
AN ABSTRACT OF THE THESIS OF

Onur Aciicmez for the degree of Master of Science in

Electrical and Computer Engineering presented on May 11, 2004.

Title: Fast Hashing on Pentium SIMD Architecture

Abstract approved: Signature redacted for privacy.

cetin Kaya Koç

The SIMD (single-instruction, multiple-data) architecture is implemented

in many popular general-purpose processor families, including Intel Pentium. In

this paper, we examine if any performance gains can be obtained in the implemen-

tation of the Secure Hash Algorithms (SHA-1, SHA-256, SHA-384, and SHA-512)

and present the details of our optimization methods and implementation details.

It turns out that while the hashing of a single message is slower, the hashing of 2

or 4 independent message streams can be made signicantly faster.

©Copyright by Onur Aciicmez

May 11, 2004

All Rights Reserved

Fast Hashing on Pentium SIMD Architecture

by

Onur Aciicmez

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed May 11, 2004
Commencement June 2005

TABLE OF CONTENTS

Page

1 INTRODUCTION 1

2 SINGLE INSTRUCTION MULTIPLE DATA (SIMD) 3

2.1 Overview 3

2.2 Intel's SIMD Architecture 4

2.3 Implementation Issues of SIMD in Pentium 4 5

2.3.1 Code Convertion to SIMD Programming 5

2.3.2 Coding Techniques 6

2.3.2.1 Data Alignment 6

2.3.2.2 Compatibility of SIMD and x87 Floating Point Unit
(FPU) 8

2.3.2.3 Data Simplifying Buffer Lengths 8

2.3.2.4 Integer SIMD in Pentium 4 8

2.3.3 Coding Methodologies 9

2.3.3.1 Assembly 9

2.3.3.2 Intrinsics 10

2.3.3.3 C++ Classes 10

2.3.3.4 Automatic Vectorization 10

3 SECURE HASH ALGORITHM (SHA) 11

3.1 Overview of Hash Functions 11

3.1.1 One-Way Functions 11

3.1.2 Hash Functions 12

3.1.3 Applications of Hash Functions 13

3.1.4 Modification Detection Codes (MDC) 14

3.1.5 MD Family Hash Functions 15

TABLE OF CONTENTS (Continued)

Page

3.2 Description of SHA Algorithms 16

3.3 SIMD Compatibility of SHA Algorithms 19

3.3.1 SHA-1 22

3.3.2 SHA-256 23

3.3.3 SHA-384 and SHA-512 24

4 IMPLEMENTATION DETAILS AND RESULTS 26

4.1 Optimization Techniques 26

4.1.1 Loop Unrolling and Renaming Registers 26

4.1.2 Redefining Boolean Functions 26

4.1.3 Pre-fetching Data 27

4.1.4 Memory Alignment 27

4.1.5 Common Optimization Techniques 27

4.1.6 Other Important Issues 28

4.1.6.1 Rotations 28

4.1.6.2 Endianness 28

4.2 Performance Results 29

5 CONCLUSION 36

BIBLIOGRAPHY 37

APPENDICES 40

LIST OF FIGURES
Figure Page

2.1 SIMD execution model 4

2.2 Guideline chart of SIMD conversion process 7

2.3 Coding methodologies 9

3.1 Definition of the compression function used in SHA algorithms. Addi-
tions are modulo 232 in SHA-1 and SHA-256, and modulo 264 in SHA-
512. K is a constant, W is the message schedule, and A, B, . . . , H
are the chaining variables. x8 indicates the rotation of x to the left
by s bits. fQ is one of the boolean functions given in Figure 3.2. . . . 17

3.2 Functions used in SHA. represents a rotation to the right, x
represents a right shift both by s bits. 18

3.3 SIMD compatible operations of SHA-1 and the levels of parallelism
(LoP). 23

3.4 SIMD compatible operations of SHA-256 and the levels of parallelism
(LoP). 24

3.5 SIMD compatible operations of SHA-384 and SHA-512 and the LoP. 25

4.1 Redefined Boolean functions 27

4.2 Performance of the scalar implementations in terms of bandwidth.. 29

4.3 Comparison of our scalar implementation to other public implemen-
tations 30

4.4 Percentage of time spent on each basic block. 31

4.5 Approximate instruction performance on the Pentium 4 processor.. 32

4.6 Performance results of simultaneous hashing for SHA-1 and SHA-256 33

4.7 Performance results of simultaneous hashing for SHA-384 and SHA-512. 34

4.8 The relative performances of the implementations. 35

Fast Hashing on Pentium SIMD Architecture

1. INTRODUCTION

High-speed software implementations of cryptographic hash functions are

needed for many network security protocols. The performance is always an is-

sue due to bandwidth requirements [13, 6, 7, 5], and modern hash functions are

in fact designed with performance in mind, in addition to standard security re-

quirements such as preimage resistance, second preimage resistance, and collision

resistance. While hardware implementations will be expectedly faster [8], software

implementations are also desired because flexibility and cost reasons [20, 21].

In this paper, we focus on how a single-instruction multiple-data (SIMD)

parallel computation model can improve the software performance of the hash

functions. The SIMD model speeds up the software performance by allowing the

same operation to be carried out on multiple data elements in parallel. Most

of the current general-purpose computers employ SIMD architectures. AltiVec

extension to PowerPC [16], Intel's MMX technology SSE and SSE2 extensions [3],

Sun's VIS [15] and 3DNow! of AMD [1] are examples of currently available SIMD

architectures.

We are interested in obtaining high-speed and high-throughput implemen-

tations of the Secure Hash Algorithms [22, 23]. We analyzed the possibility of

improving the speed or throughput of the SHA using the SIMD architecture and

paraflelization techniques. We chose Intel Architecture [12, 11] as the base SIMD

platform since it is arguably the most widely used architecture among the ones

cited above.

2

In chapter 2, we give an overview of single-instruction-multiple-data exe-

cution model. We briefly describe the SIMD architecture in Pentium 4 processors.

Then we mention some implementation issues of SIMD in Pentium 4 under the

titles code conversion, coding techniques, and coding methodologies.

