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On a Different Perspective and Approach to Implement Adaptive Normalized BP-
based Decoding for LDPC Codes 

 

Panupat Poocharoen and Mario E. Magaña 

 
Abstract— In this paper, we propose an improved version of the min-sum algorithm for low density parity 

check (LDPC) code decoding, which we call “adaptive normalized BP-based” algorithm. Our decoder 

provides a compromise solution between the belief propagation and the min-sum algorithms by adding an 

exponent offset to each variable node’s intrinsic information in the check node update equation. The extrinsic 

information from the min-sum decoder is then adjusted by applying a negative power of two scale factor, 

which can be easily implemented by right shifting the min-sum extrinsic information. The difference between 

our approach and other adaptive normalized min-sum decoders is that we select the normalization scale factor 

using a clear analytical approach based on underlying principles. Simulation results show that the proposed 

decoder outperforms the min-sum decoder and performs very close to the BP decoder, but with lower 

complexity. 

 

Index Terms—LDPC codes, iterative decoding, belief propagation, sum product, min-sum, modified min-sum  

I. INTRODUCTION 

LDPC codes have become very popular and are currently used in many wireless applications standards such as the 

second generation digital video broadcasting - satellite (DVB-S2) and IEEE 802.16e-2005. In decoding LDPC codes, 

the belief propagation (BP) algorithm performs very close to the Shannon limit [1], at the expense of high 

computational complexity due to the check node update equation. This complexity can be reduced using the min-sum 

algorithm to approximate the BP algorithm by [2]  
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where )(
,,

i
ljeL is the log-likelihood ratio (LLR) of check node j  at variable node l . The superscript i represents the i th 

iteration and the subscript e  denotes the extrinsic information. )( jB  is the set of variable nodes connected to the j th 
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check node. The min-sum algorithm can be viewed as an approximation of BP at high SNR, i.e. 1)1(
', >>−i

ljL . From (1), 

the magnitude of )(
,,

i
ljeL computed by the BP algorithm, however, is always less than that of the min-sum algorithm and 

equality holds only when all variable nodes in ljB \)( , but the minimum value, have their LLR magnitude very 

large, ideally ∞. On the other hand, when the LLRs of the variable nodes are small or the check weight ( )B jρ =  
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L , causing differences in calculations 

between the min-sum and BP algorithms [3], [9] and hence performance loss. 

To mitigate this problem, several approaches which introduce a correction term to the min-sum algorithm have 

been proposed. In [3] and [4], normalized BP-based and offset BP-based algorithms are proposed. The former 

introduces a constant correction factor α  to scale the LLR of each check node’s extrinsic information, i.e. 
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whereas the latter uses a constant offset β  to correct the LLR, i.e. 
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Although these algorithms perform relatively well, the normalized BP-based algorithm does not work well when 

the LDPC code is long [5]. Also, most of the offset BP-based algorithm studies only consider low-weight LDPC 

codes such as 1/2 code rate (3,6) LDPC codes, and do not guarantee good performance when applied to larger check 

weights. As noted in [3] and [6], some algorithms may not perform well when the check weights become large. To 

address this, the density evolution technique [1], [5] is applied to pre-design optimal scale factor and offset values. 

However, these values are code-rate specific. Several designed values and their performances for different code rates 

are found in [7]. 

While the density evolution technique provides a very good pre-design single constant, it requires analysis for each 

code rate and the calculation of the estimated probability density function of the check node’s LLR [7] involves fast 

Fourier transforms. 

Variants of the offset BP-based algorithm are proposed in [4], [8], [9], where attempts are made to endow decoders 

with flexibility by adaptively changing the offset value to achieve good decoding without using density evolution. 
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These decoders mostly use either piecewise constant or linear approximations [22] to represent the offset, which is a 

non-linear function of the intrinsic information, and are based on Jacobian logarithm [13]. Since (3) performs pair-

wise comparisons of the LLR of the variable nodes in ( ) \B j l , it can be simplified to 

( )'
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'
1 llL ⊕ { } β+⋅= 2121 ,min)()( LLLsignLsign , (4) 

where 1L and 2L are the LLRs of the variable node pair ' '
1 2, ( ) \l l B j l∈ , respectively, and β  is given by 
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Most modified BP-based algorithms focus on the offset BP-based algorithm and propose different approaches to 

approximate the offset value [4], [8], [22], in order to lower the overconfidence of the LLR in the min-sum algorithm. 

One of the reasons may be that the normalized BP-based algorithm involves a scale factor and a multiplication 

operation. Nevertheless, the normalized BP-based algorithm can still be very attractive. In fact, by properly selecting 

α  one can show that it can even outperform the offset BP-based algorithm [7]. 

In general, BP algorithm approximations may be implemented using a look up table (LUT) to compute the non-

linear functions. However, the goal of a modified BP–based decoder is to avoid, as much as possible, using time 

consuming complex operations such as non-linear functions, multiplications, and searching LUTs, especially if 

implemented outside the decoder processor [10]. 

Finally, very few researchers have considered adaptive versions of the normalized BP-based algorithm. To the best 

of our knowledge, only the work of [21] was published during the same time period we were conducting our 

research. 

Motivated by these observations, we propose a decoder which is a modified version of the normalized algorithm. 

