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PREFACE

Larry S. Slotta

Department of Civil Engineering
Oregon State University

This volume contains two papers devoted to stratified currents research
at Oregon State University under the sponsorship of the United States Depart-
ment of the Interior, Federal Water Pollution Control Administration. The

general purpose of the work was the investigation of the internal currents
created by withdrawal from reservoirs stratified by surface heating.
Special attention was given to the effects of entering streamflow and with-
drawal on currents. The work accomplished during the three years of grant
support has been devoted to the following sub-tasks:

1. To examine the effects of topography on the current patterns and
waters discharged from a density stratified reservoir.

2. To examine the effects of regulated discharge on stratified current
patterns.

3. To consider the influence of entering waters on the current patterns
in the pool and subsequent discharge from a stratified reservoir.

Progress has been made in all sub-tasks. Progress reports 1967-1968
have contained graduate degree theses related to the description withdrawal
phenomena. Recent presentations have been given:

Hwang, J. D. and L. S. Slotta, 1968, 'Numerical Simulation of Selective
Withdrawal of Stratified Flows, " ASCE Hydraulics Division Conference

titled "Computer Applications in Hydraulic and Water Resource Engineer-
ing." at M.I.T. Cambridge, Massachusetts, August 1968.
Spurkiand, Torbjorn and L. S. Slotta, "Boundary Geometry Effects on

Internal Density Currents in a Stratified Reservoir." Pacific Northwest
Region American Geophysical Union, Seattle, Washington, October 1968.
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Mercier, Howard T., "Digital Simulation in Fluid Mechanics,"

Pacific Northwest Simulation Council Meeting, Moscow, Idaho,

October 1968.

OREGON STATE UNIVERSITY THESES:

Elwin, E. Harvey, 1969, "Entering Streamflow Effects on Currents

of a Density Stratified Reservoir. M. S. Thesis, Corvallis, Oregon
State University.
Spurkland, Torbjorn, 1968, "The Effect of Boundary Geometry on

Internal Density Currents in a Density Stratified Reservoir. " M. S.
Thesis, Corvallis, Oregon State University.
Terry, Michael D., 1968, "A Numerical Study of Viscous, Incompres-

sible Fluid Flow Problems." M. S. Thesis, Corvallis, Oregon State
University.
Mercier, Howard T., 1968, "A Predictor-Corrector Method for the

Transient Motion of Non-homogeneous, Incompressible, Viscous Fluid. "
M.A. Thesis, Corvallis, Oregon State University.
Hwang, J. D., 1968, "On Numerical Solution of the General Navier-

Stokes Equations for Two-layered Stratified Flows." Ph. D. Thesis,
Corvallis, Oregon State University.
The research outlined as goals of the grant has been advanced on two

fronts; one through laboratory studies and the other through numerical or
computational approaches. The scope of this work is quite wide, but an

effort to stay within limits of the sub-tasks and to significantly contribute
to each of the sub-task areas was made. Continued research on the mechan-

ism of stratified currents and selective withdrawal is needed. Research
involving field studies in actual reservoirs is necessary to verify predictive
behavior as determined in model studies.

Laboratory Studies
Time-lapse photographic techniques for recording flows through a density

stratified impoundment model permits viewing a lengthy experiment



1-1 /Z hours ) in a few minutes in movie form. Specific studies on
geometrical effects of boundaries on internal currents have been conducted.
Obstructions such as sea ridges have been placed in the reservoir flow
field and the resulting flow patterns observed and recorded. The effect
of entering streamflow on currents has also been studied with the labora-
tory model. Dimensionless parameters have been found which quantitatively
relate the existence, location, and magnitude of model internal density
currents to the entering streamfiow characteristics. Extensions of the
model relations for use in the prediction control and maintenance of quality
water discharge from actual thermally stratified reservoirs have been
p r opo s e d.

Field studies in actual reservoirs are necessary to verify the behavior
of shear current patterns as predicted from model studies. Additional
laboratory investigations should be performed involving surface winds
flowing to and counter-current to the reservoir's axis to study possible
current reversals. Little research information has been found in the
literature that gives attention to wind induced currents on thermally stratified
reservoirs. Current reversals caused by surface winds have been generated
on a laboratory model. Continued research should be extended to consider
the effect of surface wind shear on sub-surface flows. A balance between
inlet caused currents and those from counter current winds should give
measure to the amount of energy added by each. Field investigations should
follow laboratory studies for verifying predictive models.

