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[This paper is part of the Focused Collection on Upper Division Physics Courses.] The formalism of
quantum mechanics includes a rich collection of representations for describing quantum systems, including
functions, graphs, matrices, histograms of probabilities, and Dirac notation. The varied features of these
representations affect how computations are performed. For example, identifying probabilities of meas-
urement outcomes for a state described in Dirac notation may involve identifying expansion coefficients by
inspection, but if the state is described as a function, identifying those expansion coefficients often involves
performing integrals. In this study, we focus on three notational systems: Dirac notation, algebraic wave-
function notation, andmatrix notation. These quantum notations must include information about basis states
and their associated complex probability amplitudes. In this theory paper, we identify four structural features
of quantum notations, which we term individuation, degree of externalization, compactness, and symbolic
support for computational rules. We illustrate how student reasoning interacts with these structural features
with episodes from interviews with advanced undergraduate physics majors reasoning about a superposition
state of an infinite square well system. We find evidence of the students coordinating different notations
through the use of Dirac notation, using an expression in Dirac notation to guide their work in another
notation. These uses are supported by the high degree of individuation, compactness, and symbolic support
for computation and the moderate degree of externalization provided by Dirac notation.
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I. INTRODUCTION

External representations of physical phenomena are
an important part of doing, communicating, and learning
physics [1]. Expert physicists fluently use diagrams,
graphs, and equations to communicate information about
physical situations and as computational tools for solving
problems. Nevertheless, students often have difficulty
creating and using these disciplinary representations [2–7].
Quantum mechanics is particularly rich with represen-

tations. Multiple notational systems are commonly used
for representing quantum systems, including, algebraic
wave functions, matrices, and Dirac notation. Research
on students’ understandings and competencies in quantum
mechanics has largely focused on students’ conceptual
understandings and performance in making calculations
[8–13]. Some work has specifically investigated how
students interpret graphs of wave functions [13–15].
Recently, as a “spins first” instructional approach has
been gaining popularity, research tasks presented in Dirac
notation have become more common. However, these

studies have also generally aimed at identifying students’
conceptual understandings or identifying common student
difficulties with making calculations [16,17].
A theoretical framework for understanding student

performance with quantum mechanical representations
would be useful. Ultimately, such a theory would bridge
these studies and more general frameworks for student
learning such as misconceptions, p-prims, and novice-
expert frameworks [18–21]. A first step is understanding
the representations themselves and their affordances for
supporting computation. To this end, we have investigated
several representations in quantum mechanics in terms
of their features, how they support computation, and the
possible implications for student learning. This paper
specifically examines notational systems for quantum
mechanical states with a goal of characterizing the repre-
sentations. The resulting theoretical analysis is illustrated
with student use of quantum mechanics notations as
documented in an exploratory study of students’ fluency
with different notations for representing quantum states and
how the features of these notational systems influence
student reasoning.

A. Theoretical perspectives

We share Kirsh’s [22] view that the generation and use
of external representations is an interactive process:
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“By ‘interactive’ I mean a back and forth process: a person
alters the outside world, the changed world alters the
person, and the dynamic continues” (see Ref. [22],
p. 171). We use ideas from distributed cognition to think
about the role of external representations in these inter-
actions. From this perspective, external representations
can be thought of as artifacts having both material
(physical) and ideal (conceptual) aspects [23]. Hutchins
[24,25] describes how material features can support
computation; for example, a slide rule uses logarithmic
scales printed on sliding pieces to transform multiplica-
tion into addition performed by physically combining
lengths. In previous work [26], we focused on how the
material features of the vector arrows representation of
electric fields supports computation through the physical
and geometric properties of the representation as com-
pared to an algebraic representation of electric field. When
we add vector arrows “tip to tail,” the representation does
some of the calculation for us. In this paper, we examine
the structural features of three algebraic notational sys-
tems. All three notations share similar material features:
they all employ alphanumeric symbols and are manipu-
lated using algebraic rules. For these notational systems,
the conceptual features of the notations play a more
central role in our analysis.
For external representations that are primarily sym-

bolic, Hutchins suggests that the material features are less
important, compared to examples like the slide rule where
computation is built into the physical object. Hutchins
claims that “for symbols that have arbitrary relations to the
things they denote, the material structure provides only
the perceptual identity of the physical form as distinct
from other physical forms” [25] and defines individuation
as “the notion that some material element is different
from or distinguishable from other elements” [25].
According to Hutchins, the level of computation encoded
into material properties is lower for language than a slide
rule. (Hutchins, however, was considering spoken and
written language, not mathematical symbols.) In this view,
when vectors are added algebraically (componentwise),
the representation “merely” holds and displays the
symbols. Kirsh extends this view by noting several
ways that external representations can aid cognition, such
as by acting as sharable objects of thought, being
rearrangeable, having physical persistence, and allowing
reformulation [22].
In our view, these functions of external representations

