rates until higher temperature values and the next phytoplankton bloom are produced. This approach of considering temperature and food concentration together could be correct if a poikilotherm animal will not grow if temperature is too low, even when an excess of food is available; or conversely, if there is not enough food available, growth will not occur regardless of the temperature.

Food availability for scallops living at 50 m or deeper can be scarce in summer in spite of spring productivity due to shallower photic depth in the first 25 km offshore produced mainly by the turbid action of the phytoplankton biomass itself. In addition, the summer permanent pycnocline (located above the scallop distribution depth) could be a barrier for phytoplankton cells in reaching the scallop depths. During the winter months, the photic depth and the winter permanent pycnocline lie below the zone of scallop distribution, making the scarce food in the water column available for scallop growth (Fig. 38). It is also important to consider that the summer mixed layer is very shallow, and is restricted to the first few meters below the surface and limited by a shallow summer thermocline. During the winter, the mixed layer can easily reach 80 m depth, bringing phytoplankton and organic detritus to depths where scallops occur (Fig 38).

A comparison of the fitted growth curves to the measured height means (Tables 7 to 11) indicates that the Von Bertalanffy growth model fits the observed data in most cases. The growth pattern in Oregon weathervane scallops, as represented by the five areas studied, is very consistent during the first five years which are the faster growing



Figure 38. Historical distributions of: A) hydrography; B) photic depth; C) chlorophyll <u>a</u> (mg m<sup>-2</sup>) along NH line; D) chlorophyll <u>a</u> (mg m<sup>-2</sup>) along composite N, CH, SF, and SB lines. (After Small and Menzies 1981.) periods (Fig. 25 and 26). It is also clear from these figures that there are differences in growth patterns between the different locations and depths. Local differences in growth rates in pectinids and other molluscan species have been described in the literature and associated with several factors such as currents (Gutsell 1930), parasitism, temperature, and phytoplankton concentration (Haynes and Hitz 1971).

In the present study, scallops living in the shallowest water (Tillamook Head 82 m, Coos Bay 82 m, Cape Kiwanda, 82 m) were found to growth more quickly than those in deeper water (Tillamook Head 101 m, Yaquina head 110 m) (Fig. 25 and 26). This relationship could be explained by the food availability arguments articulated in previous paragraphs. The same trend was found by Mason (1957) studying the scallop <u>Pecten maximus</u> in Manx waters, who related the growth rates to differences in temperature.

Variations in growth resulting from geographical location are also evident in this study. The differences in growth between locations and depths were tested using the Hotelling's  $T^2$  multivariable approach which was described by Bernard (1981) as a test for differences between like Von Bertalanffy growth parameter estimates from two fish groups, when these parameters are correlated. The hypothesis tested was to consider the growth patterns compared as equals; the hypothesis was rejected when the calculated value for  $T^2$  was higher than the tabulated value.

Each of the localities studied showed its own pattern of scallop growth. The Tillamook samples were clustered together and clearly showed their differences in growth due to depth, differences that again can be explained by the availability of food. Conditions for growth were quite good at Tillamook Head for 1974 to 1987 (with the exception of 1978), and 1975 and 1980 were especially good for growth in all locations.

Geographical differences in growth were found for Washington coast scallop populations by Haynes and Hitz (1971). Scallops from an inner coastal area were about 1.5 times as large as those from an outer coastal area. The same trend is evident in Oregon scallop waters. The faster growing Coos Bay station was the closest to land (7.1 km), followed in order by Cape Kiwanda, Heceta Head, Tillamook head, and Yaquina Head being the farthest away from the coast line (24.3 km) (Fig. 39). This can be explained in terms of food availability. Scallops from inshore stations can take advantage of a higher concentration of food due to the presence of the inner core of productivity described by Small and Menzies (1981). This core is confined to the coast by the action of the shoreward edge of the Columbia River plume, which acts as a low-density surface barrier in stopping offshore surface flow (Small and Menzies 1981). In addition, the greater growth of Coos Bay scallops with respect to Tillamook populations can be attributed to a higher mean temperature probably throughout the year (at same depth) in that location. It can be inferred from Carey and Ruff (1985) that for Coos Bay the bottom water temperature on scallop beds for November, 1981, was around 10° C, while off Tillamook Head bottom temperature only reached 8° C at the same date.

Greenough and Haynes (1974), studying Alaska scallops, point out that there is a latitudinal trend with scallops of any age tending to



Figure 39. Relationships of the growth patterns of <u>P</u>. <u>caurinus</u> from different localities at the Oregon coast.

be larger as one moves northward along the Pacific coast and then westward around the perimeter of the Gulf of Alaska. This trend of decreasing size as one moves southward is not valid for <u>P</u>. <u>caurinus</u> from Oregon waters where the southernmost population analyzed (Coos Bay) showed better growth than the northernmost populations. This fact was previously observed by Ronholt and Hitz (1968), although these authors did not age the specimens of their samples, and by Starr and McRae (1983).

The Rosa Lee's phenomenon has been reported to occur in Alaska scallops (Greenough and Haynes 1974) and in Washington coast scallops (Haynes and Hitz 1971). Ricker (1969) noted four possible causes of Lee's phenomenon: sampling bias; incorrect back calculation; fishing selective mortality; and size-selective natural mortality.

The samples studied only showed Lee's phenomenon (in the positive sense) at some ages off Tillamook Head. I eliminated fishing-selective mortality as a possible cause because the fishery did not exist previous to 1981 at that location; shell height at age was measured directly, so back calculation cannot be considered as a possible cause either. Selectivity of the sampling gear could be a possibility, but in that case the Lee's phenomenon should have been a common fact in all the samples, which it was not. The only possible cause could be the size-selective natural mortality which can be operating over larger individuals of a given age.

Starr and McRae (1983) and Carey and Ruff (1985) noticed heavy infestation of Oregon coast scallops older than two years with the spionid polychaete <u>Polydora websteri</u>. These authors suggested that the worm infestation may interfere with the scallop in several ways, mainly

weakening the shell and making it susceptible to breakage. As is seen in Figure 148, the worm distribution covers the entire left valve, including the zone where the adductor muscle is attached. I am convinced that the worm infestation of Oregon scallops is detrimental to their potential growth, and am in agreement with these authors. I believe that the parasitic action places an upper limit on the longevity of <u>P</u>. <u>caurinus</u> in Oregon waters. This fact can also explain the slower growth rates found in Oregon scallops when compared with Alaskan populations where the <u>Polydora</u> has not been documented. A next step in scallop research should be the accurate assessment of <u>Polydora</u> infestation of Oregon scallops. This factor cannot be omitted when differences in growth rates of different populations need to be addressed.

The Oregon scallop fishery can be characterized as having two well defined phases. A first phase consisted of an extraordinary and disproportionate beginning in 1981, with all the elements that can characterize a successfull fishery; an apparent abundant stock, numerous boats participating in the fishery, large harvest with a high CPUE, numerous ports receiving the catch, good prices for the landed product, and adequate profits. The second phase from 1982 to 1986, was an antithesis of the first phase. Everything went down abruptly; the stock was not so abundant, the number of boats declined from over 100 to only two boats in the last two years of the fishery, the harvest was reduced to a negligible amount compared with the first phase catches, only one port participated in the activity, and so on. Until 1984, it could be considered as a sustained fishery, to be tranformed later to only a sporadic fishery. There are many reasons for this decline in the scallop fishery. Maybe the most persistent one is the lack of incentive to go to the ocean and fish for scallops. This was because, among others, there were better alternatives than to fish for scallops; as an example, there was an excellent season for pink shrimp in 1986. Scallop boats can easily switch to shrimp trawling, so when shrimp are abundant, fishermen rapidly change gear and fish for shrimp. The scallop fishery is a hard one that requires powerful engines, and the risk of loosing gear is higher than in the shrimp fishery. Gear is more difficult to replace and is more easily damaged (R. Starr, personal comunication). The lack of interest can also be caused by direct economic reasons. In 1985 and 1986, the CPUE dropped dramatically and the activity was profitable for only two boats.

The fishery operated over the whole Oregon coast during the 1981-1986 period. The Heceta Head scallop beds were the most heavily fished, followed by the Cape Falcon to Columbia River and the Yaquina Head areas. Fishermen were right in going to these areas, because they gave the best catch.

The scallop fishery is a highly destructive one, not only because of direct fishing mortality, but also because the dredges drastically disturb the substrate where adult scallop live and larvae settle. This can account for the reduction of the CPUE during the fishing period considered; fishing causing a reduction of scallop densities and an alteration of the natural environment for scallop recruitment. In addition, if we consider that the age composition of scallop populations is formed by a few successful year-classes, after depletion of an area the CPUE will be low until a new successful yearclass populates the area. From this we can infer that the Oregon scallop fishery is conditioned to the success of certain year-classes from time to time under natural and almost pristine conditions. With an intense fishery operating every year, the substrate could be less suitable for a normal succession of successful year-classes. This success of certain year-classes probably is caused by the variable and almost unpredictable dynamic oceanographic regime of the Oregon coast.

## CONCLUSIONS

- The number of ribs in <u>P</u>. <u>caurinus</u> appears to be correlated to rate of growth rather than to size of the shell. Rib numbers range from 16 to 23 with a mean of 18 ribs per shell.
- 2. No internal marks associated with periodic growth of <u>P</u>. <u>caurinus</u> were evident when the acetate peel technique was used. This technique was useful to reveal the different internal layers of the scallop shell.
- 3. The periostracum, calcite outer layer, crossed lamellar aragonite layer, adductor myostracum prismatic layer of aragonite, and the foliated calcite inner layer are evident in <u>P</u>. <u>caurinus</u> shells when using the acetate peel technique, and the distribution of these layers seems to be function-dependent.
- 4. Annual growth marks are present in the lateral layers of the ligament of <u>P</u>. <u>caurinus</u>. They appear as dark bands formed by the confluence of circuli during periods of slow growth. Circuli are formed at fortnightly intervals.
- 5. The growth marks in the ligament proved to be a reliable alternative method for aging scallops.
- 6. Annual rings in <u>P</u>. <u>caurinus</u> are formed during the summer months when subsurface waters are coldest; faster growth is accomplished during the winter and early spring when subsurface waters are warmest. These conclusions are supported by the oceanographic conditions of Oregon waters and by the reproductive cycle of <u>P</u>. <u>caurinus</u>.

- 7. The von Bertalanffy growth model was used to characterize growth in <u>P</u>. <u>caurinus</u>. Growth is consistent during the first five years, which are the periods of fastest growth.
- 8. Biogeographical differences in growth are present in Oregon <u>P</u>. <u>caurinus</u> populations, with shallower and close-to-land populations growing at faster rates and reaching larger sizes than deeper and offshore populations. This phenomenon can be explained by food availability, which is conditioned by properties of the water column throughout the year, and by temperature.
- In Oregon waters, <u>P. caurinus</u> size distribution ranged from 75 to
  155 mm with a dominance of around 110 mm in shell height.
- Scallop age distribution varied from 3 to 15 years old, with ages
  6, 7, 8, and 9 being more common. The 1973 year-class was the most prominent in the populations studied.
- 11. Cape Kiwanda and Coos Bay scallop populations showed similar patterns of growth; Tillamook Head and Heceta Head <u>P</u>. <u>caurinus</u> populations were also similar in growth patterns. The Yaquina Head scallop population differed in growth pattern from the rest of the stations studied.
- 12. The scallop fishery currently is sporadic after being a sustained fishery from its beginning in 1981 through 1984. A decline in the catch of scallops in Oregon is probably due to a reduction of scallop densities and better fishing opportunities in the shrimp fishery.
- 13. The most heavily fished areas during the 1981-1986 period were off Umpqua River to Cape Perpetua and off Cape Falcon to Columbia River.

## LITERATURE CITED

- Abbott, R.T. 1974. American sea shells. 2nd Edition. Van Nostrand Reinhold Co., New York. 633 pp.
- Atlas, E.L. 1973. Changes in chemical distributions and relationships during an upwelling event off the Oregon coast. Master's Thesis, Oreg. State Univ., Corvallis. 100 pp.
- Atlas, E.L., L. Gordon, and R.D. Tomlinson. 1977. Chemistry of Northwestern coastal waters. <u>In</u> R.W. Krauss, editor. Coll. Sci., Oreg. State Univ., Corvallis. 76 pp.
- Barber, R.M. 1962. Microtextural variation in pelecypod shells. Malacologia 2:69-86.
- Barnes, R.D. 1980. Invertebrate zoology. Saunders College/Holt, Rinehart and Winston. 1089 pp.
- Bernard, D.R. 1981. Multivariate analysis as a means of comparing growth in fish. Can. J. Fish. Aquat. Sci. 38:233-236.
- Bonham, K. 1965. Growth rate of giant clam <u>Tridacna</u> <u>gigas</u> at Bikini Atoll as revealed by radioautography. Science 149:300-302.
- Broom, M.J. and J. Mason. 1978. Growth and spawning in the pectinid <u>chlamys</u> <u>opercularis</u> in relation to temperature and phytoplankton concentration. Mar. Biol. 47:277-285.
- Caddy, J.F., and R.A. Billard. 1976. A first estimate of production from an unexploited population of the bar clam <u>Spisula</u> <u>solidissima</u>. Tech Rep. Fish. Mar. Serv. Environ. Can. 648:1-13.
- Carey, A.G. and R.E. Ruff. 1985. The distribution, abundance and ecology of young weathervane scallop <u>Pecten</u> (<u>Patinopecten</u>) <u>caurinus</u> Gould 1850, on the Oregon continental shelf. NMFS, NOAA, NAFC, Final Report. 92 pp.
- Clark, E.R. II. 1968. Mollusk shell daily growth lines. Science 161:800-802.
- Clark, E.R. II. 1974. Calcification on an unstable substrate: marginal growth in the mollusc <u>Pecten</u> <u>diegensis</u>. Science 183:968-970.
- Clarke, A.H. 1965. The scallop superspecies <u>Aequipecten</u> <u>irradians</u> (Lamark). Malacologia 2(2):161-188.
- Capps, J. 1981. Easteners initiate Oregon scallop fishery. Nat. Fish. 62(4):15.

- Davenport, C.G. 1938. Growth lines in fossil pectens as indicators of past climates. J. Paleont. 12:514-515.
- Florkin, M. and B.T. Scheer. 1972. Chemical zoology. Academic Press, New York. 567 pp.
- Grau, J. 1959. Pectinidae in the eastern Pacific. Allan Hancock Pacific Exped. 23:1-308, 57 pls.
- Green, R.H. 1973. Growth and mortality in Arctic intertidal population of <u>Macoma balthica</u> (Pelecypoda, Tellinidae). J. Fish. Res. Bd. Canada 30:1345-1348.
- Gould, P. 1850. (no title) Proc. Boston Soc. Nat. Hist. 3:345.
- Greenough, J.W., and E.B. Haynes. 1974. Geographic variations in giant Pacific sea scallop growth as determined from Von Bertalanfly growth curves with confidence belts (unpublished manuscript). National Marine Fisheries Service, Auke Bay, Alaska.
- Gutsell, J.S. 1930. Natural history of the bay scallop. Bull. U.S. Bur. Fish. 46(1100):569-632.
- Haynes, E.B. 1970. Biology of the Pacific coast sea scallops. Alaska Dept. Fish Game, Informational Sea Sheet 135. 4 pp.
- Haynes, E.B. and C.R. Hitz. 1971. Age and growth of the giant Pacific sea scallop, <u>Patinopecten caurinus</u>, from the Straight of Georgia and outer Washington coast. J. Fish. Res. Bd. Canada 28:1335-1341.
- Hennick, D.P. 1970. Reproductive cycle, size at maturity, and sexual composition of commercially harvested weathervane scallops, (<u>Patinopecten caurinus</u>) in Alaska. J. Fish. Res. Bd. Canada 27:2117-2119.
- Hertlein, L.E. 1969. Bivalvia in treatise on invertebrate paleontology. Univ. of Kansas and Geol. Soc. of America. Part N. Vol. 1:348-372.
- Huyer, A. 1977. Seasonal variation in temperature, salinity, and density over the continental shelf off Oregon. Limnology and Oceanography 22:442-453.
- Johannessen, O.H. 1973. Age determination in <u>Chlamys</u> islandica (O.F. Muller). Astarte 67:15-20.
- Johnson, W.H., L.D. Delaney, E.C. Williams, and T. Cole. 1977. Principles of zoology. 2nd Edition. Holt, Rinehart and Winston, New York, New York. 990 pp.

- Jones, D.S., I. Thompson, and W. Ambrose. 1978. Age and growth determination for the Atlantic surf clam <u>Spisula</u> <u>solidissima</u> (Bivalvia: Mactracea), based on internal growth lines in shell cross-sections. Mar. Biol. 47:63-70.
- Kaiser, R. 1986. Characteristics of the Pacific weathervane scallop (<u>Pecten [Patinopecten] caurinus</u>, Gould 1850) fishery in Alaska, 1967-1981. Alaska Dept. Fish Game, Juneau. 100 pp.
- Kennish, M.J. 1976. Monitoring thermal discharge: A natural method. Underwater Nat. 9:8-11.
- Kerswill, C.J. 1944. The growth rate of bar clams. Fish. Res. Bd. Canada, Atl. Prog. Rep. 35:18-20.
- Knutson, D.W., R.W., Buddemeier, and S.V. Smith. 1972. Coral chronometers: Seasonal growth bands in reef corals. Science 177:270-272.
- Lutz, R.A., and D.C. Rhoads. 1977. Anaerobiosis and a theory of growth line formation. Science 198:1222-1227.
- Martin, A.W., I. Cetala-Stucki, and P.D. Ward. 1977. Growth rate and reproductive behavior of <u>Nautilus</u> <u>macromphalus</u>. Geol. Soc. Am. Abstr. Programs 9:1086.
- Mason, J. 1957. The age and growth of the scallop, <u>Pecten maximus</u> (L). in Manx waters. J. Mar. Biol. Assoc. U.K. 36(3):473-492.
- Masuda, K. 1963. The so-called <u>Patinopecten</u> of Japan. Trans. Proc. Paleontol. Soc. Jap. No. 52-145-153.
- Merril, A.S. 1961. Shell morphology in the larval and postlarval stages of the sea scallop, <u>Placopecten magellanicus</u> (Gmelin). Bull.: Museum Comp. Zoology 125(1):1-20.
- Mottet, M.G. 1979. A review of the fishery biology and culture of scallops. Wash. Dept. Fish. Tech. Rep. 39. 272 pp.
- Owen, G. 1953. The shell in the lamellibranchia. Quart. J. Microscop. Sci. 94(1):57-70.
- Panella, G., and C. McClintock. 1968. Biological and environmental rhythms reflected in molluscan shell growth. Mem. Jour. Paleo. 42:64-80.
- Panella, G., and C. MacClintock. 1968. Paleontological evidence of variations in length of synodic month since late cambrian. Science 162:792-796.
- Peterson, W.T. 1980. Zonation and maintenance of copepod populations in the Oregon upwelling zone. Ph.D. Thesis, School of Oceanography, Oreg. State Univ., Corvallis. 182 pp.

- Rhoads, D.C., and R. Lutz. 1980. Skeletal growth of aquatic organisms. Biological records of environmental change. Plenum Press, New York. 179 pp.
- Rhoads, D.C, and E. Panella. 1970. The use of molluscan shell growth patterns in ecology and paleoecology. Lethoia 3:143-161.
- Ricker, W.E. 1969. Effects of size-selective mortality and sampling bias on estimates of growth, mortality, production, and yield. J. Fish. Res. Bd. Canada. 26:479-547.
- Robinson, A.M., and W.P. Breese. 1984. Spawning cycle of the weathervane scallop <u>Pecten</u> (Patinopecten) <u>caurinus</u> Gould along the Oregon coast. J. Shellfish Res. 4(2):165-166.
- Ronholt, L.L., and C.R. Hitz. 1968. Scallop explorations off Oregon. Commer. Fish. Rev. 30(77):42-49.
- Ropes, J.W. 1985. Modern methods used to age oceanic bivalves. The Nautilus 99(20-3):53-57.
- Shaul, W., and L. Goodwin. 1982. Geoduck (<u>Panope</u> <u>generosa</u>: Bivalvia) age as determined by interal growth lines in the shell. Can. J. Fish. Aquat. Sci. 39:632-636.
- Small, L.F., H. Curl, and W. Glooschenks. 1972. Effects of solar radiation and upwelling on daily primary production off Oregon. J. Fish. Res. Bd. Canada 29:1269-1275.
- Small, L.F., and D.W. Menzies. 1981. Patterns of primary productivity and biomass in a coastal upwelling region. Deep-Sea Research 28:123-149.
- Sneath, P.H., and R.R. Sokal. 1973. Numerical taxonomy. W.H. Freeman and Co., San Francisco. 321 pp.
- Starr, R.M., and J.E. McRae. 1983. Weathervane scallop (Patinopecten caurinus) investigations in Oregon, 1981-1983. Oreg. Dept. Fish Wildl. Info. Rep. 82-10.
- Stevenson, J.A., and L.M. Dickie. 1954. Annual growth rings and rate of growth of the giant scallop, <u>Placopecten magellanicus</u> (Gmelin) in the Digby area of the Bay of Fundy. J. Fish. Res. Bd. Canada 11(5):660-671.
- Steward, W.H., and T.N. Taylor. 1965. The peel technique <u>in</u> B. Kummel and D. Paup (editors), Handbook of paleontological techniques, p. 224-232. W.H. Freeman and Co., San Francisco.
- Taylor, J.D., W.J. Kennedy, and A. Hall. 1969. The shell structure and mineralology of the bivalve: Introduction: Nuculacea-Trigonacea. Bull. Br. Mus. (Nat. Hist.) Zool. Suppl. 3:1-125.

