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PREFACE
Larry S. Slotta

Department of Civil Engineering

Oregon State University

This volume contains two papers devoted to stratified currents research
at Oregon State University under the sponsorship of the United States Depart-
ment of the Interior, Federal Water Pollution Control Administration. The
general purpose of the work was the investigation of the internal currents
created by withdrawal from reservoirs stratified by surface heating.

Special attention was given to the effects of entering streamflow and with-
drawal on currents. The work accomplished during the three years of grant
support has been devoted to the following sub-tasks:

1. To examine the effects of topography on the current patterns and

waters discharged from a density stratified reservoir,

2. To examine the effects of regulated discharge on stratified current

patterns,

3. To consider the influence of entering waters on the current patterns

in the pool and subsequent discharge from a stratified reservoir.

Progress has been made in all sub-tasks., Progress reports 1967-1968
have contained graduate degree theses related to the description withdrawal
phenomena. Recent presentations have been given:

Hwang, J.D. and L.S. Slotta, 1968, ""Numerical Simulation of Selective

Withdrawal of Stratified Flows,'" ASCE Hydraulics Division Conference
titled '""Computer Applications in Hydraulic and Water Resource Engineer-
ing.'" at M,I. T. Cambridge, Massachusetts, August 1968,

Spurkland, Torbjorn and L.S. Slotta, '"Boundary Geometry Effects on

Internal Density Currents in a Stratified Reservoir.' Pacific Northwest

Region American Geophysical Union, Seattle, Washington, October 1968.



Mercier, Howard T., 'Digital Simulation in Fluid Mechanics, "

Pacific Northwest Simulation Council Meeting, Moscow, Idaho,
October 1968.

OREGON STATE UNIVERSITY THESES:
Elwin, E. Harvey, 1969, '"Entering Streamflow Effects on Currents

of a Density Stratified Reservoir."” M.S. Thesis, Corvallis, Oregon
State University.
Spurkland, Torbjorn, 1968, 'The Effect of Boundary Geometry on

Internal Density Currents in a Density Stratified Reservoir.'" M.S,
Thesis, Corvallis, Oregon State University.

Terry, Michael D., 1968, "A Numerical Study of Viscous, Incompres-

sible Fluid Flow Problems.'" M.S. Thesis, Corvallis, Oregon State
University.

Mercier, Howard T., 1968, "A Predictor-Corrector Method for the

Transient Motion of Non-homogeneous, Incompressible, Viscous Fluid."
M. A, Thesis, Corvallis, Oregon State University.
Hwang, J.D., 1968, "On Numerical Solution of the General Navier-

Stokes Equations for Two-layered Stratified Flows.' Ph.D. Thesis,

Corvallis, Oregon State University.

The research outlined as goals of the grant has been advanced on two
fronts; one through laboratory studies and the other through numerical or
computational approaches. The scope of this work is quite wide, but an
effort to stay within limits of the sub-tasks and to significantly contribute
to each of the sub-task areas was made. Continued research on the mechan-
ism of stratified currents and selective withdrawal is needed. Research
involving field studies in actual reservoirs is necessary to verify predictive

behavior as determined in model studies.

Laboratory Studies

Time-lapse photographic techniques for recording flows through a density

stratified impoundment model permits viewing a lengthy experiment

ii



({1-1/2 hours ) in a few minutes in movie form. Specific studies on
geometrical effects of boundaries on internal currents have been conducted.
Obstructions such as sea ridges have been placed in the reservoir flow
field and the resulting flow patterns observed and recorded. The effect

of entering streamflow on currents has also been studied with the labora-
tory model. Dimensionless parameters have been found which quantitatively
relate the existence, location, and magnitude of model internal density
currents to the entering streamflow characteristics. Extensions of the
model relations for use in the prediction control and maintenance of quality
water discharge from actual thermally stratified reservoirs have been
proposed,

Field studies in actual reservoirs are necessary to verify the behavior
of shear current patterns as predicted from model studies. Additional
laboratory investigations should be performed involving surface winds
flowing to and counter-current to the reservoir's axis to study possible
current reversals., Little research information has been found in the
literature that gives attention to wind induced currents on thermally stratified
reservoirs, Current reversals caused by surface winds have been generated
on a laboratory model. Continued research should be extended to consider
the effect of surface wind shear on sub-surface flows. A balance between
inlet caused currents and those from counter current winds should give
measure to the amount of energy added by each. Field investigations should

follow laboratory studies for verifying predictive models.

Analytical Studies

Computer simulation of density stratified flows have been advanced by
Oregon State University's approach to density stratified reservoir selective
withdrawal problems. Graphic displays of time development of internal
stratified flows have been simulated. The computer code NUMAC (Non-
homogeneous Unconfined Marker and Cell) is proposed as a valid tool for
analyzing transient, incompressible, density stratified or non-homogeneous,

viscous flows with a free surface.
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Previous analytical and experimental research on the problem of
stratified flows has given only limited results which involve either multi-
layered or continuous density distributions., Nearly all analytical work
has undergone simplifications through linearization, boundary-layer
approximations, and the use of transitions or geometrical symmetries.

The general solution of the complete Navier-Stokes equations governing
heterogeneous, time-dependent, incompressible, viscous, laminar flows
is sought through numerical methods (Slotta, et al., 1968). Thus by
numerical simulation the number of approximations in the mathematical
analysis can be minimized, except those arising from the finite difference
representations.

The NUMAC method has been applied to simulate selective withdrawal
from reservoirs that have: a) two distinct layers of fluids having different
densities and viscosities; and b) continuous distribution of density and
corresponding viscosity. Results have been found to favorably compare
with experimental and analytical data. Other problems which have been
simulated with output in movie form include:

One-fluid reservoir with withdrawal.

Two-fluid withdrawal with submerged ridge.

Wave passage over submerged pipe.

Pressure forces on obstacles from wave passage.

Salt water wedge upslope.

Salt water wedge slug flow.

Buoyant pollution plume emitted into a density
stratified tank,

An annotated bibliography, "Numerical Methods for Fluid Dynamics',
compiled in June 1969 by the Los Alamos Scientific Laboratory Group T-3,
points to the significant advance in the past three years in the digital simula-

tion of fluid mechanics problems by listing over 155 references and 48 pro-

gram codes.
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One method devised by Welch et al. (1966) was called the Marker and
Cell (MAC) method. In addition to numerically solving the system of partial
differential equations which govern the flow of viscous, incompressible
fluids, the MAC method demonstrated the use of visual display of the model.
Numerical investigators now simulate and watch flows develop as the lab-
oratory investigator might,

The MAC and NUMAC methods use finite difference approximations to
the governing partial differential equations. Thus, a differential problem
which has no easy analytic solution is approximated by a readily solvable
algebraic problem.,

The significance of this research is that as better simulation schemes
better characterize the flow patterns in water systems, then better water
quality management and prediction methods can be generated with these
tools. Even though the tools and results presented in this report are
significant contributions in the form of simulation technology, extensions of
this work are needed. The NUMAC algorithm adequately considers inflows
and outflows of density flows through channels; but, some numerical instabil-
ities appear on the free surface during running. It would be advantageous
to simulate with the MAC and NUMAC codes at a facility having large
memory and high speed capability with unrestricted access so that indeed
the researcher could observe displays of developing flows rather than long

time turn around on batch process runs,
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ABSTRACT

The effect of entering streamflow on currents of a density stratified
reservoir has been studied in a laboratory model to provide insight into
the prediction, control, and maintenance of quality water discharge from
stratified reservoirs. Experiments were performed using various con-
centrations of a sodium chloride solution to provide linear density strati-
fications. Flowfield current patterns and velocitics were determined
photographically. Flow pattern parameters were found relating the
existence, location, and magnitude of model internal density currents to
entering streamflow characteristics. The extension of these model

reservoir results to prototype conditions is discussed.
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Entering Streamflow Effects on Currents of
a Density Stratified Model Reservoir

I. INTRODUCTION

In recent years increasing populations with increasing demands
of water for municipal and agricultural uses, together with rapidly
expanding industrial needs are putting increasing pressure on man's
most important natural resource-~-water. This pressure has been
periodically eased by the authorization and construction of an in-
creasing number of impounding reservoirs; however, the total supply
of quality water eventually will be limited, and man must learn to
use his supplies efficiently,

In order to use a water supply more efficiently, man must be
concerned with water quality because the value of a quantity of
water is a function of its quality. If man could sort his water
supply on the basis of quality maximum efficiency in reservoir
management could be achieved. For example, if man knew how
to predict and control the quality and movement of water in a reser-
voir, the most potable water could be drawn off for domestic needs,
the coolest water used for industrial cooling, the warmest water
saved tor recreation, and the life of impoundments lengthened by
using sediment-laden water for irrigation. The quality of conserva-

tion flows could be controlled for maximum benefits to fish and

1
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wildlife, and short-term polluted flows could be passed through
water supplies with a minimum of pollution. Thus, efficient
reservoir management is related to the quality and movement of

water behind a reservoir.

1. Effect of Impoundment on Quality.

-

Water quality characteristics may be grouped into three
categories: physical characteristics--temperature and turbidity;
chemical characteristics-~dissolved oxygen, nitrogen, dissolved
minerals, and other substances; and biological characteristics--
biological oxygen demand, coliform count, and algae count.

Impoundment is among the many things that affect water
quality. When a flowing river is dammed and becomes an impound -
ment, two major changes occur that have a marked effect on water
quality. First, an impoundment greatly increases the time re-
quired for water to travel the distance from the headwaters to the
dam's discharge location. Second, stratification due to density
variation in an impoundment changes the characteristics of the
water discharged at a given location from what they originally were
when the stream was flowing free, Some of the important effects
are: a reduction in turbidity; a variation in temperature and
dissolved oxygen; and, an increase in algae growth, dissolved

solids, nitrogen and phosphorous.



The most important factor in the variation of water quality
within a reservoir or lake is a variation in its density. Although
density variations or stratification may occasionally be due to
chemicals, wastes, or suspended sediments, temperature is
analogous in creating density variations. It is well recognized
that lakes and reservoirs in the temperate zone undergo a complex
seasonal variation in temperature. Typical seasonal and spatial
variations of temperature in a deep, temperate climate lake are
shown in Figure 1.

During winter and at the beginning of spring, a lake is vir-
tually at a uniform temperature throughout its depth and is essen-
tially homogeneous. Duringearly summer with the coming of
warmer weather,a definite temperature profile develops as water
near the surface absorbs more energy and is, therefore, warmed
faster. Through the summer, heat is absorbed at the surface and
mixed downward, largely by wind action with the surface temperature
only changing slightly, In late summer a reservoir will have ob-
tained maximum stratification. After this time, as the weather
cools, the surface temperature begins to fall creating an unstable
condition. Surface water as it cools is more dense than the water
beneath it. Overturning occurs and the mixing results eventually
in an isothermic condition, The cylical variation of temperature

is controlled by various inputs and outputs of energy; solar
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radiation; the convection of heat into and out of the reservoir;
evaporation; and back radiation. Analytical and experimental
work has been done in an attempt to predict thermal stratification
of lakes and reservoirs by Dake and Harleman (9), and an actual
method of prediction has been used with good results on Hungry
Horse reservoir by Ross and MacDonald (25).

The zone of steep gradient which joins the upper mixed layer
(epilimnion) to the cooler Body of water below (hypolimnion) is
generally referred to as the metalimnion of thermocline. The
definitions are illustrated in Figure 2.

- Stratification is most important in determining water quality
in reservoirs. It may influence water quality through a direct
relationship between density and ’physicé.l or chemical quality
parameters, or it may influence water quality by controlling
movement of water in the reservoir, The movement of water in
the reservoir determines detention time and has an influence on

biological quality parameters.

2. Internal Currents

The variations of fluid density in a thermally stratified
reservoir give rise to internal flow patterns which may differ
entirely from those encountered in homogenous fluids under similar

‘boundary conditions. These flow patterns are known as internal
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Metalimnion
or

Thermocline
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Figure 2. Definition of regions associated with
thermal stratification.
density currents.

Internal density currents, although extremely apparent in
the flow regime of a reservoir, are not restricted only to reser-
voirs. A density current may be the gravitationally induced flow
of any fluid which is slightly different in density than its sur-
roundings, and the density difference may be due to chemicals,
temperature, or suspensions. Interesting cases of density cur-
rents may be found in oceanography, hydrology, meteorology, or
geology. Ellison and Turner (11) have reviewed some of the

gituations in nature where nonsuspension density currents occur.



These include the flow of katabatic winds in the atmosphere; the
flow of cold water on the ocean floor from arctic to equatorial
regions: and the flow of methane fluids along the roof of a mine
gallery. Also, Middleton ( 21) has studied the existence of the
turbidity or suspension type density currents over the ocean floor
as a means of forming graded offshore beds. Thus this reservoir
study has its analog in oceanographic and meteorological investi-
gations.

Density currents in reservoirs are classified by Churchill (6)
as three types--overflows, interflows, and underflows. Although
Churchill describes these three types of density currents only in
terms of the position of the inflowing streams of water, it is
recognized that the same types of density currents may be created
also by withdrawal from a reservoir. Regardless of whether in-
ternal density currents are created by withdrawal or by inflow or
by a combination of withdrawal and inflow, they are important to
water quality as shown in the following cases.

Density currents exist and cause some unique effects in
the Watts Bar reservoir of the TVA system that furnishes the
water supply for Harriman, Tennessee (). The Harriman
water plant intake is located approximately one mile from the
upper limit of the backwater on the Emory River arm of the pool

and about 13 miles above the junction of the Emory and Clinch



arms of the pool. During the winter months, or whenever fairly
high flows from the Emory River headwaters exist, the direction
of the streamflow for the entire cross section.of the pool is down-
stream from the waterworks. During the summer months, however,
when low velocities normally exist, cold water released at Norris
Dam into the Clinch River can run upstream in the warmer waters
of the Emory arm. As the cold Clinch River water flows up the
Emory arm of the pool as a density current, it flows past the
Harriman sewer outlets and also past the outfall from a large
paper mill. Sewage and mill waste are discharged into the cold
water current and are carried by it upstream to the intake of the
Harriman water plant, located about one and one-half miles above
the paper mill outfall. No one had earlier realized that density
currents would extend upstream into the Emory arm of the pool,

a distance of 13 miles, but now that they are recognized, the situ-
ation has been corrected by using a variable level outfall for the
sewage and mill waste.

Turbid density currents have been recognized in America
since 1914, when they were reported as having occurred several
times in Zuni Reservoir, New Mexico. Most commonly they occur
as streamflow entering clear lakes and reservoirs loaded with
sediment as a result of floods, but may also result from sub-

surface landslides. In an early paper, Bell (2) discusses



turbidity currents in connection with the sedimentation of Lake
Mead. He says the turbidity currents were transporting fine sedi-
ments into lower L ake Mead at a rate that will occupy one percent

of the original spillway crest capacity each 8. 2 years. It is also
estimated that by encouraging withdrawal from this turbidity current,
much of the sediment may be discharged before it has settled, and
that the useful life of Lake Mead could be lengthened by 20 percent
in this manner.

In order to increase the production of Pacific salmon, the
Canadian Department of Fisheries has established a fish hatchery
on the Big Qualicum River in British Columbia. In order to improve
conditions for the fishery, it has been considered desirable that a
uniform flow of approximately 200 cfs be maintained during the
spawning period from late summer to mid-winter. Since the Big
Qualicum is at its extreme low flow during the late summer and
early fall, a reservoir was established. It was found that under
controlled flow conditions, the increased summer minimum flows
masked the cooling influence of groundwater sources downstream
from the reservoir. In order to keep the stream temperature of
the lower river in the ranges optimal for the production of salmon
in the July through September period, hypoliminal water is drawn
from the lake via low level intake in gradually increasing amounts

to temper the epiliminial water drawn from the upper layer. (7)
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Thus, the natural temperature regime of the salmon is duplicated,
using density currents created by withdrawal.

An organic, bacteriological, or chemical pollutant, if it
flows into a reservoir as a density current, may behave as a quasi-
pipeline. It has been found that a pollutant discharged from an
industrial plant flowed through Cherokee Reservoir of the TVA
system as a discrete flow with a minimum of dispersal and dif-
fusion, and the water was discharged through turbine outlets with
a minimum of pollution to the reservoir storage.

The previous situations show that the management of res-
ervoir wafer quality depends in large part on how well one can

control the internal current regime in a reservoir.

3. Purpose and Scope of Investigation

Reservoir internal density currents have been studied by
theoretical approaches, laboratory experiments, and direct
measurements of velocities and stratifications on prototype
reservoirs. However, the majority of these efforts have been
toward the study of withdrawal currents, and little has been done
with inflowing density currents. Since what flows out of a reser-
voir at one time was streamflow it seems; that inlet streamflow

effects on reservoir current regimes should merit more consider-

ation.
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In the present study, the influences of entering streamflow on
the current patterns of a model stratified reservoir are reported.
This study is an attempt to relate various parameters of entering
streamflow at the upper end of a thermally stratified reservoir to
the current regime in the reservoir for the purpose of maintaining

quality control.
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II. ANALYTICAL CONSIDERATIONS

Presentation of basic assumptions and equations pertaining
to two-dimensional, inviscid, steady, incompressible, continuously
stratified flow are given in the following section. Withdrawal cur-
rents and inflows are next discussed analytically, and finally the
method of analysis used to establish the desired streamflow-current

regime relationships is explained.

1. Stratified Flow Equations

Consider an incompressible fluid such as water stratified by
a slight linear density gradient, as associated with the thermal
structure of temperate zone reservoirs or as is created by salinity
variation in an estuary. Also consider the flow of any internal cur-
rents to be two-dimensional and independent of time where x and y
are the respective horizontal and vertical coordinates and u and v
the velocity components in the x and y directions.

Figure 3 shows the basic stratified system. With this notation

v
b

P (y)

Y.

Figure 3. Basic stratified system.
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the condition for incompressibility in the sense that a liquid element

undergoes a negligible volume change by definition is:

|
< |2
+
w
SF
i
(=]

The general continuity equation,

v-(pV)+§9-=0,

ot
where
Vo= ui o+ vj\,
p = density,
t = time,
V = gradient operator,

is valid for stratification due to temperature variation, but if the

stratification is due to a dissolved substance, an additional term is

needed to account for mass transfer due to molecular diffusion,

Molecular diffusion may be described by an observational law known

as Fick's first law in which the rate of mass transfer of a substance

per unit area is proportional to the gradient of concentration of

the substance. Assuming Fick's first law of diffusion, the mass

rate of flux per unit area is:
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J = -V -[DVC]
where
J = mass rate of flux per unit area,
D = diffusion coefficient,
C = concentration of substance.

The expanded continuity equation may be rewritten:

—?ﬁ_ + p(v-\_/) + V (Vep) =V+ [D'VC].

From the assumptions of steady, incompressible flow the con-

tinuity equation may be simplified:

.3 _ g.[D
uaX+V"a—y = \Y [ VC].

Assume a small density variation so that the diffusion coefficient
approximates a constant. Also assume a linear relationship

between concentration and density so that
p- Ay = M (C-Co).

Substituting for C, the equation for the conservation of mass

becomes:
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The equations of motion expressing the relationship between
the inertial force per unit volume, the pressure force per unit
volume, the gravitational force per unit volume, and the viscous

force per unit volume are written as:

3 9 9 9 [ 9
x-direction: p (ua—:(l + v§7u) = _3—5 + g(uﬁ), 2-3
9
y-direction: 0 = 5‘3 - P8 2-4
where
P = Ppressure,
g = gravitational acceleration,

kinematic viscosity.

=
1]

From the above equations it is apparent that the driving force of
internal density currents must stem from the imposition of a
pressure gradient into the flow field.

Internal density currents important to a reservoir are
associated with the pressure gradient formed by inflowing or out-
flowing discharges and should be governed by equations 2-1, 2-2,

2-3, and 2-4.

2. Withdrawal Currents

Internal density currents under conditions of withdrawal
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have been studied extensively in literature, and limited analytical
solutions to equations 2-3 ard 2-4 under conditions of withdrawal
have been attempted through work by Long(19), Yih (31), Kao (16),
Kah (17), and Gelhar and Mascolo (15). Long (20) first approached
the problem by assuming that the velocities involved were large
enough to ignore viscous and diffusive terms. He then simplified
the equations of motion to an equation for the stream function.

Yih ( 31) showed that the equation for the stream function could

be linearized by defining a transformation. The governing differ-

ential equation after transformation by Yih became

2
2% "y gey ge
2t 2 = Ty Y
3x 3y u?
where
ST
= _—Lay ,
pO
v = &,
P

_ X A -3
E=g47 nNTgqi 8%y
the equation transforms to:
A
2y 5% EpC
g am 19}
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Ao
g__.'._ d
where —%— = Fy 2 , the inverse square of a modified Froude
U

number. Of particular significance was that the critical values for
Yih's solution occurred in terms of the modified densimetric
Froude number, Fr. Yih found that for Fr < n-l this solution no
longer upstream boundary conditions. Experiments by
Debler ( 10) qualitatively confirmed the limits of Yih's solution
and also demonstrated that where Yih's solution failed the flow
patterns were in the form of definite flowing layers separated from
nonflowing zones by free streamlines. Kao (16) extended the
inviscid solution for Fr < n_l by altering the boundary conditions
and obtained the equation for the free streamlines along with the
velocity distribution.. Koh (17) found a solution to the equations
of motion, including both viscous and diffusive terms, by perturba-
tion techniques. He analytically described the withdrawal layer
and experimentally confirmed his results. Gelhar and Mascolo
produced a solution ignoring diffusion by using the same basic
assumptions as did Koh,

An example of the solution for the withdrawal layer as done

by Koh (17) is shown in Figure 4.
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| I

] 1/3
b () = T2 s
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Figure 4. Withdrawal layer toward line sink. (Koh)

3. Inflow Currents

Recent literature concerning discharge into a stratified
medium has been concerned with describing inflow parameters and
little effort has been made to relate the effect of inflow on the
current regime within the stratified medium. However, to analyze
the inflow-current regime relationship it is necessary to review
basic assumptions concerning the inflow, Literature pertinent to
this study concerns the two dimensional turbulent or laminar jet.

Turbulent jet behavior generated by a continuous source of
momentum is a fundamental case of free turbulent flows.
Development of free turbulent flow in a homogeneous media is
discussed extensively inSchlichting (27) , Daily and Harleman (8)
and Abraham (1) . The basic assumptions in most of these

treatments consider the conservation of momentum and the
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assumption of Gaussian velocity and concentration distributions.
Extension of free turbulent flow behavior to a stratified ambient
fluid has been done by Ellison and Turner (11), Fietz (13),

Wada (30), Morton (22), and Fan (12) . Ellison and Turner
(11) and Fietz (13) studied two-dimensional wall plumes and three-
dimensional density currents, respectively, applying largely
dimensional analysis techniques. Wada (30) has advanced numer-
ical techniques for the study of cooling water flow patterns from
diffusers.. Most of the analytical studies of turbulent jets in a
stratified fluid have resulted from an integral technique used by
Morton, Taylor and Turner ( 23) in analyzing a simple plume in
a linearly density stratified environment. Fan (12) used the
Morton type analysis to obtain theoretical solutions for an in-
clined round buoyant jet in a density-~stratified environment.

For this study consider the fully turbulent stream flowing

into the density stratified reservoir as shown in Figure 5,

o (y)

pmax

Figure 5. Rectangular jet discharging into a linear
stratified medium.
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An integral type analysis may be applied. The following

assumptions are made:
(i) The fluids are incompressible.
(ii) The velocity distribution is a modified Gaussian

distribution modified to a rectangular cross section,
/
(my), £
u(s, ;) = u(d) e e .

(iii) The density of the jet distribution is a modified

(_éz/h 2) (_V:z/b 2)
P (s’, t, v’) = p(s’) e © e © .

Gaussian distribution,

(iv) The rate of entrainment at the edge is proportional to

the characteristic velocity,

aQ .
i - (2h+2b) ku(s),
where
k = a coefficient of entrainment.

(v) The variation in density is small in comparison with Po.

(vi) Pressure is hydrostatic.

The equation of continuity, based upon the assumed en-

trainment assumption can be expressed as:

d ¢ 7 /, dQ
— d - =
ds [A u(s, t, v) dA ds
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. 2 / 2
(wloou(s’) . ( t/ho) . (V/bo) avat = (2h+2b) ku(sl).

Integrating
2 / ’ 2 © o
’ ho2 b_ (—t/ho) 2 (—v/bo) ] = (2h+2b)ku(s)
Ao = = : o o
. htp 2
- d—sl<u(sl) Lﬁ): (2h+2b) ku(s). 2-5

Since the pressure is assumed to be hydrostatic and there is
no other force acting in the horizontal direction, the x momentum

flux should be conserved,

o (s, t V) u? (s, t.v) cos B dvdt' = o

Substituting

2 .
/ / () u s) e <3t o ) ( >cosedv£dt1= 0,

Integrating
AF . 5, L pZp2 <3t/h ><3¢/b )
7 |1P(s)u (s) o o cosf =0.
ds E——
9 o lo

and assuming a small variation in density the following expression

is obtained:

d [ po uz(s’) cosd- ho bo Jz 0. 2-6

xXx-momentum: —
ds’ 9
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In the vertical direction there is a gravity force acting on

the jet equal to the change of momentum flux,

d o ® e 2, . o,
ds’ L [, p(s,t,v) u (s, t,v) sinbdvdt

= g/ / E)(s’, t’, v) - pa (s, t: VS] dvat,
o’ o

Substituting and simplifying

h 2 b 2
y-momentum; _d u2 (8) sin 6 o__o
ds’ 9
. h 2 2 [os) - ¢, ()]
0o (¢)
From geometry
d
j—}s{,= cos8; a%, = sin 9.

2-8 and 2-9

The change in amount of dissolved substance in the jet must be

conserved with respect to a chosen reference level due to the

stability of the density gradient,

d o %0 PR AA Nyt /. e
ds’ﬁ £ u(s, t, v) [pin o (s, ¢, V)] dvdt

= (2b+2h) k u(s) ['pin - pa(s')] .
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Adding and subtracting e, (s’) u(s, t: v§ to the left side and

integrating
2 2
d «n (b b)) ( ) . ‘
ST, -e (Do) + uCo®) o (s p(s)ﬂ
9
h 2b 2 h 2b 2 p
=l -p (5)] Sf(r o o ) wo o dpa(s)
Lpin pa J o de 4 4 ds
d h 2 b 2
uo o ’ .
+ ds’[ 5 (p, (8) - p(S))]
Previously from continuity
2, 2
~ h p
_a [us) % Po ]= 2 (h(s) + b(s)) k u(s).
ds’ 4
Substituting, 5 2
‘ / ’ ; (s’)ho bo dra(ss
(o, - 0, (5)] 2 ku(Eh(s) + b(sh - u =2, =
2, 2
d ¢h b ¢ ¢
t 3 [u(S)_C>_C>_ (p(s) -p(S))]
9
= [p - P(8)] 2 ku(s) (aesh + b(sh),
the above becomes:
+h 2b 2 p ‘ ‘h 2 b 2 ¢
_d ju(s) o o (pa(s) - p(s))} = u(s) o "o dpa(s) . 2-10
ds’ 9 4 ds’
With the relationship
b = mh 2-11
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the problem has seven unknowns, namely,
u(s), v, t', 8, x, y, and pa(sl) - p(s')
and seven equations 2-5, 2-6, 2-7, 2-8, 2-9, 2~10, and 2-11.

Initial conditions are;

u(o) = U_; t'(o) = h ;v'(0) = b ; p(0) = p, ;

8{o) =6; y = oand x = o at s=o,
but the solution of the system is not obtainable in closed form
without the use of numerical techniques and is not presented here.
Very little literature is found (1969) concerning laminar
jet flow into a linearly stratified medium, butheretoo, anapproxi-
mate analysis may be performed on the inflow by making a few
basic assumptions. Consider the case of a density flow proceeding

down an incline as shown in Figure 6.

max

Figure 6. Density flow down an incline.
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Assuming in laminar flow that the inertia terms are negligible
and that the pressure gradient may be eliminated by cross differ-
entiation, the equation of motion will contain only gravity forces
and viscous forces. Summing the forces in the s-direction for
the fluid element,
Wsin6 = (TU + "LB) ds,
where

IU = surface shear resistance,

R = incline shear resistance,

w :EYin - Yamb (s)] d ds siné ,

= i G‘_i_
Y ) g[po + (h + ssin )

o
amb( dy
and the shear resistance is assumed to approximate the shear
relation for pipe flow.

Yin f szs)
2g

T=

Substituting into the force summation,

e
g [pin - (po + (h + ssin §) 3—; )]d sing ds

(fU+fB)V2(s) ds
2

= pin

. 1/2
_ 2g dsin g ) . dp
Vi(s) = I:pin (fU"'fB) [pln - (Po + (htsinf) —y‘)]]

o,
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a relationship is obtained for V (s). Its use, however, 1is
questioned due to the difficulty of evaluating friction coefficients,

fU and fB. The point at which the density flow leaves the slope

is obtained by the criteria that V(s) = 0,
. . dp
Vi(s) =0 when pin - ( po + (h + ssin®) a y =0,

or referenced from the water surface elevation where

depth = h + ssin®@ ,

=

curr= (PIn - 00)

[o W)
pe]

This expression shows that the inflow will seek an elevation
corresponding to its own density, and agrees with results that

S‘éurkland (28) obtained with a submerged diffuser.

4, Present Study

It was reported in Section 2 that from the governing
equations an analytical description of internal density currents
due to the imposition of a simple pressure variation may be

made. In Section 3 it was shown that in some cases an inflowing



jet may be discussed analytically if the appropriate assumptions
are made. However, complete solutions are untenable when the
relationship between both the inflow and the internal current
regime are desired. The interaction among density, velocity,
and pressure fields of the inflow and ambient fluid cause the
general solution to become very mathematically complex. For
this reason the density stratified reservoir flow phenomena are

to be analyzed experimentally using a dimensional analysis to

find correlation among the physical variables involved in this
study.

Consider a streamflow entering a stratified medium
with an equivalent outflow rate to maintain a constant water
surface level as illustrated in Figure 7a. The independent

parameters involved are those describing

(i) Boundary conditions:
D = total depth of reservoir
¢ = angle of inflow
® = angle of reservoir slope

h. = depth of slope change
in

h =
out depth of outlet

L = length of reservoir

27
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(ii)

(iii)

(iv)

Inflow:
Q. = inflow rate
in
V. = inflow velocity
in
p. = inflow density
in
b. = inflow width
in
d, = inflow depth
in
Outflow:
Qo = outflow rate
Vo = outflow current velocity
Pout = outflow density
do = outflow diameter

Ambient fluid;

Lp = density gradient
AY
o, = surface density

bottom density
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(v) Miscellaneous:
g = gravitational acceleration
Vv = kinematic viscosity

t = time

The dependent factors involved are those parameters

describing the resulting current regime. They are:

h, h_, h_, ... the heights of various currents
v ... the velocities of various currents

The densities of various currents are not included because they
are related directly to the current heights.

It is known that a particular density current will be a
function of the independent variables involved:

V = f (D! S ) S H h~ H h H L! Q- H Q H p . H d- ’
curr v T in out in o’ ™ in in

fiYol
'oo o Ay’ pma.x’ v)

and the complexity of establishing a particular relationship is
apparent from the number of parameters involved. In order to
simplify the analysis,a number of the independent variables as

shown in Figure 7b will be held constant, Once the flow
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configuration becomes known, the number of parameters involved
will be further reduced in number by individually considering
each main internal current allowing nonpertinent parameters to
be disregarded. The functional relationships will be established

in chapter IV.




<

|e
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Figure 7b. Independent parameters held constant during the investigation.
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1II., APPARATUS AND PROCEDURE

To investigate the influence of entering streamflow on the
current regime of a model density stratified reservoir a series
of laboratory experiments was performed in which fluid was
allowed to enter a tank of stratified fluid by way of a model
streambed.

In this chapter the experimental procedure and apparatus
used for the experiments will be discussed. The individual steps

in the experimental procedure will be explained in detail.

1. General Description of the Procedure

For the series of experimental runs, the model reservoir
was first filled with distinct layers of water containing appropriate
quantities of salt (NaCl) in suspension to give a linear density
gradient from the top to bottom levels of the tank, The water was
then allowed to stand several hours so that the density profile
would become linearly smooth by molecular diffusion. The density
profile was measured indirectly shortly before each run, and
after each run by measuring the electrical conductivity of the
solution at various levels in the reservoir. Salt solution was
mixed with water in the inflow storage tank until the desired inflow

conductivity was reached. Inflow and discharge rotameters were
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opened and the flow rates adjusted to be equal. After waiting for

the system to reach a steady state (five minutes), dye

(Erioglaucine A Supra) was injected into the inflow fluid in order

to trace its movements through the model. To observe the current
patterns within the model, dye particles were intermittently dropped
into the model reservoirata reference station. As the dye particles
fell, they left a distinct vertical time line. Thirty-five millimeter
slides taken at various time intervals and a time lapse movie
camera recorded the horizontal motions of the time lines. Typical
exposures are shown in Figure 8. An overhead movie camera
photographed at various time intervals the entering inflow con-
figuration and its travel. Each run lasted two hours at which time
the tank was drained, washed, and set up for the next run. The
necessary velocity and configuration measurements were obtained

from the film record.

2. The Model Reservoir and Model Stream.,

The reservoir for the inflow experiments was a clear walled,
rectangular, plexiglas flume. It was 25 feet long, 18 inches wide,
and 22 inches deep. A schematic drawing and a photograph of the
reservoir are shown in Figures 9 and 10, respectively. The
inlet end was equipped with an adjustable bottom slope so that the
depth varied from zero to full depth at different possible choices of

slope.
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Figure 8. Typical photographs of time lines.
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Streamflow
/ reservoir

Rotameter

—Dye injector

Adjustable

streambed Model

) Outlet
reservoir

Reservoir
slope

-

\

Rotameter

Figure 9, Schematic plan of model reservoir and
streambed.

The simulated stream channel was a six foot length of
2"'x]1"'x1/8'" aluminum channel mounted on 2 sheet of plexigas
which fit snugly in the width of the tank. The aluminum channel
and plexiglas sheet was used as a second slope extending from the
end of the tank to the top of the bottam slope. The configuration of
two slopes was necessary to provide a continuous slope from above
the water surface to the bottom of the tank while maintaining a
flat slope for the simulated streambed. The flow for the simulated
stream was provided by a storage tank at the upper end of the model
reservoir. The water from this tank was released at the upper end
of the model stream. The stream was lined with cemented sand

grains to provide artificial roughness.
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Figure 10. Photograph of model reservoir and steambed.




3. The Filling Apparatus and Procedure

The desired linear density profile was achieved by mixing
measured amounts of a saturated salt solution with a fixed
amount of water in a mixing tank and placing the mixture in
the reservoir. The basic apparatus by Spurkland (28) was
redesigned and used for this purpose.

A typical filling cycle began with the activation of a timing
cam system by a Lapine multispan timer which was set to pro-
vide power for the duration of the filling cycle. Each mixing
cycle lasted 40 minutes and involved the opening and closing of
the salt tank, water supply, and mixing tank solenoids, The
amount of salt brine for each ten mixing cycles was controlled
by ten 20-minute sequential timing cams, each activated by a
40 minute cycle timing cam and a pressure switch that shut the
water off when the water surface reached a certain level, The
draining of the mixing tank was accomplished by another 40
minute cycle timing cam calibrated to the draining time of the
mixing tank. A block diagram of the automatic filling apparatus
is shown in Figure 11. The salt solutions were introduced into

the model reservoir by gravity flow through three stand pipes

37

placed on the floor of the tank. The model reservoir was set on

a very mild slope. As additional inflowing layers are
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(Normally Closed}

Timing Apparatus
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Figure 11. Schematic of filling apparatus,
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progressively more dense, they flow slowly by gravity along the
bottom of the channel under the other layers creating a minimum

amount of mixing.