arise from their spatial and temporal properties. Temporal
persistence allows external representations to store infor-
mation (i.e., “remember”) and to be shared across individ-
uals. The construction of external representations is
sequential, facilitating the process of orienting the external
representation to other representations (like mental repre-
sentations or text and (or) verbal descriptions). The spatial
extent of a representation allows for the representation to

be rearranged or for elements to be coordinated by the
physical positioning. A thorough exploration of these
issues is beyond the scope of this paper, but we suggest
that Kirsh’s features can be understood as arising from
spatial and temporal properties.
In this paper, we examine structural features of nota-

tional systems for quantum mechanics and discuss how
these features may be linked to the ways students generate
and use external representations of quantum states. The
structural features are both material and conceptual in
nature. They include the shapes and spatial distribution
of symbols (material features) and also the physical
meanings of the symbols (conceptual). We focus on
three notational systems—Dirac notation, algebraic wave-
function notation (or simply, wave-function notation), and
matrix notation—and their use in representing a quantum
state and computing an expectation value. We illustrate
our analysis with episodes from problem-solving inter-
views with advanced undergraduate students.
Our exploratory inquiry has been guided by two

questions:
(1) How can we characterize different representations

of quantum systems based on their material and
conceptual features?

(2) How do the features of these representations support
or hinder students’ computation?

To begin addressing these questions, we conducted
interviews with advanced undergraduate physics majors.
The interview tasks were designed to have students use
multiple notations to represent a superposition state and
perform computations on that state. While reviewing video
of the interviews, we attended to differences in student
performance with the different notations and instances
where students coordinated multiple notations. In an
attempt to explain our observations of student performance,
we identified some structural features that differ across the
notational systems.
We begin this paper by describing the interview task

given to students. Next, we introduce some of the student
reasoning that we aim to explain with a framework of
structural features. We then describe a scheme for charac-
terizing the structural aspects of different notational
systems in quantum mechanics and apply this scheme to
Dirac, wave-function, and matrix notations. We illustrate
the consequences of these differences with examples from
student interviews.

II. INTERVIEWS

We conducted problem-solving interviews with n ¼ 8
advanced undergraduate physics majors at Oregon State
University [27,28]. The interviews were semistructured in
nature and students were asked to think aloud as they were
performing the interview tasks [29]. This paper focuses on
how students represented a superposition state and how
they computed the expectation value of energy. Student
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spent about 30 min discussing the quantum mechanics
tasks. The interviews were videotaped and segments of
interest were transcribed for analysis.
Students at Oregon State University take three three-

week-long “paradigm” courses on quantum mechanics in
the winter quarter of the junior year and a ten-week-long
“capstone” quantum mechanics course in the winter quarter
of the senior year. The interview subjects included six
juniors and two seniors. The interviews took place 4 weeks
after the end of the winter quarter. All of the examples of
student reasoning included in this paper are taken from
interviews with juniors.
The three quantum paradigms courses include Spin and

Quantum Measurement, Waves in One Dimension, and
Central Forces. A modern physics course is a prerequisite
for these courses. Spin and Quantum Measurement intro-
duces the postulates of quantum mechanics by examining
2 and 3 state systems through computer simulations of
Stern-Gerlach experiments. The Waves in One Dimension
and Central Forces courses include both classical and
quantum mechanics topics. The quantum content of
Waves in One Dimension includes discussion of solving
the Schrödinger equation in one dimension, particularly the
infinite and finite square well. The quantum content of
the Central Forces course focuses on solutions of the 3D
Schrodinger equation for the hydrogen atom. The primary
quantum textbooks for the quantum paradigms and
capstone courses are Quantum Mechanics: A Paradigms
Approach by McIntyre, Manogue and Tate and
Introduction to Quantum Mechanics by Griffiths [30].

A. Interview tasks

Students were first asked, “So I want you to imagine
that you have a particle in an infinite square well.
And the well has width L and one of the edges of the well
is at x ¼ 0. Imagine that you know that probability of
measuring the energy of the particle to be the ground
state energy is one quarter, and the probability of
measuring the first excited state energy is three quarters.
How would you represent the state of the particle?”
After the students exhausted their own suggestions for
representations, the interviewer suggested additional rep-
resentations, including a graph of a wave function, an
algebraic expression of the wave unction, Dirac notation,
and matrix notation to ensure that all of the representations
of interest to us were discussed. One student also suggested
using a histogram of energies to represent the quan-
tum state.
The students were then asked to calculate the expectation

value of the energy for this state. The students were allowed
to initially proceed with whatever representation they
wanted, but then the interviewer asked the students to
perform the calculation using the various representations
discussed earlier in the interview.

