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PROJECT OVERVIEW 
 
MOTIVATION 
  
 With the advent of the internet, the cost associated with sharing information has 
shifted from the very real physical cost of printing and shipping to the almost non-
existent cost of sending bits of information from one place to another via electrical 
impulses.  Furthermore, with technologies encouraging highly interactive uses such as 
blogging, social networking, and “Web 2.0” (sites whose content is user-contributed), the 
difficulty of finding high-quality material and marketing it to a large audience no longer 
requires an expensive central authority.  Occurring in parallel has been a decrease in the 
cost of local printing and an increase in printing flexibility through print-on-demand 
technologies. 
 
 The question then looms: why are textbook prices so exorbitant?  Textbooks are 
the single largest cost for university students and their families after tuition  (cost of 
living is not included in this breakdown because this cost is always present).  A single 
semester might bring $800 in cost to a single student. The same semester’s tuition might 
be on the order of $1500.  This seems like a contradiction to the price optimization 
promised to us by free markets.  Do publishing companies give enough added benefit to 
each of their books to compensate for not only the higher price of textbooks, but also the 
lower cost of distribution and production?  Any student or faculty member outside of the 
textbook industry will likely say no.   
 
 A revolution in the distribution and development of learning materials to direct 
and supplement class activities is inevitable and likely at hand.  The tools are now 
available to side-step the textbook industry and offer cheaper (or free) alternative books. 
 
 The LA Book is a first step in creating a revolution in textbooks.  A revolution has 
to start from the ground up, and a revolution in learning has to start with the iteration of 
functional textbooks.  To this end, we decided to write The LA Book, a free-to-students 
Linear Algebra textbook.  We chose Linear Algebra as a subject because it has a 
curriculum that is reasonably focused, but at the same time has many choices in emphasis 
and topic order. Linear Algebra is bridge course from introductory courses to the upper 
division with a relatively large audience. This provides us with a well-defined pivot point 
for the insertion of materials that will leverage the way we create the physical context and 
the scaffolding for a courses built upon a new type of textbook. 
 
METHODOLOGY 
 
 The LA Book's plan is to grow, with additional sections, problem sets, and 
examples to meet any instructor’s needs.  For this, we call upon the power of the 
community.  A fully-realized version of The LA Book will function much like a 



moderated Wikipedia.  That is, students and professors will be able to write sections, 
problems, and examples and submit them for inclusion to the book.   However, unlike 
Wikipedia, content will be carefully scrutinized by an expert who will verify the 
mathematical legitimacy of proposed content.  Accepted submissions will be added to the 
book.  This will eventually produce a very large textbook, of which subsets may be 
extracted for use.  For example, if an instructor is teaching a Linear Algebra class 
primarily to math majors, he can choose a subset of the book with more abstract 
examples that interest math majors.  If, on the other hand, an instructor is teaching Linear 
Algebra to engineers, she can choose a subset of examples that are more concrete and 
applicable to engineering.   
 
 A key component of The LA Book's vision is to function both as a web-based 
technology and as a classical print-based technology.  This means that there should be an 
easy fall-back behavior from the rich media experience available on the computer to that 
of static paper.  To accomplish this, I have made automatic conversion scripts to change 
the web-based format to LaTeX code, ready for compilation into a high-quality and 
printable version. 
 
 With the capability to function well as a printable book, The LA Book has the 
advantage of being able to be competitive with conventional books.  This will allow it to 
be used in the classroom immediately and then to introduce the audience of students and 
professors to the benefits of online textbooks: anywhere availability, instant lookup of 
definitions without flipping through an index, expandable examples with various levels of 
detail; animations, full use of color, and many others. 
 
 The LA Book in its current form serves as the core of an envisioned book.  It has 
attained a state where it could be used to teach a standard Linear Algebra course.  It 
already has multiple contributing authors and aims not to cover every conceivable Linear 
Algebra concept so that additional authors have easy and targeted areas to start 
(Orthogonality, Symmetric Matrices, etc. are sections that beginning authors can tackle 
right away). 
 
 The online version of The LA Book is functional as well.  It currently lacks the 
ability for collaborative editing, collapsible examples, and many of the envisioned 
features, but does feature aesthetically pleasing matrices and equation display as well as 
bare-bones navigation. 
 
TECHNOLOGY 
 
 The text of The LA Book has been written in XML (eXtensible Markup 
Language).  XML is a widely used and user-friendly language.  It is also the standard 
format for sharing data over the internet (HTML is a subset of XML).  That makes XML 
an ideal language to store textbook content. 
 
 The XML format basically amounts to labeled parentheses.  For example, 
paragraph text is encased in <p> </p> tags.  Each section is encased in <section> 



</section> tags, and each chapter is encased in <chapter> </chapter> tags.  These tags 
function very similarly to LaTeX's \begin{definition} \end{definition} tags.  
Consequentially, conversion from XML to LaTeX is easy. 
 
 I have implemented a script written in XSLT (A language specifically designed 
for converting XML documents to other formats) and PHP to automatically convert XML 
versions of The LA Book to LaTeX.  Because the ease of conversion between the web-
based XML version of The LA Book and the printed version is key, some finer details of 
typesetting a book must be sacrificed.  For example, the loss of exact positioning of 
pictures in the printed version and precise spacing between multi-line formulas is deemed 
an acceptable trade-off for a dual web and print based textbook. 
 
 The LA Book is also converted, on the fly, to HTML (the language a web browser 
knows how to display) via a different XSLT script.  This script uses techniques 
developed by the xml-maiden project (xml-maiden.com) to display mathematical 
formulae in a web browser while maintaining cross-browser viewability.  Using 
technology from the xml-maiden project has the added benefit that future versions of The 
LA Book will be able to utilize advancements in web-based mathematical display ability 
with no change to the XML content of the book. 
 
CONTENT 
 
 The LA Book, in its current form, teaches Linear Algebra from the 
perspective of systems of linear equations.  It spends a great deal of time focusing on 
linear equations and always tries to tie back operations on matrices to their corresponding 
operations on systems of linear equations.  After a firm basis is built up and students have 
comfortably transitioned to the world of matrices (always being able to relate matrices 
back to systems of linear equations), Vector Spaces and Linear Operators are introduced.  
The LA Book then concludes with Eigenvectors and Diagonalization explained from a 
geometric perspective.   
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Chapter 1

Systems of Linear Equations (SLE’s)

1.1 Linear Equation

The most basic form of a linear equation is ax = b where x is a variable and
a and b are constants. If this equation is real-valued, then it is almost trivial
to solve. Presuming a 6= 0, dividing both sides by a gives that x = b/a.

Example:

We want to solve the equation 4x = 8. We can solve this in one
step by dividing both sides by 4, showing us that x = 2.

This single-variable form seems almost trivial, but that is only because it is
quite easy to divide by 4. Later equations will have this form, but we’ll see
they are slightly more complicated.

1.2 Multi-variable Linear Equations

A linear equation need not be restricted to a single variable. For example,
the equation

ax + by = c

9



where x and y are variables and a, b, c are constants is a linear equation.
This equation represents a straight line in a 2-D graph with slope −a/b and
y-intercept c/b.

Notice that solving for y does not give us a simple constant like our previous
example. Instead, it gives us the line y = −(a/b)x+(c/b) which has a solution
corresponding to every possible value of x.

It is important to notice that this equation is the sum of variables times
constants—not one of the variables is squared, or cubed-rooted, etc. This is
what makes the equation linear.

1.3 Systems of Linear Equations

With just one 2-D linear equation, solving for one of the variables gives you
an infinite number of solutions, however, if you have two equations, we can
often find one unique solution. This happens where the two lines intersect
(or equivalently, when the two equations have different slopes).

Example:

Consider the two equations

2x− y = 3

x + y = 9.

These two equations can be graphed



and we can see they have an intersection point around (4, 5).

When we have a list of equations that are somehow related, we call it a
system. Because both these equations are linear, we call the pair

2x− y = 3

x + y = 9

a system of linear equations.





Chapter 2

Solving Systems Algebraically

2.1 Elementary Operations

We have a great example of a system of linear equations:

2x− y = 3

x + y = 9,

but how do we solve it? Simple. Using the rules of algebra, we can obtain
an exact solution.

Replace the second equation by the sum of equations 1 and 2. This gives us

2x− y = 3

3x = 12.

Now, multiply equation 2 by 1/3.

2x− y = 3

x = 4.

Next, subtract twice equation 2 from equation 1.

−y = −5

13



x = 4.

Multiply the first equation by −1

y = 5

x = 4.

Next, interchange the order of the equations:

x = 4

y = 5.

This shows algebraically that the lines intersect at x = 4 and y = 5, or the
point (x, y) = (4, 5) satisfies both equations.

Notice that we used a very small number of very elementary operations to
solve our system of equations. We can

1. Interchange the order of equations. (Arrange)

2. Multiply an equation by a constant. (Scale)

3. Add a constant multiple of one equation to another. (Add) (Notice
that when we added two equations, we were just adding 1 times an
equation to the other.)

2.2 Matrices

Solving our systems of linear equations takes a lot of pencil graphite. How-
ever, we seem to be doing some things unnecessarily—our x’s, y’s, and =’s
aren’t changing and yet we’re rewriting them! Let’s try re-doing the first
example but only writing the numbers that can change. This means

2x− y = 3

x + y = 9

will be written as [
2 −1 3
1 1 9

]
.



Now, as before, let’s add the first equation to the second. This is the same
thing as adding the first row to the second, which gives us:[

2 −1 3
3 0 12

]

Notice that instead of writing

[
2 −1 3
3 12

]
we wrote a 0 in the blank’s

spot so we don’t get confused.

Now, multiply equation two by 1/3 (i.e. row two):[
2 −1 3
1 0 4

]
.

Subtract twice the second equation from the first (row one −2∗row two):[
0 −1 −5
1 0 4

]
.

Next, Multiply the first equation by −1 (−1∗row one):[
0 1 5
1 0 4

]
.

And finally, interchange the two equations:[
1 0 4
0 1 5

]
.

If we think back to what symbols we weren’t writing (x, y, +, and =) and
put them back in, we get

x + 0y = 4 x = 4

0x + y = 5 y = 5,

the same result as before.

This notation saved us a lot of work, so let’s define how to talk about it.

Definition 2.2.1. A matrix is a two-dimensional grid of numbers, symbols,
etc. along with a pair of brackets, parenthesis, square brackets, curly braces,
etc.



Matrices consist of rows (horizontal lines of numbers) and columns (vertical
lines of numbers). A matrix’s size is written in the form rows×columns.
Therefore a 3× 5 matrix might look like this: 3 6 2 8 12

4 7 16 9.4 0
.01 21 5 4 9


Now, let’s consider an arbitrary m× n matrix with entries a.

a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 a2,3 · · · a2,n

a3,1 a3,2 a3,3 · · · a3,n
...

...
...

. . .
...

am,1 am,2 am,3 · · · am,n


Because there can be many entries in a matrix, we index each element.
Any element extracted from this matrix looks like arow,column. If someone
refers to the index of an element, they are referring to the pair of numbers
“row,column.” A shorthand for writing matrices is to write A = [aij], where
aij is a generic element from row i and column j.