Analytical Studies

Computer simulation of density stratified flows have been advanced by
Oregon State University's approach to density stratified reservoir selective
withdrawal problems. Graphic displays of time development of internal
stratified flows have been simulated. The computer code NUMAC (Non-
homogeneous Unconfined Marker and Cell) is proposed as a valid tool for
analyzing transient, incompressible, density stratified or non-homogeneous,
viscous flows with a free surface.
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Previous analytical and experimental research on the problem of

stratified flows has given only limited results which involve either multi-

layered or continuous density distributions. Nearly all analytical work

has undergone simplifications through linearization, boundary-layer
approximations, and the use of transitions or geometrical symmetries.
The general solution of the complete Navier-.Stokes equations governing
heterogeneous, time-dependent, incompressible, viscous, laminar flows
is sought through numerical methods (Slotta, etal., 1968). Thus by

numerical simulation the number of approximations in the mathematical
analysis can be minimized, except those arising from the finite difference

repre sentations.
The NUMAC method has been applied to simulate selective withdrawal

from reservoirs that have: a) two distinct layers of fluids having different
densities and viscosities; and b) continuous distribution of density and

corresponding viscosity. Results have been found to favorably compare

with experimental and analytical data. Other problems which have been

simulated with output in movie form include:
One-fluid reservoir with withdrawal.
Two-fluid withdrawal with submerged ridge.

Wave passage over submerged pipe.
Pressure forces on obstacles from wave passage.
Salt water wedge upslope.
Salt water wedge slug flow.
Buoyant pollution plume emitted into a density

stratified tank.

An annotated bibliography, "Numerical Methods for Fluid Dynamics",

compiled in June 1969 by the Los Alamos Scientific Laboratory Group T-3,

points to the significant advance in the past three years in the digital simula-

tion of fluid mechanics problems by listing over 155 references and 48 pro-

gram codes.
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One method devised by Welchet al. (1966) was called the Marker and
Cell (MAC) method. in addition to numerically solving the system of partial
differential equations which govern the flow of viscous, incompressible
fluids, the MAC method demonstrated the use of visual display of the model.
Numerical investigators now simulate and watch flows develop as the lab-
oratory investigator might.

The MAC and NUMAC methods use finite difference approximations to
the governing partial differential equations. Thus, a differential problem
which has no easy analytic solution is approximated by a readily solvable
algebraic problem.

The significance of this research is that as better simulation schemes
better characterize the flow patterns in water systems, then better water
quality management and prediction methods can be generated with these
tools. Even though the tools and results presented in this report are
significant contributions in the form of simulation technology, extensions of
this work are needed. The NUMAC algorithm adequately considers inflows
and outflows of density flows through channels; but, some numerical instabil-
ities appear on the free surface during running. It would be advantageous
to simulate with the MAC and NUMAC codes at a facility having large
memory and high speed capability with unrestricted access so that indeed
the researcher could observe displays of developing flows rather than long
time turn around on batch process runs.
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The effect of entering streamfiow on currents of a density stratified

reservoir has been studied in a laboratory model to provide insight into

the prediction, control, and maintenance of quality water discharge from

stratified reservoirs. Experiments were performed using various con-

centrations f a sodium chloride solution to provide linear density strati-

fications. Flowfield current patterns and velocities were determined

photographically. Flow pattern parameters were found relating the

existence, location, and magnitude of model internal density currents to

entering streamfiow characteristics. The extension of these model

reservoir results to prototype conditions is discussed.

xii



Entering Streamfiow Effects on Currents of
a Density Stratified Model Reservoir

I. INTRODUCTION

In recent years increasing populations with increasing demands

of water for municipal and agricultural uses, together with rapidly

expanding industrial needs are putting increasing pressure on mans

most important natural resource--water. This pressure has been

periodically eased by the authorization and construction of an in-

creasing number of impounding reservoirs; however, the total supply

of quality water eventually will be limited, and man must learn to

use his supplies efficiently.

In order to use a water supply more efficiently, man must be

concerned with water quality because the value of a quantity of

water is a function of its quality, If man could sort his water

supply on the basis of quality, maximum efficiency in reservoir

management could be achieved. For example, if man knew how

to predict and control the quality and movement of water in a reser-

voir, the most potable water could be drawn off for domestic needs,

the coolest water used for industrial cooling, the warmest water

saved for recreation, and the life of impoundments lengthened by

using sediment-laden water for irrigation, The quality of conserva-

tion flows could be controlled for maximum benefits to fish and

1
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wildlife, and short-term polluted flows could be passed through

water supplies with a minimum of pollution. Thus, efficient

reservoir management is related to the quality and movement of

water behind a reservoir.