B. Analysis

Videos of the interviews were viewed and discussed by
both of the authors in order to increase the reliability of our
interpretations of the interviews. Although our goal in this
study is not to measure trends in student reasoning but to
identify an explanation of student performance with differ-
ent quantum notations, we also wanted to be sure that we
attended to particular aspects of student performance that
might be representative of larger populations, rather than
instances of highly idiosyncratic behaviors. To this end,
we initially identified commonalities among the students
in the types and ordering of representations suggested by
the student and the interviewer, as well as the students’
performance with and attitudes about each notational
system. Our experiences in teaching quantum mechanics
also aided us in identifying student reasoning and behavior
that may be common to students at this level. We then
identified specific episodes where the features of the
notation appeared to influence the students’ work as well
as instances where students seemed to coordinate multiple
notations. Narratives of these episodes were created and
discussed until both authors reached an agreement on
how to interpret the role of the external representation in
students’ reasoning.
In parallel, we analyzed the notations themselves

from the perspective of distributed cognition. Starting with
a comparison of how the notations represent states in
quantum mechanics, we identified a set of features to
characterize the different notations. We then reexamined
the interviews to determine if these features of the notations
were consistent with students’ work.
We share Kirsh’s view that the generation and use of

external representations is an interaction. In our analysis,
we sought to explore how the interactions between students
and their external representations may be different for
various notational systems, depending on the nature and
features of the notation. The examples of student work
presented in this paper were selected as particularly
illustrative examples of how the notational system may
influence student reasoning about quantum systems or for
being representative of general trends of student reasoning
seen in the interviews.

C. Limitations

Because of the small number of interviews conducted
and the unique nature of the Oregon State University
Paradigms in Physics program, we urge caution in general-
izing the patterns of behavior and reasoning reported here
to larger populations. Paradigms in Physics emphasizes the
use and coordination of different notations and strongly
encourages students to share explanations of their thinking
(through small group and whole class discussions). Thus,
we expected these students to be comfortable articulating
their thinking in an interview setting and to be familiar
with several different representations of quantum systems,

STRUCTURAL FEATURES OF ALGEBRAIC … PHYS. REV. ST PHYS. EDUC. RES 11, 020109 (2015)

020109-3



including wave-function graphs, algebraic wave functions,
Dirac notation, and matrix notation. Additionally, the
paradigms program takes a spins first approach in teaching
quantum mechanics. These students’ understandings and
use of representations (particularly Dirac and algebraic
wave-function notations) may be different from those of
students who experience a more traditional “wave-
functions-first” approach. Our intent here is not to make
claims about patterns of student reasoning that may be
generalized to a broader population, but is instead to
illustrate how the characteristics of the notational systems
interact with student reasoning while representing a super-
position state and an expectation value computation.

III. OVERVIEW OF INTERVIEW RESULTS

We begin with some general observations about stu-
dents’ responses to the interview prompt. The student
behaviors we identified served to guide our investigation
of the structural aspects of the different notational systems.
During the interviews, students were asked to use as

many different representations as they could, and prompted
to use ones they did not employ on their own. We observed
many instances of students moving between different
representations, sometimes spontaneously, sometimes at
the interviewer’s prompting. Students’ spontaneous co-
ordination of different representations frequently had a
sense-making function. We saw several students using an
expression in one notation as a template to create the
corresponding expression in another notation. In most of
these cases, a linear combination of kets in Dirac notation
served as a template for a superposition state. (Section IV
describes why Dirac notation lends itself to this template
function.) Figure 1 shows how Carlton used Dirac notation
as a template for an expression in matrix notation. Carlton
was prompted to represent the state in matrix notation.
Starting on a clean whiteboard, he first wrote the state in
Dirac notation (which he had determined earlier in the
interview), then wrote a parallel expression below with
column vectors in place of kets (see Fig. 1). Carlton was not
sure what to put in the columns, and first put generic
constants. Then, when considering the Dirac expression,
he mentioned the orthornomality of the basis states and
suggested that the columns should be 1000… and 0100….
As another example of using Dirac notation as a template,
Seth was asked to show how he could calculate the
probability of finding the state in the first excited state
in matrix notation. He started by writing a square bracket,
presumably the beginning of a row vector. Then he erased
it, saying, “I guess we’ll write in bra-ket to compare it first,”
and wrote an expression in Dirac notation. Without paus-
ing, he went on to write the calculation in matrix notation.
When asked to compute the expectation value, he pro-
ceeded in the same way. Figure 3 shows the relevant part of
his whiteboard.