2.3 Vectors

One of the greatest advancements in the history of math was the ability to
link algebra and geometry together through a coordinate system. At the
core of a coordinate system are, well, coordinates. In this section, we will be
looking at a generalized notion of coordinates called vectors.

Definition 2.3.1. A vector is a magnitude coupled with a direction.

You may already be familiar with vectors from a physics or math class. They
are not a difficult concept, but they are a very important one. (There would
be no video games without them!)

Let’s look at a picture of a vector from the origin to the point (7, 5).



We can get the vector’s length via the Pythagorean Theorem: Length =
(72 + 52)1/2 ≈ 8.602. We can find the direction with some trigonometry:
Angle = arctan(5/7) ≈ 0.775rad. So our vector from the origin to the point
(7, 5) has a magnitude of 8.602 at an elevation of 0.775rad above the x-axis.

However, using the magnitude and direction representation of a vector, pro-
duces ugly numbers that tell us nothing additional to “A vector from the
origin to (7, 5).” In fact, if we assume all vectors come from the origin, then
we could represent this vector by just the numbers 7 and 5. This is the way
we represent vectors in Linear Algebra.

Definition 2.3.2. A vector is a list of numbers, i.e. an n× 1 matrix.

Notice that this definition of vector is equivalent to our earlier one.

In Linear Algebra, a column vector is a list of numbers written vertically.

Example:



[
7
5

]
or


2
1
5
8

3.2


A row vector is a list of numbers written horizontally.

Example:[
7 5

]
or

[
2 3 4 1 9

]
Each number in a vector is called a component.

Traditionally in Linear Algebra, the word vector refers to a column vector
(this is because mathematicians prefer to multiply on the left). In this book,
“vector,” unless explicitly stated otherwise, will mean a column vector.

2.4 Vector Operations

There are two important vector operations that make up a linear structure:
scalar multiplication and vector addition.

Adding vectors is done by adding component-wise straight across. (In physics,
vector addition is done by laying them head-to-tail and then tracing out the
newly-formed vector. Mathematically, this is the same thing as adding com-
ponent by component straight across.)

Example:

 3
5
9

 +

 2
1
6

 =

 5
6
15

 .

Note that you can only add vectors of the same size or the addition doesn’t
make sense. (How would you add a line in 2-D to a line in 3-D and get a
unique answer?)



Scalar multiplication is our other important operation. A scalar is what we
normally think of as a “number.” For example, the numbers −3.2457 and
0 are scalars. We may write scalars as just the number (like −3.2457) or
we may write them in parenthesis (for example, “(−3.2457)”), however, to
avoid confusion, we will not write scalars with square brackets [].

[
−3.2457

]
refers to a 1× 1 matrix, which is slightly different than a scalar.

Multiplying a vector by a scalar is simple—just multiply every component
by the scalar.

Example:

2


5
6
15
0

 =


10
12
30
0


Note that we do not use a dot “·” to show multiplication. The dot will be
used for a special type of multiplication later on, so use parenthesis if you
feel you need to emphasize that things are being multiplied.

Example:

(−1/2)(5)


1
2
−3
4

 =


−2.5
−5
7.5
−10


Traditionally, when multiplying a scalar and a vector, the scalar is always
written on the left (and should be written on the left to avoid confusion).

Just like always, in math, it is useful to abstract real objects to symbols. In
this way, we give a name as a placeholder for specific vectors. We will use
letters with arrows over them to represent vectors. All of our operations still
work just the same.

Example:



Suppose ~v1 =

[
−1
2

]
, ~v2 =

[
3
5

]
, ~v3 =

[
3
−4

]
, ~v4 =

[
2
7

]
then

~v1 + ~v2 =

[
−1
2

]
+

[
3
5

]
=

[
(−1 + 3)
(2 + 5)

]
=

[
2
7

]
just as you thought it would, and

2~v3 =

[
2(3)

2(−4)

]
=

[
6
−8

]
,−10~v3 =

[
−10(3)
−10(−4)

]
=

[
−30
40

]
.

Scalar multiplication and vector addition are connected by the distributive
law.

Definition 2.4.1. If vectors ~v and ~w and scalars c and d obey the distributive
law, it means that

(c + d)~v = c~v + d~v

c(~v + ~w) = c~v + c~w

When we combine scalar multiplication and vector addition, we arrive at a
powerful concept: linear combinations.

Definition 2.4.2. A vector ~w is a linear combination of vectors ~v1, ~v2,
~v3,...,~vn if ~w can be written as

~w = c1~v1 + c2~v2 + c3~v3 + · · ·+ cn~vn

where c1, c2, c3,..., cn are scalars.

Linear combinations are just the sum of scalar multiples of vectors. So,
given any vector that isn’t the zero vector, we know that there are an infinite
number of different linear combinations of that vector we can form.

2.5 Vectors and SLE’s

In the previous section we identified a new mathematical object called a vec-
tor. Truly, this must be a wondrous thing this vector! For a mathematician,



to stumble onto a new mathematical object is akin to someone like Colum-
bus discovering a new continent. In the rare moments when we come across
something new, it can be dizzying figuring out what to do. I’m sure you’re
just itching to discover this strange new object’s properties!

We know how to take any two vectors, multiply each by a different scalar
and then add them together to get another vector. It’s just a combination of
scalar multiplication and then vector addition—two vector properties we’ve
discussed.

This is great, because it looks like we can take any two vectors in a 2-D
environment (called 2-space) and construct any vector in 2-space as a linear
combination of the first two vectors. We’ll discuss if and when this is true in
the next chapter, but you should keep this thought in the back of your head
until then.

Definition 2.5.1. A linear combination of the vectors ~v1, ~v2, ~v3,..., ~vn is a
sum

c1~v1 + c2~v2 + c3~v3 + · · ·+ cn~vn

where c1, c2, c3,...,cn are scalars. Note: Any number of ci could be zero.

Example:

Let’s start by playing a simple game. I’ll give you two vectors, ~e1

and ~e2 and a third, ~b. All you have to do is tell me what scalars
to multiply with ~e1 and ~e2 so that when we add them together
we get ~b. Sound fun?

This is an easy example, but it should illustrate how these linear
combinations work.

~e1 =

[
1
0

]
, ~e2 =

[
0
1

]
,~b =

[
9
7

]
You probably don’t even need to look at the graph, you can just
guess that we need to add 9 times ~e1 and 7 times ~e2 to get ~b:

9~e1 + 7~e2 = 9

[
1
0

]
+ 7

[
0
1

]
=

[
9 ∗ 1
7 ∗ 1

]
=

[
9
7

]
= ~b



Now look at this slightly-less-trivial situation.

Example:

~a1 =

[
2
1

]
,~a2 =

[
1
4

]
,~b =

[
9
8

]

Look at the graph of these vectors.

This example is fairly easy because you can probably find the
scalars needed by guess and check. Imagine you are sitting down
in the graph at the origin and you could only walk in the direc-
tions of the two vectors ~a1 and ~a2. Simply count how many steps
it takes to get to the vector ~b.



Unfortunately, these guess and check processes will only get you so far. Look
at the next example, which promises to require scalars that aren’t integer-
values, but instead decimals or fractions.

Example:

~a1 =

[
3
4

]
,~a2 =

[
−1
6

]
,~b =

[
9
−9

]
You don’t want to do it, do you? Even worse than this, consider if you had
three vectors in three dimensions, and you had to figure out what three scalars
generated a fourth vector, ~b? You could attempt some sort of geometrical
argument, but it would be difficult and aggravating.

Fortunately, math teachers and math textbooks always want to make things
easier for you (what, haven’t noticed yet?), so let’s look at an easy way to
solve any and all of these problems. As a student, Linear Algebra continu-
ously amazed me by its ability to present impossible-looking problems that
ultimately have a solution so simple and elegant that even computers and
undergraduates can solve them!



Let’s look at this example again, but apply some algebra (this is, after all,
Linear Algebra). We know that we are looking for two scalars. Let’s call
them x and y. We need x times one vector plus y times the other vector
to point at our final vector. In other words, x and y need to satisfy this
equation:

x~a1 + y~a2 = x

[
3
4

]
+ y

[
−1
6

]
=

[
9
−9

]
But x and y are just scalars, so let’s apply what we know about scalar
multiplication: [

3x
4x

]
+

[
−y
6y

]
=

[
9
−9

]
Adding the two vectors we get,[

3x− y
4x + 6y

]
=

[
9
−9

]
,

which ought to look awfully familiar. This is, in fact, just a system of linear
equations

3x− y = 9

4x + 6y = −9

in disguise! And systems of linear equations are so easily solvable that you
should weep with joy. I’m not going to weep with joy, because I’m a book.
Instead, I’ll make this a homework exercise for you to solve. But that’s okay
because all this stuff is easy.

Let’s recap: We just discovered an object called a vector. And, as it turns
out, when we set up equations with these vectors, we see that they can
be translated into the language of matrices, which also describe systems of
linear equations. Thus, for every vector equation, we know that there is a
corresponding system of linear equations. Neat, huh?

2.6 Elementary Row Operations

Let’s think back to solving a system of equations, like

2x− y = 3



x + y = 9.

When solving a system like this, there are only three operations we really
need to use. Those are the same operations for solving systems of equations
we remember from elementary algebra:

1. Interchange Order of Equation (arrange)

2. Multiply an Equation by a Constant (scale)

3. Add a multiple of one equation to another (add)

We saw that we not only could use these operations to solve the equation
when it looked like algebra, but also when the system looked like a matrix.

As it turns out, operations of these types are called elementary row operations
and are very important in Linear Algebra, so let us introduce a definition
and notation:

Definition 2.6.1. An elementary row operation is one of the following op-
erations applied to a matrix:

1. Interchange one row with another ( arrange)

2. Multiply a row by a non-zero constant ( scale)

3. Add a multiple of one row to another ( add)

Note that in rule 2, we added the condition that the scalar we multiply by
is non-zero. This will become important later on when we use the fact that
all elementary row operations are reversible.

Take the matrix  2 4 6
1 2 10
9 0 15


We are going to define a simple notation with arrows and the letter “R” to
represent our elementary operations. Let’s interchange row 1 and row 2. We
write that as “R1 ↔ R2,” so 2 4 6

1 2 10
9 0 15

R1 ↔ R2

 1 2 10
2 4 6
9 0 15





Multiplying row 1 by 1/2 would be written as “R1 → 1/2R1.” 2 4 6
1 2 10
9 0 15

R1 → 1/2R1

 1 2 3
1 2 10
9 0 15


And subtracting twice row 2 from row 3 would be written as “R3 → R3 −
2R2.”  2 4 6

1 2 10
9 0 15

R3 → R3 − 2R2

 2 4 6
1 2 10
7 −4 −5



2.7 Row-Echelon Form

You may have noticed that when we were solving systems of linear equations
(and especially when you were solving systems of linear equations) using ma-
trix notation, the process each time seemed very similar—alogrithmic even.
We (or you) would use the three elementary row operations in strategic ways
to achieve certain goals along the way. In this section, we will put a name
to those goals and explain why these steps are important enough to name.