We call it “adaptive normalized BP-based algorithm”. It adaptively changes the scale factor depending on the LLR 

values of the variable nodes, which is different than the approach proposed in [21], where the scale factor changes 

adaptively depending on the syndrome result. The novelty of our approach lies on how the intrinsic information is 

approximated and used to estimate the scale factor. Moreover, the algorithm’s scale factor is provided in the form of 

a negative power of 2, which can be implemented easily using a shifter instead of a multiplication/division as in [7]. 

We show herein that our decoder attains a performance close to that of the BP decoder, especially with large check 
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weights while maintaining a complexity comparable to that of the min-sum decoder. The only additional hardware 

components for its implementation are summations and barrel-shifters to handle the extrinsic information. 

Before proceeding with our algorithm, it is worth mentioning analog LDPC decoders and stochastic decoders. 

Analog decoders have recently been applied to iterative decoders such as those used in turbo and LDPC codes [11]-

[15]. This is due to their infinite precision and seamless iterations which provide fast convergence when large 

numbers of iterations and low power consumption are required [11]. They require careful design in order to prevent 

mismatches due to component variations and noise [11]. Nevertheless, as mentioned in [12], when comparing analog 

and digital decoders, the debate is not over fundamentals, but how to exploit the advantages of each. Thus, digital 

decoders are still very attractive and innovative methods can be used to avoid high complexity, large numbers of 

iterations and still achieve excellent performance. Digital implementation of stochastic computations used in artificial 

neural network have been introduced for decoding LDPC codes [23] known as stochastic decoders. The approach 

approximates the sum-product algorithm and allows low complexity implementations of parallel LDPC decoders 

using low-cost FPGAs.  

 
The paper is organized as follows: In section II, details of our adaptive normalized BP-based algorithm are 

provided. Section III presents and discusses the simulation results. Complexity analysis and conclusions are provided 

in sections IV and V, respectively. 

II. ADAPTIVE NORMALIZED BP-BASED ALGORITHM 

We now derive our adaptive normalized BP-based (ANBP) algorithm which allows α  to change adaptively and 

makes the modified BP-based decoder applicable to a wide range of codes with different check weights without pre-

designing α . 

A. Algorithm derivation 

The ANBP algorithm is based on the following observations on (1): 
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3) The hyperbolic tangent can be linearly approximated over a large range of LLR values. 
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Furthermore, we can rewrite (6) as 
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We can see that the extrinsic information computed in (9) is clearly less than that of the min-sum algorithm, i.e.,
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The extrinsic information obtained from this approach not only depends on the value of { })1(
',\)('

 min −

∈

i
ljljBl

L
 
but also on the 

LLR values of other variable nodes. Therefore, it  provides a relatively good alternative approximation of (1) and 

reduces the overconfidence in the min-sum algorithm. However, the approach is less accurate when { })1(
',\)('

 min −

∈

i
ljljBl

L  

becomes large and the check (row) weight is small, due to the nonlinearity of the hyperbolic tangent function.  

We further reduce the complexity of (9) by approximating )2/tanh( )1(
',
−i
ljL  with negative powers of two. Because 

( 1)
, 'tanh( / 2) [0,1]i

j lL − ∈ , we subdivide this interval into 2P-1 subintervals whose centers are 1221 ,...,, −Pccc , 

respectively, where 
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The values Pccc ,...,, 21  are intentionally designed to be negative powers of two, while the 1221 ,...,, −++ PPP ccc  values 

are selected as the mirror images of Pccc ,...,, 21  around 0.5. Thus, only P values of Pccc ,...,, 21  actually need to be 

determined. The selection of 1221 ,...,, −++ PPP ccc  is not intended to be optimized but rather to reduce storage 

requirements. The upper and lower limits of each interval are denoted as u
pc  and l

pc , respectively, and are given by  
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The lowest and highest limits are 0 and u
Pc 12 − , respectively. Each intrinsic information )1(
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Let 1221 ,...,, −Pfff  be the number of the LLR values that lie in each interval, then (9) is approximated by 
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Eq. (16) is obtained by comparing each variable node pair-wise and taking the maximum LLR among the two, in 

order to compare it with the 2P-1 thresholds and generate offset D by adding the dp’s. Doing so precludes using 

multiplications between each variable node’s LLR in (2). Moreover, since the scale factor is a negative power of 2, it 

can be easily implemented by right shifting all bits at once (see Fig. 1). 

B. Procedure outline 

Check node update step: 

Initialization: Set 0=D . 

Step 1: Conduct a minimum search similar to the min-sum decoder. Perform pair-wise comparisons on the variable 

nodes’ LLR. The minimum value between the two is kept and the larger value )1(
',
−i
ljL  is then compared with 

the designed threshold 
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Once found, the interval p is such that ( 1)
1 , '

i
p j l pT L T−
− ≤ ≤ . The corresponding offset pd  is given by (15). 

Otherwise, if ( 1)
2 1 , '

i
P j lT L −
− < , then 0pd = . 

Step 2: pD D d= + .  

Step 3: Repeat steps 1 and 2 for all variable nodes ' ( ) \l B j l∈ . 

Step 4: Right-shift the minimum value ( 1)
, '

i
j lL −  from step 1 by D to obtain the check node LLR as (16). 