1. Effect of Impoundment on Quality.

Water quality characteristics may be grouped into three

categories: physical characteristics--temperature and turbidity;

chemical characteris tics - -dis solved oxygen, nitrogen, dissolved

minerals, and other substances; and biological characteristics--

biological oxygen demand, coli.form count, and algae count.

Impoundment .s among the many things that affect water

quality. When a flowing river is dammed and becomes an impound-

ment, two major changes occur that have a marked effect on water

quality. First, an impoundment greatly increases the time re-

quired for water to travel the distance from the headwaters to the

dam's discharge location. Second, stratification due to density

variation in an impoundment changes the characteristics of the

water discharged at a given location from what they originally were

when the stream was flowing free. Some of the important effects

are: a reduction in turbidity; a variation in temperature and

dissolved oxygen; and, an increase in algae growth, dissolved

solids, nitrogen and phosphorous.
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The most important factor in the variation of water quality

within a reservoir or lake is a variation in its density. Although

density variations or stratification may occasionally be due to

chemicals, wastes, or suspended sediments, temperature is

analogous in creating density variations. It is well recognized

that lakes and reservoirs in the temperate zone undergo a complex

seasonal variation in temperature. Typical seasonal and spatial

variations of temperature in a deep, temperate climate lake are

shown in Figure 1.

During winter and at the beginning of spring,a lake is vir-

tually at a uniform temperature throughout its depth and is essen-

tially homogeneous. During early summer with the coming of

warmer weather,a definite temperature profile develops as water

near the surface absorbs more energy and is, therefore, warmed

faster. Through the summer, heat is absorbed at the surface and

mixed downward, largely by wind action with the surface temperature

only changing slightly. In late summer a reservoir will have ob-

tamed maximum stratification. After this time, as the weather

cools, the surface temperature begins to fall creating an unstable

condition. Surface water as it cools is more dense than the water

beneath it. Overturning occurs and the mixing results eventually

in an isothermic condition. The cylical variation of temperature

is controlled by various inputs and outputs of energy; solar
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Horn Lake, B. C., during 1960. (Clay and

Fahiman, 1962)
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radiation; the convection of heat into and out of the reservoir;

evaporation; and back radiation. Analytical and experimental

work has been done in an attempt to predict thermal stratification

of lakes and reservoirs by Dake and Harleman (9), and an actual

method of prediction has been used with good results on Hungry

Horse reservoir by Ross and MacDonald (25).

The zone of steep gradient which joins the upper mixed layer

(epilimnion) to the cooler body of water below (hypolimnion) is

generally referred to as the metalimnion of thermocline. The

definitions are illustrated in Figure 2.

Stratification is most important in determining water quality

in reservoirs. It may influence water quality through a direct

relationship between density and physical or chemical quality

parameters, or it may influence water quality by controlling

movement of water in the reservoir. The movement of water in

the reservoir determines detention time and has an influence on

biological quality parameters.

2. Internal Currents

The variations of fluid density in a thermally stratified

reservoir give rise to internal flow patterns which may differ

entirely from those encountered in homogenous fluids under similar

boundary conditions. These flow patterns are known as internal



J Epilimnion

Me talimnion
or

The rmocline

Hypolimnion

Figure 2. Definition of regions associated with
thermal stratification.

density currents.

Internal density currents, although extremely apparent in

the flow regime of a reservoir, are not restricted only to reser-

voirs. A density current may be the gravitationally induced flow

of any fluid which is slightly different in density than its sur-

roundings, and the density difference may be due to chemicals,

temperature, or suspensions. Interesting cases of density cur-

rents may be found in oceanography, hydrology, meteorology, or

geology. Ellison and Turner (11) have reviewed some of the

situations in nature where nonsuspension density currents occur.
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These include the flow of katabatic winds in the atmosphere; the

flow of cold water on the ocean floor from arctic to equatorial

regions: and the flow of methane fluids along the roof of a mine

gallery. Also, Middle ton (21) has studied the existence of the

turbidity or suspension type density currents over the ocean floor

as a means of forming graded offshore beds. Thus this reservoir

study has its analog in oceanographic and meteorological investi-

gations.

Density currents in reservoirs are classified by Churchill (6)

as three types--overflows, interfiows, and underfiows. Although

Churchill describes these three types of density currents only in

terms of the position of the inflowing streams of water, it is

recognized that the same types of density currents may be created

also by withdrawal from a reservoir. Regardless of whether in-

ternal density currents are created by withdrawal or by inflow or

by a combination of withdrawal and inflow, they are important to

water quality as shown in the following cases.