Some math teachers are like shepherds, leading you to the tops of math-
mountains and showing you the view. Others are like golf caddies, suggesting
the club you should use, but leaving the swing, the estimation of the wind
speed and the aim all up to you. My Linear Algebra teacher was a caddy
and while both styles are fine and dandy, when one gets confused one wants
a shepherd, not a caddy. As you might have guessed, on the subject of those
enigmatic acronyms REF and RREF, I got confused. Hopefully, you will not
suffer the same confusion, and in the places I got confused I will offer special
attention, so you aren’t stuck with a caddy for a math book. It doesn’t
matter if the metaphor doesn’t work. This is a math book, not a metaphor
book.

Definition 2.7.1. If a matrix is in pre-row-echelon form (abbreviated pre-
REF) it means there are only zeros below the first number in each row and the
rows with leading number are sorted so left-most leading entries are hightest
in the matrix.

Example:



 2 0 −1 4
0 7 −2 1
0 0 3 6

,


2 −1 0 −4 1 0
0 3 1 −3 −1 3
0 0 2 0 −2 1
0 0 0 1 0 −3
0 0 0 0 0 0

,

[
−4 0 6 7/3
0 0 2 1

]
,

and


2 0
0 16
0 0
0 0

 are all in pre-row-echelon form.

Definition 2.7.2. If a matrix is in row-echelon form (abbreviated REF) it
means that above and below the leading number in each row are entirely zeros
and the rows with a leading number are sorted so left-most leading entries
are highest in the matrix.

Example:

 2 0 0 4
0 7 0 1
0 0 3 6

,

[
−4 0 0 7/3
0 0 2 1

]
, and


2 0
0 16
0 0
0 0

 are all in

row-echelon form.

Definition 2.7.3. A matrix is in reduced row-echelon form (abbreviated
RREF) if it is in row-echelon form and the first non-zero entry in each row
is a 1.

Example:

 1 0 0 4
0 1 0 1/2
0 0 1 −6

,

[
1 0 0 −7/3
0 0 1 1

]
, and


1 0
0 1
0 0
0 0

 are all in

reduced row-echelon form.

To show where REF and RREF show up in the process of solving a system
of linear equations in matrix notation, let’s look at an example.

Example:



Solve the system of linear equations:

x + y − z = 7

−2x + y + 0z = −7

3x + 0y + 2z = 8

First, put the system of linear equations in matrix notation and
proceed by applying elementary row operations. 1 1 −1 7

−2 1 0 −7
3 0 2 8


R2 → R2 + 2R1, R3 → R3 − 3R1

 1 1 −1 7
0 3 −2 7
0 −3 5 −13


R1 → 3R1 −R2, R3 → R3 + R2

 3 0 −1 14
0 3 −2 7
0 0 3 −6

 .

But wait! We’re at about the halfway point! All of the rows are
lined up, in a sense, with the first entry in each row having only
zeroes beneath it. (Pay no attention to the coincidence that all of
the entries along the diagonal are threes.) Our matrix is already
in pre-row-echelon form. After this point (in the solving process)
we only have to worry about the entries in the upper right hand
corner. In this example, it’s the −1 and −2 that remain to be
zeroed out before the matrix is solved.

Let us continue to solve our matrix equation. 3 0 −1 14
0 3 −2 7
0 0 3 −6

R1 → R1+1/3R3, R2 → R2+2/3R3, R3 → 1/3R3

 3 0 0 12
0 3 0 3
0 0 1 −2

R1 → 1/3R1, R2 → 1/3R2

 1 0 0 4
0 1 0 1
0 0 1 −2

 .



Congratulations to you if you’ve paid full attention this whole
time, and we have now reached the end of the solving process!

x = 4

y = 1

z = −2

Now that we know what reduced row echelon form means, let us create an
algorithm we can follow every time so that there is no clever guesswork. If
we are successful, we can program a computer to follow this algorithm and
significantly reduce our workload.

The first thing we did when putting this matrix into pre-row-echelon form
was to ensure that in the first column, the only non-zero entry was at the
very top. Once we accomplished this, we were free to do row operations with
all of the rows starting with a zero without ruining the progress we made.
After this, we repeated the same procedure in a sub-matrix (one where we
removed the first row and the first column of our original matrix and treated
that as a new matrix). When we iterated that process till we could go no
further, we could use the the first non-zero entry in each row to zero out all
the things above it until we were finally in pre-row-echelon form. Once we
accomplished that, all we had to do was divide our rows by the first non-zero
entry to ensure the first non-zero entry of every row was a one.

Putting this in more precise language, we have:

1. If the first column is not all zeros, rearrange the rows so that the left
uppermost entry is non-zero. That is, if our matrix is A = [ai,j], ensure
that entry a1,1 is non-zero.

2. Use the elementry row operation of adding a multiple of one row to an-
other to zero out the first entry in all rows below the first one. Phrased

in symbols, we know the first column in our matrix is given by


a1,1

a2,1
...

an,1

.

We want to perform the row operations R2 → R2 − a2,1/a1,1R1, then
R3 → R3 − a3,1/a1,1R1, · · · , and finally Rn → Rn − an,1/a1,1R1. Now,
the only non-zero entry in the first column should be a1,1.



3. If our matrix has more than one column and more than one row, con-
sider the submatrix obtained by ignoring the left-most column and the
top-most row and go back to step 1. For example, if our original matrix
was

A =

 1 2 3 5
0 5 6 7
0 8 9 10

 ,

Our new matrix would be the purple sub-matrix, rather

A′ =

[
5 6 7
8 9 10

]
.

4. Now, in our original matrix, the first non-zero entry of each row should
have zeros below it. Use row operations analogous to step 2 to zero out
all the entries above the first non-zero entry in row 2. Repeat this in
row three, four, etc., until the matrix is in pre-row-echelon form. As
an example, our matrix should look like

A =

 1 2 3 5
0 5 6 7
0 0 9 10

 .

With the second column, we want to perform the row operation R1 →
R1− 2/5R2. This will zero out all entries above a2,2, so we would move
on to row three and perform the row operations R1 → R1 − 3/45R3

and R2 → R2 − 6/9R3. After this, our matrix is in row-echelon form.

A =

 1 0 0 23/15
0 5 0 1/3
0 0 9 10

 .

5. After the matrix is in row-echelon form, divide each row by the first
non-zero entry in that row. This will make the first non-zero entry
in each row a 1 and consequentally put the matrix into reduced-row-
echelon form.

A =

 1 0 0 23/15
0 1 0 1/15
0 0 1 10/9

 .

Following this algorithm may result in some very messy fractions, but in the
end, any matrix is guaranteed to be in reduced-row-echelon form.



2.8 Equivalence Classes

Equivalence classes are a powerful yet simple concept that allows us to classify
and group things.

Definition 2.8.1. An equivalence relation, denoted “∼” is a symmetric,
reflexive, and transitive comparison operation. That means, if you are given
three things, A, B, and C: A ∼ A; if A ∼ B then B ∼ A; and if A ∼ B and
B ∼ C then A ∼ C.

Definition 2.8.2. Two matrices are said to be row equivalent if their reduced
row echelon forms are equal.

But, is row equivalence really an equivalence relation? Let’s check: If rref(A) =
rref(B) then rref(B) = rref(A), so row equivalence is symmetric. Cer-
tainly rref(A) = rref(A), so row equivalence is reflexive. And if rref(A) =
rref(B) and rref(B) = rref(C), by the transitivity of =’s, rref(A) =
rref(C), so row equivalence is really an equivalence relation.

This abstract proof is all well and good, but what does row equivalence
really mean? We know that in order to get rref(A), we apply a series of
elementary row operations to the matrix A. One great property of elementary
row operations is that every single one is reversible (That’s why we aren’t
allowed to multiply a row by zero—we would lose all information about that
row and the operation wouldn’t be reversible). That means, if we knew all
the row operations it took to get rref(A) and we reversed them one by one,
we could get back A.

Suppose now that A ∼ B, i.e. rref(A) = rref(B). If we knew all the row
operations it took to get rref(B), we could apply their inverse operations in
the proper order and recover B from rref(A)! What have we just shown?
That if A ∼ B, then we can transform A into B using only elementary row
operations.

The fact that A ∼ B means that we can obtain B from A with just elementary
row operations is quite neat (in fact, we could have used this fact as the basis
for our definition of row-equivalence). This also gives us a way to classify
matrices of equal size. Take for instance 2 × 2 matrices. The only possible
reduced row echelon forms of 2× 2 matrices are:



A1 =

[
1 0
0 1

]
, A2 =

[
1 0
0 0

]
, A3 =

[
0 1
0 0

]
, A4 =

[
0 0
0 0

]
So, given any 2× 2 matrix, we can classify it as row equivalent to either A1,
A2, A3, or A4. Because ∼ is an equivalence relation, we know that since none
of the Ai are equivalent to each other, a matrix will only be equivalent to one
of the Ais. With this knowledge, we can partition the space of 2×2 matrices
into four separate categories (based upon which of the Ai they are equivalent
to). None of our partitions will overlap and every single 2×2 matrix belongs
to exactly one partition. Partitioning is a simple, but powerful, concept that
will aid us in the coming journey.

Definition 2.8.3. A partition of a set of objects X is a way to disjointly
divide X into subsets called partitions while ensuring that every object in X
belongs to exactly one partition. In other words, a partition divides a group
of objects into different categories, but makes sure none of the categories have
any overlap.

Example:

As we just saw, using row equivalence, we can partition the set
of all 2× 2 matrices into four, non-overlapping categories.

Example:

We can partition the real numbers into two sets: the set of num-
bers greater than zero and the set of numbers less-than-or-equal-
to zero. Note that no number belongs to both of these sets and
every number belongs to one of these sets.

It is important to point out that if we tried to divide the real
numbers into two sets: those greater than zero and those less than
zero, this would not be a partition because we haven’t specified
what category zero belongs to. (Of course, we could easily fix
this problem by saying that zero gets its own category.)

Partitions and equivalence relations are closely related. Notice that all equiv-
alence relations give rise to partitions and all partitions give rise to equiva-
lence relations. When we pair an equivalence relation and a partition together



(i.e. the equivalence relation gives rise to that particular partition), we call
the collection of objects grouped together by the partition an equivalence
class.

Definition 2.8.4. An equivalence class is the collection of all objects that
are similar to each other (i.e. a collection of objects that relate to each other
by an equivalence relation).

Example:

Taking ∼ to be row equivalence, the set of all matrices A ∼[
1 0
0 1

]
constitutes one equivalence class (and as we will see

later is actually the class of all invertible 2× 2 matrices).

Because an equivalence class is the collection of all things similar to each
other, we can choose to describe an equivalence class as the collection of all
things A where A ∼ X. In this case, X is called a representative of the
partition/class.

Definition 2.8.5. A representative of an equivalence class is a named ele-
ment of that class. Once a representative has been established, the particular
class may be described as all things similar to that representative.

Example:

Taking ∼ to be row equivalence, we can describe a single equiv-

alence class as the set of all matrices A ∼
[

1 0
0 1

]
. In this case,[

1 0
0 1

]
is the representative element.

2.9 Pivots and Free Variables

In chapter 1, we solved systems of linear equations the old-fashioned way, by
writing down a lot of algebraic symbols. But now, with matrix notation and



RREF, we are fully capable of solving all the same problems (and even more
complicated ones) with a minimum amount of work.