4, Photography

Because of the complexity of the events during each two
hour run, photography was used to record much of the data.

An Argus C-3 35mm camera and a Nizo S-80 super 8mm camera
were used to photograph the vertical dye streaks, and another
Nizo S-80 super 8 mm camera was mounted overhead to observe
the inflow configuration. All cameras were used with Koda-
chrome II color film at ASA 40 in conjunction with photoflood
lights. The 35 mm camera had a 50mm Argus Cintar £3.5 lens
while the 8mm cameras had a 10mm-80mm zoom f2. 8 lens
which was used at 10 mm.

The tank had a 12:1 length to depth ratio, so the cameras
field of view covered a limited area. A reference station was
established 10. 5 feet from the mouth of the model stream, and
the horizontal cameras were positioned in respect to it. A
clock mounted near the wall of the model reservoir gave elapsed
time as recorded on film. An overhead camera was positioned
over the model stream mouth. A schematic drawing of the

positioning and coverage is shown in Figure 12,
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5. Measurement of Density Profiles

A conductivity probe and a Serfass Conductivity Bridge was
used to measure the electrical conductivity of the salt solution
as a measure of its density prior to and after every run. Several
investigators have used the exposed conductivity probe in con-
junction with a conductivity bridge with much success as seen
from Spurkland (28) Lofquist (18) , and Rumer (26). From
their conclusions it is desirable to use a small platinized probe
so that polarization and capacitance effects would be minimized,
The probe used in this study was made of two lcna2 platinum
plates, spaced one cm apart as shown schematically in
Figure 13. The probe was connected to the conductivity bridge

by leads running through a water-tight glass tube indexed in a

5__’ P —
| = =

Figure 13, Conductivity probe.
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centimeter scale. The conductivity was measured vertically at
two-centimeter intervals in the centerline of the tank. To obtain
conductivity-density relationship the probe was periodically
calibrated with a Christian Becker balance,reading specific
gravity directly. A typical density profile and the corresponding

calibration curve are shown in Figure 14.

6. Measurement of Flow Rates

After the conductivity profile had been measured, a Brooks
rotameter was adjusted at both the inflow and discharge ends of
the model reservoir to maintain a constant inflow and outflow rate
of 12.6 cubic centimeters per second. Since the rotameters were
originally calibrated for a specific gravity of 1.000, they were
re-calibrated for each of the five specific gravity values used in
this study. The calibration is shown in Figure 15. Although this
plot indicates a small density influence on the flow rate, it is
small enough relative to the error inherent in reading the rotameter

that it may be ignored.

7. Measurement of Velocities

After the flow attained a quasi-steady state (five minutes),
potassium permanganate crystals mixed with carbon tetrachloride

were dropped into the model reservoir at the reference station
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Figure 15. Calibration of inflow rotameter.
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forming time lines which deform with the currents. A new time
line is injected every 20 minutes for the two-hour period. At
least 20 slides were taken at regular time intervals and the movie
camera was run continually at one frame every two seconds. After
the film was developed,the frames were projected into a viewing
box constructed as shown in Figure 16. Time of travel measure~
ments were taken from a grid after establishing the scale of the
image projecting the picture distance between the flume's bolts
at a constant scale. Measurements were taken near the center of
the projected area to minimize parallax.

The overhead camera was operated at 18 frames per second
during four intervals in the two-hour run. Time of travel measure-
meﬁts of the inflow stream velocity and the inflow density current

were obtained by projection and frame counts.



Figure 16, Projection apparatus for viewing time lines.
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Iv. EXPERIMENTAL RESULTS

Experimental runs were performed with the previously described
apparatus to determine the relationship between the entering stream-
flow and the model reservoir current patterns. The resulting current
regime produced in the model reservoir is described, and correlations
are established between the observed current parameters and the in-

flow characteristics for each of the main currents.

1. General Current Patterns

Major repetitive current patterns were created as the enter-
ing streamflow, designed Qin’ flowed down the sloping streambed and
entered the initially static, density-stratified, model reseroir. At
the lowest streamflow velocities, Vin’ little mixing occurred between
the ambient fluid and the streamflow, and the majority of the stream-
flow density current proceeded down the reservoir slope until reach-
ing a reservoir depth having equivalent density. At this point the
streamflow density current flowed horizontally across the reservoir

and became the main inflow current, Q At the higher streamflow

1
velocities more mixing occurred creating a large mixing current,

Q3; and at the highest streamflow velocities, mixing was so
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extensive that very little of the entering streamflow discharged
down the reservoir slope. As the mixing current, Q3, increased,
\

a reverse current at the surface, Q4, caused by entrainment to
the mixing current occurred, and an eddy in the vicinity of the
stream mouth was consistently formed. A fourth current, QZ’
was formed by the outflow necessary to keep the water surface
elevation constant. A typical or general current pattern existing
in the model reservoir during a test run is indicated in Figure 17.

Occasionally small intermediate currents were noticeable
between the major currents shown in Figure 17, but these were
relatively minor in magnitude and did not consistently appear so
they were not analyzed further.

The reverse current, Q4, was not analyzed either because

of the difficulty in observing the point of maximum velocity of

the dye trace which coincided with the water surface.

2. The Main Inflow Current

The major inflow current at low inflow velocities was Ql.
The pertinent independent variables involved in establishing a

dimensionless correlation between the current depth, hl, the

maximum velocity, Vl max’ and the inflow characteristics are:
X

D, b, , d.)
in in

- Ap
hl - f(pln pO’ Vin’ g, V, Av '’



|- out

Figure 17. General current pattern.

6%
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and V. =f(p. -f , %5 , 8 K b,

Using normalizing techniques,the dependent variables may be
made dimensionless and written as a function of a number of

dimensionless groupings involving the independent variables:

A B C X
Y () = 11 1
11 bloa 3 , 0y 03 e O )0
A B C X
= A 2 2
and YZ(VI max) =¢ <Bl B 2 7 B 3 .. E5n-r>’

but there are several dimensionless groups involving hl, and

| max’ and consequently many different possible groupings for

each @ and 3. Also, since® ... % and® ...% are

1 n-r 1 n-r
dimensionless, they may group with each other in any possible
combination. However, from experience and consideration of

the type of variables involved, functional relationships would

be expected to be influenced largely by the following criteria:

VL
Re = L a form of Reynolds number;
A%
Fr = —,,., a form of Froude number;
1/2
(gh)

) a geometric ratio;
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max o . .
U a density ratio.

max

The maximum velocity, V » of the inflow current, Q._,

1 max 1

was plotted in the form of a Reynolds number against the streamflow
Reynolds number in Figure 18. From this plot a relationship is
seen between the two parameters, but it varies parametrically with
density. Also a reinforcement of Ql by the withdrawal current was

3
noticed for an inflow density pinf\\; 1.0120 gr/cm™. A density scaling

factor in the form of was used and the new relationship is

D-h1

shown in Figure 19. The plot shows that:

b A%

I max 5 in in D
v - v, ’ D-h
res in 1

The above relationship was plotted on a semilogarithmic scale

(Figure 20). The range of data obtained is nearly monotonical and
V. b, D
fit by a straight line on this plot for a large range of tn L (D N ).
_ in 1
The relationship for V for
' 1 max
V. b, V. b
3000 < nin in in
Vin Vin critical
is as follows:
v r V. b, ]
- res in in D
= i -0.5
1 max 5 0.5 Log " Db + 365
» in 1/ |

It is apparent that as the streamflow velocity is increased,
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the magnitude of Ql is reduced, and by extrapolating the curve to

= 0 a critical Reynolds number for the existence of Q
I max 1

may be evaluated:

V. b\ g D-h,
_ _ln in: _ s
(Re) .= - _ 1.50x10° { =)

in / critical

At lower values of streamflow velocity the magnitude of Q1 is seen
to reach a maximum value, but complete understanding was not ob-

tained because the nature of the model would not permit,

The correct form of the relationship for h1 was found to be:

h V. b -
1 b inin  Pin"Po Ay
D v, D Ap
in
h . b,
. . 1 in in
The dimensionless depth, o was dependent upon — only
in
Vinbin /Vinbi
in that for > > » 1 ! s the current, Q1 , did not
in ~ in / critical

exist. Figure 21 is a dimensionless plot of the depth current, Ql’

. b. V. b.
in in in in
<
v, V. i
in in / critical

versus a density parameter for

The plot also shows data from Spurkland's (28) work with an under-
water diffuser discharging dense fluid into a stratified reservoir.

The difference in the relationships is due to the increased mixing
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Figure 21. Depth of Q1 versus density parameter.
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associated with the entering streamflow passing through the free sur-

face which lessens the density of the inflow.

3. The Mixing Current

The major reservoir current at high streamflow velocity was

the mixing current, Q,. The pertinent independent variables in-

3

volved in establishing the inflow-current relationship are similar to

those in the previous section,

h3 = f(hln, an, Vin’ Pin; S, A_y V1n7 g, Po),
and
v - ALp
V3 max f(Qin’ Vin’ S, ay’ Yin’ 8 Pip’ Py D, bin)'

The maximum velocity of the mixing current, Q3, was found

to be independent of the density of the incoming fluid. Figure 22 is
a dimensionless plot of the mixing current, densimetric Froude

number versus the streamflow Reynolds number. The plot shows

that the relationship is linear through a large range of data, but at
V. b,
low values of —151———12 it verifies a disappearance of Q3. Unfortun-
in
ately,insufficient data could be obtained in the region to establish a

criterion for the initiation of the mixing current. However, a linear
relationship may be provided for a limited range of streamflow Rey-

nolds numbers. The relationship (Figure 22) is



.6
.5
v
3 max 1/2x102 4
[ anax-po)
g h3 3
L o

85

0Pin = 1.0155 (gr/cm>)

®Pin =1.0123

Upin = 1.0087

A Pin = 1,0054
L 1 \ 1 1 1 i 1 1 -1
2 3 4 5 6 7 8 9 10 11

V. b.
in in lo3
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_ PP\ 112 4 Vin®
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It was expected that the depth, h3, of Q3 would follow a

relationship of the following form:

jox
©
'
Rl
jox

_3 Vin in in "o Ay in
D v, D Ap in D

but it is shown in Figure 23 that the depth of the mixing current,

h3 /D, was independent of all varied independent variables. From
this behavior, it must be concluded that h3 /D must be a function of
variables held constant in this study or

By

D in in

4. The Withdrawal Current

The withdrawal of water from the model reservoir, although
intended to be a simplifying step by maintaining a constant water sur-
face elevation during the duration of the experimental run, created a
withdrawal current at the elevation of the outlet which extended up the
length of the model reservoir. The outlet level was olaced about mid-
depth in the reservoir and held constant in order to distinguish the
effect of the withdrawl current, QZ’ as shown in Figure 24. The figure

shows a dimensionless plot of the difference in elevation of Q1 and QZ
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Run number

Figure 23, Depth of Q3 versus experimental run number,
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Figure 24. Diiference in elevation between Q_ and the reservoir outlet
versus the velocity of Q2 .
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versus the maximum velocity, V_, of the withdrawal current for a

Z,

constant Qin and QO ¢ The reinforcing action of the combined Q1 and
u

QZ is easily seen. The maximum reinforcing effect gave the com-

bined current a velocity of two and one-half times the magnitude of

the withdrawal current without any reinforcement.

5. Blocking

If the tests were continued for long times, the influence of the
length of the tank on the flow was noticed as a blocking phenomena.
As the currents approached the end of the tank,their forward movement
was impeded. In the case of Ql’ when p., Was large enough for

h, >h

1 2’ blocking caused the withdrawal current to select entering

streamflow as shown in Figure 25.

o

Blocking

Figure 25. Influence of QZ on the inflow after the blocking of Q.

This behavior was similar to the blocking prescribed by Spurk-
land (28) for a stratified reservoir containing a vertical obstacle or
submerged ridge with flows entering through a submerged diffuser.
There the main inflow approached a barrier or obstruction and was
blocked; with discharge at the barrier boundary another current was

created that carried part of the main inflow past the obstruction.
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V. DISCUSSION OF THE RESULTS

Some of the effects of entering streamflow on the currents of
a density stratified model reservoir were demonstrated in the
previous chapter., Correlations between the entering streamiflow
and the resulting reservoir currents were detailed and some
critical parameters established.

In this chapter discussions of errors involved in measurement
of the various quantities; limitations present in the investigation;
model-prototype relationships; and suggestions for further study

will be presented,

1. Summary of Experimental Errors

It is generally realized that errors will be present in making
any type of measurement. The probable error present in measuring
flow rates, velocities, densities, viscosities, and depths in this
study can be estimated as follows in Table 1. The allowable
tolerances for the flow rates and length parameters were estimated
tfrom the rotameter scale and the various length scales used, while
the tolerance for the average streamflow velocity was estimated
from the frame speed of the movie camera.

It was first thought that variation in temperature or salt con-

centration might induce considerable variation in the density or
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Table 1. Allowable tolerances in experimental measurements

Magnitude of average

Tolerance Units measurement
3
Qir\ +0.315 {em™ /sec) 12.6
V. :+0.86 (cm/sec) 30.0
in
v + 0.002 (cm/sec) 0.05
1 max
pin 0. 0005 (gr/cm3) 1. 0070
v ot 3%107° (cmz/sec 1. 2x10" 2
D=: 0.1 {cm) 45
h1 t 0.5 {cm) 23

viscosity measurements, respectively, but after examining the
variation of temperature within the model reservoir (Figure 26)
and the difference between reservoir temperatures and calibration
temperatures, it was concluded that temperature was negligible in
controlling densities. It was also determined that the concentra-~
tions of salt solution used had a very minor effect on viscosity.

In the measurements of the reservoir currents by means of
dye profiles, the steps involved the projection of slides into a
viewer cabinet. In doing so, the various images were first

/

aligned with reference bolts on the front side of the reservoir tank

in order to match the scale on the viewer cabinet. Moreover, the

distance in from the wall to various dye streaks was slighily
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Temperature (degrees Centrigrade)

Figure 26. Initial variation of temperature
within model reservoir,
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variable making slight parallax errors in the photographically
determined lengths, Thus, possibly the largest inherent error
in taking any measurement occurred in the determination of the
reservoir current velocities.

It is believed that the propagation of the above tolerances in
computing the parameters plotted in Chapter IV are the cause of

much of the scatter shown in Figures 18 through 24.

2. Limitations of the Investigation

Certain assumptions necessary to simplify the analysis in
this model study imposed limitations on the results obtained. The
streamflow rate, Qin’ definitely varies with time in a prototype
situation and would be expected to have a large effect in reservoir
density current flows, In this study the streamflow rate was held
constant, It was seen in the discussion of thermal stratification
that the density gradient varies with time and usually also changes
with depth. The density gradient was also made constant. The
effects of holding the streamflow rate and density gradient constant
limits the results considerably. The existence of the h, variable

in

is also limiting in that h_'s meaning should be questioned.
in

Figure 27 shows cross sections of the model configuration and

an idealized reservoir.
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Idealized reservoir

h.
in

# g

Model reservoir

Figure 27. Configuration of an idealized reservoir and
the model reservoir.

In the model reservoir a double slope configuration is necessary
to insure correctly scaled streamflow velocities while at the same
time providing adequate depth in the model reservoir. The depth
of water at the intersection of the two slopes is defined as hin
An idealized reservoir is usually described with the bottom of the
reservoir and the streambed as one slope, and hin is not really
defined, although in some cases sediment may alter the configuraw
tion, creating a type of hin parameter.

Time influenced the behavior of the model reservoir currents
in many ways. As the inflow currents approached the outlet of

the tank, their speed of advancement slowed down due to a blocking

phenomena, and the inflow current velocities became a function of
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time. Secondly, a noticeable shift in the density profile appeared
after a period of time due to the combination of withdrawal and
inflow in a model reservoir of limited size. Figure 28 shows the
density profile both before and after a typical run. Both of these
effects were to be disregarded by making two restrictions on the
investigation. The experimental data was taken at a reference
station which was 10.5 feet from the model stream mouth, and

the measurements were not taken beyond the time that blocking has
no influence. These restrictions limited the study to be valid only
for density flows in the upper reaches of a reservoir. This one
reference stationalsopreventedthe results from including the
effects of variation in x.

Although the flow in the model reservoir was intended to be
two-dimensional, variations from two-dimensional flow were
observed in the reservoir currents as a meandering from side to
side as shown in Figure 29. The meandering presented difficulties
in the measurement of the actual reservoir currents
because from the side view, the currents appeared to vary in
velocity with time. The problem was solved by averaging the

photographed current velocities, Vi max’ to obtain a net average

velocity of advancement, V. max” The meandering phenomena
1 X

appeared to be a function of the tank geometry and current veloc-

ity, and possibly the behavior could be described in terms of a
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Plan

. Ay P P e —am. ——— D=

Profile

Figure 29. Meandering of reservoir currents,

Strouhal number or Brunt - Vaisala frequency.

3. Model - Prototype Relationship_

The scaling of results obtained from a model study to a
prototype is based on the laws of similitude, which require the
model and the prototype to be similar geometrically, kinematically,
and dynamically, Geometric similarity implied that all significant
geometric parameters, in dimensionless form, are the same for
the model and prototype, and kinematic similarity exists when the
streamline patterns in the model and the prototype are the same.
Dynamic similarity exists when the ratios of forces at correspon-

ding points in the flow have equal values in both model and protatype
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and implies both geometric and kinematic similarity.
The requirement for dynamic similar fluid motions of any
incompressible viscous free surface fluid in a gravity field is
equality of Froude and equality of Reynolds numbers in both systems.

Specifying the equality of the Froude numbers,

Fr VvV,
e =1.0
Frp T ‘l grLr
or Vr = grLr

From the equality of Reynolds numbers,

ur
'V' - S e —
r . prLr

Since the velocity ratios must be the same, and since for terrestrial

events gr=],

Lo 2/3 23
r or -V )

For dynamic similitude of both viscous and gravity effects, the
choice of fluid determines the length ratio, and since similar fluids
are used in the model and the prototype, the criteria cannot be
satisfied unless the scale ratio is close to unity. Usually in open
channel systems, if the viscous effects are small in comparison

to gravity effects, only a Froude number similarity is required.
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. L
Using a Froude number scaling criteria and a length ratio, __Lm = _2()10 ,
p
Table 2 is formed. Table 2 shows the model-prototype scaling
parameters in this investigation.
Table 2. Model-prototype scaling parameters
Model Ratio Prototype
Reservoir: 3
length (ft) 20.0 Lr=5x10_3 4000
width (ft) 1.50 Lr=5x10_3 300
depth (ft) 1.48 Lr=5x10 -5 296 6
surface area (ft) 30 AR=2,5x10_ . 1.2x10 3
volume (ft7) 44. 4 V=1, 25x10 3.55x10
Stream: -3
depth (ft) 0.01 Lr=5x10-3 2
width (£ft) 0. 046 Lr-5x10 29. 2
velocity (ft/sec) 0.1-0. 9_4 Vr=0<. 0708 - 1.41-12.7
discharge (ft™/sec) 4.46x10 Qr=1.77x10 252

" The Froude scaling assumption requires that the model is large
enough to ignore viscous effects. In the experimental runs,
however, it appeared that the model reservoir currents behaved
as laminar flow, meaning that viscous effects were significant.

How can laminar flow in a modeling scheme provide insight
into flows in a prototype reservoir, which are expected to be
turbulent because of the large scale or large Reynolds numbers,
and how does a model using a Froude scale criteria compare with

the prototype reservoir? Consider the inertia forces and resistance



forces in the form of a Reynolds number with eddy viscosity, E,

included in the resistance term.

1 inertia
R = ———
¢ v+E

Similarity between the laminar model currents and prototype

currents should occur if

inzrtiaj ~ inertia
V+E model V+E prototype

Since the model is laminar in behavior, the eddy viscosity of
the model is assumed to be zero, Similarity will be established if
E can be of an order of magnitude to equalize the ratios.

prototype

The turbulent eddy viscosity is difficult to quantitize, but
an order of magnitude value may be obtained. Assume that reser-
voir currents due to entering streamflow are a type of columnar
flow somewhat similar to a two-dimensional jet. For two-
dimensioral jetflow,Schlichtirg (26) has shown that the turbulent

eddy viscosity may be expressed as a function of a characteristic

velocity, Umax’ and a length denoting half the width at half depth,

E = 0.026 b U
p 1
2

max’

Since it was seen that

73
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vV = 0,043 _c_nl; b =45cm; E = 0; and
m sec m m

v =vp - 1.2x107% em®/sec,

the modified Reynolds numbers are:

~ (78)

(195) prototype.

model

The Reynolds analogy hypothesis (29), i.e., the eddy
diffusion coefficient for mass transport approximates the eddy
viscosity coefficient for momentum transport, may also be assumed.
Predictions from lake and reservoir measurements by Bella (3)
and Orlob (24) have shown effective diffusion coefficients to range
from 0. lcmz/sec to 10cm2/sec by assuming a one-dimensional
assumption with no velocity profile. Expecting the coefficient to
be higher where density flows are involved, Ep :l—gg% may be

substituted into the prototype modified Reynolds number along

with the prototype values for velocity and width,

(195) ~ (216)

model prototype.

The two ratios of the same order of magnitude suggest that
viscosity in the small scale of the model simulates the eddy viscosity

in the actual reservoir allowing laminar flow to give insight to
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prototype reservoir flows. The validity of the Froude scaling could
be verified by comparing the characteristics of the model study with
characteristics of an actual prototype reservoir, but at this time

there is insufficient field evidence.

4. Suggestions for Further Study

A natural extension of this experimental work would be to
eliminate a number of limiting assumptions by examining the
effect of an increased number of interacting independent variables.,
Important extensions would involve the variation of the streamflow
rate and the density gradient. It would be also important to examine
the variation of various factors with the length of the tank and time.
An important aspect involving length of the reservoir and time is
the blocking effect and meandering. Specifically when and where
does blocking occur?

Another phenomena which merits more study is the reinforcing
effect between inflowing density currents and withdrawal currents.
This phenomenon appears significant in the control of reservoir
detention time,

Field data for reservoir density currents is insufficient.

Field studies are needed for the verification of laboratory scaling
criteria and a greater understanding of the behavior of flow

patterns,
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VI. SUMMARY AND CONCLUSIONS

An experimental study of entering streamflow effects on
currents of a density stratified model reservoir was made. The
major conclusions will be summarized as follows:

1. For the range of values tested,the entering model stream-
flow created two possible main inflow density currents in the model
reservoir.

2. The upper inflow current increased its magnitude and
the lower inflow current decreased its magnitude as the model
streamflow Reynolds number increased. For the range of stream-
flow parameters tested,these currents could be described by the

following relationships:

— vV C /V b
% - —%€5 1.0.5 Log in_in_ D + 3651 ,
1 max b
V. D-h
__ in 1

1/2

_ oo =0\ 1n -4 V. b
v _ max o 3 g 1.67x10 in in +o.42 1.
3 max prna.x Vin

- - —

3. The lower inflow current will no longer occur at a model

streamflow number greater than

V'nb' 5 D-h1
in_in
=1.50x10 )

Vin

4. The elevation of the upper inflow current was independent
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of Vin and pin' The elevation of the lower inflow current was
dependent on pin and the mixing which occurred at the stream mouth.

5. The interaction between two reservoir density currents
created a significant reinforcement of both currents.

6. The blocking effect due to reservoir stratificati.on and
the influence of geometry may have significant influence on internal
model reservoir currents created by entering model streamflow.

7. A reservoir model with laminar behavior probably gives
much insight to problems associated with flow in prototype

reservoirs,
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APPENDIX A. Summary of Notations.

For simplicity, symbols of secondary importance which are

defined in the text are omitted from the following list:

C

Concentration of solute in the stratified fluid
Depth of model reservoir
Diffusion coefficient‘
Density gradient

Turbulent eddy coefficient
Froude number
Gravitational acceleration
Depth from free surface
Depth of change in slope
Coefficient of entrainment
Pressure

General current designation

Modified Reynolds number including a turbulent
eddy coefficient

Slope of streambed

Slope of upper reservoir floor

Rectangular coordinate in direction of streambed
Time

Rectangular coordinate normal to s'vertically
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APPENDIX A (continued)

T1 Temperature

u Velocity component in x-direction
u(d, {,¥) Lagrangian velocity in s-direction
v Velocity component in y-direction

/
v Rectangular coordinate normal to s and t

1 max  Maximum instantaneous velocity of various
reservoir currents

1 Maximum average velocity of various reservoir
max

currents
X Horizontal rectangular coordinate
y Vertical rectangular coordinate
Yl Specific weight
) Anglé of upper reservoir slope
u Kinematic viscosity
\)l Dynamic viscosity
p1 Density
pl(S/' V¥, ) Lagrangian density with respect to s, v, t
Tl Shearing stress
¢ Angle of streambed

Streamfunction

v Gradient operator
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APPENDIX A.

in

max .

out

res

(continued)

Subscripts

Ambient fluid
General subscript
Inflowing fluid.
Model

Maximum

»Outflow

Prototype

Reservoir



APPENDIX B,

max

Values of Physical Constants

cm.
cm.
cm.
cm.
cm,
cm,
degrees

gr/cm3

3
cm /sec
3
cm” /sec
cm.
cm/sec

gr/cm3

45

45,7

580.

0.952

23.0

9.2

1. 001

12. 6

12.6

1.27

980

1.017

85
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APPENDIX C. Summary of Data

Test 11 12 13 14 15 16 17
s, 0.0052  0.0070 0.0070  0.0052  0.0096 0. 0096 0.0096
Vin (cm/ sec) 5.45 6.37 7.28 5.85 8.32 7.47 8. 38
pin(gr/cm3) 1.0155 1.0123 1.0087 1.0054  1.0155 1.0120 1. 0083

Ap 4 4

—A—;(gr/cm }x10 3,13 3,25 2.95 3,16 3,31 3,13 3,24
d._ (cm) 0.518 0.445 0. 388 0.484 0. 340 0. 379 0.338
T, (°c) 13.0 12.5 13.0 12.5 12.5 13.5 12.5
\)in(c.mz/sec)XIO2 1.213 1.227 1.213 1.227 1.227 1.199 1.227
v (cm/sec)x10>  4.07 8. 48 5.93 6.57 3.81 5,60 5.80

] max
v (cm/sec)x10> 5,72 8. 48 6. 00 5,21 5,68 5,25 5,34

2 max
v (cm/sec)xlo2 4.49 4.74 4.66 4. 66 4.87 4.75 4.53

3 max

h1 (cm) 38.0 24.5 19.5 10.5 37.0 26.5 18.0



APPENDIX C. (continued)

Test

hz(cnn

h3(cnﬂ
T (°c)

res

Y (crnz/sec)XIO2

res

1.079

231.0

2770.0

2.43

0.589

0.144

1.093

242, 7

3040.0

1.67

0.400

0.133

L8



APPENDIX C. (continued)

88

Test 11 12 13 14 15 16 17
h -h,
= -0.333  -0.033 -.078 0.278  -0.311 -0. 078 0.111
— 2
2 2
g’ax 2 <10 0.411 0.610 0.434 0.375 0.408 0.377 0. 384
out
in -po Ay
5 ) & 1.032 0.772 0.577 0. 309 0.977 0.780 0.500
"\73 2
max x10° 0.453 0. 443 0.470 0.470 0.472 0. 460 0.457
pInax~p0 ‘
g h
P 3
max

b
b, 5
<Vm m> 5 12870. 5080. 4720. 2760.  16900. 6740. 5080.




APPENDIX C. (continued)

Test 18 19 20 21 22 23 24
s, 0.0096  0.0165 0.0183  0.0165  0.9165 0.0218 0.0209
V. (cm/sec) 8. 48 11.19 11.13 13. 47 12. 20 16. 36 13.81
o, (gr/cm>) 1.0054 1.0155 1.0118 1.0087 1.0054 1.0155 1.6120
%;%(gr/cm“)xm“ 3.33 3.16 3.13 3.07 3. 00 2. 96 3. 06
d._ (cm) 0.334 0.253 0. 255 0.210 0.232 0.173 0. 206
Tin(OC) 13.0 12.5 13.0 13.0 12.0 11.0 11.5
v (cm?/sec)x102 1.213 1.227 1.213 1.213 1. 242 1.270 1. 256
v (cm/sec)x10° 6. 40 3.56 5. 21 5.20 6.23 3.18 4,66
1 max
v (cm/sec)x10° 5,38 5. 38 6.10 4.36 4.95 5.34 5.08
2 max
v (cm/sec)x10> 4. 49 4.87 5.26 5.34 5.00 5.72 5.04
3 max
h  (cm) 10. 5 37.5 26.0 20.5 9.5 37.0 29.0

68



APPENDIX C. (continued)
Test 18 19 20 21 22 23 24
T, (©C 17.0 17.5 17.0 16.5 16.0 14.5 14. 0
2 2
v__ (em®/sec)x10 1,093  1.079 1.093 1. 106 1.120 1.165 1.181
1 max
> 267. 8 151.0 218. 1 220.9 254, 2 124. 8 180. 5
res
in in
. 3110.0  4050.0 4070.0  4930.0  4360.0 5730. 0 4890. 0
in
D
— 1.30 6.00 2.37 1.84 1.27 5.63 2.82
D-h
1
By
= 0.233  0.834  0.578 0. 455 0.211 0. 822 0. 645
by
= 0.133  0.144  0.144  0.133 0.155 0.155 0.133
h -h
0.278  -0.322  -0.067 0.056  0.300 -0. 311 -0.133

06



APPENDIX C. (continued)

Test 18 19 20 21 22 23 24
2 g‘ax ° <10 0. 387 0. 387 0. 439 0.313 0. 356 0. 384 0. 365
out
P in_ po A
= Ap" 0.294 1.021 0.767 0.557 0.326 1.090 0.799
‘—,3 max 2
—=Rax 1 x 10° 0.452 0.472 0.510 0.525 0. 468 0.534 0.509
P - 0 2
g max h3
pmax
Vinbin D
( Y 4040. 24, 300. 9660. 9070. 5540, 32, 210. 12, 800.
AV I -
in 1

16



APPENDIX C. (continued)

26

Test 25 26 27 28 29 30 31

s 0.0326  0.0387 0.0383  0.0409  0.0387 0. 0622 0. 0030

V. (cm/sec) 20. 28 21.10 23.03 23.52 22.70 28.83 4.16

pin(gr/cm3) 1.0155  1.0155 1.0120 1.0089  1.0050 1.0151 1.0108

Ap 4 4

A—-y—(gr/cm )x10 3.16 3.13 3.00 3. 06 3.13 3.18 3. 11

d,_ (cm) 0.140 0.134 0.123 0.120 0.125 0. 098 0.410

T, (°c) 12.0 12.0 12.0 12.5 12.0 13.0 22.0

\)in(cmz/sec)xlo2 1.242 1.242 1.242 1.227 1. 242 1.213 0.969

v (cm/sec)xlO2 2.80 2.54 3. 39 1.53 10. 21 1.70 11.96

1 max

_2 max(cm/sec)xlOZ 4.91 5.59 6. 35 4.91 5. 04 5. 34 11.96

(cm/sec)xlO2 5.72 5.84 6.14 6.18 10. 21 6.42 1.99

3 max




APPENDIX C,

(continued)

Test

30

h1 {cm)
h2 (cm)

h3(cm)

o
T
res <)

2
\Y res(cm /sec)

v
1 max

\Y)
res

37.0

23,5

16.0

1.120

69. 4

10, 580.0

5.63

0.822

€6



APPENDIX C. (continued)
Test 25 26 27 28 29 30 3]
h,
Y 0.155 0.155 0.166 0.166 0.166 0.155 0. 178
hy-h,
= -0.266  -0.311  -0.122 0.211 0.344 -0. 311 -0. 011
v d 0.353 0.402 0.457 0.353 0.362 0.384 0. 861
2 max o 102
Qout
in_ po A
5 E§ 1.029 1.033 0.814 0.572 0.283 0. 986 0.710
V3 max 1 102
0 -0 z 0.534 0.546 0.554 0.554 0.921 0. 600 0.175
g' max (0] h3
1 P max ]
V’nb’n D
<\1V =50 32,600. 42,500. 22,400 12,200 9750. 59, 600. 3920. 0
in 1

6



APPENDIX C. ({continued)

Test 32 33 34
SV 0. 0021 0. 1575 0.0011
V. (ecm/sec) 3.52 55.5 2. 74
pin (gr/Cm3) 1. 0087 1.0150 1.0123
Ap 4 4
Z}%(gr/cm )x10 3.06 3.12 3. 01
din (cm) 0.423 0. 048 0.438
T. (°C) 22. 0 18.5 18.5

in

2

vin(cm /sec)x10 0.969 1. 030 1. 030
v (cm/sec)x10 5.76 0.53 6. 06

1 max
v (cm/sec)x10 4,53 4.90 4. 62

2 max
v (cm/sec)x10 0. 98 30.90 1.95

3 max

G6



APPENDIX C.

(continued)

Test 32 33 34
h, (em) 13. 0 34,0 29.0
h, (cm) 23.0 23. 0 23.0
h3 {(cm) 6.0 7.0 7.5
T (°C) 22.5 20.0 20.0
res
% (cmz/sec) 0. 960 1. 004 1. 004
res
——————vl max 274.0 24. 2 277
res
V. b,
— 1615.0 24,000 1186
in
D
Br, 1.41 4. 09 2.81
hy
—_ 0. 289 0. 756 0. 634

96



APPENDIX C.

(continued)

Test 32 33 34
hj
= 133 1 1
= 0 0. 155 0.166
h,-h,
0.222  -0.200  -0.133
D
— 2
2max o 42 0.326 0.353 0.332
Q
out
p. -p
n_o 4y 0.572 1. 029 0.814
D Ap
3 max %10 0. 099 2.910 0.170
g pmax_po h
p
max
inbin D
2280. 0 8,300. 3330
V. D-h 9

L6
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ABSTRACT

A marker and cell method for computations involving nonhomogeneous,
incompressible, viscous fluids is developed. New boundary conditions
which are useful in hydrodynamic and oceanographic simulation are presented.
A wide range of applications are included featuring both graphic and numerical
computer output. A flow chart and a listing for those interested in imple~

menting the method are included.

-



THE NUMAC METHOD FOR NONHOMOGENEOUS
UNCONFINED MARKER-AND-CELL CALCULATIONS

I. INTRODUCTION

In the field of fluid mechanics, the governing equations of mo-
tion are non-linear partial differential equations. Because of this
non-linearity, analytical solutions can be obtained only for highly
simplified flow patterns. In order to solve the equations of motion
for more sophisticated problems, various numerical methods have
been successfully applied. These methods include: (1) reduction to
ordinary differential equations so that numerical integration tech-
niques may be used; (2) linearization techniques to reduce the equa-
tions to the point where analytical solutions may be obtained; and
(3) finite-difference methods to reduce the equations to a set of
algebraic equations which are solved by either direct or iterative
techniques.

The first two of these methods are limited in application because
they are restrictive and involve much detailed analytical work. A
stringent restriction placed on fluid problems by these techniques is
that of steady flow; i. e., time derivatives of variables must vanish.
The third method mentioned above--finite differences--allows the user
to solve most types of fluid problems, including those involving un-

steady flow.