Variable node update step: For variable node l  with the set of check nodes )(lA  connected, The LLR can be 

computed by 
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Assuming BPSK modulation and transmission over an AWGN channel, the received signal is given by y = x+ w , 

with x the signal component and w the zero-mean Gaussian random noise with variance 0 / 2N , and 
0

)0(
,',

4
N
yL l

lje = . The 

soft decision value is given by ∑
∈

+=
)('

)(
,',

)0(
,'

lAj

i
ljeljl LLr . The decoder repeats the steps until either the syndrome is 

satisfied or the maximum number of iterations is reached. 

 

 

Fig. 1. Proposed decoder block diagram. 

C.  Comments on the decoder and dp 

Our decoder is similar to the one in [7] (see Fig. 1). The additional components in the proposed algorithm are the 

set of 2P-1 thresholds and the 2P-1 exponent offset values. Table I shows the values for pT and pd  when P = 1, 2, 3 

and 4. Notice that only 7 values for pT  and 7 values for pd  is needed to be known for P = 4, which is fairly small 

and very manageable when stored as constants within the decoder. It will be shown in the following section that the 

decoder that uses 4P =  performs very well. 
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TABLE I. VALUES FOR pT AND pd  FOR P =1, 2, 3 AND 4 

 

D. ANBP v.s. AN-MS  

The adaptive normalized min-sum (AN-MS) algorithm which was recently published in [21] differs from ours in 

that it requires two normalization factors η  and µ , 0 , 1η µ≤ ≤ , in the check node update equation, i.e. 
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µ  is the regular scale factor applied every time the check node is updated and η  is multiplied when the syndrome of 

the parity check is not equal to zero. This approach has the drawback that η  and µ  cannot be selected analytically, 

but through simulation. Moreover, the selection method through simulation for a given code rate is unclear, whereas 

our proposed ANBP design is based on analytic principles. 

IV. NUMERICAL RESULTS 

A. Bit error rate performance 

The proposed ANBP algorithm is tested via Monte-Carlo simulation using BPSK modulation over an AWGN 

channel. Two (n, k) Euclidean geometry LDPC codes [14] with different codeword length n and message sequence 

length k are used to evaluate the BER for different P values. These LDPC codes are: (1023,781) type-I EG-LDPC 

and (4095,3367) type-I EG-LDPC codes. They are regular structured LDPC codes with code rates 0.76 and 0.82. 

They have 32 and 64 row and column weights, respectively. We also evaluate performance over a low check weight 
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1/2 rate (3,6) LDPC code with n = 4000, k = 2000. Our algorithm is compared with BP, min-sum, Normalized (DE), 

Offset (DE), offset BP using criteria from [4] (Offset), i.e. 

else
LLLL
LLLL
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1,1

,
,
,

0
5.0

5.0

2121

2121

≤−>+
>−≤+
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
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For normalized (DE) and Offset (DE), we adopt the pre-designed parameters from [5] with scale factor α =1.25 and 

offset value β = -0.15. Note that all decoders are set to have a maximum number of iterations equal to 50. The 

simulations of the AN-MS algorithm are not included due to the unclear selection procedure of the scale factors. 

Let us consider the performance of the ANBP decoder with different P values. Fig. 2, where a (1023, 781) type-I EG-

LDPC code is used, shows that with P = 4, the decoder outperforms the BP decoder. It is possible that other types of 

decoders could perform better than the BP algorithm. The BP algorithm performs as well as the optimal decoder, i.e. 

the maximum likelihood decoder, only when decoding cycle-free LDPC codes. That is, the graph representing the 

parity check of the code must be acyclic [23].  The BP decoder’s performance is suboptimal when decoding codes 

with short length cycles.  LDPC codes with short length cycle cause high correlation between successive iterations 

and reduce the decoding performance [14]. The authors in [7, Fig.2] and [8, Fig. 4(a)] have also observed that their 

proposed decoders slightly outperform the BP decode for some LDPC codes and high signal to noise ratio. 

 When the check weights of the LDPC code become high, as in the (4095, 3367) type-I EG-LDPC code, ANBP 

performs very close to the BP decoder (see Fig. 3). This is because the approximation in (6) becomes more accurate 

and closer to the check node update result from BP when the number of check weights increases. 

ANBP decoder BER performance over LDPC codes with long length and small number of check weights is shown 

in Fig. 4 using a (3,6) LDPC code. Though the ANBP decoder loses some accuracy and causes a higher BER in the 

low SNR region, as the SNR increases, it performs better. It is observed that ANBP needs 0.1dB or less to achieve 

the same performance as the BP decoder at BER 10-6 or less. When comparing the performance of the ANBP decoder 

with other decoders, we can see that the normalized (DE) decoder performs the best. It even slightly outperforms the 

BP decoder with maximum iteration of 50. The ANBP decoder performs slightly worse than the normalized (DE), 

but outperforms every other decoder at high SNR. 
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Fig. 2. BER performance of min-sum, offset, ANBP and BP with (1023,781) type-I EG-LDPC code ( 32ρ = ). 

 

Fig. 3. BER performance of min-sum, offset, ANBP and BP with (4095, 3367) type-I EG-LDPC code ( 64ρ = ). 

 

Fig. 4. BER performance of ANBP and various decoders with (3,6) LDPC code (n = 4000, k = 2000). 
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Notice that the offset BP-based decoder based on (21) performs very well for (3, 6) LDPC codes. Its BER 

performance is similar to that of ANBP at high SNR and even better at low SNR. Unfortunately, its performance 

degrades when applied to EG-LDPC codes with larger check weight as shown in Figs. 2 and 3. 