Consider the following matrix in RREF:

 1 0 0 4
0 1 0 1/2
0 0 1 −6

. We know this is

short for the system of equations 1x + 0y + 0z = 4, 0x + 1y + 0z = 1/2, and
0x + 0y + 1z = −6, which easily translates to the answer x = 4, y = 1/2,
and z = −6,

Let’s look at one more matrix in RREF form and see if we can extract

the system of linear equations it stands for: A =

 1 0 2 1
0 1 3 0
0 0 0 0

. By the

same process as before, we know A represents the following system of linear
equations: 1x+0y +2z = 1, 0x+1y +3z = 0, and 0x+0y +0z = 0. Further
simplifying, we get the equations x = 1 − 2z and y = 0 − 3z. Any value of
z gives a valid solution to this system of linear equations, so this system has
infinitely many solutions.

Any time a system of linear equations has an infinite number of solutions, we
use a free variable when writing down the solution. Values that aren’t free
(because they are the leading ones in some row of the RREF of a matrix)
are called pivots.

Definition 2.9.1. Free variables are variables assigned as place-holders for
a whole range of values that result in valid solutions to a system of linear
equations.

Definition 2.9.2. A pivot is the first non-zero entry of a row when a matrix
is in pre-row echelon form, row echelon form, or reduced row echelon form.

Note that if our system of equations is consistent (that is, we don have a
row

[
0 0 0 1

]
, which would be interpreted as the equation 0 = 1), the

number of free variables plus the number of pivots is the same as the number
of equations.

Example:

The matrix A =

 1 1 2 3
0 0 0 0
0 0 0 0

 has one pivot and three rows



(three equations), so the algebraic solution will have two free
variables. The algebraic solution is x = 3 − y − 3z. In this
solution, y and z are both free variables, showing that there are
in infinite number of solutions to the system of linear equations
represented by A.

Now that we are familiar with pivots and free variables, we can combine
these concepts with vector notation to cleanly write the solution to a system
of linear equations.

Recall that the system of linear equations

x + 2y + 0z + 3w = 4

x + 2y + 1z + 5w = 3

2x + 4y + 4z + 14w = 4

can be written in A~x = ~b form like so: 1 2 0 3
1 2 1 5
2 4 4 14




x
y
z
w

 =

 4
3
4



In order to use row-reduction to solve this system, we concatenate A and ~b
together into the following matrix: 1 2 0 3 4

1 2 1 5 3
2 4 4 14 4

 .

Solving for the RREF, we get the matrix 1 2 0 3 4
0 0 1 2 −1
0 0 0 0 0

 ,

which corresponds to the A~x = ~b form equation: 1 2 0 3
0 0 1 2
0 0 0 0




x
y
z
w

 =

 4
−1
0

 .



This equation is consistent, and there are two pivots, so there are going to
be two free variables. Multiplying this equation out, we get 1

0
0

x +

 2
0
0

 y +

 0
1
0

 z +

 3
2
0

w =

 4
−1
0

 .

Solving for our pivots gives us the equation 1
0
0

x +

 0
1
0

 z =

 4
−1
0

−
 2

0
0

 y −

 3
2
0

w.

Notice that the bottom row in this equation is just zeros, so we can further

simplify our notation by leaving it off. Also, because

 1
0
0

x is the same as x
0
0

, we can make a further substitution, which gives us the simplest way

to write the solution to this system of linear equations:[
x
z

]
=

[
4
−1

]
−

[
2
0

]
y −

[
3
2

]
w.

Notice that this represents the same information as the two equations x =
4− 2y − 3w and z = −1− 0y − 2w in a convenient vector form.



Chapter 3

Matrix Operations

3.1 Transpose

Before we start matrix operations, let us introduce the transpose operation.
This operation swaps rows and columns, i.e. reflects a matrix along the
diagonal. It is represented by a superscript T .

Definition 3.1.1. The transpose of a matrix A with entries ai,j is the matrix
AT with entries aj,i.

Example:

[
1 2 3
4 5 6

]T

=

 1 4
2 5
3 6


If the matrix is a vector, the transpose simply means changing the vector
from a column vector to a row vector or vica versa.

 1
2
3

T

=
[

1 2 3
]

37



In a square matrix, it can be hard to see what the transpose does. Watch
how the diagonal stays the same while all other numbers are reflected: 1 2 3

4 5 6
7 8 9

T

=

 1 4 7
2 5 8
3 6 9


Note that the second matrix was obtained by writing each column of the first
as a row of the second.

3.2 Vector Multiplication

In the previous chapter, we defined how to add vectors, which corresponds
geometrically to laying a vector head-to-tail and tracing out a new vector.
We also defined how to multiply a vector by a scalar. This corresponds to
scaling a vector. We refrained from defining what it means to multiply two
vectors, but we can go no further until we do.

Vector multiplication is defined as the dot product.

The setup:

For now, we will only be able to multiply a row vector by a column vector
(in that order) and the result will be a 1× 1 matrix.

The process:

To multiply two vectors, multiply their “corresponding” entries and then add
all of those products together and stick it in a 1× 1 matrix.

Example:

[
2 3 −1

]  .5
4
6

 =
[

2 ∗ .5 + 3 ∗ 4 +−1 ∗ 6
]

=
[

7
]

One might think that it is somewhat restrictive to require all vector mul-
tiplication to be between a row vector and a column vector. What if we



wanted to multiply two column vectors? Fortunately we have the transpose
operation:  2

3
4

T  .5
4
6

 =
[

2 3 4
]  .5

4
6

 =
[

7
]

3.3 Matrix Multiplication

Matrix multiplication is closely tied to vector multiplication. Vector multi-
plication is a row vector times a column vector. However, any given matrix
is just a bunch of row vectors, and/or a bunch of column vectors, depending
on your viewpoint. 1 2 3

4 5 6
7 8 9

 =

 1 2 3
4 5 6
7 8 9

 =

 1 2 3
4 5 6
7 8 9


The multiplication of two matrices is a matrix of vector products. Think of
matrix multiplication as dividing up a matrix into row and column vectors
and then multiplying just like vectors, sticking everything back in order.
Let’s multiply a 3× 3 matrix with a 3× 1 column vector: 1 2 3

4 5 6
7 8 9

 −1
1
2

 =

 −1 + 2 + 3 ∗ 2
−4 + 5 + 6 ∗ 2
−7 + 8 + 9 ∗ 2

 =

 7
13
19


(Interesting how we multiplied a square matrix by a vector and were left with
a vector of the same size.) Let’s now do a slightly more complex.

Example:

 1 2 3
4 5 6
7 8 9

 1 0 3
−2 0 0
2 1 −2

 =?

Notice that the second matrix is actually 3 column vectors right
next to each other. To multiply the two matrices, we simply



multiply a matrix and a column vector three times and stick all
the numbers right on top of each other. Let’s deal with this one
column at a time: 1 2 3

4 5 6
7 8 9

 1 0 3
−2 0 0
2 1 −2

 =

 1(1)− 2(2) + 2(3) · ·
1(4)− 2(5) + 2(6) · ·
1(7)− 2(8) + 2(9) · ·

 =

 3 · ·
6 · ·
9 · ·


 1 2 3

4 5 6
7 8 9

 1 0 3
−2 0 0
2 1 −2

 =

 · 0(1) + 0(2) + 1(3) ·
· 0(4) + 0(5) + 1(6) ·
· 0(7) + 0(8) + 1(9) ·

 =

 · 3 ·
· 6 ·
· 9 ·


 1 2 3

4 5 6
7 8 9

 1 0 3
−2 0 0
2 1 −2

 =

 · · 3(1) + 0(2)− 2(3)
· · 3(4) + 0(5)− 2(6)
· · 3(7) + 0(8)− 2(9)

 =

 · · −3
· · 0
· · 3


Our last step is to smush the columns together to get our final
product:  1 2 3

4 5 6
7 8 9

 1 0 3
−2 0 0
2 1 −2

 =

 3 3 −3
6 6 0
9 9 3


Who would have thought math could be so colorful?

Since matrix multiplication is a whole bunch of vector multiplications, what
happens when the size of the row vector of the first matrix and the size of
the column vector of the second matrix don’t match? You get an error. An
easy way to check this is to make sure the “inside” dimensions match up on
a matrix. For example, suppose you have a 3 × 4 and a 4 × 8 matrix. You
can multiply these because when you line the dimensions up the inside 4’s
match: 3 × 4 4 × 8. However, if you had a 4 × 8 and a 3 × 4 matrix, the
inside dimensions do not match: 4× 8 3× 4 so you cannot multiply these.

Just for fun, let’s see what happens when we try to multiply two matrices
whose dimensions do not match.

Example:



Let’s multiply the following 3 × 4 and 2 × 3. We’ll only try to
calculate the first column, as we’ll have plenty enough trouble
doing even that. 1 2 0 5

0 3 −2 −1
−1 1 0 4

[
2 0 −4
3 1 −3

]
=

 1 ∗ 2 + 2 ∗ 3 + 0 ∗ (?) + 5 ∗ (?) · ·
0 ∗ 2 + 3 ∗ 3 + (−2) ∗ (?) + (−1) ∗ (?) · ·
(−1) ∗ 2 + 1 ∗ 3 + 0 ∗ (?) + 4 ∗ (−3) · ·


The question marks are indications that the rows and columns are not “lining
up” per se, so it is impossible to figure out what should be in each entry of
the product. This is why the rows of the first matrix must be the same
length as the columns of the second matrix for you to be able to multiply
them together. But then again you already knew that, didn’t you?

3.4 Square Matrices

If two matrices, A and B are square and both have the same dimension,
multiplication is defined in either order, AB or BA. However, matrix mul-
tiplication is not commutative. That is, in many cases AB 6= BA. Let’s
examine a couple of cases:

Example:

[
2 4
0 1

] [
1 1
0 3

]
=

[
2 14
0 3

]
6=[

1 1
0 3

] [
2 4
0 1

]
=

[
2 5
0 3

]
Example:

[
4 1
2 6

] [
0 3
5 0

]
=

[
5 12
30 6

]
6=



[
0 3
5 0

] [
4 1
2 6

]
=

[
6 18
20 5

]
Even though matrix multiplication is not commutative, it is associative. That
is, in a string of matrix multiplications, parenthesis does not matter. Take
matrices A, B, and C.

(AB)C = A(BC) = ABC

We should also consider what the transpose does to matrix multiplicaiton.
The following identity is useful to know:

(AB)T = BT AT

Multiplying out some matrices you can quickly see that this is true.

3.5 Special Matrices I and 0

When working with square matrices, there are two very special matrices.
The first is the zero-matrix. As its name suggests, this is a matrix written
entirely of zeros.

Example:

 0 0 0
0 0 0
0 0 0

 [
0 0
0 0

]
[0]

are all zero-matrices.

The zero matrix has the special property that when multiplied by another
matrix (on either side), the result is the zero matrix.

Example:

 1 2 3
4 5 6
7 8 9

 0 0 0
0 0 0
0 0 0

 =

 0 0 0
0 0 0
0 0 0

 1 2 3
4 5 6
7 8 9

 =

 0 0 0
0 0 0
0 0 0





The zero-matrix is often written with an abbreviation of just “0.” This allows
us to write equations like,

0A = A0 = 0.