- Thompson, I., D.S. Jones, and D. Dreibelbis. 1980. Annual internal growth banding and life history of the ocean guahog <u>Arctica</u> <u>islandica</u> (Mollusca: Bivalvia). Mar. Biol. (Berl.) 57:25-34.
- Trueman, E.R. 1953. The ligament of Pecten. Quart. J. Microscop. Sci. 94(2):193-202.
- Wells, J.W. 1963. Coral growth and geochronometry. Nature, Lond. 197:948-950.

APPENDICES

•

Appendix 1. Age, total height, height at age and number of ribs per shell in <u>P</u>. <u>caurinus</u> from the Oregon Coast.

TILLAMOOK HEAD N = 156 Date: 08/14/82

Depth 82

|        |        |                 |           |           |                  | ANN      | ULI |   |   |   |    |         |        |        |
|--------|--------|-----------------|-----------|-----------|------------------|----------|-----|---|---|---|----|---------|--------|--------|
| N      | Height | 1               | 2         | 3         | 4                | 5        | 6   | 7 | 8 | 9 | 10 | 11 Ribs | Age    | Cohort |
| 125    | 103    | 25              | 50        | 78        | 95               |          |     |   |   |   |    | 18      | 4      | 1978   |
| 89     | 107    | 24              | 51        | 73        | 90               |          |     |   |   |   |    | 19      | 4      | 1978   |
| 129    | 103    | 26              | 49        | 76        | 98               |          |     |   |   |   |    | 17      | 4      | 1978   |
| 141    | 107    | 27              | 44        | 64        | 88               | 100      |     |   |   |   |    | 19      | 5      | 1977   |
| 122    | 112    | 29              | 41        | 65        | 94               | 105      |     |   |   |   |    | 20      | 5      | 1977   |
| 143    | 112    | 29              | 47        | 74        | - 98             | 108      |     |   |   |   |    | 18      | 5      | 1977   |
| 150    | 109    | 22              | 46        | 75        | 96               | 108      |     |   |   |   |    | 20      | S      | 1977   |
| 32     | 109    | 25              | 46        | 73        | 99               | 105      |     |   |   |   |    | 19      | 5      | 1977   |
| 44     | 104    | 22              | 33        | 52        | 80               | 96       |     |   |   |   |    | 17      | 5      | 1977   |
| 84     | 105    | 28              | 44        | 64        | 87               | 100      |     |   |   |   |    | 22      | 5      | 1977   |
| 83     | 114    | 22              | 42        | 67        | 96               | 108      |     |   |   |   |    | 18      | 5      | 1977   |
| 149    | 109    | 27              | 45        | 65        | 90               | 103      |     |   |   |   |    | 18      | 5      | 1977   |
| 73     | 116    | 28              | 50        | - 74      | 101              | 112      |     |   |   |   |    | 18      | 5      | 1977   |
| 106    | 112    | 31              | 49        | 75        | 99               | 110      |     |   |   |   |    | 18      | 5      | 1977   |
| 130    | 116    | 28              | 49        | 66        | 91               | 110      |     |   |   |   |    | 20      | 5      | 1977   |
| 155    | 108    | 23              | 46        | 72        | 95               | 106      |     |   |   |   |    | 17      | 5      | 1977   |
| 94     | 116    | 21              | 37        | 65        | 95               | 110      |     |   |   |   |    | 18      | 5      | 1977   |
| 38     | 109    | 28              | 46        | 75        | 95               | 104      |     |   |   |   |    | 18      | 5      | 1977   |
| 134    | 106    | 28              | 41        | 61        | 85               | 97       |     |   |   |   |    | 18      | 5      | 1977   |
| 157    | 114    | 25              | 48        | 76        | 100              | 109      |     |   |   |   |    | 19      | 5      | 1977   |
| 133    | 108    | 25              | 50        | 66        | 85               | 101      |     |   |   |   |    | 19      | 5      | 1977   |
| 80     | 111    | 27              | 40        | 57        | 85               | 99       |     |   |   |   |    | 18      | 5      | 1977   |
| 58     | 104    | 23              | 33        | 50        | 78               | 95       |     |   |   |   |    | 19      | 5      | 1977   |
| 158    | 110    | 25              | 46        | 64        | 83               | 97       |     |   |   |   |    | 20      | 5      | 1977   |
| 107    | 109    | 23              | 45        | 67        | 93               | 103      |     |   |   |   |    | 17      | 5      | 1977   |
| 113    | 118    | 2/              | 51        | 84        | 104              | 114      |     |   |   |   |    | 18      | 5      | 1977   |
| 40     | 105    | 49              | 42        | 00        | 92               | 99       |     |   |   |   |    | 19      | 5      | 1977   |
| 144    | 110    | 20              | 43<br>66  | 00        | 102              | 115      |     |   |   |   |    | 19      | 5      | 1977   |
| 115    | 116    | 2J<br>22        | 40        | 70        | 103              | 00       |     |   |   |   |    | 19      | 2      | 1977   |
| 21     | 110    | 23<br>95        | 9.3<br>36 | 70        | - <del>2</del> 0 | 102      |     |   |   |   |    | 21      | 2      | 1977   |
| 153    | 116    | دی<br>20        | 50        | <br>01    | 102              | 112      |     |   |   |   |    | 20      | 2      | 19//   |
| 75     | 114    | 20              | بدر<br>۲۸ | 79        | 103              | 110      |     |   |   |   |    | 18      | 2      | 19//   |
| 21     | 119    | 24              | 4J<br>50  | 76        | 101              | 111      |     |   |   |   |    | 10      | 2      | 19//   |
| 142    | 100    | 25              | 70<br>70  | 50        | 90<br>97         | 103      |     |   |   |   |    | 10      | 2      | 1977   |
| 114    | 112    | 2J<br>26        | 40        | 72        | 07               | 100      |     |   |   |   |    | 19      | 3      | 1977   |
| 136    | 102    | 20              | 4J<br>/C  | ני<br>ניד | 77               | 106      |     |   |   |   |    | 10      | 2      | 19//   |
| 68     | 100    | 20<br>25        | 4J<br>25  | 74<br>57  | 74<br>70         | 104      |     |   |   |   |    | 18      | י<br>ב | 19//   |
| G1     | 105    | 22              | 20<br>20  | J6<br>57  | /0<br>07         | 77<br>05 |     |   |   |   |    | 20      | 2      | 1977   |
| 137    | 112    | دی<br>۲1        | 4U<br>4E  | ע<br>דר   | 04<br>04         | 107      |     |   |   |   |    | 20      | 2      | 1977   |
| 134    | 110    | 41<br>77        | 40        | 73        | 00               | 107      | 111 |   |   |   |    | 19      | 5      | 1977   |
| -<br>7 | 110    | 41<br>24        | 47<br>20  | 20        | 00               | 104      | 111 |   |   |   |    | 18      | 6      | 1976   |
| 4      | 105    | <b>24</b><br>97 | 30        | 22        | 5U<br>70         | 101      | 111 |   |   |   |    | 1/      | b      | 1970   |
| 03     | 102    | 20              | 41        | 21        | /0               | 7/       | 103 |   |   |   |    | 19      | 6      | 19/6   |

• .

| 42       | 113  | 23       | 38         | 54            | 78       | 100 | 109 |     |     |  | 19 | 6      | 1976 |
|----------|------|----------|------------|---------------|----------|-----|-----|-----|-----|--|----|--------|------|
| 29       | 119  | 25       | 35         | 52            | 83       | 106 | 116 |     |     |  | 19 | 6      | 1976 |
| 99       | 111  | 21       | 34         | 49            | 73       | 98  | 108 |     |     |  | 19 | 6      | 1976 |
| 87       | 113  | 27       | 40         | 54            | 82       | 102 | 111 |     |     |  | 19 | 6      | 1976 |
| 160      | 114  | 31       | 50         | 73            | 94       | 106 | 112 |     |     |  | 19 | 6      | 1976 |
| 100      | 113  | 22       | 36         | 57            | 77       | 98  | 110 |     |     |  | 17 | 6      | 1976 |
| 128      | 119  | 30       | 52         | 73            | 95       | 110 | 117 |     |     |  | 18 | 6      | 1976 |
| 135      | 112  | 22       | 47         | 66            | 80       | 101 | 110 |     |     |  | 16 | 6      | 1976 |
| 5        | 113  | 21       | 36         | 52            | 76       | 100 | 109 |     |     |  | 19 | 6      | 1976 |
| 37       | 118  | 21       | 33         | 52            | 82       | 104 | 114 |     |     |  | 19 | 6      | 1976 |
| 123      | 118  | 25       | 37         | 52            | 89       | 105 | 115 |     |     |  | 21 | 6      | 1976 |
| 140      | 117  | 25       | 38         | 54            | 79       | 103 | 114 |     |     |  | 17 | 6      | 1976 |
| 47       | 115  | 22       | 33         | 54            | 84       | 104 | 111 |     |     |  | 19 | 6      | 1976 |
| 95       | 115  | 21       | - 34       | 50            | 77       | 100 | 110 |     |     |  | 19 | 6      | 1976 |
| 60       | 109  | 27       | 44         | 58            | 76       | 95  | 104 |     |     |  | 20 | 6      | 1976 |
| 137      | 118  | 26       | 39         | 55            | 72       | 91  | 109 |     |     |  | 21 | 6      | 1976 |
| 96       | 119  | 27       | 42         | 61            | 82       | 104 | 114 |     |     |  | 18 | 6      | 1976 |
| 152      | 110  | 21       | 47         | 69            | 88       | 102 | 107 |     |     |  | 18 | 6      | 1976 |
| 3        | 111  | 24       | 34         | 47            | 77       | 99  | 107 |     |     |  | 19 | 6      | 1976 |
| 121      | 112  | 27       | 38         | 56            | 82       | 100 | 108 |     |     |  | 19 | 6      | 1976 |
| 139      | 112  | 25       | 45         | 35            | 64       | 84  | 99  |     |     |  | 18 | 6      | 1976 |
| 30       | 115  | 25       | 3/         | 51            | /6       | 103 | 111 |     |     |  | 17 | 6      | 1976 |
| 70       | 108  | 23       | 30         | 55            | 85       | 101 | 107 |     |     |  | 19 | 6      | 1976 |
| 24       | 110  | 23       | 34         | 40            | //       | 99  | 108 |     |     |  | 18 | 6      | 1976 |
| 24<br>02 | 119  | 20       | -38        | 50            | 80       | 99  | 113 |     |     |  | 18 | 6      | 1976 |
| 93<br>07 | 100  | 21       | .34<br>26  | 52            | /5       | 88  | 108 |     |     |  | 20 | 6      | 1976 |
| 124      | 112  | 20       | 30         | 50            | /3       | 98  | 107 |     |     |  | 18 | 6      | 19/6 |
| 129      | 113  | 20       | 34<br>27   | 33            | 04       | 100 | 111 |     |     |  | 18 | 5      | 19/6 |
| 120      | 120  | 20<br>27 | .n         | 54            | రు<br>05 | 103 | 110 |     |     |  | 17 | 6      | 1976 |
| 150      | 1120 | 21       | 40         | - DC<br>- 1-1 | 00<br>70 | 100 | 11/ |     |     |  | 19 | D<br>C | 1970 |
| 66       | 100  | 24       | 26         | 47/<br>51     | 73       | 100 | 107 |     |     |  | 10 | 0<br>2 | 1970 |
| 97       | 115  | 21       | 52         | 70            | /4<br>87 | 00  | 11/ |     |     |  | 10 | 6      | 1970 |
| 82       | 114  | 22       | 36         | 51            | 70       | 101 | 117 |     |     |  | 10 | 6      | 1970 |
| 71       | 121  | 28       | <u>6</u> 2 | 58            | 78       | 100 | 112 |     |     |  | 10 | 6      | 1970 |
| 45       | 117  | 21       | 34         | 44            | 74       | 101 | 112 |     |     |  | 17 | 6      | 1976 |
| 120      | 115  | 29       | 44         | 70            | 89       | 106 | 113 |     |     |  | 17 | 6      | 1976 |
| 105      | 121  | 28       | 41         | 53            | 74       | 94  | 112 | 119 |     |  | 19 | 7      | 1975 |
| 103      | 109  | 27       | 48         | 70            | 88       | 97  | 103 | 107 |     |  | 19 | 7      | 1975 |
| 85       | 115  | 23       | 35         | 53            | 78       | 96  | 108 | 113 |     |  | 18 | 7      | 1975 |
| 126      | 113  | 27       | 51         | 73            | 91       | 103 | 112 | 116 |     |  | 18 | 7      | 1975 |
| 131      | 121  | 23       | 33         | 48            | 69       | 91  | 99  | 118 |     |  | 18 | 7      | 1975 |
| 77       | 123  | 27       | 40         | 58            | 88       | 102 | 110 | 118 |     |  | 18 | 7      | 1975 |
| 52       | 118  | 25       | 40         | 62            | 83       | 101 | 110 | 116 |     |  | 18 | 7      | 1975 |
| 9        | 127  | 28       | 46         | 68            | 94       | 110 | 118 | 123 | 126 |  | 20 | 8      | 1974 |
| 92       | 119  | 26       | 42         | 58            | 79       | 98  | 107 | 112 | 116 |  | 18 | 8      | 1974 |
| 14       | 124  | 19       | 33         | 46            | 72       | 93  | 111 | 115 | 119 |  | 18 | 8      | 1974 |
| 6        | 126  | 27       | 40         | 61            | 87       | 108 | 117 | 121 | 123 |  | 21 | 8      | 1974 |
| 111      | 118  | 24       | 44         | 69            | 87       | 100 | 108 | 112 | 117 |  | 16 | 8      | 1974 |
| 23       | 121  | 22       | 34         | 58            | 78       | 96  | 104 | 111 | 116 |  | 18 | 8      | 1974 |

.
| 61  | 112         | 27       | 41        | 64 | 78       | 68           | 97          | 102 | 110 |     |     | 18 | 8  | 1974 |
|-----|-------------|----------|-----------|----|----------|--------------|-------------|-----|-----|-----|-----|----|----|------|
| 116 | 118         | 23       | 40        | 57 | 80       | 95           | 103         | 108 | 114 |     |     | 18 | 8  | 1974 |
| 40  | 120         | 25       | 42        | 56 | -77      | 94           | 103         | 110 | 117 |     |     | 19 | 8  | 1974 |
| 112 | 120         | 30       | 42        | 57 | 63       | 100          | 110         | 117 | 120 |     |     | 19 | 8  | 1974 |
| 53  | 125         | 23       | 41        | 70 | - 96     | 112          | 119         | 122 | 123 |     |     | 20 | 8  | 1974 |
| 13  | 123         | 23       | 37        | 58 | 84       | 99           | 108         | 116 | 120 |     |     | 20 | 8  | 1974 |
| 51  | 119         | 26       | 38        | 53 | 73       | 91           | 101         | 110 | 116 |     |     | 20 | 8  | 1974 |
| 7   | 120         | 25       | 44        | 60 | 84       | 100          | 109         | 114 | 118 |     |     | 19 | 8  | 1974 |
| 10  | 117         | 27       | 40        | 54 | 76       | 93           | 100         | 103 | 108 |     |     | 18 | 8  | 1974 |
| 43  | 121         | 25       | 45        | 75 | 98       | 109          | 115         | 118 | 120 |     |     | 17 | 8  | 1974 |
| 78  | 124         | 22       | 36        | 55 | 79       | 97           | 106         | 116 | 120 | 122 |     | 17 | 9  | 1973 |
| 55  | 119         | 27       | 42        | 57 | 78       | 93           | 102         | 110 | 116 | 118 |     | 19 | 9  | 1973 |
| 151 | 122         | 21       | 40        | 64 | 87       | 101          | 106         | 112 | 116 | 119 |     | 18 | 9  | 1973 |
| 88  | 118         | 24       | 40        | 61 | 61       | 97           | 104         | 111 | 114 | 116 |     | 19 | 9  | 1973 |
| 119 | 121         | 27       | 39        | 48 | 87       | 99           | 108         | 114 | 116 | 119 |     | 19 | 9  | 1973 |
| 74  | 119         | 22       | 33        | 57 | 82       | 97           | 106         | 111 | 115 | 118 |     | 19 | 9  | 1973 |
| 76  | 129         | 22       | 41        | 52 | 62       | 100          | 112         | 119 | 123 | 127 |     | 18 | 9  | 1973 |
| 11  | 119         | 25       | 37        | 53 | 75       | 91           | 101         | 107 | 112 | 116 |     | 18 | 9  | 1973 |
| 17  | 125         | 27       | 40        | 55 | 77       | 94           | 104         | 112 | 117 | 122 |     | 20 | 9  | 1973 |
| 118 | 117         | 22       | 34        | 52 | 79       | 97           | 107         | 111 | 113 | 115 |     | 18 | 9  | 1973 |
| 81  | 125         | 23       | 35        | 55 | 84       | 103          | 114         | 120 | 123 | 125 |     | 18 | 9  | 1973 |
| 1   | 125         | 28       | 40        | 55 | 77       | 95           | 106         | 116 | 119 | 123 |     | 19 | 9  | 1973 |
| 8   | 115         | 25       | 40        | 54 | 76       | 91           | 100         | 105 | 110 | 103 |     | 17 | 9  | 1973 |
| 67  | 124         | 22       | 39        | 55 | 81       | 97           | 107         | 113 | 117 | 120 |     | 18 | 9  | 1973 |
| 156 | 137         | 29       | 44        | 60 | 92       | 111          | 121         | 127 | 132 | 136 |     | 20 | 9  | 1973 |
| 90  | 122         | 30       | 42        | 56 | 77       | 96           | 106         | 112 | 116 | 120 |     | 17 | 9  | 1973 |
| 35  | 117         | 23       | 34        | 52 | 82       | 100          | 110         | 110 | 113 | 115 |     | 20 | 9  | 1973 |
| 101 | 124         | 30       | 40        | 59 | 68       | 94           | 103         | 110 | 115 | 121 |     | 19 | 9  | 1973 |
| 154 | 115         | 26       | 40        | 57 | 82       | 95           | 104         | 109 | 112 | 114 |     | 18 | 9  | 1973 |
| 117 | 128         | 26       | 41        | 55 | 87       | 106          | 115         | 121 | 124 | 127 |     | 19 | 9  | 1973 |
| 159 | 120         | 28       | 43        | 5/ | 82       | 98           | 107         | 113 | 116 | 119 |     | 18 | 9  | 1973 |
| 25  | 110         | 20<br>27 | 37<br>20  | 57 | 02<br>73 | 103          | 114<br>06   | 120 | 125 | 128 |     | 17 | 9  | 1973 |
| 20  | 126         | 27       | 41        | 60 | 73<br>87 | 101          | 100         | 113 | 110 | 105 |     | 10 | 2  | 1973 |
| 79  | 112         | 25       | 35        | 54 | 74       | 92           | 102         | 109 | 111 | 112 |     | 16 | q  | 1071 |
| 108 | 125         | 28       | 44        | 59 | 85       | 101          | 112         | 119 | 122 | 124 |     | 19 | ģ  | 1973 |
| 39  | 121         | 20       | 33        | 59 | 86       | 101          | 109         | 114 | 118 | 120 |     | 20 | ģ  | 1973 |
| 66  | 121         | 28       | 41        | 59 | 83       | 97           | 105         | 110 | 113 | 118 |     | 19 | ģ  | 1973 |
| 34  | 118         | 20       | 35        | 45 | 73       | 91           | 104         | 110 | 114 | 117 |     | 19 | 9  | 1973 |
| 62  | 117         | 25       | 39        | 60 | 82       | 94           | 99          | 104 | 107 | 113 |     | 18 | 9  | 1973 |
| 36  | 114         | 25       | 37        | 57 | 61       | 95           | 103         | 108 | 112 | 114 |     | 19 | 9  | 1973 |
| 109 | 123         | 24       | <u>41</u> | 64 | 84       | 101          | 109         | 115 | 118 | 122 |     | 18 | 9  | 1973 |
| 98  | 121         | 30       | 48        | 61 | 61       | 98           | 107         | 113 | 115 | 119 | 120 | 18 | 10 | 1972 |
| 104 | 121         | 25       | 36        | 56 | 84       | 98           | 107         | 111 | 115 | 118 | 120 | 21 | 10 | 1972 |
| 56  | 124         | 31       | 46        | 62 | 80       | 1 <b>0</b> 0 | 108         | 114 | 117 | 121 | 123 | 20 | 10 | 1972 |
| 65  | 115         | 25       | 44        | 52 | 60       | 81           | 97          | 108 | 110 | 112 | 114 | 18 | 10 | 1972 |
| 86  | 125         | 30       | 41        | 57 | 78       | 97           | 108         | 112 | 115 | 118 | 122 | 18 | 10 | 1972 |
| 127 | 123         | 27       | 40        | 56 | 78       | 94           | 1 <b>02</b> | 110 | 113 | 118 | 122 | 20 | 10 | 1972 |
| 22  | 132         | 22       | 39        | 63 | 92       | 106          | 115         | 124 | 126 | 129 | 131 | 21 | 10 | 1972 |
| 102 | 1 <b>25</b> | 23       | 52        | 78 | 97       | 107          | 112         | 116 | 120 | 123 | 125 | 19 | 10 | 1972 |

| Ī.  | 116.5 | 25.0 | 40.7 | <u>59</u> .5 | 83.6 | 99.8      | 107.8 | 112.6 | 116.2 | 118.6 | 120.8       | 122.2 | 18.5 | 7.15 |      |
|-----|-------|------|------|--------------|------|-----------|-------|-------|-------|-------|-------------|-------|------|------|------|
| 41  | 130   | 28   | 42   | 57           | 87   | 105       | 113   | 118   | 123   | 126   | 1 <b>28</b> | 129   | 19   | 11   | 1971 |
| 16  | 126   | 28   | 51   | 65           | 85   | <b>99</b> | 108   | 112   | 115   | 119   | 121         | 124   | 19   | 11   | 1971 |
| 4   | 116   | 19   | 32   | 41           | 52   | 67        | 87    | 98    | 104   | 108   | 112         | 116   | 18   | 11   | 1971 |
| 49  | 122   | 24   | 38   | 51           | 75   | 92        | 103   | 109   | 112   | 114   | 117         | 120   | 19   | 11   | 1971 |
| 28  | 127   | 23   | 38   | - 54         | 69   | 92        | 109   | 114   | 118   | 122   | 125         |       | 19   | 10   | 1972 |
| 57  | 117   | 25   | 35   | 52           | 72   | 93        | 103   | 108   | 112   | 114   | 116         |       | 19   | 10   | 1972 |
| 12  | 126   | 26   | 37   | 56           | 68   | 87        | 100   | 110   | 117   | 121   | 125         |       | 18   | 10   | 1972 |
| 26  | 120   | 23   | 32   | 53           | 74   | 91        | 99    | 107   | 111   | 105   | 119         |       | 19   | 10   | 1972 |
| 46  | 119   | 21   | 32   | 54           | 75   | 90        | 99    | 108   | 112   | 115   | 118         |       | 19   | 10   | 1972 |
| 33  | 119   | 25   | 34   | 52           | 78   | 94        | 103   | 109   | 112   | 116   | 118         |       | 20   | 10   | 1972 |
| 50  | 116   | 21   | 34   | 59           | 82   | 96        | 104   | 108   | 111   | 113   | 115         |       | 18   | 10   | 1972 |
| 110 | 126   | 24   | 48   | 76           | 95   | 107       | 114   | 117   | 120   | 123   | 125         |       | 20   | 10   | 1972 |
| 18  | 122   | 26   | 39   | - 53         | 82   | - 98      | 108   | 113   | 117   | 119   | 1 <b>21</b> |       | 17   | 10   | 1972 |