We can see that the piece-wise approximation method in (21) becomes less accurate when the number of check 

weights is high. This is due to the large number of comparisons, which in turn cause more errors to accumulate and 

error propagation to occur because of the LLR comparisons at each variable node pair. Moreover, the criteria given 

in (21) may not fit well when the minimum value is less than 1. To explain this, let us substitute 12 LL −=δ  into (5). 

Then the offset becomes 
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e
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If we assume that 1 2L L< , then 2 1 0L Lδ = − > . The offset β  in (22) depends on both the magnitude of the 

minimum value, 1L , and the difference between the LLRs magnitudes of both variable nodes, δ . We plot the 

relationship between β and δ  for a range of values of 1L  in Fig. 5. Clearly, when 1 1L ≥  the offset values of β  are 

pretty much the same curve. However, when 1 1L < , the variations of β  may be significant. This can be verified by 

computing the ratio between the required offset magnitude β  and 1L  as a function of δ . 

 

 

Fig. 5. Offset β  plot for different values of δ and 1L . 
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Thus, to approximate β  for LDPC codes with a large number of check weights, a more precise method is required. 

Equivalently, β can be expressed by )1log()1log( 2121 LLLL ee −−+− +−+=β . The )1log( xe ⋅−+ function is then 

approximated using a small look up table with a few more entries with the requirement of more addition operations 

and accessing the LUT twice to obtain the value of β (see more details on BP algorithm using Jacobian logarithm in 

the following complexity analysis). More discussion of the approach can be found in [22]. 

Our ANBP decoder does not use the Jacobian logarithm, which uses the difference between the minimum of the 

LLR pair, but rather compares the LLRs of individual variable nodes against the thresholds pT . This makes our 

decoder more attractive especially when the row weight is large. 

When P is large enough to better approximate the LLR value, the algorithm has very similar number of iterations 

as that of the BP decoder. This can be observed in Figs. 6 and 7, especially for high check weights LDPC codes. 

However, when the decoder is applied to a (3, 6) LDPC code the number of iterations increases significantly at low 

SNR (see Fig. 8). This is expected since the decoder does not perform well at very low SNR. Nevertheless, due to its 

steeper waterfall region, the number of required iterations gap reduces dramatically to within 0.5 dB as the SNR 

increases from 1.4 dB to 1.9 dB. 

 

 

Fig. 6. Average number of iterations for various decoders to decode a (1023, 781) type-I EG-LDPC 
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Fig. 7. Average number of iterations for various decoders to decode a (4495, 3367) type-I EG-LDPC 

 

Fig. 8. Average number of iterations for various decoders to decode a (3, 6) LDPC code with  n = 4000, k = 2000. 

B. Mean square error of the approximation method used in ANBP 

 In the normalized BP-based algorithm, D may be considered as the exact value of the exponent of the normalized 

factor in each iteration in order to normalize )(
,,

i
ljeL in the min-sum algorithm to have the exact same result as in the 

BP-algorithm. Let us consider the BP algorithm in (1) and the normalized BP-based algorithm in (2). By equating 

both (1) and (2), we get 
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  In this section the approximation method used in (16) and (17) of ANBP algorithm is verified. The accuracy of 

using the ceil function in (17) to approximate D (denoted as ceilD )  is compared with the floor and round functions 

which are defined by  

floorD





















++++++=

−

−−

−
  

  

 terms2 total
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)..........(

ρ

Pf
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dddd               (24) 

and 

roundD


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
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+++++++=

−

−−

−

5.0)..........(

 terms2 total

121211

121
  

  

ρ

Pf

PP

f

dddd ,           (25) 

repectively. The extrinsic information in (16) is then computed using (17), (23) and (24) and compare their mean-

square error  (MSE) with the actual extrinsic information from the BP-algorithm's check node update equation. The 

results are shown in Table II. The actual value of D is computed and compared with roundfloorceil DDD ,, . Since 

D depends on the intrinsic information )1(
',
−i
ljL , it depends on the received signal-to-noise ratio ob NE / , code rate, 

check weight cd  and the current decoding iteration. Hence, in our verification, we realize 1/2 code rate LDPC codes 

with cd = 6, 10, 16 and 32, each 1000 codewords in BIAWGN channel. The MSE of the extrinsic information is 

obtained from the first iteration of the check node update equation only.  

 The value of D  in the ANBP algorithm is typically adopted when there exist a difference in the extrinsic 

information compared with the BP-algorithm (i.e., D > 0) and require the normalization factor. According to Table II, 

D is highly preferred especially when ob NE / is low and the amount of check weights of the LDPC code become 

large. For instance, the expected value E[D] is 21.377 for cd = 32 and ob NE / = 0 dB while E[D] is 0.407 for cd = 6 

and ob NE / = 4 dB.  As mentioned earlier, the approximation of D with ,, floorceil DD  and roundD becomes more 

accurate as the amount of check weight becomes higher. It is also confirmed that the difference between ceilDD − on 

average is mostly negative as we designed. That is, the approximation of D using ceiling function is most likely to be 

slightly larger than the actual D value. This is quite desirable since any approximation error that may occur in 
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approximating D will slightly decrease the likelihood confidence, i.e., the extrinsic information. However,  

floorDD − and roundDD −  are, on average, mostly positive.  This can be observed by the results of 

][
)(

)(
,,)(

)(
,, ANBP

i
ljeBP

i
lje LLE −  which are mostly positive for the ceiling function. While the approximation using the floor 

and round functions tend to increase the value of extrinsic information as ][
)(

)(
,,)(

)(
,, ANBP

i
ljeBP

i
lje LLE − are mostly 

negative values. Finally, the MSE ( ) 
 −

2

)(
)(

,,)(
)(

,, ANBP
i

ljeBP
i

lje LLE  of using ceil function tends to provide the least 

approximation error in the check sum update equation. When ob NE / becomes high, the difference between the 

approximated LLR and the actual results from BP-algorithm become less and then literally tend to increase again. 