In chapter 3, we characterize the Secure Hash Algorithms by indicating

their properties and highlighting their importance in cryptography. This chapter

also gives detailed description of SHA and analyze the SIMD compatibility of

these algorithms.

We present our implementation details in chapter 4, with the results of

our experiments. We express the optimization techniques employed to fasten our

implementation. At the end of this chapter, we give the figures of performance

results and relative performance gains obtained using SIMD instructions.

2. SINGLE INSTRUCTION MULTIPLE DATA (SIMD)

2.1. Overview

Single-instruction multiple-data execution model allows several data ele-

ments to be processed at the same time. The conventional scalar execution model,

which is also known as single-instruction single-data (SISD), deals only with one

pair of data at a time. Execution of an SIMD operation is illustrated in Figure 2.1.

The programs using SIMD instructions can run much faster than their

scalar counterparts. However SIMD enabled programs are harder to design and

implement. In order to perform parallel SIMD operations, the program must do:

1 . Load multiple data values into SIMD registers.

2 . Perform the SIMD operation on these registers.

3 . If required, load the results to memory.

4 . If more data has to be processed, repeat the steps.

SIMD instructions have the potential to speed-up the software, however

there are mainly 2 problems with SIMD model:

1 . If the data layout does not match the SIMD requirements, SIMD instruc-

tions may not be used or data rearrangement code is necessary

2 . In case of unaligned data the performance will suffer dramatically.

FIGURE 2.1. SIMD execution model

2.2. Intel's SIMD Architecture

Intel has introduced three extensions into IA-32 architecture to allow IA-32

processors to perform SIMD operations since the production of Pentium II and

Pentium with Intel MMX technology processor families. These extensions are

MMX technology, SSE extensions, and SSE2 extensions. They provide a group

of SIMD instructions that operate on packed integer and/or packed floating point

data elements contained in the 64-bit MMX or the 128-bit XMM registers.

Intel introduced MMX Technology in Pentium II and Pentium with MMX

Technology processor families. MMX instructions use 64-bit MMX registers and

perform SIMD operations on packet byte, word, or doubleword integers located

in those registers.

The SSE SIMD integer instructions are the extension of MMX technology.

They were introduced in Pentium III processors. These instructions use 128-bit

XMM registers in addition to MMX registers and they operate on packed single-

precision floating point values contained in the XMM registers and on packed

integers contained in the MMX registers.

4

2.3.1. Code Convertion to SIMD Programming

5

The latest SIMD extensions of Intel, SSE2, were introduced in the Pen-

tium 4 and Intel Xeon processors. These instructions use both MMX and XMM

registers and perform operations on packed double-precision floating-point values

and on packed integers. The SSE2 SIMD integer instructions extend IA-32 SIMD

operations by adding new 128-bit SIMD integer operations and extending all the

64 bit-SIMD integer operations introduced in the MMX technology and SSE to

operate on data contained in the 128-bit XMM registers

The MMX Technology, SSE extensions, and SSE2 extensions provide a

rich set of SIMD operations that operates on both integer and floating-point data

arrays and on streaming integers and floating point data. These operations can

greatly increase the performance of applications running on the IA-32 processors.

In this paper, we are interested in SIMD operations that can be performed

on integers. As most of the other cryptographic algorithms, SHA uses integer

data and performs operations on integers.

2.3. Implementation Issues of SIMD in Pentium 4

It is better to start by using one of the SIMD data types and adjusting a

loop count or changing the application to execute fewer instructions to convert

an application to use SIMD instructions. Following subsections give a guideline

for converting a conventional code to SIMD-based program and also discuss some

coding techniques and methodologies.

Figure 2.2 provides a flowchart for the process of converting a code to SIMD

programming. We have to identify the code that benefits by using SIMD technolo-

6

gies. Generally, a good candidate is a code that contains small-sized repetitive

loops operate on sequential arrays. Being repetitive of these ioops incurs costly

application processing time. These codes have potential for increased performance

when they are converted to use one of the SIMD technologies.

2.3.2. Coding Techniques

The process of transforming sequentially-executing, or scalar, program into

a program that can execute in parallel is called vectorization. A code has to be

vectorized to take advantage of the SIMD architecture. However, the memory

accesses may have dependencies which can prevent parallel execution, thus vec-

torization. To apply vectorization to a loop, we have to determine if such depen-

dencies exist. If there is no dependency that would limit parallel execution, we

can re-code the loop with SIMD instruction and reduce the iteration count by

the length of the SIMD operation. To use SIMD instructions efficiently, we have

to handle data alignment, calculation compatibility, and data simplifying buffer

lengths.

2.3.2.1. Data Alignment

The arguments of SIMD instructions must be aligned by 8 bytes when

using MMX technology and 16 bytes when using SSE or SSE2 for maximum

performance. An exception will occur when unaligned memory is used with the

SSE or SSE2 instructions. However, there are special-purpose , slower, unaligned

memory move instructions part of SSE2.

ni MD

LII.
M)

¶Ik-Ifl-" Ul
'n iikr

k cJ
- I P

nrrior,)ptpz.)hrs
r t

'V

1

FIGURE 2.2. Guideline chart of SIMD conversion process

7

2.3.2.2. Compatibility of SIMD and x87 Floating Point Unit (FP U)

MMX technology and x87 FPU share their registers, and therefore, they

cannot both be used at the same time. Most of the time, using 8-byte MMX

technology registers can be avoided by using 16-byte SSE/SSE2 registers. 16-byte

registers are not shared with x87 FPU, and also they can handle twice as much

data at a time.

MMX, the floating-point SIMD instructions and the x87 FPU operate on

the same registers. Therefore, extra attention has to be paid when using SIMD

and x87 FPU instructions simultaneously. However, it is not an issue for this

research, since we need to use only integer operations to implement SHA.

2.3.2.3. Data Simplifying Buffer Lengths

It is beneficial to use buffers that are multiples of the SIMD data size being

used. An easy way to satisfy this requirement is padding or adding extra, unused

bytes at the end of buffers Using multiples of the SIMD data size avoids the special

case of dealing with an odd amount of remaining variables.