Granada Cruise TILLAMOOK HEAD N = 167 Depth: 92 ■

|          |        |          |           |          |          | ANN       | ΨLΙ |   |   |   |    |    |         |        |        |
|----------|--------|----------|-----------|----------|----------|-----------|-----|---|---|---|----|----|---------|--------|--------|
| N        | Height | 1        | 2         | 3        | 4        | 5         | 6   | 7 | 8 | 9 | 10 | 11 | 12 Ribs | Age    | Cohort |
| 120      | 105    | 23       | 65        | 88       | 96       |           |     |   |   |   |    |    | 18      | 4      | 1978   |
| 61       | 105    | 24       | 45        | 72       | 94       |           |     |   |   |   |    |    | 18      | 4      | 1978   |
| 140      | 101    | 23       | 43        | 68       | 88       |           |     |   |   |   |    |    | 18      | 4      | 1978   |
| 60       | 104    | 27       | 44        | 65       | 88       | 98        |     |   |   |   |    |    | 19      | 5      | 1977   |
| 13       | 108    | 24       | 42        | 72       | 95       | 105       |     |   |   |   |    |    | 18      | 5      | 1977   |
| 90       | 106    | 28       | 46        | 70       | 92       | 101       |     |   |   |   |    |    | 20      | 5      | 1977   |
| 34       | 110    | 26       | 44        | 71       | 95       | 108       |     |   |   |   |    |    | 18      | 5      | 1977   |
| 6        | 105    | 25       | 38        | 59       | 88       | 98        |     |   |   |   |    |    | 19      | 5      | 1977   |
| 40       | 110    | 26       | 45        | 68       | 100      | 108       |     |   |   |   |    |    | 18      | 5      | 1977   |
| 94       | 105    | 23       | 40        | 60       | 82       | 99        |     |   |   |   |    |    | 21      | 5      | 1977   |
| 126      | 111    | 26       | 46        | 58       | 100      | 108       |     |   |   |   |    |    | 19      | 5      | 1977   |
| 150      | 116    | 25       | 44        | 63       | 91       | 100       |     |   |   |   |    |    | 21      | 5      | 1977   |
| 147      | 96     | 25       | 47        | 63       | 81       | 91        |     |   |   |   |    |    | 19      | 5      | 1977   |
| 149      | 105    | 24       | 47        | 69       | 91       | 102       |     |   |   |   |    |    | 19      | 5      | 1977   |
| 159      | 107    | 23       | 47        | 72       | 96       | 104       |     |   |   |   |    |    | 17      | 5      | 1977   |
| 117      | 110    | 25       | 41        | 61       | 82       | 92        |     |   |   |   |    |    | 18      | 5      | 1977   |
| 136      | 113    | 29       | 42        | 62       | 85       | 102       |     |   |   |   |    |    | 19      | 5      | 1977   |
| 48       | 109    | 32       | 50        | 70       | 91       | 104       |     |   |   |   |    |    | 19      | 5      | 1977   |
| 122      | 111    | 28       | 42        | 67       | 89       | 102       |     |   |   |   |    |    | 19      | 5      | 1977   |
| 62       | 106    | 23       | 43        | 60       | 81       | 99        |     |   |   |   |    |    | 20      | 5      | 1977   |
| 151      | 104    | 23       | 46        | 68       | 86       | 95        |     |   |   |   |    |    | 17      | 5      | 1977   |
| 35       | 113    | 28       | 49        | 72       | 96       | 108       |     |   |   |   |    |    | 20      | 5      | 1977   |
| 16       | 110    | 19       | 32        | 51       | 77       | 97        | 106 |   |   |   |    |    | 20      | 6      | 1976   |
| 12       | 115    | 28       | 42        | 57       | 75       | 93        | 106 |   |   |   |    |    | 19      | 6      | 1976   |
| 87       | 107    | 33       | 56        | 69       | 86       | 99        | 106 |   |   |   |    |    | 18      | 6      | 1976   |
| 109      | 102    | 24       | 41        | 66       | 87       | 95        | 100 |   |   |   |    |    | 18      | 6      | 1976   |
| 131      | 107    | 28       | 45        | 70       | 82       | 94        | 103 |   |   |   |    |    | 20      | 6      | 1976   |
| 76       | 117    | 31       | 45        | 60       | 76       | 97        | 111 |   |   |   |    |    | 19      | 6      | 1976   |
| 43       | 105    | 30       | 46        | 62       | 75       | 94        | 101 |   |   |   |    |    | 18      | 6      | 1976   |
| 148      | 111    | 23       | 41        | 66       | 84       | 95        | 108 |   |   |   |    |    | 18      | 6      | 1976   |
| 64       | 114    | 25       | 45        | 67       | 85       | 100       | 111 |   |   |   |    |    | 19      | 6      | 1976   |
| 38       | 111    | 31       | 4/        | 66<br>44 | 80       | 102       | 109 |   |   |   |    |    | 1/      | 6      | 1976   |
| 135      | 107    | 20       | 20        | 65       | 00<br>02 | 104       | 109 |   |   |   |    |    | 10      | 6      | 1970   |
| 90       | 110    | 21       | 27        | 7/       | 04       | 102       | 100 |   |   |   |    |    | 10      | 6      | 1970   |
| 66       | 108    | 29       | 40<br>47  | 69       | 90<br>92 | 04        | 102 |   |   |   |    |    | 18      | 6      | 1976   |
| 50       | 112    | 20       | 44        | 64       | 95       | 102       | 102 |   |   |   |    |    | 10      | 6      | 1976   |
| 101      | 106    | 25       | ۲۳<br>۸1  | 60       | 81<br>81 | 00        | 105 |   |   |   |    |    | 10      | 6      | 1976   |
| 47       | 112    | 20       | 42        | 65       | 00       | 106       | 110 |   |   |   |    |    | 19      | 6      | 1976   |
| 47       | 107    | 47<br>70 | 44<br>167 | 05<br>65 | 00<br>Ø1 | 104       | 103 |   |   |   |    |    | 10      | 0<br>A | 1076   |
| 74       | 107    | 40<br>27 | 47        | 62       | 91       | 07.<br>22 | 110 |   |   |   |    |    | 10      | 6      | 1076   |
| 36       | 100    | 21<br>75 |           | 60       | 02<br>02 | 24<br>00  | 106 |   |   |   |    |    | 10      | 6      | 1076   |
| 30<br>22 | 112    | 40<br>17 | -10<br>60 | 00       | 93<br>01 | 77        | 110 |   |   |   |    |    | 17      | ں<br>د | 1076   |
| د2       | 114    | 47       | 02        | 6U       | 31       | 101       | 110 |   |   |   |    |    | 17      | 0      | 12/0   |

.

| 132 | 106 | 27 | 44 | 67 | 81 | 94  | 103       |     |     |  | 17         | 6 | 1976 |
|-----|-----|----|----|----|----|-----|-----------|-----|-----|--|------------|---|------|
| 98  | 101 | 21 | 38 | 60 | 83 | 91  | <b>98</b> |     |     |  | 19         | 6 | 1976 |
| 49  | 107 | 25 | 41 | 53 | 75 | 96  | 103       |     |     |  | 18         | 6 | 1976 |
| 79  | 102 | 26 | 48 | 66 | 84 | 95  | 101       |     |     |  | 23         | 6 | 1976 |
| 7   | 115 | 30 | 45 | 64 | 79 | 89  | 99        | 108 |     |  | 18         | 7 | 1975 |
| 50  | 111 | 23 | 46 | 66 | 82 | 92  | 105       | 110 |     |  | 19         | 7 | 1975 |
| 96  | 115 | 25 | 41 | 55 | 72 | 86  | 98        | 103 |     |  | 19         | 7 | 1975 |
| 74  | 114 | 21 | 60 | 79 | 90 | 98  | 102       | 110 |     |  | 18         | 7 | 1975 |
| 112 | 110 | 25 | 48 | 66 | 79 | 88  | 109       | 111 |     |  | 19         | 7 | 1975 |
| 110 | 115 | 28 | 45 | 68 | 93 | 100 | 109       | 114 |     |  | 17         | 7 | 1975 |
| 56  | 106 | 26 | 48 | 67 | 83 | 92  | 100       | 105 |     |  | 18         | 7 | 1975 |
| 27  | 118 | 31 | 52 | 76 | 92 | 103 | 109       | 114 |     |  | 20         | 7 | 1975 |
| 77  | 113 | 25 | 45 | 65 | 81 | 92  | 101       | 109 |     |  | 20         | 7 | 1975 |
| 39  | 114 | 30 | 49 | 59 | 86 | 97  | 106       | 112 |     |  | 19         | 7 | 1975 |
| 144 | 117 | 26 | 45 | 64 | 82 | 94  | 106       | 114 |     |  | 18         | 7 | 1975 |
| 104 | 116 | 26 | 49 | 64 | 78 | 92  | 103       | 112 |     |  | 18         | 7 | 1975 |
| 115 | 114 | 28 | 55 | 71 | 87 | 97  | 105       | 117 |     |  | 18         | 7 | 1975 |
| 85  | 114 | 30 | 42 | 56 | 72 | 92  | 107       | 113 |     |  | 17         | 7 | 1975 |
| 127 | 116 | 29 | 43 | 63 | 81 | 94  | 103       | 112 |     |  | 19         | 7 | 1975 |
| 155 | 112 | 31 | 54 | 72 | 88 | 97  | 106       | 110 |     |  | 18         | 7 | 1975 |
| 93  | 108 | 20 | 36 | 54 | 68 | 86  | 100       | 106 |     |  | 19         | 7 | 1975 |
| 114 | 116 | 21 | 41 | 60 | 73 | 95  | 108       | 115 |     |  | 17         | 7 | 1975 |
| 166 | 108 | 24 | 40 | 58 | 73 | 89  | 103       | 106 |     |  | 18         | 7 | 1975 |
| 29  | 116 | 25 | 47 | 67 | 84 | 93  | 100       | 109 |     |  | 19         | 7 | 1975 |
| 1   | 116 | 24 | 43 | 60 | 78 | 90  | 104       | 111 |     |  | 17         | 7 | 1975 |
| 152 | 109 | 25 | 43 | 60 | 75 | 88  | 91        | 96  |     |  | 19         | 7 | 1975 |
| 157 | 113 | 24 | 40 | 62 | 80 | 91  | 102       | 109 |     |  | 18         | 7 | 1975 |
| 84  | 116 | 28 | 51 | 72 | 87 | 98  | 104       | 112 |     |  | 20         | 7 | 1975 |
| 139 | 120 | 28 | 50 | 71 | 87 | 98  | 105       | 113 |     |  | 20         | 7 | 1975 |
| 54  | 107 | 24 | 47 | 65 | 80 | 90  | 98        | 102 | 105 |  | 17         | 8 | 1974 |
| 146 | 109 | 30 | 48 | 65 | 80 | 88  | 95        | 100 | 107 |  | 19         | 8 | 1974 |
| 21  | 117 | 27 | 48 | 71 | 85 | 95  | 102       | 109 | 115 |  | 18         | 8 | 1974 |
| 24  | 119 | 28 | 40 | 52 | 67 | 84  | 92        | 106 | 114 |  | 19         | 8 | 1974 |
| 125 | 116 | 31 | 44 | 60 | 76 | 90  | 101       | 108 | 113 |  | <b>2</b> 1 | 8 | 1974 |
| 22  | 114 | 21 | 43 | 62 | 80 | 89  | 99        | 105 | 111 |  | 17         | 8 | 1974 |
| 2   | 120 | 25 | 46 | 69 | 84 | 94  | 105       | 112 | 118 |  | 17         | 8 | 1974 |
| 8   | 112 | 28 | 46 | 67 | 83 | 93  | 102       | 107 | 110 |  | 18         | 8 | 1974 |
| 168 | 117 | 27 | 49 | 71 | 86 | 96  | 104       | 109 | 113 |  | 19         | 8 | 1974 |
| 75  | 111 | 20 | 38 | 65 | 79 | 90  | 97        | 104 | 109 |  | 18         | 8 | 1974 |
| 161 | 114 | 27 | 40 | 55 | 77 | 91  | 96        | 103 | 109 |  | 20         | 8 | 1974 |
| 57  | 115 | 28 | 46 | 66 | 82 | 93  | 102       | 107 | 111 |  | 19         | 8 | 1974 |
| 63  | 112 | 27 | 49 | 67 | 84 | 95  | 102       | 106 | 110 |  | 18         | 8 | 1974 |
| 121 | 122 | 31 | 51 | 69 | 85 | 96  | 104       | 112 | 119 |  | 17         | 8 | 1974 |
| 32  | 112 | 24 | 46 | 63 | 78 | 91  | 99        | 105 | 110 |  | 17         | 8 | 1974 |
| 163 | 112 | 24 | 45 | 71 | 86 | 95  | 99        | 105 | 108 |  | 17         | 8 | 1974 |
| 51  | 117 | 24 | 41 | 59 | 72 | 89  | 103       | 112 | 115 |  | 17         | 8 | 1974 |
| 142 | 115 | 26 | 45 | 66 | 82 | 93  | 102       | 108 | 114 |  | 20         | 8 | 1974 |
| 81  | 102 | 23 | 38 | 53 | 70 | 83  | 92        | 103 | 110 |  | 20         | 8 | 1974 |
| 156 | 113 | 25 | 47 | 64 | 79 | 90  | 96        | 103 | 109 |  | 18         | 8 | 1974 |
| 73  | 124 | 26 | 40 | 53 | 78 | 96  | 106       | 115 | 121 |  | 19         | 8 | 1974 |

| 42               | 118 | 26       | 50       | 67               | 84       | 95         | 103      | 107 | 112 |     |   | 17  | 8      | 1974 |
|------------------|-----|----------|----------|------------------|----------|------------|----------|-----|-----|-----|---|-----|--------|------|
| 107              | 124 | 26       | 52       | 76               | 97       | 106        | 113      | 117 | 122 |     |   | 19  | 8      | 1974 |
| 1 <del>6</del> 0 | 116 | 25       | 50       | 69               | 85       | 94         | 103      | 108 | 114 |     |   | 21  | 8      | 1974 |
| 82               | 110 | 28       | 47       | 63               | 79       | 89         | 95       | 101 | 105 |     |   | 18  | 8      | 1974 |
| 20               | 113 | 27       | 46       | 65               | 80       | 91         | 100      | 106 | 114 |     | • | 19  | 8      | 1974 |
| 28               | 116 | 22       | 42       | 63               | 81       | 90         | 100      | 105 | 113 |     |   | 18  | 8      | 1974 |
| 113              | 113 | 24       | 46       | 62               | 79       | 90         | 96       | 102 | 112 |     |   | 18  | 8      | 1974 |
| 119              | 116 | 34       | 49       | 72               | 86       | 98         | 104      | 110 | 114 |     |   | 18  | Ř      | 1974 |
| 67               | 113 | 25       | 46       | 63               | 80       | 89         | 97       | 104 | 112 |     |   | 18  | Å      | 1976 |
| 65               | 112 | 26       | 47       | 66               | 80       | 91         | 103      | 109 | 111 |     |   | 19  | Å      | 1974 |
| 134              | 108 | 24       | 41       | 68               | 86       | 94         | 101      | 104 | 107 |     |   | 17  | Ř      | 1974 |
| 11               | 112 | 28       | 48       | 68               | 84       | 95         | 102      | 106 | 110 |     |   | 18  | g      | 1074 |
| 78               | 114 | 23       | 51       | 70               | 85       | 96         | 103      | 107 | 112 |     |   | 17  | 0      | 1074 |
| 88               | 115 | 24       | 51       | 71               | 78       | 98         | 105      | 110 | 114 |     |   | 19  | A      | 1974 |
| 26               | 113 | 26       | 41       | 60               | 77       | 88         | 95       | 109 | 106 |     |   | 17  | 0      | 1074 |
| 116              | 112 | 22       | 42       | 64               | 79       | 88         | 97       | 101 | 105 | 109 |   | 19  | 0<br>0 | 1073 |
| 158              | 112 | 28       | 42       | 62               | AN       | 94         | 100      | 107 | 107 | 110 |   | 10  | 3      | 1973 |
| 118              | 109 | 20       | 35       | 64               | 84       | 92         | 97       | 101 | 104 | 100 |   | 20  | 9      | 19/3 |
| 3                | 122 | 23       | วต       | 50               | 72       | 84         | 95       | 102 | 112 | 110 |   | 20  | y<br>0 | 1973 |
| 44               | 118 | 28       | 45       | 50               | 70       | 01         | 00       | 105 | 114 | 119 |   | 17  | 9      | 1973 |
| 47<br>A7         | 114 | 25       | 44       | 55               | 70       | 0C         | 77<br>03 | 100 | 104 | 115 |   | 19  | 9      | 1973 |
| 165              | 120 | 2-3      | 47<br>67 | 55               | 0/       | 05         | 100      | 100 | 104 | 110 |   | 20  | 9      | 1973 |
| 59               | 110 | 26       | ۲/<br>۵۸ | 66               | 04       | 7-)<br>0-) | 100      | 100 | 112 | 11/ |   | 18  | 9      | 1973 |
|                  | 110 | 20       | 40       | 67               | 70       | 94         | 101      | 100 | 112 | 011 |   | 19  | 9      | 1973 |
| 106              | 117 | 23       | 4.5      | 27               | /0<br>00 | 93         | 100      | 100 | 111 | 113 |   | 18  | 9      | 19/3 |
| 55               | 117 | 24       | 40       | / <u>4</u><br>40 | 00<br>01 | 90         | 102      | 100 | 110 | 115 |   | 18  | 9      | 1973 |
|                  | 117 | 40<br>26 | 40       | 60               | 83<br>70 | 94         | 100      | 107 | 112 | 115 |   | 17  | 9      | 1973 |
| 175              | 115 | 20       | 40       | 57               | 70       | 91         | 98       | 105 | 110 | 113 |   | 19  | 9      | 1973 |
| 135              | 110 | <i>ພ</i> | 43       | 3/               | /1       | 90         | 99       | 104 | 109 | 113 |   | 17  | 9      | 1973 |
| 77               | 110 | 27       | 40       | 04               | 88       | 99         | 10/      | 112 | 115 | 117 |   | 18  | 9      | 1973 |
| 140              | 110 | 20       | 41       | 30               | /1       | 84         | 94       | 100 | 104 | 107 |   | 19  | 9      | 1973 |
| 143              | 113 | 20       | 44       | 59               | /4       | 92         | 100      | 105 | 107 | 110 |   | 17  | 9      | 1973 |
| 141              | 114 | 20       | 44       | 04<br>41         | 79       | 90         | 9/       | 105 | 111 | 113 |   | 19  | 9      | 1973 |
| 68               | 118 | 20       | 44       | 55               | 81<br>75 | 93<br>RO   | 101      | 106 | 111 | 116 |   | 18  | 9      | 1973 |
| 18               | 112 | 27       | 47       | 64               | 79       | 89         | 99       | 100 | 108 | 110 |   | 20  | 9      | 1973 |
| 92               | 111 | 24       | 44       | 63               | 78       | 88         | 98       | 102 | 106 | 109 |   | 19  | 9      | 19/3 |
| 137              | 113 | 24       | 38       | 58               | 65       | 82         | 93       | 101 | 106 | 112 |   | 17  | ,<br>0 | 1073 |
| 80               | 118 | 28       | 48       | 70               | 85       | 94         | 104      | 110 | 114 | 116 |   | 17  | 9      | 1973 |
| 70               | 114 | 24       | 43       | 62               | 78       | 87         | 95       | 104 | 109 | 114 |   | 19  | à      | 1973 |
| 138              | 116 | 29       | 43       | 57               | 73       | 87         | 97       | 103 | 107 | 113 |   | 20  | á      | 1973 |
| 31               | 116 | 29       | 45       | 66               | 84       | 93         | 101      | 105 | 110 | 115 |   | 18  | ģ      | 1973 |
| 97               | 115 | 25       | 45       | 63               | 79       | 91         | 98       | 103 | 109 | 112 |   | 18  | á      | 1973 |
| 25               | 116 | 25       | ·48      | 72               | 85       | 94         | 100      | 107 | 111 | 115 |   | 19  | á      | 1073 |
| 91               | 117 | 22       | 44       | 72               | 88       | 97         | 102      | 108 | 112 | 116 |   | 17  | 9      | 1073 |
| 45               | 118 | 25       | 42       | 67               | 82       | 92         | 99       | 105 | 112 | 116 |   | 18  | ģ      | 1973 |
| 164              | 123 | 27       | 49       | 66               | 82       | 92         | 101      | 108 | 116 | 121 |   | 20  | 9      | 1973 |
| 4                | 112 | 25       | 46       | 63               | 75       | 85         | 94       | 101 | 107 | 111 |   | 19  | 9      | 1973 |
| 9                | 112 | 21       | 44       | 62               | 77       | 89         | 99       | 103 | 107 | 111 |   | 19  | 9      | 1973 |
| 162              | 115 | 24       | 45       | 62               | 78       | 90         | 98       | 104 | 110 | 114 |   | 17  | 9      | 1973 |
| 115              | 117 | 32       | 46       | 62               | 77       | 89         | 98       | 105 | 110 | 115 |   | 19  | 9      | 1973 |
|                  |     |          |          |                  |          |            |          |     |     |     |   | • / |        |      |