Notice how, in the case of square matrices, it doesn’t matter whether the “0”
in the expression “0A” is the zero-matrix or simply the scalar 0.

Identity Matrix

The other very special matrix is the identity matrix. Denoted symbolically
as a capital “I,” the identity is so named because a square matrix times the
identity equals itself.

Written out, the identity matrix is a matrix with 1’s along the diagonal and
zeros everywhere else: 1 0 0

0 1 0
0 0 1

 [
1 0
0 1

] [
1

]
are all identity matrices.

Let’s multiply some matrices to figure out why the identity matrix works.

Example:

 1 0 0
0 1 0
0 0 1

 1 2 3
4 5 6
7 8 9

 =

 1 2 3
4 5 6
7 8 9


In the world of matrix multiplication, I behaves just like 1 does in the world of
scalar multiplication. That means we may pull out as many identity matrices
as we want as a tool to solve whatever problem we may be working on. So,
if we are multiplying matrices A and B, we can say,

AB = AIB = AIIB = AIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIB = IIAIB

3.6 Matrices and SLEs

Consider the system
2x− y = 3



x + y = 9.

We can represent this with a square matrix and two vectors:[
2 −1
1 1

] [
x
y

]
=

[
3
9

]
.

If we multiply the left side out, we see[
2x− y
x + y

]
=

[
3
9

]
.

and since we equate vectors by comparing straight across, we see that this is
the same as our original system.

However, the real beauty of this representation comes when we swap out the
numbers for letters: Let[

2 −1
1 1

]
= A

[
x
y

]
= ~x

[
3
9

]
= ~b.

Now, if we rewrite our original equation, it looks like

A~x = ~b,

which is the form of the simplest linear equation. (If we could divide by A,
we could solve it in a snap.)

In this form, A is called the coefficient matrix.

3.7 Elementary Matrices

Matrix multiplication and the identity matrix go hand in hand and are pretty
cool. We’re almost ready to fully dive into a world of matrices, the only prob-
lem is elementary row operations. They don’t quite fit nicely into our world
of vector/matrix addition, scalar multiplication, and matrix multiplication.

Let’s examine what elementary row operations really do and see if we can
find an alternative method of representing them.



• Interchanging two rows:

Let’s think of a specific interchange, say R1 ↔ R2 applied to a 3× 3 matrix: 2 4 6
1 2 10
9 0 15

R1 ↔ R2

 1 2 10
2 4 6
9 0 15


Thinking about left multiplying A by the identity matrix, we know that I’s
first row,

[
1 0 0

]
, chooses the first row of A and sticks it into the first

row of the result. And we know the second row of I,
[

0 1 0
]
, chooses

the second row of A and sticks it into the second row of the result.

What would happen if instead, the first row of I were
[

0 1 0
]
? It would

indeed take the second row of A and stick it in the first row of the result.
And if the second row of I were

[
1 0 0

]
, it would take the first row of A

and stick it in the second row of the answer.

Let’s compute:  0 1 0
1 0 0
0 0 1

 2 4 6
1 2 10
9 0 15

 =

 1 2 10
2 4 6
9 0 15



By multiplying our matrix by

 0 1 0
1 0 0
0 0 1

 we have swapped the first and

second row. But this matrix is really just the row operation, R1 ↔ R2 applied
to I:  1 0 0

0 1 0
0 0 1

R1 ↔ R2

 0 1 0
1 0 0
0 0 1


So, left multiplying by an identity matrix with rows interchanged is the same
as applying the elementary row operation of exchanging rows. Neat!

• Multiplying a row by a non-zero constant

This operation is really simple to figure out. If you think about the operation
R3 → 2R3 and the fact that the third row of I is

[
0 0 1

]
, we could guess



that if instead the third row were
[

0 0 2
]
, it might do our row operation

for us. Let’s see:  2 4 6
1 2 10
9 0 15

R3 → 2R3

 2 4 6
1 2 10
18 0 30


is our row operation. And, multiplying by our special matrix gives us: 1 0 0

0 1 0
0 0 2

 2 4 6
1 2 10
9 0 15

 =

 2 4 6
1 2 10
18 0 30



It’s the same thing! But our matrix

 1 0 0
0 1 0
0 0 2

 is just the operation R3 →

2R3 applied to I.

• Adding a non-zero multiple of one row to another

A pattern is emerging. Let’s try to continue it by finding a slightly modified
identity matrix to perform the operation R2 → −R1 + R2.

This is just as easy to do, but it might be confusing at first. We just take the
row we want to modify, in this case R2, and to make our elementary matrix
perform the row operation, we change it from the idenity to:

[
−1 1 0

]
.

 1 0 0
−1 1 0
0 0 1

 2 4 6
1 2 10
18 0 30

 =

 2 4 6
−1 −2 4
0 0 1


It seems that all our elementary row operations can be done by left-multiplying
by a modified version of the identity matrix. For this reason, these modified
identiy matrices are called elementary matrices.

Definition 3.7.1. An elementary matrix is the identity matrix with one row
operation applied to it.



3.8 Inverses

Using elementary matrices, let’s re-examine solving a system of linear equa-
tions. We’ll start with the system:

2x− y = 3

x + y = 9

In matrix form that is [
2 −1 3
1 1 9

]
.

We know the first thing to do when solving is R2 → R2 + R1, or in terms of
an elementary matrix, we get[

1 0
1 1

] [
2 −1 3
1 1 9

]
=

[
2 −1 3
3 0 12

]
.

Next we do R2 → 1/3R2. Keeping our matrices expanded, that operation is
carried out by[

1 0
0 1/3

] [
1 0
1 1

] [
2 −1 3
1 1 9

]
=

[
2 −1 3
1 0 4

]
.

Now we want to do R1 → R1 − 2R2:[
1 −2
0 1

] [
1 0
0 1/3

] [
1 0
1 1

] [
2 −1 3
1 1 9

]
=

[
0 −1 −5
1 0 4

]
.

Next we need to do R1 → −R1 and after that R1 ↔ R2. That gives us[
0 1
1 0

] [
−1 0
0 1

] [
1 −2
0 1

] [
1 0
0 1/3

] [
1 0
1 1

] [
2 −1 3
1 1 9

]

=

[
1 0 4
0 1 5

]
.

We’ve solved our system just like before, but the difference this time is that
we have kept track of everything we did with elementary matrices. And,



because parenthesis don’t matter in matrix multiplication (a.k.a. matrix
multiplication is associative), we can collapse[

0 1
1 0

] [
−1 0
0 1

] [
1 −2
0 1

] [
1 0
0 1/3

] [
1 0
1 1

]
=

[
1/3 1/3
−1/3 2/3

]
down, so we get[

0 1
1 0

] [
−1 0
0 1

] [
1 −2
0 1

] [
1 0
0 1/3

] [
1 0
1 1

] [
2 −1 3
1 1 9

]

=

[
1/3 1/3
−1/3 2/3

] [
2 −1 3
1 1 9

]
=

[
1 0 4
0 1 5

]
.

This is amazing! There is one matrix that we can multiply our equation
matrix by in order to get the solution.

Let’s examine a different matrix-form representation of this system of linear
equations: [

2 −1
1 1

] [
x
y

]
=

[
3
9

]
.

If we take our product-of-elementary-matrices matrix times the coefficient
matrix of this equation, we get,[

1/3 1/3
−1/3 2/3

] [
2 −1
1 1

]
=

[
1 0
0 1

]
.

The product equals the identity matrix! What does this mean? Let’s look
at normal numbers and normal multiplication.

If we have the number 3 and we find a number a such that a3 = 1, then
we know a = 1/3, that is, a is the inverse of 3. It follows that, if we have

a matrix A =

[
2 −1
1 1

]
and we find another matrix, B =

[
1/3 1/3
−1/3 2/3

]
,

and BA = I, then B is the inverse of A. Symbolically we represent the
inverse of A with a superscript −1. Therefore A−1 = B.

Definition 3.8.1. Given a matrix A, the inverse matrix, A−1, is the unique
matrix such that A−1A = AA−1 = I.



An inverse basically serves the role of division. Remember our equation
A~x = ~b? It looks like we can effectively divide by A by multiplying both
sides by A−1. Let’s try: [

2 −1
1 1

] [
x
y

]
=

[
3
9

]
[

1/3 1/3
−1/3 2/3

] [
2 −1
1 1

] [
x
y

]
=

[
1/3 1/3
−1/3 2/3

] [
3
9

]
[

1 0
0 1

] [
x
y

]
=

[
x
y

]
=

[
4
5

]
At this point, it would be tempting to think that every matrix has an inverse,
and that certainly would be nice, however, it is important to know that not
every matrix has an inverse.

Definition 3.8.2. A matrix A is invertible if there exists an A−1 such that
AA−1 = A−1A = I.

When we first talked about inverses we showed that to find a matrix’s inverse,
you had to find the elementary matrices that reduced the matrix to the
identity. Their product, of course, was the inverse. We can formulate this
statement into a theorem:

A matrix A is invertible if and only if it is row equivalent to the identity,
that is to say, there is a series of elementary matrices that, when multiplied
with A, produces the identity.

Almost trivially, this implies that for a matrix to have even a shining hope
of being invertible, it has to be square, because there are no elementary row
operations that can change a matrix’s dimension, and the identity is always
square.

An interesting way to classify non-invertible matrices is to realize that a
non-invertible matrix has to be row equivalent to something else besides the
identity. Let’s come up with examples of very simple matrices that are not
row equivalent to the identity:



[
1 0
0 0

]  1 0 0
0 0 0
0 0 0

  1 0 0
0 1 0
0 0 0


Here are some examples. See if you can pick out why they don’t row reduce
to the identity.

Example:

 2 3 −1
1 1 1
1 2 −2

 [
1 6
−2 −12

]  1 0 3
2 2 4
1 2 1


You should be beginnning to see the connection between invertible matrices
and whether a system of linear equations has a solution. Before we reveal the
awesomeness of the super theorem and bask in its glory, we must introduce
another player into this mathematical drama.

3.9 Determinants

We know that with real numbers, almost every number has an inverse. 3−1 =
1/3, etc. The only real number that doesn’t is 0.

With matrices we have seen that there are many invertible ones and many
non-invertible ones. It is not so simple as having only one exception. How-
ever, the world of vectors and matrices is a world of volumes, areas, and
lengths, and as we will soon discover, it is the “magnitude” of a matrix that
determines whether it has an inverse.

We know that any matrix is a bunch of vectors squished together. For ex-
ample, [

2 −1
1 1

]
is made up of the vectors ~a =

[
2
1

]
and ~b =

[
−1
1

]
. We can trace out the

area of a parallelogram with sides ~a and ~b.



We find that the area of this parallelogram is 3. This number is called the
determinant of the matrix.

Definition 3.9.1. A determinant of a square matrix A is the oriented area
of the n-dimensional parallelepiped whose sides are give by the column vectors
of A.