2.3.2.4. Integer SIMD in Pentium 4

MMX, SSE, and SSE2 technologies together offer 8- and 16-byte integer

SIMD instructions that operate on 1-, 2-, 4-, 8-, and 16-byte integers.

Integer SIMD architecture in Pentium 4 can be used to do many operations

including addition, subtraction, shifts, rotates, bitwise logical operations, and

comparisons.

8

L; f

FIGURE 2.3. Coding methodologies

2.3.3. Coding Methodologies

Programming directly in assembly language for a target platform may pro-

duce a great performance gain, however, assembly code is not portable and costly

to write and maintain. Performance objectives can also be met by taking advan-

tage of different SIMD technologies using high-level languages instead of assembly.

The new C/C++ language extensions designed specifically for Intel's SIMD tech-

nologies make this possible. Figure 2.3 illustrates the trade-offs between different

methodologies. The following subsections discuss each methodology.

2.3.3.1. Assembly

Key parts of a code can be implemented directly in assembly language using

an assembler or by using inlined assembly in C/C++ code. This model offers the

greatest performance, but the lack of portability is the main disadvantage.

ATh
Ve.

2.3.3.2. Intrinsics

They provide the access to the ISA functionality using C/C++ style cod-

ing. Intel defined three sets of intrinsic functions implemented in Intel C++

compiler to support MMX, SSE, and SSE2. Four new C data types, represent-

ing 64- and 128-bit objects, are used as the operands for these functions. These

intrinsics are portable among all Intel processors. The performance that can be

obtained using intrinsics is close to the levels achievable with assembly.

2.3.3.3. c++ Classes

Some compilers, i.e. Intel C++ compiler, provide a set of C++ classes to

support MMX, SSE, and SSE2. They offer both a higher-level abstraction and

more flexibility for programming and allow developers to write more natural C++

code without worrying about which intrinsic or assembly language instruction to

use for a given operation.

2.3.3.4. Automatic Vectorization

Most of the current compilers provide optimization mechanisms which vec-

torize appropriate simple loops automatically. Only certain types of loops can be

automatically vectorized, and in most cases user interaction with the compiler is

need to fully enable this option.

10

3. SECURE HASH ALGORITHM (SHA)

3.1. Overview of Hash Functions

There are two tools needed almost for any cryptographic system and pro-

tocol: one-way functions and random number generators. This chapter covers a

detailed description of a particular kind of one-way functions, namely hash func-

tions. The use of hash functions in cryptology is vital. They are used especially

for authentication, integrity, and non-repudiation.

The most famous hash functions are the MD-family: MD4, MD5, and SHA;

but there are a large number of other hash functions. In this work, we concentrate

on SHA because of its greater importance due to being an American Standard.

Cryptographic mechanisms need functions that can be computed one way

but not the inverse: one-way functions. Cryptography needs these functions be-

cause of the main property of being hard to compute the inverse of the function.

The theory of these functions involves mathematical issues which are not fully

solved or known. Most of these functions, which are currently employed in cryp-

tography, are based on "hard problems" such as factorization and discrete loga-

rithm. As long as these problems stay "hard", meaning that they cannot reduce

to simple problems, and as long as quantum computers stay being a "theorytical

issue", these one-way functions will be a key element in secure systems.

3.1.1. One-Way Functions

A function f is a one-way function if it is easy to compute f(x) = y for

any given x in the domain of f, but it is computationally infeasible to compute

11

f1 (y) = x for a given y. The theory behind the one-way functions is based on

12

hard-problems like factorization and discrete logarithm. An example of a one-way

function is the calculation of square roots in modulo a composite.

f(x) = x2 mod n (3.1)

where n = pq, p and q are unknown large primes. It is very easy to compute f(x),

however it is very hard to find x when the value of (x2 mod n) is given.

3.1.2. Hash Functions

A hash function is a one-way function, which is usually shown as h(x) = y.

The input x is a variable length string, while the output y is almost always of a

fixed size. The result of the hash function is called message digest.

Hash functions tend to reduce the input we give. Therefore, there is always

a possibility to find two input values with the same output. A function has to

have the following properties to be used as a hash function.

Preimage resistance: it must be computationally infeasable to find x using

the resulting digest y, which implies that a hash function must be a one-way

function.

Weak collision resistance: given two values x and its image y, then it must

be computationally infeasable to find an x where h(x) = h(x').

Collision resistance: it must be computationally infeasable to find any x and

x' with x x' where h(x) = h(x').

There are two main types of hash functions: keyed and unkeyed. Keyed

hash functions use a second message, called key, as an input with the original

input message to calculate the message digest. Only the message to be hashed

13

is the input to unkeyed hash functions. Example applications of the keyed and

unkeyed hash functions are the message authentication codes (MACs) and the

modification detection codes (MDC), respectively. Both types of hash functions

are widely used in cryptography. SHA is a member of MDC set, which is a subset

of keyed hash functions.

3.1.3. Applications of Hash Functions

Most typical use of hash functions is digital signatures. Given a message,

it is possible to sign itself. However it is prefered to sign the digest of it instead of

the whole message, because of the heavy computations public-key systems require.

Current digital signature schemes use hash functions to obtain the digest of the

message. The other uses of hash functions are as follows:

Message Authentication: Although digital signatures can be used for mes-

sage authentication , they are usually slow and have key distribution prob-

lem. When two parties need to communicate, it is better to use a symmetric

key system and send not only the message but also the message digest with

it. For message authentication purposes, keyed hash functions should be

used.

Password Validation: In the earlier schemes, the login name was encrypted

using the password as the key. The login name and cipher pairs were kept

together by the system and the password validation was performed by either

encrypting the login name or decrypting the cipher. In the latter schemes,

a hash function is used instead of an encryption algorithm. For example, in

Unix systems only the hash of the password is stored with the user name

14

and when user logs in, the entered password is hashed and compared to the

stored one

Software Protection: Hash functions can be used to protect software against

modification and viruses. A system or a user can compute a digest of the

software and store it in a safe place. Any modification can be realized by

recomputing the digest and comparing to the stored one.

Computing Keys: Hash functions can be used to compute fixed size keys

from longer text like passphrases. Longer passphrases have much more en-

tropy than passwords, but they must be compressed to a fixed size. Hash

functions can also be used to produce a number of different keys from a

master key.