This is quite expected due to the non-linearity of tanh() function and the larger rounding error corresponding to the  

interval range of ],( u
p

l
p cc   when the value of )1(

',
−i
ljL is high.   
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TABLE II. MSE OF COMPUTED EXTRINSIC INFORMATION BETWEEN BP-ALGORITHM  AND ITS APPROXIMATED VALUE 

USING CEIL(), FLOOR() AND ROUND() TO COMPUTED D  

0 2 4 0 2 4 0 2 4 0 2 4
E[D] D P 1.940 1.012 0.407 4.407 2.396 1.057 8.947 4.883 2.132 21.377 12.263 5.507

ceil() 1.408 0.632 0.193 3.145 1.671 0.615 6.018 3.361 1.370 13.456 8.064 3.651
floor() 1.408 0.632 0.193 3.145 1.671 0.615 6.018 3.361 1.370 13.456 8.064 3.651

round() 1.408 0.632 0.193 3.145 1.671 0.615 6.018 3.361 1.370 13.456 8.064 3.651
ceil() 2.117 1.081 0.394 4.507 2.489 1.086 8.581 4.868 2.150 19.015 11.349 5.288

floor() 1.344 0.518 0.131 3.560 1.637 0.528 7.589 3.899 1.341 18.015 10.349 4.316
round() 1.629 0.682 0.171 3.983 1.995 0.691 8.023 4.339 1.671 18.516 10.779 4.729

ceil() 2.356 1.348 0.568 4.816 2.738 1.353 9.307 5.200 2.412 21.237 12.435 5.691
floor() 1.431 0.561 0.142 3.824 1.775 0.575 8.307 4.202 1.467 20.237 11.435 4.691

round() 1.826 0.818 0.209 4.326 2.247 0.840 8.786 4.707 1.935 20.697 11.908 5.218
ceil() 2.403 1.467 0.747 4.902 2.810 1.485 9.515 5.314 2.488 21.950 12.744 5.859

floor() 1.433 0.561 0.140 3.904 1.816 0.579 8.515 4.314 1.501 20.950 11.744 4.859
round() 1.891 0.864 0.228 4.428 2.310 0.893 9.020 4.815 1.993 21.469 12.265 5.391

ceil() 2.418 1.526 0.903 4.929 2.832 1.546 9.553 5.349 2.529 22.151 12.868 5.922
floor() 1.432 0.559 0.139 3.929 1.833 0.581 8.553 4.349 1.531 21.151 11.868 4.922

round() 1.888 0.865 0.224 4.447 2.339 0.902 9.064 4.856 2.036 21.665 12.380 5.470