An oriented area simply means that the sign (±) is related to which order
you list the sides. It is the same concept as the right-hand rule in physics.
Even though we can only visualize the determinant of a 1 × 1, 2 × 2, or
3× 3 matrix, higher dimensional determinants do exist and are not terribly
difficult to calculate.

Let us look at the determinant of a non-invertible matrix[
−2 −1
2 1

]
.

If we try to calculate the area as base×height, we see that the height= 0
and therefore the area is 0. This is looking more and more like real numbers,
where all numbers but 0 have an inverse.



3.10 Calculating Determinants

For lower dimensional matrices we can compute the determinant with ge-
ometry, but that becomes more and more difficult as the matrix gets larger.
Let’s examine an alternative way to calculate the determinant.

First, notice that the determinant of I is 1. I always traces out a 1× 1× ...
cube, so its volume is 1 ∗ 1 ∗ ... = 1.

Now let’s look at our elementary row operations and elementary matrices.

• Interchanging two rows

If we interchange two rows, that is the same as interchanging two edges of
our parallelogram. This does not change the volume at all. All it changes
is the orientation (remember, determinants are an oriented volume). That
means that the determinant of a matrix, A, with two rows interchanged is
the same as −1∗determinant(A).

• Multiplying a row by a constant

If we multiply one row by a constant, it is akin to geometrically stretching
one component of each vector by that scalar (which could be considered
squishing the vector, if the constant is less than 1). This means that the
oriented volume changes by a factor of the applied scalar multiple. To put it
plainly, the determinant of a matrix, A, with one row multiplied by a scalar,
c, is equal to c∗determinant(A).

• Adding a multiple of one row to another

For this operation, let’s look at a picture.



The orange area represents the determinant of the matrix

[
1 1
1 0

]
. Doing

the row operation R1 → R1 + R2 gives us the matrix

[
2 1
1 0

]
, whose de-

terminant is represented by pink. Notice that since area of a parallelogram
is base times height and our row operation did not change height, the de-
terminant of both these matrices is the same. In fact, any row operation of
this type does an analogous area-preserving operation on the parallelepiped
represented by a matrix in any dimension.

This means that in order to calculate the determinant of any matrix, all
we need to do is reduce it to the identity matrix while keeping track of
every elementary operation we did along the way. But, this task shouldn’t
be difficult at all, because adding a multiple of one row to another doesn’t
change the determinant at all! That mean’s we only have to keep track of
two of our elementary row operations.

Our procedure for calculating a determinant is to use elementary row oper-
ations to put our matrix in row-echelon form. Then we multiply along the
diagonal of the matrix and then multiply by all the constants we collected
from the row operations we did.



Notation

Because a determinant is an oriented “magnitude,” it makes sense to use
vertical bars to denote a determinant. The determinant of the matrix

A =

[
1 −1
2 1

]
can be written

det(A) =

∣∣∣∣ 1 −1
2 1

∣∣∣∣
However, we will predominantly use the shorthand “det” to represent the
determinant operation. So,

det(A) = det

[
1 −1
2 1

]
= 3.

Example:

Find the determinant of

A =

 1 1 2
2 1 2
2 2 2


First, let’s do the operation R2 → R2 −R1. This doesn’t change
the determinant and it leaves us with 1 1 2

1 0 0
2 2 2

 .

Next, let’s do the operation R3 → 1/2R3. This gives us 1 1 2
1 0 0
1 1 1


and will multiply our determinant by 2. Now, let’s do the oper-
ation R1 → R1 −R3. This gives us 0 0 1

1 0 0
1 1 1





and doesn’t change the determinant. Now, let’s get rid of the
ones in R3 with the operations R3 → R3−R1 and R3 → R3−R2: 0 0 1

1 0 0
0 1 0

 .

Those two operations didn’t affect the determinant either. And,
the only step left in order to get the identity matrix is to rearrange
the rows. Let’s do the operations R3 ↔ R2 and then R3 ↔ R1.
This multiplies the determinant by −1 twice and gives us the
identity matrix.

Now that we have reduced our matrix to the identity matrix, we
can compute det(A) = (2)(−1)(−1) = 2. Wasn’t that painless!

Special Properties

A very important property of determinants is that the determinant of a
product of matrices is the product of the determinants of matrices. That
is det(AB) = det(A)det(B). This can be seen through elementary matrices
and our determinant algorithm.

Firstly, we know to find the determinant of a matrix, we decompose it into
elementary matrices and, multiplying by −1 every time we used row oper-
ation 1, multiplying by a constant for row operation 2, and ignoring any
elementary matrices from row operation 3. Since we know that any square
matrix can be decomposed into a string of elementary matrices (with pos-
sibly one non-elementary matrix at the very end of the string), we could
certainly decompose two matrices into strings of elementary matrices. When
we do this, calculating the determinant with our standard algorithm gives
the same result as calculating the determinant of two matrices separately
and then multiplying them together.

2× 2 Formula

Even thought it is very quick to calculate a determinant from elementary
matrices, the 2 × 2 case occurs so often that it is worth memorizing the
formula:

det

[
a b
c d

]
= ad− bc



3.11 Super Theorem

Now we are into the meat of Linear Algebra. We have solved systems of
linear equations, we have row reduced matrices, we have computed inverse
matrices, and we have explored determinants. As it turns out, all these things
are related via the Super Theorem of Linear Algebra.

As we go on, we will add more and more things to the Super Theorem, but
as it stands, this is what we have so far:

Super Theorem: If A is a square, n× n matrix, the following are equivalent:

1. A~x = ~b has only one solution for every ~b. i.e. A~x = ~b is consistant.

2. A~x = 0 has only one solution, ~x = 0.

3. The reduced row-echelon form of A is the identity matrix.

4. A can be written as a product of elementary matrices.

5. A has an inverse.

6. det(A) 6= 0.

Stating that a list of statements is equivalent means that if you know any
one of those statements is true or false, you know that all of the statements
are true or false. So, if two statemtents A and B are equivalent, then if A is
true it means B is true and if B is true it means that A is true. (Note that
this is logically equivalent to saying if B is false A is false and if A is false,
B is false.)

We use a shorthand “ =⇒ ” symbol as a shorthand for “implies.” For
example, we may write “If A is true then B is true” as “A =⇒ B.” Note
that “implies” works much like a logical arrow, indicating where you can get
to from which starting point.

Consider now the proposition before us: showing that statements 1, 2, 3,
4, 5, and 6 are equivalent. We will show this in the following way: 1 =⇒
2 =⇒ 3 =⇒ 4 =⇒ 5 =⇒ 1 and then show 4 =⇒ 6 and 6 =⇒ 3.
Note that if we prove implications in this way, we will be able to follow the



arrows and get from any number to any other number. Thus, the statements
1-6 will be equivalent.

Now for the proofs. First, let’s prove 1 =⇒ 2.

Suppose the equation A~x = ~b has a unique solution for every ~b. That means
that for ~b = ~0, there is exactly one corresponding ~x. We know that A~0 = ~0
for any square matrix A, therefore ~x = ~0 is a solution to the equation A~x = ~0,
which, by our assumption, means it is the only solution. This is precisely
statement 2, so if 1 is true, so is 2.

2 =⇒ 3.

We will show that “not 3 =⇒ not 2.” This statement is the contrapositive
of the statement “2 =⇒ 3,” and is logically equivalent to it. We are going to
show that if A is a square matrix and rref(A) 6= I then A~x = 0 has multiple
solutions.

If rref(A) 6= I, then rref(A) = J is a diagonal matrix with at least one
zero on the diagonal. Assume this zero is at position k. We obtained J via
elementary matrices. That is EnEn−1 · · ·E2E1A = J . Inverting these we get
A = E−1

n E−1
n−1 · · ·E−1

2 E−1
1 J . But, J has a zero at position k, k, so if ~x is the

vector of all zeros and a 1 at position k, then J~x = 0. Which, in turn, means
that A~x = E−1

n E−1
n−1 · · ·E−1

2 E−1
1 J~x = 0, but ~x 6= 0, so we have shown that

A~x = 0 has multiple solutions.

3 =⇒ 4.

Suppose that rref(A) = I. Now, consider the process of row-reduction
as multiplying by elementary matrices. Knowing that rref(A) = I means
that EnEn−1 · · ·E2E1A = I, where Ei are all elementary matrices. But, all
elementary row operations are invertible and therefore elemenatry matrices
are invertible, so we may write A = E−1

n E−1
n−1 · · ·E−1

2 E−1
1 . All the E−1

n are
elementary matrices, so we have just show that A can be written as a product
of elementary matrices.

4 =⇒ 5. We need to show that if A can be written as a product of elemen-
tary matrices, then A has an inverse. If we can write A = EnEn−1 · · ·E2E1,
then, because every elementary matrix is invertible, we can write A−1 =
E−1

n E−1
n−1 · · ·E−1

2 E−1
1 .

5 =⇒ 1. We need to show that if A has an inverse then A~x = ~b has a



unique solution. If A has an inverse, multiply both sides by A−1 and we get
that ~x = A−1~b is the unique solution to the equation.

4 =⇒ 6. We need to show that if A can be written as a product of elemen-
tary matrices then det(A) 6= 0. If A = EnEn−1 · · ·E2E1, then det(A) =
det(EnEn−1 · · ·E2E1). By the properties of determinants, we know that
det(EnEn−1 · · ·E2E1) = det(En)det(En−1) · · · det(E2)det(E1). Since the de-
terminant of an elementary matrix is never zero and the product of non-zero
numbers is never zero, we may conclude that det(A) 6= 0.

6 =⇒ 3. We need to show that if det(A) 6= 0 then A can be written as
a product of elementary matrices. Our algorithm for calculating the deter-
minant was to put the matrix into REF form, keeping track of all of our
elementary row operations. We then multiplied all the entries on the di-
agonal and in turn multiplied that product by the factors obtained from
our row operations. Since none of our row operations contribute a zero to
the determinant, the only place a zero could come from is the diagonal of
ref(A). Since det(A) 6= 0, ref(A) must have no zeros on the diagonal, so
rref(A) = I.



Chapter 4

Vector Spaces

4.1 Vector Spaces

We’ve been working with linear combinations for quite some time. We know
that the solution to A~x = ~b is the coefficients of the column vectors of A so
that they point to ~b. We also know that sometimes there are combinations
of A and ~b so that there is no solution.

Let’s clarify with an example.

Example:

A =

[
1 3
2 6

]
Lets give the column vectors names, ~v =

[
1
2

]
, ~w =

[
3
6

]
. It

is clear that 3~v = ~w. Let’s look at everything we can get as a
linear combination of these vectors: Taking just ~v, we can get
every point on the line y = 2x. Now if we also include ~w, we can
get all of the points on the line y = 2x. That means we don’t
get anything new, but we already knew that because the vectors
were linear combinations of each other. What does this mean for
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~b? It means that unless ~b lies on the line y = 2x, this system will
not have a solution.

In this case, the set of all the points in the line y = 2x or alternatively, all

vectors that can be described by s

[
1
2

]
with some value of s are called the

solution space.

But, we have not yet defined what a space is, so let’s define a Vector Space:

Definition 4.1.1. A vector space is a set of vectors, V , with several useful
properties:

1. You can multiply a vector by a scalar and it is still in the space. (If
you multiply any vector pointing along y = 2x by a scalar, it will still
lie on the line y = 2x.)