| 123      | 3 118 | 9 2  | 7 5: | 1 7( | 9 8: | 2 93 | 3 101         | 108   | 113   | 3 115 | 5     |       |     | 18   | 3 9      | 1973         |
|----------|-------|------|------|------|------|------|---------------|-------|-------|-------|-------|-------|-----|------|----------|--------------|
| 30       | 126   | 5 26 | 5 45 | 5 65 | 5 84 | 96   | 5 106         | 114   | 120   | 124   | •     |       |     | 19   | i g      | 1973         |
| 16       | 5 118 | 3 20 | 9 43 | 3 54 | 4 79 | 87   | 7 97          | / 104 | 109   | ) 114 | •     |       |     | 18   | 9        | 1973         |
| 10       | 122   | 2 22 | 2 37 | 7 52 | 2 78 | 95   | 5 105         | 5 111 | 118   | 120   |       |       |     | 18   | 9        | 1973         |
| 133      | 116   | 5 24 | 4 39 | 9 S. | 3 72 | 2 86 | 5 96          | 5 102 | 109   | 115   |       |       |     | 17   | 9        | 1973         |
| 103      | 131   | 26   | 5 41 | 60   | ) 82 | 100  | 111           | 120   | 125   | 128   | 130   |       |     | 18   | 10       | 1972         |
| 86       | 116   | 5 28 | 3 50 | ) 62 | 2 79 | 88   | 96            | 102   | 108   | 111   | 115   | i     |     | 18   | 10       | 1972         |
| 128      | 116   | 5 24 | 37   | 56   | 73   | 87   | 95            | 103   | 107   | 112   | 115   | •     |     | 18   | 10       | 1972         |
| 105      | 132   | 32   | 2 54 | 66   | 5 81 | 100  | 113           | 119   | 124   | 127   | 130   |       |     | 18   | 10       | 1972         |
| 102      | 118   | 34   | 50   | 67   | 86   | 93   | 98            | 103   | 108   | 111   | 115   |       |     | 18   | 10       | 1972         |
| 124      | 118   | 26   | 3 47 | 69   | 88 ( | 97   | 105           | 103   | 110   | 112   | 116   | 1     |     | 17   | 10       | 1972         |
| 15       | 121   | 23   | 43   | 69   | 69   | 99   | 105           | 110   | 113   | 117   | 120   |       |     | 21   | 10       | 1972         |
| 108      | 123   | 25   | 5 44 | 60   | 78   | 92   | 104           | 110   | 115   | 119   | 122   |       |     | 20   | 10       | 1972         |
| - 53     | 118   | 29   | 45   | 64   | 82   | 91   | 98            | 102   | 106   | 112   | 116   |       |     | 20   | 10       | 1972         |
| 33       | 121   | 24   | 42   | 62   | 75   | 91   | 104           | 110   | 114   | 117   | 120   |       |     | 18   | 10       | 1972         |
| 72       | 121   | 30   | 46   | 72   | 89   | - 99 | 103           | 106   | 111   | 114   | 118   |       |     | 19   | 10       | 1972         |
| 129      | 130   | 26   | 39   | 57   | 69   | 92   | 101           | 110   | 118   | 123   | 127   |       |     | 22   | 10       | 1972         |
| 111      | 108   | 25   | 36   | 51   | 74   | 93   | 100           | 105   | 109   | 112   | 117   |       |     | 17   | 10       | 1972         |
| 154      | 125   | 30   | 53   | 69   | 80   | - 96 | 107           | 113   | 117   | 120   | 123   |       |     | 18   | 10       | 1972         |
| 19       | 117   | 25   | 41   | 57   | 72   | 85   | 93            | 99    | 105   | 109   | 115   |       |     | 18   | 10       | 1972         |
| 46       | 119   | 20   | 41   | 68   | 83   | 93   | 100           | 104   | 109   | 112   | 115   | 117   |     | 19   | 11       | 1971         |
| 111      | 120   | 20   | 35   | 60   | 82   | 94   | 100           | 105   | 111   | 115   | 117   | 119   |     | 19   | 11       | 1971         |
| 69       | 120   | 24   | 40   | 54   | 70   | 88   | 98            | 103   | 107   | 110   | 113   | 116   |     | 18   | 11       | 1971         |
| 14       | 136   | 21   | 33   | 56   | 82   | 101  | 113           | 121   | 125   | 128   | 131   | 133   | 134 | 18   | 12       | 197 <b>0</b> |
| <u> </u> | 113.6 | 25.9 | 44.7 | 64.3 | 81.9 | 93.9 | <u>1</u> 01.6 | 107.0 | 111.2 | 114.7 | 119.7 | 121.2 | 134 | 18.3 | 7,589285 |              |

•

Chapman Cruise TILLAMOOK HEAD N=85 Date October 1981 Depth: 96 m

| N            | Height | 1  | 2        | 3   | 4   | 5   | 6   | 7   | 8   | 9 | 10 | 11 Ribs | Age    | Cohort |
|--------------|--------|----|----------|-----|-----|-----|-----|-----|-----|---|----|---------|--------|--------|
| 86           | 95     | 25 | 50       | 80  |     |     |     |     |     |   |    | 20      | 3      | 1978   |
| 40           | 106    | 28 | 52       | 80  | 101 |     |     |     |     |   |    | 19      | 4      | 1977   |
| 14           | 111    | 26 | 54       | 86  | 103 |     |     |     |     |   |    | 20      | 4      | 1977   |
| 54           | 104    | 26 | 55       | 76  | 98  |     |     |     |     |   |    | 19      | 4      | 1977   |
| 105          | 100    | 22 | 46       | 67  | 89  |     |     |     |     |   |    | 20      | 4      | 1977   |
| 82           | 97     | 24 | 51       | 70  | 84  |     |     |     |     |   |    | 20      | 4      | 1977   |
| 33           | 103    | 22 | 43       | 71  | 100 |     |     |     |     |   |    | 20      | 4      | 1977   |
| 87           | 105    | 22 | 47       | 73  | 100 |     |     |     |     |   |    | 20      | 4      | 1977   |
| 38           | 115    | 28 | 45       | 67  | 92  | 102 |     |     |     |   |    | 19      | 5      | 1976   |
| 85           | 108    | 25 | 44       | 59  | 75  | 94  |     |     |     |   |    | 18      | 5      | 1976   |
| 84           | 103    | 23 | 45       | 58  | 78  | 98  |     |     |     |   |    | 21      | 5      | 1976   |
| -74          | 99     | 27 | 45       | 62  | 79  | 97  |     |     |     |   |    | 18      | 5      | 1976   |
| 58           | 108    | 29 | 58       | 74  | 95  | 106 |     |     |     |   |    | 20      | 5      | 1976   |
| 81           | 115    | 29 | 45       | 70  | 93  | 102 |     |     |     |   |    | 19      | 5      | 1976   |
| 91           | 106    | 24 | 39       | 54  | 82  | 102 |     |     |     |   |    | 18      | 5      | 1976   |
| 50           | 110    | 25 | 49       | 63  | 80  | 104 |     |     |     |   |    | 20      | 5      | 1976   |
| 88           | 113    | 30 | 42       | 60  | 84  | 104 |     |     |     |   |    | 19      | 5      | 1976   |
| 20           | 108    | 28 | 40       | -54 | 71  | 90  | 103 |     |     |   |    | 20      | 6      | 1975   |
| 25           | 114    | 26 | 40       | 60  | 72  | 88  | 103 |     |     |   |    | 20      | 6      | 1975   |
| 93           | 109    | 20 | 48       | 74  | 87  | 97  | 103 |     |     |   |    | 19      | 6      | 1975   |
| 21           | 93     | 28 | 46       | 46  | 62  | 76  | 86  |     |     |   |    | 17      | 6      | 1975   |
| 73           | 112    | 28 | 41       | 60  | 74  | 87  | 98  |     |     |   |    | 19      | 6      | 1975   |
| 29           | 111    | 27 | 50       | 66  | 81  | 91  | 100 | 107 |     |   |    | 19      | /      | 1974   |
| 47           | 113    | 26 | 46       | 69  | 85  | 95  | 103 | 110 |     |   |    | 20      | 7      | 19/4   |
| - 62<br>- 50 | 110    | 23 | 44<br>70 | 63  | 84  | 92  | 98  | 110 |     |   |    | 19      | ,<br>7 | 1974   |
| - 30<br>68   | 114    | 25 | 47       | 63  | 82  | 92  | 102 | 109 |     |   |    | 18      | 7      | 1974   |
| 21           | 100    | 25 | 40       | 68  | 79  | 86  | 90  | 94  |     |   |    | 19      | 7      | 1974   |
| 79           | 116    | 28 | 52       | 71  | 91  | 102 | 109 | 112 |     |   |    | 20      | 7      | 1974   |
| 10           | 110    | 24 | 42       | 63  | 82  | 92  | 100 | 108 |     |   |    | 19      | 7      | 1974   |
| 44           | 113    | 30 | 50       | 71  | 84  | 94  | 102 | 109 |     |   |    | 20      | 7      | 1974   |
| 49           | 116    | 27 | 50       | 66  | 93  | 102 | 108 | 115 |     |   |    | 18      | 7      | 1974   |
| 37           | 119    | 24 | 42       | 67  | 85  | 94  | 101 | 106 |     |   |    | 19      | 7      | 1974   |
| 76           | 110    | 25 | 46       | 65  | 79  | 88  | 96  | 103 |     |   |    | 18      | 7      | 1974   |
| 78           | 108    | 25 | 47       | 63  | 77  | 88  | 95  | 102 |     |   |    | 19      | 7      | 1974   |
| 61           | 113    | 26 | 48       | 63  | 77  | 87  | 98  | 104 |     |   |    | 19      | 7      | 1974   |
| 60           | 108    | 27 | 50       | 65  | 79  | 87  | 94  | 100 |     |   |    | 21      | 7      | 1974   |
| 66           | 112    | 27 | 51       | 70  | 82  | 92  | 100 | 106 |     |   |    | 22      | 7      | 1974   |
| 113          | 112    | 30 | 57       | 74  | 88  | 99  | 105 | 108 |     |   |    | 19      | 7      | 1974   |
| 67           | 114    | 26 | 46       | 64  | 76  | 87  | 97  | 105 | 112 |   |    | 18      | 8      | 1973   |
| 108          | 114    | 24 | 44       | 70  | 88  | 97  | 103 | 108 | 111 |   |    | 22      | 8      | 1973   |
| 36           | 115    | 24 | 36       | 57  | 74  | 86  | 95  | 103 | 109 |   |    | 20      | 8      | 1973   |
| 64           | 111    | 28 | 48       | 72  | 85  | 94  | 105 | 110 | 115 |   |    | 19      | 8      | 1973   |

| - 83      | 112   | 22         | 49   | 67   | 82   | 94   | 103  | 106           | 108             |       |     |     | 20         | 8    | 1973              |
|-----------|-------|------------|------|------|------|------|------|---------------|-----------------|-------|-----|-----|------------|------|-------------------|
| 11        | . 107 | 25         | 46   | 65   | 78   | 87   | 95   | 102           | 110             |       |     |     | 17         | 8    | 1973              |
| 95        | 118   | 24         | 49   | 66   | 80   | 90   | - 99 | 108           | 117             |       |     |     | 21         | 8    | 1973              |
| 97        | 108   | 22         | 46   | 62   | 76   | 87   | 93   | 100           | 106             |       |     |     | 17         | 8    | 1973              |
| 100       | 103   | 29         | 55   | 70   | 82   | 91   | 98   | 102           | 108             |       |     |     | 20         | 8    | 1973              |
| 1         | 126   | 27         | 52   | 74   | 95   | 107  | 115  | 120           | 124             |       |     |     | 18         | 8    | 1973              |
| 71        | 111   | 28         | 49   | 65   | 80   | 90   | 98   | 103           | 110             |       |     |     | 20         | 8    | 1973              |
| 15        | 108   | 27         | 51   | 72   | 87   | 95   | - 99 | 103           | 107             |       |     |     | 19         | 8    | 1973              |
| 24        | 117   | 25         | 47   | 66   | 82   | 95   | 102  | 109           | 116             |       |     |     | 18         | 8    | 1973              |
| 26        | 114   | 25         | 40   | 70   | 84   | 96   | 102  | 107           | 112             |       |     |     | 20         | 8    | 1973              |
| 16        | 119   | 28         | 51   | 70   | 87   | 96   | 104  | 111           | 110             |       |     |     | 18         | 8    | 1973              |
| 32        | 108   | 27         | 52   | 72   | 83   | 90   | 95   | 100           | 103             |       |     |     | 19         | 8    | 1973              |
| 19        | 118   | 26         | 48   | 67   | 84   | 94   | 102  | 109           | 117             |       |     |     | 20         | 8    | 1973              |
| 45        | 122   | 28         | 58   | 66   | 82   | 94   | 102  | 110           | 120             |       |     |     | 21         | 8    | 1973              |
| 56        | 112   | 29         | 52   | 69   | 82   | 92   | 98   | 103           | 110             |       |     |     | 19         | 8    | 1973              |
| 80        | 119   | 24         | 43   | 65   | - 84 | 97   | 105  | 114           | 117             |       |     |     | 22         | 8    | 1973              |
| 109       | 118   | 27         | 51   | 70   | 86   | 96   | 103  | 108           | 116             |       |     |     | 19         | 8    | 1973              |
| 9         | 114   | 26         | - 44 | 64   | 78   | 87   | 95   | 102           | 108             |       |     |     | 19         | 8    | 1 <del>9</del> 73 |
| - 53      | 120   | 28         | 52   | 68   | 83   | 93   | 102  | 109           | 117             |       |     |     | 20         | 8    | 1973              |
| 87        | 112   | 26         | 46   | 63   | 78   | 87   | 95   | 102           | 110             |       |     |     | <u>2</u> 1 | 8    | 1973              |
| 7         | 116   | 26         | 47   | 68   | 91   | 101  | 107  | 111           | 114             |       |     |     | 21         | 8    | 1973              |
| 111       | 112   | 26         | 50   | 65   | 78   | 88   | 95   | 103           | 110             |       |     |     | 20         | 8    | 1973              |
| 8         | 112   | 23         | 51   | 70   | 84   | 94   | 101  | 106           | 110             |       |     |     | 21         | 8    | 1973              |
| 59        | 110   | 21         | 42   | 62   | 74   | 85   | 91   | 96            | 100             |       |     |     | 19         | 8    | 1973              |
| 2         | 113   | 26         | 49   | 70   | 84   | 92   | 98   | 104           | 109             |       |     |     | 20         | 8    | 1973              |
| 28        | 106   | 27         | 54   | 71   | 83   | 87   | 93   | <del>99</del> | 103             |       |     |     | 20         | 8    | 1973              |
| 18        | 117   | 29         | 53   | 71   | 89   | - 96 | 101  | 106           | 111             |       |     |     | 17         | 8    | 1973              |
| 77        | 117   | 27         | 52   | 68   | 84   | 94   | 102  | 108           | 114             |       |     |     | 20         | 8    | 1973              |
| 41        | 117   | 22         | 48   | 71   | 88   | 99   | 104  | 108           | 113             |       |     |     | 19         | 8    | 1973              |
| 5         | 117   | 24         | 40   | 57   | 74   | 87   | 95   | 102           | 107             | 112   |     |     | 21         | 9    | 1972              |
| 114       | 115   | 23         | 42   | 68   | 84   | 92   | 99   | 103           | 107             | 112   |     |     | 20         | 9    | 1972              |
| 42        | 116   | <u>2</u> 4 | 41   | 54   | 73   | 89   | 97   | 104           | 110             | 113   |     |     | 19         | 9    | 1972              |
| 102       | 110   | 30         | 44   | 63   | 82   | 94   | 100  | 104           | 10 <del>6</del> | 108   |     |     | 18         | 9    | 1972              |
| 90        | 121   | <u>2</u> 7 | 47   | 69   | 89   | 98   | 110  | 118           | 123             | 126   |     |     | 21         | 9    | 1 <del>9</del> 72 |
| 70        | 126   | 29         | 57   | 83   | 99   | 108  | 115  | 120           | 122             | 124   |     |     | 19         | 9    | 1972              |
| 106       | 117   | 20         | 33   | 57   | 81   | 96   | 103  | 109           | 112             | 115   |     |     | 20         | 9    | 1972              |
| 23        | 121   | 26         | 55   | 69   | 85   | 101  | 111  | 115           | 118             | 120   |     |     | 21         | 9    | 1972              |
| 46        | 113   | 28         | 48   | 67   | 86   | 97   | 101  | 107           | 110             | 112   |     |     | 20         | 9    | 1972              |
| 13        | 115   | 26         | 48   | 70   | 83   | 93   | 99   | 104           | 109             | 112   |     |     | 19         | 9    | 1972              |
| 110       | 120   | 28         | 54   | 78   | 94   | 101  | 106  | 111           | 114             | 116   | 119 |     | 17         | 10   | 1971              |
| 107       | 128   | 23         | 46   | 66   | 89   | 95   | 101  | 111           | 117             | 122   | 125 |     | 20         | 10   | 1971              |
| 92        | 132   | 23         | 39   | 56   | 69   | 89   | 107  | 116           | 122             | 125   | 128 | 131 | 19         | _ 11 | 1970              |
| <u>_X</u> | 112.2 | 25.8       | 47.4 | 66.8 | 83.6 | 94.9 | 102. | 108.5         | 114.7           | 126.4 | 124 | 131 | 19.4       | 7.17 |                   |
|           |       |            |      |      |      |      |      |               |                 |       |     |     |            |      |                   |