Density currents exist and cause some unique effects in

the Watts Bar reservoir of the TVA system that furnishes the

water supply for Harriman, Tennessee (6) . The Harriman

water plant intake is located approximately one mile from the

upper limit of the backwater on the Emory River arm of the pool

and about 13 miles above the junction of the Emory and Clinch



arms of the pooi. During the winter months, or whenever fairly

high flows from the Emory River headwaters exist, the direction

of the streamfiow for the entire cross sectionof the pooi is down-

stream from the waterworks. During the summer months, however,

when low velocities normally exist, cold water released at Norris

Dam into the Clinch River can run upstream in the warmer waters

of the Emory arm. As the cold Clinch River water flows up the

Emory arm of the pool as a density current, it flows past the

Harriman sewer outlets and also past the outfall from a large

paper mill. Sewage and mill waste are discharged into the cold

water current and are carried by it upstream to the intake of the

Harriman water plant, located about one and one-half miles above

the paper mill outfall. No one had earlier realized that density

currents would extend upstream into the Emory arm of the pool,

a distance of 13 miles, but now that they are recognized, the situ-

ation has been corrected by using a variable level outfall for the

sewage and mill waste.

Turbid density currents have been recognized in America

since 1914, when they were reported as having occurred several

times in Zuni Reservoir, New Mexico. Most commonly they occur

as streamulow entering clear lakes and reservoirs loaded with

sediment as a result of floods, but may also result from sub-

surface landslides. In an early paper, nell (2) discusses



turbidity currents in connection with the sedimentation of Lake

Mead. He says the turbidity currents were transporting fine sedi-

ments into lower Lake Mead at a rate that will occupy one percent

of the original spiliway crest capacity each 8. 2 years. It is also

estimated that by encouraging withdrawal from this turbidity current,

much of the sediment may be discharged before it has settled, and

that the useful life of Lake Mead could be lengthened by 20 percent

in this manner.

In order to increase the production of Pacific salmon, the

Canadian Department of Fisheries has established a fish hatchery

on the Big Qualicum River in British Columbia. In order to improve

conditions for the fishery, it has been considered desirable that a

uniform flow of approximately 200 cfs be maintained during the

spawning period from late summer to mid-winter. Since the Big

Qualicum is at its extreme low flow during the late summer and

early fall, a reservoir was established. It was found that under

controlled flow conditions, the increased summer minimum flows

masked the cooling influence of groundwater sources downstream

from the reservoir. In order to keep the stream temperature of

the lower river in the ranges optimal for the production of salmon

in the July through September period, hypoliminal water is drawn

from the lake via low level intake in gradually increasing amounts

to temper the epiliminial water drawn from the upper layer. (7)



Thus, the natural temperature regime of the salmon is duplicated,

using density currents created by withdrawal.

An organic, bacteriological, or chemical pollutant, if it

flows into a reservoir as a density current, may behave as a quasi-

pipeline. It has been found that a pollutant discharged from an

industrial plant flowed through Cherokee Reservoir of the TVA

system as a discrete flow with a minimum of dispersal and dif-

fusion, and the water was discharged through turbine outlets with

a minimum of pollution to the reservoir storage.

The previous situations show that the management of res-

ervoir water quality depends in large part on how well one can

control the internal current regime in a reservoir.

3. Purpose and Scope of Investigation

Reservoir internal density currents have been studied by

theoretical approaches, laboratory experiments, and direct

measurements of velocities and stratifications on prototype

reservoirs. However, the majority of these efforts have been

toward the study of withdrawal currents, and little has been done

with inflowing density currents. Since what flows out of a reser-

voir at one time was strearnflow it seems that inlet streamfiow

effects on reservoir current regimes should merit more consider-

ation.
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In the present study, the influences of entering strearnflow on

the current patterns of a model stratified reservoir are reported.

This study is an attempt to relate various parameters of entering

streamfiow at the upper end of a thermally stratified reservoir to

the current regime in the reservoir for the purpose of maintaining

quality control.
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II. ANALYTICAL CONSIDERATIONS

Presentation of basic assumptions and equations pertaining

to two-dimensional, invis cid, steady, incompressible, continuously

stratified flow are given in the following section. Withdrawal cur-

rents and inflows are next discussed analytically, and finally the

method of analysis used to establish the desired streamflow-current

regime relationships is explained.

1. Stratified Flow Equations

Consider an incompressible fluid such as water stratified by

a slight linear density gradient, as associated with the thermal

structure of temperate zone reservoirs or as is created by salinity

variation in an estuary. Also consider the flow of any internal cur-

rents to be two-dimensional andindependent of time where x and y

are the respective horizontal and vertical coordinates and u and v

the velocity components in the x and y directions.