2. We have a way to add vectors and when we add, the order doesn’t
matter.

3. All linear combinations of any vectors in the space are in the space.
(Let’s take 2 vectors in our solution space: ~v and ~w. We know ~v + ~w =

~w + ~v =

[
4
8

]
, which is still on the line y = 2x.)

4. There is a zero vector, ~0, and the sum of anything plus the zero vector
is itself. (~v +~0 = ~v)

5. Every vector has a unique negative vector in the space and their sum

is the zero vector. (If we take our vector ~v =

[
1
2

]
, we know that

−~v =

[
−1
−2

]
also lies on the line y = 2x, and we know that ~v−~v = ~0.)

These properties seem very intuitive, and for vectors with real-number values,
they are very intuitive. Later on we will work with vectors that are made of
things other than real numbers—there we will have to pay closer attention
to all of the rules to make sure something is a vector space.

Throughout this entire book, we have been working in the vector space Rn

where n is the size of our vectors. However, as we see when solving for the



solution space, it may not be all of Rn. We often are dealing with subspaces.

Definition 4.1.2. W ⊂ V (W contained in the vector space V ) is called a
subspace if W is a vectorspace.

It may seem trivial to make such a definition, however, whereas we have to
prove 5 things each time we declare something a vectorspace, if we already
know it is a subset of a vectorspace, we only have to prove 1: closure.

If we show a subset W ⊂ V of a vector space V is closed, then we know for
all ~x in W and for any scalar k, k~x is in W ; thus, property 1 is satisfied.
Furthermore, we can add vectors together, so property 2 is satisfied. Closure
also implies property 3 is satisfies. If we can multiply by a scalar 0 and
remain in the space, then the zero vector must be in W , so property 4 is
satisfied. Lastly, we can multiply by the scalar −1 and get inverse vectors,
so property 5 is satisfied as long as we show that W is closed.

The Shape of a Vector Space

Let’s think a little bit about the shape of a vector space. The solution space
to our previous example was a straight line. That is because we had linearly
dependent vectors. What would the solution space looked like if the vectors

were linearly independent? Let’s look at the vectors ~v =

[
1
2

]
and the new

vector ~w =

[
1
0

]
. We already know ~v defines all the points on the line

y = 2x. Our new vector ~w defines all the points on the line y = 0. So what
is our solution space? Is it the union of the line y = 2x and the line y = 0?

Let’s make sure that the union of y = 2x and y = 0 could actually be a
vector space: Can we multiply vectors by scalars? Yes. Do we know how
to add vectors? Yes. Are linear combinations of vectors also in the space?

Let’s test: ~v + ~w =

[
1
2

]
+

[
1
0

]
=

[
2
2

]
, but

[
2
2

]
doesn’t lie on either of

our lines! This means that our vector space has to be bigger than just the

union of these lines. In fact, since the matrix

[
1 1
2 0

]
is invertible, we can

form any vector

[
x
y

]
from linear combinations of the vectors ~v and ~w. This

makes means the solution space must be a 2-D plane.



It is interesting how vector spaces that we’ve looked at so far, a point, a line,
a plane, have all been “flat.” But, in fact, this is a property of vector spaces.
Because of closure, if we can move a tiny bit in one dimension, we can move
an any amount we choose in that dimension. Therefore, if we can move a
tiny direction away from a point, we can move in an entire line. If we can
move a tiny direction away from a line, we can move in a whole plane. If we
can move a tiny bit away from a plane, we can move in all of 3-D space!

4.2 Null Space

By now, we are quite comfortable with solving systems of linear equations.
We know the solutions to the equation A~x = 0 can have zero, one, or infinitely
many solutions. We’ve also been introduced to the concept of vector space.
In this section, we will use the concept of a vector space to more precisely
understand what zero, one, or infinitely many solutions to this particular
equation means.

We’re used to the equations involving A~x = 0. We can solve this equation
for a set of vectors V that satisfy this equation. If V consists of one element,
it means that there is one solution and A is invertible. If V is has infinitely
many elements, then there are an infinite number of solutions to A~x = 0. In
any case, the set V is called the null space.

Definition 4.2.1. The null space of a a matrix A is the set of vectors that
satisfy the equation A~x = 0.

The null space of any matrix equation, A~x = 0, is a vector space. This fact
can be seen through the process of solving matrix equations. First of all, we
know that if A~x = 0 consists of only one element, then that element must
be ~0. And, ~0 is a vector space! If there are multiple solutions, then there are
some number of free variables. Writing out the solution in vector form, each
one of our free variables has a vector coefficient. The solution space consists
of all linear combinations of these vector coefficients. Since we are taking all
linear combinations of a set of vectors, by definition it is closed. It is also a
subspace, so it is a vector space.

Notice that, in essence, the null space describes the set of vectors that mul-
tiplying by A sends to zero. If A is the zero matrix, it is clear every vector is



in the null space. If A is not the zero matrix, there is some vector (and there-
fore an entire line) that is not sent to zero. This will become an important
concept later on.

4.3 Span

Definition 4.3.1. The span of a set of vectors is the set of all linear com-
binations of those vectors.

Span is a concept we have already been using, we are just assigning it a
name.

Example:

The span of the vector ~v =

[
1
2

]
is the all points on the line

y = 2x.

There is a useful theorem linking vector spaces and span:

If you have real-valued vectors, ~a,~b, ..., the span of those vectors is a vector
space.

It is clear that a collection n-vectors is a subset of an n-dimensional vector
space. By taking the span of them, we are taking all linear combinations.
Therefore the span of a set is vectors is closed under linear combination.
Since the span of a set of vectors is a closed subset of a vector space, the
span of a set of vectors is a vector space.

Minimal Spanning Sets

We know a set of vectors will span a flat vector space, however, we have
noticed that the dimension of this vector space is not always equal to the

number of vectors that we have. For example,

[
1
2

]
and

[
3
6

]
span a line,

but

[
1
2

]
and

[
1
0

]
span a plane. If we use 6 dimensional vectors, it is

possible to span either a 1, 2, 3, 4, 5, or 6 dimensional vector space.



Our task now is to find a way to eliminate redundant vectors from the span
to get a minimal set. (Our goal is to eventually find a coordinate system for
each vector space that gives us a unique way to represent vectors.)

Consider the span of the vectors
1
0
1
1

 ,


2
0
2
2

 ,


0
−2
3
0

 ,


3
−2
5
3

 ,


2
2
−1
2


We will try to eliminate redundant vectors to find the minimal set that spans.

Let’s write the vectors in a matrix:
1 2 0 3 2
0 0 −2 −2 2
1 2 3 5 −1
1 2 0 3 2


Now, let’s put it in row-echelon form.

1 2 0 3 2
0 0 −2 −2 2
1 2 3 5 −1
1 2 0 3 2

→


1 2 0 0 2
0 0 1 0 −1
0 0 0 1 0
0 0 0 0 0


We have pivots in the first, third, and fourth row. This means that the
first, third, and fourth vectors will span our entire vector space. So we know,

span




1
0
1
1

 ,


0
−2
3
0

 ,


3
−2
5
3


 = span




1
0
1
1

 ,


2
0
2
2

 ,


0
−2
3
0

 ,


3
−2
5
3

 ,


2
2
−1
2


.

It is clear by inspection that we can write column 2 in terms of column 1.

i.e.


2
0
2
2

 = 2


1
0
1
1

 and we can write column 5 in terms of column 1 and

column 3:


2
2
−1
2

 = 2


1
0
1
1

 −


0
−2
3
0

. Since columns 2 and 5 can be



written as linear combinations of columns 1, 3, and 4, it is clear that they
are redundant, and therefore the do not add anything to the span.

4.4 Basis and Dimension

Basis is just another word for minimal spanning set, but we will use it slightly
differently.

Definition 4.4.1. If the set of vectors B is a basis for the vector space V ,
it means that B is a minimal spanning set that spans V .

Because a basis spans our vector space, we know that any vector in our space
can be written as a linear combination of basis vectors.

Example:

Consider the set of vectors

~e1 =

 1
0
0

 , ~e2 =

 0
1
0

 , ~e3 =

 0
0
1


Now let’s pick a random vector, ~w =

 3
4
5

. What combination

of ~e1, ~e2, ~e3 gives us ~w? The answer is clearly 3~v1 + 4~v2 + 5~v3.

Or we can consicely write it as

 3
4
5

 where the first row is the

coefficient of v1 the second row is the coefficient of v2, etc. In
this basis, ~w looks just like itself! And for good reason. It just
so happens that this basis is called the standard basis.

Let’s examine a little more geometrically what it means to describe a vector

in terms of basis vectors. Again, consider the standard basis ~e1 =

[
1
0

]
, ~e2 =[

0
1

]
. To be the vector ~v =

[
3
4

]
means to go 3 in the e1 direction and 4

in the e2, just like this picture indicates.



So, the representation of ~v in the standard basis is

[
3
4

]
.

Now consider a rotated and streached standard basis

B =

[
1
1

]
,

[
−1
1

]
.

In order to get to ~v we have to go 3.5 times

[
1
1

]
and then .5 times

[
−1
1

]
.



The representation of ~v in the B basis is
[

~v
]
B

=

[
3.5
.5

]
.

Notice that the two representations we got for ~v are both equally good but
involve different numbers because they are written in terms of different bases.
We use a subscript letter to indicate what basis we are using so we don’t get
confused. If we are using the standard basis, we can leave off the letter.

Let’s now consider an even stranger basis:

C =

[
3
2

]
,

[
0
1

]

This basis is different from our other bases because its vectors are not per-
pendicular to each other. But, let this not discourage us, we can still figure
out how to get to the vector ~v all the same.



It is clear from the picture that we must go 1 times

[
3
2

]
and 2 times

[
0
1

]
.

That means that ~v represented in terms of the C basis is[
~v

]
C

=

[
1
2

]
.

4.5 Change of Basis

Now that we know what a basis is, it would be nice to use our Linear Algebra
methods to figure out how to algebraically compute a change of basis.

In our previous example with C =

[
3
2

]
,

[
0
1

]
, we saw that

[
~v

]
C

=

[
1
2

]
.

Since the basis vectors in C are written in the standard basis, if we compute

C
[

~v
]
C

=

[
3 0
2 1

] [
1
2

]
=

[
3
4

]
=

[
~v

]
S

,



where S is the standard basis.

What we did was quite simple. We just wrote the basis vectors of C in a
matrix, and left multiplication by that matrix takes vectors from the C basis

to the standard basis. We’ll call this matrix

[
3 0
2 1

]
a transition matrix

Definition 4.5.1. A transition matrix is a matrix that takes vectors in writ-
ten in one basis and converts them to another basis.

Since the transition matrix

[
3 0
2 1

]
takes vectors written in the C basis and

spits them out in the standard basis (S), let’s write this matrix as
[

S ← C
]
.

We now know that if we have a vector written in the C basis, we can use the
equation [

S ← C
] [

~v
]
C

=
[

~v
]
S

.

What if we wanted to convert things from the standard basis to the C basis?
By solving this matrix equation, we see that[

S ← C
]−1 [

~v
]
S

=
[

~v
]
C

.