Granada Cruise TILLAMOOK HEAD N = 103 Date 08/14/82 Depth: 101 m

| N   | Height      | 1        | 2  | 3             | 4              | 5        | 6    | 7         | 8   | 9 | 10 | 11 | Ribs | Age    | Cohort |
|-----|-------------|----------|----|---------------|----------------|----------|------|-----------|-----|---|----|----|------|--------|--------|
| 14  | 104         | 33       | 53 | 68            | 7 <del>9</del> | 87       | 93   | 100       |     |   |    |    | 17   | 7      | 1975   |
| 86  | 116         | 27       | 45 | 65            | 80             | - 96     | 105  | 112       |     |   |    |    | 20   | 7      | 1975   |
| 33  | 107         | 27       | 40 | 59            | 73             | 86       | 97   | 103       |     |   |    |    | 22   | 7      | 1975   |
| 13  | 105         | 25       | 48 | 62            | - 77           | 85       | 95   | 101       |     |   |    |    | 18   | 7      | 1975   |
| 96  | 108         | 30       | 47 | 63            | 75             | 89       | 96   | 105       |     |   |    |    | 17   | 7      | 1975   |
| 100 | 102         | 22       | 47 | 65            | 76             | 85       | 90   | 98        |     |   |    |    | 18   | 7      | 1975   |
| 27  | 111         | 27       | 50 | <del>66</del> | 80             | 90       | 102  | 108       |     |   |    |    | 21   | 7      | 1975   |
| 49  | 107         | 24       | 46 | 66            | 82             | - 96     | 101  | 104       |     |   |    |    | 18   | 7      | 1975   |
| 11  | 111         | 26       | 45 | 65            | 79             | 92       | 99   | 106       |     |   |    |    | 19   | 7      | 1975   |
| 54  | 108         | 25       | 41 | 65            | 78             | 88       | 100  | 104       |     |   |    |    | 18   | 7      | 1975   |
| 4   | 103         | 22       | 42 | 62            | 77             | 88       | 94   | 99        | 102 |   |    |    | 19   | 8      | 1974   |
| 88  | 105         | 20       | 34 | 59            | 80             | 88       | 93   | <b>98</b> | 102 |   |    |    | 17   | 8      | 1974   |
| 79  | 111         | 27       | 47 | 65            | 79             | 88       | 94   | 101       | 106 |   |    |    | 19   | 8      | 1974   |
| 21  | 115         | 21       | 46 | 66            | 81             | 91       | 98   | 108       | 112 |   |    |    | 19   | 8      | 1974   |
| 41  | 111         | 27       | 47 | 62            | 76             | 87       | 95   | 103       | 108 |   |    |    | 17   | 8      | 1974   |
| 93  | 112         | 28       | 49 | 66            | 78             | 87       | 95   | 101       | 108 |   |    |    | 17   | 8      | 1974   |
| 51  | 1 <b>06</b> | 24       | 47 | 60            | 76             | 85       | 92   | 99        | 104 |   |    |    | 18   | 8      | 1974   |
| 69  | 106         | 31       | 43 | 63            | 80             | 87       | 92   | 101       | 104 |   |    |    | 18   | 8      | 1974   |
| 99  | 108         | 25       | 46 | 62            | 75             | 83       | 90   | 102       | 106 |   |    |    | 18   | 8      | 1974   |
| 3   | 115         | 27       | 38 | 57            | 72             | 84       | 92   | 98        | 106 |   |    |    | 16   | 8      | 1974   |
| 10  | 115         | 20       | 35 | 62            | 79             | 89       | 97   | 108       | 114 |   |    |    | 17   | 8      | 1974   |
| 95  | 111         | 30       | 44 | 60            | 82             | 93       | 105  | 107       | 110 |   |    |    | 18   | 8      | 1974   |
| 62  | 120         | 25       | 44 | 61            | 74             | 85       | 92   | 102       | 114 |   |    |    | 17   | 8      | 1974   |
| 14  | 106         | 20<br>20 | 40 | 61<br>61      | 78             | 90<br>02 | 97   | 10/       | 112 |   |    |    | 18   | 8      | 1974   |
| 37  | 110         | 26       | 40 | 66            | A7             | 95       | 90   | 104       | 107 |   |    |    | 10   | с<br>8 | 1974   |
| 23  | 107         | 29       | 51 | 63            | 76             | A5       | 90   | - 06      | 107 |   |    |    | 17   | g      | 1974   |
| 67  | 112         | 26       | 49 | 67            | 79             | 91       | 97   | 104       | 109 |   |    |    | 18   | 8      | 1974   |
| 36  | 108         | 27       | 53 | 68            | 82             | 90       | 95   | 99        | 104 |   |    |    | 20   | 8      | 1974   |
| 94  | 110         | 27       | 50 | 68            | 76             | 87       | 96   | 103       | 108 |   |    |    | 18   | 8      | 1974   |
| 29  | 107         | 30       | 44 | 56            | 72             | 84       | 93   | 98        | 103 |   |    |    | 20   | 8      | 1974   |
| 65  | 112         | 25       | 50 | 69            | 83             | 93       | 99   | 105       | 109 |   |    |    | 18   | 8      | 1974   |
| 18  | 111         | 32       | 53 | 67            | 80             | 94       | . 99 | 105       | 109 |   |    |    | 18   | 8      | 1974   |
| 72  | 115         | 22       | 44 | 56            | 69             | 78       | 92   | 99        | 107 |   |    |    | 20   | 8      | 1974   |
| 84  | 110         | 22       | 41 | 60            | 75             | 85       | 91   | 100       | 107 |   |    |    | 17   | 8      | 1974   |
| 5   | 102         | 25       | 41 | 62            | 73             | 81       | 88   | 94        | 100 |   |    |    | 18   | 8      | 1974   |
| 86  | 113         | 30       | 52 | 70            | 84             | 95       | 100  | 106       | 111 |   |    |    | 20   | 8      | 1974   |
| 60  | 105         | 24       | 44 | 60            | 74             | 82       | 89   | 97        | 103 |   |    |    | 17   | 8      | 1974   |
| 50  | 106         | 25       | 40 | 60            | 72             | 83       | 91   | 96        | 104 |   |    |    | 17   | 8      | 1974   |
| 62  | 107         | 24       | 44 | 61            | 72             | 82       | 90   | 100       | 106 |   |    |    | 18   | 8      | 1974   |
| 1   | 111         | 25       | 44 | 65            | 80             | 91       | 97   | 101       | 105 |   |    |    | 20   | 8      | 1974   |
| 9   | 100         | 25       | 43 | 61            | 78             | 83       | 89   | 93        | 98  |   |    |    | 18   | 8      | 1974   |
| 7   | 114         | 25       | 49 | 67            | 82             | 90       | 100  | 107       | 112 |   |    |    | 18   | 8      | 1974   |

| 89  | 103 | 25 | 46         | 62 | 79         | 89   | ' <b>9</b> 5 | 102           | 108 |     |     | 19 | 8  | 1974 |
|-----|-----|----|------------|----|------------|------|--------------|---------------|-----|-----|-----|----|----|------|
| 70  | 109 | 30 | 50         | 68 | 80         | 89   | 95           | 101           | 106 |     |     | 18 | 8  | 1974 |
| 45  | 107 | 25 | 45         | 68 | 79         | 86   | 92           | 98            | 102 |     |     | 18 | 8  | 1974 |
| 75  | 119 | 28 | 47         | 61 | 77         | 88   | 96           | 100           | 107 | 114 |     | 18 | 9  | 1973 |
| 19  | 114 | 29 | 48         | 62 | 75         | 85   | 92           | 101           | 109 | 113 |     | 19 | 9  | 1973 |
| 56  | 103 | 26 | 48         | 64 | 76         | 82   | 90           | 94            | 99  | 102 |     | 19 | 9  | 1973 |
| 58  | 110 | 30 | 53         | 68 | 78         | 86   | 94           | 98            | 102 | 107 |     | 18 | 9  | 1973 |
| 87  | 109 | 24 | 45         | 61 | 75         | 83   | 92           | 99            | 105 | 108 |     | 17 | 9  | 1973 |
| 57  | 115 | 24 | 52         | 71 | 82         | 91   | 97           | 104           | 111 | 115 |     | 19 | 9  | 1973 |
| 78  | 113 | 22 | 46         | 63 | 76         | 85   | 92           | 97            | 103 | 109 |     | 18 | 9  | 1973 |
| 43  | 118 | 21 | 41         | 71 | 85         | 96   | 103          | 108           | 114 | 117 |     | 20 | 9  | 1973 |
| 52  | 113 | 27 | 44         | 67 | 78         | 89   | 96           | 101           | 108 | 112 |     | 18 | 9  | 1973 |
| 59  | 110 | 20 | 40         | 58 | 71         | 83   | 91           | 97            | 103 | 109 |     | 18 | 9  | 1973 |
| 74  | 117 | 23 | 48         | 66 | 82         | 93   | 100          | 105           | 110 | 114 |     | 19 | 9  | 1973 |
| 92  | 117 | 24 | 44         | 63 | 75         | 86   | 93           | 102           | 109 | 115 |     | 17 | 9  | 1973 |
| 28  | 108 | 26 | 48         | 66 | 78         | 88   | 94           | <b>98</b>     | 103 | 107 |     | 17 | 9  | 1973 |
| 34  | 116 | 27 | 52         | 72 | 86         | - 96 | 102          | 107           | 112 | 115 |     | 18 | 9  | 1973 |
| 22  | 116 | 23 | 46         | 64 | 78         | 89   | 96           | 105           | 110 | 115 |     | 19 | 9  | 1973 |
| 90  | 112 | 26 | 45         | 67 | 82         | 91   | 97           | 102           | 108 | 111 |     | 17 | 9  | 1973 |
| 71  | 118 | 24 | 44         | 62 | 75         | 85   | 93           | 97            | 100 | 105 |     | 17 | 9  | 1973 |
| 101 | 113 | 26 | 45         | 62 | 76         | 85   | 92           | 100           | 108 | 111 |     | 18 | 9  | 1973 |
| 24  | 120 | 25 | 45         | 66 | 87         | 97   | 102          | 111           | 114 | 118 |     | 18 | 9  | 1973 |
| 44  | 115 | 30 | 52         | 72 | 84         | 92   | 99           | 104           | 110 | 114 |     | 18 | 9  | 1973 |
| 76  | 113 | 25 | 46         | 67 | 81         | 91   | <b>98</b>    | 102           | 106 | 110 |     | 18 | 9  | 1973 |
| 47  | 114 | 25 | 48         | 63 | 78         | 89   | 96           | 100           | 104 | 110 |     | 19 | 9  | 1973 |
| 91  | 112 | 29 | 47         | 67 | 82         | 91   | 100          | 103           | 107 | 111 |     | 18 | 9  | 1973 |
| 55  | 111 | 25 | 45         | 64 | 79         | 87   | 92           | 98            | 102 | 108 |     | 18 | 9  | 1973 |
| 53  | 113 | 30 | 50         | 70 | 82         | 90   | 96           | 104           | 111 | 112 |     | 18 | 9  | 1973 |
| 5   | 111 | 27 | 42         | 59 | 74         | 84   | 90           | 98            | 101 | 106 |     | 18 | 9  | 1973 |
| 63  | 108 | 28 | 49         | 65 | 78         | 82   | 94           | 100           | 105 | 107 |     | 20 | 9  | 1973 |
| 73  | 107 | 22 | 42         | 59 | 75         | 85   | 91           | 97            | 100 | 103 |     | 18 | 9  | 1973 |
| 32  | 104 | 23 | 44         | 62 | 76         | 83   | 88           | 92            | 95  | 100 |     | 18 | 9  | 1973 |
| 102 | 109 | 26 | 46         | 65 | 76         | 86   | 94           | 98            | 104 | 107 |     | 20 | 9  | 1973 |
| 87  | 119 | 26 | 46         | 67 | 82         | 92   | 100          | 108           | 115 | 118 |     | 18 | 9  | 1973 |
| 80  | 109 | 24 | 47         | 61 | 74         | 84   | 92           | <b>98</b>     | 103 | 107 |     | 17 | 9  | 1973 |
| 83  | 115 | 26 | 48         | 68 | 84         | 93   | 99           | 105           | 110 | 114 |     | 18 | 9  | 1973 |
| 85  | 113 | 21 | 46         | 64 | 78         | 88   | 96           | <del>99</del> | 106 | 111 |     | 19 | 9  | 1973 |
| 15  | 110 | 26 | 48         | 64 | 77         | 86   | 93           | 97            | 102 | 106 |     | 17 | 9  | 1973 |
| 97  | 105 | 26 | 45         | 64 | 77         | 84   | 92           | 97            | 101 | 104 |     | 19 | 9  | 1973 |
| 2   | 110 | 22 | 42         | 66 | 80         | 89   | 95           | 99            | 103 | 108 |     | 18 | 9  | 1973 |
| 40  | 111 | 23 | 49         | 68 | 82         | 92   | 97           | 102           | 105 | 109 |     | 19 | 9  | 1973 |
| 30  | 116 | 22 | 44         | 62 | 77         | 86   | 97           | 102           | 109 | 113 |     | 17 | 9  | 1973 |
| 81  | 113 | 21 | 37         | 60 | 76         | 89   | 96           | 104           | 107 | 112 |     | 18 | 9  | 1973 |
| 61  | 110 | 22 | 43         | 61 | 75         | 85   | 91           | 97            | 102 | 106 |     | 17 | 9  | 1973 |
| 39  | 120 | 25 | 45         | 70 | 82         | 92   | 98           | 103           | 108 | 115 |     | 18 | 9  | 1973 |
| 31  | 105 | 26 | 51         | 64 | 76         | 84   | 90           | 96            | 100 | 103 |     | 19 | 9  | 1973 |
| 48  | 114 | 25 | 48         | 70 | 84         | 94   | 98           | 102           | 108 | 113 |     | 19 | 9  | 1973 |
| 66  | 108 | 27 | 43         | 60 | 74         | 83   | 92           | 98            | 102 | 106 |     | 18 | 9  | 1973 |
| 16  | 112 | 33 | 53         | 70 | 8 <b>2</b> | 90   | 95           | 102           | 106 | 110 |     | 21 | 9  | 1973 |
| 25  | 113 | 23 | <b>4</b> 4 | 60 | 75         | 87   | 94           | 98            | 101 | 105 | 109 | 17 | 10 | 1972 |

| x   | 110.9 | 25.4 | 45.7 | 63.9 | 78   | 87.8 | 94.9 | 100.9 | 105.7 | 109.5 | 110.6 | 111.5 | 18.2 | 8.58 |      |
|-----|-------|------|------|------|------|------|------|-------|-------|-------|-------|-------|------|------|------|
| 103 | 113   | 25   | 38   | 55   | 72   | 84   | 92   | 97    | 102   | 105   | 108   | 112   | 18   | 11   | 1971 |
| 46  | 112   | 22   | 50   | 64   | 71   | 87   | 93   | 98    | 102   | 106   | 109   | 111   | 19   | 11   | 1971 |
| 20  | 113   | 30   | 47   | 66   | 80   | 89   | 95   | 99    | 104   | 109   | 111   |       | 20   | 10   | 1972 |
| 38  | 111   | 27   | 49   | 70   | 85   | 95   | - 99 | 103   | 105   | 107   | 109   |       | 19   | 10   | 1972 |
| 17  | 110   | 21   | 39   | 57   | 72   | 80   | 87   | 92    | 100   | 106   | 109   |       | 16   | 10   | 1972 |
| 77  | 111   | 20   | 37   | 59   | 73   | 84   | 92   | 97    | 100   | 103   | 108   |       | 18   | 10   | 1972 |
| 8   | 116   | 25   | 47   | 67   | 80   | 89   | - 96 | 102   | 107   | 113   | 115   |       | 17   | 10   | 1972 |
| 47  | 120   | 22   | 35   | 58   | 74   | 86   | 93   | 99    | 107   | 114   | 118   |       | 18   | 10   | 1972 |
| 35  | 112   | 27   | 47   | 63   | 84   | 92   | 98   | 101   | 104   | 107   | 110   |       | 18   | 10   | 1972 |
| 26  | 114   | 21   | 48   | 64   | - 79 | 89   | 94   | 98    | 104   | 108   | 111   |       | 20   | 10   | 1972 |

Granada Cruise CAPE KIWANDA N = 135 Date: 8/17/82 Depth: 82 m

| Ň   | Height | 1  | 2  | 3  | 4   | 5   | 6   | 7   | 8   | 9 | 10 | 11 | 12 | 13 | 14 Ribs | Age | Cohort |
|-----|--------|----|----|----|-----|-----|-----|-----|-----|---|----|----|----|----|---------|-----|--------|
| 136 | 68     | 30 | 52 | 74 |     |     |     |     |     |   |    |    |    |    | 19      | 3   | 1979   |
| 35  | 97     | 27 | 46 | 66 | 84  |     |     |     |     |   |    |    |    |    | 19      | 4   | 1978   |
| 15  | 91     | 22 | 38 | 64 | 80  |     |     |     |     |   |    |    |    |    | 19      | 4   | 1978   |
| 17  | 124    | 29 | 58 | 83 | 105 |     |     |     |     |   |    |    |    |    | 19      | 4   | 1978   |
| 57  | 123    | 31 | 54 | 69 | 95  | 117 | 122 |     |     |   |    |    |    |    | 17      | 6   | 1976   |
| 98  | 122    | 25 | 39 | 58 | 90  | 112 | 120 |     |     |   |    |    |    |    | 22      | 6   | 1976   |
| 13  | 123    | 25 | 55 | 75 | 96  | 110 | 120 |     |     |   |    |    |    |    | 18      | 6   | 1976   |
| 28  | 117    | 29 | 52 | 74 | 97  | 111 | 115 |     |     |   |    |    |    |    | 19      | 6   | 1976   |
| 8   | 125    | 32 | 57 | 80 | 98  | 115 | 121 |     |     |   |    |    |    |    | 21      | 6   | 1976   |
| 61  | 126    | 28 | 49 | 70 | 87  | 106 | 122 |     |     |   |    |    |    |    | 17      | 6   | 1976   |
| 89  | 124    | 22 | 38 | 59 | 80  | 101 | 115 | 123 |     |   |    |    |    |    | 17      | 7   | 1975   |
| 43  | 117    | 22 | 35 | 57 | 74  | 98  | 109 | 113 |     |   |    |    |    |    | 18      | 7   | 1975   |
| 102 | 124    | 25 | 27 | 55 | 80  | 103 | 116 | 121 |     |   |    |    |    |    | 19      | 7   | 1975   |
| 130 | 132    | 27 | 45 | 66 | 94  | 114 | 126 | 130 |     |   |    |    |    |    | 19      | 7   | 1975   |
| 58  | 126    | 33 | 52 | 69 | 93  | 109 | 117 | 123 |     |   |    |    |    |    | 17      | 7   | 1975   |
| 121 | 121    | 31 | 62 | 85 | 100 | 109 | 115 | 118 |     |   |    |    |    |    | 17      | 7   | 1975   |
| 60  | 133    | 32 | 57 | 86 | 108 | 125 | 129 | 132 |     |   |    |    |    |    | 17      | 7   | 1975   |
| 19  | 123    | 28 | 43 | 61 | 86  | 109 | 117 | 121 |     |   |    |    |    |    | 19      | 7   | 1975   |
| 85  | 128    | 29 | 48 | 76 | 96  | 117 | 124 | 127 |     |   |    |    |    |    | 20      | 7   | 1975   |
| 129 | 133    | 32 | 52 | 73 | 96  | 115 | 122 | 130 |     |   |    |    |    |    | 18      | 7   | 1975   |
| 40  | 129    | 26 | 45 | 74 | 97  | 113 | 120 | 124 | 128 |   |    |    |    |    | 19      | 8   | 1974   |
| 36  | 128    | 30 | 46 | 65 | 89  | 104 | 112 | 119 | 122 |   |    |    |    |    | 18      | 8   | 1974   |
| 7   | 142    | 27 | 45 | 62 | 91  | 112 | 123 | 131 | 135 |   |    |    |    |    | 17      | 8   | 1974   |
| 109 | 131    | 28 | 51 | 68 | 88  | 111 | 119 | 124 | 128 |   |    |    |    |    | 19      | 8   | 1974   |
| 103 | 126    | 30 | 47 | 63 | 89  | 107 | 114 | 118 | 122 |   |    |    |    |    | 22      | 8   | 1974   |
| 126 | 126    | 30 | 50 | 70 | 94  | 107 | 114 | 119 | 123 |   |    |    |    |    | 17      | 8   | 1974   |
| 9   | 134    | 27 | 47 | 70 | 94  | 112 | 120 | 126 | 130 |   |    |    |    |    | 19      | 8   | 1974   |
| 53  | 134    | 28 | 47 | 68 | 93  | 113 | 121 | 130 | 132 |   |    |    |    |    | 19      | 8   | 1974   |
| 25  | 133    | 28 | 45 | 68 | 94  | 112 | 119 | 126 | 130 |   |    |    |    |    | 17      | 8   | 1974   |
| 133 | 130    | 27 | 46 | 64 | 90  | 109 | 116 | 122 | 127 |   |    |    |    |    | 19      | 8   | 1974   |
| 21  | 131    | 28 | 31 | 64 | 68  | 109 | 116 | 122 | 126 |   |    |    |    |    | 19      | 8   | 1974   |
| 20  | 130    | 33 | 51 | 68 | 93  | 110 | 119 | 125 | 128 |   |    |    |    |    | 19      | 8   | 1974   |
| 122 | 129    | 32 | 41 | 65 | 70  | 108 | 114 | 121 | 125 |   |    |    |    |    | 19      | 8   | 1974   |
| 31  | 124    | 25 | 45 | 62 | 86  | 105 | 112 | 118 | 122 |   |    |    |    |    | 16      | 8   | 1974   |
| 123 | 130    | 32 | 53 | 71 | 95  | 112 | 117 | 123 | 126 |   |    |    |    |    | 19      | 8   | 1974   |
| 74  | 126    | 25 | 41 | 58 | 73  | 94  | 109 | 116 | 124 |   |    |    |    |    | 17      | 8   | 1974   |
| 129 | 129    | 27 | 39 | 62 | 90  | 108 | 116 | 122 | 127 |   |    |    |    |    | 18      | 8   | 1974   |
| 76  | 134    | 28 | 43 | 60 | 85  | 107 | 117 | 125 | 129 |   |    |    |    |    | 19      | 8   | 1974   |
| 120 | 131    | 30 | 47 | 63 | 91  | 109 | 117 | 125 | 128 |   |    |    |    |    | 16      | 8   | 1974   |
| 108 | 125    | 37 | 61 | 88 | 102 | 112 | 119 | 122 | 124 |   |    |    |    |    | 20      | 8   | 1974   |
| 107 | 125    | 28 | 47 | 62 | 85  | 102 | 110 | 117 | 120 |   |    |    |    |    | 20      | 8   | 1974   |
| 54  | 128    | 28 | 47 | 65 | 90  | 108 | 114 | 122 | 126 |   |    |    |    |    | 18      | 8   | 1974   |