Generating Pseudorandom Numbers: Pseudorandom numbers can be gen-

erated using a hash function and a proper seed.

3.1.4. Modification Detection Codes (MDC)

The hash functions in this category can be further classified according to

the properties they have:

One way hash function: These functions have preimage resistance and weak

collision resistance properties. Every one-way function cannot be used as

a one-way hash function, because the latter property brings supplementary

restrictions.

Collision resistant hash function: These functions have also the third prop-

erty, collision resistance.

15

Another classification of these functions depending on their structures can

be following:

Based on block cyphers: These hash functions use an existing block cypher

to obtain message digest.

Customized hash functions: These functions are created specifically to be

used in hashing purposes.

Based on modular arithmetic: They use existing modular arithmetic and

structures to reduce the message.

3.1.5. MD Family Hash Functions

These are most widely used, therefore most important, hash function in

MDCs. The computation of hash functions in this family is done very similar to

each other:

Some extra bits are padded to the message depending on its size.

The padded message divided into fixed sized blocks

A set of constants is applied to add dispersion to the message.

A set of rounds are iteratively applied to the blocks.

The result of the round is applied as input for the next round

Some of the functions in this family are MD4, MD5, and SHA. MD4 has

3 rounds while MD5 has 4 rounds of computation. They create a message digest

of 128 bits. MD4 has already been broken, and therefore should not be used.

And MD5 should not be considered for future applications. Both of these hash

16

functions does not meet recent cryptographic requirements. The new generation

in this family of hash functions is SHA.

3.2. Description of SHA Algorithms

The SHA is an iterative hash function that processes a message to produce

a message digest. There are four different versions of SHA, namely SHA-1, SHA-

256, SHA-384, and SHA-512 that differ in the number of bits of the message digest

values. They further differ in terms of word and block sizes. SHA-1 and SHA-256

use message blocks of 512 bits represented as a sequence of sixteen 32-bit words.

These two hash computation algorithms perform operations on 32-bit words. On

the other hand, the operations are performed on 64-bit words in SHA-384 and

SHA-512. These algorithms use 1024-bit message blocks, which are represented

as a sequence of sixteen 64-bit words.

Each algorithm has two stages: preprocessing and hash computation. Pre-

processing involves padding a message, setting initialization values, and parsing

the padded message into rn-bit blocks where rn is 512 for SHA-1 and SHA-256,

and 1024 for SHA-384 and SHA-512. A message schedule is generated from the

padded message and the hash computation uses this schedule to iteratively gen-

erate a number of intermediate hash values. The final hash value becomes the

message digest.

Each of four SHA algorithms uses a different compression function as its

basic building block, as shown in Figure 3.1. SHA-384 is mainly the same al-

gorithm as SHA-512. There are only two differences: the number of bits in the

output message digest and the initial hash value. SHA-256 has 64 rounds of corn-

17

FIGURE 3.1. Definition of the compression function used in SHA algorithms.

Additions are modulo 232 in SHA-1 and SHA-256, and modulo 264 in SHA-512.

K is a constant, W is the message schedule, and A, B,. . . , H are the chaining

variables. x8 indicates the rotation of x to the left by s bits. f() is one of the

boolean functions given in Figure 3.2.

putation while the others have 80 rounds. At each round the compression function

is applied on a certain number of chaining variables.

Figure 3.2 shows the functions employed in the compression rounds. The

boolean functions are given in [23], but they are not efficient enough to use in our

implementation. We will describe more efficient versions of these functions with

the implementation details later in this paper.

Algorithm Compression Function

SHA - 1 from round 17 onwards: W = (W,_3 W,_8 W_14 W_16)'

T=A5 +f(B,C,D)+E+Kt+Wt

E=D;D=C;C=B30;B =A;A=T;

SHA - 256 from round 17 onwards: W = o1(W,_2) + W_7 + o0(W_15) + W_16

T1 =H+>1(E)+Ch(E,F,G)+Wj+K

= >0(A) +Maj(A,B,C)

H=G;G=F;F=E;E=D+Tj;D=C;C=B;B=A;A=Ti+T2

SHA - 512 from round 17 onwards: W = al(Wt_2) + W_7 + cro(Wt_i5) + W_16

T1 =H+1(E)+Ch(E,F,G)+W+K

T2 = >0(A) + Maj(A, B, C)

H=G;G=F;F=E;E=JJ-i-Ti;D=C;C=B;B=A;A=Ti+T2

18

FIGURE 3.2. Functions used in SHA. x8 represents a rotation to the right,

x8 represents a right shift both by s bits.

SHA-256 Functions

> 1(x)

ao(x)

cr1 (x)

x2
x6 x'
x7
x17

SHA-512 Functions

>1 1(x)

ao(x)

o1(x)

x28
x'4 x18
x1 x8 x7
x19

Boolean Functions

Ch(x,y,z)

Pa'rity(x,y,z)

Maj(x,y,z)

(xAy)(-'xAz)
xyz
(xAy)(xA z) (yA z)

19

The implementation of the compression functions requires a limited number

of simple operations:

addition modulo 232 or 264

logical operations (and, or, xor, not) of 32-bit or 64-bit quantities

shifts and rotations of 32-bit or 64-bit quantities

load/store operations

In this paper we will mainly focus on these operations, because the perfor-

mance of the SHA algorithm depends on them. The time spent on the compression

functions is 88 % of the SHA computation time [13]. Therefore we will focus on

the computation of compression functions and we will omit the details about the

preprocessing phase.

3.3. SIMD Compatibility of SHA Algorithms

Our goal in this paper is to present a fast implementation of SHA algo-

rithms on Intel's Pentium 4 processor and analyze the effects of Intel's SIMD

instructions on the performance of the SHA. In this section, we will investigate

the possible applications of the SIMD techniques to the algorithms and point out

the appropriate parts of each algorithm, where SIMD instructions can be used.