1 5.32E-01 3.80E-01 2.13E-01 1.26E+00 7.25E-01 4.42E-01 2.93E+00 1.52E+00 7.62E-01 7.92E+00 4.20E+00 1.86E+00
2 -1.77E-01 -6.89E-02 1.31E-02 -9.95E-02 -9.36E-02 -2.85E-02 3.65E-01 1.49E-02 -1.85E-02 2.36E+00 9.14E-01 2.19E-01
3 -4.16E-01 -3.36E-01 -1.62E-01 -4.08E-01 -3.42E-01 -2.96E-01 -3.60E-01 -3.18E-01 -2.81E-01 1.39E-01 -1.72E-01 -1.84E-01
4 -4.63E-01 -4.55E-01 -3.40E-01 -4.95E-01 -4.14E-01 -4.28E-01 -5.68E-01 -4.32E-01 -3.57E-01 -5.73E-01 -4.81E-01 -3.52E-01
5 -4.78E-01 -5.14E-01 -4.96E-01 -5.21E-01 -4.37E-01 -4.89E-01 -6.06E-01 -4.66E-01 -3.98E-01 -7.75E-01 -6.05E-01 -4.15E-01
1 5.32E-01 3.80E-01 2.13E-01 1.26E+00 7.25E-01 4.42E-01 2.93E+00 1.52E+00 7.62E-01 7.92E+00 4.20E+00 1.86E+00
2 5.96E-01 4.94E-01 2.76E-01 8.48E-01 7.59E-01 5.29E-01 1.36E+00 9.84E-01 7.91E-01 3.36E+00 1.91E+00 1.19E+00
3 5.09E-01 4.51E-01 2.65E-01 5.84E-01 6.21E-01 4.82E-01 6.39E-01 6.80E-01 6.64E-01 1.14E+00 8.28E-01 8.16E-01
4 5.07E-01 4.51E-01 2.67E-01 5.03E-01 5.80E-01 4.79E-01 4.32E-01 5.68E-01 6.30E-01 4.27E-01 5.19E-01 6.48E-01
5 5.08E-01 4.53E-01 2.67E-01 4.78E-01 5.63E-01 4.76E-01 3.94E-01 5.34E-01 6.01E-01 2.25E-01 3.95E-01 5.85E-01
1 5.32E-01 3.80E-01 2.13E-01 1.26E+00 7.25E-01 4.42E-01 2.93E+00 1.52E+00 7.62E-01 7.92E+00 4.20E+00 1.86E+00
2 3.11E-01 3.30E-01 2.35E-01 4.24E-01 4.01E-01 3.66E-01 9.24E-01 5.43E-01 4.61E-01 2.86E+00 1.48E+00 7.78E-01
3 1.14E-01 1.93E-01 1.98E-01 8.09E-02 1.49E-01 2.17E-01 1.61E-01 1.76E-01 1.97E-01 6.80E-01 3.55E-01 2.89E-01
4 4.89E-02 1.48E-01 1.79E-01 -2.11E-02 8.62E-02 1.64E-01 -7.34E-02 6.79E-02 1.38E-01 -9.28E-02 -2.27E-03 1.16E-01
5 5.19E-02 1.47E-01 1.83E-01 -3.95E-02 5.65E-02 1.55E-01 -1.17E-01 2.66E-02 9.58E-02 -2.88E-01 -1.17E-01 3.74E-02
1 -1.16E-01 -2.20E-01 -2.59E-01 -4.42E-02 -1.41E-01 -2.64E-01 -6.98E-03 -4.90E-02 -2.15E-01 -8.10E-05 -4.38E-03 -7.12E-02
2 9.37E-03 -6.16E-02 -1.54E-01 4.85E-03 -1.49E-02 -1.06E-01 4.55E-04 -1.73E-03 -5.15E-02 -3.03E-06 -3.49E-04 -1.35E-02
3 5.59E-02 7.76E-02 -2.85E-02 1.11E-02 2.93E-02 3.77E-02 1.04E-03 5.23E-03 2.60E-02 1.16E-06 7.93E-05 -2.20E-03
4 6.45E-02 1.61E-01 1.62E-01 1.31E-02 4.28E-02 1.41E-01 1.09E-03 7.05E-03 5.39E-02 1.79E-06 1.73E-04 2.57E-03
5 6.55E-02 2.07E-01 3.29E-01 1.42E-02 4.72E-02 1.99E-01 1.06E-03 8.77E-03 6.44E-02 2.08E-06 2.08E-04 4.74E-03
1 -1.16E-01 -2.20E-01 -2.59E-01 -4.42E-02 -1.41E-01 -2.64E-01 -6.98E-03 -4.90E-02 -2.15E-01 -8.10E-05 -4.38E-03 -7.12E-02
2 -1.75E-01 -2.87E-01 -2.89E-01 -5.61E-02 -1.91E-01 -3.17E-01 -4.82E-03 -5.22E-02 -2.59E-01 -1.53E-05 -2.19E-03 -6.76E-02
3 -1.70E-01 -2.82E-01 -2.87E-01 -4.80E-02 -1.81E-01 -3.13E-01 -3.66E-03 -4.48E-02 -2.44E-01 -6.94E-06 -1.33E-03 -5.71E-02
4 -1.74E-01 -2.84E-01 -2.89E-01 -4.41E-02 -1.75E-01 -3.15E-01 -3.56E-03 -4.14E-02 -2.39E-01 -5.68E-06 -1.14E-03 -4.80E-02
5 -1.76E-01 -2.85E-01 -2.89E-01 -4.20E-02 -1.73E-01 -3.15E-01 -3.63E-03 -3.80E-02 -2.32E-01 -5.09E-06 -1.07E-03 -4.36E-02
1 -1.16E-01 -2.20E-01 -2.59E-01 -4.42E-02 -1.41E-01 -2.64E-01 -6.98E-03 -4.90E-02 -2.15E-01 -8.10E-05 -4.38E-03 -7.12E-02
2 -9.46E-02 -2.22E-01 -2.68E-01 -2.36E-02 -1.10E-01 -2.56E-01 -2.15E-03 -2.50E-02 -1.75E-01 -7.76E-06 -1.24E-03 -3.99E-02
3 -5.54E-02 -1.76E-01 -2.57E-01 -1.33E-02 -6.31E-02 -2.05E-01 -1.06E-03 -1.33E-02 -1.13E-01 -2.19E-06 -5.41E-04 -2.24E-02
4 -5.00E-02 -1.64E-01 -2.49E-01 -1.03E-02 -5.81E-02 -1.98E-01 -9.40E-04 -1.05E-02 -1.06E-01 -9.38E-07 -4.17E-04 -1.56E-02
5 -4.72E-02 -1.62E-01 -2.50E-01 -1.01E-02 -5.25E-02 -1.90E-01 -8.20E-04 -8.64E-03 -8.84E-02 -1.16E-06 -3.19E-04 -1.18E-02
1 7.58E-02 1.41E-01 1.45E-01 2.18E-02 1.00E-01 1.84E-01 6.30E-04 2.38E-02 1.66E-01 1.78E-07 1.21E-03 4.80E-02
2 2.51E-02 8.77E-02 1.23E-01 2.74E-03 3.13E-02 1.18E-01 4.25E-05 4.27E-03 6.41E-02 5.02E-09 1.30E-05 1.00E-02
3 1.59E-02 7.66E-02 1.37E-01 1.42E-03 1.33E-02 9.36E-02 2.84E-05 8.63E-04 2.50E-02 7.60E-10 5.16E-06 1.81E-03
4 1.60E-02 9.54E-02 2.17E-01 1.53E-03 1.18E-02 1.04E-01 2.69E-05 8.26E-04 1.90E-02 1.28E-09 4.52E-06 9.69E-04
5 1.64E-02 1.16E-01 3.34E-01 1.60E-03 1.19E-02 1.24E-01 2.34E-05 8.99E-04 2.12E-02 1.44E-09 4.25E-06 1.09E-03
1 7.58E-02 1.41E-01 1.45E-01 2.18E-02 1.00E-01 1.84E-01 6.30E-04 2.38E-02 1.66E-01 1.78E-07 1.21E-03 4.80E-02
2 9.60E-02 1.71E-01 1.56E-01 2.48E-02 1.20E-01 2.07E-01 4.71E-04 2.15E-02 1.86E-01 4.07E-08 1.53E-04 3.99E-02
3 9.35E-02 1.68E-01 1.54E-01 1.81E-02 1.14E-01 2.04E-01 2.35E-04 1.63E-02 1.71E-01 8.74E-09 7.02E-05 3.17E-02
4 9.63E-02 1.69E-01 1.56E-01 1.50E-02 1.08E-01 2.06E-01 2.28E-04 1.54E-02 1.68E-01 5.93E-09 5.63E-05 2.28E-02
5 9.77E-02 1.70E-01 1.56E-01 1.33E-02 1.06E-01 2.05E-01 2.60E-04 1.22E-02 1.63E-01 5.22E-09 5.27E-05 2.16E-02
1 7.58E-02 1.41E-01 1.45E-01 2.18E-02 1.00E-01 1.84E-01 6.30E-04 2.38E-02 1.66E-01 1.78E-07 1.21E-03 4.80E-02
2 5.11E-02 1.33E-01 1.43E-01 9.37E-03 6.77E-02 1.69E-01 1.60E-04 9.16E-03 1.22E-01 1.22E-08 4.98E-05 2.10E-02
3 3.54E-02 1.13E-01 1.39E-01 3.44E-03 3.77E-02 1.41E-01 7.71E-05 2.92E-03 7.73E-02 2.90E-09 2.05E-05 9.88E-03
4 3.65E-02 1.11E-01 1.37E-01 2.41E-03 3.54E-02 1.44E-01 6.78E-05 2.29E-03 7.60E-02 1.57E-09 2.15E-05 4.37E-03
5 3.49E-02 1.10E-01 1.37E-01 2.15E-03 3.32E-02 1.38E-01 6.15E-05 2.05E-03 6.46E-02 1.73E-09 1.56E-05 2.46E-03