Figure 3 shows the basic stratified system. With this notation

Figure 3. Basic stratified system.
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the condition for incompressibility in the sense that a liquid element

undergoes a negligible volume change by definition is:

where

Bu By =0. 2-_i

The general continuity equation,

V (pV) + = 0,

V ul + v

p density,

t time,

V = gradient operator,

is valid for stratification due to temperature variation, but if the

stratification is due to a dissolved substance, an additional term is

needed to account for mass transfer due to molecular diffusion.

Molecular diffusion may be described by an observational law known

as Fick's first law in which the rate of mass transfer of a substance

per unit area is proportional to the gradient of concentration of

the substance. Assuming Fick's first law of diffusion, the mass

rate of flux per unit area is:
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where

j = - V [:dVC]

J = mass rate of flux per unit area,

ID' diffusion coefficient,

C = concentration of substance.

The expanded continuity equation may be rewritten:

- -
+ p(VV) + V(Vp) =V [DVC}.

From the assumptions of steady, incompressible flow the con-

tinuity equation may be simplified:

ap+ v = v. [DVC].
x ay

Assume a small density variation so that the diffusion coefficient

approximates a constant. Also assume a linear relationship

between concentration and density so that

p- p0 = M (C-Go).

Substituting for C, the equation for the conservation of mass

becomes:

apu + V- = 2-2
By
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The equations of motion expressing the relationship between

the inertial force per unit volume, the pressure force per unit

volume, the gravitational force per unit volume, and the viscous

force per unit volume are written as:

where

I
x-direction: p + v) +

a
y-direction: 0 = pg; 2-4

p = pressure,

g = gravitational acceleration,

p = kinematic viscosity.

From the above equations it is apparent that the driving force of

internal density currents must stem from the imposition of a

pressure gradient into the flow field.

Internal density currents important to a reservoir are

associated with the pressure gradient formed by inflowing or out-

flowing discharges and should be gowerned by equations 2-1, 2-2,

2-3, and 2-4.

2. Withdrawal Currents

Internal density currents under conditions of withdrawal
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have been studied extensively in literature, and limited analytical

solutions to equations 2-3 and 2-4 under conditions of withdrawal

}1a.\re been attempted through work by Long(19), Yih (31) , Kao (16),

Kli (17), and Geihar and Mascolo (15). Long (20) first approached

the problem by assuming that the velocities involved were large

enough to ignore viscous and diffusive terms. He then simplified

the equations of motion to an equation for the stream function.

Yih ( 31) showed that the equation for the stream function could

be linearized by defining a transformation. The governing differ-

ential equation after transformation by Yih became

where

_-1+ 1 +
V

-
posy

\) = 1L
p

Normalizing the equation by the depth d as follows:

x
d d ' Ud

the equation transforms to:

aJa gd
112

+
UZ

(O-Fi) 0,
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Log--d
2where = Fr , the inverse square of a modified Froude

U
number. Of particular significance was that the critical values for

Yih's solution occurred in terms of the modified densimetric

-1Froude number, Fr. Yih found that for Fr < ir this solution no

longer upstream boundary conditions. Experiments by

Debler (10) qualitatively confirmed the limits of Yih's solution

and also demonstrated that where Yih's solution failed the flow

patterns were in the form of definite flowing layers separated from

nonllowing zones by free streamlines. Kao (16) extended the

inviscid solution for Fr < ii' by altering the boundary conditions

and obtained the equation for the free streamlines along with the

velocity distribution. Koh (17) found a solution to the equations

of motion, including both viscous and diffusive terms, by perturba-

tion techniques. He analytically described the withdrawal layer

and experimentally confirmed his results. Gelhar and Mascolo

produced a solution ignoring diffusion by using the same basic

assumptions as did Koh.

An example of the solution for the withdrawal layer as done

by Koh (17) is shown in Figure 4.



Figure 4. Withdrawal layer toward line sink. (Koh)

3. Inflow Currents

Recent literature concerning discharge into a stratified

medium has been concerned with describing inflow parameters and

little effort has been made to relate the effect of inflow on the

current regime within the stratified medium. However, to analyze

the inflow-current regime relationship it is necessary to review

basic assumptions concerning the inflow. Literature pertinent to

this study concerns the two dimensional turbulent or laminar jet.

Turbulent jet behavior generated by a continuous source of

momentum is a fundamental case of free turbulent flows.