Fluid flow is generally described using one of the following view-
points. (1) Eulerian: Attention is focused on some point in space and
the changes in the fluid can be described as functions of time at this
point. (2) Lagrangian: Attention is focused on an infinitesimal fluid
element and the changes in this fluid element can be expressed as
functions of time. Major analytical works in fluid dynamics use one or
both of these viewpoints; correspondingly numerical techniques have
developed along these lines.

The early papers on numerical techniques for fluid problems
(Harlow, 1955; Evans and Harlow, 1957) used the Lagrangian viewpoint.
Instead of considering every infinitesimal fluid element, attention was
focused on a finite number of these elements. By marking the ele-
ments being considered, the fluid was conveniently represented by an
array of particles. This representation by particles is the primary
feature of all Lagrangian numerical techniques; the fluid properties
such as density and velocity are localized to a finite number of particles
which move with the fluid.

Lagrangian methods have the following advantages. Some parts
of the fluid may be resolved more finely than others, fluid interfaces
including free surfaces may be precisely defined, and arbitrarily
shaped rigid boundaries can be used. On the other hand, large distor-
tions from the initial configuration produce large errors.

Later (Langley, 1959; Welch et al., 1966) Eulerian techniques



were developed for fluid problems. Instead of considering the fluid at
all spatial points, attention is focused on a finite number of fixed
points. Eulerian numerical techniques are characterized by finding
the values of the fluid variables at the mesh points of a fixed grid.

Eulerian methods have several useful advantages. The fluid may
undergo arbitrarily great distortions without loss of accuracy and out-
flow walls are particularly easy to handle. However, local resolution
is difficult to achieve and interfaces become blurred.

It was shown by Welch et al. (1966) that a system containing two
discrete fluids could be handled using a mixed Eulerian-Lagrangian
scheme. In this scheme the velocity and pressure were considered as
Eulerian variables and found at the mesh points of a fixed grid. The
density was considered a Lagrangian variable and was localized to
fluid particles.

The method developed by Welch et al. at Los Alamos Scientific
Laboratory was called the Marker-And-Cell (MAC) method. It repre-
sented a significant advancement in the art of computer simulation of
nonhomogeneous, incompressible, viscous fluids.

One of the shortcomings of the original MAC code was its inflex-
ibility in the type of boundary conditions it could handle. For instance,
MAC was restricted to inlet velocities that were constant across the inlet
and held fixed for the entire run. Such inlets are not useful for finding

the transient flow from an "infinite" reservoir whose upstream section




4
is modeled by an inlet.

A second drawback was the consumption of computer time. By
adding the technique of overrelaxation, it was found that savings of up
to fifty percent could be obtained.

This paper presents the NUMAC, a method for nonhomogeneous
unconfined marker-and-cell calculations. The NUMAC is especially
useful in oceanographic and hydraulic problems which require an inlet
or outlet for modeling regions upstream or downstream from the
region of interest. Two types of nonhomogeneities are considered:
those involving two immiscible fluids and those involving a single
fluid with small local density variations. KExamples of both types are

included in Chapter IX.



II. EQUATIONS AND BOUNDARY CONDITIONS

To describe the motion of a nonhomogeneous incompressible

fluid with constant viscosity it is necessary to determine

velocity, W = ui+vij;
density, p; and

pressure, P;

as functions of time and position. To find these unknowns Mercier

(1968) has shown it is sufficient to solve the equations describing

conservation of mass,

conservation of momentum, and
incompressibility.

These equations are respectively:
The incompressibility equation

—g% +(w-v)jp=0
The continuity equation

(2. 2)

The equation of motion for laminar viscous flow, commonly known as

the Navier-Stokes equation



—
—_—

p%tﬂ+p(~\;-v)w:p—g’-vp+ Z(v-pv);+vX(va~\;), (2. 3)
g being the gravitational forces per unit volume and p the vis-
cosity.

When solving equations numerically, it is frequently desirable
that the variables be nondimensionalized and have magnitudes less
than unity. Equations (2. 1)-(2.3) can be scaled by the transforma-

tion of variables

x = Lx'
y = Ly'
Y
W
W= Ww'
P =Rp'
P = RWZP'
By defining the operator
gr 8,
ax' = oy’
Equations (2. 1), (2. 2), (2. 3) become respectively
g{)—,'-+ (w'-v')p'=0



where E' = LE/W2 and p'=p/LRW. Thus the equations to be
solved have the same form before and after scaling. Hereafter, it

will be assumed that the equations have been scaled appropriately.

Boundary Conditions

In addition to the equations of motion, boundary and initial con-
ditions must be satisfied. There are usually free surface and material
boundary conditions. It is frequently desirable to study some small
portion of a larger flow. Conse quently, inflow and outflow boundary
conditions are also considered.

Let s(x,y,t) =0 be the entire fluid surface. In general s
may contain material boundaries, free surfaces, inlets and outlets.

The unit vector normal to s is defined

8s-> Os—

. es ity
Tvs] T sz, Bs
| \/(ax) * ay)

Thus, we may express n as

n:nx1+nyj (2. 4)
where
os os
n = Ox and n_ = 4
X le[ y lel

The unit vector tangent to s is any vector of unit length which is a




solutionto n - m = 0. Inorder that n and m form a right

handed coordinate system choose

m=-n i+n j. (2.5)
Y X

At a material boundary the normal component of the velocity vanishes.

The velocity W can be expressed

w-on=0, (2. 6)

At a free surface the normal and tangential components of the stress

must vanish.

— —

The stress o at a point on a free surface with normal n is

-

-
c=Il-n.

Here I 1is the stress tensor

Tii T i;
XX Xy
1= ,
TVIOT i
|y vy ]

——

Therefore, ¢ 1is given by



Tii Tiillnd
XX XY X
- =
Tii T3] la75
| yx yy' Ly

Since Equations (2. 4) and (2. 5) can be solved for i and j to

yield
T=nn-nm,
X Yy
T:n;1.+nr_n.
Y %
T can be expressed as
c=(nT +n T )(1’1;1,—1’11’_1’1.)4-(1’1’]— +n T )(n;+na)
X XXy xy X Yy XyX YVV Yy X
setting
T;:O';l"l‘o‘ 1’—1—’1’
n m

) 2 2 .
c =(-nn T n T 4n" T +nn T ).
m Xy XX Yy Xy X yx Xy vyy

In general for a Newtonian fluid

P o o 24 du v | ..
dx Oy ox ox | v
IT = tp + B -EH
0 _P v 8v fu dv 0
| 9% By_J oy oy
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For an incompressible fluid the last bracketed term vanishes.

Substituting the II components into the equation for T

2 ou ou 0v 2 ov
= -PH2p—) + 2 —+ =)+ -P+2p—).
0-n rlx( * ”ax) nxnyu(ay 8X) ny( i'LE)y)
. s 2 2 : .
Using the condition that n_ + nY = 1, this may be rewritten as

2 du 9 2 9v
=_-P+2 — + 2 —+—)+ 2 -
"n Toenm 0 anyu( 8X+ ) ) Ay P oy

Similarly, if the components of [I are substituted into the equation

for o the result is
m

: 2
Ov B, nfnfy e

oy 9x X y oy ax)'

=2
o-m nxnyp(

The free surface boundary condition is expressed by setting o

and ° equal to zero. Thus,

2 9du ou Jv 2 0Ov
P=2 —+ 2 —_-—)+ 2 — 2.7
Ui ax nxnyp( dy ax) ny a 9y’ ( )

dv 0du 2 2 0u Odv
2n n (—-—)+ (n -n }(—+—
X y 0y 0x X y 0y 0x

I
o
oY
oo}

The density at an outlet must satisfy

This condition is also frequently used at an inlet but is not necessary
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in all cases.

Two inlet velocity boundary conditions have been successfully
used. One holds fhe inlet velocity constant; that is, the other requires

the normal derivative to vanish at the inlet.
(n - V);v’ = 0.

Any initial condition may be assigned for [P w or P,
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III. DIFFERENCE EQUATIONS

The general method of solution of the system of partial differen-
tial equations (2. 1)-(2. 3) will be to represent the continuous variables
x, y, and t as multiples of 6x, 8y, and 6t. Then the partial
differential equations can be approximated by finite difference equa-
tions and solved numerically for _V;, p, and P, at x =1idx,

y = jby, and t = nbt for discrete index values of i, j, and n.

The choice of the difference operator and the choice of the values

of i, j, and n for which to define the variables are different as-

pects of the same problem: to find the best approximations to Equa-

tions (2. 1)-(2. 3).

Variable Placement

The regibn in which the flow takes place is covered by a double
grid system (see Figure 1). The solid grid divides the system into
cells; the dashed grid is used for variable placement. The horizontal
component of velocity is defined at the sides of a cell, the vertical at
the top and bottom. Pressure, density and viscosity are defined at
the center. Although there are placements of the field variables rela-
tive to the mesh difference from that shown in Figure 1, Harlow (Welch
et al., 1966) reports that this is the only one currently developed which

satisfies the physical laws.
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| - 6x > I
| |
VR SR R S
1 | | |
J+2 ———---—[— I ] A
R Y SO0 S R P
l | |
| |
SR S N DA S
S T
t I [
i-1 i-3 i i+; i+l

Figure 1. The double Eulerian mesh. The locations of the fluid
variables are indicated by, e: p, P; A: u; ®m:v. The
ijth cell is highlighted.

Before the Navier-Stokes equation is finite differenced it is con-
venient to put it into a slightly different form. Substituting Equations

(Z. 1) and (2. 2) into the left side of Equation (2. 3) and simplifying, the

Navier-Stokes equation, written separately in the i1 and j direc-

tions becomes

%fﬁu) + 58; (Puz) + % (puv) = P8 - g + 2[%(#‘2—:) a‘i(u%)]
+%[M§—;-—§§J, (3. 1)

and

a(aiv)vL %(puV) t 3y (pv?) = pe, - g; Z[a% (ug%> 5% (ug—; ]
KA L) (3. 2)
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Although the partial differential equations are equivalent, it is
clear that the finite difference forms of (2. 3) and (3. 1), (3. 2) are not.
Harlow (Welch et al., 1966) has shown that the finite difference
analogy of (3. 1) and (3. 2) satisfied Newton's Second L.aw more pre-
cisely than the analogous form of (2. 3). The system of Equations
(2. 1), (2.2), (3.1) and (3. 2) can be written in finite difference form

as follows:

n+l
p.. -p.. (pw. 1.-(pu). 1. (pv).. i-(pv).. 1
1] R it3] 1-2) 4 ij+3 -2 _ ¢ (3. 3)
ot ox oy ’
u.+£.-ui 1 V..+£—V.. 1
1 2.] _ZAJ + ]‘J 2 1J_2 - O' (3.4)
ox oy
n+1 ot
1. S ; -— ) 3.5
(Pu)iysy = 8y T ax (B i+1j) (3.5)
where
( 2) ( 2) ( { )
¢ (ou) + 6t PU ) TP i PUV) iy 17 PUV) L
i+dy T P 6x Sy
2
+ [IJ« . ) —u, 1)
(6x)2 itlj it3g it} ij i+3] 1—55
u. 1.
1 it3j+1 itz itlj+sz ij+3
by H1+%j+§ oy ox
ied ieggor ViljorT iy
B Hi‘i'gj—z oy ox pi-l-é‘jgx ,
n+l ot
(pv)13+% t"ij+% 6y( ij ij+1 ’ (3. 6)
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where
2 2
tpuvly syp1-lpuv) iys lov 7 PY )i
L... 1= (pv),. Lt ot +
1j+3 ij+3 bx by
+ 2 m (v.. 3-v.. )-p Av.. .-v.. i)]
it gk i’ i ij+s ij-z
(by)
1 Tirsiel T Niedy o Vienges Viged
+‘g" M. 1., 1 +
X i+3j+3 oy ox
gt g, Vigey Vi 1j+d N
EAETE Te Sy bx Pijrity

Equations(3. 3)-(3. 6) require quantities which have not yet been
defined. For terms involving variables where they have not been de-

fined, e.g., p. ., an average of defined quantities is used. Thus

it3]

]
Pitl; T 2 WPipn; pij)

For terms involving products such as (pu)i+~1—j a product of the
2

respective quantities is used.

( 11 = L-)
Py T i iy

1
= = + 1. ).

2 Pipryteyy) ey
The only exception is the momentum flux terms such as

. Wwhich are evaluated

(puV)i%j—z



16

r’(m-ﬁpiﬂj-l)( RESEEMMTRIE
2 Yirliol 2
v,., 1tV .
- 1i- 5
if (1J221+J£)2O
(puv),, .. :4\)
itzj-z o +p
( ij 1+lj) Y ij-3 1+1j-§)
2 i+tz] 2
VijoiTVig15o L
- 2 -2 <
L if | > ) 0

A similar prescription applies to the other momentum flux terms.

For computational purposes it is convenient to put Equations

(3.3)-(3. 6) in a different form.

Equation (3. 3) becomes

S O e 15 M B L B = S
Pij TPy 6% ay
. n+1
Equation (3. 4) can be solved for u, ij;
-2
P -P
n+l §i+§j +§t_( i i+lj)
Y415 T ntl 6x n+1 :
Pitl] Pi4d
. . n+l
Equation (3. 8) can be written for u, 1 as
-2

n+l g'1-%1'
Y457 ntl

P. 1.

1-32]

For the v components

n+l Siiad
V.., 1 = bl
1jts3 n+l

ot (Pi-lj'pij)
+ == .

Ox

n+
P

1

1-3)

P -P
(P, -P )

PRI N
n+1

oy

PijJrl

2

s

(3. 7)

(3. 10)
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4 (P, .-P.)
o 17 F.
AT AL L. (3. 11)
ij-3 n+l Sy n+1l
P.. 1 P.. 1
-2 1)-3
If Equations (3. 7)-(3. 10) are substituted into the continuity
equation (3. 3) for t = (n+l1)6t, the result is
. £ P -P P -P
oGy Sy e Byhey Pug®y
&x n+1l n+l odx ntl B n+l
Pird Pisd Pir; "]
P .-P P -P
. L C’ijJré C’ij-% R NI V50 S S 0
Sy ntl = n+l ox n+l B n+l o
Pijrz Pij-d Pitd Pij-4
This may be put in the form
1 2 3 4
P.=B.P. . +tB ' P. . +B..P.. +B P.  +A. . (3.12)
ij ij it1lj ij i-1j ij ij+1 ij-ij-1 ij
The coefficients are given by
P T I T (T . T
ij C. 5x n+l n+l Sy n+1l n+l ’
: Pirsy Picd “iprd Pij-g
1 1 6t 1
B.. =
ij C. 2 ntl
ij &x p. 1.
1+35]
BZ 1ot 1
ij C.._ 2 ntl’
ij 0x p. 1.
1-2]
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ij C 2 n+l
ij oy Piitl

gt L ot 1

ij 2 n+l’
ij by Pij-1L

and

c ot 1, 1 P 1,

ij 5y n+! n+1 5,2 ntl n+1
Py Py T Pk P

Differenced Boundary Conditions

The region in which the fluid motion occurs has been covered
with a mesh. It is necessary to approximate the boundary of the
fluid, s, in terms of line segments for the mesh. The algorithm
requires quantities from surrounding cells for the calculations in any
particular cell. Thus to calculate quantities near a boundary, it is
necessary to create a layer of image cells outside the boundary of the
fluid. The quantities for these cells are determined by the boundary
conditions at the interface of the image and actual cells. In this way
the boundary conditions are accounted for in the algorithm.

After the boundary has been "rectangularized" into line segments
of the mesh, all cells are flagged according to the following scheme.

I. Interior cells

A. EMP = cell containing no fluid particles.
B. SUR = cell containing particles adjacent to an EMP cell.

C. FULL= cell containing particles with noadjacent EMP cell.

D. REG = interior cell containing particles.
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II. Boundary (BND) cells.
A. OUT = cell defining outlet.
B. Inlet cells.
1. INC = inlet cell with constant velocity.
2. INM = inlet cell with velocity matching the adjacent
interior cell.
C. Rigid boundaries.
I. NOSLP = bpundary cell with no tangential component
of velocity.
2. FRSL2 = boundary cell with tangential component of
velocity equal to adjacent interior cell.
3. COR = boundary cell with interior cells on two sides,
may be either FRSLP or NOSLP.
D. EMPBDN = BND cell that is needed only for indexing
purposes.
Boundary cells never change flags; interior cells may change flags as
particles enter or vacate a cell. Figure 2 shows how the cells are
flagged for a typical problem.
Figure 3 depicts a boundary between a cell and its image. The

quantities u,

3.0 U 1., V. o1, p. .., and P, .. are needed in
-2 i-zj i-lj-z Ti-lj i-

1j
the calculations and must be determined from the boundary conditions.

All types of boundary conditions are derived for a cell and a boundary

oriented as in Figure 3. All other orientations of boundaries are
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analogous. Foraboundaryorientedasin Figure 3 n_= 1 and n

1 OuT 1
EMP
= o
& REG -
&
f=y
FRSLP 2
EMPBND ouUT} 1
I EMPBND
2 COR

Figure 2. Cell flags for a typical reservoir problem.

P, .
i-1j
u A o A O S ]
1-2) 1-2
i-1j
-—
Yi- 1j-4 S— Boundary
i-1 ;

Figure 3. Cell i-1, j is a boundary cell.

For all types of boundary cells,

Pio1y ™ Pij.
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At a solid wall two ways were used to determine the tangential

component (in this case v ) of velocity. A wall was NOSLP if

i-15-4

w=0.

A wall was FRSLP if

— -

{(n-v)w = 0.

Continuity in the boundary cell was used to calculate u.
1-

The

tvjfa

J

pressure boundary value was found by substituting the density and
. . . . . ,.th
velocity values into Equation (3. 5) written for the i- 15 cell.

FRSLP Boundary Conditions:

u 1. = 0
i-3]
-3 TN
v 1 = v
i-1j-z  ij-2
P =P . -
i-15 7 Tij T Pyj8x

NOSLP Boundary Conditions:
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4 ) .
_ ) Hii%iedy Vij+§(“if“ij+1 1j-+ i3 0
i-1j ij 6x - by

- 6

The boundary condition at an inlet is also of two different types.

the velocity was constant and normal to the boundary,

Yi-lj-3 0 Cij-3

As for the solid wall, the pressure is found from Equation (3. 5).

INC Boundary Conditions:

i-3j IN
Yi-15-3 7 Vig-3
35T ik
2p,
1
P, . =P - 6% - —L (u, .-
o157 T4 PitxTT T Tex (070N

If
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INM Boundary Conditions:

u = u = u, .
1-2] 1-2] 1t3)
V. L1 = Vv,
i-1j-z  ij-z
P ..=P
i-1j ij
At an outlet wu, ;. and u. 3. were calculated from continuity.
1-3) 1-2)

A satisfactory pressure boundary condition was found to be

P ..=P,.
i-1j ij

It was assumed that the fluid did not accelerate as it left through an

OUT cell. L Thus

' .1 = V.,
i-lj-3  ij-3 .

OUT Boundary Conditions:

x )

= + -
b7 e ey M

V. .1 = V..
i-1j-3 ij-2

s )

u -
i-3j i-—';:_] by vi-lj+% Vi— lj-i'-

e
i

P . =P
i-1j 1j

With acceleration terms from Equation (3. 5) present, velocities
at the outlets were much too large.
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At a free surface,Equation (2. 7) may be differenced for a pres-
sure boundary value. As pointed out by Hirt and Shannon (1969) for
the free surface velocity boundary condition, Equation (2.8) is difficult
to apply without knowing  the exact location of the free surface. The
approximation for the free surface in terms of the differencing grid is
inade quate; there seems to be no general method for determining the
free surface in terms of the fluid particles. Continuity does not yield
a surface velocity boundary condition since it is valid only for regions
completely filled with fluid. An improved approach due to Chan
(1969) involves interpolation for the velocity boundary values from
"within" the fluid toward the free surface. The cases when there are
one, two, three, or four EMP cells surrounding a SUR cell are con-

sidered.

With one empty cell as in Figure 4a the velocity Vij+l is in-
2

2
terpolated and the pressure is calculated from Equation (2.7)
s T Vig-d T Vg2

57 By VigrViged

With two empty cells as in Figure 4b both velocities are inter-

2
plated. The pressure is calculated from Equation (2. 7) using

When it is impossible to interpolate because the cell across
from the free surface is a BND cell,the free surface value is set
equal to the boundary value.



1 1
= — = — Th
nx NB and ny NE us
2
TS AR ES S S B P S )
= 2v.. - v
1)t3 1]-2 1]-3 ,

M. .
1
p -2 = - -
2 by et e

1
- +v.. -V, . -V. .
* 6x(vij+’g Vi_]-% V1-lJ+§: 1-13-% .

If there are three empty cells as in Figure 4c,the value of Vil
is interpolated. The horizontal values wu. ,. and u. .. are
1+3) 1-2z]

calculated using the values from the previous time cycle.

- , + g 6t
Yitd; (ui+§J)OLD Ex
i-3i T it
v = 2v.. -v

ij+3 ij-z  ij-3
P.=0
ij

Finally, for four empty cells as in Figure 4d

1, =

5
Uipdy T legL) t g, ot

OLD

j
¥

. 1. ., 3.
1-3) 1+3)

3
See footnote 2, page 24.

25

Here in free surface boundary values is the only time velocity

values are needed from a previous time cycle.
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EMP
Vij+3
.

BND, SUR BND,
FULL, FULL,
or 13. or
SUR 1) SUR

F

V.. 1

1)-2
FULL or

SUR

Figure 4a. One empty cell.

EMP

u, .
1+§J

Figure 4c. Three empty cells.

[

—.
|

(N1

FULL or

Figure 4.

EMP
Vij+s
'77
BND, SUR EMP
FULL,
u, ;. L & U, .
1-3) P.. 1t+3)
or SUR 1
V.. .
ij-z
FULL or
SUR

Figure 4b. Two empty cells.

EMP

u, .
1+%J

Figure 4d.

SUR cell configurations.

Four empty cells.
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1)

+ g 6t
Vij4d (vij+g oLD @ 8x

ijtz

=

ij-
i
If the boundary cell is a corner cell (see Figure 5), special cal-

culations are required. There are two types of corner cells depend-

ing on whether the boundary in which the corner occurs is FRSLP or

NOSLP. For either type

N
[ew]

u. R
1+%J

V..
ij+;

If the boundary is FRSLP,

-3 7 Viey-d
The pressure pij is different in the calculation of pi+l' and
J
. P
Piar For P
P = P -
i3 7 Tije1 T Pije18 %Y
while for P, .
it+1j
P =P - 6
i 7 i1 T P
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V.., 3
13+3
—a—
jt1
: 1%+
Figure 5. COR cell.
If the boundary is NOSLP,
Yk TTieEgL
Vij-: T TVik15-3
for the calculation of pij+1 is found by substi-

The value of pij
Similarly, find

tuting the above velocity values into Equation (3. 6).

pij for Pi+lj from Equation (3. 5).
In calculation of €i+%j+1 only:

for FRSLP, u, ;. = u, .
1+33 1+§_]+1

for NOSL P, u, .= -u. ;.
1t3] it3j+1
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In calculation of §i+lj+é only:
for FRSLP, v, [ =v, ..,
ij+3 itli+s
for NOSLP, v =

L= -V
ij+s it1j+1

In calculation of A,+1, oan:
1T 1]

g = ¢ +L[(2 + + Ju ]
i+1j+s  Titljeg | dexoy - il Tijel Tie1ge 1l Yiedied

= - P 1i 11
gi+§j lej . (not literally)
In calculation of Aij+1 onlxz
ot v
; = 2
gi+;;;j+l gi+§j+1 * 46x6y [ Hij+1+“i+1j+“i+1j+1)vi+1j+§]
= P - P 11 11
éijw% P41 i (not literally)

In calculation of horizontal velocities of particles in upper half

i+1, 1), = 0.
of cell (it+l,]) ui+%j+l

In the calculation of vertical velocities of particles in right

half of cell (i, j+1), = .

V. .
i+1j+3
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IVv. OVERRELAXATION

The form of Equation (3. 12) is familiar to all those who have
studied numerical solution of partial differential equations. It is the

usual finite difference form for solving Poisson's equation
2
v Pix,y) = f(x,y) (4. 1)

Let s be a region inthe x,y plane. Let ©6x and 6y be the
spacing in the x and vy directions, respectively, of a grid which
covers s. (It is assumed that the boundary of s is the union of a
finite number of straight lines, each of which is either horizontal or
vertical, although the technique described below will work for other
configurations either by changing the coordinate system or by inter-
polating at the boundary.) Then the partial derivatives in (4. 1) may

be approximated, as in Chapter III, by

9 P.. P, .-2P..+P .
ij . _itlj ij i-1j (4. 2)
ox 6x2
and
2 P -2P. +P.,
9 P ij+1 1j  ij-1 4. 3)
2 2 ’
by by

Using (4. 2) and (4. 3) and rearranging, Equation (4. 1) may be approxi-

mated with
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. . .., P,
P = 1 it+1j 1-1,]+ ij+1 ij-1 Cf(x,y) (4. 4)
ij 1 1 2 0’’0
2(——+—2) ox oy
éx by

There are several schemes available for solving (4. 4), the easiest of
which is an iteration process called simple iteration. This technique
consists of the following steps:

(1) An initial guess (usually zero) is made for the function P

at each point (Xi’ yJ_) of the mesh (except, of course, at

0
the boundaries). Call these initial values Pf, ).
1)
1
sin uation (4. 4), new values, calle .. s are com-
(2) Using Equati (4. 4) 1 lled PEJ)

(0)

puted using PiJ and boundary values.

(3) The difference between the new values and the old values is

1
checked against a tolerance. If the values of ng ) are too .
. (0) (2)
far different from those of pij , new values pij , are
(1) .
computed from P_J, as in Step (2).
i
(4) Steps (2) and (3) are repeated until, for some Lk, the
k -1
Pij )'s are sufficiently close to the Pi;( )'s. At this

point the iterations are stopped, the solution is said to have
converged, and the process of simple iteration is said to
"work" for this problem.
A more efficient scheme, called Seidel's Method or simple re-
laxation, is the same as simple iteration except for one refinement.

Instead of using only quantities from the previous iteration to compute
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new ones, simple relaxation uses new values, as soon as they have
been determined, in the calculation of other new values. It is clear
that the time saved by using this process will be dependent on the
order in which the points are taken during an iteration. An order
which takes maximum advantage of the refinement over simple itera-
tion is called a consistent order. Cne such ordering is to start with
the lower left-hand point, work across to the right, then left-to-
right on the next higher row of points. This is continued throughout
the mesh, ending with the upper right-hand point. It can be shown
(Forsythe and Wasow, 1960) that if simple iteration "works " whenever
a consistentorder is used, then simple relaxation "works" exactly
twice as fast.

An even more efficient method for solving Equation (4. 4) exists.
This scheme, called overrelaxation, speeds the convergence of sim-

ple relaxation by multiplying the changes between iterations by a fixed

number greater than one. The following discussion will help to clarify

this.
. . (k) th .
Define the new quantity, Rij , called the k residual of
Pij in the following way:
k
Rg') = 11 Piﬁ)l'+Rul)' P&)ﬁpq)l o - 1)
b gy A A Ly ) - P
6x” by 6x &y 1
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where the superscript £ has the value of either k or k-1.

Equation (4. 4) can now be written:

(k) _ p(k- 1)

.. . (4. 6)
ij ij ij

P

This is the equation which is used in simple relaxation. A more gen-

eral equation can be written to cover all types of relaxation processes:

P

W) _ plk-) . m®), (4. 7).

ij i i)
When q <1, the process is termed underrelaxation; when q=1,
the process is the simple relaxation already discussed; and when
q > 1, it is called overrelaxation.
Forsythe and Wasow (1960) have also shown that when a consis-
tent order is used, if simple relaxation "works, " then overrelaxation

" The amount of time saved by using overrelaxation will, of

"works.
course, depend on the overrelaxation factor, q- Using a matrix
analysis of the operations involved, a relation between the rate of con-
vergence and the overrelaxation parameter may be obtained. This
relation is depicted in Figure 6; several observations can be made
from this curve.

(1) Underrelaxation is not profitable; it requires more time

than any other relaxation method.
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(2) An optimum overrelaxation factor, qopt’ exists.

(3) Although qopt depends on the problem being considered,
its value lies in the interval 1 <q < 2.
out
(4) Approaching qopt from the left, the curve has an infinite
slope, while the slope is one for q > qopt + 0. Thus it is

better to use q = qopt + € than to use q-= qopt - €, for

some small € > 0.

t_=time required
for any relax-
aticon process

2a

I
I
I
[
SR : tSR: time required
| for simple
i relaxation
2

— e — ——— e —

opt

Figure 6. Overrelaxation factor curve.

In general, determination of the best overrelaxation factor to
use cannot be done exactly. The next section describes a method for

finding qopt approximately, and also shows how to obtain q

’

opt

exactly for the special case when R is a rectangle.

Determination of Overrelaxation Factor

As was noted above, the best overrelaxation factor cannot, in

general, be computed exactly. However, a method, shown below, does
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exist for estimating qopt'

If a problem is stated by using simple relaxation (q = 1), then

an estimate of the rate of convergence, r, will be given by

(k)
R — r as k — w. (4. 8)

IrR% 1)

Any matrix norm will suffice for this estimate. Fortunately, a rela-

tion exists between r and q :
opt

2
qopt 14N 1l-or (4.9)

Thus, one may run for, say, ten iterations using q = 1, form the

. (10) (9)
quotient ||R /IR 7], compute a new q from (4.9), and con-
tinue by using overrelaxation. It should be pointed out that the quo -
tients in (4. 8) will behave in a random manner when q 1, while

with g =1 they will steadily decrease until r is reached.
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V. THE ALGORITHM

The basic algorithm for marker-and-cell calculations can be de-
scribed briefly in the following nine steps:
(1) Predict new densities using Equation (3. 7).
(2) Using these densities calculate new pressure coefficients
and obtain a rough pressure by relaxing Equation (4. 7).
(3) Using these pressures calculate new velocities using Equa-
tions (3. 8) and (3. 10).
(4) Find new particle positions assuming that the particles
move with this velocity field.
(5) Calculate new densities and viscosities by averaging the
densities and viscosities of the particles.
(6) Compare this value of the density with the previous value.
If different,go back to 2 with new densities; if same; the
density values has converged. Continue.
(7) Calculate the pressures more precisely for this density.
(8) Find final velocities.
(9) Move particles
These nine steps relate all the essential features of the algo-
rithm. Steps 1, 5, and 6 are the predictor-corrector portion. The
calculation cycle continues until the density remains unchanged.
Steps 2, 3, 7, and 8 are the Eulerian calculation of the variables P,

u, and v. Steps 4, 5, and 9 are the Lagrangian calculation of the
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particle positions and the density in each cell.

In the Lagrangian calculation of the particle positions, the veloc-
ity used to move each particle is a weighted average of nearby veloc-
ities. The calculation of these weights is given below for the horizon-
tal velocity, u.

A rectangle of dimension 6x by by is centered over the
four nearest horizontal components of the velocity field. A similar
rectangle is centered over the kth particle. The particle rectangle
and the velocity rectangles overlap (see Figure 7). Each velocity's

weight is the fraction of the particle's rectangle that it covers.

il 4 + gy

i-3j-1 Yirtjol

Figure 7a. A particle and the four nearest horizontal velocities.

A A
Az : A1
A A

3 4

A A

Figure 7b. The velocities and their weights.
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Thus, the particle's horizontal velocity is given by

1
(A +A_u, . tA,u +A ).

Y T Bxoy 1Vitl T atio kT L1 e L

The particle's new x-coordinate is given by

xn+l = + ot
kK ko kC
Similar calculations are performed for the vertical velocities

and the y-coordinate.

The stability criteria for this procedure are reported to be
(Welch, 1966):

Cét < 26x by
6x+ oy ’

where C 1is the wave speed of the fluid, and

x> 6y
2vet < ——X—XE
ox +6y

In addition, Shannon (1967) reports that the following criteria should

also be met:

2
5t < ox ’
4v
2
562 < ox
2 2
u

max
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ot < — K
5u,
input
and
o(u
1 2 1 2 max
- -6 —_— < v,
2 étumax * 4 x ox Y

Similar inequalities hold in the y direction.
Hwang (1968) derived an additional criterion for the case when

the viscous and inertial forces were in relative balance

2 2 2
2ph uo2 2ph Yo
6t < min :
- 2 2.2 2 2.’ 2 2.2 2 2 ’
p(u0+v0)(h u0+4v ) p(u0+vo)(h v0+4v )
where 4 and vy are the steady-state velocity components, and

h is the dimension of the square mesh cell.

The NUMAC algorithm as described above has been made into a
computer program and used to examine several typical fluid flow prob-
lems. A flow chart for this program is given on the next page and a
listing can be found in the Appendix.

The following is a description of the subroutines. The numbers
refer to Figure 11.

1. CELSET flags the cells initially: boundary, empty boundary,

full, free surface, or empty.

2. PARSET creates the initial particle configuration and assigns

the particles their appropriate densities and viscosities, then
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Figure 8,

READ
DATA

CALCULATE

CONSTANTS

The NUMAC flow chart.
of subroutines.

Numbers refer to the list
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REFCEL

3
DENVIS

9
MOVPAR

VELCTS(1)

7

PRSITN
(Fine)

BNDCND(3)

CONTROL

41

No

6

6
QNTPRS(2)

7

PRSITN
(Crude)

9
MOVPAR

10

Figure 8.

Continued.

DENCHG
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4a.

4b.

4c.

calls REFCEL.

DENVIS calculates the density and viscosity fields and bound-

ary conditions.

BNDCND does the following, depending on the value of the

calling argument:

BNDCND (2) calls FSBDCD (2), calculates temporary velocity
boundary conditions at solid walls, and then calls
INBDCD and OTBDCD.

BNDCND (3) calls FSBDCD (3), otherwise is the same as
BNDCND (2).

BNDCND (1) calls FSBDCD (1), and is the same as BNDCND
(2) except that all the velocity boundary conditions are
final.

FSBDCD does the following, depending on the value of the

calling argument:

FSBDCD (1) and FSBDCD (2) calculate all the velocity bound -
ary conditions associated with the free surface.

FSBDCD (3) calculates only the velocities in the empty cells
next to the free surface.

INBDCD calculates the velocity boundary conditions at an INC

or INM wall.

OTBDCD calculates the velocity boundary conditions at an

OUT wall.
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CNTROL prints or plots specifiéd information at specified
intervals by calling appropriate subroutines, saves informa-
tion on tape at specified intervals so the problem may be re-
started later, and, depending on whether it is time to stop
the calculations, either advances time (t) and continues, or
stops the program.
QNTPRS (1) calculates & and ¢ for each cell and Bl,

2 3 4
B, B, B, and A for each full cell. QNTPRS (2) only cal-

culates Bl, BZ, B3, B4, and A for certain cells: cells which
change density and the four bordering cells for the two-layer
model, and each full cell for the continuous density model.
PRSITN calculates the pressure field by using the method of
overrelaxation to solve the finite-difference form of Poisson's
equation. Only full cells are relaxed, but pressures for solid,
in, and out walls are computed within the iteration loop, as
these pressures are functions of the pressures in the full
cells next to them. Free surface pressures remain the
same throughout the time cycle, since they are functions of
velocity and viscosity only.

VELCTS(K) calculates the velocity field from the general
equations for velocities between two full cells, two free sur-

face cells, or a full cell and a free surface cell, then calls

BNDCND(K).
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9. MOVPAR moves the particles with the current velocities.