So, in fact,
[

S ← C
]−1

might be written as
[

C ← S
]
, the matrix that

takes things in the standard basis and converts them to the C basis.

We now have a simple equation for finding a change-of-basis matrix, so we
can algebraically compute any change of basis we could ever dream of!





Chapter 5

Linear Operators

5.1 Linear Transformations

So far we have only been viewing the world of matrices as a way to solve
systems of linear equations. Now, we are going to approach things from a
slightly different angle: linear tranformations.

Definition 5.1.1. A linear tranformation is a function T : Rn → Rm taking
n-vectors to m-vectors that satisfies the following properies:

1. T (a~v) = aT (~v) for scalar a.

2. T (~v + ~w) = T (~v) + T (~w).

This definition seem fairly abstract until you learn that left multiplication
by a matrix is a linear transformation that we have been working with the
entire time.

If A is a matrix and ~v is a vector, by the properties of matrix multiplication,
we know A(c~v) = cA~v. And, if ~w is also a vector, A(~v + ~w) = A(~v) + A(~w).

Let’s bring our concepts of linear tranformations and basis vectors together.
First off, we know that if we have a basis B = ~v1, ~v2, ..., ~vn, we can write any
vector ~x as [

~x
]
B

= c1~v1 + c2~v2 + · · ·+ cn~vn.
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Now imagine that we have some operator T that operates on our vectors.
We can do a few computations:

T (~x) = T (c1~v1 + c2~v2 + · · ·+ cn~vn) =

c1T (~v1) + c2T (~v2) + · · ·+ cnT (~vn)

What does this tell us? It means that we can know everything about a linear
transformation just by knowing what it does on a basis. If we know where it
takes a basis, we can simply find our ci via the change of basis formula and
now we know where the transformation took our vector.

The fact that we can describe a linear transoformation completely just by
describing what happens on a basis brings us to a very improtant theorem.

Any linear transformation, T , can be represented as left multiplication by
some matrix A.

5.2 Range and Kernel

The range and kernel of a linear transformation are directly related to two
problems we’ve already been solving: The set of ~x that make A~x = ~b consis-
tant and the solution to A~x = 0.

Definition 5.2.1. The range of a linear transformation T is the set of all ~b
such that T (~x) = ~b has a solution.

Another word for the range of T is the image of T . Range in plain terms
is everywhere that a transformation may send you. The range of a linear
transformation is analagous to the solution space to a matrix equation.

Example:

The range of the zero transformation is the zero vector. This
should be fairly straight forward. If our transformation takes
everything to zero, the only place we can get is zero, therefore
zero is our range.

Kernel, in a way, is the complement of range:



Definition 5.2.2. The kernel of a linear operator T , denoted kern(T ) is the
set of all vectors ~x such that

T (~x) = 0.

The kernel of a linear transformation is every vector that is sent to zero. The
kernel is the same thing to a linear transformation as the null space is to a
matrix.

It is clear that range and kernel are complements of each other. If our
transformation is the zero transformation then our range is the zero vector
and our kernel is the whole space. If our transformation is invertible then
our range is the whole space and the kernel consists of only the zero vector.

5.3 Linear Operators

So far, we have been talking about linear transformations from an n-dimensional
space to an m-dimensional space, but the really interesting things happen
when we are allowed to be recursive, which means a linear transformation
that operates on the same space it outputs. We call these linear transfroma-
tions linear operators.

Definition 5.3.1. A linear operator is a linear transformation T : Rn → Rn

that takes n-dimensional vectors to n-dimensional vectors.

If T is a linear operator, then it operates on the same space it outputs to.
That means it makes sense to talk about T (T (x)) = T 2(x). We use exponents
to indicated how many times we have applied the transformation T .

All linear transformations can be represented by left multiplication by a
matrix and linear operators are not exception. But, in the case of linear
operators, we get a special bonus: our matrices are square. This means
we can apply all the knowledge we have about square matrices to linear
operators!



5.4 Changing Basis

We know that if we know what a linear operator does on a basis, we know
everything about it. This might make us wonder about how to figure out
what a transformation is in a different basis.

It’s clear that if we have a linear transformation in terms of the C basis and we
have vectors in terms of the B basis, we need to find the transition matrices[

C ← B
]

and
[

B ← C
]
. If we had those, we could simply compute our

linear transformation as[
B ← C

] [
T

]
C

[
C ← B

]
.

From our work with changing basis, we know that
[

C ← B
]

=
[

B ← C
]−1

.
If we let Q be our change of basis matrix, we then know[

T
]
B

= Q−1TQ.

The relationship between T and Q−1TQ is a very special one. In fact, it is
an equivelance relation called similarity.

Definition 5.4.1. Two matrices A and B are said to be similar if there
exists an invertible matrix Q such that

A = Q−1BQ.

Two matrices being similar means that the both represent the same trans-
formation but with respect to different bases. This is why it is important to
keep that pesky distinction between a matrix and a linear transformation:
because many matrices may be representing the same transformation.



Chapter 6

Eigenvalues and Diagonalization

6.1 Eigenvalues and Eigenvectors

Let’s consider the linear transformation that is left multiplication by the

matrix A =

[
3 2
2 3

]
.

To get a better idea of what this transformation is doing, let’s look at what
it does to all the vector of length 1. Before the transformation, these vectors
point in a circle.
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After the transformation, the vectors are pointing in an ellipse.

Most of the vectors changed direction and changed length, but pay special



attention to the vector

[
1
1

]
and

[
−1
1

]
. If we overlay the pictures, we

see that these vectors didn’t change direction, they just changed length. In
fact, vectors pointing in these two directions are the only vectors that won’t
change direction when our linear transformation is applied.

These special vectors that change length but not direction are called eigen-
vectors.

Definition 6.1.1. An eigenvector of a transformation T , is a vector that
doesn’t change direction when T is applied. That is, if ~v 6= 0 is a vector, then

T (~v) = λ~v

where there scalar λ is called the eigenvalue corresponding to the vector v.

We don’t include the zero vector as an eigenvector because any linear trans-
formation of the zero vector will be the zero vector.

So, eigenvectors are vectors whose direction is invariant under a linear tran-
formation and eigenvalues is the amount that each eigenvector is scaled.



6.2 Finding Eigenvectors

Eigenvectors will soon prove to be extremely useful, so let’s figure out how
they can be computed.

Most of math is finding a way to relate new problems to problems that have
already been solved. So, let’s play around a bit with the definition of an
eigenvector: ~x is an eigenvector of T if T~x = λ~x. Subtracting λ~x from both
sides, we see

T~x− λ~x = 0.

If we could somehow factor out the ~x, this would look just like our homoge-
nious matrix equation that we have been solving for so long. Unfortunately it
doesn’t make sense to subtract a scalar from a matrix. However, the identity
will come to our rescue:

T~x− λ~x = T~x− λI~x = (T − λI)~x

which gives us our very important final equation:

(T − λI)~x = 0.

If we were given a λ, we could simply find the kernel of (T − λI) and that
would be the corresponding eigenvector(s).

Note: we know from finding the null space and kernel of operators the di-
mension of the null space or kernel maybe be 0, 1, 2, etc., so the dimension
of kern(T − λI) may be greater than one in which case there are multiple
eigenvectors corresponding to that λ (consider the identity transformation—
every vector is an eigenvector corresponding to the eigenvalue of 1) or under
special circumstances the dimension may be zero in which case there are no
eigenvectors.

Characteristic Polynomial

It’s easy to find eigenvectors if we already know the eigenvalue, but what if
we don’t know the eigenvalue?

Don’t worry, we still have hope. Remember our equation (T − λI)~x = 0?
We know that this only has non-trivial solutions when (T − λI) is singular.
But, if (T − λI) is singular, then det(T − λI) = 0, and the determinant is
something we can actually calculate.



Definition 6.2.1. The characteristic polynomial, p(x), of a linear operator
T is

p(x) = det(T − xI).

Let’s look at an example to see the proccess of solving.

Example:

Consider the linear transformation represented by left multipli-

cation by the matrix A =

[
1 2
0 3

]
.

We want to find all λ such that (T − λI)~x = 0 has non-trivial
solutions. That means that det(T − λI) = 0.

Let’s compute:

det(T − λI) = det

([
1 2
0 3

]
−

[
λ 0
0 λ

])

= det

[
1− λ 2

0 3− λ

]
= (1− λ)(3− λ)

Now that we know the characteristc polynomial is (1−λ)(3−λ),
we want to know when (1 − λ)(3 − λ) = 0, which occur exactly
when λ = 3 and λ = 1.

The eigenvalues of a transformation are simply the roots of the characteristic
polynomial. Once we have the eigenvalues, finding the eigenvectors is easy,
so now we can tackle finding the eigenvectors for any linear transformation!

6.3 Non-real Eigenvectors

So far, all of our examples have turned out to have real eigenvalues and
vectors, but this is not always the case (particularly in physics).

Consider the characteristic polynomial of the matrix

[
0 −1
1 0

]
, p(x) = x2 +

1. If we were to set this equal to zero, we would see that x must be ±i where



i = (−1)1/2 for the equation to have solutions. This means our eigenvalues
are λ = ±i.

What are our corresponding eigenvectors? If we solve for our null space the
same way we have been, only using complex numbers instead of real ones,

we see that our eigenvectors are

[
i
1

]
and

[
−i
1

]
. And, sure enough if we

plug these vectors into our transformation, we see that they scale by ±i.

To get a better idea of what it really means to have a complex eigenvector,
let’s figure out what this transformation is actually doing. If we look at a
circle of vectors beforehand

and afterwards



we see that our transformation rotates all vectors counterclockwise by π/2.

From the picture it is clear that all real-valued vectors change direction. It is
also clear that if we had a rotation by any amount (other than 0, π, 2π, ...)
we won’t have any real eigenvectors. It would seem that complex eigenvectors
and rotations are closely related, and in fact they are. Describing rotations
was part of the reason complex numbers were invented in the first place.

6.4 Diagonalization

We all love diagonal matrices—they are so easy to work with. It would cer-
tainly be nice if there were some way to turn ordinary matrices into diagonal
ones. Let’s ponder and see what we can come up with.

First off, what would it mean to have a basis of eigenvectors? If we have
eigenvectors ~v1 and ~v2 of an operator T and our eigenvectors form a basis for
our vectorspace, then we can write any vector ~w in our vector space as

~w = a1~v1 + a2~v2.



Call our basis of eigenvectors E. Now, let us apply our transformation to ~w.

T (~w) = T (a1~v1 + a2~v2) = a1T (~v1) + a2T (~v2),

but ~v1 and ~v2 are eigenvectors so

a1T (~v1) + a2T (~v2) = a1λ1~v1 + a2λ2~v2.

What an amazing occurance! If we consider our vector
[

~w
]
E

=

[
a1

a2

]
in

the eigen basis, then [
T (~w)

]
E

=

[
λ1a1

λ2a2

]

which is the same as left multiplication by the diagonal matrix

[
λ1 0
0 λ2

]
.

In a way, we have found an ideal basis for a transformation. If we can write
our linear transformation in terms of a basis of eigenvectors, then we get a
diagonal matrix, which is ideal as far as arithmetic is concerned.