Development of free turbulent flow in a homogeneous media is

discussed extensively inSchlichting ( 27) Daily and Harleman (8)

and Abraham (1) . The basic assumptions in most of these

treatments consider the conservation of momentum and the
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assumption o Gaussian velocity and concentration distributions.

Extension of free turbulent flow behavior to a stratified ambient

fluid has been done by Ellison and Turner (Ii), Fietz (13),

Wada (30), Morton (22), and Fan L2) . Ellison and Turner

(11) and Fietz (13) studied two-dimensional wall plumes and three-

dimensional density currents, respectively, applying largely

dimensional analysis techniques. Wada (30) has advanced flume r-

ical techniques for the study of cooling water flow patterns from

diffusers. Most of the analytical studies of turbulent jets in a

stratified fluid have resulted from an integral technique used by

Morton, Taylor and Turner ( 23) in analyzing a simple plume in

a linearly density stratified environment. Fan (12) used the

Morton type analysis to obtain theoretical solutions for an in-

dined round buoyant jet in a density-stratified environment.

For this study consider the fully turbulent stream flowing

into the density stratified reservoir as shown in Figure 5.

P max

Figure 5. Rectangular jet discharging into a linear
stratified medium.
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An integral type analysis may be applied. The following

assumptions are made:

(i) The fluids are incompressible.

(ii) The velocity distribution is a modified Gaussian

distribution modified to a rectangular cross section,
''2 2 f2 z\

0
er/b I

/
u(s, tI) u(I) e e

(iii) The density of the jet distribution is a modified

Gaussian distribution, (z 2) ' 'z z\(-v/b I

I / I 0 0)
P (s, t, v) = P (s e e

(iv) The rate of entrainment at the edge is proportional to

the characteristic velocity,

ds' - (2h+2b) ku(s'),

where

k = a coefficient of entrainment.

(v) The variation in density is small in comparison with P0

(vi) Pressure is hydrostatic.

The equation of continuity, based upon the assumed en-

trainment assumption can be expressed as:

d "
)A u(s, t, v) dA ds'
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( 'h0)2 '' '2(.v/b)
0('/us' e e dvdt' (2h+2b) ku(c.ds'1)o

Integrating
2 OD

d

E

h2 b2 (t'/h 2 v'b
j I

= (2h+2b)ku(s')
u(s) --i- e eds

.h2b 2
o o- u(s) (2h+2b) ku(s'). 2-5

Since the pressure is assumed to be hydrostatic and there is

no other force acting in the horizontal direction, the x momentum

flux should be conserved,

d ' (s, t, v) u (s, t. v) cos 0 dv'dt' 0d
/ / 2

Substituting
/ '2 2\-3t /h E32/b

fJ
, 2 / 0 0p(s) u (s) e e cos0dvdt'= 0,

Integrating

dr , 2 h 2b 2 (32/h 2" (32,b 2'\

oJ)I
I =.Ip(s)u (s) o o e e

9 JIolo

and assuming a small variation in density the following expression

is obtained:

d r p0 u2(sjcos0 h 2
b 2

x-momentum; [
o o 0. 2-6
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In the vertical direction there is a gravity force acting on

the jet equal to the change of momentum flux,

p(s, t, v) u (s, t, v) sinOdv'dt'd
;j-;; o)

/ 2 /

(oo (ozr

= g) ,J
[P( s', t v') - P (: t v] d v'd t

a

Substituting and simplifying
2 2

y-momentum: d r
h b

(s) sine

- p (s')lh2b2[P a J
= g o 0 2-7

pO()

From geometry

cosO; = sin0. 2-8 and 2-9
ds ds

The change in amount of dissolved substance in the jet must be

conserved with respect to a chosen reference level due to the

stability of the density gradient,

= IF pO(s', /
f° )° u(s', t, v) [ in t, v)]

(2b+2h)1 u(s") [. p (s)Iin a -J
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Adding and subtracting p (s') u(s t', v to the left side and

integrating

(h b)2 (h b)2
ds' in Pa(5'U o o + u

L 4. 9

22 22h b \ hbduo o\uo 0 dpa(s')
Llfl a -'

4 1 4 ds
= p. p (s

h 2b 2
d uo o

+ ds L 9
p(s))]

Previously from continuity

h2b2
d flu(s') o o

1
2 (h(s) + b(s)) k u(s'.