| 69         | 132  | 29        | 42        | 69        | 93        | 112 | 120  | 128 | 130 |     |     |  | 18 | 8      | 1974 |
|------------|------|-----------|-----------|-----------|-----------|-----|------|-----|-----|-----|-----|--|----|--------|------|
| 135        | 130  | 30        | 46        | 71        | 92        | 109 | 118  | 123 | 127 |     |     |  | 19 | 8      | 1974 |
| 64         | 128  | 25        | 42        | 59        | 80        | 98  | 112  | 121 | 126 |     |     |  | 17 | 8      | 1974 |
| 6          | 124  | 29        | 49        | 67        | 90        | 105 | 113  | 118 | 122 |     |     |  | 19 | 8      | 1974 |
| 104        | 131  | 28        | 45        | 61        | 87        | 106 | 115  | 122 | 126 |     |     |  | 18 | 8      | 1974 |
| 72         | 132  | 25        | 40        | 69        | 89        | 109 | 120  | 124 | 128 | 131 |     |  | 18 | 9      | 1973 |
| 97         | 132  | 30        | 52        | 69        | 93        | 111 | 118  | 123 | 125 | 129 |     |  | 19 | 9      | 1973 |
| 101        | 138  | 31        | 45        | 67        | 93        | 111 | 119  | 126 | 130 | 136 |     |  | 18 | 9      | 1973 |
| 131        | 139  | 29        | 47        | 67        | 97        | 112 | 122  | 128 | 132 | 138 |     |  | 19 | 9      | 1973 |
| 42         | 128  | 26        | 46        | 68        | 90        | 105 | 103  | 119 | 122 | 126 |     |  | 18 | 9      | 1973 |
| 45         | 127  | 27        | 46        | 67        | 92        | 109 | 115  | 120 | 123 | 126 |     |  | 17 | 9      | 1973 |
| 44         | 135  | 25        | 41        | 65        | 93        | 112 | 122  | 129 | 132 | 134 |     |  | 20 | 9      | 1973 |
| 29         | 136  | 26        | 46        | 64        | 92        | 112 | 119  | 125 | 130 | 134 |     |  | 18 | 9      | 1973 |
| 106        | 135  | 29        | 46        | 67        | 86        | 108 | 115  | 122 | 127 | 131 |     |  | 18 | 9      | 1973 |
| 111        | 131  | 26        | 41        | 60        | 81        | 106 | 115  | 120 | 125 | 129 |     |  | 20 | 9      | 1973 |
| 79         | 134  | 23        | 39        | 58        | 82        | 105 | 113  | 121 | 127 | 131 |     |  | 18 | 9      | 1973 |
| 18         | 131  | 2/        | 45        | 66        | 92        | 109 | 117  | 124 | 12/ | 130 |     |  | 18 | 9      | 1973 |
| 80         | 132  | 2/        | 44        | 54<br>70  | 89        | 109 | 117  | 123 | 128 | 130 |     |  | 18 | 9      | 1973 |
| 8/         | 131  | JU<br>07  | 49        | /0        | 94)<br>05 | 105 | 115  | 121 | 125 | 128 |     |  | 19 | 9      | 1973 |
| 118        | 134  | 21        | 40<br>5 1 | 013<br>71 | 90        | 110 | 118  | 124 | 120 | 132 |     |  | 10 | 9      | 19/3 |
| 73<br>20   | 1.32 | .34<br>20 | 33        | 73<br>65  | 90        | 100 | 110  | 129 | 127 | 100 |     |  | 20 | 7      | 1973 |
| .J.7<br>70 | 120  | -00<br>20 | 40<br>51  | 60        | 00<br>00  | 110 | 110  | 126 | 120 | 122 |     |  | 20 | ,<br>0 | 1073 |
| 12         | 135  | -32<br>25 | 51<br>61  | 60<br>60  | 90<br>00  | 110 | 120  | 120 | 172 | 135 |     |  | 10 | 9      | 1973 |
| 52         | 135  | 26        | 28        | 57        | 71        | 99  | 1120 | 127 | 127 | 135 |     |  | 16 | ģ      | 1973 |
| 116        | 139  | 29        | 49        | 69        | 96        | 113 | 121  | 126 | 133 | 137 |     |  | 18 | ģ      | 1973 |
| 94         | 133  | 33        | 64        | 91        | 108       | 114 | 120  | 125 | 130 | 132 |     |  | 19 | 9      | 1973 |
| 119        | 136  | 27        | 45        | 67        | 92        | 111 | 120  | 127 | 132 | 135 |     |  | 19 | 9      | 1973 |
| 65         | 137  | 31        | 52        | 72        | 98        | 113 | 122  | 129 | 132 | 135 |     |  | 19 | 9      | 1973 |
| 27         | 131  | 30        | 50        | 66        | 89        | 110 | 118  | 124 | 126 | 129 |     |  | 18 | 9      | 1973 |
| 105        | 128  | 26        | 39        | 60        | 83        | 104 | 111  | 119 | 123 | 126 |     |  | 19 | 9      | 1973 |
| 92         | 135  | 29        | 48        | 68        | 94        | 110 | 117  | 122 | 127 | 132 |     |  | 18 | 9      | 1973 |
| 93         | 135  | 24        | 41        | 69        | 93        | 112 | 120  | 125 | 130 | 133 |     |  | 20 | 9      | 1973 |
| 87         | 145  | 31        | 54        | 75        | 100       | 121 | 129  | 137 | 139 | 143 |     |  | 19 | 9      | 1973 |
| 127        | 131  | 21        | 3U<br>65  | 09        | 91<br>110 | 109 | 110  | 123 | 120 | 128 |     |  | 18 | 9      | 1973 |
| 38         | 135  | 22        | 70        | 52        | 70        | 96  | 110  | 118 | 126 | 130 |     |  | 19 | 9      | 1973 |
| 56         | 137  | 30        | 41        | 66        | 95        | 112 | 120  | 128 | 132 | 136 |     |  | 17 | ģ      | 1973 |
| 115        | 127  | 26        | 40        | 61        | 82        | 102 | 112  | 118 | 123 | 126 |     |  | 19 | 9      | 1973 |
| 23         | 132  | 29        | 49        | 75        | 100       | 103 | 119  | 124 | 129 | 132 |     |  | 19 | 9      | 1973 |
| 110        | 132  | 30        | 51        | 72        | 86        | 109 | 118  | 124 | 127 | 130 |     |  | 20 | 9      | 1973 |
| 11         | 133  | 29        | 50        | 65        | 88        | 109 | 118  | 124 | 127 | 131 |     |  | 17 | 9      | 1973 |
| 30         | 127  | 32        | 49        | 67        | 68        | 106 | 113  | 118 | 123 | 126 |     |  | 18 | 9      | 1973 |
| 81         | 136  | 33        | 50        | 68        | 88        | 109 | 118  | 124 | 128 | 133 |     |  | 17 | 9      | 1973 |
| 117        | 137  | 29        | 47        | 69        | 93        | 112 | 120  | 125 | 130 | 134 |     |  | 20 | 9      | 1973 |
| 125        | 143  | 24        | 42        | 61        | 86        | 111 | 123  | 128 | 132 | 137 | 140 |  | 19 | 10     | 1972 |
| 95         | 135  | 30        | 49        | 63        | 89        | 108 | 117  | 124 | 126 | 130 | 133 |  | 16 | 10     | 1972 |
| 88         | 135  | 22        | 35        | 50        | 75        | 100 | 116  | 121 | 127 | 130 | 133 |  | 18 | 10     | 1972 |
| 55         | 132  | 28        | 45        | 59        | 88        | 104 | 112  | 118 | 123 | 127 | 130 |  | 16 | 10     | 1972 |
| 71         | 140  | 25        | 43        | -74       | 102       | 118 | 125  | 131 | 133 | 135 | 138 |  | 17 | 10     | 1972 |

| 2         | 2 140 | 26         | 40         | 58   | 87   | 104   | 118   | 127   | 131   | 135           | 138   |       |       |       |     | 18   | 10 | 1972         |
|-----------|-------|------------|------------|------|------|-------|-------|-------|-------|---------------|-------|-------|-------|-------|-----|------|----|--------------|
| 96        | j 131 | 26         | i 49       | 70   | 97   | 110   | 117   | 121   | . 124 | 129           | 131   |       |       |       |     | 17   | 10 | 1972         |
| 3         | 128   | 28         | 50         | 70   | 97   | 111   | 116   | 121   | 124   | 126           | 128   |       |       |       |     | 17   | 10 | 1972         |
| 26        | i 125 | 25         | i 45       | 63   | - 88 | 105   | 112   | 117   | 120   | 122           | 124   |       |       |       |     | 19   | 10 | 197 <b>2</b> |
| 33        | 136   | 32         | 50         | 75   | 99   | 115   | 123   | 129   | 132   | 134           | 135   |       |       |       |     | 18   | 10 | 1972         |
| 112       | 134   | 25         | 39         | 59   | 85   | 104   | 116   | 124   | 128   | 131           | 133   |       |       |       |     | 17   | 10 | 1972         |
| 83        | 130   | 30         | 45         | 64   | 87   | 104   | 113   | 119   | 121   | 123           | 126   |       |       |       |     | 17   | 10 | 1972         |
| 49        | 135   | 24         | 42         | 8 67 | 79   | 100   | 115   | 124   | 128   | 131           | 134   |       |       |       |     | 18   | 10 | 1972         |
| 63        | 133   | 26         | 39         | 62   | 90   | 102   | 113   | 122   | 127   | 129           | 131   |       |       |       |     | 16   | 10 | 1972         |
| 84        | 127   | 27         | 42         | 65   | 90   | 108   | 116   | 120   | 122   | 125           | 127   |       |       |       |     | 18   | 10 | 1972         |
| 70        | 141   | 29         | 47         | 67   | 90   | 114   | 126   | 131   | 133   | 136           | 140   |       |       |       |     | 18   | 10 | 1972         |
| 75        | 142   | 26         | 42         | 59   | 92   | 110   | 122   | 132   | 137   | 139           | 141   |       |       |       |     | 19   | 10 | 1972         |
| 114       | 133   | 31         | 52         | 74   | 94   | 110   | 116   | 121   | 127   | 130           | 132   |       |       |       |     | 20   | 10 | 1972         |
| 128       | 139   | 30         | 57         | 71   | 96   | 112   | 119   | 126   | 131   | 136           | 138   |       |       |       |     | 17   | 10 | 1972         |
| 50        | 136   | 30         | 54         | 73   | 97   | 110   | 120   | 125   | 128   | 131           | 134   |       |       |       |     | 19   | 10 | 1972         |
| - 41      | . 134 | 27         | 42         | 60   | 89   | 109   | 120   | 124   | 127   | 129           | 132   |       |       |       |     | 19   | 10 | 1972         |
| 59        | 135   | 31         | 61         | 88   | 100  | 108   | 118   | 123   | 127   | 132           | 134   |       |       |       |     | 19   | 10 | 1972         |
| 47        | 139   | 27         | 42         | 62   | 88   | 108   | 119   | 125   | 128   | 132           | 135   | 137   |       |       |     | 18   | 11 | 1971         |
| 132       | 132   | 37         | 49         | 70   | 95   | 111   | 117   | 120   | 123   | 125           | 128   | 130   |       |       |     | 17   | 11 | 1971         |
| 99        | 143   | 28         | 47         | 70   | 99   | 115   | 121   | 133   | 135   | 137           | 140   | 142   |       |       |     | 17   | 11 | 1971         |
| 82        | 145   | 28         | 46         | 67   | 97   | 112   | 118   | 128   | 133   | 137           | 139   | 142   |       |       |     | 18   | 11 | 1971         |
| 24        | 139   | 27         | 45         | 69   | 99   | 116   | 123   | 129   | 132   | 135           | 137   | 139   |       |       |     | 18   | 11 | 1971         |
| 100       | . 137 | 28         | 47         | 70   | 95   | 108   | 115   | 122   | 125   | 129           | 131   | 134   |       |       |     | 19   | 11 | 19/1         |
| 4         | 140   | 27         | 45         | 65   | 93   | 107   | 123   | 128   | 132   | 135           | 138   | 140   |       |       |     | 19   | 11 | 1971         |
| 90        | 137   | 25         | 37         | 57   | 80   | 100   | 112   | 122   | 128   | 131           | 133   | 135   |       |       |     | 21   | 11 | 1971         |
| 5         | 138   | 28         | 46         | 69   | 96   | 115   | 122   | 128   | 131   | 132           | 134   | 136   |       |       |     | 18   | 11 | 1971         |
| 32        | 139   | 26         | 38         | 60   | 89   | 105   | 118   | 124   | 128   | 132           | 135   | 138   |       |       |     | 10   | 11 | 1971         |
| 113       | 132   | 31         | 50         | 6/   | 97   | 110   | 118   | 123   | 125   | 128           | 129   | 131   |       |       |     | 17   | 11 | 1971         |
| 51        | 148   | 2/         | 44         | 60   | 89   | 103   | 118   | 132   | 138   | 141           | 194   | 140   |       |       |     | 10   | 11 | 1971         |
| 10        | 136   | 20         | 45         | 62   | 89   | 110   | 118   | 120   | 128   | 132           | 1.54  | 1.30  |       |       |     | 10   | 11 | 1971         |
| 10        | 144   | 25         | 40         | 0/   | 100  | 143   | 120   | 131   | 134   | 137           | 190   | 144   |       |       |     | 10   | 11 | 1071         |
| 40        | 141   | 28         | - 50<br>50 | 73   | 05   | 110   | 120   | 120   | 130   | 133           | 1.30  | 140   |       |       |     | 10   | 11 | 1971         |
| 139       | 145   | - J2<br>22 | 2C<br>40   | 63   | 95   | 115   | 124   | 134   | 135   | 130           | 1/1   | 143   |       |       |     | 18   | 11 | 1971         |
| 36        | 195   | 20         | 47<br>60   | 75   |      | 100   | 110   | 122   | 126   | 130           | 132   | 134   |       |       |     | 19   | 11 | 1971         |
| רי.<br>דד | 133   | 30         | 41         | 62   | 97   | 200   | 107   | 113   | 120   | 126           | 128   | 130   | 132   |       |     | 17   | 12 | 1970         |
| 16        | 145   | 30         | 45         | 66   | 97   | 116   | 125   | 131   | 135   | 138           | 140   | 142   | 144   |       |     | 18   | 12 | 1970         |
| 17        | 145   | 29         | 45         | 66   | 95   | 112   | 121   | 128   | 132   | 137           | 139   | 142   | 166   |       |     | 21   | 12 | 1970         |
| 22        | 139   | 28         | 47         | 65   | 86   | 189   | 116   | 122   | 128   | 131           | 133   | 135   | 137   |       |     | 18   | 12 | 1970         |
| 86        | 149   | 26         | 41         | 65   | 98   | 113   | 126   | 133   | 137   | 140           | 143   | 145   | 148   |       |     | 18   | 12 | 1970         |
| 67        | 142   | 25         | 37         | 55   | 75   | 96    | 114   | 120   | 124   | 127           | 132   | 135   | 138   |       |     | 19   | 12 | 1970         |
| 46        | 148   | 30         | 55         | 75   | 102  | 121   | 129   | 134   | 136   | 139           | 142   | 144   | 146   | 147   |     | 19   | 13 | 1969         |
| 91        | 145   | 30         | 46         | 63   | 82   | 100   | 117   | 124   | 127   | 131           | 134   | 137   | 140   | 142   | 144 | 19   | 14 | 1968         |
|           |       |            |            |      |      |       |       |       |       |               |       |       |       |       |     |      |    |              |
| <u> </u>  | 132.2 | 28.1       | 46.4       | 67.1 | 90.9 | 109.0 | 117.9 | 124.1 | 128.0 | 1 <b>32.0</b> | 134.7 | 138.3 | 141.1 | 144.5 | 144 | 18.4 |    |              |

Granada Cruise YAQUINA HEAD N=153 Date: 8/18/82

| A   N   V   L   I     N   Height   1   2   3   4   5   6   7   8   9   10   11 Ribs   Age CA     65   83   30   45   69   78   15   4     28   89   33   52   74   85   18   4     82   84   24   44   59   74   82   19   5     105   93   26   47   64   82   91   18   5     35   92   25   44   60   78   82   20   5     69   87   23   35   51   74   82   19   5     126   86   23   38   52   68   79   18   5     150   95   30   50   67   89   17   5     160   92   33   53 <td< th=""><th></th></td<>                                                                                                                                                                                                                         |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| N Height 1 2 3 4 5 6 7 8 9 10 11 Ribs Age CA   65 83 30 45 69 78 15 4   28 89 33 52 74 85 18 4   82 84 24 44 59 74 82 19 5   105 93 26 47 64 82 91 18 5   35 92 25 44 60 78 82 20 5   69 87 23 35 51 74 82 19 5   126 86 23 38 52 68 79 18 5   130 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   89 82 20 35 51 70 79 18 5                                                                                                                                                                                                                                                                                                                                                                                                         |               |
| 65 83 30 45 69 78 15 4   28 89 33 52 74 85 18 4   82 84 24 44 59 74 82 19 5   105 93 26 47 64 82 91 18 5   35 92 25 44 60 78 82 20 5   69 87 23 35 51 74 82 19 5   126 86 23 38 52 68 79 18 5   17 93 25 45 62 83 92 17 5   150 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   9 92 20 35 51 70 79 18 5   9 75 26 42 <                                                                                                                                                                                                                                                                                                                                                                                                              | hort          |
| 28 89 33 52 74 85 18 4   82 84 24 44 59 74 82 19 5   105 93 26 47 64 82 91 18 5   35 92 25 44 60 78 82 20 5   69 87 23 35 51 74 82 19 5   126 86 23 38 52 68 79 18 5   17 93 25 45 62 83 92 17 5   150 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   89 82 20 35 51 70 79 18 5   101 93 26 38 54 76 89 18 5   9 75 26                                                                                                                                                                                                                                                                                                                                                                                                              | .978          |
| 82 84 24 44 59 74 82 19 5   105 93 26 47 64 82 91 18 5   35 92 25 44 60 78 82 20 5   69 87 23 35 51 74 82 19 5   126 86 23 38 52 68 79 18 5   17 93 25 45 62 83 92 17 5   150 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   136 76 21 36 54 76 89 18 5   101 93 26 38 54 76 89 18 5   9 75 26 42 52 66 72 18 5   14 78                                                                                                                                                                                                                                                                                                                                                                                                             | .978          |
| 105 $93$ $26$ $47$ $64$ $82$ $91$ $18$ $5$ $35$ $92$ $25$ $44$ $60$ $78$ $82$ $20$ $5$ $69$ $87$ $23$ $35$ $51$ $74$ $82$ $19$ $5$ $126$ $86$ $23$ $38$ $52$ $68$ $79$ $18$ $5$ $17$ $93$ $25$ $45$ $62$ $83$ $92$ $17$ $5$ $150$ $95$ $30$ $50$ $67$ $85$ $93$ $17$ $5$ $136$ $76$ $21$ $36$ $50$ $66$ $76$ $17$ $5$ $136$ $76$ $21$ $36$ $50$ $66$ $76$ $17$ $5$ $89$ $82$ $20$ $35$ $51$ $70$ $79$ $18$ $5$ $101$ $93$ $26$ $38$ $54$ $76$ $89$ $18$ $5$ $9$ $75$ $26$ $42$ $52$ $66$ $72$ $18$ $5$ $9$ $75$ $26$ $42$ $52$ $66$ $72$ $18$ $5$ $14$ $78$ $26$ $39$ $52$ $67$ $74$ $17$ $5$ $1$ $82$ $22$ $38$ $54$ $70$ $79$ $18$ $5$ $14$ $78$ $26$ $39$ $52$ $67$ $74$ $17$ $5$ $14$ $78$ $26$ $39$ $52$ $75$ $87$ $21$ $5$ $12$ $92$ | .977          |
| 35 92 25 44 60 78 82 20 5   69 87 23 35 51 74 82 19 5   126 86 23 38 52 68 79 18 5   17 93 25 45 62 83 92 17 5   150 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   89 82 20 35 51 70 79 18 5   101 93 26 38 54 76 89 18 5   9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 <                                                                                                                                                                                                                                                                                                                                                                                                              | .977          |
| 69 87 23 35 51 74 82 19 5   126 86 23 38 52 68 79 18 5   17 93 25 45 62 83 92 17 5   150 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   89 82 20 35 51 70 79 18 5   101 93 26 38 54 76 89 18 5   9 75 26 42 52 66 72 18 5   9 75 26 42 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   14 78 <t< td=""><td>.977</td></t<>                                                                                                                                                                                                                                                                                                                                                                                    | .977          |
| 1268623385268791851793254562839217515095305067859317513676213650667617589822035517079185101932638547689185975264252667218597526425266721851478263952677417536802131456573195182223854707918542922136527587215127943345608292185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .977          |
| 17 $93$ $25$ $45$ $62$ $83$ $92$ $17$ $5$ $150$ $95$ $30$ $50$ $67$ $85$ $93$ $17$ $5$ $136$ $76$ $21$ $36$ $50$ $66$ $76$ $17$ $5$ $89$ $82$ $20$ $35$ $51$ $70$ $79$ $18$ $5$ $101$ $93$ $26$ $38$ $54$ $76$ $89$ $18$ $5$ $96$ $85$ $23$ $34$ $53$ $74$ $81$ $21$ $5$ $9$ $75$ $26$ $42$ $52$ $66$ $72$ $18$ $5$ $14$ $78$ $26$ $39$ $52$ $67$ $74$ $17$ $5$ $36$ $80$ $21$ $31$ $45$ $65$ $73$ $19$ $5$ $1$ $82$ $22$ $38$ $54$ $70$ $79$ $18$ $5$ $42$ $92$ $21$ $36$ $52$ $75$ $87$ $21$ $5$ $127$ $94$ $33$ $45$ $60$ $82$ $92$ $18$ $5$                                                                                                                                                                                            | 977           |
| 150 95 30 50 67 85 93 17 5   136 76 21 36 50 66 76 17 5   89 82 20 35 51 70 79 18 5   101 93 26 38 54 76 89 18 5   96 85 23 34 53 74 81 21 5   9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   1 82 22 38 54 70 79 18 5   1 82 22 38 54 70 79 18 5   127 94 <td< td=""><td>.977</td></td<>                                                                                                                                                                                                                                                                                                                                                                                   | .977          |
| 136 76 21 36 50 66 76 17 5   89 82 20 35 51 70 79 18 5   101 93 26 38 54 76 89 18 5   96 85 23 34 53 74 81 21 5   9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   1 82 22 38 54 70 79 18 5   1 82 22 38 54 70 79 18 5   127 94 33 45 60 82 92 18 5   127 94 <td< td=""><td>1977</td></td<>                                                                                                                                                                                                                                                                                                                                                                                   | 1977          |
| 89 82 20 35 51 70 79 18 5   101 93 26 38 54 76 89 18 5   96 85 23 34 53 74 81 21 5   9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .977          |
| 101 93 26 38 54 76 89 18 5   96 85 23 34 53 74 81 21 5   9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1977          |
| 86 85 23 34 53 74 81 21 5   9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .977          |
| 9 75 26 42 52 66 72 18 5   14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1977          |
| 14 78 26 39 52 67 74 17 5   36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1977          |
| 36 80 21 31 45 65 73 19 5   1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1977          |
| 1 82 22 38 54 70 79 18 5   42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1977          |
| 42 92 21 36 52 75 87 21 5   127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1977          |
| 127 94 33 45 60 82 92 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1977          |
| · –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1977          |
| 50 90 24 37 57 77 85 18 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1977          |
| 21 89 29 44 60 76 86 19 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1977          |
| 139 79 26 37 50 60 70 76 18 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1976          |
| 90 103 24 37 62 80 92 102 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1976          |
| 117 97 <b>26 45 62 72 81 89</b> 18 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1976          |
| 132 90 20 34 52 65 81 88 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1976          |
| 91 91 22 32 48 64 81 89 18 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 67 89 27 40 50 66 82 89 18 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 123 91 24 40 50 65 81 89 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1976          |
| 80 89 21 31 46 60 74 83 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 71 92 21 34 46 63 80 89 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 34 87 23 35 49 62 72 81 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 33 91 23 36 46 63 81 90 16 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 99 92 24 34 45 63 80 89 18 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 68 81 20 32 45 58 73 79 17 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 12 86 23 36 55 72 80 84 20 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 64 97 25 35 50 64 85 93 18 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1976          |
| 93 86 22 30 44 54 61 78 84 17 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975          |
| 41 92 20 42 56 63 72 80 89 18 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975          |
| 97 110 25 51 72 89 98 102 107 19 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1975          |
| 84 94 24 40 61 74 81 86 92 17 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975          |
| 122 114 26 52 72 82 90 98 105 18 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1975          |
| 73 103 24 46 57 67 74 82 92 19 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 <b>97</b> 5 |
| 63 89 20 36 52 67 75 82 89 18 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1975          |