Most students had difficulty remembering the specific
formula for the energy eigenstates of the infinite square
well in wave-function notation. All students used the
position basis when working with wave functions (as
opposed to momentum), but none of them discussed this
choice explicitly. There was some evidence that students
believe the kets are wave functions, or at least are
equivalent to wave functions. For example, Diego set a
ket equal to a wave function, as illustrated in Fig. 2.
Initially, he wrote a superposition state in Dirac notation in
the upper left of his whiteboard. He then wrote a general
form for the energy eigenstate in wave-function notation in
the lower right. Then, just below this, he wrote expressions
for the ground state and first excited state wave functions,
setting them equal to the kets jGSi and j1Exi, respectively.
Finally, going back to the upper left of the board, he wrote
the linear combination in wave-function notation.
Most students needed prompting to use matrix notation,

and many were uncomfortable with this notation. We
observed students being uncertain about what basis to
work in (energy or position), as well as the form and syntax
for matrix operations. We observed students mixing up
column and row vectors and having difficulty putting
vectors and operators in the correct order for calculations
of expectation value. The students interviewed generally
expressed a preference for Dirac notation and a preference
not to use matrix notation if they could help it.

FIG. 1. Prompted to represent the state in matrix notation,
Carlton begins by writing an expression in Dirac notation,
then writing a parallel expression with column vectors in place
of kets.
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To summarize, we observed several interesting aspects of
student reasoning in the interviews as follows:

• using Dirac notation as a template for writing down a
superposition state in adifferent notationor for settingup
an expectation value calculation in a different notation,

• errors in the order of the integrand for an expectation
value calculation in wave-function notation,

• errors in the order of matrices for an expectation value
calculation in matrix notation,

• generally making fewer errors and more progress with
Dirac notation.

We sought to explain these observations during our
exploration of the structural aspects of the different nota-
tional systems. The framework we developed is described
in the following section.

IV. STRUCTURAL ASPECTS OF
QUANTUM REPRESENTATIONS

Two physical aspects are encoded in external represen-
tations of quantum states: the states that result from
measurements (basis elements of a Hilbert space) and their
associated probabilities (complex probability amplitudes).
The various notational systems encode these aspects differ-
ently, and we analyze this in terms of the notational
system’s structural features. Through this analysis, we
identify four important characteristics that we refer to as
individuation, externalization, compactness, and symbolic
support for computation. These are manifest in varying
ways and degrees in Dirac, wave-function, and matrix
notations. Table I summarizes these findings. This section
describes this analysis and discusses some of the ways
these characteristics support or inhibit student reasoning.

A. Individuation

Individuation is the degree to which important features
are represented as separate and elemental (i.e., as an
indivisible item) [31]. In Dirac notation, quantum basis
states are written as kets that have a high degree of
individuation. For example, when kets are added in a
superposition, common terms may be factored out of the
coefficients, but the individual kets remain in the sum.
Quantum states written in matrix form are also individu-
ated, with each entry in the quantum state column matrix
corresponding to one of the quantum state basis vectors.
Although quantities can be factored out or multiplied
through, according to the rules of matrix algebra, one

FIG. 2. Diego writes expressions with kets equal to wave
functions in (a) the upper left of his whiteboard and (b) the
lower right of his whiteboard. The first line in (a) was written
first. Then the equations in (b) were written (in order from top to
bottom). Finally, he wrote the second line in (a).

FIG. 3. Seth first uses Dirac notation as a template for an expression in matrix notation.
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cannot merge the entries in a column vector. In contrast,
quantum states represented in algebraic wave-function
notation are less individuated. A linear combination of
eigenstates may be compressed into an equivalent expres-
sion where the original basis states are not visible on
inspection. For example, sine functions representing basis
states can be combined through trigonometric identities.
Individuation affects the extent to which probability

amplitudes and quantum states are distinct, and provides
insight into the interviewees’ work with these concepts.
When writing down quantum states, nearly all the interview
subjects included the expansion coefficients and basis
elements of the Hilbert space in a way we refer to above
as a linear combination template. These students identified
each expansion coefficient with a single-letter symbol,
e.g., aj1i þ bj2i versus aeiαj1i þ beiβj2i. Students dis-
cussed using this template to “read off” probabilities of
measurement outcomes, particularly in Dirac notation, an
ability facilitated by the high degree of individuation in
that notation. Using a letter symbol for the expansion
coefficient for each term aids students in identifying the
expansion coefficient as a separate entity from the basis
elements (i.e., the two physical aspects are distinguished).
In wave-function notation, however, expansion coefficients
may be algebraically combined with normalization con-
stants, thereby obscuring their distinct meanings.
While Dirac notation supports distinguishing expansion