10. DENCHG finds the cells which have changed density as a re-

11.

sult of a temporary particle movement.

REFCEL reflags the cells which have changed, i.e., free sur-
face to empty, destroys and creates particles as needed, calls
BNDCND (1), and calculates the free surface pressures.
REFCEL also calls FLGCEL for the two-layer model, and

FLGCEL flags interface and contributing cells appropriately.
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V. MODELING

Once the computer program has been written, the most impor-
tant aspect of simulation is the choice of boundary and initial condi-
tions. Thus, care must be taken that boundary conditions be developed
that are analogous to physical boundary conditions.

Two models were used for the density stratification, each
having advantages and disadvantages. The fluid can be divided into im-
miscible fluid layers each with a different density. This approach has
the advantage that any densities can be assigned to the layers, but if
mixing is a significant factor the results will be unrealistic. Calcula-
tion time increases with the number of layers used.

An alternate approach is to assign the fluid an arbitrary contin-
uous density. This model takes slightly more calculation time than a
two-layer model and requires that local density variations be small. On
the other hand,it models a single fluid with variable density quite well.

Noslip and freeslip walls were tried for reservoir problems.
With noslip walls, boundary layer build-up never exceeded two cell
heights. Since boundary layers are only a few percent of the depth for
prototype problems; freeslip walls give a more realistic model for
reservoirs less than 100 cells deep. Figure 2 (page 20) shows the

modeling for a typical reservoir problem.
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VII. PRCBLEMS SIMULATED WITH NUMAC

NUMAC was written with two types of nonhomogeneities in mind:
(1) Intrusion of one fluid into another. Such problems occur for exam-
ple in the disposal of wastes. (2) Density stratified flows. These
arise naturally in lakes and reservoirs. There is no restriction to
these types of density variations,but many problems in oceanography,
hydraulics, and meteorology are of these two types. NUMAC is a use-
ful tool for investigating these density phenomena.

A representative oceanographic application is given in Figure 9.
A salt water wedge flows into a shallow layer of fresh water. To simu-
late the sloping beach, the oroblem was run with a grid parallel to the
bottom but with a horizontal gravity component.

Another problem of interest is the motion of a dense block of
fluid through a less dense layer under the influence of gravity. This
represents the disposal of a pollutant in a river. This sequence is
presented in Figure 10.

Figure 11 shows the flow of a bouyant plume into a density strati-
fied tank.

The increased exploitation of the sea requires the development
of improved criteria for undersea pipelines and structures. NUMAC
is used to show impact pressures on submerged structures to 'give in-

creased understanding of wave force phenomena. Figure 12 shows a
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Figure 9. The intrusion of a salt water wedge. The densities were
1 above and 1.2 below. Viscosity p = .0001.
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Figure 10. The flow of a denser pollutant. Fluid density is I, pol-
lutant density is 1. 2, viscosity is . 0001.
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Te 400 Te 2.0

Te 400

Te 8080

Figure 11. Flow into a density stratified tank. The density profile is
linear and the incoming fluid has a density that matches
one of the tank strata.
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Figure 12. Wave motion over a submerged conduit. On the right are

pressure contours.
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wave passing over a submerged conduit. Accompanying the simulation

sequence are the corresponding pressure contour plots.

Withdrawal From a Density Stratified Reservoir

Stratified currents are of engineering interest in such problems
as meteorologic disposal of industrial wastes and reservoir sedimen.
tation with selective withdrawal of quality waters. The flow from a
density stratified reservoir has been studied in detail.

The research procedure was to simulate a reservoir and investi-
gate the effects of viscosity variation, density stratifications, and the
presence . of a submerged ridge on the flow pattern. Both the continu-
ous and the two-layered models were used.

Figures 13 and 14 contain selected frames from two reservoir
simulation problems using the two-layered model: withdrawal with
and without a submerged ridge. These reservoir problems were
normalized so that the following two conditions held. The reference
density (in this case the density, Py of the upper layer) was scaled
to unity. Gravity, g', was scaled to unity. Scaling the variables in

this way, and using a density in the lower layer = 1.2 witha

P2

lower layer depth dZ = .7, the normalized upstream steady state

velocity in the lower layer approached UOCZ = .1, during machine

calculation. Thus, the Froude number for the lower layer
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T = 2.500

Figure 13. Flow from a two-layered reservoir. The density is 1 in
the upper layer, 1.2 in the lower. Viscosity is . 0001.
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BRI 1y

5. 000

T =

10,000

£

T

The same densities and

Flow over a submerged ridge.

f the

viscosities as in Figure 13 were used so the effect o

ridge could be studied.

i2®reecs00ece0000000000000000n

Figure 14.
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U002

F. = = . 293
'\/g'dz———

P2

According to Yih (1965), stagnation occurs for F2 < 1/mn. Vortex
formation can be observed in the last two frames in both sequences.

A reservoir with a submerged ridge was also simulated in a
fluid with a linear stratification. Figure 15 shows the effect of the
ridge. As expected, the ridge hinders withd1;awa1 from the lower
strata and blocking forces the contributing layer up.

Figure 16 shows the effect of viscosity in ’;he model. It is seen
that for reduced viscosity, velocity is increased uniformly in the
fluid.

Figure 17 illustrates the effects of the density gradient in the

linearly stratified reservoir. For an increased density gradient the

inertial effects are seen to increase the flow from the lower layers.
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Figure 15.

-

Ulag

10
Time

The effects of a submerged ridge. The reservoir was
originally stratified linearly with normalized
density 1 on the surface and 1. 2 on the bottom.
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T = 2.5 n) TR 01
op=.0001
A = .000001
1.0+
<
a
o 51
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0 4 t '
.05 07 .09 11
Speed |w |
T=7.5
op=.01
o = .0001
1.0 + . 000001
<
-+
o
A .5+
0 } + +
.05 .07 .09 11
Speed |;,.|
Figure 16.

Illustration of viscosity effect on velocity profiles. The
profile is one quarter of the model width downstream

from the orifice. The normalized density was held con-
stant at p = 1.
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Figure 17. Ilustration of the effect of density gradients on velocity

profiles.

downstream from the orifice.
p = .0001.

The profile is one quarter of the model width

The normalized viscosity,
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VIII. DISCUSSION

The NUMAC method has been presented as a general method for
finding the transient flow of a nonhomogeneous, viscous, incompres-
sible fluid. The results in the preceding section were obtained using
800 cells and 3000 particles. The storage requirement was typically
65, 000 locations. Using a time step that was near the maximum al-
lowable by the stability conditions, one time cycle took seven seconds
on a CDC 6600. A typical run of 200 cycles took twenty-three minutes.
It is felt that this size and the running times are nearly minimal. For
proper simulation and for problems that are geometrically more com-
plex, more cells and particles should be used. Detail and accuracy
are limited only by the size of the machine available.

The current version of NUMAC admits only boundaries that are
expressible in terms of the grid, i.e., those which have been "rec-
tangularized." If circular or oblique boundaries are desired,the bound-
ary may be approximated in terms of the grid. Standard techniques in
the numerical solution of partial differential equations may then be
used to apply to the oblique or circular boundary conditions in the
boundary cells.

Similarly, NUMAC has been presented in a two-dimensional form.
The method is valid for three dimensions but requires a good deal

more programming and quite a bit more storage.
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The usefulness of NUMAC in its present form has been demon-
strated. Because of its generality,the user will find it a valuable tool

in many types of hydrodynamic problems.
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h Ee e Re Ne le B

PRZAZAM SPLASH(INPUT SUTPIT (TAPES oINPT s TAPERECUTPUT £ [ LM, TAPF9OS

N{MI=NT=]

. NTP1xNT )
< FILMTAPEQRTADPET) NOM]aN i
COMUSN/TYPTT| /PIPATNPLMAX o XMTN g XMAX ¢ TXMIN , TXMAX ¢ TYMIN, TYMaX NIPYEN o]

L

<

CAMASN/TVRINE /TMONF (TEXTITV

CoOMUAN/TVFACT/FACT

CCMMON/TVTUNE /LPENGI PEF o TTAL s TWTNK ) TNTSIRT, 1P

COMMON DELTASNT G NT2 4 nT4NX«NTLOY s NTEPWDTOXWNTNY 4DTDYS (NTDYSDTP,
NTPPINTYP yNXA ,OXCN2eNXT4 DY TN DXP 9DYCoDYCD24nY T4 4Dy IniyNYP

CAUMDN FPSei54HyBX XN 4GXNT4BYeGYN I GYDToH ICNTRGITEQT KN oKl Lo
MT aMT oM oMUD oNBL ¢ NB2oMT oNTHTSNIPT (NJMIML GN 1P o MNP JNPR(NTP

NELTAS=F|LTAS® g
GRSART (GXRGXIGYSRY)
GXNaGX®1 XL
GYN=GYeYC

snx=a] ,/NXC
Cnys=y . /Nivc

DXCN2=NXC*eS
[ TOXATDX2 4 CDXG 4 SNY 4 aDY 2, CNYS I RIsR24ToTCPeTLsTOTPP,TVP LU0, DYCD2sNYC# .S
< VOsWeTVINXD2NY DYS2DXDXSNY 4 DYSDX NXT4zb.%30X

COMMEN A (40020) ¢R1140420) aB2(40020) sRI(40420) +84(40,42n) 4CS (40,200,

NDYT4ma, *2NY

s DY IS) s IMP (18) yMKC(15) yMSK (181 ¢MU(GN320) ¢NF (30) oNK (409200 ¢ IF (G.F7.0) G5 T2 197
L NKT (40+20) +P(40420) sPS(3000) +PST(4]1421)+R(40,20) +SR(40,20) GH=],/ (G#H)
« SRT(40020) 011(61+21)9UP (300N) 4T (41421) v (41421)4vP (300N Go 75 198
L3 VT(41421)4XC140) e XP(30N0) s XPN(30) 4 XPL (305 YC (20) s YP (3000} ¢ 197 GHml /M
s YPO (30) s YPL (30) 4 ZET (41 421) +UPQ (30) 4 VPO ( 30) 19R DTDX=OT#2DX
CEMUZNY KNBP oNBP ¢NBP? 4 XB1{21) s XB2(21)4¥B1(21),YB2(21)9xX1(20) DYNY=)TH#SOY
< XX2(20) ¢ ISAVF 4 X1 1 XAs IWNGsOTORTPR¢NC s ISPACE s NUM () NY2e>,907
REAL WML oMID oMK o NKT SAXSeINX#SDX
INTFGER CSePS SNYSasnYeZ0Y
SAX2x2,.%3DX
Chy2sp.220Y
PROGRAAM SPLASH CONTAINS THE TwneFLUIN EXTENSISN SF TWE MAC METHID. DTNXSaDT2850XS
. .2
THIS PACGRAM WAS WRITTEN IN JULY OF 1987 By MICHAEL n. TERAY, 2:2::;213, ovs
G6YNTa5YSQT
NTANX=NTHX® . 26
LA 1 OTaDY=NTNY®, 28
Mlab NXxc2nvsxCD283NY
NTPm? DYC2nx=0YCD2oTNX
REWIND NTP- DYSDYSNYCHSDY
Kh=ai DYSDXmNYCRTDX
TTVEGLFILM MSK (1) =7
Ll =0 IMP (1) =]
RFAD (MI41000) NB1sNR24NIJNJIJNPNPRTVE OV(l) =]
RFAD (M[+1000) [SAVF,IwD6.NC,TSPACE MIC(1)® NSTeMSK(])
RFAD (M141001) WeHsBX4GY110sVOsDT S 700 I=2sle
READ (MT51001) MiJ14MU24R1.R2eTLDELTASDTP MSK ([)aMSK (Twul)#g
RFAD (MT1,1001) DTCPDTPPyNTVR ,DTPRDXPDYP MKC(T)®B NCT MSK (1)
READ (MT.1002) (NF(T)eXPO(T)oYPOCT) oXPL (1) oYPL (1) 4URO(T)eVPAIT) IMP(T)mIMP (Ta]) #g
. Tm] +NPR) 100 DV(I) =DV (I=1)/8
1¥ (1SAVE,GT,0) 6T T2 106 T=0
DXC=w/ (N1=2) =0,

XC (1) a=DXCD2
Y (1) a=DYCD2
. D2 1Nt I=29NTY

101 XC(T)1=sxC(I=1)eDXC
DS 102 J=m2sNJ
YC(J)sYC (J=1)+DVYC
D& 1 U=1.NJ
D 1 1=],NI1

NYCeH/ (NJ=2)

WRTITF (MCe1003)

WPITE (MCe1004) NR1NR2yNTsNJ NPyNPR,IVD
WRITF (MC,1012)

WRITE (MCe1004) TSAVE.IWDGINC,ISPACE 102
WRITE (MZ,100%5) )

WRITF (MCe1006) WeHBXBY J0Oev0,DY

WRTTFE (MC,1007)

WRITE (MCe1006) M1 4MU2sR1eR2,TLINELTASDTP Q{i}flfgs.
WPTTF (M5,1008) B2(TsJ)=m0,
WPITE (MC+1006) NTCRDTPP.NTVPIDTPR(DXP4DYP B3(1. 1m0,
WRTTE (M2,1009) R4 (14J)=20,.
D™ 108 I=lsNPR CS(T, D=0
108 WRITE (MCo1010) NF(T) o XPO(T)oYPO(T) oXPL (1) oYPL (1) 4Un0(T)esvPO(T) MU (T, )) =0,
WRITE (M$,101V) NK(Te 17=0,

WRTTF (MCs1006) NXCeNYC NKT(Te.)20s



103

106

1né

107
108

109

190

200

20

Pi1+s4)=0,
R(TIs.)=0,
SR(Ts+M)=0.
SRT(1+.J1=0.
N 2 J=14NJPY
N 2 1=),NIP)
PSI(T1,.J))a0,.
Uile ) =0,

UT (144120
V(I.J)SOl

VT (T94)=0.
Z2FT(1494) =0,
DC 3 xa] NP
PS(K) =0

uUP (X)=0.

VP (K) 20.
XP(K)=0.
YP(K) =0,

DS 104 JsmlsNy
DS 106 I=1eNIT
Ne 103 Ku3eb

CS(14J)#IMP{K) .CRe {CS(19J) s ANNJMKC (K))
CS(14J)26,CR, (CS(1vJ) JANDMKC)

KT=5a1MP (2)

CS{Ty NI EKTSRLICS{T o) JAND MK (2))

CALL CFLSET

CALL DARSET

CALL DEWVIS

CALL 3NDCND(3)
CALL CNTRSL )
1F (x".EQ.2) 6C TC 113
1c=0

I0eNTR=0

LLL=0

CALL INTPRSI(})

DS 10R JslaMNyg

NS 10R T=1eNY

CSITaNEIMP(13) ,CRL(CS(Iyg)) JAND MKC(13))

ITER=)

ITFReTTER+1
ICNTRaICNTR+)

ITEST=G

FPS=,00C8

CALL PRSITN

1F (KD.FQ.2) 6% TC 106
Na 199 JzleNy

DA 103 T=laNy
NKT (T 1)80.
SPT(T1+4)=00

CALL VELCTS(?)

KrX=1

CALL “CVPAR

IF (xND.EQ.2) G2 TT 106
CALL MENRCHG

IF (LLeEGB.D) 6T TC M2
IF (LLeGTs9) 6T TS 202
IF (LLL.LFE«9) G2 TC 200
=0

G~ T2 2M)

1Ic=1Ce] )
IF (1C.%T.10) RC TC 112
LrL=LL

20?2 CALL INTPRS(2)
IF (ITFR,NE.3) G6C TS 109
NS 111 Jzm2eMgMy
DS 111 Ia2eNTH)
K11=2£S{TIeJ) cAND MSK (11)
Kllsx1)epvilY)
1F (K11.EQe2) GZ TC 110
K10=CS (1) 4 AND MSK (10}
K10sk104%DV (10) )
IF (K10.NEe2) 6C TS 111
K132C8S {1 sJ) « AND ,MSK (13)
K132x13%DVI1) o
IF (K13.NE.1) GBS T2 111
CS{T4)IWMIMP(10) 2R (CStT4J) ,AND MKC(10))
62 T3 111 .

110 K132£S(14J) o AND,MSK (13)
K132x13#DV (1Y) )
IF (K13.NE.1) BT TS 111
CS{T+ NIEIMPE11) (BR (6S (T4 (ANDMKC(11))

111 CONTINME
65 T2 107

112 JTEST=13
£PSx, 0002
WRITE (MZ,1011)
CALL PRSITN
IF (XN.EQ.2) G2 TC 106
CALL VELCTS()
KKK=2>
CALL MCVPAR
IF (XN,EQ.2) GS TS 106
CALL DENVIS _
IF (KN.EN,2) B2 TS 106
CALL REFCEL

65 T8 108
113 CALL TVEND
stce

1000 FCRMAT(7I10)

100) FCRMAT(TF10.0)

1002 FARMAT(T110+6F10,0)

1007 FARMAT(1H1+10X49HMAC METHSD SCLUTICN OF TwS=MATERIAL FLUID PROBLEM
€///14=s LOXSHINPUT/1Hey22X3HNRY ¢ 12%X3IHNR2 5 1 3X2HNI 9 13X2HNI » 1 3X2HNP,12
EXIHNPRS 12XIHTIVD)

1004 FARMAT(IH +10XeT7118) :

1008 FARMAT (1HO 924X HW e 14X1HH 4 13X2HGX ¢ 13X2HGY 4 1 3X2HUD ¢ 1 IX2HVO 9 13X2HDT)

10NA FARMAT(IHR 210Xe7F15,8) )

1007 FARMAT (LHO922X3HMU] 4 1 2X3HMU2 ¢ 1 1X4HRHS 1 4 11 X4HRHC2913X2HTL 19 XAHNELTA
25, | 27X INDTPY

1008 FORMAT(1HOs21X4HNTCP s 11X4HDTPP 41 1 X4HDTVP 411 X4HDTPR,12X3IHDXP,12X3HD
YD)

1000 FORMAT(THO23X2HNF 4 12X3HXP0 4 12X3HYPN « 12X3MXPL s 12X3IHYP_ 9 12X34UP0412
£XIHYDD) )

1010 FORMAT(IH ¢10Xs115+4F15.8)

1011 FSRMAT(1HN)

1012 FARMAT{LHN e 2NYSHTSAVE 911 X4HIWNG s 13X2HNC 49X &HTSPACE)

1013 FARMAT(IHO 22X IHNXE 4 12X3HNYC)

[}

SHARANYTINE CFI SFT
CAMMSN/TUPSCL/PIMINGPLMAX e XMTN g XMAX ¢ TYMIN,, TXMAX s TYMTN, TYMAX
COMMAN/TYGHINE/ZTMENF  TEXT L TTV

COMMAN/TVFACT/FACT
CAMAA/TVTHHF /L PFRN eI PFFeITAL ¢ TWINK o TMTSIRT S TIP

CAMMAY NELTAG DT NT2 NTANXDTaNY o NTEP 4 NTNX DTNY S DTNYS,NTNYSINTP,



302

303

200

3na

ns
2m

202

- - T e

[

PARR AR N A A

nTpP.nTVP.Dxc.Dxcn?.nxI#.DvIN.nxv.Dvc.nvcoa,n

CaMUny E°S¢GgGHoGXoGXDoGXDYqGYOGYﬂoGYDTvH.ICNTRQITEST.KDoKKK'LLo
WYoMCoMUI.MU?.NB!.NHZ.NIoNvﬂloNIPl,NJ.NJMloNinoNP.NBR.NTP.
cox'cnxz,cnxﬁ.cov.sovz.covs.nl.nz.T.TCD-TL.YD.rPP-7v9.uo.
VOeWeTVS NXS2NDY L DYZ2DX 4 OX3NY 4 NYIDX

CoMMIN A(bO,gO),Rl(Ao.ZO).a2(a0izn).n3(bo.20)oBﬁ(tO.ZO)oC5(60.20)o
nv«lS).IMP(I*)'MKC(IS).MsxllS).MU(go.ZO)oNF(SO)oNKtanoao)o
NKT(ﬂb'ZO)’PlhovZO)'P§l3000).Pst(bl.?!)oR(AOoZO)oSR(bo.ZO).
SRY(40920) 915 (41421) sUP (3000) 4UT (41+421) 4V (41,21) 4VP (3000) »
VT(“loZI)oXC(AO)ox9(3000)ox90(30)cxPL(30)ovC(Zo)oYP(BOOO)o
YPOU30) o YPL{30) s ZET (41421) 4UPN(30) 4 VPO (30)

T

YT4,0YINGOYP

cammny KNRP'NRPoNHPZ.XBl(?l)oxBZ(?l)oYBl(?l).YBZ(ZI)oxXI(?0>o
XX2(20) s ISAVE ¢ XT o XAs IWNGsDTPRTPRYNC» ISPACE 4 NUM(S)

REAL MUeMIT o MUI2 yNK o NKT '
INTEGER CSsPS

DYMENSISN TA(100)sTYPE (20) +XR (22) 4 YR (22)

INTEBER TYPE
pI“INIOQ

PIMAX=0,

PUMINSO,

P.IMAX =0,

D2 300 I=1sNY )
P{MINIA“TNI(XC(I)-DXC'PIMIN)
PIMAX=AMAX] (XC(T)+DXCePIMAX)
NS 301 JsliNy
PIMINSAMINL (YC () =DYL o PIMIN)
PUMAX 2AAX 1 LYC (J) oDYC yPUMAY)
IF (14NB.LE.N) 68 Tn 392
PLMINZ=,5

PLMAX=4. 0625

62 T2 303

PLMINSAMINY (PIMINsPUMIN)
PLMAX®AMAX]Y (PTMAX »P UMAX)
XMINzILMIN

XMAX DL MAX

XTewP MIN

XA=P{ MAX

NnaNg |

XNBP=)

NRP=aN3e ] _ .

READ (M1,2000) (XB(1)sYB(T)1uloNhP)
RFAD (MI+2001) (TYPE(1)sIxm1eNR)
XA (NRDe])eXB (2)

YR (NRPe1)=mYB (2)

DS 170 M=l eNB R

IF (TWNGLE.D) 62 T2 304
XS=(S5,0XB (M) =YR(M)) /5,2

YS® (Y3 (M) 40 26XR (M) ) /] 4064
XFR(5, %X (Me))aYR{Me1)) /5,2
YFE(YR(Me1)+,20XB(MeY)) /1,064
68 T3 305

XG2XR (M)

YSeya (M)

XF =Xy (M)

YF=YR (Mes1)

IF (X2 (M)=XA(Me1)) 2N1+2164+20R
T=Xx3(¥) 22NX+2,00)

JRYR (V) #80Y +],999
CS(TeJIm2,CR,(CS(]s.1) sAND MK()
KTaTYSE (M) #1MP (2)

CS(Te ) BKToORG (CS(T4.0) JAND MKC(2))
KT=241MP (4)

204
20%

206
2n7

208

209

211

212
213

214

215
216

217

219
220

221
22?

271

274

CSULsJs1)3KT CR, (CSIT9J¢]1) JANDMKE (4]
KT=3e1MP (7}
CS(1+J)EKTaCR (LS (T ) JANDMKA(T) )
KT=34TMP (8)
CSUTyJs1)aKT SR, (CS(TeJs1 ). ANNGMKC (8))
I=161 .

IF (XC(I) oLE. XR(Me+1)) 2024205

IF (Y9 (Me2)=YR (Mel)) 20642364207
KT=2#1MP(5)
CS(1=19J)aKT,OR, (CS(T=19J) o ANPMKC (B) )
68 T2 236
CS(I+J)=1 SR, 1ES (14.0) JAND ,MKC)
KT=3eTMP (7) ,
CS{I4U)BKTORe (CS(TeJ) dANDSMKE (7))

68 T2 231 '

I=zXP (4)#0DX+1,99¢

JuYR (W) #CDY+2,.001
CS(1e.1)m2,CR, (CS(14J) AND . MKC)
KTSTYRE(M)*IMP {2)
CS(I,J)'KT.CR.(CS(!oJ).AND-MKC(Z)i
KT=2#1MP (4) .
CS(TsJ=1)aKT TR, (CSIToJ=]) ANNMKC (4) ).
KT=4eIMP (7)
CS(TsJ)BKTeCR. (CS{T0J) s AND MK (7))
KT=481MP (8)

CS(1yU=1)mKT,3 «(CS(T9J=1) .ANDMKC (8))
Iala]

IF (XC(1)4GELXRA(Me11) 200,212

IF (Y8(Mes2)=YB(Mel)) 21442364213
KT=2%1MP (S) o
CS(IoloJ)-KT.CR.(CS(t*le).AND-MKC(S))
8o To 236 '
CS{I+)31,CR,(CS(]4.0) JAND MKC)
KTa481MP (7)
c%(!oJ)skT.CR.(CS(I.J).AND.MKc(7))

6 T2 231

IF (YS(M) LT, YR (Me))) 216,223

I=XB (1) #CDX+2.001

JaYR (M) #CDY+2,001
CS(I.J)'Z.CR.(CS(I-J’.AND.MKC)
KT2TYPE (M)®IMP (2)
CS(I.J)'KT.CR.(CS(!-J)-AND-MKC(Z))
KT=281MP (4) )
CS(I-]'J)IKT.CR.(CS(I-!oJ).ANn-MKcta))
KT=28TMP(7)
CS(I-J)=KT.CR.(CS(I-J).AND-MKC(7))
KT22#TMP (R) )

CS(I=14))mKT,CR, (CS(T=10J) LANNMKC (R))
JeJe]

IF (YCU.))LE.YR(Me1)) 217,220

IF (XB(442)=XB(Me1)) 222,236,221
KT=281MP (5)
Cs(IoJ-l)aKT.CR.(C<!IoJ-l).ANn-MKC(S))
G T2 236
CS({T4J)=1,CR,(CS(IsJ) AND MKC)
KY=28IMP (7)

CS(1+.1)2KTLOR, (Cg("oJ’ .ANn-MKC(7))

G2 T 23)

I=Xg(v) #2DX+1,.509

JRYR(M)E5DY 4,999
CS(TeJ)32,0R, (CS(14.1) ,AND MKC)
KT=TYD2F (M) #1MP (D)



276
227
228
229
230

2
232

233
234
2135

236

97

98

99
1N0
237

238

239
24n
241

2647

CSITe.NZKTeCRe (CS(Te.4)  AND.MKF(2))
KTa281MP (4)

CS(T+10J)mKT OR, (CS(Te10J) JANDMKE (4))
Ce(Te NRIMP(T7) ,CR (S {TeJ) JANDGMKE (7))
CS(Te14))8IMP(B) SR (CS(T414.)) «ANDMKC (8))
Jay=1

IF (v () GE.YR(M+1)) 224,227

IF (M, LT,NR} 22R,236 '

IF (X3(M+2)=XB(Me+1)) 229:236+230
KT=2#MP (5)

CS{TeJ+1) KT, ER, (CS(TyJ*1) JANNIMKC (§))
G0 Ta 236 _
CS(T1+.781.CRL(CS (19.0) JAND MKC)H
CS{TeJISIMP(7) SR, (CS{Ts.)) gANDSMKL (7))
IF (M.LT.NR) 232,273

KMP1=Me]

G T3 234

KMP1 =1 i

IF (TYPE (M) oFQe3.CR.TYPE(KMP1) oEQ,3) 23842136
KT=381MP (2)

CS (1, J)=KTeCR{CS(T4J) JAND MK (2))
IF (TYPF (M) ¢EQ.2) GC TC 98

IF (KNBP.EQ.2) GC T 97

XH1 (M) =XS

XAl (Mel)=XF

YR] (M) =YS

YRl (Msl)wYF

XX1 (V) =0,

6C T2 100

XR2 (M) =XS

XR2(M+1) XF

YR2 (M) =YS

YR2 (Me1)=YF

XX2 () =0,

62 T2 100

IF (KNBPLEQ.2) 6 T2 99

XX1(M)=1,

GS T2 100

XX2 () =1,

CONTINUE

IF (NR2.NE.0) 237+238

NR=NQD

NR220

KNRP=?2

NRP2aNR+1

G T2 200

KCDE=1

DS 266 JmlNy

DS 266 1=19NY

K1=CS (TrJ) e AND MK

K22CS (Tv.0) s AND MGK (2)

K2sKP8DV (2) )

K4xCS (TeJ) s AND MK {4)

K4=Ke oV (4)

IF (K2.NF.1) G TC 78R

IF (T.E0,1) 240,243

L=1

Li=1

KPARCS (ToleJ=1) JAND MSK (2)
K2A=K24%0V (2)

IF («2A.FQe4) GC TS 285
KPR=CG(To]9Je1) oAND MSK (2)

247
244
245

246

247
248

2649

250
251

253
254
25%
256
257
2%A
259
260
2K
2h?
2R3

264

265
266

2000
20Mm

K?R=x 2800V (2)

GS T2 253

IF (1,EQ.NI) 244,247

L=l

Li=2
KP2C=CS(I=10J=1) ,AND MSK (2)
K2C2K2C*DV(2) _

IF (X20.EQe4) GT TC 788§
KPB=CS([=10J+1) JAND MSK (2)
KPBsx2ReNV (2) :
65 1o 253

IF(J,ERe1) 248,2%0

L=}
K2N3CS{T=19J+1) ANN MSK (2}
K2DsK2N¥DV (2)

IF (K2D.EQe.4) B TS 255
K2RECS(T+19Je1) L ANDJMKC (2)
'K2BuK2ReDV (2)

GS T3 253

IF (JJFQNJ) 251,254

L=}

KPE3CS (1=10Jw]) ANDMSK (2)
K2EE=KPE#DV (2) )

IF (K2EL,EQ.4) (T TS 255
K2RacS(I+led=1) JAND ,MSK (2)
K2R=x2R*DV (2)

IF (KPR.EN.4) GBS TC 255
8% T2 256

L=2

GS TC 241

KTa2#TMP (3)
CS(IeJI®KToTR. (CS(Ted) ANDSMIKC(3))
IF (L.ED.,1) BC T3 28R

IF (L1.EQe1) BT TC 245

IF (KSNELEQe?) GZ T8 262
IF (K6.EQ.2) GS TC 262
KCDE=)

IF (K1.EQ.2) BT TS 264

CS(1sJ)=1eCRLUCS (L0 J) s AND MKC)H
GC Tn 264

KESNE=)

IF (K]1.EQ.2) GC TC 264

KCDE=?

CS(1s 1N TICRLICS(T9J) AND MKC)H
CONTINUIF

DS 246 JzleNy

DS P66 1=19N1 .

KRICS (T d) s AND  MSK (5

LCELCT LIRS

IF (KR.FQs1) 68 TC 246
Ka1sCS(leled) JAND MSK (4)
Ka1=Ka19nV (&)

IF (Kul+EQe2) GC TT 265

CSUTs ISIMPUT) (CR(CS (T ) JANNJMKA (7))
G2 TC 766

KT=Pa1YP(7)

CS(Ty JISKTeCRL(CS(Te )} dANN MK (T))
CONTTMUF

RFTURN

FARMAT(TF1N.0)

FORMAT(TIN0)

FAID



299

300

9nn

ng
ann

N4

400

SUBRZUTINE PARSET
COMMON/TYPCCL/PLMINGPLMAX o XMTN 9 XMAX o TXMIN, TXMAX s TYMTN, TYMAX
COMMEN/TVYGUINE /TMCDF 4 TEXT LT TV

CSMM3N/TVFACT/FACT
COMMON/TVTUNE/LPENGLPEF s ITAL» TWINKy INTS, IRTTUP

COMMCN DELTASIDT4NT24nDT4DXoDT4DYsNTCPeNTDXsDTNY sDTDXSNTDYSHDTPy

s DIPPeDTVP 4OX A ¢ DXCN24DXT44DXINGDXP ¢DYCoNYCD24nY T4, DYIN,NYP

CMMCN EPS9B84GHBXAXDeGXNT sBYIGYNeRYNToHe ICNTRsITEST (XKNo KKK 4LL o

« MY sMT oMUY yMU24NBT 9NB2 o NTaNTMT GNIP 1 oNJsNIM] N 1P ¢NP (NPR,NTP,

R AN A A

L

CDXsCDX290DXS s CDY9CNY2 4 CDYS R R2s T4 TCPyTL TPy TPPyTVR, 110,
VOsWs TVENXT2NY,,DYS2DX ,DXCNY o NYINX

A (40+20) 481 (40+20)R2(40920) sR3(40420) +86(860,20) +CS(840,20)
NVI15) s IMP (18) ¢MKC (15) sMSK (15) yMU (404 20) sNF (30) yNK (40920) »
NKT (40920) 9P (409201 +yPS(3000) +PS1(414+2))sR{40:20) sSR{40+20) ¢
SRT (40920) sU{61921)9sUP (3000) sUT (419211 4V (41421 4VP (3000)
VT (41421)4XC(40) s XP (3000) s XPO(30) s XPL (30) 4 YC (20) 4 YP {3N00) »
VP0(30)vVPL(30)oZET(bl.Zl)vUDO(io).vPo(3O)

KNBP sNBPNRP2y XB1 (21) s XB2(21) s YRY (21) s YB2(21) 9 XX]1(20) s
‘XZ(ZO)vISAVF,XIoXA-Ith.DTﬂRvTPRoNCoISPACE;QUM(S)

RFA|, MUsMII1 oMI2 yNK o NKT

INTEGER CS»PS

N 299 JsmieNy

DS 299 1=m1NT

NK(T:.))=0,.

NS 300 K=leNpP

PS(X)23,0R. (PS(K)ANN MKC)

K=)

D2 301 JmlNy

D3 301 T=leNt

KT=6#TMP (9)

CS{Is))=KTeCRe(CS(T4.)) AND.MKE ()

TEMPXsDXP

TEMPY=DYP

D® 315 II=1sNPR
DXP=2TEMPX

DYP=TEMPY ]
IF (ISPACE.LE.0) GC TC
IF (NF(I1).EN.Y) GZ TC
DXP=DXP®, .5

DyPanYP# 5

CCONTINUF

YayYPO(IT)

X=XPO(TT)

T=Xe2nXe2,

J=YecnyYs2,
K12CS(TeJ) s AND MK
K22CS (T9J) « AND ,MGK ()
K2aK2eNV (2) ) )
IF (K1.FQ.,1) GZ TC 308
IF (K1.F0,2) G TC 10
CS(1, N®4,CR, (CS(14.)) s AND MKC)
PS(K)%1+CRe (PS(K) s AND,MKC)

KTaNF (11)®IMP (3)
PS(K)=KT 4CRe (PS(K) s ANDLMKC (3))
KT=IMD (4)
PS(K)aKT ,CR: (PS(K) 4 AND MK (4))
NK(TeJ)SNK(Iy))e]e
KOSCS(I9J) e ANDMSK (O}

KQsKQ#NV (9)

IF 'KQ-NE.‘) 32 1C 308

KTaNF (T1)#IMP (9)
CS(Te))3KToTRA(CS(Ted) dAND MK (9) )

coMMaN

COMMON

900
900

308

ANk

307

3Na
3ng

30
m

318

316

N7

318
319

NAN

CE R X" 8" ]

L]

GC TZ 304

IF (\'F(II).EQ.KQ)
KT23#MP (9)

CS(Is D=KTeCR.(CS(Tay)  ANDMKE (D))
UT(T4 ) =UPDI(TT)

VT (1,.)mVPO(T])

UT(T+1.J)=UPO(IT)

VT(T,.4¢1)=VPO (1]}

XP (K) =X

YP(K) =2y

KaK+)

XuXenNXP

IF (X AT.XPL(TII)) 300,303

YaYenNYP

IF (Y.BT.YPL(II)) 315,302

IF (K2.NEol) G2 TS 08

PS(K)®2.CR4 (PS(K) n'AN_D-MKC)

K7®CS (T 9J) e AND.MSK (7)

K7=KT78NV (7)

KTRK7#IMP (2)
PS(K)&KT SR« (PS(X) sAND MKC (2} )

GC T{ 400

CONTINUE

DT 316 J=1e¢Ny

DC 316 I=1eNY i

CS(Is IBIMP(10) (SR (CS(1yJ) JAND MKC(10))
CS{T+UIBIMP(11).0R(CS(140) ,ANDMKC(1]1))
KT=IM2(S)

DS 317 K=1sNP .