| 74  | 91  | 24  | 42  | 65       | 76 | 83 | 88            | 93         |     |     | 18 | 7 | 1975              |
|-----|-----|-----|-----|----------|----|----|---------------|------------|-----|-----|----|---|-------------------|
| 5   | 104 | 26  | 55  | 77       | 89 | 94 | 100           | 103        |     |     | 22 | 7 | 1975              |
| 54  | 110 | 30  | 46  | 66       | 80 | 87 | 94            | 106        |     |     | 17 | 7 | 1975              |
| 87  | 100 | 23  | 37  | 58       | 72 | 82 | 91            | 98         |     |     | 17 | 7 | 1975              |
| 104 | 78  | 24  | 36  | 50       | 58 | 62 | 71            | 74         |     |     | 18 | 7 | 1975              |
| 29  | 95  | 22  | 45  | 57       | 65 | 74 | 80            | 89         | 97  |     | 18 | 8 | 1974              |
| 103 | 105 | 28  | 50  | 72       | 84 | 90 | 95            | 100        | 104 |     | 20 | 8 | 1974              |
| 24  | 104 | 24  | 42  | 66       | 83 | 89 | 92            | - 98       | 102 |     | 18 | 8 | 1974              |
| 95  | 97  | 23  | 39  | 57       | 67 | 72 | 78            | 85         | 94  |     | 19 | 8 | 1974              |
| 47  | 98  | 24  | 43  | 54       | 64 | 78 | 84            | ÂÂ         | 94  |     | 19 | 8 | 1974              |
| 55  | 101 | 28  | 42  | 49       | 64 | 71 | 82            | 87         | 97  |     | 17 | Å | 1974              |
| 109 | 106 | 25  | 46  | 62       | 71 | 82 | 90            | 95         | 102 |     | 19 | 8 | 1974              |
| 61  | 105 | 27  | 53  | 61       | 71 | 79 | 89            | 96         | 101 |     | 17 | Å | 1974              |
| 3A  | 103 | 23  | 35  | 50       | 66 | 82 | 88            | 93         | 101 |     | 19 | 8 | 1974              |
| 66  | 103 | 27  | 69  | 60       | 68 | An | 89            | 97         | 102 |     | 18 | Â | 1974              |
| 152 | 98  | 26  | 40  | 62       | 75 | 80 | 85            | 91         | 95  |     | 17 | Å | 1974              |
| 11  | 101 | จัก | 50  | 69       | RA | 89 | 91            | 99         | 103 |     | 18 | Å | 1974              |
| 145 | 101 | 24  | 35  | ٨A       | 65 | A1 | A7            | 91         | 98  |     | 19 | Â | 1974              |
| 45  | 107 | 28  | 50  | 67       | 71 | A1 | 89            | 95         | 107 |     | 17 | Å | 1976              |
| 92  | 112 | 29  | 4R  | 72       | 89 | 04 | 97            | 103        | 108 |     | 17 | Å | 1974              |
| 82  | 100 | 26  | 70  | 50       | 66 | 72 | A2            | 97         | 97  |     | 19 | Å | 1974              |
| 26  | 100 | 20  | 37  | 54       | 66 | 77 | 89            | 04         | 00  |     | 20 | A | 1974              |
| 135 | 107 | 20  | 45  | 55       | 70 | 80 | 86            | 95         | 102 |     | 16 | A | 1974              |
| 15  | 102 | 28  | รัก | 60       | 71 | 78 | 86            | 04         | 100 |     | 17 | Â | 1974              |
| 153 | 104 | 21  | 36  | 50       | 62 | 72 | A2            | <b>q</b> 1 | 100 |     | 18 | Å | 1974              |
| 144 | 103 | 22  | 36  | 40       | 67 | 71 | 79            | 95         | 100 |     | 17 | Â | 1074              |
| 133 | 07  | 20  | 40  | 52       | 65 | 72 | A1            | 97         |     |     | 18 | A | 107/              |
| 40  | 103 | 20  | 40  | 52<br>67 | 82 | 86 | 07            | 07         | 101 |     | 20 | 0 | 1074              |
| 120 | 103 | 20  | 40  | 65       | 77 | A5 | 92<br>Q1      |            | 101 |     | 10 | A | 1974              |
| 111 | 97  | 22  | 74  | 47       | 60 | 69 | A0            | 97<br>97   | 102 |     | 17 | A | 1974              |
| 22  | 90  | 25  | 36  | 47       | 57 | 66 | 75            | 83         | 88  |     | 18 | 8 | 1974              |
| 147 | 104 | 26  | 47  | 58       | 67 | 75 | 84            | 92         | 101 |     | 17 | 8 | 1974              |
| 7   | 102 | 24  | 49  | 68       | 81 | 87 | 92            | 99         | 102 |     | 18 | 8 | 1974              |
| 16  | 106 | 27  | 52  | 61       | 71 | 78 | 89            | 95         | 103 |     | 20 | 8 | 1974              |
| 56  | 104 | 26  | 42  | 64       | 83 | 87 | 91            | 96         | 99  |     | 19 | 8 | 1974              |
| 37  | 112 | 26  | 50  | 74       | 83 | 90 | 98            | 104        | 110 |     | 20 | 8 | 1974              |
| 13  | 102 | 31  | 43  | 68       | 79 | 86 | <del>89</del> | 92         | 97  |     | 18 | 8 | 1974              |
| 44  | 109 | 27  | 47  | 66       | 85 | 92 | 95            | 100        | 106 |     | 18 | 8 | 1 <del>9</del> 74 |
| 4   | 104 | 25  | 46  | 67       | 81 | 86 | 90            | 97         | 102 |     | 18 | 8 | 1974              |
| 110 | 106 | 25  | 36  | 46       | 56 | 67 | 78            | 88         | 99  | 104 | 18 | 9 | 1973              |
| 85  | 93  | 27  | 37  | 48       | 58 | 63 | /0            | /8         | 85  | 92  | 17 | 9 | 1973              |
| 113 | 106 | 24  | 45  | 69       | /8 | 84 | 88            | 92         | 97  | 102 | 18 | 9 | 1973              |
| 43  | 106 | 23  | 43  | 65       | /8 | 86 | 92            | 95         | 99  | 105 | 19 | 9 | 1973              |
| 142 | 117 | 23  | 46  | 69<br>72 | /9 | 90 | 99            | 106        | 111 | 115 | 19 | 9 | 1973              |
| 10  | 116 | 29  | 49  | /6       | 85 | 94 | 102           | 108        | 113 | 115 | 20 | 9 | 1973              |
| 100 | 98  | 25  | 36  | 47       | 57 | 66 | 75            | 82         | 90  | 94  | 16 | 9 | 1973              |
| 12  | 93  | 22  | 34  | 45       | 56 | 62 | 70            | 76         | 82  | 90  | 16 | 9 | 1973              |
| 116 | 106 | 22  | 37  | 49       | 58 | 70 | 75            | 81         | 91  | 101 | 17 | 9 | 1973              |
| 46  | 109 | 25  | 42  | 55       | 69 | 81 | 89            | 97         | 104 | 109 | 19 | 9 | 1973              |
| 75  | 108 | 23  | 37  | 58       | 73 | 80 | 86            | 93         | 99  | 104 | 18 | 9 | 1973              |

| 102 | 100       | 23       | 44        | 61           | 69           | 82        | 87       | 91         | 94        | <del>98</del> |           | 18 | 9  | 1973 |
|-----|-----------|----------|-----------|--------------|--------------|-----------|----------|------------|-----------|---------------|-----------|----|----|------|
| 141 | 102       | 20       | 34        | 46           | 58           | 67        | 76       | 82         | 91        | - 99          |           | 18 | 9  | 1973 |
| 119 | 102       | 26       | 41        | 55           | 65           | 79        | 82       | 88         | 93        | 98            |           | 20 | 9  | 1973 |
| 128 | 106       | 27       | 38        | 53           | 65           | 73        | 81       | 89         | <b>98</b> | 105           |           | 18 | 9  | 1973 |
| 125 | 106       | 27       | 47        | 67           | 81           | 86        | 92       | 97         | 102       | 106           |           | 19 | 9  | 1973 |
| 114 | 100       | 27       | 39        | 52           | 61           | 67        | 74       | 82         | 89        | 96            |           | 18 | 9  | 1973 |
| 58  | 91        | 21       | 38        | 50           | 57           | 65        | 72       | 78         | 85        | 91            |           | 19 | 9  | 1973 |
| 60  | 100       | 24       | 36        | 50           | 61           | 69        | 76       | 83         | 89        | 96            |           | 17 | 9  | 1973 |
| 148 | 109       | 29       | 54        | 68           | 75           | 82        | 90       | 98         | 105       | 109           |           | 18 | 9  | 1973 |
| 78  | 108       | 28       | 53        | 70           | 76           | 85        | 91       | 97         | 102       | 105           |           | 18 | 9  | 1973 |
| 2   | 103       | 25       | 40        | 51           | 64           | 72        | 79       | 88         | 95        | 104           |           | 17 | 9  | 1973 |
| 59  | 100       | 25       | 39        | 48           | 60           | 67        | 75       | 86         | 93        | 101           |           | 17 | 9  | 1973 |
| 81  | 102       | 26       | 42        | 55           | 65           | 74        | 83       | 90         | 96        | 103           |           | 18 | 9  | 1973 |
| 52  | 97        | 21       | 38        | 62           | 74           | 78        | 82       | 88         | 91        | 95            |           | 19 | 9  | 1973 |
| 3   | 110       | 23       | 39        | 54           | 69           | 82        | 87       | 93         | 100       | 105           |           | 17 | 9  | 1973 |
| 107 | 104       | 25       | 44        | 63           | 74           | 77        | 80       | 89         | 95        | 103           |           | 19 | 9  | 1973 |
| 118 | 98        | 25       | 37        | 49           | 60           | 68        | 77       | 84         | 91        | 95            |           | 18 | 9  | 1973 |
| 112 | 101       | 28       | 43        | 54           | 65           | 75        | A1       | 86         | 91        | 96            |           | 18 | 9  | 1973 |
| 77  | 107       | 21       | 40        | 53           | 65           | 78        | 85       | 91         | 95        | 100           |           | 19 | 9  | 1973 |
| 25  | 89        | 21       | 44<br>64  | 63           | 73           | 78        | 82       | 85         | 89        | 90            |           | 18 | 9  | 1973 |
| 20  | 102       | 27       | 43        | 60           | 71           | 78        | 82       | 92         | 97        | 102           |           | 19 | 9  | 1973 |
| 106 | 100       | 27       | 45        | 61           | 73           | 78        | 83       | A7         | 92        | 97            |           | 18 | 9  | 1973 |
| 10  | 106       | 26       | 36        | 58           | 69           | 74        | A1       | 88         | <b>6</b>  | 103           |           | 17 | ģ  | 1973 |
| 57  | 105       | 27       | 40<br>40  | 57           | 67           | 72        | Å1       | 89         | 09        | 107           |           | 19 | ģ  | 1973 |
| 00  | 105       | 20       | 40        | 52           | 66           | 73        | 79       | 86         | 96        | 104           |           | 19 | ģ  | 1973 |
| 76  | 100       | 47<br>22 | 20        | 61           | 74           | 70        | 94       | 20         | <u>04</u> | 09            |           | 18 | ģ  | 1973 |
| /0  | 110       | 26       | 20        | EY .         | 4            | 76        | 07       | 00         | 07        | 107           |           | 18 | á  | 1073 |
| 49  | 105       | 24       | 40        | 34<br>67     | 70           | 02        | 04       | 7V<br>07   | ،د<br>70  | 102           |           | 10 | á  | 1973 |
| 104 | 103       | 20       | 47        | 67<br>60     | /0<br>73     | ده<br>70  | 0/<br>02 | 95<br>96   | 5/<br>0/  | 00            |           | 19 | q  | 1073 |
| 47  | <b>70</b> | 27       | 41        | 53           | 7.J<br>2.C   | /0<br>77  | 02       | 00         | 04        | - 26<br>- 26  |           | 10 | á  | 1973 |
| 141 | 9/        | 26       | 41        | 23           | 20           | 72        | 04       | 20         | 274<br>02 | 90<br>07      |           | 10 | á  | 1973 |
| 17  | 100       | 40       | 20        | 40           | 61           | 60        | 70       | 20         | 95        | 1.06          |           | 20 | á  | 1973 |
| 140 | 100       | 21       | 72        | 40           | 62           | 75        | 07       | 97         | 02        | 00            |           | 18 | á  | 1973 |
| 140 | <b>70</b> | 20       | 40        | _m<br>60     | 75           | 7.5<br>00 | 04<br>94 | 07         | 95<br>07  | 100           |           | 19 | á  | 1073 |
| 149 | 104       | 41       | 40        | 03           | 75           | 0V<br>70  | 0~       | 74<br>00   | 77<br>00  | 105           |           | 19 | a  | 1073 |
| 151 | 104       | 24       | 20        | 40           | 50           | 67        | ٥٧<br>٦٢ | 7V<br>01   | 90        | 203           |           | 10 | á  | 1073 |
| 101 | 107       | 22       | 34<br>47  | 40<br>54     | - JO<br>- 61 | 70        | 01       | <b>6</b> 0 | 00<br>04  | 100           |           | 19 | á  | 1973 |
| 104 | 107       | 24       | 442       | - 29<br>- 60 | 76           | 02        | 00       | 07         | 101       | 104           |           | 10 | á  | 1073 |
| 124 | 104       | 40       | 3/        | 04<br>50     | 70           | נס<br>רר  | 00       | 274<br>07  | 01        | 07            | 104       | 17 | 10 | 1072 |
| 107 | 107       | 20       | 40        | 33<br>47     | 03<br>60     | 70        | 04<br>74 | 0/         | 91        | 27            | 104       | 17 | 10 | 1072 |
| 137 | 103       | 24       | 2X<br>2X  | 47           | 0V<br>57     | 70<br>60  | /4<br>67 | 0V<br>70   | 00        | 20            | 70<br>01  | 17 | 10 | 1974 |
| 4.3 | 101       | دی<br>22 | .)4<br>10 | 43           | 04<br>66     | 00        | 07       | 74<br>06   | 04        | 00            | 71<br>07  | 20 | 10 | 1072 |
| 129 | 101       | 23       | 32        | 44           | סכ<br>יר     | 71        | 04       | 90         | 07        | 34<br>07      | 77<br>101 | 20 | 10 | 1072 |
| 18  | 102       | 23       | 42        | 02<br>50     | 74           | 11        | 02       | 04         | 04        | 102           | 100       | 20 | 10 | 1072 |
| 121 | 110       | 44       | 40        | 33<br>20     | 03<br>70     | /4        | 04       | 00         | 74<br>00  | 102           | 105       | 10 | 10 | 1070 |
| 131 | 10/       | 29       | 00        | 00<br>E4     | 12           | 82        | 00<br>70 | 32         | <b>70</b> | 102           | 100       | 20 | 10 | 1070 |
| 46  | 104       | 22       | 3/        | 51           | 01<br>50     | 72        | 70       | 82         | 88<br>01  | 22            | 102       | 20 | 10 | 1972 |
| 94  | 98        | 25       | 38        | 50           | 58           | 50        | 12       | /9         | 84<br>00  | 90            | 900<br>1  | 10 | 10 | 1972 |
| 108 | 98        | 21       | 39        | 52           | 65           | /4        | 82       | 85         | 90        | 93            | 9/        | 19 | 10 | 1972 |
| 20  | 105       | 20       | 37        | 51           | 60           | /3        | /9       | 86         | 93        | 99            | 105       | 18 | 10 | 1972 |
| 57  | 105       | 26       | 37        | 60           | 68           | 79        | 88       | 96         | 100       | 102           | 104       | 17 | 10 | 1972 |

| 27  | 98    | 24   | - 36 | 46   | - 54 | 59   | - 66 | - 74  | 82    | 91    | 97   |    | 17   | 10   | 1972 |
|-----|-------|------|------|------|------|------|------|-------|-------|-------|------|----|------|------|------|
| 32  | 105   | 20   | 41   | 52   | 65   | 77   | 82   | 85    | 90    | 95    | 100  |    | 19   | 10   | 1972 |
| 115 | 95    | 21   | - 36 | 46   | 57   | 65   | 70   | 76    | 82    | 66    | 92   |    | 19   | 10   | 1972 |
| 70  | 102   | 25   | 40   | 50   | 61   | 72   | 77   | 82    | 87    | 95    | 100  |    | 17   | 10   | 1972 |
| 51  | 95    | 23   | 40   | 52   | 64   | 72   | 78   | 84    | 88    | 92    | 95   |    | 19   | 10   | 1972 |
| 96  | 100   | 25   | 40   | 50   | 57   | 63   | 71   | 79    | 86    | 94    | 99   |    | 17   | 10   | 1972 |
| 140 | 111   | 27   | 41   | - 54 | 64   | 80   | 85   | 91    | 98    | 103   | 110  |    | 18   | 10   | 1972 |
| 88  | 104   | 21   | 34   | 47   | 58   | 71   | 78   | 83    | 90    | 97    | 103  |    | 17   | 10   | 1972 |
| 134 | 98    | 26   | 35   | 46   | 59   | 68   | 77   | 82    | 88    | 94    | 97   |    | 16   | 10   | 1972 |
| 130 | 100   | 25   | 41   | 55   | 64   | 72   | 78   | 84    | 90    | 93    | 95   | 97 | 17   | 11   | 1971 |
| ź   | 98.67 | 24.6 | 40.8 | 56.3 | 68.9 | ר. ד | 83.9 | 89.82 | 95.42 | 99.04 | 99.9 | 97 | 18.0 | 7.91 |      |