coefficients from basis elements, using a single letter
to represent the expansion coefficient does not support
students in attending to the nature of these expansion
coefficients (or probability amplitudes in the context of
quantum mechanics) as complex numbers with real and

imaginary parts. In quantum mechanics, the overall com-
plex phase of the quantum state has no physical meaning,
but the relative phase between terms in the expansion is
important for distinguishing different quantum states. In the
interviews, only one student acknowledged the complex
nature of the probability amplitudes by explicitly assuming
that the probability amplitudes were real. It is worth noting
that the students did not need to explicate the relative phase
during the interview—the problems posed in the interview
did not require the complex phase to be determined.
However, the relative phase is generally an important
property of superposition states.
The students were prompted to identify the quantum

state based on probabilities of two energy measurements.
Students who might have attended to the complex nature of
the probability amplitudes could have left the imaginary
phases of each term as unknowns, or followed convention
by factoring out an overall phase, leaving the relative phase
on the second term as an unknown. No student did this.
Instead, many of the students identified the probability
amplitudes by inspection, describing the probability ampli-
tudes as the “square root of the probabilities.” Some
students were able to explain how to compute the prob-
ability amplitudes by setting the probabilities equal to
the norm squared of the projection of the eigenstate on
the superposition state. However, these students seemed to
ignore the complex nature of the norm squared for the
purpose of identifying the probability amplitude. While
we do not suggest that the use of a single symbol for
the coefficient caused this omission, it does not require
students to grapple with the complex nature as other
representations might (for instance, phasors).

TABLE I. Summary of the characteristics of individuation, externalization, compactness, and symbolic support for computation as
they are manifest in notational systems for quantum mechanics.

Notation Individuation Externalization Compactness Symbolic support

Dirac High. Kets provide an
elemental
representation of
basis states

Moderately low. Label
for quantum state is
ambiguous

High for individual kets (only a
few simple symbols). Low
for superposition states with
many components; kets
cannot be combined

High. The asymmetry of the
bra-ket notation makes an
inner or outer product easily
distinguishable

Wave function Low. Coefficients,
normalization
constants, and basis
states may be
combined
algebraically

High. Aspects such as
functional form,
periodicity, etc., are
explicit

Low for individual eigenstates,
but may be high for infinite
superpositions. Basis states
require many symbols, but
superposition states may be
expressed compactly, e.g.,
via Fourier synthesis

Low. The symbols themselves
provide little clue on how to
perform operations

Matrix High. Individual
entries in a vector
correspond to a
basis state

Low. Nothing indicates
the basis elements
beyond the implicit
designation of a space
for an entry in the
vector

High for low dimension spaces
such as spin-1=2 systems, but
low for infinite-dimensional
Hilbert spaces

Moderately low. Differently
shaped row and column
vectors facilitate
remembering to include one
of each in inner and outer
products, but provide no clue
as to the ordering
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B. Degree of externalization

We use externalization to describe the degree to which
elements and features are externalized with markings
included in the representation. Wave-function notation
externalizes many of the details of the quantum system.
Both the basis states and the probability amplitudes, as well
as the detailed mathematical behavior of the basis states
(such as sinusoidal behavior and the wave number of the
eigenfunctions for the infinite square well), are explicitly
denoted. The externalization of these details allows wave-
function notation to be useful for computations involving
regions of space, such as calculating the probability of
finding a particle to be in the right half of an infinite
well. Matrix and Dirac notations do not support those
computations.
The externalization in Dirac notation is somewhat

limited. Kets do not make the mathematical details of
the quantum system explicit; a particular quantum state has
only a brief ket label. In the interviews, students frequently
used labels 1 and 2 for the ground state and first excited
state of the infinite square well. These brief labels do not
reveal details about the behavior of the quantum state. For
example, the ground state of the infinite square well and
the ground state of the quantum harmonic oscillator might
both be represented by j1i. The differences between the
quantum states for these two different situations are much
more readily detected when the states are represented as
wave functions.
Matrices require spatially distributed entries for each