4 J

Substituting,
,h 2b 2

p (s)I 2 ku(s')(h(s') + b(s'))- u (s) o o dpa(sS
[ pin a J 4 ds'

[
'h 2b 2 1

+ ds' u(s) ° ° P(s))j
9

= [Pin p (s') ] 2 k u(s') (h(s') + b(s')),

the above becomes:

h2b2
,J

'h2b2
d 1u() o o (p (a') - p(s = u(s) o o dpa(s5 2-10

ds'[ 9
a 4 ds'

With the relationship

b = inh 2-11
0 .0
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the problem has seven unknowns, namely,
I

u(s'), v', t', e, x, y, and p (s) - P(s)a

and seven equations 2-5, 26, 2-7, 2-8, 2-9, 2-10, and 2-11.

Initial conditions are:

u(o) = U; t'(o) h;v'(o) = b; p(o) pin'

0 (o) = B; y = o and x = o at so,

but the solution of the system is not obtainable in closed form

without the use of numerical techniques and is not presented here.

Very little literature is found (1969) concerning laminar

jet flow into a linearly stratified medium, but here too, anapproxi-

mate analysis may be performed on the inflow by making a few

basic assumptions. Consider the case of a density flow proceeding

down an incline as shown in Figure 6.

y

Figure 6. Density flow down an incline.

max
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Assuming in laminar flow that the inertia terms are negligible

and that the pressure gradient may be eliminated by cross differ-

entiation, the equation of motion will contain only gravity forces

and viscous forces. Summing the forces in the s-direction for

the fluid element,

WsinO= (Tu + TB) ds,

where

= surface shear resistance,

TB = incline shear resistance,

W =in - y (s)] d ds sinGamb

amb(s) = g [P0 + (h + ssin 0) 1dy J

and the shear resistance is assumed to approximate the shear

relation for pipe flow.

T Tin f V2(s)
2g

Substituting into the force summation,

dP[pin (po + (h + ssin0) )]d sine

(fu)v2(5) ds
= pin

2

V(s) [2 dsin
L'

[pin ( + (h+sinG)
1/2
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a relationship is obtained for V(s). Its use, however, is

questioned due to the difficulty of evaluating friction coefficients,

and The point at which the density flow leaves the slope

is obtained by the criteria that V(s) = 0,

dPV(s)=O when pin-(po+(h+ssinO) ) =0,dy

or referenced from the water surface elevation where

depth = h + ssin&

hrr= pin - po)

This expression shows that the inflow will seek an elevation

corresponding to its own density, and agrees with results that

Spurkland (28) obtained with a submerged diffuser.

4. Present Study

It was reported in Section 2 that from the governing

equations an analytical description of internal density currents

due to the imposition of a simple pressure variation may be

made. In Section 3 it was shown that in some cases an inflowing
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jet may be discussed analytically if the appropriate assumptions

are made. However, complete solutions are untenable when the

relationship between both the inflow and the internal current

regime are desired. The interaction among density, velocity,

and pressure fields of the inflow and ambient fluid cause the

general solution to become very mathematically complex. For

this reason the density stratified reservoir flow phenomena are

to be analyzed experimentally using a dimensional analysis to

find correlation among the physical variables involved in this

study.

Consider a streamllow entering a stratified medium

with an equivalent outflow rate to maintain a constant water

surface level as illustrated in Figure 7a. The independent

parameters involved are those describing

(i) Boundary conditions:

D = total depth of reservoir

= angle of inflow

= angle of reservoir slope

h. = depth of slope change
in

h depth of outlet
out

L = length of reservoir



(ii) Inflow:

Q.in

V.in

= inflow rate

= inflow velocity

pin
= inflow density

b. = inflow widthin

d. = inflow depthin

(iii) Outflow:

Q = outflow rate
0

V = outflow current velocity

= outflow density

d = outflow diameter
0

(iv) Ambient fluid:

Ap = density gradient

p = surface density

bottom densityPmax
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(v) Miscellaneous;

g = gravitational acce leration

= kinematic viscosity

t = time

The dependent factors involved are those parameters

describing the resulting current regime. They are:

h1, h2, h3, . .. the heights of various currents

v1, v2, v3, ... the velocities of various currents

The densities of various currents are not included because they

are related directly to the current heights.

It is known that a particular density current will be a

function of the independent variables involved:

V = f (D, Sv S h. h L, Q. , Q , , d.r in outcurr in o in in

o d
o' o' Ay' max' \))

hcurr = f (D, S , S h h , L, Q. , Q , , d.v r in out in o in in
tp

p , d ,
-i--, max'0 0

and the complexity of establishing a particular relationship is

apparent from the number of parameters involved. In order to

simplify the analysis,a number of the independent variables as

shown in Figure 7b will be held constant, Once the flow
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conliguration becomes known, the number of parameters involved

will be further reduced in number by individually considering

each main internal current allowing nonpertinent parameters to

be disregarded. The functional relationships will be established

in chapter IV.