The SIMD model speeds up the software performance by allowing the same

operation to be carried out on multiple data elements in parallel. Therefore the

programs using SIMD instructions can run much faster than their scalar counter-

parts. Intel has introduced three extensions into IA-32 architecture to allow IA-32

processors to perform SIMD operations. These are MMX technology, SSE, and

20

SSE2 extensions. The latest SIMD extension of Intel, SSE2, was introduced in the

Pentium 4 and Intel Xeon processors. They provide a group of SIMD instructions

that operate on packed integer and/or floating point data elements contained in

the 64-bit MMX or the 128-bit XMM registers. In this paper, we are interested in

operations that can be performed on integers. As most of the other cryptographic

algorithms, the SHA uses integer data and performs operations on integers.

Intel's SIMD architecture provides appropriate instructions for each opera-

tion mentioned above. Thus SHA algorithms are fully SIMD compatible in terms

of its operations. The only operation that requires more than one instruction to

implement is rotation. This operation will be discussed in detail later.

We are interested in two types of parallelism that can be achieved using

SIMD instructions: parallelism within a thread and thread-level parallelism. We

use the word thread to mean the ensemble of all the operations to hash one mes-

sage. Hashing more than one message simultaneously is referred as thread-level

parallelism. The purpose of parallelism within a thread is to speed up hashing

a single message by performing SIMD compatible operations on several data ele-

ments at the same time.

In order to perform the same operation on different data simultaneously,

the values that the operation uses has to be known in advance. The level of

parallelism depends on how early the values to be used are known. The level of

parallelism is the number of operations that can be executed together.

Thread-Level Parallelism: We need appropriate SIMD instructions for each

operation used in SHA algorithms to implement thread-level parallelism.

Fortunately, Intel's SIMD architecture contains all the required SIMD in-

structions to perform all operations of SHA algorithms.

21

SHA-1 and SHA-256 perform operations on 32-bit words. 64-bit MMX

registers can store two 32-bit words, so we can hash 2 independent messages

simultaneously using one of these two algorithms. Moreover, we can also

hash 4 independent messages at the same time if 128-bit XMM registers are

used.

SHA-384 and SHA-512 perform operations on 64-bit words. If MMX reg-

isters are used, no parallelism can be achieved since an MMX register can

only hold one 64-bit word. However we can obtain a high performance gain

by using MMX registers instead of 32-bit general purpose registers. We can

hash two messages in parallel by using XMM registers.

In both cases more messages can be hashed using XMM registers, which is

expected due to the size of the registers.

Parallelism within a Thread: To speed up hashing, we combine same opera-

tions of different rounds and use SIMD instructions to perform these opera-

tions at a time. In order to combine the same operation of two consecutive

rounds, we must know the values that will be used in the next round while

we are processing the previous rounds. If we know these values in advance,

we can successfully convert these operations into one SIMD instruction. We

need to analyze each operation of SHA algorithms to determine whether or

not this operation is SIMD compatible.

The rest of this section introduces the results of our analysis. The following

subsections give the SIMD compatible operations of each SHA algorithm.

3.3.1. SHA-1

There are five main parts of the algorithm that SIMD instructions can be

used. Most important of them is message scheduling.

W = (W3 W8 W W16)'

To be able to compute W, we first have to compute W_3. Therefore W of

only three consecutive rounds can be computed simultaneously. However the

computation of

wt_8 w14 w-16

can be executed 8 at a time. On the other hand, the maximum number of parallel

operations that can be executed is 4 due to the restrictions of the architecture. If

MMX registers or XMM registers are used, we can perform two 32-bit operations

or four 32-bit operations, respectively. So the maximum level of parallelism that

can be reached is4.

Another part of the algorithm we can apply SIMD instructions is the sum-

mation: E + W + K. After completing message scheduling, we can perform the

addition W + K of all rounds at the same time. But again we are restricted by

4 operations at a time. The first addition requires the value of E, which is de-

termined by B3° operation executed three rounds before. Thus, at most three

summations can be performed together simultaneously.

Other SIMD compatible operations are the computations of ft(B, C, D)

and B30. The values of B and D of a round are the same as the values of

A and C of the previous round, respectively. The value of C used to calculate

f() is the result of B3° operation of the previous round. This gives us the

opportunity to use SIMD instructions for calculations of ft(B, C, D) and B'30.

22

3.3.2. SHA-256

Because SHA-256 uses 32-bit words, we can perform 2 operations in one

SIMD instruction if MMX registers are used, or we can perform 4 operations if we

use XMM registers. The most important part of SHA-256 that SIMD instructions

can be successfully mounted is message scheduling.

W = 0i(Wi_) + W1_7 + ao(W_15) + Wt_i6.

Maj (X, Y, Z) = [Y A (X V Z)J V (X A Z).

23

If we want to compute two ft(B, C, D) operations in parallel, we first need to

compute two B3° operations in parallel. If SIMD instructions are not used to

calculate B30, we can still fasten the computation of ft(B, C, D) by using SIMD

for the parts that only B and D are involved. In this case, it is more efficient to

use the Boolean equation as

FIGURE 3.3. SIM

(LoP).

Operation LoP

W8 e W W6 4

(W3 W8 W14 Wj16) 3

W+K 4

E+W-I-K 3

ft(B,C,D) 2

B3° 2

FIGURE 3.4. SI

lelism (LoP).

3.3.3. SHA-384 and SHA-512

These algorithms use 64-bit words, so maximum level of parallelism that

can be achieved is two when XMM registers are used. Because the structures of

these algorithms and SHA-256 are same, the SIMD compatible parts of these three

24

To be able to compute W, we first have to compute W,_2. Because of it, we

can just compute W of two consecutive rounds simultaneously. However, the

computation of

W_7 + o0(W_15) + Wt_i6.

can be executed 4 at a time using XMM registers.

SIMD instructions can also be used in the summation H + W + K. Af-

ter completing message scheduling, we can perform the addition Wt + K of all

rounds at the same time. But we are restricted by 4 operations at a time. The

first addition requires the value of H, which is determined by D + T1 operation ex-

ecuted four rounds before. Therefore, four summations can be performed together

simultaneously.

he levels of paral-

Operation LoP

W_7 + cro(W_i5) + W_16 4

cT1(W_2) + W_7 + ao(WL_15) + W_16 2

W+K 4

H+W+K 4

ID compatible onerations of SHA-256 and

25

algorithms are also same. The only difference is the maximum level of parallelism

that can be achieved, which is only 2 for SHA-384 and SHA-512.