basis element but do not require any marking to express the
basis elements—each is implicitly represented by a space
designated for an entry in the column (or row) vector. This
lack of explicit denotation of the basis can lead to confusion
in identifying the basis when students are interpreting a
matrix quantum state or when trying to write down a
quantum state as a matrix. Perhaps in an effort to manage
this ambiguity in the basis, we observed students trans-
lating a superposition state from Dirac notation to a matrix
with an energy basis by writing a separate column vector
for each ket and adding them together into a single column,
rather than treating each entry in the resultant column as
corresponding to a ket. We also saw some students struggle
to decide if the basis of the matrix was the energy
eigenstates or the position basis.
A couple of students tried to write down the eigenstate

wave functions of the infinite square well before doing any
computation in that notation. One student wrote down the
eigenstate wave functions immediately after the interviewer
mentioned the infinite square well as the problem situation.
By externalizing the details of a quantum state, working
memory is freed for other tasks. However, a representation
with less externalization may be useful in cases when the
student does not remember the details of a particular
quantum state. For example, we saw students abandon
working with wave functions in favor of Dirac notation

when they did not recall that the eigenstates of the infinite
square well are sine functions or when they did not
remember the wave number for each eigenstate.

C. Compactness

We use compactness as a measure of how much space
and writing is needed. More markings generally lead to a
less compact representation, and some quantum notations
require more extensive markings than other notations.
In thinking about the compactness of a notation, it is
helpful to consider the cases of representing basis elements
and superposition states separately.
Individual kets are compact. They require only a few

markings to represent basis elements: a vertical line, an
angle bracket delimiter, and a label. In general, wave-
function basis elements (e.g., the normalized sinusoidal
functions for the infinite square well) are less compact than
kets, requiring strings of alphanumeric symbols. In matrix
notation, the basis states themselves require no markings,
but are merely indicated by the existence of an element in a
matrix.
However, for superposition states, a ket is required for

each basis element with a nonzero expansion coefficient,
which can be inconveniently large for infinite-dimensional
Hilbert spaces. Wave functions may be algebraically
simplified to represent a superposition of an infinite
number of basis elements with just a few alphanumeric
symbols. Matrices occupy little space for finite-
dimensional Hilbert spaces (e.g., spin-1=2 systems), but
may be inconveniently large for infinite-dimensional
Hilbert spaces (although they may be truncated). In the
case of matrix notation, even though the basis states are
not indicated with any marking (but merely by the
existence of an element), the spatial extent of the matrix
reduces the compactness of a quantum state vector.
The compactness of a representation influences how

easily it can be manipulated for computation. First, more
compact notations take less time to write down, making
them preferable for computations that require many manip-
ulations and rewriting of the state. Many students expressed
a resistance to using matrix notation because it required a
lot of writing. Second, compactness facilitates chunking
pieces together into conceptual units. For example, one
may think about writing down a ket jψi rather than thinking
about writing a vertical line, a ψ , and a right angle bracket.
Compact notations with a few pieces (kets) are easier to
chunk than notations requiring many pieces, as wave
function and matrix often do. In the interviews, many
students had difficulty remembering the specific form for
the infinite square well energy eigenstates in wave-function
notation. As discussed in Sec. III, Seth used Dirac notation
as a template for creating expressions in matrix notation
(see Fig. 3). One explanation of this behavior is that it is
easy for Seth to create the correct expression in the more
compact Dirac notation; once the form of the expression is
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captured, he can concentrate on writing down the details of
the less compact matrix expression.

D. Symbolic support for computation

The symbols used in each notational system support
computation differently by virtue of their properties, such
as physical shape. These properties are different from
conventional or conceptual rules for operations, but can
support those rules to varying degrees. As an example,
matrix manipulations are governed by a set of rules that rely
on the spatial arrangement of matrices. A row can be
multiplied by a column with the same number of elements.
When a row is multiplied by a column, the result is a scalar.
When a column is multiplied by a row, the result is a square
matrix (i.e., an operator). However, matrix notation only
weakly includes visual cues for the differences in these
sequences. The different shapes of row and column vectors
make it easy to recall that one of each should be included,
but provide no clue as to the ordering. Instead, one must
simply remember that a column multiplying a row gives a
matrix and vice versa. In contrast, the asymmetry of Dirac
notation kets, with a straight vertical line on one side and an
angle bracket on the other, signals to students the correct
ordering of elements to produce either a scalar or an
operator. This strong visual cue reduces the reliance on
remembering a rule and allows students to quickly and
reliably use Dirac notation. Wave-function notation, in

contrast to Dirac and matrix notations, offers little symbolic
support for the ordering of elements, except that differential
operators should be followed by a function.
In the interviews, students rarely made errors with the