floor()

round()

E[(LBP-Lext,ANBP)2]

ceil()

floor()

round()

Difference in 
error of the LLR               
E[(LBP-Lext,ANBP)]

ceil()

E[DANBP]

E[D-DANBP]

round()

1

2

3

4

5

Check weight = 6 Check weight = 10 Check weight = 16 Check weight = 32

ceil()

floor()

Eb/No(dB)
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V. COMPLEXITY ANALYSIS 

The complexity analysis of various algorithms is presented in Table III. Our comparison uses an approach similar to 

the ones used in [7] and [9]. Our analysis is based on the number of different operations used to update ( )
, ,
i

e j lL  of check 

j for all ( )l B j∈  in the parity check matrix. 

The check node j is connected to ρ  variable nodes. The signs of the check nodes’ LLRs are computed using 

2 1ρ −  XOR operations. This is the same for all algorithms except the algorithms based on (4). The BP algorithm in 

(1) requires 2 look up tables, LUT1 and LUT2, to obtain the values of the hyperbolic tangent and its inverse 

functions, respectively. By assuming each LUT to have the same amount of entries equal to M,  it requires at 

least  )(log2 M  comparisons to search through each LUT. However, in practice, the time and number of operations 

spent on each attempt to access the LUT may be even more dependent on the hardware implementation. It also 

requires in total 2ρ  multiplications for multiplying the factor 1/2, 2 and all results after accessing LUT1 together.  

For the BP algorithm using the Jacobian logarithm, it requires )2(3 −ρ  pair wise operations of (4) and (5) [7], where 

each pair-wise operation in (4) requires 1 XOR, 5 additions and 2 accessing the LUT of )1log( ||xe−+ to implement 

(5). 

For BP-based algorithms, the value of { }( 1)
, '' ( ) \

min  i
j ll B j l

L −

∈
 is either the first or second smallest among ρ  LLR values. It 

is shown in [16] that 1ρ −  and 2log ( ) 1ρ −    comparisons are required for searching, respectively. The min-sum 

algorithm requires the least amount of operations among BP-based algorithm. Offset (DE) and normalized (DE) 

require 2 additions and 2 multiplications, respectively, for the first and second smallest LLR values. The Offset 

algorithm based on (4) and (21) requires 5 comparisons (i.e. addition operations) for each pair off LLR values to 

complete conditions checking. The decoder also requires a total of )2(3 −ρ  comparisons in (4) to complete the 

computation for check node j [7]. 