PS (K)®KT,CR4 (PS (K) s ANDJMKC (5} )
KTn241MP (S)

DT 319 K=1¢NP

IF (XP(K) eBT,1e024eANDXPIK) ;1 Tel,026) GO
IF (XPUK) BT .2.024eANDXP (K) L To2,.0268) GO
IF (XP(K)aGBT43:.026eANDXP (K], T.3,026) GO
s T2 319

PS(XK)EKT.OR (PS(K) s AND MKC (5) )

CONTINUE

CALL REFCEL

RETURN

END

SUBRSUTINE FLGCEL
COMMON/TVPCOL/PLMINGPLMAX « XMINe XMAX ¢ TXMIN, TXMAX s TYMIN, TYMAX

COMMCN/TVGUIDE/TMCDFE ¢ TEXTSITV

COMMON/TVFACT/FACT
COMMON/TVTUNE/LPENGLPEF s ITALy IWINKe INTS, IRT, IHP

COMMON DELTASsDT+DT24DT4DX+DTADY sNTCPOTDXsDTDYDTDXSDTDYSHNTP

DTPPDTVP DX DXCN2+DXT44DXINGDXPsDYCoDYCD29oNY14,4,DYIN,NYP

EPS1B4GHyGX9BXDsBXNT16Y9BYNsBYDT oM, ICNTReITEQT KDoKKKoL L
M!tMC'M”loMU?.NBl'NBZONIQN‘chNIPl.NJ.NJ”I'NJPl’NP.anvNTPo
CDXsODX2¢CDXS ¢ CDY 4 CDY24,CNYSHR1eR23ToTCPeTLy TP TPPyTVP U0,
VOsWs TVS o NXZ2DY 4DYS20X,DXSHY oNYSOX

A(40+20) yR1160920) «R2(40+20) sRI(40,20) +BH(40,20) +CS (40,200 ¢

DVI15) o IMP(15) yMKC (15) sMSK (15) oMU (40 +20) s NF (30) o+ NK (409 20) »
NKT(‘O-ZO)'9460'20)¢P§(3OOO)|PS!(QI.21’09(‘0'20)’SR(hO'ZO)Q
SRT(47920) 91) (419211 95UP(3000) s1IT(41421) eV (41,21) VP (3N0N) »
VT (41,21) 4XC(40) 4 XP (3000) +XPO(30) s XPL (30) 4 ¥YC (20) 4 YP (30N0) »
YPO(30) s YPL(3I0) vZET (414+21) 4UPO(30) , VPO (30)

KNRP'NRP'NBP?'XRI(21)9X82(21)oVBl(21).VBZ(21|OKXI(?°)9
XXZ(ZO)cISAVF.XInXAoIWOGnDT°H-T°RvNCnlSPACE-nUM(G)

6o TS 306

7C 318
TC 318
TC 318

COMMSN

COMMON

SMME
RFAL MUsMI31sMU2 4NK 4NKT
INTEGER CSPS



800

NS AR Js=2yNgM)

IM1= =1

JPls tel

NS 818 I=2:NIM}

IM1=1=])

IP1=Te)

KI=2CS(T9J) o AND  MSK

IF (K1.EQ.4) G TC RGO

IF (K1.NE.5) 6C TC A8

K9=CS (T J) o« AND (MSK (9)

Ko=Ko®DV (9)

IF (K9.NE.3) GC TS Al

KT1l=281MP(11)

KT2=28TMP (10)

CSITe N BKTLeOR, (CS(Tod) e ANDMIKC(11))

CS(Iy P11 uKT14CR,(CS(]4JIPY) (AND MKC(11))
CS(IP1eJP1)EKTY SR, {CS(IP14JPY) ANDMKC(11))
CS{IP1+J)8KT1.CR, (CS(TP1+y) JANDMKC(11))
CS(IP1eJML)IBKTY,OR, (CS(IP1¢IMI) (ANDMKC(11))
CS(1s M1)BKT]oCR, (CS(T4JIM1) LANDMKC(11))
CS{IMI o UM SKT1 SR, (CS{IMI e M) dANDMKC (11))
CS{IM1+J)BKT1.OR, (CS(IM]1 ) L ANDMKC (1))
CS{IM1+JP1)mKTY SR (ASIIMIeUPT) (ANDMKC (1))
CS{Is)IKT2CRL(ES(T9J) e ANDMKC(IM)
CS(I+JPL)MKT2,0R, (CS(1sJP1),AND,MKC(10))
CS(IP1+JP1)=KT2,0R, (CS(IP1+JUPY) JAND MKCI(10))
CS(IP1+J)mKT2,0R, (CS(IPLoJ)  AND.MKC(10))
CS{IP1 e UML) BKT2,CR, (CS(IP19JM]1) cAND,MKC(10))
CS(Ty M) =KT2.CR, (CS(TyIM1) ,AND . MKC{10))
CSUIMI UM BKT2 ,OR, (CS(IM] 9 JMT) JANDMKC(10))
CS(IU14J)BKT2,0R, (CS(IMLoJ) ,AND.MKC (10))
SS(IM)'JPI)IKTZ.CR.(CS(IMloJPI).AND.MKC(IO))
D!

MR=1l

MR=]

MTml i

K1ARCS (IM] 0o J) « AND JMSK

IF (K1A.EQe¢2) ML=2

K1B=CS(IP1+J) L AND MSK

IF (K1R.EN+2) MRa2

K1CECS (T 9JIM]) L AND (MSK

IF (K1C.EQe2) MR=2

K1NarS (1, JP1) . ANN MSK

IF (KI1N.FQe2) MT=2

IF (ML4MReMB+MT NE,4) GC TC ANl

JM2= =2

JP2?= je4?

IM2z12

I1P2=1+2

KT2=291MP (10)
CS(1,UP2)wKT2,CR, (CS{14JP2) (ANDMKCI10))
CS(IP1 4 JP2)EKT2,3R, (CSIIPI+JP?) cANDMKC(10))
CS(IP2,JP2)BKT2,0R, (CS(IP24JP2) sANDMKC (10))
CSIIP2+JP1)BKT2,CR, (CSIIP24JPY) JANDMKC{10))
CR{IP24J)RKT2 SR, {CS(1P2, J) 4 ANDMKC(10))
CS(IP2+ ML) =KT2,CR, (CS(IP2eJUMY) LANDMKC (1N))
CS(IP24UMR)EKT2,0R, (CS(IPR2eJUM?) (ANDMKC(10))
CS(IP1 s M) AKT2 2R (LS (IP1eJMP) JAND MKC(10))
CS{14JM2)2KT2.CR, (CS {14 JM2) ,ANDMKC(10))
CSUTIM 9 M2)IKT2,CR, (CS(IMY 9 JMP) LANDMKC (1))
CS{IM24UM2) 2K T2, 3R, (CX (IMP 9 UMP) (AND MKC (10))
CS{TUR, M) ZKT2,CR, (RS (IM2eUM]) JANDMKC (1)) )

am

w

an2

AN3

804

ANg

ANk

anT

CS(IM24 ) =KT2,0R, (CS(TM2,.)) LAMD MKC(10))
CS(TMP2sUP1)=KT2,0R, (CS(IM24JP1) JANDMKC(INY)
CS(IM2+UP2)=KT2,0Re (CS(IM20JP?) ¢AMDMKC (1D} )
CS(IM14UP2)BKT2 ,CR. (CS(IMI¢JP2) ANDMKC (10))
Ge T2 8/1R

IF (M +MR4MR NE,6) GC TC R02

JP2a je+2

KT2328TMP (10)
CS(1eJP2)=KT2,3R, (NS (T1eJP?) ,ANDMKC(10))
CS(IP19JP2)BKT2,CR. (CS(IP1eJP?) JANDMKC(10))
CS(IM] 9 JP2)2KT2,03R. (CS(IM] ¢ JP2) JANDMKC (1N))
G5 Y2 RI18

IF (ML+MReMT NF,6) G TC RO3

JM2e.|=2

KT2=2#IMP (10)
CSIUT,UM2)SKT2.0R, (CS(1¢JMD) LANDMKC(10))
CSIPY4JIM2)EKT2,5R, (£S(IP) e UMP) ¢AMD MKC (1))
CS{IUMY 4 IM2)BKT2,CR, (FS(IM] e UMD) (AND MKC (10))
GC T2 RI1B

IF (ML +MB+MT _NE,6) BZ TS ROG

1P2314+?

KT2=z2#IMP (10}

CS(IP2¢ M) EKT2, SR, LS (IP29JMY) 4ANDMKC (10))
CS(IP23J)aKT2,0P, (CS(IP24.J) (AND MKC(10))
CS(IPP4JP1)SKT2 , SR (CS(IP2+JP1) LAND.MKC (IN))
G To Al8

IF (MReMB4MT NE,6) 68 TS KROS5

IMP=1-2

KT228TMP (10)

CSIIM29UMIIIKT2,5R, ICS(IM2eJM1) s ANDJMKC(1D))
CQ(IMP o J)=KT2,0R, (CS(IM2,4 ) JAND MKC(10))
CS(IM2+JP1)BKT2,2R, (1S (IM2eJP1) 4 ANDMKC (1))
G2 To AlR

IF (MUsMR.NE,4) 6C TC 806

JIM2z J=2

JP2= 1e2

KT2%21MP (10) )

CS IV} 2 P21 2KT2,CR (CS(IM19JPD) cANDMKC(1IN) )
CS(T14JP2)mKT2,0R, (CS(T4JP2) ,AND MKC(10))
CS(TP1eJP2)IKT2,CR, (CSIIP]+UP2) 4 ANDJMKC (10))
CR IV o UM2) EKT2,5Re (LS (IM] 9 IMP) 4 ANDMKC(10) )
CS(T1,JM2)KT2,CR, (CR(1+JM?) ,AND MrC(1N))
CS(IP1+UMR)BKT2,CR (CS(IPY 9 JMP) JAMDMKC(1N) )
Go T~ R18

IF (ML+MB,NE, 4) GC 77 RO7

JP23 Je2

1P2x1+?

KT232814P (10)

CS{TUL PP I BKT2, SR (CSIIM1eJP2) sANDJMKC (10))
CS(1.1P2)=KT2,0R, (CS(T4JP2) ANDMKC(1N))
CS{IP1sJPP)IZIKT2,0R {AS(IP1eJP?) JANDMKC(1N))
CR{IP244P2) =KT2 SR, (CS(IP24JP?) 4 ANDMKC (1N))
CR(IP23JP1IEKT2.8R (AS(IP2+JP1) JAND MKC(1N))
CS(IP2+J)mKTD,OR,(CS{TIP24J) ¢ANDMKC(1D))
CS(IPP3IMI)EKT2, SR (CSIIP2e UML) JANDMKC(10))
Gr T~ RIA

IF (MLsMT.ME,4) GT YO ROR

IM2zx J-?

IP2=1+?

KT2e281MP (10)

CSIIP24. P11 3KT2,8R, (CS(IP2,3UP1) JANNMKC (10))
CRI1224. 1N =KT2,8R, (R (TP24.J) JAMD M C(IN))



80R

10

809

11

810

12

A12

CSIIP24 M) =KT2,0Re (CS(IP29 M1 ) ¢ANDJMKC (1))
CS(TP24UM2)=KT2,CR, (CS(IP29.UM2) ¢ ANDMKC (1DN))
CS{IP1 eJM2)=KT2,CR. IS (1P 9UMP) ¢ ANDGMKC (10))
CS (14 M2)2KT2.0R, (CS(1yIM2),AMDMKC(10))
CS(IMI «UM2)BKT2,CP,4 (LS (IM]14JUMP) (ANDMKC (10))
GC TC RIR

IF (MeMR NE,4) 62 T2 RO9

JP?2= j42

IM2=mT =2

KT2=2#IMP (10)

CS(IM24JM]) BKT2,0R, (CS(IM29JMY) ANDMKC(1N))
CS{TIU2e ) aKT2.CR, (CS(IM24J) ,AND,MKC(10))
CS(IM2+JP2)BKT2,80R« (CS(IM2¢JP?) 4ANDMKC(10))
CS(IM?vJPI)lKTZ.SP-(CS(IMZoJPV).AND.“KC(IO))
CSUIMY 2 JP2)EKT2,CR4 (CSIIMI ¢4 UP2) 4 ANDMKC (10))
CS(14JP2)aKT2,0R, (CR(14JUP2),ANDMXC(10))

CSUIP1 1 JP2)=KT2,0R. ICS(IP14JPD) (ANDMKC (1n) )

8S TC Rla

IF (MReMT,NE,4) 6C T2 810

IM23 Je2

IMZ2u] -2

KT2=2#IMP (10) .

CS(IPY s UM2)BKT2,8R. (CS(IP]eUMP) JAND,MKC (10))

CS(1,UM2)aKT2,CR, (CS(14JM2) JAND MXC(10))

CS(IM1 2+ IM2)BKT2,8R. (CS(IM]1+JUM2) JAND.MKC(10))
CS{IMR20UM2) =KT2,0R, (S (IM2+UMP) cANDJMKC (10))

CS(IM24.IM]1) =KT2,CR, (CS(IM24UM]) (ANDMKC (1N))

CS(IM2+)=KT2.0R, (CS(IM29J) dAND MKC(10))

CS(IM2+UP1)BKT2,8R. (CS{IM24UP1) dANDMKC (1D))

GC T2 818

IF (MRBeMT NE.4) GC T2 811

IM2Bl =2

IP2mTa+2

KT232#IMP (10) .

CS(IM2yUP]1)EKT2,0R. (CS{IM2eJPY) AMDMKC (1D))

CS(IM24J)aKT2,0R, (CS{IM24) JAND MKC(10))

CS(IM?vJMl)lKTZ.cR.(CS(IMZ.JM]).AND MKE(10))

CS(IP2+JP1) 2KT2,CR4 (CS{IP2+UP1) ¢AND.MKC(10))

CS(IP2+J)aKT2,5R, {C811P244) . AND (MKL (10))

CSUIP21UM1)=KT2.0R (CS(IP2+UMY) ¢ ANDMKC (10))

6S To Als ~

IF (ML.NE.2) 6C TC A12

JMZR a2

JP2= j+2

IP2x1+2

KT2=2%IMP (10) . . .

CS(IM19JP2)3KT2,CR. (CS(IM11JP2) ANDMKC(10))

CS(1,4P2)mKT2,3R, (CS(1,JP2),AND MKC(10))

CS(IP1+JP2)BKT2,CR4 ICS(IP14JP2) JAND.MKC (10))

CS(IPPeJP2)EKT2,5R. (CS(IP2+UP?) dANDMKC (10))

CS(IP2,JP1)8KT2,CR. (CS{IPP+JP1) JAND,MKC (10))

CS(IP29J)mKT2.CR, (CS{IP2yJ) ANDMKC(10))

CS(IP2yIMI) EBKT2,CR (CSIIR20UMY) JAMDMKC (10))

CSIIPPeUM2) BKT2,8R 4 (CSIIP2eJUMD) (ANDMKC(10))

CS(IPY s UM2)BKT2,CR (CS(IPY e UM2) ¢ANDMKC (1N))

CS(14UM2)mKT2.0R, (CS{ToJIM2) ANDMKC(10))

CS (1M1 4 UM2)BKT2,CR, (CS(IM14UM2) ANDMKC(10))

G T2 Rl8 )

IE (MR NE,.2) GC TC R13

JM2E J=?2

JP2= je?

IM2=1-2

14

8113

15

ala

31%

17

KTP=z2#1IMP(10)

CSEIPYaUM2) =KT2,0R, (CS(IP) s UMP) JANDMKC(1D))
CS (14 M2)EKT2,CR, (CS (T e IMP2) ,AND MKC(IN))
CS(IMI ¢ JM2)2KT2,0R. {CS(IM19UMD) JANDMKC (1))
CSIIM29JM2)2KT2,0R. (CS{IMPsUMP) s ANDMKC (10))
CSUIMP UML) aKT2,CR. (CS (IM2e UMY ) LANDMKC(10))
CS(TMP+J)SKT2,.OR, (CS{IM2,4J) JANDMKC(10))
CS(1U24JP1)BKT2,CR. (CS(IMR3JUP1) s ANDMKC (10))
CS(IU2eJP2)BKT2,0R, IS (IM24JP2) JANDMKC(1D))
CS(IM19JP2)SKT2,0R (S (IM]sUP2) 4 AND MKC(10))
CS(14JP2)2KT24CRL(CS(14JP2) ANDMKC(10))
CS(TP1+JP2)3KT2,0R. (CS(IP1+JP?) cANDMKCI(10))
GS TC AlB R

IF (M3,NE.2) GC TC R14

Jp2a j+2

IM231-2

IP2=1e?

KT2:2#1IMP(10) v _ i
CS(IM24JM1)EKT2,CR (CS(IM24JMY) JAND.MKC(10))
CS(IVR2eJ)uKT2,CR, (CS({IM24J) JANDMKC(10))
C<(I“"JPI)=KT2.SR.lcS(IM?.JPY).AMD.MKC(IO))
CS(IW?qJPZ)-KTZ.SR.(cS(IMzoJDZ).AND MKC(10))
CS(IM12sJUP2)3KT2,0R (CS(IM1sUPP} LANDMKC(10))
CS(1,JP2)mKT2,0R, (CS(14JP2) (ANDMKC(10))

CS(IP1sJP2) MKT2,CR, (CS(IP14JP2) ANDMKC (10))

CS(IP24JP2)BKT2,CR, {CS(IP24JP2) JAND MKC(10)))
CSIIP24JP1)=KT2,0R. (CS(IP2+JP1) JANDMKE(10))
CS{IP24 ) 2KT2.0R, (CSITP24.1) ,AND.MKC(10))
CS(IP2eJMI)BKT2,0R (CS(IP23IMY) dANDMKC (10))
6% To Als B

I1F (MT.NE.2) BC TC R1S

JM2m je?2

IM2mTe2

I1P22]+2

KT2=m2#1MR (10) . .
CS(IP2+JP1)SKT2,0R (CSIIP24UPY) o ANDJMKC (1D))
CS(IP2+J)=KT2.0R, (CS(IP244) ., AND MKC(10))
CSIIP2+JM1) =KT2,CR, (CS(IPRsUM1) JANDMKC(10))
CS(1P24UM2)EKT2,CR. (CS(IP2eUMP) s AND.MKC (10))
CSIP1sUM2)BKT2,0R, (CS(IP1¢JMP) JANDMKC(10))
CS (I, M2)mKT2,CR, (CS(T,4JIM2) ,AND MXC(10))
CS(IM]3UM2)3KT2,CR . (CS(IM1 9 IMPY,AND.MKC (10))
CSIV24UM2) BKT2,CR. (CS(IM24UM2) (AND,MKC (10))
CS(TIM29IMI ) BKT2,0R, (€S (IM29UM1) +ANDLMKC(10))
CS(IM2+0)aKT240R, (CS(IM24U) , AND MKC(10))
CS(IM29JP1)=KT2,8R, (CS(IM2:UP1) (AMDMKC(10))
85 To R18& ]

K9AmCS (14 JP1) (AND MSK (9)

KQAmKOA#NDV (G)

IF (X9.EQ.K%A) GZ T2 B16

IF (K9A,EQ.4) BC TS R16
K1A=CS(14JP1) . AND JMSK

IF (K1ALEQ.2) GBS T4 R1B

JP2= je2

KT1=29IMP(11) R
CRI{I3J)BKT14CRL(CS(T9J) eANDMKC (1Y)
CS(1eJP1)ZKT1 R, (CS(14JP1) ,AND,MKC(1]))
KT12=>#14P (10)
CS{TeJ)BKT2eCR, (CS(TaJ) ¢ ANDMKCI1N))

CS(Te IP1)RKTR,CR, (CS(T14JP1) (AND, MKC(1D))
CS(T14JP2)2KT2.0R, (CS(I4JP?) ¢ANDMKC (1D))
CS(IP1+JP2)=KT2.,0R (CS(IP1+JP2) JANDMKC(10Y)



R16

A7

Aln

CS(IP1+UPIIBKT2,CR, (CS(TP1+JPY) 4ANDMKC(10))
CSIIPY1 D) NKT2,0R, (CS(IP1+J) (AND MKC(10))
CSIIP1 e UM BKT2,5R ¢ (CS (TP 4 UMY) LANDJMKC (10))
CS(JeM1IIBKT2,CR, (CS (T 4UMY) ANDMKC(10))
CS(TUY e J)=KT2,8R, (CS(TM1 4 ) ANDMKC(10))
CS{IVI s IMIIBKT2,5R, (CS(IMLsJMI) ANDMKC(10))
CS(IMI4JP1)ZKT2,0R. (CS(IM]1eJPY) e ANDMKC(10))
CS(IM1eJPR2)3KT2,CR4 (CS(IM) 4 JP2) JANDMKC (10))
K9BaCS(IP1+JP1) . AND MSK (9}

KORaKIRONV (9)

IF (K9.EQ.K9B) GC T2 817

IF (K9R.EQ.%) GC TC R17
K1B=CS(IP) »JP1) (AND ,MSK

IF (K1R.ENe1.0R.K1R.EN,2) GC TC B18

JP2x J+?

1P2m1+2

KT1=28TMP (1)
CSITsIEKTLaCRL(CS(Ted) «ANDMKC (11))
CS(TP1sJPII=KTL OR. (CS{IP1sJP1) JAND,MKC (11))
KT2=2#IMP (10)
CS(Te))EKT2:CR (CS(TeJ) e AND.MKC(1N0))
CSIIPY1+. )P 2KT2, 3R (S (IP1+JPY) LAND MKC (1))
CS(IP1sJP2)=KT2,3R. (CS({IP]+JPP) ¢ANDMKC (10))
CSUIPPeJP2)3KT2,5R, (S (IP24.JP2) (AND MKC (10))
CS(IP2sJP1)1aKT2,0R, (CS(IP24JP1) cANDGMKC(10))
CS(IP2+JI1RKT2,3R, (CR(IP2,J) (ANDMKC(10))
CS(IP1+J)aKT2.CR, (CS(IP14J) ANDMKC(10))
CSID1 s UMIIIKT2,8R, (CS(IP1sJM1) JANDSMKC (10))
CS(1sIMIIEKTP2,OR, (€S (T4JUM1) (ANDMKC(10))

CS IV e UMIISKTR SR ICSIIM1 UMY GANDMKC(10)Y)
CSIIM s JI=KT2,0R, (CS(TM1eJ) JANTIMKC(10))

€S (141 +JP1)BKT2,CR4 {CS(IMI s JPY) ¢ AND(MKC (10))
CS(1+JP1I=KT2,CR, (CS(19JP1)  ANDMKC(10))
CS(19JP2)=KT2,CR, (CS(T4JP2) (AMDMKC(10))
KOCmCS(IP] 1J) AND LMSK (9)

K9CaKICHDV (9)

IF (K9.EQ.K9C) 6T TC R18

IF (K9C.EQ.4) GO TS B18
K1C=CS (IP] 9J) + ANN (MSK

IF (X1C.EQ.2) 6T TC m1R

1p2=142

KT1=281MP (11)

CSI1e) KT a2 (CSTeJ) cANDMIE (17))

CSIIP1e N3KTY OR (CS(IP14J) ,AMDMKC (Y1)
KT2z28TMP (10)

CSITe ) =KT2.0R (CSIToJ) cANDMKC (10))

CSITP1 e N EKT2,3R, (LS (TPl o) JANDMKLC(10))
CS(T122e)3KT2,CR,(CS{IP24J),ANDMKC(10))
CS(IP2eUMII=KT2 ,BR (LS (IP20JM1) AND MKC(1N))
CQ(ID]-JM])IKTZ.CP.(CS(191.JM1).AND.MKC(ln))
CS (T4 M1I=KT2,OR, (CS(14IMY) (ANDMKC(10))
CSIIMY s UML) BKT2,5R, IS (TM1sJM]) cANDMKC (10))
CSITMY s N EKT2,0R, (CS{TIML 4 ) (AMD,MKC(10))
CS(I“\-JP!"KTZ.CR.lCS(IM}onl).AND.MKC(ln))
CS(T4 P =KT2,.0R, (CE(ToJPY) LAND MKC(10))
CS(IP1 s JPLIBKT?,8R (CS(IP1+JP)) JANDMKC(10))
CQ(!’?'JPI)-KT?.CPo(CS(IPZOJpl’.AMD.MKC(IO))
CONTTVHIE

RFTURY

FEMD

SHRRSIITINE BNDCND (KKKK)

CAMMIAN/TYPCSL /PILMIN¢PLMAX « XMTM o XMAX ¢ TXMIN, TXMAK o TYMIN, TYMAX

500

%01
502
S04
508
504

507

508

<

APAAN AN

»

COMMAN/TVGUINE/TMTNE (TEXT 1TV

COMMON/TYFACT/FACT

CCM“C“/TVTUNE/LpENotpfFOITALQVVINK'T”TSQIRTvYHP

CCMMCHN UFLTAﬁch.DT?'DTADX.DT«DanTCD.DTDXqDTnY-DTDxS.DTDYS.DTPo
DTPP s NTVP 4 DX e DXCNP¢DXT4 DX INeNXP ¢ DYCeNYCO29NY T4 DYINSDYP

CCMMON FPSyGeGHsBXsBXNyGXNT ¢GY1BYN¢BYNT oMy TCNTRe ITEST (KN KKKsl Lo
MT1MCO””1OMUZvNBIoNB?oNIcNTW]ONIPl.NJ'NJMIQNJPI|NP‘N9R‘NTPt
cnx.Cnx?,CDxﬁ.cnY,cha;COYS.PI.Q?oT.TCP-TL.YD-TOPoTVPoUOo
VOWWs TVSHNXSPNY,,0YS2DX DATNY 4+ NYSDX

COMMSN A (404200 4Bl (6N+20) +R2(60520) +B3(40920) +B4(60,20),C5(60:i20) s
DV{15) s IMP({15) sMKC (15) ¢MSK (18] oMU (40420) oNF (30) o+ NK (40920} s
NKT (604201 5P (4D 9201 3PS 13000) «PST (41421 4R (40420) ¢SR(60,20) s
SRT (4Ne20) s11141921) sUP (3000) 41T (41,21) «v {61211 sVP (3000},
VT (41521) 9 XC(40) +XP (ION0) 3 XPO(I0) 9 XPL (30) 9 ¥C (2014 YP(3000) 4
YPN(30) 2 YPL(A0) +ZET(41421) 41JPD(30) ,VPO(30)

CaMMCN KNHP,NBP-NBP?oXBl(Zl)oxHZ(?ll-YB!(ZI);YBZ(?l)vlll(?0)-
xx2(201;IQAVF,xx.XA.lwnG.DTPn.TpRoNCcISPACEonUM(S)

REAL MoeMU1 gMIZ g NK 9 NKT

INTEGFP CS+PS

CALL FSBDCD (KKKK)

D2 517 J=lsNJ

DS S17 1=1NY

K1mCS{1eJ) e AND MSK

IF (K1.NE.2) 6C TS &8)7

K7aCS (T9J) s ANDMSK (7)

K7=K7#0V(T) ,

KE=CS (19J) s AND MSK ()

KSaKS#DV (%) )

K22CS (TvJ) « AND MSK (2)

KP=K28DV (2)

IF (KS.EQ.2) GC 7T 400

S=1.

IF (KT.FQ.4) GC 7O 509

IF (KT.EQ.3) GC 71T 5n8

IF (KT.EQ.2) 6C TC K00

11=1e1

17=1)

13=]

14m]+2

6 TC 501

11=1

12=1=-}

13=1+1

Tox]?

G2 T2 (502+507+50645054517) 9K

IF (TVC.NE.O) 6C TC %07

Ss=1,

63 T2 507

SS=e],

65 To 806

Sse1,

Ss=l,

UT(T34 ) =SS*NT (149 0)

UT(I19J) =00 _

VT (T1eJ¢1)mSHVYT (129 J41)

VT (T4 D=SaVT(12,))

GC TS 517

Ji=Jsl

Jr=s

Jaz}

Jam je?

‘6% To 610



509

S1n
51)

5113
S1a4
518

S1a

400

401
402

403

404

408

S17

519

520
521

Ji=y

J?2ele]

J3sJe]

Jo=my?

GC TZ (5110516451305144517) 4k?
IF (IVC.NE.O) 6T TS s16
S=-1,

GS T2 516

SSa=l,

GS T2 S1%

Sz=1,

Sea)],

VT(14J3)3SS®VT (1,J6)

VT (Te31)30,
UT(T+1e)8S®UT(14104J2)
UT(1,J)=SaUT (1,92) °

GS T8 S17
K4aCS(1edm1) JAND MSK (4)
KaaK4#DV (4) .
IF (K2.EQ.3) GZ TC anN]

IfF (K6.EQ.2) 6T TC 404
IF (K7.EQ.1) GC 1T 403
UT(TeJ) =0,

VT (1sJ+1)=0.
VI(14))mSOVT (T=]l,yd)
UT(1619J)mS*UT(Tely)e))
GBS T2 S17

UT(Te19J)=0.
VT(l,J*1)=0.

VI (1eJ)mSeVT (10],J)
UT(1,J)3S8UT (1,Je1)

682 To S17

IF (x7.EQ.1) 6T TC a0%
UT(1.,J)=0.

VT(T,J)=0,
VTI(14J+]1)mS®VYT(TaleJel)
UT (1419 J)mS*UT(TeY0 Jel)
8C TC S17

UT(I+1+.J)20.

VT(1.J)=0,

VT (15J+1)mS®*VT(Tele.0¢])
UT(T,J)=SeHT (T,J=1)
CCNTINUE

CaLL 5TRDCD

IF (TVC.NE«O) CALL TNBDCD
IF (KKKK,EQ.?) GC T3 S21
DS 519 JU=lsNy i
U(NIP1eJ)sUT (NIP) s J)

D2 519 I=1sNY

Uit 3sUT(Ts )

VIIe NaVT(Is))

DS 520 I=1sN7
VITeMJIP1)2VT (14NYPY)
RFTURN

END

SURRSUTINE CTHDCD
COMMIN/TVPICL/PLMIN ¢PLMAX ¢ XMTN o XMAX o TXMIN, TXMAX o TYMIN, TYMAYX
COMMIN/TVYGUIDE/TMEDE , TEXTLITY
CSMMSN/TVFACT/FACT

60N

6

602

6N3

]

L]

» A A

AR AAN

%

OMMSN/TYTUNE/LPFN I PEF s TTAL  TWINK 4 TNTS, IDT, TP
CMMEN DELTASDToDT2,DT4DXaNT4NY 4 NTCP «DTDX «DTNY s DTDYSNTOYSINTP,
DTPP.DTVP.Dxr.nxcn?.nxva.oxYN.DXP,DVC.DVCDZ-nYta.OvIMonYP
COMMEN EPS1GIGHGX XN GXDTeGYsGYNsGYNToH, ICNTRy ITEQT (KD s KKK oL L »
MT MO s MUL yMU2 JNBLoNR24NTINTHMT NIP1 ,NJyNIML ¢N.1P] oNP JNPRGNTP,
CDXsCNX293DXS ¢ COY e lDY2CDYR IR yR24 T4 TCPsTLo TP s TPP s TVP 4110,
VOsWeTVIIDXT2NY 4 DYS2DX DXSAY NYSDX
COMMTN A (40420)4B1(4N420) 4B2(40520) 4R3I (40,20) +84(84042n) +CS(60,20)
DVI15) +IMP (15) «MKC (15) ¢MSK (15) oMU (40 920) « NF (10) o NK (409 20) »
NKT (40¢20) sP (404201 +P§(3000) yPST (41421) sR(40420) +SR(40,20) o
SRT (404201 +11t41921)sUP (3000) 41T (41421) 1V (61421) VP (3N00) o
VT (4152114 XC 1401 9XP(3N00) s XPO(30) »XPL (30) s ¥YC (20} 4 YP (I0N0) »
YPO(30) s YPL(30) s ZET (41,21) 4UPN (30} 4VPO (30)
CCMMZN xNRPeNHPoNBP?oXRl(21,vXBZ(?l).VR\(?]).YB?(Z!)va](20)'
XX2(20) ¢ ISAVF 4y XTI 9 XA+ IWNGsDTPR«TPRoNCY ISPACE yNUM ()
RFAL M'IaMiL M2 JNK oNKT
INTEGER CSsPS '
DS 603 J=1 9Ny
NS 603 T=leNY
KPBCS (T e J) s AND MGK (D)
K2aKp#ny ()
IF (K2.NE.2) 62 T2 603
KT2CS(TsJ) s AND MK (7)
K7aK78DV (7)
IF (X7.,FQ.4) GBS TS AN2
IF (K7.FQ.3) GT T2 #nt
IF (x7.EQ.2) GC 7T An0O
UT(T4190)mUT (142,J)40XCRSNY R (yT(Tolsde]dmyT(Is1sJ))
UT (T )SUT(Ia) ) oDXCHSDYR (VT (Tede1)elT (I, J))
80 T2 403 )
UT(Ts }3UT(1el0)) eNXCOSDYR (VT (=) g ) VT (I= s el))
UT(T+1+J)&UT (19J)+DXCPTDYS (VT (14 0)=VT(TI0Js1))
62 T2 603 )
VI (TeJs1)mVT (19Je2) oNYCRIDX® (T (1010 Je 1) =T {Todel))
VT (1s DBVTUI,Je1)+NYERSDXB (UTI10),0) =0T (1,0))
G2 T A03
VI )BVT(15J=]1) +DYEBSDXS(UT (Tode1)=UT (161 0d=1))
VI(T o+ 1) mYT(T5)eNYCRSOXB(UT (Lo V=T (TI41¢J))
CANTTNUE
RFTUAN
END
SIIBRZUTINE INRNCH
COMMON/TVPOTL/PLMIN G PLMAX o XMTN s XMAX o TXMIN e TXMAX ¢ TYMTN, TYMAX
COMMEN/TVGHINE/ TMODF yTEXTLITV
SMMON/TVFACT/FACT
COMMCN/TVTHNE /LPFMo | PEF 2 TTAL , TWINK 4 INTS,IRT,TUP
COMMSN PELTASDT4DT24DT4DX eDT4DYsNTCPINTDX+DTNY 4DTDYS DTOYSNTP,
NTPPINTVR s DXC ¢ DXCN2oDXT4sDYINGDXPsDYC,DYCD2+4nYT14,DYINNYR
SMMON EPSsG4GHGX s XN s GXNT oBYsBYD¢BYDT o H ICNTReITERT (KD KKKy LL o
MI‘MCQMUIyMU?yNBl!NH?vNIQNYW‘tNIplvNJvNJMIQNlp1vNP'anoNTp|
COX!CDX?vCD!Q.CDYQCDV’_QCDYQ.""RZ'TOTCDOTL' TP TPPsTVR4110,
VOsWe TV, NXCADY (DYS2DX 4DXSNY 4 PYSDX
COMMTN 2(40420) 4R1(40420) «B2 (404201 4R3I (40y20) R4 (60,20) +C5(40,20) o
NV (15) 2 TMP (15) sMKE 115) «MSK (15) MU (40520) +NF (30) s NK (41920} »
NKT{40020) ¢P (40420 sPS(3000) 4PST(461421) +R(460421) +SR{40420) »
SRY (409201 91(4)921) sUP(3000) 41T (41421) 9V(41421) s VP (3000) o
VT(41.21).XClbO)othiﬂnO)9xPﬁ(30)-KPL(BO)'VC(ZO).YP(300010
YPQ (3N e YPL AN 9 ZET (6142)) 4UPN (30) 4 VPO (30)
CSMMCN KNBP I NAP yNRP? 4 XB1(21) 4 xB2{2114YRT {21) 4 ¥B2(21) 9 xX]1 (20,
AX2(20) s TSAVF i XT9XAs IWNG4DTPRy TPRyC s ISPACE o nUM (&)
RFAL VIyMUL s MUI2 g NK ¢ NKT
INTEGER CSePS



700

701

T02

703

100

1m

DS 703 J=laNy
DS 703 IalsNY _
K22CS(TeJ) e ANDMSK (2)
K2zK28DV (2)

IF (K?«NEs1) GC TT 703
KT73CS(TsJ) s ANDMSK (T}
KT7sK78DV (7)

IF (K7.EQ.4) 6C
IF (K7.EQ.3) G& TC
IF (KT.EQ.2) 6C TC
UT(Ie =T (1420 )
UT(T+1e3msUT (T19J) -

Gs T2 .703

UT(T e I =T (Tl v d)

UT(Te1e)aUT(To )

GS TC 703

VI(1e ) EVT(1,J42)

VT(T.0¢1)aVT(1s 1)

s T2 703

VT(TIs NEVT(IeJe1)

VT (T4J+1)sVT (T4

CANTINYF

RETURN

END

SURRZSUTINE FSBNCN (KXKK)
COMMON/TYPCCL/PLMIN,PLMAX « XMTN s XMAX s TXMIN, TXMAX s TYMTN, TYMAX
CoMMON/TVGUINE/TMENE , TEXTS 1TV

CoMMani/TYyFACT/FACT
COMMCN/TVTUNE/LPFMN oL PEF s TTAL o TWINKs INTS,IRTHIUP

COMMON DELTASDT o DT24NTADXsDT4DY s NTCP4DTDX+DTDY +DTDASHDTDYSNTP,

L DTPP-DTVP.DXF.DXCD?.DXTQ.D!IN.DXPoDYC,DYCDZvnYthoDlecnYP
CoMMSN EPSsGyGHaGXsBXNsGXDT oBYBYNeGYDT oM, ICNTRIITEST KD eKKKyLL s
M1.Mv,Mnl.MU?.HBI.NBZ.MI.Nrwl.NIPI.NJ.NJMI.N4P1’NP.NBR.NTP.