order of elements in Dirac notation; such errors were
occasional in wave-function notation and common in
matrix notation. Because symbolic support plays a role
in computation, it is best illustrated by looking at an
episode of a student performing a computation rather than
snapshots of the students’ work. For this reason, we next
present an extended narrative of an episode containing two
examples of the symbolic structures of Dirac notation
providing computational support.
When the student (Nelson) is asked to calculate the

expectation value of the energy, he immediately wrote
down the Dirac bracket hψ jĤjψi [Fig. 4(a), upper left].
Then he described the expectation value as a weighted
average. When writing the equation for performing the
weighted average, he said he wanted the probabilities
times the eigenvalues of the Hamiltonian, but described
those eigenvalues as the “sine terms” and used his symbol
“rho” for the eigenfunctions in his equation [Fig. 4(a),
lower left].
The interviewer then asked the student to discuss how

the calculation would proceed in Dirac notation. Nelson
wrote down a Dirac bracket for the computation using
the superposition states written as a sum of kets, but he

FIG. 4. (a) Calculation of energy expectation value in Dirac notation, but the student has written the Hamiltonian as a matrix and is
attempting to perform matrix multiplication. In this picture, the student is multiplying to the H11 and ψ11 elements. (b) The student is
continuing the “matrix multiplication” by multiplying the H12 and ψ12 elements.
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was unsure of how to represent the Hamiltonian for doing
this computation. He attempted to (incorrectly) write the
Hamiltonian as a diagonal matrix. He stated that the
elements along the diagonal should be the energy eigen-
values, but when writing the matrix, he put the eigenstate
kets along the diagonal [Fig. 4(a)]. “Well, it’s a, H is a
diagonal matrix with its eigenvalues down the diagonal.
And apply this (Hamiltonian operator) on to (the
superposition state).” He then performed a “matrix multi-
plication” between the Hamiltonian matrix and the super-
position state, treating each term in the superposition as
an element in a row matrix and pointing to the elements
to be multiplied together as shown in Figs. 4(a) and 4(b).
“So, matrix multiplication, this (H11 element) times this
(ψ11 element) plus this (H12 element) times this (ψ12)
element. You just get … Well, if we express those kets, we
can’t really have a ket times a ket.”
Nelson’s discussion of this calculation in Dirac notation

contains many errors, including inappropriately trying to
multiply a row matrix by a square matrix on the left, but
we argue that it was the symbolic features of the kets
that alerted the student to a potential problem with his
calculation. The asymmetric structure of the kets strongly
supported Nelson in identifying an error in his calculation
(noticing a “ket times a ket” versus a “bra times a ket”).
Neither the symmetric parentheses of the “matrices” nor
the spatial coordination patterns of matrix multiplication
alerted this student to an error.
Next the interviewer asked the student to compute the

expectation value using wave-function language. The
student confessed that he did not remember how to
calculate expectation value using that notation. The inter-
viewer then told him that there are integrals involved,
which was familiar to the student. The student integrated ψ

times ψ� and recognized that as a probability. He then
multiplied that by the Hamiltonian [Figs. 5(b) and 5(c)].
“The integral of ψψ� is a probability. So I think we also
need it, our expression for H in here somewhere as a
function. Integrating with respect to l?”
He then went back to change the integrand to ρ times ρ�

(his symbols for the energy eigenstates) rather than the
superposition state ψ , but hesitated. “But then this is
going back to the summation but that’s not what we’re
going for.”
The student changed the integrand again to include

the superposition states, and changed the ordering of the
elements so that the Hamiltonian was the middle
[Fig. 5(d)]. The interviewer then asked what inspired the
student to write the last expression, and the student
discussed an overview of his entire reasoning process.
“Oh, well [initially] I was thinking of it with just the

single components, but then I realized that was only going
to give us one part of it because I was thinking about it in
terms of this summation with the probability of the first one
times that eigenvalue. Then I remembered how we defined
probability density with ψψ�, and then I just kinda
remembered just writing this [the correct integrand] down
at some point before where, when you just had them all in
the functions, you didn’t really care about the bra ket stuff
because you were just multiplying them together. And so I
figured you could just multiply them together and then
you’d want to integrate along x from zero to L.”
According to the student’s explanation, the student was

at first using the weighted average idea to guide him, but
then eventually changed to thinking about the Dirac
bracket. We interpret his statement of “you didn’t really
care about the bra ket stuff” as referring to turning the
elements of the Dirac bracket into functions without the

FIG. 5. (a) Beginning of discussion when student describes calculating the expectation value as a weighted average. (b) Full board
when the student makes an initial attempt at writing the integral for calculating the energy expectation value (boxed in red). (c) Detail of
initial expectation value integral with incorrect ordering of terms in integrand. (d) Detail of the student’s second attempt at writing down
the integral, after attending to the Dirac bracket for the expectation value.
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symbolic structure of the Dirac notation (the vertical line
and the angle bracket) and then multiplying the functions
together. Using the bracket as a template led the student
to put the integrand elements in the correct order, whereas
the weighted average template led to his initial incorrect
ordering of integrand elements.