FIGURE 3.5. SI

LoP.

Operation LoP

W_7 + oo(W_15) + W_16 2

ai(Wt_2) + W_7 + ao(W_i5) + W_16 2

W+K 2

H+W+K 2

4. IMPLEMENTATION DETAILS AND RESULTS

In this section we give the details of our implementations and report the

performance results. First we present scalar implementations of all four SHA

algorithms and then use the performance of these implementations as a base to

analyze the effect of SIMD instructions on the SHA.

4.1. Optimization Techniques

Here we explain the optimization techniques used in our implementations:

4.1.1. Loop Unrolling and Renaming Registers

Unrolling the loops eliminates the loop overhead and index calculations. It

also allows us to rename the registers instead of shifting them in each iteration.

The main computation gain can be reached by eliminating the shifting phase of

state variables. We have to unroll the loops by the number of state variables

to obtain this gain. Full unrolling releases one register and eliminates a branch

misprediction. However, increased code size causes more cache misses and page

faults. Therefore there is a tradeoff between reduced computation and increased

code size. Every possible combination of loop unrolling are implemented for each

algorithm.

4.1.2. Redefining Boolean Functions

We reduced the number of instructions by redefining boolean functions.

Figure 4.1 shows the original definition of two boolean functions with the corre-

sponding new definitions.

26

computations and data transfer.

4.1.4. Memory Alignment

SIMD parallelization suffers from unaligned memory operations. Further-

more, a good vectorization requires appropriate data arrangement in memory.

Therefore we paid extra attention to memory alignment and arrangement.

4.1.5. Common Optimization Techniques

We reduced data dependencies as much as possible by achieving a good

instruction scheduling. We used simple instructions and reduced memory accesses

by avoiding unnecessary work. However we had to use a significant number of

part of SSE

Pre-fetching

27

as a

of cache.

hash

Boolean Functions

Ch(x, y, z)

Maj(x, y, z)

OriginalDefinition

(x A y) (-'x A z)

(x A y) A z) A z)

ModifiedDefinition

(z(xA(yz)))
(y A (x V z)) V (x A z)

Parity(x, y, z) xyz SAME

4.1.3.

PREFETCHh

FIGURE 4.1. Redefined Boolean functions.

Pre-fetching Data

instruction was introduced in Pentium 3 processors

instruction set. It load data from memory to a selected level

data reduces the effect of data transfer latencies by overlapping

28

memory accesses, because of the very limited number of registers in Pentium 4.

We try to keep the frequently used values in registers.

4.1.6. Other Important Issues

There are two more issues we want to stress:

4.1.6.1. Rotations

The implementations were coded in the assembly language because we

would like to have full control over the instructions used. The Rotation operation,

which is heavily used in SHA, is a good example of this advantage. We give the

definition of rotation operation in C++ below.

define Rotation(x, s) ((x << s)(x>> (32 - s))

This requires at least 4 instructions: 1 move, 2 shifts and 1 OR. However

we can implement this operation just using one instruction, rol, and save at least

3 instructions. Although there are always other options we can use, i.e., using

Intel C++ compiler and intrinsics [9], the use of assembly language gives use the

best control over the program.

4.1.6.2. Endianness

Because Pentium-4 is a little-endian machine, we need to swap the bytes of

the message to feed the compression function. Intel's instruction set has bswap

instruction which swaps the data in a 32-bit register. But the unavailability of

such instruction for MMX or XMM registers degrades the performance of the

SIMD-based implementations.

4.2. Performance Results

The compression functions were coded using inline assembly language and

the programs were compiled and executed on the Windows XP operating system.

We used 2.4 GHz Pentium-4 processor with 256 MB of main memory to test the

programs and obtain the performance results. We used large files of approximately

400 MB in order to obtain reliable timing results by minimizing the effect of one-

time operations like message padding or file opening.

The scalar implementation, which is coded first, use only 32-bit registers

and employs the corresponding instructions that operate on those registers. We

considered all possible optimizations [2, 14, 24, 4, 10] mentioned above and ap-

plied different combinations of them to obtain the best results. We coded several

versions of the algorithm and determined the best one. The performance of each

algorithm is shown in Figure 4.2.

29

FIGURE 4.2. P

Two different timings are given for each case of hashing a message from

main memory and hashing a file from hard disk. The performance for the second

case depends on the architecture of the attached disk system. Therefore, the

performance of the first case is much reliable and we will use the results of hashing

from main memory in our analysis.

From Main Memory From Hard Disk

SHA-1

SHA-256

SHA-512

87.12 MB/s

48.88 MB/s

38.26 MB/s

67.08 MB/s

37.64 MB/s

30.60 MB/s

30

Figure 4.3 shows the comparison of our implementation to some open

source implementations [17-19]. We compiled these codes using Intel C++ com-

piler with speed optimizations. The same configuration, mentioned above, is used

to obtain timing results. As can be seen in the figure, our implementation is very

efficient even without SIMD architecture support.

FIG

mentations.

There are mainly four basic blocks (BB) in compression functions regardless

of the SHA version:

BB1: Retrieving and swapping message block

BB2: Calculating message schedule

BB3: Main compression rounds

BB4: Retrieving and updating state variables

The most time consuming basic block is the third one, since it includes the main

compression rounds. Figure 4.4 shows the percentage of time spent on each block.

We first present the results of SHA-1 and SHA-256. Their results are

similar because they both use 32-bit words.

Raw Performances (MB/s) Relative Performances

SHA-1 SHA-256 SHA-512 SHA-1 SHA-256 SHA-512

Gladman 76.66 43.52 24.33 0.88 0.89 0.64

Devine - 43.19 - - 0.88 -

Crypto++ 5.1 67.45 23.90 - 0.77 0.49 -

Our Code 87.12 48.88 38.26 1.00 1.00 1.00

FIGURE 4.4.