CDXsCNX240DXS DY s2DY2,CDYSsR14R2s Ty TCPoTLoTOWTPPy TVP4110,
VOsWeTVE,DXSANY 4DYS2DX 4DXCAY 4 NYSDX
A(60920) 4R (40+20) ,R2(40+20) ¢RI (40+20) +B4H(40,20)+CS(40,20)
DVI15) s IMP(15) yMKC (15) «MSK (1%) yMU (4D 20) +NF (30) 1NK (40420
NKT(#O,ZO),P(AO;ZO)9PS(3000)qut(ﬁly?l)oR(AOoZn).Sn(bO.?O)o
SRT(40+20) 515 141421) +UP (3000) sUT (41221 eV {4)1921) VP (3N0ON),
VT(41421) 4XC(40)9XP{3INN0) 9 XN (3N) +XPL{30)sYLC(20) 4 YP (3000} s
YPO(30) 9 YPL (30) ¢ ZET(41,421) +UPO(30) ,VPO(30)
KNBP ¢ NBP 4 NBP2,XB1 (21) «+XB2(21) 4 YR1(21) 4 YB2(21) 9XX1(20) s
XXZ(ZO)9ISAVE,XIoXA'!th.DT”R;TpﬂnNCnISPACthUM(S)
REAL MUWMUL o MU2 g NK o NKT
INTEGER CSePS
IF (XKKK.EQe3)
S 101 J=m29NJM)
D% 101 I=2eNIM]
K1=CS(TeJ) e AND JMSK
IF (K1.NE.5) B85 TC 101
K1R=CS (I¢1sJ) o ANP MK
IF (K1R.NE«3) 68 TC 100
UT(T+19)m(T+14J) ¢GXDNT
G2 T2 101 .
K1D=CS(TeJel) sANDMSK
IF (K1D.NE«3) 62 TS 101
VT (T4 941)2VIiTeJal)+RYDT
CONTTF
D5 411 J=2eN M)
DS 411 T=x2sNTIM)
KYZCS (T eJ) dAND MSK
IF (K14NEL5) 68 TC 411}

702
701
700

T°

A RN

COMMON

CCMMTN

" AR A N

GC T2 RO5

N7

40NR

4no

414

617

418

419

4?n

412

13

K1Ae(S(T=1sJ) s AND MK
IF (K1AsNF3) 6C TS 407
UT(Te )SUT(Ia1y.))

G2 T2 408
K1R=(S(Tel0J) JAMD  MQK
IF (K1RA.NE.3) GC TC 408
UT(Ie1+J)aUT(T4])
K1C=CS(IsJ=]1) ¢ ANN MSK
IF (K1C.NE«3) GC T2 409
VI (Te))=VT(I4Je))

KINaeS(IeJ*]1) sAND . MSK

6C T2 4l

IF (KID.NE.3) GS T2 411}
VT, de)aVT (1)

CONTINNE

DS 615 Jw2eN M)

N NP

JP= e

C 415 I=24NTM)

IMR] ]

1P=Y41

KI=CS(TeJ) s AND MSK

IF (K1.NEW5) 6 TS 475

K14=CS(TMyJ) JAND (MSK

K)RaCS(IPyJ) 4 AND, MSK

KIC=CS (14JM) , AND MG

KIDECR (19 JP) s AND ,MSK

1F (K)AoNE;-’,oAND-K]ﬂ.EQcQ.AND-K]B.EQQ3'ANDQ (K1ICeENa& e SR KICLERLS))
% 82 TS 4l6

IF ('(1A-EO;;-AND-KID.EQ.3.M\ID.KIB.NE-3.AND. ‘KICUEQUADORoxlc-EQDS))
£ 82 TS &

IF (~1A.NE;g.ANn.(Kin.Ea.a.cn.xlo.En.S).Aun.K1B.Eo.1.ANn.xlc.rQ.a)
s 82 TC 4

IF (K1A4EQe3.ANDG(KINIEQe4sCRIKIDENGS) ANDKIBNE.3sANNGKICFRL3)

. G TS 419

IF (K184ENe3.ANDKIN EQe3 ANDKIR EN34AND . (K1C.ENbeCRKICLEN.5))
% 68 T3 420

IF ((KV1A,FQeb4eCR,K1A,EQeS) JANNDGKINLEN I ANDK1BLEN.FsANNK1C,FEQ,3)

8§ 62 T2 617

{2 (KIA;Eg-3.AND.(KlD.EQ.a.CR.KID.Eo.S).AND.KIB.EQ.?.AND.KIC.EO.J)
¢ (S TS 41

IF (K1A+EQe3,ANDKI1D,EQ.3,AND,
$ 65 TS 416

62 To 415

UT(IO ) aUTITP 3 M) ¢UT (TP s M) T (1P, J=?)
VT(TePIBRVT T ) eVT (T ) mVT (T 4JIM)

RY T 415

UT(T s DRUTIT G UM) sUT (T 9 M) «UT (T o J=P)
VI(T o PI VT (T o) eVT (T o) aVT (T, IM)

G5 T2 615

UT(TIR D) =T (TP UM) e T (TP ¢ M) aliT (1D Jm?)
VI(Te IBVTIT4UP)4VT (1 9JP)=VT(TeJeD)

68 T~ 418

(KIR(FN,44CR,NIR.ED.S5) e ANDLKICFQ,I)

UTH{Te DEHTII oM aUT I e M) =UT (Yo J=?)
VI(T s DBVTIIJP)eVTITeUP) «VT (TeJeD)
Gg T~ 41s

VT (T IPIVT T ) eVT T o) ayT (T ,JM)
GS T2 w18

HT (10 N2 T (Yo ) otITITo)=iITIIN )
6o T2 4168

VT (T1e NBVT(T,0P)aVT Ty JP)aVT (T js?)
Rr T~ 418



414 UT(T.I)SHT(leJ)o“leb,J)-HY(y*?,,)
415 CONTTHF

RON
301
RN

303
R04
ROS

ROY

ANR

ANQ

RYIN

N2 /NG J=x2 4N MY

JM= e

Jo= le)

NS 804 I=PeNTM]
KY=CS (1eJ) s AND JMSK

IF (K).NE.S) GS TS an4
M=l

IP=14+)
K1A=CS{IMyJ) JAND  MSK
KIRECS(IPsJ) JAND MSK
K)C=CS (T 9JM) ,AND  MSK
K1N=CS(T4JP) (AND MSKc
IF(X1C.EQ.34AND K1A, NE, 3, AND.K1B.NE .3

% #AND (KIDLEQ. 4, CR.KIN,FR,. %)) AS TS 800

IF(K)NaFNL3.AND K1ALNE, 3, AND oKk 1R,NE,3

% »ANDL (K1CLEQ,4.CP.KIC.FQ,5)) 65 T2 80)

%

%

1f (KVA EQeI AND, (KIREQ.40CRK1B,FNLE) (AND (K1 CoNE o34 AND oK 1D, NE,3)

53 TC 802

IF (xIR ENe3,AND . (K1AEQ4eCRKIAENB) JAND.KI1CoNE ¢3¢ ANP.K 1N NE,3)

G2 TS RO3
GE TC A04
VTl ))BVTUIoJP) e VT (T9JP)=VT (TeJeD)
GS T2 RO4
VI{TeJPIaVT(T s D) VT (T o) =VTIT M)
G T2 RNy
UT(Ty D SUTLIPy ) «HUT (TP, N =lIT(Te24.1)
G2 T2 R04
UT IRy N =UT(TeU) sUT (T 9 J)=UT (TMeJ)
CONTINUE
DS ANK I=29N M}

JMz a1

JP=E Je

DS 806 I1w2iNIM]
K1=CS(JvJ) « AND MSK

IF (K1,NE.S5) GC TC RN6
IM=]a}

1P=]e}

K1A=CS (IMyJ) ,AND , MSK
K1R2CS (1P yJ) , AND MSK
K1C=CS(14JM) ,AND  MSK
K)IN=CS(14JP) ,AND MSK
K1E=FS (1M, JP) (AND J M&K
K1Fs£S(IPyJP) s AND W MSK
K152CS (1P JM) . AND MK
KIHECS (TMe UM) , AMN JMEK

IF (K1R.NE+3,CR.K1F NE,3)
VT(10, IP)aVT{1yJP)

IF (K1AEN.4.CR,K14,FN0N,5)
IF (KA NE«3I, CRLKIF NF,3)
VI (IMe P)aVT (T40)

IF ‘KA‘QOEQ.“.\.{Q.KIROF0.5)
IF (K10 WNE.3,CRKIF,NF,3)
UT(T19,P)aUT (1P )

IF (KYICeEQe®,CR,K1C.FAH)
IF (C1CeNEe3,CR.K1G,NE,I)
UT (TP, UM)sUT (1P, )

IF (KIDeFR4,CRKINFRL5)
IF (CYRNF.3,0R KIB,ME,3)
VT(ID,J)aVT(Ts))

IF (K1A.EN+4,CR,K1AL,FNR,S)

6C vC 807
GC tC 804
GC 1T 8n9

&S vC M0

G2 *Z 8il

VI(TP o) sVT(1e D) ¢VT(TodI=uT (TMy )

VI (1P R)BVT (Te  P)eVT T eJP) VT (IM,eJR)
VT(TMs R sVT (14 JP) eV T (14 UP) VT (P, UP)
HT (TP JPIBUT (P4 J) ¢UT(IPy J) aUT (1P, M)

UT{TP s MI=IIT(IP, J) «UT(IPs J)UT (1P, UR)

AT

R1?

L]

804

600

%95

601

596

AN

R R B N J

s

IF (KTANF.3,00,K1HNF,3)
VY (1M,
IF (K1R,ENe4,CR.K1R,FQ,5)
TF (KIDJNE eI SR.KIF .NE . 3)

G6C TC Ri2

N=vT(ted)

VI(YMs ) sVT (T o) eVT (T oD eyT (124 )
GG vC 813

UT (1e 1Py =UT (T o)

IF (K1CaFRe4,CR.KICLEN.S)
IF (K1C.NE«3I.CR,KIH NE,3)

UTITsJPIBUTIT o)) ¢UT (T oD =NT (1o JIM)
GC 1T 806

UT(T1e M) =TT sJ)

IF (K1D.EQe4.CR.KID.FQ.S)

UTET2UM)I 20T (T e ) +UT(Te ) =T (1,UP)

CONTINHE

RETURN
END

SURRZSUTINE CNTROL
COMMEN/TVPECL/PLMINGPLMAX « XMTM 9 XMAX 4 TXMIN TXMAX ¢« TYMTN, TYMAX
CoMMCN/TVGUIDE/TMENF 4 TEXT,TTY

COMMEON/TVFACT/FACT )
COMMCAN/TVTUNE /LPEN | PEF s TTAL s TWINKs TNTS, IRT, JUP

COMMZN

CSMMCN

CCMMCN

DELTAS DT DT2.0T4DXoNTADY s NTCP DTDX s NTDYsDTDXS4NTDYSINTP,
DYPPsDTVP 4DXCoDXCN2oDXT4sDXINDXP3DYCsDYCD24NYT4,DYINGNYP
EPSIGGHeGX s BXD s GXNT9BY9GBYN4GYDToH, ICNTRIITEGT ;KD o KKK oL L o
MY gMT o MUT o M2 oNBLoNB2 9NT o NTULToNTP Y NJoNJML 4N 1P ¢ NP NPR (NTP,
COX9CDX24CDXSsCDYsCDY2oCNYSHIRY 4R24 T TCPoTL s TRoTPP TVP 110,
VOsWs IVEDXE20Y 4 DYS2DX . DXCAY 4NYSDX |
A(40920)4RB1(4N4120) 4R2(40920) sRI(40420) sB4(80,20) +CS(40,20) s
NDV(15) s IMP {15) sMKC (15) yMSK (15} oM 14D+ 20) JNF (30) yNK (404200 ¢
NKT (40+20) +P (40+20) sPS (30001 +PST(4]1421) sR(40,2n) +SR(40,20)
SRY (409201 «1) (614213 2UP (3000) 4 1IT(41,21) ¢V {61,521) s VP (3N00)
VT (41421)4XC(40) +XP (3000) ¢ XPO(30) » XPL (30) +YC (20) s YP{3000) »
YPO(30) s ¥YPL{3N) 4 ZET (4]1421) 4UPD(30) ,VPO (30}

KNRPyNBP NP2, XB1(21) s XB2{21) s YR (21) ,YR2(21) 91X X1 (20} s
XX2(20) s ISAVE X I s XA+ IWNG,DTPRsTPRyNCy ISPACE ¢AUMIS)

REAL MHaMUY 9MU2 3 NK 4 NKT
INTEBER CS#PS

DIMENSICN AA(31107) 4JTIME(7)
ENUIVALENCE (AA,DELTAS)

CALL STATUS (JTIME)

IF (1SAVE.GT,.0) 6T
IF (T, NE.Os) 6T TC

TS 607
600

CALL OLTPAR
CALL CELPRT

TPaNTP

TCPapTCP
TerPsnTPP
TVPaDTVP
TPRaNTPR

WRITE

(NTP) DUMMY

62 TZ A0S

1IF (xD

.E0.2) 6T TC 606
IF (UTIME(3),.GT,.15000)

GC TC %598

CALL PLTPAR
CALL 2PRSPLT

Gg T2 596
STIMaJTIME (1)
ITIMF=STIM®,001
CALL PRSPLT

IF (T.LT.TP=,00000001) GC TC

#01}

CALL PLTPAR
TPaT+NTP

IF(T.LT.TCP=,00000001) 62 T2

&02

CaLL CELPRT

WRITE
WRITF

(MT+6002)
(NTP) AA

TeITTIME



IF (UTIME(J) ,LEL150N0) GS TC 408
TCP=T+OTCP
602 1IF (T.LT.TPP=,00000001) 65 TS 603
CALL PARPRT
TEP=T+DTPP
603 IF (T.LT.TVP=,00000001) GC T2 6404
caLL PLTVEL
TVPeT+NTVP
606 IF (T.GE.TL=,.00000001) KD=?
HO8 TaT+nNT
WRITE (M346004) JTIME (1)
RETURN
&0k CALL CELPKRT
CALL PARPRTY
WRITE (MZ,6000)
G2 Tn ADS
407 D& 600 IMIM=z], TWDG
609 RFAD(NTP) DuMMY
READ(NTP) AA
IF(MONITFIX(T*.5)+5 ) .NEoD) PACKSPACE NTP
Pt MIN=X]
Py MAX=XA
XMIN=XT
XMAX=XA
ISAVF=0)
WRITE (MCs6003) T
Ao T~ A0S
60R KN=2
END FILF NTP
REWIND NTP
GZ To A0S
4000 FORMAT (1H1110X 4 1HARNGRMAL STOP =« LSCK FCR ANCTHER MESSABE)
40NY FORMATITF10.0)
£002 FORMAT(1H=s10Xs1SHSAVING AT T = F6,3,25H =~ ACCIMLATED TIME =
¢ ,16,8H SECCNDS)
60031 FORMAT(1H1s10Xs1BHRFSTARTING AT T = 4F643/1H])
4004 FZRMAT(1HO»30Xs26H#ness FLAPSED TIME & IJA.21H MILLISECONDS &
seane//)
END
SHBRITINE PLTPAR
CaMMON/TVYPSSL/PLMINGPLMAX e XMTN ¢ XMAX ¢ TXMIN ¢ TXMAX e TYMTN, TYMAX
CAMMIN/TVGUINE /TMCNF 4 TEXTWTTY
CoMMEN/TVFACT/FACT
CAMMON/TVTUNE ZLPENLLPEF s ITAL s TWINK s TMTSoIRTTUP
CaMMAN DELTAS s NToNT2,NT4DX +DT4DYsNTCP4DTDXsDINY+DTDXS,DTOYSHNTP

< DTppiﬁTvpoDXCoDXCD?oOXTQ;D!IN:DXPQDYC.DVCDZOHVI‘ODVINODVP
CoMMSN EPSOG.GH-GX-GXDoGXnT'GYvGVnQGVDVnH,lCNTRQITEgToKﬂOKKKoLL'
* MT sMT o 1] ¢MUZ 4NB1 JNR2 o NTsNTHL sNTP1 o NJ¢NJM1 o N.JP1 o NP {NPRONTP,

cnx.eoxa.snx<.cnv.nnv2.cov=,nl.92.1.Tcp.TL.TnorPP.Tvn.uo.
VOIWsTVS 4NXE2NY 4DYZ2DX4OXCNY e NYSDX .

CoMMBN A(60s27) 4Rl (6N920) (R2{40+20) yRI(40420) +84(40,2n) +CS5(40,20) s
DVIIS) o IMP (15) oMKC (15) ¢MSK (18) +MU{60920) vNF (30) +NK (40¢20) ¢
NKT (60+20) P (405200 +PS (3000) 4PST (814211 1R (40,201 9SR(40.20)
SRT (40+20) »11161421) sUP (3000) 4 11T (614211 oV(&1921)oVP (3N0N)
VI (41421) ¢ XC(40) ¢ XP (INN0) 4 XPNA(IN) o XPL(30) 9 YC (20}, VP (3N00) »
YPO(3D) s YPL (IN) 9 ZET {41 ,21) 4UPN (30) 4, VPO (3D)

CZMvsN KNRP.MRP,MRP?.XBl(?l)'!HZ(’I)oYRl(Zl)oVBZ(Ql)oxll(?O)o

3 X2 (20) s ISAVF ¢ XT ¢ XA+ TWNGDTOR TPRoNC s TSPACE 9NUM(S)

REAL MU oMUL o MIZ2 g NK KT

IMTEGF® CSePS ,

DYMENSTISN X1 (3000) sY1 (3000)

caLL PLTRND

» A

AN PMA

604

60%

606
607

703

TO04
900

9Ny

SN2

TFXTal,

KK1=D

Kx2=(

KK3=0

D2 702 K=1sNP
KP=P§ (i) o AND ,MSK

IF (XP,FN.3) BS TS 702
IF (14DG.LE.O) GC TC 604
X2 (5, #XP(K)=YP(K)) /8,2
Ya(YP(K)+,2%*XP(K)) /1,006
62 T2 6905

X=XP (X)

Y=YP (K)

IsXP(K)#ZNXe2,

JuYP (K)#30Y+2,
K1sCS(TIsJ)) IANDQMSK

IF (K1.FQ.2) GG 7& 702
IF (X1.ER.1) 3T 7C 702
KK]skK]l+].

X1 (KK1) =X

Y1(KK1) =Y

> CONTINUE |

IF (KK1.EQ+Q) BT TS 701
CALL TVPLOT(XlaYleKKk])
DT 703 K=lsNP
KP=PG (K) , AND  MSK

1F (KP.FQ.3) BC TC 7n3
KPA=PS (K) JAND JMSK (3)
KPA=KPA*DV (3)

IF (KPA.NE+2) GG TS 703
IF (IwNB,.LE.0) B2 TS 606
X3 (5, #XP (K)=YP(K))/§,2
Y=(YP(K)+,2%XP(K)) /1,04
68 TS AO7

XmXP (K)

YaYP(K)

I=XP () #3DX+2.
JRYP (K) ¥TDY+2,
KI=CS(19J) e AND MSK

IF (K1.EQ.1eCR.K1.EN,2) 6T TC 703
KK2mKK2+ 1

X] (KK?) =X

Y1(KK2) =Y

CONTINUE

IF (KK24,EQs0) GS TS 900
DS 704 L=1+5 o
CALL TVPLOT(X1eY19KK2)
DS 993 K=1sNP
KP=PS (K) « AND . MSK

IF (K2,FQ.3) GS TC 903
KPR=PS (K) o AND ¢ MSK (S)
KPBaKPRADV (5)

1F (X®R.EQ.]1) GC TC 903
IF (146G, LE.0) GZ T& 901
X=(8,8XP (K)=YP(K}) /&, 2
Ya(YP(K)+2.%XP(K)) /1,04
62 T3 902

X=XP (K)

YaYP(x)

I=XP () #3DNXe2,

JuYP (K)#ZDYe2,
KIZCS (1) e AND (MGK




9Ny

9
708

598
/00

6m

599
60?7
603
604

6000

%

B AN

A A AN

IF (K1.EQ.1«CR.K1.EN.2) 63 T8 903
KK3=wK3+)

X1 (KK3) =X
YY(KK3)mYy
CANTIVHE

IF (KX3.FR.0) 62
NS 9ne L=lslo
CALL TVPLSTIXYsY]9KK3)
CALL TVNFEXT

RFTURN
END

SHRRSUTINE PLTAND
CCMMON/TVYPOCL/PLMIN, PLMAX s XMIN s XMAX ¢ TXMIN TXMAX ¢ TYMYN, TYMaX
COMMON/TVGUINE/TMCDE s TEXTWITY :
CAMMSN/TVFACT/FACT
COMMON/TVTUNE/LPENS | PEF s TTAL 4 IWINK s INTS IRTIUP
CCMMCN DELTAS,DTsDT2,DT40XeDT4DY4NTCP 4DTDXsDTNY 4DTDOXSDTDYSDTR
DTPPsDTVP 4 DX s NXCD2sDXT49DX INGDXPoDYCyDYCD2+sNY16,4DYINGPYP
EPSsG4GHyBXeRXD¢GXNTsGY sGYNeRYDToH, ICNTRyITEST KDy KKK oL Ly
MI sMT oMl oMU2 ¢ NB1oNB2¢NT ¢NTUML¢NIP1 NJyNJMI 4N JP o NP (NPR NTP
COXsCDX248DXS s ODY42NY2,C0YSeR19R2eT,TCPeTLyTRPITPPITVO 4110,
VOsWs TYC4NXEPNY ,DYS2DX «DXSNY e NYSDX
A(“OI?O).R](AOIZO)-BZ(AOIZO)0R3(40'?0lvBﬁ(tOoZO)oCS(QOQZO)I
DV(IS)oIMP(lS)-MKC(!S)o"SK(IﬁﬁoMU(QO.?O)oNF(30)oNK(§Oo?O)-
NKT (40420) sP (40920) +PS(3000) sPST1(4]1,21)+R(460,20) ySR(40420),
SART (404201 U (414211 9UP (3000) sUT (41,42]1)4VI41,2))eVP(3000),
VT (41421)9xC(40) e XP(3000) +XP0O(30) +XPL (30)9YC(20) s YP{3000),
YPO(30) +YPL(30) s ZET(4]1.21) . UPN(30) ,VPO (30}

KNBPyNRP ¢NAP2 4 XB1 (21) 3XB2(21) »YR1{21) ,YB2(21) oxX1(20)
XX2(20).9 ISAVE g XT3 XAy IWNG,DTPReTPRoNCy ISPACE yNHUM(S)

REAL MUZMIT M2 ¢ NK oNKT

INTEGER CS»PS

DIMENSTCN X1(21),Y1(21)

TEXT’O.

IF (KNBP,EQ.2) 65 TS 601

D2 600 Mm]sNRP

IF (XX1(M)<NE.N) G2
X1(1)=%XB1 (M)
X1(2)=XBY (M+])
YI(1)aYRY (M}

Y1 (2)3YR] (Me+])

DC 598 Imls2 A
CALL TVPLCT(X1eY142)
CONTINUE )
IF (KNRP,EQ.1) GC TS 603
DS 602 M=]sNBP2 . ,
IF (XX2(M)«NE.O) BT TS 602
X1(1)=XB2 (M)
X1(2)=XB2(Me))
Y1(1)=YB2(M)
Y1(2)=YB2(M+])

DS 599 I=mls2 ~

CALL TVPLCTI(X1sY1+2)

ONT INUE
WRITE (98,6000)
D2 604 1sm1,2 }
CALL TVLTR(B24,472.40,43)

RFTURN

FORMAT (4HT = 4F6,3)
END

SURRJUTINE CFLPRT
csuwcv/TvPch/PLMIN.PLMAX.xquoxuaxoTxnln;YlMAx-TynvN.TvMAX

s 708

CCMMCN

CoMmMeN

CoMMSN

TS 600

T

800

800Q
8001

. 8002

COMMSN/TVGUIDE /TMONF ,TEXT, ITY

CSMMON/TVFACT/FACT
COMMON/TVTUNE/LPEN LPEF s TTALs TWINK s INTS,IRT, TUP

CCMMCN DELTASHNT 4DT24DTLDXsNT4DY oNTCP o NTOXsDTDY e DTOXS,NTOYS+DTP
1 DTPPvDYVP.DXC.DXCD?onxtkoDYIN,OXPopYC.DYCDZ-nYrkoDv!NoﬂYP
COMMSN EPSsGyCHyBXsRXDsGXDT16YsGYNsBYNT oHy ICNTReITEST KD oKKKoLL s
MIyMC MUY 4 MUP o NBY s NB2oNToNTU] GNTP1 ¢ NJoNJIMI yN [P NP NPRGNTP,
CDXICDXZ'CDXS.CDV.CDV?.CDV%URl;RZ'To’CDQTLoTDOTppvaboUOQ
VOsWsTVC,0XC2DY,DYS20X,DXENY 4 NYSDX
A(kOtZO)oRl(60120’oBZ(bOoZO)0R3(“0.2°)034(‘0'20)1CS(6O.20)0
DV(15) ¢ IMP(15) yMKC (15) sMSK (15) yMU(40420) +NF (30) oNK (40420) »
NKT (40920) +P (604203 +PS(3000) oPSI(4]1421)sR(60,20)9ySR(40,20)»
SRT (40920) sU(41+21) 9UP (3000) +UT (41,21) 4V (414211 4VP(3000) s
VT (41,21} 4XC(40)5XP(30N0) 4XPO(30) s XPL (30)sYC(20) 4YP{3000)
VPotao)oantao).ZET(§1.21).uvo(3o).VPO(30)
KNBPyNBPyNBP2,XB1 (21) 4 XB2(21)»yYB1 (21),¥YB2(21)9XX1(20) s
XXZ(ZO)vIﬂAVF;XI-XA-!HDG.DTDR-TPRQNC'ISPACEonUM(S’

REAL MJyMULyMU2 s NKyNKT

INTEGER CS+PS

LINE=0 i

WRITE (MC,8000) T

WRITE (MC,8001)
DS 800 JmleNy
D¢ 800 ls=1sNT
IF (LINE,LT.50)
LINE=O .
WRITE (MC,8003)
WRITE (MS48001)
UUI.S.(U(I‘le)OU(IoJ))

va.50(V(!.J¢1)0v(loJ))

VEL®SQRT (LUUSUUIevY#VY)

FREP(T9J) /(R(1vJ)®VELOVEL)

WRITE (MC,8002) IoJoUUoVVcVELvP(IoJ)qR(loJ)oMU‘IoJ).'nocS(IoJ!
LINESLINE®)

CONTINUE

WRITE (MC,B006) T

RE TURN

FORMAT (1H1+10X22HCELL PRINT FOR TIME = +Fge3///)

FCRMAT (1H oSXlHIo3llHJolOXhﬂURAR,lOlQHVBAR-‘X\OHTOTAL VEL . 1 8 XBHPRE
SSSURE.?X?HDENSITYvSX9HVISCGS!TY.§x10H PRES COEF s TX10HCELL FLABGS/)
FORMAT (1H +6Xy12,16,TE14,5:2%,51%)

CMMSN

AAAIN " AN

CMMEN

6C TC 801

8003 FORMAT (1HY)

8006 FIRMAT(1HO120X36He0 000

END OF CELL PRINT FCR TIME u 4F8e¢3s7H ooe

’../IH])
END |
SUBRCUTINE PARPRY

SMMSN/TVPC L/PLM!NOPLNAXQXHINIXMA!.TXMIN TXMAXs TYMIN, TYMAX
COMMCN/TVGUIDE/TMCDE,, TEXT.ITY
CSMMEN/TVFACT/FACT _
COMMON/TVTUNE/LPEN | PEF ¢ TTAL TWINK» INTS,IRT, TUP

SMMSN DELTASvDToDTZpDTCDlvDY‘DVonTCPoDTDXoDTDVODTD!S'DTDVSQDTPO
DTPPIDTVP DXy DXCD2+DX14¢DXINJDXPsDYCyDYCD2+nY 14 DYIN,DYP
EPSsGysGHyBXyBXD9GXNT s BYs8YNsBYDT oH, ICNTReITEST JKN o XKK oL Lo
M!v"vaUl,MU?.NBloNBZoNI-NtHloNIPl.NJ.NJHl.N!PloNP.NPR.NTPn
CDXeCDX2,3DXSyCDY s SDY2,CDYS 4RI «R2e ToTCPeTLo TP TPPyTVP, U0,
VOsWs IVS,DXC2DY4DYS2DX DXSNY 4 DYSDX
A(‘OvZO)081(‘0020)cBZ(QOD?O’053(§0|20)oBQ(QOozﬂ)oCS(QO 20)
DV(IS)-IMP(!S)-MKC(IS).HSK(IS)oMU(QOozoﬁoNF(10)oNK(QOoZO)c
NKT(60+20) 9P (40+20) +PS(I00N) +PSI (61,21) sR(40,20) +SR(40.20) »
SRT(40+20) ¢U(41+21) yUP (3000) +tIT(41921) 4V (&41,2]1) VP (3000}
VT(QI-ZI)oXC(QO)oXP(SOOO’o!P0(30)oxFL(30).VC(ZO)oVF(3000)o
YPO (30) sYPL{30) v ZET (4] ,:21) s UPN(30) o VPO ({30)

COMMSN

ﬂlﬂﬂiﬂ“‘wﬂiﬂﬂ "
(]
X
X
<
&



900

9000
9001
9002
9003
9004

CINMSN KNBP o+ NBP ¢NBP2,XB1(21) +XB2(21)4YB1(21)4YB2(21) 9XX1(20) s
s XX2(20) 9 ISAVE ¢ XT o XA+ 1WNGsDTPRTPReNCs ISPACE I NUM(S)
REAL MUWMUY yMU2 ¢NKoNKT
INTESER CS»PS
LiNE=O L
WRITE (MC,9000) T
WRITE (MZ,9001)
DS 900 XmleNP
KP=PS (K) ,AND (MSK
IF (KP.EQ.3) 62
WRITE (MC,9002)
LINE=| INEs]
IF (LINE NE.50)
LINE=O _
WRITE (M0,»9003)
WRITE (MCy9001)
ONTINUE i
WRITE (MCe9004) Y
RETURN . ) .
FORMAT (1H1910X26HPARTICLE PRINT FSR TIME w oF6e3///)
FORMAT (1M PIXTHK ¢ 1AXTHX » 14X THY + IAXTHU « 14X THV ¢ BX2HPS)
FORMAT (1M +11004E15,652%,42%)
FSRMAT (1H1) L
FIRMAT (1HO 1y 20XA0HS SR8
S *e8a8/1N1)
END

§0 900 .
K9 XP (K) s YP (K} oUP (K) 3 VP (K} 4PS (K)

68 1S 900

END SF PARTICLE PRINY FOR TIME = oF8.3sTH

" SUBRSUTINE PLTVEL

OMMON/TYPCOL/PLMINGPLMAX ¢ XMTN XMAX s TXMIN, TXMAX ¢ TYMIN, TYMAX
CCMMON/TVOUIDE/TMODE s TEXT S ITY
COMMON/TVFACT/FACY . )
CQMMGN/TVTUNgILPENoLPEPOIYanIU!NK.INTS.!RT-!UP
SMMEN DELTASsDTsDT2,DT4DXsDT4DYsDTCP9DTOX¢DTDY sDTOXSDTOYS4DTP,
. DT"'DTV’!DICleCDZlDX!‘lOX!NQDXPlpVC.DYCD?'Dvl‘OOV!N.DYP
COMMON EPS10,8H,8Xs0XDsB8XDT9Ys8YDBYDT oMy ICNTRyITEST KDsKKKoLLs
{ NI'"cgNUlo"UZpNOloNBEgN!.N!“lgNIP!,NJ,NJMI;NJPION’QN’R.NTPQ
SDX+SDX240DXS0DY s CDY2,CDYSsRI 4R25 T4 TCP 2 TLo TP TPP2 TV, U0y
VOsWe JVS,DXS2DY4DYC2DX 4DXCDYsHYODX
A(QO'ZO).Bl(‘p.ZO).82(60020)oB!(QO’ZO)oB‘(QOoZO)QC!(AOQZO)'
DV(15)0!"?(!5)oNKC(lS)QNSKng)y"U(QOo?O)'NF(SO)ONK(QOoQO)O
NKT(QQOZO)0P(§0'20)0P$(3000)0P$!(‘!n?!)oﬂ(bOoZO)'sR(60020)'
SRT(40+20) sU (41521 »US (3000) »UT (41,210 sV (81921) sVP (3000)
VT(.!,ZI)QXC(QO)glP(3DOO)’XPO(3O)oXPL(!O!IVC(?O)oYP(3OO°)!
) YPO(:O)’YPL(30)02!7(5102!)9UPO(30)'VPO(30)
SMMCN KNBPONBPQNBPZpXBl(zl)9!52(21)075\(2\’9792(21)9!!1(20)0
XXZ(ZO)'ISAVEQK!OXA.IWDG'DY’RoTPRvNCI!SPACEQDUM(S)
REAL MUsMU] oMU o NK o NKT
INTEGER CSsPS g
DIMENSICN XV(2),YV(2)
CALL PLTBND
TEXT=0e
DS 100 Js29NJUM]
DO 100 Is2+:MIM]
K1®CS (1+J) ¢ AND JMSK
IF (K1.NE.4+AND,K1,NE.S) GC TS 100
XV (7)sxC(I) o
XV(z)qXV(l)’DELTAS'(U(I‘IOJ)‘H(!OJ))
YV(l)=YC(J)
YV(Z)IYV(\)ODELTAS.(V(IOJOI)OV(!OJ))
D 99 L=1+2