V. DISCUSSION

The structural features of the notations can provide an
account of the observations noted in Sec. III. The lower
error rate and greater progress with Dirac notation, and its
value as a template, may be understood by examining
the cognitive role of the four structural aspects of these
representations (individuation, degree of externalization,
compactness, and symbolic support). The high degree of
individuation facilitates the identification and manipulation
of the two important quantum features (probability ampli-
tudes and basis states). The limited level of externalization
of Dirac notation allows the student to perform some
calculations without needing to remember the specific
details of the quantum state. The high level of compactness
of the representation allows for rapid algebraic manipula-
tion of mathematical entities and easier chunking of
entities. The high level of symbolic support for computa-
tion provides external signals to students about what kinds
of manipulations are sensible to do.
Conversely, low levels of symbolic support for compu-

tation are consistent with errors in the order of elements.
When writing the integrand for an expectation value
calculation in wave-function notation, and when writing
matrices for an expectation value calculation in matrix
notation, students must rely on memory and experience to
correctly order the elements; the notation provides little
help in this regard.
This work has several implications for instruction.

Although some instructors may argue that Dirac notation
is sufficiently abstract as to be inappropriate for under-
graduate instruction, these interviews provide evidence of
Dirac notation productively supporting undergraduate stu-
dent reasoning about a quantum system. We did see some
evidence that these students believed kets to be equivalent
to wave functions (states written as functions in a position
basis). However, we argue that this subtle conceptual
misunderstanding is eclipsed by the computational benefits
of Dirac notation, and propose that perhaps equating the
ket with the position-basis wave-function eigenstate is a
productive intermediate state of conceptual understanding.
The structural aspects of notational systems is a theo-

retical framework for understanding student performance
with external representations, and need not be discussed
explicitly with students as part of instruction. However,
instructors should discuss with their students the degree
of externalization of a notation system, particularly what
information is not externalized (e.g., how states vary in
space for kets, the basis of a matrix, etc.) in order to

facilitate student proficiency with and across notational
systems.
This research also suggests that some student difficulties

with quantummechanics may in fact be difficulties with the
notational system rather than more fundamental conceptual
difficulties (like not understanding the conceptual meaning
of expectation value). For example, student Nelson clearly
understood the concept of expectation value as weighted
average, but had difficulty formulating the computation in
either Dirac or wave-function notation. Instructors and
researchers should be sensitive to this possibility when
attempting to diagnose student difficulties. Another impli-
cation is that proficiency in one notation does not extend to
proficiency others. Students need practice in multiple
notational systems for maximal proficiency.

VI. CONCLUSION

We have examined three notational systems in quantum
mechanics: Dirac notation, algebraic wave-function nota-
tion, and matrix notation. An analysis of how the notations
represent basis states and their associated complex prob-
ability amplitudes resulted in the identification of four
features: individuation, degree of externalization, compact-
ness, and symbolic support for computational rules.
Problem-solving interviews with advanced undergraduate
physics students provided insight into their understanding
and coordination of these different representations of
quantum systems.
The four features can help explain students’ work with

the notations. Students readily used Dirac notation, and
used a linear combination of kets as a template for a
superposition state. We observed students translating
between notational systems, using an expression in one
notation to guide the development of the analogous
expression in another notation. This was typically a
productive strategy, but may have been too literal in cases
where students failed to appreciate subtleties in the nota-
tions, such as equating kets with wave functions in
the position basis. The characteristics of individuation,
externalization, compactness, and symbolic support for
computation vary across Dirac, wave-function, and matrix
notations. Dirac notation is highly individuated, can be
highly compact, and the symbols support computation,
but externalization is limited. Wave-function notation
has a high degree of externalization, low individuation
and symbolic support, and often limited compactness.
Finally, matrix notation has high individuation and
can be compact, but has low externalization and limited
symbolic support. This work has several implications for
instruction, including support for the value and appropri-
ateness of Dirac notation for undergraduates, the impor-
tance of having students explicitly explore the varying
degrees of externalization in different notation systems, and
the need for practice using and coordinating multiple
notational systems.
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