In the ANBP algorithm, since the number of values of pT  and pd are small, they may be stored either inside the 

decoder as constant terms or as a LUT in memory, e.g. if 4P = , it requires only 14 values to be stored, 7 

comparisons and 7 constant values. If the values are stored in a LUT, the adaptive normalized BP-based decoder 
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requires 1−ρ  access times, since { }( 1)
, '' ( ) \

min  i
j ll B j l

L −

∈
 has already been computed. On the other hand, if the values are 

stored inside the decoder as constants, a binary search which requires  )12(log2 −P  comparisons for each LLR value 

can be applied [16]. 

We may further reduce the number of operations to find the first and second smallest LLR. If the first and second 

smallest LLR values are computed after finding pd  for each ( 1)
, '

i
j lL − , the number of additions may be reduced by  

eliminating some variable node candidates to a subset of ( ) ( )B j B j⊂  where ( )B j is the set of variable nodes in 

which the LLR falls in the lowest interval pc  described in (13). The minimum required comparisons (additions) can 

then be found when the first and second minimum values each falls in a different interval and is also the only value 

that lies in the interval. In this case, no comparisons are required. On the other hand, the maximum number of 

comparisons occurs when all LLR values lie in the same interval. This requires   2)(log2 −+ ρρ  additions. The D  

value can be obtained using 42 −ρ  additions and ρ  right shifts.  

Table IV presents the estimated number of operations required for updating each check node’s LLR for a (3, 6) 

LDPC code. Clearly, the BP algorithm in (1) requires a large number of multiplications and accessing LUT. Since 

these operations take much longer time than addition and right shifting. Also, multiplications consist of several 

additions and shifting operations, we expect the adaptive normalized BP-Based algorithm to perform faster than the 

BP algorithm. When the BP algorithm uses the Jacobian logarithm, the number of additions and accessing the LUT 

increases significantly, since the algorithm requires )2(3 −ρ  pair-wise operations of (4).  

The min-sum algorithm has the least complexity followed by the offset (DE) and the normalized (DE) decoder. 

Our ANBP decoder which uses LUT is quite attractive. Even though the number of additions is about twice as many 

as that used by the offset (DE) decoder, it trades off with the improvement in BER. The LUT here is small and can be 

accessed quickly. Our ANBP without LUT requires more additions. However, it requires about half the number as 

that of the off-set decoder due to the comparison used for its conditions in (21). 

Finally, since we use a D-bit shifting operation, a fast implementation can be realized using a barrel shifter [15], 

since it can shift D bits in a single clock cycle. 
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VI. CONCLUSION 

We presented a new adaptive normalized BP-based algorithm which reduces the complexity of the BP decoder. It 

allows the decoder scale factor to change adaptively. We showed that our proposed decoder can be used with LDPC 

codes with many code rates with different check weights. For low check weights codes, though a slight loss of the 

proposed decoder’s accuracy is observed, the decoder performance is comparable to that achieved by other decoders 

at higher SNR values. For example, with as low as 0.1dB extra, it can achieve the same performance as the BP 

decoder at a BER of 10-6. The ANBP performs very well at large check weights and outperforms other modified min-

sum algorithms, achieving a BER very close to that of the BP decoder with similar amount of iterations. The 

algorithm eliminates the use of multiplications and reduces the number of memory accesses, number of entries, and 

access time when using an LUT. We have also shown that the complexity of the decoder is low and comparable to 

other decoders of the same class. The benefits of the adaptive normalized BP-based decoder are that the decoder is 

not code rate/code weight specific and no pre-design parameter is required. Thus, our decoder can be used as a multi–

code rate or reconfigurable decoder. This is highly desirable for future mobile devices in order to handle different 

applications and standards [20]. 

 
TABLE III. ESTIMATED NUMBER OF OPERATIONS USED FOR A CHECK UPDATE j  OF ALL ( )l B j∈  
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Normalized (DE) (2), [7] 
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Offset (4), (21), [4] 
( )'

2
'
1 llL ⊕ { } ,,min)()( 2121 β+⋅= LLLsignLsign
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ANBP using LUT (16) 
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12 −ρ    2)(log2 −+ ρρ
)42( −+ ρ  

- 1−ρ  ρ  

ANBP  
without using LUT (max) (16) 

12 −ρ  

  2)(log2 −+ ρρ

 )12(log2 −×+ Pρ
)42( −+ ρ  

- - ρ  

ANBP 
without using LUT  (min) (16) 

12 −ρ  
 )12(log2 −× Pρ

)42( −+ ρ  
- - ρ  

 
TABLE IV. ESTIMATED NUMBER OF OPERATIONS FOR A CHECK UPDATE j  OF ALL )( jBl∈  FOR (3,6) LDPC CODE 
 

Operation XOR  Addition Multiplication LUT Right shift 

BP (tanh()) M=8 11 - 12 12 - 

BP (Jacobian) M=8 12 60 - 24  

Min-sum 11 7 - - - 

Normalized (DE) 11 7 2 - - 

Offset (DE) 11 9 - - - 

Offset 12 60 - - - 

ANBP (P=4) using LUT 11 15 - 5 6 

ANBP (P=4) 
without using LUT  (max) 11 33 - - 6 

ANBP (P=4) 
without using LUT  (min) 11 26 - - 6 
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