L]

C X X J

COMMEN

CE X N R
(2]

99 CALL TVPLST(XVsYVs2)

100

SNT 1NUE
CALL TVNEXY

902

903
904

906

800
801

RETURN
END i
SUBRSUTINE PRSPLY . .
COMMON/TVPSCL/PLMIN s PLMAX o XMTN+ XMAK s TXMIN, TXMAX s TYMIN, TYMAX
COMMCN/TVGUIDE/TMODE » TEXT ITV
COMMON/TVFACT/FACT o
SMMON/TVTUNE/LPEN LPEF s ITAL » TWINK INTSoIRToJUP
CO""GN‘D;LTASvDToDTz’DTQDXQDTCUVoDTCPoDTD!oDTDVoDTDXS,DTDVSoDTPo
DTPP+DTVP yOXC +DXCDZsDXT4sDXINSDXP9DYCoDYCD29NYI49DYINJDYP
COMMEN EPS9GyBH¢OX+6BXDsOXDT 1GY98YDeBYDT sMy ICNTRIITEST ;KD oKKKoLL e
M 9MC MUY sMUZ NB1 +NB2 o NI oNTM1 eNIP1 sNJyNJIM1sNJPY s NP yNPRyNTP
ODX»CDX24 ODXS DY 90DY2,COYSsR14R24To TCPeTLy TP TPPoTVR,UD,
. VO+WeTVO0,DXC2DY 4DY320X , DXTDY +DYSDX
COMMON A(‘OOZO)le(QQOZO).82(60'20)083(‘012°)v8~(60|20)OCS(60.20)'
DV (15) » IMP (18) oMKC (15) sMSK (18) yMU (40120) yNF (30) sNK (40420 »
NKT(‘QOZO)!P(QO'?O)OPS(SOOQ)'Pst(‘!021)oﬂ(.O,ZO)oSR(QO.ZO)'
587(50120)oU(QloZl)00?!3000)OUY(QloZX)oV(QloZl)oVP(3OOO)'
VT(81521) 4 XC (40) ¢ XP (3000 +XPO (30) s XPL (30) +YC (20) , YP (3000) »
 YPO(30) »YPL (30) +ZET (41421 4UPO{30) , VPO (30)
COMMON KNBP sNBP  NBP2,XB1(21) 4XB2(21) +YB1(21) 4YB2(21) #xX1(20) 4
T XX2(20) 9 JSAVE s XI v XA+ IWDBsDTPReTPReNC s ISPACESNUM(S)
REAL. MUsMUL 9 MU2 ¢ NK o NKT ’
INTEGER CSsPS
DIMENSION PC(50) )
IF (T,LY,TPR=,000001) GC TO 939
I1F (NC.EQ,0) 6C TO 939
TPRaT«DTPR
CALL PLTBND
TEXTa0e
PMIN=Q.
PMAX=20
0 900 JelsNJ
DO 900 I=1sN}
PMINSAMINY (PMINSP (T9J))
PMAXsAMAXY (PMAX P (T0J)) B
DPw (PMAX +PMAX=PMINPMIN) /FLOAT (NC=1)
DPaDP, AND, 777740000000000000008
IF (PUIN,LT.0.) 6C TC 903
SUMs  S9DP ’
IF (SUM.GT.PMIN) 60 T3 902
SUMBSUMeDP
8c 1S 901
SUM=SUM=DP
8¢ 15 90%
Sums ,5*DP , .
1F (SUM.LT.PMIN) GC YC 905
SUMsSUM=DP
GC TS 904
Dg 906 LsieNC
PC(L)=SUM
SIMeSUM+DP
LPsNC
DS 800 LslsNC ;
IF (PC(L).LE,PMAX) 6C TT 800
LPsL
ec T3 801
CONTINUE
CCNTINUE A .
WRITE (M2,9000) PC(1)sPCILP) NPT
D3 938 Jm2)NUM}
JsJ
JPeJe)

C X X ]

"w e ven




907

908

909

910

91}
912
913
91la
915

91s

917

918
°19
920
921
922
923

924
92s

926

927
929
929
930
931

932
933
934
935

934
937

DS 938 1s29NIM]

1=1

1P=1s1 )

KI=CS (19J) « AND (MSK

K1A=CS (1,JP) (AND MSK

K18=CS (IPyJ) , AND ,MSK

K1ClCS(IPoJP)-AND.HSK

IF (K1.EQe240RK1AFO.2+0RK1BEQ,2,8RK1CE0,2) 8C T3 938

IF (P{1v))=P(14JUP)) 907+914,908

JH=yp

NX N

82 T2 909

JH=Y

NE N

DS 913 LsleNC

IF (PC(L)GLE, PU10JL) SR-PCIL) ,BELP(T9JH)) 6C TC 913

IF (PCIL)=P(IPsJ)) 010+913+911

Jas )L

85 T3 912

JQlJH R .

CALL PSTCRE(T3JULsI1vJHeTIPsJel s AsPE (L))

CONTINUE

IF (PU1sJ)=P{IPyJ)) 915,922:916

INs1p

ILsl

82 TS 917

IMs]

!L'!P

DS 921 L=leNC

IF (PCIL)JLELP(ILIJI 4CRPCIL) BELP(TH,J)) 8C TS 921

15 (BCIL)=P(14JP)) 9)3.921.919

IF (BCIL) cBT,P(IP+J)) 9204921

IF (BCIL)+GE.P{IFeJ)) B8C TC 921

CALL _PSTORE(ILsJsTNeJsTodPeIP o JoPE (L))
SNTINUE , ,

IF (P(IPJ)=P(IPJP)) 923,930,924

JH=JP

JLsy

83 T3 928

JHsY

JLaJyp

DC 929 LmlsNC

IF (PCIL) oLEP(TIPoJL) «ORWPCIL) o8E,PIIPsJH)) 83 TO 929

IF (BCIL)I=PIT+JP)) 9264929,927

Jasyp

02 TS 928

JQ'JN . ,

CALL PSTSRE(T1PoULsIP s He 1o P, TP eJasPC (L))

CONTINVUE

IF (P{TeUP)I=P{IP,JP)) 931.938,932

IN-ID

X3

682 TS 933

LT )

IL=1P

DS 937 L=leNC

IF (PCILYJLE,PUILIJP) JCRPCIL)«OE,PIINIJP)) 8C TO 997

IF (BCIL)I=P(IPsJ)) 9369937:93%

IF (PCIL)JOT.P(14JP)) 936,937

IF (PCIL)JBE.P(TI,JP)) B TC 937

CALL psr-ne(1L.Jp-lu.Jv.rw.J.roJP.vch))

CONTTINUE

938 CONTINUE

CALL TVNEXT

939 RETURN i
9000 FORMAT(1H s LOXTHPMIN = +E12.5,5XTHPMAX = E12,5+5XTHDELP = ,E12,5s

SEXTHTIME = +F6,3)
END |
SUBRSUTINE PSTCRE (TLsJLeIHeJH, 139035144 J4,PPC)
COMMIN/TVPCCL/PLMINGPLMAX « XMINo XMAX o TXMIN, TXMAX ¢ TYMIN, TYMAX
COMMCN/TVEUIDE/TMEDE 4 TEXTHITV
COMMCON/TVFACT/FACT . ~
COMMCN/TVTUNE/LPEN| PEFs ITAL+ TWINKy INTSyIRT s JUP
COMMCN DELTAS+DToDT24DTADXsDT4DYsDTCP+OTDX DYDY +DTDXS4DTDYSDTP
DTPP»OTVP, DXC.DXCDZQD!YQ'DXlNoDXP'DYCoDYCDzvﬂYIQvDVIN.DYP
EPS1GoGHBXsRXDsGADT 9 BY9GYNsBYDToHo ICNTR ITEST (KD o KKK oLL y
"lv"v'"Ulp"UZoNBlvNBZoN!oN!‘lvNIPl.NJ.NJM!oNJplcN°oNPRoNTP|
CDX9CDX25SDXS s CDY 9 CDY2eSNYSIR1 sR29To TCPeTL TP TPP s TVP4UD
VOsWs IVC,DXO2DY,0YC2D% 4 DXSHY 4DYSOX
COMMON A (40+20) 481 (40+20) B2 (40+20) +BI (40420) 9B4(40,20) +CS (40,20) »
DV(15) o IMP (15%) yMKC (15) yMSK (15) 9MU (40¢20) oNF (30) ¢+NK (40920} ¢
NKT (40+20) 4P (40+20) +PS(3000) sPSI (41+21) 1R (40,20) »SR(40,20) ¢
SRT (409120) +U (415211 »UP (3000) +UT (41421} 4V (41921),VP (3000) s
VT(41921)¢4XC(40) o XP (3000} 9XPO (I0) o XPL {30) »YC(20) 4 YP (3000) »
) VPO(S0,0YPL(?0,0ZET(Qlozl)oUPOI30)'VPO(30)
MMCN KNBP ¢ NBP ¢NBP2,XB1 (21) ¢+ XB2 {211 +YB1(21) ¢ ¥B2(21) 9XX]1 (203 s
XXZ(ZO)vISAVE!XI'XA'IVDOODT’R'TPR'NC ISPACEsNUM(S)
REAL MU»MUL ¢MU2 ¢ NK o NKT
INTESER CS»PS
DIMENSION XXC(2),YYC(2)
Tis(P(IHeJH) =PPC) /(P (THyJH) =P (IL s JL))
T2 (P(164J4)=PPC) /(P (143J8)=P (13,UD))
XxC(l)'xC(IH)-Tl.(XC(!H)'XC(lL))
YYC(])®YC (JH)TI# (YC (JH)=¥C ()1 ))
llc‘g)'xC(!‘)'TZ’(!C(IQ)'XC('?’)
YYC(2)SYC(JA) =T28(YC (JA) =YC (YD)
CALL TVPLOCT(XXCoYYCe2)
RETURN
END
SUBRSUTINE ONTPRS (KKKK)
CCMMON/TVPO L/PLH!N'PLMAX-XHINOX"AX'TIH!N TXMAX o TYMIN, TYMg X
ca““QN/TVQUIDE/TNCDE'TEXTOITV
CCMMON/TVFACT/FACT
COH"GN/TVTUNE/LPENcLPﬁroIYAL,T'INK.lNTSo!HT'!UP
COMMON DELTASIDT DT2:DT40X+DTADYsDTCP +DTOX+DTOY sDTDXS,DTDYSDTP,
DTPPsDTVP,DXCyDXCD2+DXTA+DXIN¢DXPsDYCosDYCO24NY14+0YINGNYP
CCMMEN EPS9846H G eBXDsGXDT s8Ys8YDsOYDT oM, ICNTR ITEST KD o KKKoLL
"l'"oo"Ulv"UZONBloN820N10N!Hl,NXPl,NJ|NJll.NJP1'N’oNPRoNY"
CDX9TDX24SDXSsCOY e ODY2,3DYSsR14R24 T4 TCPoTL TPoTPPTVR, U0,
VO.H']Vv'DXG?DY.DYOZDX DX0DY+DYSDX
COMMSN A(QO!ZO)vBllQOoZO)oB?(QOoZO’983(‘0v20)'86(Q0'20)'CS(CO 20)
DV(IS)v!Mﬂ(lS)oHKC(lS)'NSKCIS)'MU(QOvZO)oNF(BO)oNK(QOo?O)o
NKT (40120) +P (40+20) +PS(3000) oPST (41921} ¢R(40+20) ¢SR(40,20) ¢
SRT (40+20) sU(41921)9UP (3000) sUT(41,21) ¢V (86]1421) VP (3000}
VT (41,21) ¢XC(40) 9+ XP (30N0) 2+ XPO (30) ¢ XPL (30) ¢ YC (20) 4 YP (3000) »
) YPO(30) s YPL (30) 9 ZET (41+21) 4UPO (30) 4 VPO (30)
SMMON KNBP oNBP, NBPZOXBi(Zl)QXBZ(ZI)oYBl(Zl)oVQ?(Zl)Ole‘?O)'
XXZ(ZO)vIGAVE!XIoXAvIHhOoDTORoTﬂRoNCo!SPACEonUM(5)
REAL MUsMU) oMU2 yNKyNKT
INTESER CSsPS
IF (KKKK.EQ.2) BC T2 525
DS 820 JsliNJM)
Juz o]
JPeJel

(2]
[<)
i
[4]
r 4

(3]
(]

B AN AN AR W

N AR ARN ARG »



500

501
502

%03
S04

508
%06

DC 520 I=slsNIM]

IM]=]

1Pale)

I111=)

JhJJds=1

UMIsU (TP ,UM)
UP1aU(IP,JP)

VMl aV (1M, JP)

VP1=v (1P, JP) .
K1mCS(19J) s ANDMSK
IF (K]«NE.2) GC TS =01
K18=CS(IPsJ) (AND (MSK .
IF (K1B.EQ.%) GC T3 S00
IF (K1B.NE+5) I111m2
IF (K1D.EQ.4) 82 TC S10
IF (K1DJNES) JuJJdm?
es T3 510 R
IF (K1.EQ.%) GO 7O 62

1F (KIONEOS) GC 7O s20

K1BaCS(IPsJ) JAND , MSK

IF (K1B.EQ.3) 111ls?

K1D0=CS{15JP) s AND MSK

IF (KlD-EO.B) JINJ=2

IF (1111,6Q.2) G TS S06

K2C=CS(19JM) (AND MSK (2)

K?CIEZC.DV(Z) )

K2DRCS (TP ) . AND,MSK (2)

K2D=x2h*pV{2)

K2FsCS (1P ¢ JM) s AND 4 MSK (2)

K2Fak2F*DV(2) .

K268nCS (1P s JP) o AND . MSK (2)

K?G‘!ZG’DV(Z) .

KSC=CS{14JM) (AND MSK (S8)

KSCEKSCHDV (5) 4

KSDECS (14 JP) JANDMSK (5)

K&DuxSD*NV (5)

KSFaCS (1P JM) L AND,MSK (5)

KSFI!SV’DV(s) .

KSG2CS (IPeJP) JANDSMSK (5)

KSGaxSGeDV (5)
IFC(KPDEQeb,AND K50, EQe2) o R, (K2R eEN, 4, ANDXSG.ED.2)) 60 TC 803
IF((K2DeENe3,AND K5D ,EDe2) o TR, (K2GFQe3.AMNKSB,EQ,2)) UPImU(TIP,J)
8¢ T2 506

UP1s=it(IPJ)
IF((‘?CGEQUQCAND.KSC-EQQZ).cn.‘KZFCEQU‘OANDDKSF'EOQ?,, [ 1+] TS %058
XF((K22656.3.AND.K50.EQ-2).OR.(KZF.!Q.B.AND.KSF.EQ.2’) UM =y (1P J)
e T 6

UMIsalj(IPeJ) :

114 (3JJJ.EQe2) GC TZ 510

K2a42CS(IMyJ) JAND MSK (2)

KPAsK2A®DYV (2}

KP2RaCS (IPeJ) AND,MSK (2)

K?ﬁl*?B.DV(Z)

KP2E=CS {IMy JP) LAND JMSK (2)

K2E=K2E#DV (2)

K2G6sCS (1P JP) L AND o MEK (2)

K2GaK2G*DV (2)

KSASCS (IMeJ) (AND  MSK (2)

K&EA=KSA®NY (5)

KRASCS (1P eJ) (AND (MSK (S)

KSB=K&R#DV (5)

s07
508

509
s10

513
Sla

sts

516
817

51A
519

KEE=CS (IMsJP) o AND . MSK (5)

KRExKSE®NV(S)

KSGRCS (IPsJP) s ANDJMSK (5)

K5GaKSG#*DV (5)

IF ((K2ReEQe4 o AND KSRLENe2) o+ OR, (K2R EQL 44 ANDKSGEQeD) )

IF ((K2ReFNe3 AND KSR EQe2) .4 SR, (X26.F0.34AND.K5G.EQs2))

83 T2 508

VP1maV(1,4P)

1F ((K2A.EQd AND KBA FQe2) o« OR, (K2F eEQ 4o ANDKSELEQe2))

TIF((X2A.EQe3 AND K54 EQe2) «OR, (K2F 4EN L34 ANDLKSELEQe2))

62 T2 510

VM1zey (1,JP) _

IF (I1111.EQ.2) 6C TC 515

VAVE12.58(VI(T1s.}) V(TP J))

VAVE23,.58(V(1+JP) sV (TP, JP})

ARI®,8# (R(IsJ)+R(IPVU))

IF (VAVE1.LE.0) B8C TC 511

K1CECS (19JM) 4 AND,MSK

K!G'CS(IPOJM)cANDoMSK 3 .

IF (K1CsEQeI,CRLK18.FQ,3) 6C TC 811

RVin S®(R{TsIM) sR (TP 4 M) ) SUMY #VAVF]

82 T2 Sl2 ;

RV1=a21*U(IP.J) ®VAVF)

IF (VAVE2,6E.0) 65 TC

K1D=CS (1,4 JP) JAND,MSK

K1HECS (1P s JP) s AND W MSK ) R

IF (K1NDeEQe3.CRKIHEQ,3) GC TS 5313

RV2= ,S* (R(1eJP) +R(IP,JP) ) #UP1#VAVF2

8c 1o Sla

RV2&AR1 2 (1P, ) #VAVF?

ULI3U(Ted) +U (TP J)

U2sU (TPsJ) sU (142,J) _

PSI (1P JIMART®II({IP4 ) +DTANX® (R (19.)) SULSULR (1P sJ) #U2%112) +DTDY® (RV]
eRVZ2) +NTDXS® (MU (TP, )) 8 (11(1+25 ) =U(IPsJ) JaMU (T J)# (U(IPsJ
YoU(T.0))) oDTONY®( (MU(T2J) oMULT4UP) sMULTP 4 JP) sMU TPy J) ) ®

COYR (UP1=li(IP 4 J) ) ¢SDX® (VTP s JP) =V (T eJP) ) )= tMUI (T s M) oMU
Tod) sMILTIP L J) oM (TP UMY ) # (SDY# (Y (TP J) UMY ) 4SDR# V(TP )

) =V(l+J))))+AR1EGXDT
IF (JJJJ.EQ.2) GC TS5 520
UAVEI 2,58 (U(T4J)s1{T4,JP))

UAVE2= .58 (U(IP+J) s} 1P+ JP))

AR2m 5% (R({TeJ)eR(T+.09))

IF (UAVE1.LE.O) 6C TC 516

KlA'CS (IM'J) .AND.MSK

KIERCS (IMsJP) « AND e MSK

IF (K1A.FEQ.3,3R,K1E,FQ,3) 6C TC 516

RH1= 5% (R{IMyJ)eR(IM,JP) ) #VMYRUAVF]

e TS s17
RUI=AR2®V (19 JP) B1JAVF]
1F (UAVER2.,GE.0) 6C T2
K1RsCS (1P gJ) o AND  MSK
KIHSCS (1P 9 JP) . AND . MEK .
IF (X1R«EQe¢3.CR.K1H,FO,3) GC T 518
RUZE,S*(R{IP, )R (IP,JP) ) @VPI#UAVF2
65 T2 519
RU2=AR20V (19)P) ®IAVFD
VISV (TeJ)eVITeJIP)

VRV (1eJP) ¢V (T9Je2)

ZET(1,JP) mAR2#V (1,JP) +NTDNX® (RU1=RU2) +NTLDYS (R(1 s J) #VIaVI=r(T,JP) 4V

[ 29V2) oNTNYGH (MU(TsJP) ® (VT Je2) =V IToJP))emU (1) ®(V(]14JP

s Yoy (Te))) «DTANX®( (MUIT o) sMU(T 4 UP) sMU(TP,UP) oMy (TP J) ) @

% (CRY® (ILTP P =l (IP¢J) 1 o SDXS (VPI =V (ToUP) ) 1= (MU ITM, ) MU

6C TC S07
VP1BV(TyJP)

6C TS %09
VMIaY (T JP)

513

X R K R

Si8



* IMoUP) sMUCToUPY $MU(T9U) IS (CNYS (1) (TyIPI=U(T9.))) *3DX®(V (],

s ) JP)=VM1)) ) +AR29GYDT
520 CONTTIMIE
DS 85264 J=a2 N MY
JME a1
JP=rJe1
DC 574 1=2sNIM1
IMz1a]
IP=14+) ‘
K4=CS(T9.)) s ANDMSK (4)
K4mKa®nY (4) ‘
IF (x4.FQ.1) GC TC ®24
K2BeCS (1P J) JANDMSK (2)
KPR=x2R#DV (2)
IF (K?R.NE.2) 8C TS 821
PSI (1P J)uPST(],4J)
Gt T2 S24
521 K2A=CS(IMeJ) JAND MSK (2)
K2AmK2A4%0V (2)
IF (K2A.NFe2) G2 TS 822
PSI(T,))=PSI(IP, )
82 T2 524
522 K2D=CS(1,JP) ,AND MSK (2)
K2Dax2nenv ()
IF (X2ND.NE.2) B2 TC 8§23
ZET (1o IP)2ZET(]14y)
62 T2 524
8§23 K2C=0S (1 4JM) , AND MSK (2)
KACaK204NV (2)

IF (X2C.ENe2) ZET(14.))mZ2ET (1,4P)

%24 CONTINUE

525 DS 531 JUs2eNJML
JM= Je |
JP=m je)
NS 531 lw2yNIM]
IM=]a
IPwle)
K12CS(1eJ) e AND MSK
IF (M1.NEL4) G2 TS 831
IF (KKKK ,EQel) GC T8 526
K122CS(19J) o AND  MSK (112)
K12ax12®nvi(12} ]
KI12A=CS (IMsJ) LAND MSEK (12)
K12Am)2A%0V(12) .
K12A=CS (IPe.)) JAND MSK (12)
K)2Rux12B*DV (12)
K12C=CS(19JM) JANDMSK (12)
K12C=x12C#DV (12) N
K12D2CS(1eJP) LANNDJMSK (12)
K12D=c120%NV (12)

IF (K12EQel sAND K12A,FQ41 «ANNK128,FNe) sANDK12C.ENe] «ANNK]120,EQ

$  .1) 6C TS 53

SP4 AR1I=Y,/(R(IvJ)eR(IP,))
AR2=2) ,Z(R(Iv D) SR (1M Y))
ARIZE] L/ (R(Tv )R (Te.10))
ARG=) /7 (R(1e ) sR (T e M)

C1J=) ,Z7(NT2%(TNXS® (AR]1¢AR2) ¢SNYS® (ARVGARSG) ) )

RY(1e 1) ®CIJI®*DTDXS®AR]
A2 (1, J)=CIJONTNAS#ARD
(T, ) =CII*NTNYSSARY
R&(1..0)=ClJ®NTNYS®ARS
S1=PST(IP,J)

527

302
303

]
528

304
3os

b
529

306
nr

]
530
LX)

SPEPST (T,J)

S3IRZET (140P)

SamZFT(T,J)

KER=CS (IPoJ) , AND ,MSK (5)

KSA=KSBADV (5)

IF (K5B.EQ.1) GZ T2 527

KACsCS(IPyJP) JAND MK (&)

K&4CuK4C2DV {4)

IF (X4C.E02) B2 TS 300

S4rSL=NTANYS (MU(ToJ) +MUIT o) sMULT o IM) oMU TP » JM) ) Y (TP, UM) 22NX

62 T2 301

SIBS30TANY® (M (T9U) aMUCT ¢ J) oMUIT ¢ JP) oMU TPy JP) ) %15 (1P , UP) #3NX

S1=R (1+J) #6GXDT

KP2R=CS (IPyJ) ,AND ,MSK (2)

K2RA=K2R*NV (2)

IF (K2BeEQe&) SInSIeNXT4oMUIT o JI (T o) oSOYS (Ve JP)® (MiI(T9)e

MULTJP)I Y=V IToJ)®(MIS(Tod) eMII{TadM)y)

KSA=CS (IMgJ)  AND ,MSK (5)

KS5A=KSA#DV (5) _

IF (X5A.EQ.]1) GC TS =23

K&A=CS (IMeJP) LANNJMSK (4)

KAARKGARDV (&)

IF (KX4ALEQ.2) GC TS 302

SAnSAeNTADY® (MU(TJ) eMU(T o J) «MULTMg M) oMU (T o JM) ) 1) (T 9 M) #2DX

6s T2 .303

SIESISDNTADY® (MU (T o) oMU (T 4 J) «MU(IMeIP) sMU (T s JP) ) U T JP) *0DX

S2=R (10J) #6GXDT .

K2A2CS (IMyJ) LAND MK (2)

K2AsK ANV (2) -

IF (R2A.EQe%) S2nS24DXT4SMUIT oIS (TIP3 J) +1DYRIVII o JOIS(MU(] o) ¢
. MUCTOUP) Y=V (To) @ (MU(T o) sMU{Ts M) ))

KSD=CS (19JP) o AND,MSK (5)

KSD=XSNeNV(S)

IF (x5D.,EQ.1) GC TC 529

K&CoCS (1P JP) JANN.MEK (4)

KACSK4CH#DV (4)

IF (K4C.EQe2) BS TS 304

SZ'S?-DT#DX'(MU(IoJ)oMU(IoJ)‘MU(!N.J)oMU(iMoJP))OV(rﬂ.JD)bcov

6Z TS 0%

51151-DTQDX0(MU(1.J)oMU(!-J)oMU(IDoJ)OMU(iP-JP))'v(r’.JD)DcDV

$I=RQ (15 J)#6YDT

K208(S (14 JP) ,AND,MSK (2)

K2D=K20%0V(2) . )

IF (K2DeEQ4) SAuSLeNYIGOMULIT G J) V(T o)) oSOXBIHITIPL )y (MU(T o) e
. MULTP )Y =U(T o) (MU(TsJ)eMUITIMg ) Y)

KSCuCS(14IM) ,AND  MSK (8)

K&ECax SNV (5)

IF IKSC.FR.1) 6B TS 530

K&RECS (1P g JM) (AND JMSK [ 4)

K4REK4BENV (&)

IF (K4R.EN.2) GS TS 306

SP2WS24DTHDX® (MU(T9J) sMULITaJ) oMU (TMe M) MU (M4 J) ) OV (1M, J) @Dy

8 TS 307

S1ESToDTANXE (MUI(TeJ) +MU(TeJ) sMUTIP 4 M) sMU (TP ) ) OV (1P, J) #0DY

SAmR(T+J)#GYDT

K2CaCS{T¢JIM) JAND,MSK (2)

K2CuK2C#DV(2) ) .

IF (K2CeEQe4) S4mS4eNYIGMUIT (JISY (T4JP) +ONX@IULIPY )@ (MU(T o) o

MUTP e Y )=l T o ) ® (MU (LoJ) oMU IMe YY)
Ao NECTIIP(SDX2¢ (SPHAR=G1#AR]) +8NYP# (S4#ARG=SI®ARS) )
CONTINUF
RFTURN




200

201

203
2048

END
SHARZUTINE PRSITN
COMMSN/TVRC L/PLManPLMAXolMTNQXMAXoTXMINqTXMAXtTYN]N TYymax
COMMEN/TVGUINE/TMIDE s TEXTITY
CCMMaN/TYFACT/FACT
csMMcv/TvTUNE/LpeN.lPEF.ITAL.vwan.tNTs,xnr.1uP
COMMAN OF. TASINT+DT2eDTADX sDTADY sNTCP «DTDXDTNY +0TOXSDTDYSDTP,
0] “TPP'DTVP’DxfqDlCDZvU!l‘ODXINODXP'DYC'DYCDZQDVV‘ODYluvnvp
COMMEN EPSsGGHyGXsBXDsGXNT sBY I6YNs8YDT oMy ICNTRoITEST 4 KN KKK oLL o
M!OMVOM”IIMU?.NB‘ONB?ON!QN'*‘ON!P]qNJoNJﬂquJpl'Np'Npﬂ.NYP.
unXOvQX?gGDXQovDVOSDY?.vDV@invQZoT-TCPO'LQT"TPPQ?V’.UOO
VOsWeTVSOXS2NY 4 DYS20X 4DXTNYNYTDX
CoMMAN A(40+20) 48] (40020) «R2(40:2N) 4RI (40,20) +84(40,20) +CS(40,20)
DVI15) s TMP (165) ¢yMKC (15) oMSK (18) oMU(40520) o+NF (20) oNK (409203 »
NKT(40+20) +P (60 920) sPS (3000) +PST1(41+21)sR(40420) +SR140,20) ¢
SRT(40+20) +U(41+21) sUP ¢3000) sUT (410211 9V {41+21)4VP(3000) ¢
VT (41421) ¢XC(40) o XP (3000) ¢ XPN(I0) +XPL {30} 9YC(20) +YP(3000)»
YPO(30) 9YPL (10) o ZET (41,21) 4 UPO(30) VPO (30)
CoMMZN KNRP oNBP o NBP?2 4 XB1 (21) o XB2(21) o YR (21) 9YB2(21) 9 xX1 (207
% XX2(20) s ISAVE ¢ XY o XA s IWNGsDTPR,TPR4NC+» I1SPACE o NUM(S)
REAL MIgMi)] oMII2 gNKoNKT
INTEGER CSePS
DIMENSICN PN (40,20)
EQUIVALENCE (PN4SRT)
NC 210 JsmleN)
D" 270 I=xleNY
PN(1os ))mP (19 )
1CNTP=0
q.lo_
ERR=D,
‘DS 213 LmlsITFST
1ENTPRICNTP ]
RFSID=0.
NS 211 Jm2eNJM]
M je
JPaJe)
DS 211 1=2eNIMY
IMala]
1P=lel
KISCS(T0eJ) e AND MSK
IF (X1.NE.8) 62 TS 2)1
K4sCS(19.)) s ANDMSK (&)
KemK&#OV (4)
IF (x6.EQ.1) 6 TC 210
K!D'CS”.JP) .AND.MSK
1F (X1D«NEe2) B8 TC 204
K2NSES (19 JP) JAND MSK (2)
K2Dsk2nenv(2)
IF (X2N.EQel) BC TC 203
1F (X2N.ENe2) GC TC 203
PA (T, IP)RPN(T4J) sR(T,4J) #GYD
IF (KPN.ENe3) GBC TC 204
AMT )N (1))
PH(14JP) 8PN (T4 UP) eDYTLRAMTISYT (T4 )) oSNXS (UT (TP L) (AMTIeMy( TP, ) )
[ T (Tod)® (AMI YoM (TMeJ) )Y
62 Tn 204
PN (1o IP) 2PN (T 0.))
K1CRES (1o M) JAND MSK
IF (K1C.NEW2) 83 T2 207
K2CoCS(14JM) LAMD MSK (2)
K?2Cax2C*nV(2)
IF (K2C.EQel) GC TT 206

» AR

AAAAN

IF (KPC.FN.2) GBS TC 206
PN(T+ M) 2PN(TeJ)=R{T4J)®GRYD
IF (KPC.EQ.3) GC TC 207
AMI JsMiI(T 9 J) )
PN(To M)BPN (T o JIM) =NYT4RAMTJOVT ([ JP) =SDX® (UT (TP e J) ® (AMTIJeMU(TPJ))
L 3 aUT (19 )R (AMIJeMULTIMe ) })
GC T2 207
206 PN(T, M) =PN(T+J)
207 K1BaCS{IPeJ) JAND MSK
1F (K1B.NE2) GC TC 1
K2BRCS (IP)J) (AND MSK (2)
K28sK2R80V (2)
1F (K?8B.EQ.1) GC TC 209
IF (K2R.EQ.2) 62 TC 7209
PN(IP.J)IPN(YoJ)oP(t.J)'GXD
IF (K28.EQe3) BC TC 1
AMT JuMtI (T 4 J)
PNIIP,JI=PN{TP s J) DY TASAMTISUT (T o)) «SNYR (VT (1, JP) ® (aMTUeMy (T4 P))
s VT (Lo ) * (AMI oML T o M) )
82 10 1
209 PN(IP, JYePN(TyJ)
1 KJA=CS (IMyJ} L AND MSK
IF (K1A.NE.2) 6T TC 210
K2A8CS {IMy ) (AND  MSK {2)
K2ABK2A%DV (2)
IF (K2A.EQe.1) GC TC 3
IF (K2A.EQ.2) GC TC 3
PM(IMs J)=PN{Ty.J)=R(7,.])#GXD
1F (K?AQEOC3) 82 TC 210
AMYTJsMUI (T )
PN(IMe J)BPN(IMeJ) =DXTARAMIIOUT (1P ) =SOY® (VT (T+JP) ® (AMT.JeMU (1, JP))
s . VT (Lo ) (AMT oMU T M) ))
8 T2 210
3 PN(IM, ) sPNI(T0J)
210 RESION -Bl(IoJ)'PN('P!J)O!?'!'J).PN(YNOJ’0R1(!OJ).’N(Y'JP)OBC'I'J’
s GPN(I'JM)6A(10J)-PN(10J)
PN(T14J)8PN(],J)+0*RFSIDN
HFS!D-AMAXI(ABS(RES!DN).RES!O)
1F (L.FO ITEST) ERASAMAN] (ERRABS (PN (TeJ) =P (1+J))88H/7aBS(RITHIIY)
211 CONTINUE
DS 212 J=leNJ
DC 212 I=mloNY
212 P(lo )EPN(Ts )
1F (RESINLEQ,0) 6T T2 213
IF (I1CNTPLEOQ,11) RESIDLERESIN
1r (ICNTP.EQ 12) O27,7(1+¢SORT(1.=RESIN/RESINL))
213 CONTINVE
1IF (FRALLTLEPS) 5T T8 214
IF (ICNTPLLT.I00N8ITFST) GS To 201
Kns2
WRITE (M$392000) ToICNTReLL
6c T2 218
214 WRITE (MC92001) TCNTPSTeICNTR,LL
215 RETURM
2000 FARMAT (1H=/1He920X30HTSS MANY ITERATIONS AT TIME = ,Fa.3+10¥AHICNY
SR 8 T4910XSHLL = +T14) .
2001 FORMAT(1H 910Xs149234 ITERATIONS AY TIME = WF6e3,INXAHICNTA = 14
$910XSHLL = +74) .
END
SURRSUTINE DENCHG
CAMMON/TVPSOL /PLMINGPLMAX « XMTN o XMAX o TXMIN (TXMAX o TYMIN, TYMAX
COMMON/TVGUIDE/TUCNF 4 TEXT W ITY



CCMMON/TVFACT/FART
COMMON/TVTHINE /I LPFNo I PEF s TTAL o TWINK, INTS, IRT, TUP
CAMMSN NELTASDToNT?24NTADX s NT4DY o NTCP 4DTDX4DTNY 4DTDXSNTDYSINTPy

L DYPPoDTVP DX yDXCN24DXTA0XTNIDXPeDYCoDYCD24NYT4oDYINGNYP

L X" ")

L 2 I X1

A}

6N0

601

699

AN?