31

We employed both MMX and XMM registers and their appropriate oper-

ations. We packed two 32-bit words in an MMX register and performed the same

operation on them simultaneously. This reduces two 32-bit instructions into one

64-bit instruction. Then we packed four words in an XMM register and reduced

four 32-bit instructions into one 128-bit instruction.

We realized that neither of them yields a better performance for hashing

a message. The main reason is higher instruction latency and throughput SIMD

instructions have. Figure 4.5 shows the approximate latency and throughput

values of the Pentium 4 instructions [9]. As can be seen, the performance of

the operations is proportional to the size of the operation. 128-bit operations

take four times, 64-bit operations take twice as much time as 32-bit operations.

Therefore we can confidently say that reducing 32-bit instructions into higher-bit

instructions does not give any performance gain.

The throughputs of these instructions are same regardless of the size of

the operation. However we performed some experiments to find out which SIMD

instructions are faster. These experiments show that while SIMD move and shift

Basic

Block SHA-1

Algorithm

SHA-256 SHA-512

BB1 5% 3% 3%

BB2 14% 14% 27%

BB3 77% 80% 69%

BB4 4% 3% 1%

32

instructions have higher throughput than their 32-bit counterparts, addition has

a lower throughput.

FIG

Another reason is the lack of rotation and byte swap instructions in Intel's

SIMD architecture. We have to use 4 different instructions for one rotation.

Swapping bytes is much more costly in terms of number of required instructions.

Also there is no immediate loading instructions for SIMD registers. First we need

to put the immediate value into a 32-bit register and load this register to the

target SIMD register. Therefore we have to use more than one instruction to load

any SIMD register with an immediate value, which degrades the performance.

Embedding SIMD operation into a scalar implementation brings additional

overhead due to the load/store operations between SIMD and 32-bit registers. A

good approach is to implement a large portion of an algorithm using only SIMD

architecture. However, the largest portion of SHA, the third basic block, which is

the bottleneck of the hash function, has a sequential structure due to the nature

of a hash algorithm.

Instructions Latency Throughput

Addition, subtraction, increment, decrement,

logic(AND, OR, XOR), compare, test, jump,

memory move, call, return

0.5 0.5

Push, pop, rotate, shift, SIMD memory moves,

64-bit technology operations

1 1

128-bit SIMD integer operations 2 2

SHA-256.

33

We cannot obtain faster implementations of SHA-1 and SHA-256 using

Intel's SIMD architecture because of the slow SIMD instructions and the lack of

some operations, however, we believe that a performance gain can be obtained

by applying the presented ideas on a different platform, which has a faster SIMD

architecture.

SHA-512 uses 64-bit words and performs operations on these 64-bit values.

Therefore SHA-512 favors 64-bit architectures. Instead of packing two 32-bit

words in an MMX register, we use the whole register to perform 64-bit operations.

Using this idea, we yield much higher performance of 55.71 MB/s with a speed

up of 1.46.

An advantage, SIMD technique brings us, is the capability of performing

more than one hashing simultaneously. We can hash 4 different messages at the

same time if we use 128-bit register and a hashing algorithm with 32-bit word

size. If the word size of the algorithm is 64-bit, as in the case of SHA-512, we can

perform 2 simultaneous hashing with the same registers.

FT

Again we used the fastest scalar implementations of SHA-1 and SHA-256

and exchanged 32-bit instructions with their SIMD counterparts. We implemented

Number of

Streams Architecture

SHA-1 SHA-256

Throughput Speedup Throughput Speedup

1

2

4

32-bit

64-bit (MMX)

128-bit (XMM)

87.12 MB/s

128.46 MB/s

143.09 MB/s

1.000

1.474

1.642

48.88 MB/s

73.22 MB/s

83.81 MB/s

1.000

1.498

1.715

34

both hashing 2 messages using MMX registers and 64-bit operations and 4 mes-

sages using XMM registers and 128-bit operations. We paid attention to give

the input messages of the same size while measuring the performance in order to

get more accurate results. SHA-1 takes 35.6% more time to hash two messages

simultaneously. However, the throughput of the algorithm increases 47.4% since

the size of the input doubles. Figure 4.6 and Figure 4.7 show all the results and

the speedup obtained by this technique.

FIGURE 4.7.

SHA-512.

Figure 4.8 shows the overall performance results we obtained with and

without using SIMD architecture.

Because Pentium-4 is a very complex processor system, its behaviour and

performance is difficult to predict accurately. It is often infeasible to completely

understand how it works and processes data without using advanced performance

analyzers and profiling tools. We believe that the performance of our implementa-

tions can be improved further using high-end performance and profiling software.

Number of

Streams Architecture

SHA-384 & SHA-512

Throughput Speedup

1 32-bit 38.26 MB/s 1.000

1 64-bit (MMX) 55.71 MB/s 1.456

2 128-bit (XMM) 88.02 MB/s 2.301

FIG

35

SHA-1 SHA-256 SHA-512

Gladman 0.88 0.89 0.64

Devine - 0.88 -

Crypto++ 5.1 0.77 0.49 -

Our Code (1 stream) 1.00 1.00 1.00

Our Code (2, 2, 1 streams) 1.47 1.50 1.46

Our Code (4, 4, 2 streams) 1.64 1.72 2.30

5. CONCLUSION

We demonstrated that it is possible to obtain high-throughput implemen-

tations of SHA by employing SIMD techniques if multiple independent streams

of messages are to be hashed. In addition, we derived a number of guidelines

applicable to implementations of SHA on current processor families other than

Intel Pentium. The final conclusion of this study is that while the Pentium SIMD

instructions are slow for obtaining a faster implementation of the SHA of a single

stream of data, faster implementation of SIMD instructions will result in better

performance, and that we can still obtain faster SHA by hashing two or four in-

dependent streams of message on the Pentium SIMD architecture, obtaining a

speedup of 1.474 to 2.301.

36

37

BIBLIOGRAPHY

AMD. AMD Extensions to the 3DNow! and MMX Instruction Sets, March
2000.