F/V Tatiana HECETA HEAD - Florence N = 66 Date: 8/10/83

| N           | Height | 1         | 2         | 3          | 4        | 5         | 6         | 7     | 8   | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 Ribs | Age    | Cohort            |
|-------------|--------|-----------|-----------|------------|----------|-----------|-----------|-------|-----|---|----|----|----|----|----|----|---------|--------|-------------------|
| 48          | 112    | 23        | 39        | 62         | 84       | 101       |           |       |     |   |    |    |    |    |    |    | 17      | 5      | 1978              |
| 39          | 120    | 27        | 46        | 74         | 95       | 108       | 116       |       |     |   |    |    |    |    |    |    | 20      | 6      | 1977              |
| 35          | 120    | 30        | 49        | 69         | 63       | 103       | 113       |       |     |   |    |    |    |    |    |    | 19      | 6      | 1977              |
| 33          | 108    | 27        | 52        | 79         | 97       | 103       | 106       |       |     |   |    |    |    |    |    |    | 19      | 6      | 1977              |
| 55          | 118    | 25        | 43        | 73         | 98       | 109       | 115       |       |     |   |    |    |    |    |    |    | 20      | 6      | 1977              |
| 30          | 113    | 25        | 39        | 58         | 82       | 100       | 109       |       |     |   |    |    |    |    |    |    | 17      | 6      | 1977              |
| 42          | 121    | 28        | 47        | 68         | 98       | 112       | 117       |       |     |   |    |    |    |    |    |    | 18      | 6      | 1977              |
| 29          | 119    | 27        | 44        | 63         | 92       | 104       | 113       |       |     |   |    |    |    |    |    |    | 19      | 6      | 1977              |
| 25          | 118    | 28        | 48        | 62         | 86       | 104       | 113       |       |     |   |    |    |    |    |    |    | 19      | 6      | 1977              |
| 28          | 118    | 31        | 58        | 79         | 98       | 108       | 115       |       |     |   |    |    |    |    |    |    | 18      | - 6    | 1977              |
| 61          | 117    | 30        | 46        | 76         | 97       | 108       | 113       |       |     |   |    |    |    |    |    |    | 20      | 6      | 1977              |
| 56          | 118    | 29        | 45        | 70         | 92       | 107       | 112       |       |     |   |    |    |    |    |    |    | 18      | 6      | 1977              |
| 40          | 120    | 25        | 47        | 65         | 99       | 102       | 112       |       |     |   |    |    |    |    |    |    | 18      | 6      | 1977              |
| 14          | 116    | 29        | 46        | 75         | 94       | 107       | 114       |       |     |   |    |    |    |    |    |    | 20      | 6      | 1977              |
| 34          | 123    | 28        | 48        | 71         | 86       | 102       | 115       | 120   |     |   |    |    |    |    |    |    | 17      | 7      | 1976              |
| 31          | 118    | 26        | 48        | 69         | 82       | 100       | 112       | 118   |     |   |    |    |    |    |    |    | 19      | 7      | 1976              |
| 32          | 118    | 25        | 41        | 58         | 78       | 92        | 107       | 115   |     |   |    |    |    |    |    |    | 19      | 7      | 1976              |
| 65          | 117    | 28        | 44        | 60         | 79       | 97        | 108       | 114   |     |   |    |    |    |    |    |    | 20      | 7      | 1976              |
| 4           | 120    | 30        | 55        | 74         | 93       | 105       | 115       | 119   |     |   |    |    |    |    |    |    | 17      | 7      | 1976              |
| 62          | 117    | 24        | 38        | 57         | 88       | 103       | 112       | 116   |     |   |    |    |    |    |    |    | 21      | 7      | 1976              |
| 54          | 118    | 27        | 44        | 66         | 93       | 107       | 112       | 116   |     |   |    |    |    |    |    |    | 19      | 7      | 1976              |
| 36          | 119    | 27        | 48        | 63         | 82       | 98        | 109       | 117   |     |   |    |    |    |    |    |    | 18      | 7      | 1976              |
| 60          | 115    | 27        | 43        | 60         | 72       | 91        | 104       | 109   |     |   |    |    |    |    |    |    | 19      | 7      | 1976 <sup>,</sup> |
| 3           | 122    | 29        | 47        | 73         | 87       | 97        | 108       | 114   |     |   |    |    |    |    |    |    | 18      | 7      | 1976              |
| 37          | 118    | 28        | 47        | 7 <b>9</b> | 84       | 102       | 111       | 117   |     |   |    |    |    |    |    |    | 19      | 7      | 1976              |
| 9           | 117    | 29        | 44        | 64         | 82       | 97        | 108       | 113   |     |   |    |    |    |    |    |    | 20      | 7      | 1976              |
| 26          | 120    | 31        | 50        | 71         | 85       | 102       | 113       | 119   |     |   |    |    |    |    |    |    | 18      | 7      | 1976              |
| 46          | 117    | 29        | 45        | 64         | 80       | 97        | 109       | 115   |     |   |    |    |    |    |    |    | 18      |        | 1976              |
| 7           | 112    | 25        | 42        | 68         | 82       | 98        | 105       | 110   |     |   |    |    |    |    |    |    | 19      |        | 1976              |
| 27          | 118    | 22        | 39        | 62         | 87       | 97        | 108       | 114   |     |   |    |    |    |    |    |    | 20      |        | 19/6              |
| 57          | 116    | 27        | 56        | 78         | 91       | 102       | 110       | 115   |     |   |    |    |    |    |    |    | 10      |        | 19/0              |
| -64         | 120    | 26        | 45        | 73         | 97       | 105       | 112       | 118   |     |   |    |    |    |    |    |    | 1/      |        | 19/0              |
| 21          | 121    | 28        | 45        | 6/         | /9       | 97        | 108       | 114   | 118 |   |    |    |    |    |    |    | 20      |        | 19/3              |
| - 58        | 120    | 26        | 44        | 22         | 12       | 90        | 102       | 111   | 117 |   |    |    |    |    |    |    | 19      |        | 1975              |
| 52          | 130    | 27        | 48        | /0         | 83       | 102       | 115       | 122   | 127 |   |    |    |    |    |    |    | 20      | 0      | 1975              |
| 11          | 120    | 22        | 55        | 4/         | 53       | 81        | 92        |       | 117 |   |    |    |    |    |    |    | 20      |        | 1975              |
| 13          | 11/    | 20        | 43        | 00<br>64   | /8<br>75 | 77        | 105       | 111   | 115 |   |    |    |    |    |    |    | 20      | 0<br>0 | 1075              |
| 44          | 110    | 20<br>20  | 40<br>45  | 61         | ()<br>() | 92        | 105       | 111   | 110 |   |    |    |    |    |    |    | 20      | o<br>g | 1075              |
| - 24        | 120    | 20<br>20  | 4J<br>(1  | 02<br>C0   | 13<br>17 | 94<br>(17 | TNO       | 119   | 104 |   |    |    |    |    |    |    | 10      | о<br>9 | 1075              |
| 0<br>10     | 125    | 20        | 41<br>7 E | 30<br>60   | /4<br>07 | 37        | ГН<br>112 | 110   | 124 |   |    |    |    |    |    |    | 20      | о<br>д | 1975              |
| . JO<br>. 1 | 143    | -30<br>70 | 40<br>45  | 00<br>50-  | 70<br>72 | 77<br>05  | 04        | 105   | 117 |   |    |    |    |    |    |    | 18      | я      | 1975              |
| 4<br>E      | 170    | 20<br>20  | 43<br>5/  | 27<br>70   | 100      | 112       | 121       | 125   | 127 |   |    |    |    |    |    |    | 18      | я      | 1975              |
| 3           | 140    | 47        |           | 17         | 100      | 114       | 141       | 1 6.0 | 141 |   |    |    |    |    |    |    | 10      |        |                   |

| 49 | 118   | 31   | . 54      | 7        | 2 91 | 9    | 105   | 5 110 | ) 114 | 117   | 7     |       |       |       |       |       |     | 16   | 9    | 1974 |
|----|-------|------|-----------|----------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-----|------|------|------|
| 45 | 115   | 27   | - 43      | <b>6</b> | 3 83 | 100  | 105   | 108   | 3 111 | . 114 |       |       |       |       |       |       |     | 19   | 9    | 1974 |
| 41 | 124   | 31   | 52        | 2 81     | L 96 | 104  | 110   | 114   | 118   | 121   | 122   |       |       |       |       |       |     | 20   | 10   | 1973 |
| 50 | 118   | 28   | 51        | i 71     | 90   | - 98 | 102   | 105   | 5 109 | 114   | 117   |       |       |       |       |       |     | 18   | 10   | 1973 |
| 17 | 129   | 30   | - 48      | 69       | 9 82 | 92   | 101   | 110   | ) 117 | 122   | 2 126 | I     |       |       |       |       |     | 18   | 10   | 1973 |
| 1  | 114   | 23   | 34        | 4        | 66   | 81   | 92    | 103   | 108   | 110   | 113   | 113   |       |       |       |       |     | 19   | 11   | 1972 |
| 6  | 122   | 24   | 36        | 51       | 72   | 93   | 101   | 106   | i 112 | 114   | 117   | 121   |       |       |       |       |     | 17   | 11   | 1972 |
| 51 | 121   | 29   | 52        | 72       | 91   | 97   | 101   | 104   | 108   | 112   | 115   | 118   |       |       |       |       |     | 18   | 11   | 1972 |
| 15 | 120   | 20   | 53        | 72       | 2 88 | - 96 | 102   | 106   | 6 110 | 112   | 115   | 118   | 120   | I     |       |       |     | 17   | 12   | 1971 |
| 53 | 122   | 27   | 46        | 68       | 88   | 97   | 103   | 107   | 110   | 112   | 115   | 118   | 121   |       |       |       |     | 18   | 12   | 1971 |
| 66 | 118   | 24   | 40        | 57       | / 65 | - 84 | 91    | 97    | 104   | 108   | 112   | 115   | 117   |       |       |       |     | 17   | 12   | 1971 |
| 19 | 122   | 28   | 43        | - 55     | i 75 | 92   | 100   | 105   | 108   | 112   | 114   | 117   | 119   |       |       |       |     | 18   | 12   | 1971 |
| 10 | 127   | 28   | - 45      | 60       | 17   | - 98 | 110   | 114   | 117   | 119   | 121   | 124   | 126   | I     |       |       |     | 19   | 12   | 1971 |
| 63 | 131   | 27   | 40        | 63       | 86   | 103  | 112   | 116   | 119   | 121   | 124   | 126   | 129   |       |       |       |     | 19   | 12   | 1971 |
| 43 | 123   | 25   | - 43      | 56       | 76   | 93   | - 98  | 101   | 104   | 109   | 112   | 117   | 120   |       |       |       |     | 17   | 12   | 1971 |
| 59 | 126   | 29   | 45        | 65       | 85   | - 94 | 99    | 104   | 108   | 111   | 114   | 118   | 121   |       |       |       |     | 16   | 12   | 1971 |
| 20 | 131   | 22   | <u>41</u> | 57       | 67   | 78   | 66    | 92    | 106   | 117   | 122   | 125   | 127   | 129   |       |       |     | 19   | 13   | 1970 |
| 47 | 131   | 27   | - 55      | - 75     | - 94 | 104  | 108   | 112   | 116   | 118   | 121   | 124   | 127   | 130   |       |       |     | 16   | 13   | 1970 |
| 12 | 125   | 24   | 41        | - 53     | 73   | - 90 | 98    | 103   | 107   | 110   | 113   | 116   | 121   | 123   |       |       |     | 18   | 13   | 1970 |
| 23 | 130   | - 30 | 52        | - 64     | - 77 | 87   | 104   | - 111 | 115   | 117   | 120   | 122   | 124   | 126   | 129   |       |     | 17   | 14   | 1969 |
| 16 | 132   | 31   | 45        | 59       | 71   | - 94 | 106   | 114   | 116   | 119   | 121   | 123   | 126   | 128   | 130   |       |     | 19   | 14   | 1969 |
| 18 | 128   | 24   | - 38      | 61       | 80   | 95   | 102   | 105   | 108   | 110   | 112   | 115   | 118   | 121   | 123   | 125   |     | 18   | 15   | 1968 |
| 22 | 129   | 26   | 44        | 56       | 75   | 90   | 97    | 102   | 106   | 110   | 113   | 115   | 117   | 119   | 121   | 124   | 127 | 18   | 16   | 1967 |
| x  | 120.5 | 26.9 | 45.6      | 65.5     | 83.6 | 98   | 106.9 | 111.3 | 113.6 | 114.3 | 117.0 | 119.1 | 122.2 | 125.1 | 125.7 | 124.5 | 127 | 18.4 | 8.66 |      |

•

COOS BAY October 24-25/1981 N = 58

Depth = 82 m

| _  |             |                  |          |          | A N N     | ULU.             | S   |     | -   |   |      |     |        |
|----|-------------|------------------|----------|----------|-----------|------------------|-----|-----|-----|---|------|-----|--------|
| N  | Height      | 1                | 2        | 3        | 4         | 5                | 6   | 7   | 8   | 9 | Ribs | Age | Cohort |
| 9  | 116         | 31               | 60       | 73       | 91        |                  |     |     |     |   | 20   | 4   | 1977   |
| 35 | 114         | 20               | 37       | 72       | 101       |                  |     |     |     |   | 18   | 4   | 1977   |
| 13 | 120         | 19               | 39       | 72       | 100       | 115              |     |     |     |   | 19   | 5   | 1976   |
| 34 | 113         | 22               | 37       | 59       | 86        | 108              |     |     |     |   | 21   | 5   | 1976   |
| 36 | 110         | 30               | 53       | 74       | 94        | 107              |     |     |     |   | 20   | 5   | 1976   |
| 10 | 122         | 25               | 38       | 61       | 101       | 116              |     |     |     |   | 20   | 5   | 1976   |
| 7  | 125         | 14               | 38       | 73       | 105       | 119              |     |     |     |   | 18   | 5   | 1976   |
| 22 | 123         | 18               | 36       | 64       | 97        | 114              |     |     |     |   | 18   | 5   | 1976   |
| 31 | 120         | 32               | 54       | 72       | 100       | 117              |     |     |     |   | 20   | 5   | 1976   |
| 4  | 123         | 29               | 52       | 67       | 93        | 107              | 115 |     |     |   | 20   | 6   | 1975   |
| 18 | 118         | 31               | 52       | 68       | 86        | 96               | 112 |     |     |   | 21   | 6   | 1975   |
| 19 | 122         | 35               | 56       | 75       | 95        | 114              | 118 |     |     |   | 19   | 6   | 1975   |
| 12 | 127         | 26               | 50       | 80       | 99        | 113              | 123 |     |     |   | 19   | 6   | 1975   |
| 3  | 119         | 18               | 35       | 65       | 87        | 95               | 114 |     |     |   | 20   | 6   | 1975   |
| 14 | 121         | 25               | 38       | 59       | 75        | 103              | 117 |     |     |   | 18   | 6   | 1975   |
| 28 | 117         | 28               | 44       | 66       | 80        | 101              | 112 |     |     |   | 21   | 6   | 1975   |
| 16 | 110         | 19               | 40       | 66       | 77        | 93               | 109 |     |     |   | 20   | 6   | 1975   |
| 49 | 11 <b>2</b> | 34               | 47       | 64       | 91        | 98               | 109 |     |     |   | 19   | 6   | 1975   |
| 50 | 122         | 30               | 43       | 68       | 98        | 116              | 121 |     |     |   | 21   | 6   | 1975   |
| 23 | 103         | 31               | 49       | 65       | 87        | 94               | 101 |     |     |   | 18   | 6   | 1975   |
| 57 | 135         | 42               | - 74     | 83       | 110       | 116              | 121 |     |     |   | 19   | 6   | 1975   |
| 26 | 115         | 30               | 48       | 72       | 93        | 99               | 112 |     |     |   | 20   | 6   | 1975   |
| 33 | 116         | 20               | 34       | 57       | 75        | 95               | 112 |     |     |   | 21   | 6   | 1975   |
| 27 | 115         | 29               | 40       | 68       | 79        | 95               | 110 |     |     |   | 19   | 6   | 1975   |
| 30 | 108         | 21               | 38       | 55       | 69        | 83               | 93  | 107 |     |   | 19   | 7   | 1974   |
| 42 | 124         | 23               | 36       | 59       | 79        | 95               | 111 | 121 |     |   | 23   | 7   | 1974   |
| 43 | 113         | 16               | 29       | 55       | 75        | 86               | 97  | 106 |     |   | 18   | 7   | 1974   |
| 24 | 135         | 17               | 45       | 72       | 87        | 103              | 118 | 129 |     |   | 21   | 7   | 1974   |
| 44 | 122         | 29               | 57       | 70       | 95        | 104              | 110 | 119 |     |   | 18   | 7   | 1974   |
| 45 | 121         | 35               | 60       | /2       | 98        | 106              | 117 | 121 |     |   | 21   | 7   | 1974   |
| 5  | 125         | 32               | 49       | 68       | 90        | 99               | 114 | 121 |     |   | 17   |     | 1974   |
| 2  | 122         | 28               | 50       | 66       | 89        | 99               | 112 | 119 |     |   | 19   | /   | 1974   |
| 48 | 130         | 34               | 49       | 77       | 97        | 110              | 122 | 12/ |     |   | 21   |     | 1974   |
| 40 | 128         | <i>3</i> 0       | 24       | /5       | 90        | 107              | 118 | 125 |     |   | 19   | /   | 1974   |
| 40 | 125         | 27               | 20       | 86       | 100       | 108              | 110 | 122 |     |   | 20   | /   | 1974   |
| 4/ | 120         | 28               | 41<br>26 | 29       | 11        | 93               | 104 | 115 |     |   | 20   | /   | 1974   |
| 20 | 122         | 20               | 35       | 34       | 0/        | 65<br>105        | 109 | 110 |     |   | 19   | /   | 1974   |
| 30 | 120         | لک<br>دد         | 42       | 12       | 92        | 00               | 110 | 122 | 171 |   | 19   | /   | 1974   |
| 43 | 130         | 21<br>00         | 40       | 24<br>60 | עס<br>רר  | 9 <u>2</u><br>00 | 107 | 120 | 131 |   | 20   | 8   | 1973   |
| 1/ | 124         | <u>د</u> ک<br>۲۲ | 30       | 00<br>רי | //<br>76  | 90<br>04         | 100 | 118 | 123 |   | 21   | 8   | 1973   |
| 52 | 1.34        | 20<br>20         | 5¥<br>52 | رد<br>مر | 0/<br>د ت | - <del>94</del>  | 103 | 121 | 129 |   | 21   | 8   | 1973   |
| 41 | 1.54        | 32               | 00       | /8       | 9/        | 100              | 111 | 120 | 123 |   | 21   | 8   | 1973   |

| 55 | 134   | 20    | 40    | 69    | 87    | 112   | 118   | 125   | 131 |     | 18    | 8        | 1973 |
|----|-------|-------|-------|-------|-------|-------|-------|-------|-----|-----|-------|----------|------|
| 21 | 139   | 21    | 42    | 56    | 75    | 113   | 118   | 129   | 136 |     | 18    | 8        | 1973 |
| 20 | 126   | 23    | 37    | 56    | 75    | 98    | 109   | 119   | 124 |     | 20    | 8        | 1973 |
| 11 | 133   | 17    | 39    | 69    | 95    | 111   | 120   | 125   | 129 |     | 18    | 8        | 1973 |
| 51 | 133   | 19    | 36    | 52    | 72    | 96    | 118   | 126   | 130 |     | 20    | 8        | 1973 |
| 37 | 134   | 18    | 45    | 60    | 78    | 87    | 97    | 112   | 126 |     | 18    | 8        | 1973 |
| 52 | 124   | 21    | 34    | 53    | 73    | 96    | 106   | 115   | 122 |     | 18    | 8        | 1973 |
| 56 | 128   | 34    | 51    | 72    | 89    | 112   | 117   | 122   | 126 |     | 21    | 8        | 1973 |
| 54 | 131   | 18    | - 38  | 72    | 111   | 117   | 123   | 126   | 130 |     | 17    | 8        | 1973 |
| 15 | 135   | 32    | 55    | 76    | 97    | 113   | 124   | 131   | 133 |     | 18    | 8        | 1973 |
| 53 | 126   | 31    | 56    | 72    | 95    | 109   | 118   | 123   | 125 |     | 19    | 8        | 1973 |
| 29 | 130   | 25    | 36    | 49    | 72    | 95    | 107   | 118   | 125 | 129 | 19    | 9        | 1972 |
| 6  | 128   | 30    | 46    | 78    | 87    | 96    | 106   | 111   | 116 | 123 | 18    | 9        | 1972 |
| 1  | 156   | 29    | 41    | 57    | 82    | 115   | 132   | 141   | 146 | 153 | 22    | 9        | 1972 |
| 39 | 131   | 14    | 35    | 73    | 103   | 112   | 121   | 125   | 127 | 130 | 18    | 9        | 1972 |
| 8  | 147   | 23    | 44    | 68    | 90    | 118   | 130   | 138   | 142 | 145 | 20    | 9        | 1972 |
| -  |       |       |       |       |       |       |       |       |     |     |       |          |      |
| X  | 124.5 | 25.70 | 44.65 | 66.58 | 87.94 | 103.5 | 113.4 | 121.7 | 129 | 136 | 19.44 | 6.827586 |      |

Appendix 2. Measured height at the last annulus versus age for  $\underline{P}$ . <u>caurinus</u> populations off the Oregon Coast. 82th45: Tillamook Head at 82 m 82th50: Tillamook Head at 92 m 82th5052: Tillamook Head at 96 m 82th55: Tillamook Head at 101 m 82yq60: Yaquina Head 83hh52: Heceta Head 81cb: Coos Bay

156



157



Appendix 3. Eastern Pacific Coast fishing statistical areas.