» B a

LE X I R

COMMZN EPSeGoGHeBX oRXDsBANToGY sBYNeBYNToH, ICNTRITEST (KD 9XKK gl Ly
MT oMM gMU2¢NRT osNR2yNT oNTUT oNTP1 NI oMIM]Y 4N JP1 ¢ NP o NPR(NTP
COXsCNX24CDXS ¢ SNY e ODY2,0NYS A1 4R2sToTCPoTLoTPsTPPTVR 110,
VO-”»IVO.DXS?QY.DV 2DN DXCNY 4 NYZNX

COMMEN A (40+20) +BY (80320) ¢4R2(40020) 4RI (50620) +B6(404,2n) +CS(40,20) ¢
DV(IS)oIMD(IS).MKC(IS).HSKtIS)-MUltooZO).NF(10\-NK(‘0o?O)o
NKT(40920) ¢P (609201 +PS(3000) «PST(#]1421) ¢R(60,20) +SR(40:20) ¢
SnT(“Ovzo)OU(alel)'UP(300ﬂ)o"T(blo?l)oV(hlo7l)cV9(3OOﬂ)o
VT (41421) ¢ XC140) s XP(I0N0) ¢ XPO(30) o+ XPL (30) +YC(20) o YP (3000) »
YPO(30) s YPL (0) e ZFT (414+21) 4UPN (30) 4 VPO (30)

COMMEN KNRP s NRP  NBP2 4 XB1{21) ¢ XB2(21) s YB1 (21) 4YB2(2]1) 9%X]1 (200 s
AX2(20) ¢ ISAVF (XT s XAs IWNGDTORTPR4NC s ISPACE 9NUM(S)

REAL MUieMU1 oMU G NK o NN T

INTEGER CSePS

LL=0_

DS 630 J=mleNy

DC K00 T=1eN] )

CS(T¢J1BIMP{12) (SR ICS(IsJ) sANDMKC (12))

DS K02 Jm2yNJML

DS 602 I=m2eNIMY

KISCS(TeJ) o AMD  MSK

IF (X1.,EQ,4) 62 18 601

'F (K"oNE.S) 6C TC 602

K!l=t§(IoJ).AMD MSKI11)

Kil=w)lepvilY)

IF (X11,FQ.1) GC TS 602

IF (NK(IoJIONKT(149J).EQe0,) G2 TS 602

RNC‘(S"(!;J)OSQT(IvJ))((Nkl!oJ)ONRT(YiJ))

IF (RHCENR(I+J)) B2 TS 602

R{1s 1) SRHT '

Li=LLet

KT=28T1MP (12)

CS(19)BKTeCR(CS(ToU) dANDMKE(12))

KT=28IMP (13)

CS(Je NBKTCRL (CS(TeJ) dANDSMIKE (1))

CONTINUE

RETURN

END

SUBRSUTINE MSVPAR )

COMMAN/TYPCCL /PLMINGPLMAX o XMTN o XMAX o THMIN, TEMAX o TYMIN, TYMgX

COMMIN/ZTVGUINE/TMCDF ¢ TEXT I TV

C“MM‘V/TVFACY/FAPT

cs V/TVTUNE/LPEN.!9EF-ITALo'HlNIolNYS.lRTo!UP

chﬂ N DELTAS DT 4NT2,DT4DAsDTADY ¢DNTCP4NTOA+DTNY9DTORNSBTOYSDTP,
DIPPeNTVP 3 DXCoOXCO24DXTH¢DAINNXPsDYCoDYCD2oNYT44DYINGDYP

CoMMON EPSeB,GHaBXReRANGXDT 9BYs8YNeBYDToMH, ICNTReITEST KN eKkKKoLL s
N!vMVoM”loMU?oNBloNBZ,NIcNVWlyNIPI,NJoNUMloNJ"oMPoNPRoNVP.
COXICDOX2480XE4SNY ¢ ANYD 4ONYEIR) ¢R2s T4 TCPeTLo TP TPP,TVP 110y
VOsWe VS .nl“’nY.DY"ZDl.DXSnV.nYCDX

CAMMIN A (80920) yRY (6Ne20) JR2(40020) ¢RI (60020) ¢86(460,2n) +CS(40,20)
DY (15) e IMP (18) ¢MKC (15) JMSK(15) oMU (60620) o NF (30) ¢+ NK (40920} »
NKT (40201 9P 160420) oPS(IN0N) 4PST (41 21) oR(40,2n) ¢SSR (40420)
SRT(40+20)9)141921)sUP (3007 +UT(61,21)eVI(81421)3VP(3000)
VT (4]1421)4XC140) 9 XP(3000) ¢ XPO(I0) ¢ XPL (30)oYC(20) 4 YPLIONOD) »
YPO(30) s YPL(2N) «2ET (41,21) 4UPN(30) 4vPO(30)

CAMMAN KNRPsNRP ¢NAP2 4 XR] (21) ¢ XB2(21)eYR1 (21) 4YB2(21)9xX1(20)
XX2(2N) g TQRAVF (X T o XA e TWNGsDTPR4TPRyNCe ISPACE 9sNUM(5)

REAL MiteMII1 oM M oMK T

L1

99

100

10}
102

104

108

106
107
108

109
110

112
1l

IMTEGER CSePS

DA 143 K=) NP
KPaPS§ ()  AND ,MSK

IF (kP,FQ.3) G TC 148
MMe ]

CEXP (()#CDXe2,

QAuYP (() #TNY+2,

1al

J=0Q

FYXSZ=1

FYsQe)
K1®CS(1+0) e AND ¢MSK

1F (K)1.FQ.4) G2 T3 99
IF (K1,NE,S) GC 1O 1138
IF (K¥K.EQ.2) 8C TC 100
K1026S (14J) cAND  MSK (1)
K10sK10®0V(10)

IF (K10.EQ.1) G TS 14R
IF (FY.LTee5) BC TS 101
JPR=

82 T° 102

JPR= =1

1P=nle)

JPNPIJPRQ[
HFSI-.S‘“DX'(XC(!)-!D(K))

HPSYn ,5¢SDY* (YC (UPR) +DYCN2=YP (K) )

HMSX =1 4 =HPSX
HMSY =] o =HPSY
UT1=UT(1,JPRE)
UT2syT(1,0)
UT3IsUT (1P JPRP)

UTesuUT (1P}
UTSsUuT (19 JPR)
UT&sUT (1P 4 JPR)

1F (UTYI.NE.O,) G2 TO 109
Visut2

82 13 107
KSASCS{1=10J) o AND . MSK (S)
KSA=KSASDY (S) N
IF (KS54.£0.1) 65 TS 106
Uls=0o,

6C T2 107

Ulsuri .
IF (UT3.NEeO.) GC T2 108
U2sUT4

66 T2 110

KSR=CS (1P J) «AND MSK (8)
KSB=KSASDV (5) .

1F (KS5R.EQ.1) G TC 109
U?=0,

6 T2 110

u2suri

1F (UTS.NE.D,) G T2 11)
U3siit?

62 T2 113

| KSARCS(IelsJ) dANDMEK (5)

KSARNSA®DV (5) .

IF (KSA.EQe]l) A2 T2 112
Uas0,

62 T2 113

UN=UTS

IF UITR.NESO,) G2 T~ 1j4



114

118
116

120

12

122

123

124

128

126

127

124

129

130

UasTS

6 TH 116

KSR2CS{IPyJ) s AND MSK (5)

KEBaKSR*NV (5) )

IF (KSB.FQel) 62 TS 115

Uaxzo,

GC T2 116

UesuTs
UPTI4PSXOHMSY#11] sHME X #LHMSYSU2 4 HPSX #HPSY S+ HMS X #HPSY R )4
1IF {(MV.EQ2) XP(K)=XP (K)=§*NXP

XPTRXP (K)+UPTENT
IF (FYX.LTVee5) 62
1pR=1

GC T3 118

1oR= 1«1

JOs Je )

I1PRPeIPRe) ‘
HPSX2,54ONX® (XC{TPR) +DXCN2=XPIK))
HOSY= ,S54SDY#(YC()) =YD (K))
HMSX 214 =HPSX

HMS Y] =HPSY

VTisVT (1PReJP)

VT2sVT (14JP)

VTIVT (IPRP+ JP)

VT4=VT(IPReJ)

VTSeVT(I,J)

S 117

NT6sVT (1IPRP.J)

IF (VTI.NEeU,) 62 T2 121
Visvt>
8% 1C 123
KSC2CS (19 JP) (AND MSK (8
KSCaxECH#DV(5)

IF (KSC.EQ0.1) GC

visn,
6C T2 123

VisvTi

IF (VT3,NE.Q,) GC TO 124
v23vT2
GC T2 126
KSC2CS(19JP) (AND MSK (5)
KSCax8C*DV(5)

IF (KSC.EN.1) GC
V280,
62 T2 126

V2sVT3

IF (VT4.,NE.0,) 62
ViavYsg
6N TC 129

KSNSCS (19 J=1) ¢ANNMRK (5)
KSDex5N#OV(5) A

IF (K8NeEQe]) GC TS 128
V=0,

Gz T2 179
VIizVTé

IF (VTANE«D,) GC T~ 130
VasvVTs§

S T 132
KEDRCS (1 9J=1) sANN MK (S)
KD &NONV (5)

IF (x8N.ENelY 62
va4s0,
68 T~ 132

c 122

S 128

Te 127

1N

131
132

o

301

133

134
138

136
137

138

200

V4rvVTSE
VPTaHISXOHMSYSV] 4 HMS X SHMSY RV s HPSX SHPSY SV I HMS X #HPSY #y b
IF (WM EQ.3) YP(K)=YP (K)=SoDYP

YPTaYP (K) «VPTEDT

1isxpT#5DXe2,

J1uypPTECNY2,

IF (MM, EQ,2) Inl=s

IF(MM,EQ,3) UnJ=S

IF (11.LEJNI,AND,JY, LE.NJoﬂND 114RE.1.AND,J1,GE1) RS TC

63 T2 301

Kl'CS(IoJ).AMD MSK

!F (K].EO 1) GC 7¢ 301

IF (x1.NE.2) GC TC 133

K22CS (T o) o AND (MSK (2)
K28K2#DV (2)

KP=aPS (K) , AND (MSK

1fF (K’;FO.’.AND.KDQEQQZ) GC T2 13
PS(K)=3.CRe (PS(K) (AND MKC (31 )
KTaIMP (5)

PS(K) =KT 4CRe (PS(K) s AND MKC (8))
XP(K) =0,

YP(K) =0,

Ue (X)=0.

VP (K) =0,
GS TS 148

IF (KKK WEQo1) 82 TC 13

UP (K) sUPT

XP(K)=sXPT

VP (K) =VPT

YP(K)=YPT
6% T2 148

IF (JNEL,JL) 6C 75 138

IF (1.EQ.I1) 6C TS 4B
KPA=PS (K) ,AND MSK ()
KPA-KDA’av(j)

1¥F (KPA.EQ.Z) 62 T3 136
SRT(]+.)) wSRT (19 ) =R]
SRT(11+J1)8SRT (11 9J1)*R])
ec T2 137

SRT({4J)=SRT (14J)=RD
SRT(T14J1)8SRT (1]19J1) *R2
NKT(ToJ) aNKT ([9J) =1,
NXT(YI)eJ1)BNKT (Z19J1) %),

S TS 148 )
K28CS (TeJ) o AND MSK (2)
K2uK2#DV (2)

IF (K2.NE.1) GC TC 148

!' (IVE.EQ.D) G TC &

1F (KKK.ENe2) GBS TS 200
K102LS (14J) s ANDMSK (10)
K10=k10%nVv{l0) )

IF (K10.EQel) GZ TS 148
K72CS (19J) s ANDMSK (7)
K=K 74NV (7)

1IF (K7.EQ.4) 68 TC
IF (X7.FQ.3) 6 TC
IF (x7.F0,2) GS TS
K1A=CS(IeleJ) JANDMEK
1F (K1ALFEN3) 6GC TS 148
XP(K)sXP (K)#NXP
MMz
S=1,

-\

300



140

143

142

144

14%

146

147

14m
149

G2 Ts 98

KIR=CS (T=19J) o AND MEK
IF (x1R.EQe3) B2 TS joup
XP (K) = XP (K) =DXP

MMz D

S=me},

62 T2 9A
KiCaCStTsJel) o AND M-K
IF (K1CL.EQe3) G2 TS 148
YD (K) mYP (K) #NYP

MMm 3

s-‘o

63 T2 98

KiN=S(TeJ=] ) .‘NO.M*K
IF (K1D.EQe3) GBS TS 14R
YP (K) sYP (K)=DYP .
MMa3

s‘-l »

62 T2 98
UTTSUT(T,y.))
UTB8sUT(IelsJ)
VT72avT(T,))
VTRaVT(I,J*1)
KT?=CS (TsJ) s AND  MSK (7)

KTuKT78DV(T)

IF (K7.EQ.1) 6T TS 144

IF («7.£0.2) 6T TC 143

IF (¢¥7.E0.3) GO TS 141

T2avT7eDT

DV!NI.TZ

KTm4s IMP (2)

PS{K) BKT ,CR. (PS (K) o ANDMKC 12))

8C T2 142

T2aVTAMDT

DYINaT?

KT®ISIMP (2)

PS(X)=KT,OR. (PS(K) ¢ ANDMKE (2))

YPTayP (K) T2

XPTaXP(K)

6S YO 146

TiasUT7eDT

Dl 'le'l

KT=28 1P (2)

PS(K) mKT (CRe (PS(K) o ANDMKC (2))

62 TS 148

Ti=sUTA®NT

DX IN=T]

PS(K) mIMP (2) (OR, (PS (K} ¢ANDJMKC (2))

XPTaXP (K)eT)

YOTaYB (K) ~

IF (KXKJEQe2) GC TS 147

T11=XOT#CDX*2,

JiaypTegpy+2,

G2 T* 13

XP(K)=XPT

YP (K) =YPT

CONTINME

RFTURN

END

SHRRZSHTINE VELCTS (KHKK) ‘
CAMMEN/TVPSCL/PLMINGPLMAX ¢ XMIN g XMAX 2 TYMINTXMAX o TYMETN, TYMAX
SMMAN/TVRUINE/TMCNE ¢ TEXT W ITY

OMMSN/TVFACT/FACT
COMMON/TVTUNE/LPEN st PEF s TTAL S TWINKy TNTSoIRT s TUP
COMMCN DELTASIDTNT240T4NXeDT4DY ¢NTCP o DTDX¢DTDY sDTDXS NTCYSNTP,

k] NYPPsNTVR DX DXCN2eDXT4sDXTNDXPsDYC 4DYCD24NYT44DYIN,NYP

]
] CDXeONX2,4CDXS s CDY 4 CDYP2,CNYS 4RI 4R2s T TCRoTLsTRITPP 4 TVP,1)0,
<

CEMMSN EPSeGaGHeRXsBXDsBXNT 3BV sGYN o BYDToH ICNTR ITEST (KD e KKK oLL»
MlvMCOMUIvMU?'NBI'Mﬂ?ancN7“1vNIP1.NJ.NJMI,NIPI'NP.NPR.NTpi

, VOeWsTVCNXSINY,DYS20X4DXSNY 4 DYSOX )

CEMMON A (40420) ¢yA1(60420) «R2(40¢20) sRI(80420) +B4(80,2n) +CS(80,20) o
DV(15) s ITMP(15) ¢MKC (15) +MSK (15) ¢MU (40¢20) ¢NF (30) sNK (409 20) »
NKT(40+20) 9P (409201 ¢PS(I000) sPST (41421)9R(40420) +SR(40,20) o

VT(81,21)¢XC(40) 4XP (30N0) +XPN{30) 4 XPL (30) 9 YC (20) + YR (300N0) s

L

<

s SRT(40420) sU (419211 sUP (3000) sLIT (41,211 4V IA142])),VP (3000),
s

L]

\ YPO(30) sYPL (30) 9 2ET (4)421) 4UPD (30} , VPO (30)
CSMM2NM KNRPoNRP ¢NAP24 XB1 (21) ¢ XB2(21) o YB1 (21) 4 YB2(21) sXX1(20)

< XX2(20) s ISAVE 4 X1+ XA IWNB 4DTPRTPR¢NC s ISPACE 4 NUM (8)

400
407
403
40%

aNG

MABAE AN

REAL MiJoeMUI1 9 MII2 gNK 4 NKT

INTEBER CSePS

00 406 Jm2eNgM]

NCINTY |

DS 408 Im2a2NTMY

1Ps1a)

K18CS(I+J) s ANDMSK

IF (K1.EQ.4) GC TC 400

IF (K1,NE.S5) GC TC 406

K1BaCS (1P ¢J) JAND ,MSK

IF (KIR.NEe4AND,K1R,NE.S5) 62 TS 403

TIn(PSI(TP o) sDTNXS(P(Te )P (TP ) ) )/ (R(TeJ) sRITIP, YD

UT(TIPe ) aT1+T]

KIDRCS(14JP) L AND MSK ‘

IF (K1DJNE«4ANDKIN,NES) 83 TS 406

T2R(ZET (1o JP) eDTOYR (R (T9J1 =P (YeJPY))/ (RIT4JI eRIIUP))

VT(1,P) aT2+72

CONTINUE

CALL SNDCND (XKKK)

RETURN

END

SUBRCUTINE DENVIS

CCNNGV/vascL/PLMIN.PLHAXoXH[NolHAl.YIMIN.Y!NAX.YVHYN.TVMAK

COMMCN/TVBUIDE/TMEDF JTEXTHITYV

COMMON/TVFACT/FACT

COMMON/TVTUNE/LPENLPEF + 1TAL o TWINK o INTS, IRT JUP

CEMMEN DELTASNT4NT2,NT4DXsDT4DY sNTCP DTOX DTNY oDTDXS,DTDYSDTP
DTPPeDTVP 4DXC 4DXCN24DXT49DXINDXP+DYCDYCO25NY T4, DYINSDYR

COMMSM EPS1GeGHBX+RXDeGXDT 1BYs8YDsAYDToH, ICNTReITEST JKDo KKK oL L s
M!-HC.MUI.MUZ-NBIoNBZ.NloN!*I.NIPI.NJ.NJNloNJPI-NP.NPR-NYPo
30!OCDXZ.CD!S.CDVocDVZ.ODVQcH].RZ-T.YCD.TL.TP.T’PoYVOQUOO
VoW IVC,DXC2DY,,DY32DX 4 DXSNY4DYSDX

COMMIN A (40920) 481 (40920) 4P2(40920) ¢RI (40¢20) +B4(40,20) +CS(40.20) o
DV(15) s IMP (15) +MKC (15) sMSK (18) oMU (404200 oNF (30) oNK (40920) o
NKT(40020) P (4020) «PE(3000) oPST (414211 sR(40,2n) 43R (40,20) s
SRT (40+20) +1J(41921) 2UP (3000) sUT (41421) 9V 414211 +VP(3I000)
VT(“I0?1)¢XC(§O)oXO(SOOO)oX’O(JO)OIPL(3O)OVCtzn)vVP(?OOO)'

) YPO(3D) e YPL (IN) 4 ZFT (41,21) 4UPD (30) 4 VPO (30)

CoMMe N KNBPvNBP.NBP?vl“l(2\)o!BZ(?lloVBl(?l)oYBZ(Zl)O!!I(?Oio
XX2(20) s ISAVE 4 XT o XA+ IWNGsDTPRTPRoNC» ISPACE o NUM (S)

REAL “H oMU MU 4 NK oMK T

INTEGER CSoPS

DIMENSICN SM(40420)

EQUIVALENCE (SMeNKY)

0C 300 J=mlsNy

02 3IND ImleNTY



nn

am

307
3N

308

‘3sn

3%

352

383

NK(Ty. )20,

SR(14J)Y=0.

SM{T,)20.

KK=)

D2 303 K=mleNP
KP=PG (K) 4 AND  MSK

JF («P,FQR.I) GC TC In3
Kk=2

I=XP () P#SDXe2,
J2YP () #SDYe2,
KPAzZPS (K) ANDJMSK (D)
KPASKPA®DV (I)

IF (XPA.FE0.?2) GC TT 301
SR(1¢)=SR(TIeJ)eRY
SM(T,.1)2SM(TI4J)eM)

GS Ta 302
SR(14J)2SR(14J)eR2
SMIT4J)=SMIT9J) eMU2
NK(I!J)-NK(I.J)Q].
CONTINIE

IF (KX ENL1)
N2 308 JsleNy
D2 305 I=1eN1
IF (NKI1eJ)<ERLO,) B2 TC 305
R(Ioe N2SRITe NI /NK(T)

MU(T o )RSM(T o) /NK(T4J)
CANTTNVUF

ne A57 Jx1eNJ

JME =}
JP=J+?
D 357
IM=1=]
IP=T+)
K1=CS (19J) ¢ AND (MSK

IF (K1eNE.2) GC T 13RI
K72CS(1eJ) e AND MSK (7)
K7=XT7#DV(T)

IF (K7.EN.4) GC
IF («7.,EQ.3) GS
IF (X7.ER.2) GC
R{TeJ)mR(IP))
MII(T o J)EMUTIP )
62 T2 357
R(Ts.N)WR(IMe))
MI(T o) EMU{TMe )
Gc T2 387
R(TeJ)=R(1sJP)
M (T g ) EMI(T o JP)
GC T2 397

R(Ts N=R(T1eJM)
Mit(Te 1) EMII(T o JIM)
6% T2 357

IF (K1 NE.1) GC TS 3IRT
K7=CS(Ted) o ANDJMSK (T}
K7=KT7#DV(T)

1F («7.E0Q.4) 6C
1F (K7.FR.3) GT
IF (x7.EQ.2) 7
IF («74NF.1) GC
R{Ts 5)=R(IPeJP)
MU (Toed)=MiI{IP,yJP)
Ge T 3AS7

354

358

354
387
306

n7
3000

88 TS 306

I=]oNT

L£]
TS
L £

an2
81
%o

702

709

156
RS
56
R7

L £
78
T°

18

AQR

R(1eJ)=R (1M M)
M1 (T g ) MU TIMy UM)
6C T2 357
RI(TsJI=R (1M, JP)
MU(Te 1)BMU(TIMYJIP)
GS T2 357
R(1s.)8R(IPy M)
MU(T o J)IMICTIPy UM)
CONTINNE

GZ T3 307

Kh=2
WRITF
RETUQN

(MC93000) T

FORMAT (1H=/1H=920X33IHNS PARTTIALES TN SYSTFM AT TIME = ,F6,3)

END
SURRSUTINE REFCEL

COMMCN/TUPSCL/PLMINGPLMAX o XMTA o XMAX s TXMIN,, TXMAX s TYMEN, TYMAX
CECMMZN/TVGUINE/TMIDE 4 TEXTLITVY

CCMMON/TVFACT/FACT
COMMON/TVTUNE/LPEN oL PEF s TTAL o TWINK o INTSy IRTy T1UP

CoMMZN DELTASsDToDT2,DT4DX«DT4LDYsNTCP«DTOXsDTNY+sDTOXSNTDYSHNTP,

COMMSON

- C R R _E N

CoOMMaN

NTPPyDTVP 4 DXCosDXCN23DXT4,DXINGDXP9DYCosDYCD24NYT14,DYIN,NYP
EPS'GOGHQGXoGXD'GXDTnGY'GVUQGYDT'H,ICNTROITEQT.KDOKKK|LL0
M1 oMC oMII] yMU2 gNBT sNB2oNToNTMI JNIP1 G NJJNIML N JPY o NP NPRGNTP,
CDX9CNX24C0XS 4 CDY s CDY2.CDYS 4RI W R2:ToTCPoTLo TP TPPTVP,1J0,
VO Wy IVE,.DXS2NY,DYS2DX.DXCNY+DYSDX

A(40920) R1 14N420) «B2(40920) cRI(40¢20) +B4(40,2n)+C5(40,20)
DV(1S) 2 IMP(18) yMKC (15) +MSK (15) ¢+MU (40420} ¢NF (30) ¢NK (40420) o
NKT (404203 9P (40920) +PS(3000) +PST (41,211 4R(40,20) 4SR(40,20),
SRT(40:20) 2U (4] 421)sUP(3000) eUT(41,421)4V141,21)4VvP(300N),
VT (41521) 4 XC(40) ¢XP (INN0) 9XPDO(30) o XPL {30) s YC(20) 4YP (3ON0) »
YPO(30) s YPL(30) +2FT(4]102)) ¢UPO(30),VPO(30)

KNBP s NBP yNBP? , XB1 (21) +XB2(21) 4+ ¥B11(21) 4 YB2(21) 9xX1(20)
XX2(20) s ISAVE ¢ X1 o XA+ IWNGsDTPR I TPRoNC s 1SPACE s NUM(S)

REAL W1aMUI1oMH2 g NK o NIKT
INTEGER CS9PS
DIMENSICN SH(41421)e8V(41.21)

IF

(T.EQ,0) 62 T2 1

DC 710 KalsNP
KP=PS (K) o AND ,MSK

IF (KP.EQ,3) 6C
IF (XP.NE,2) 65

T8

T3

710
710

I=sXP(K)#SDXeD.

JRYP (K)#CDY+2, )
K2%CS (T9J) e ANDMSK (2)
K2aK2#DV (2)

IF (x?.EQ.1) GC
DS 702 L=leNP
LPSPS (1) AND (MSK
IF (LP.ER.Y) GC TC
CONTINUE

S T2 70
KR=PS (K) (AND ,MSK (2)
KRaKASNV (2)
KPAmDS (K) ,AND MSK ()
KPARKPA#DV ()
IF(KPAEQ.1) 6C TC
IF (1SPACE.LE,0) AT
DX IN=zNXP#,5
DYIN=NYPe, S

S TS 699
DY IN=NXD

T3 710

703

698
T

698



699

T04

708

706

T07

708
109

710

™"

AR

NY 1N=NYP
1F (KRNE.4) GS TS Tne

1F (VP{K)GE,O0) G T2 710
YP(L)Y=YP(K) +DYIN

6% 12 705 .

IF (KR NELI) C 70 706

IF (v2(K).LE.OQ) GC T2 710
YP(L)=YP(K)=DYINM

XP (L) =XP (K}

Gn T2 709 A

IF (KB.NE,1) 6 TC 707

IF (112(K),,LE,0) GC T8 710
XP(L)zXP {K)=NXIN

62 T2 708

IF (1P (K),,GE,0) 68 TS 710
XO(L)zXP (K)¢NXIN

YP(L)=YP(K) o

PS (L) 22 CRe (PS(L) ¢ ANDMKC)
PS(K)=]1+CRe (PS(K)ANDMKC)
KTaKR®TMP (2)
PSILY#XT,CRe (PS(L) s ANDMKC(2))
K3I=PS (K) 4 AND (MSK (3)
K3IsK3I#DV (3)

KT=KI®IMP (3}
PS(L)Y=KT (SR (PS(L) ¢ AND.MKC (3))
K4mPS (1) « AND JMSK (4)
Kazxoanny (4) ]

IF (X4.FQ,B) K4sm)

KT=K48IMP (&)
PS{L)#KT ,CRe (PS(L)+sANDMKC (4))
CONTINUE

DT 711 J=1eNY

NS 711 I=1eNY

KTa681MP(9)

CS(To J)BKTCR(CR(TsJ) s ANDMKR (9))
DS 712 J=leNy

DS 712 l=leN]

SH(l.J)=0.

2 SV(lyJ)=0,

D2 7164 KmlsNP

KP=PS (K} ¢ AND MSK B

IF (kP.EQ.,3) GC TC 714
T=XP (K)#ZDXe2,

JuYP (K)#CDY+2,

1F (I.LT.I.C‘.J.LT.‘QCR'!.GTQNIQSR.J.GT.NJ) 1] T¢ 2
K1®CS(TsJ) ¢ AND . MSK

IF (K1.,EQe.1) GC TC 2

IF (K1.NE.2) G2 75 3
K22CS(19J) «AND MSK (D)
KP=mK24#DV (2)

IF (x2.NE.1) GC TC ?
SU(Te L) =SU T s +uP(K)
SV(Ts NESVII4J)evP(K)
K9=CS(19J) s ANDMSK (0)
KOuKgeNnV (9)
KPAZPS (K) , AND JMSK (3)
KPARKPA®DY (3) ~

IF (K9.NE.4) B8 TS 713
KTsKPA®IMP (9)
CS(T19.0)3KTeCRL(CS{T4.)) dANDMKC (9))
G2 T~ 714

IF (¥DALEQ.K9) G T4 716

714

ns

716

KT=23#T1MP (9)
CS{T1+J)3KTeCR(CS(T44) dANDMKC (9))
G2 T2 Tla
PS(K)23.0R. (PSIK) AND MKC)
KTmIvP (5}
PS(K)aKT ,CR4 (PS(K) o ANDMKC (5) )
XP{K) =20,

YPU(K) =0,

UP (K) =0,

VB (K) =0,

CONTINUE

DS 716 J=29NJM]

JME J=)

JP=Js]

DS 716 Im24NIM]

IMate)

IPsI+}

KinCS(TeJ) s ANDMSK

IF (K14NE.5) GC TS 7i5

IF (WK(I,J)eNE,0) GBS TG 716
CS(1,J)33,0R.(CS(T1yJ) (AND MKC)
KT=4@1MP (9) )

CS{Ts ) BKTeCR (CS(TaJ) LANDMKC (D))
P(]+5)20,

R(1s )y =0,

MU(T, =0,

ez TC Tie

IF _(K1NE.3) GZ TS 716

P(1+ =0,

K1A®CS (IMyJ) (AND  MSK

KYB2CS (IPsJ) JAND MSK
K1C®CS (14 JM) AND . MSK
K1DsCS(I9JP) (AND ,MSK ~

IF (K1A.EQe3) UT(1eJ)=mD,

IF (K1B.,EQ.3) ”T(l’t,’)-o.

IF (K1C.EQe3) VT(Isy)=0,

IF (K1N<EGe3) VT(IsJP)s0O,

IF (NK(1,J)EQ.0) GC TC 716
CS{I,))m8,CR, (CS(IyJ)AND . MKC)
K1ASCS (IMyJ) (AND ( MSK
K1B3CS (TP vJ) JAND MSK

K1C=CS (19JM) (AND  MSK

K1D=CS (14UP) (AND (MSK
K2ARCS (IMyJ) (AND MSK (2)
K2A=K2A®DV (2)
K28mCS (1P J) AND MSK (2)
K2BaKPR*DV (2)
K2CmCS (14JUM) JAND (MSK (2)
K2C=K2C*#DV (2)
K2DSCS(14JP) (AND MSK (2)
K2D=K20%DV (2)

IF (K1AsEQe3,CRLK2A.EQ,2) UT(T9J)mSUITod) /NKITed)
IF (K1B.EQeI,OR.K2R.FQ42) UTITIP4JIaSU(T+J) /NK(]+J}
IF (K1C.EQe3,CR.K2C.FQ.2) VTITeJImSV(Ted) /NK(T4J)
IF (K1DEQeI,CR.K2D.FRL2) VTITeJP)IRSV (19J)/NK (1sJ}
CONTINUE

DS 723 Ja2sNJM)

Mz =t

JP=Je

02 723 I=24NIM]

IM2Te)

1Pe141




77

7P

719

720

721

779

723

726

127

IF (W (T,J)«EN.N) G2 TS 723

K120S (T eJ) o AND  MSK
K1A2CS (IMsJ) (AND MSK
KI1R= CS(IPsJ) o ANN MSK
K1C=CS(1yJM) LAND MSK
KINeCS (I sJP) LAND,MSK
1F (x1.NE.4} BC TC Ti8

IF (K1A,F0e3.CR.KIB . FQe3eCR.KI1C,ENe3I,OR.KINEReI) B2 TC N7

GC TS 723

CS(14)85,CR, (CS(1s+J) . AND MKC)

P(1. 1120,

B2 To 723

P(IyJ)y=0. .
1F (X1 NF,S) 6T TC 723
Se=0,

AN=0, ,
IF (K1ALFQ.3) GC TC 723
IF (KIAME.&) GBS TS 719
SPRSPP (TMe )

AN=AN+ 1,

IF (X1R,EQ.3) GT TC 723
IF (K1R.NE.4) GC TC 720
SPaSP+P (IP )

ANaANM+T .

IF (K1C.EQ.3) GC TC 723
IF (K1C.NE.%) B TC 721
SPESRP (]« M)

AN=zANe ) o

IF (X1N.EQ«3) GO TS 723
IF (K1N NE.%) GC YT 722
SP=SPeP (T4 JP)

AnNzANS] .

CS(I4JIZ6.CR,(CS(1eJ) (AND MKCYH
IF (AMJNELO) P(1,J)=SP/AN

CONTYMIE R

CALL RNDCND(1)

DS 737 Ja2eNJM]
NUENES |

JP=Je+

Do 732 1a329NIMY
Ivm]ay

IP=Te1
K1=CS(T+J) « AND MSK
IF (K1 .NFE.S) GC TC 732
K1A=CS (TMyJ) (AND MSK
K1R=A& (IPyJ) JAND  MSK
K1C=0S (1o M) GAND (MSK
K\D Pt(}qJP) AN gMSK

1F
1F
1F
1F
1F
1
1F
1F

(K1AeFNeI ANNKIR (NFE o IJLANDKIC NF, 3.ANO.K10.N€ 3
(K1AGNE e 3o AND K1R (ENa3ANNK1C NF ¢ 3o AMNDK1INNE(3)
(KIA-NF-3.AND.KlR.NE.3.AND.K1C.EQ.3.AND.KIDoNE.3)
(K1AWME e 3,ANDGKIRNE o3 ,ANDK1CNEo34ANDK1D.EQe3I)
({K1ANE-3,8MN K1R,EQe3I ANDKIC,NFo3.ANDK1DEQ,.3)
(K1AoNFe3.AND KR, ENe3ANNKIC,EN3.ANDK]1DeNEL3)
(KTAGEN 3 AND(K1RNE¢3,8NN,K1C,EN.3.ANDKINWNEL3)
(KlA.EO.B.AND.KIR.NE.3.ANn.Klc.ME.B.AND.KID-EQ.3)

Ptls))=0.
GO T~ 732
P(le NESOX2¥MIH(T D) #(U(IPe =11 (14.0))
G T~ 732
P(l1e ) 2=COY2EMU (T IRV (IeUP)av(Ted))

GC

To 732

726
7256
727
727
728
729
730
N

728 P(1s)aMU(19J) #,.58(ADYH(U(T o ) +UITP 4 ) =U(T 4 JM) =U (TP, JM’?’"DX'(

€ VITeJP) ¢V (14 )=V (IMeJPI*V(TMeJ)))
Go To 732

729 P(le ) ZeSEMUI(Ts )R (ONYH(UCIPy ) +U(T o J)=U(IPsJP)=ULI, Jp))eoDx®(
s V(IMe P eV (TMe )=V (T P}V (1))}
GS T3 732

730 P(l.lvs.SOMU(l-J)OtcnvutU(IP.lP)ou(t.JP)-u(!P.J)~U(!-J))O“D!O(
s VIIPs P eV (IP )=V ]9 JPI=V (I N)))
Gn Ta 732

731 P(I'|)’-5’MU(le)’(“DY’(U(I'JM)OU(IPOJM)-U(loJ)'U(ID'I))"DX’(
VITeJPI eV (Ted)=VIIPaJPY=V (TP U)))

732 CONTINUE
CALL FLGCEL
RETURY
END
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