D. Anderson and T. Shanley. Pentium Processor System Architecture.
Addison-Wesley, 1995.

D. Bistry, C. Delong, and M. Gutman. The Complete Guide to MMX Tech-
nology. McGraw-Hill, 1997.

R. Booth. Inner Loops: A Sourcebook for Fast 32-bit Software Development.
Addison-Wesley, 1997.

A. Bosselaers. Even faster hashing on the Pentium. In Rump Session, EU-
ROCRYPT 97, 1997.

A. Bosselaers, R. Govaerts, and J. Vandewalle. Fast hashing on the Pentium.
In N. Koblitz, editor, Advances in Cryptology - CRYPTO 96, pages 298-312.
Springer Verlag, LNCS Nr. 1109, 1996.

A. Bosselaers, R. Govaerts, and J. Vandewalle. SHA: A design for parallel
architectures. In W. Fumy, editor, Advances in Cryptology - EUROCRYPT
97, pages 348-362. Springer Verlag, LNCS Nr. 1233, 1997.

R. Buchty. Cryptonite - A Programmable Crypto Processor Architecture For
High-Bandwidth Applications. PhD thesis, Technische Universitât Mflnchen,
December 2002.

R. Gerber. The Software Optimization Cookbook. Intel Press, 2002.

Intel Corporation. Desktop Performance and Optimization for Intel Pentium
4 Processor, February 2001.

Intel Corporation. IA-32 Intel Architecture Optimization, 2003.

Intel Corporation. IA-32 Intel Architecture Software Developer's Manual, Vol-
ume 1, 2, and 3, 2003.

K. McCurley. A fast portable implementation of the secure hash algorithm,
III. Technical Report SAND93-2591, Sandia National Laboratories, 1994.

H.-P. Messmer. The Indispensable Pentium Book. Addison-Wesley, 1995.

Sun Microsystems. VIS Instruction Set. http://www.sun.com/processors/vis.

Motorola. AltiVec Technology. http://www.simdtech.org/altivec.

38

B. Gladman. SHA1, SHA2, HMAC and Key Derivation in C, January 2004.
http: //fp.gladman.plus.com/cryptographytechnology/sha/index.htm.

C. Devine. SHA-256 Source Code, 2003.
http://www.crO.net: 8040/code/crypto/sha256/.

W. Dai. Crypto++ Library 5.1, 2003.
http://www.eskimo.com/ weidai/cryptlib.html.

E. Nahum, S. O'Malley, H. Orman, and R. Schroeppel. Towards high perfor-
mance cryptographic software. Technical Report 95-04, Department of Com-
puter Science, University of Arizona, March 1995.

E. Nahum, D. Yates, S. O'Malley, H. Orman, and R. Schroeppel. Parallelized
network security protocols. In Internet Society Symposium on Network and
Distributed System Security, pages 145-154, San Diego, California, February
1996. IEEE Computer Society Press.

National Institute for Standards and Technology. Specifications for the secure
hash standard. FIPS Publication 180-1, April 2002.

National Institute for Standards and Technology. Specifications for the secure
hash standard. FIPS Publication 180-2, August 2002.

K. R. Wadleigh and I. L. Crawford. Software Optimization for High Perfor-
mance Computing. Prentice-Hall, 2000.

39

APPENDICES

40

Performance Metrics of Our Code

VThne1 is a performance tuning environment developed by Intel. It mon-

itors the performance of all active software, identifies hotspots of a program,

examines each instruction and uncovers problems at machine level code. Infor-

mation collected with VTune includes instruction distribution, branch prediction

rate, instruction/micro-op executed per cycle, and some performance impact val-

ues. These performance impact values indicate the effect of coding pitfalls on the

performance of the program. The higher values of these indicators pinpoint the

part of the code which needs optimizing. We can probably say that the values

below 1 are not worthy of attention.

'Intel Corporation, TJRL: http: //www. intel. corn/software/product s/vtune

41

42

SHA-1 scalar MMX XMM

Clockticks per Inst. Retired (CPI) 0.815834499 0.855176209 1.537516440

Cycles per Retired Micro-op 0.805213576 0.748647956 0.571526585

64-bit MMX(TM) Instructions 0 50.96443191 0

128-bit MMX(TM) Instructions 0 0 75.76040523

Branch Prediction Rate 98.94263022 98.96110742 98.88476093

Branch Mispredict Performance Impact 0.033615766 0.024292926 0.014051956

Split Loads Performance Impact 0 1.133185232 1.240289630

Split Stores Performance Impact 6.30595E-06 3.37866E-06 1.85101E-06

64K Aliasing Conflict Performance Impact 0.009252035 0.908163234 0.518454523

Trace Cache Miss Performance Impact 0.011808933 0.054913404 0.038886455

SHA-256 scalar MMX XMM

Clockticks per Inst. Retired (CPI) 0.723946089 0.752008262 1.225010585

Cycles per Retired Micro-op 0.718887409 0.686999191 0.599415492

64-bit MMX(TM) Instructions 0 53.32294728 0

128-bit MMX(TM) Instructions 0 0 66.00791075

Branch Prediction Rate 97.68053657 98.23620053 98.22454836

Branch Mispredict Performance Impact 1.741436524 0.827699474 0.509243529

Split Loads Performance Impact 0 0.610750101 0.743397310

Split Stores Performance Impact 1.63E-06 1.82E-06 1.20E-06

64K Aliasing Conflict Performance Impact 0.075797952 0.732646357 0.806864142

Trace Cache Miss Performance Impact 0.027144073 0.013025083 0.023640639

43

SHA-512 scalar MMX XMM

Clockticks per Inst. Retired (CPI) 0.537688353 0.750974844 1.213004122

Cycles per Retired Micro-op 0.446157025 0.688945017 0.592610353

64-bit MMX(TM) Instructions 0 53.05749799 0

128-bit MMX(TM) Instructions 0 0 57.27867009

Branch Prediction Rate 98.43921139 98.65968723 98.20767492

Branch Mispredict Performance Impact 0.637789356 0.706421601 0.529223701

Split Loads Performance Impact 6.1OE-07 0.484165685 0.385366994

Split Stores Performance Impact 2.03E-06 0.806640353 2.51E-06

64K Aliasing Conflict Performance Impact 0.244594487 0.583929872 0.460278587

Trace Cache Miss Performance Impact 0.039623983 0.014963164 0.028386361