Q. , p. V. ,b , d.in in in o in
I

h.
1n

V3

out

Figure 7a. Parameters involved in the investigation.
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ou

D Qout,
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d
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rnax

Ih
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\j
out,

pout,
d

Pmax out

Figure 7b. Independent parameters held constant durin the investigation.
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III. APPARATUS AND PROCEDURE

To investigate the influence of entering streaniflow on the

current regime of a model density stratified reservoir a series

of laboratory experiments was performed in which fluid was

allowed to enter a tank of stratified fhid by way of a model

s treambed.

In this chapter the experimental procedure and apparatus

used for the experiments will be discussed. The individual steps

in the experimental procedure will be explained in detail.

1. General Description of the Procedure

For the series of experimental runs, the model reservoir

was first filled with distinct layers of water containing appropriate

quantities of salt (NaC1) in suspension to give a linear density

gradient from the top to bottom levels of the tank. The water was

then allowed to stand several hours so that the density profile

would become linearly smooth by molecular diffusion. The density

profile was measured indirectly shortly before each run, and

after each run by measuring the electrical conductivity of the

solution at various levels in the reservoir. Salt solution was

mixed with water in the inflow storage tank until the desired inflow

conductivity was reached. Inflow and discharge rotameters were
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opened and the flow rates adjusted to be equal. After waiting for

the system to reach a steady state (five minutes), dye

(Erioglaucine A Supra) was injected into the inflow fluid in order

to trace its movements through the model. To observe the current

patterns within the model, dye particles were intermittently dropped

into the model reservoirat a reference station. As the dye particles

fell, they left a distinct vertical time line. Thirty-five millimeter

slides taken at various time intervals and a time lapse movie

camera recorded the horizontal motions of the time lines. Typical

exposures are shown in Figure 8. An overhead movie camera

photographed at various time intervals the entering inflow con-

figuration and its travel. Each run lasted two hours at which time

the tank was drained, washed, and set up for the next run. The

necessary velocity and configuration measurements were obtained

from the film record.

2. The Model Reservoir and Model Stream.

The reservoir for the inflow experiments was a clear walled,

rectangular, plexiglas flume. It was 25 feet long, 18 inches wide,

and 22 inches deep. A schematic drawing and a photograph of the

reservoir are shown in Figures 9 and 10, respectively. The

inlet end was equipped with an adjustable bottom slope so that the

depth varied from zero to full depth at different possible choices of

slope.
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Figure 8. Typical photographs of time lines.
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Streamfiow
/ reservoir

Rotarnete r

Dye injector

Adjus tablestreambedRJj Model
Outletreservoir

Rotame te r

Figure 9. Schematic plan of model reservoir and
s treambed.

The simulated stream channel was a six foot length of

2 xl Ixl/8 aluminum channel mounted on a sheet of plexigas

which fit snugly in the width of the tank. The aluminum channel

and plexiglas sheet was used as a second slope extending from the

end of the tank to the top of the bottom slope. The configuration of

two slopes was necessary to provide a continuous slope from above

the water surface to the bottom of the tank while maintaining a

flat slope for the simulated streambed. The flow for the simulated

stream was provided by a storage tank at the upper end of the model

reservoir, The water from this tank was released at the upper end

of the model stream. The stream was lined with cemented sand

grains to provide artificial roughness.
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Figure 10. Photograph of model reservoir and steambed.
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3. The Filling Apparatus and Procedure

The desired linear density profile was achieved by mixing

measured amounts of a saturated salt solution with a fixed

amount of water in a mixing tank and placing the mixture in

the reservoir. The basic apparatus by Spurkland (28) was

redesigned and used for this purpose.

A typical filling cycle began with the activation of a timing

cam system by a Lapine multispan timer which was set to pro-

vide power for the duration of the filling cycle. Each mixing

cycle lasted 40 minutes and involved the opening and closing of

the salt tank, water supply, and mixing tank solenoids. The

amount of salt brine for each ten mixing cycles was controlled

by ten 20-minute sequential timing cams, each activated by a

40 minute cycle timing cam and a pressure switch that shut the

water off when the water surface reached a certain level. The

draining of the mixing tank was accomplished by another 40

minute cycle timing cam calibrated to the draining time of the

mixing tank. A block diagram of the automatic filling apparatus

is shown in Figure 11. The salt solutions were introduced into

the model reservoir by gravity flow through three stand pipes

placed on the floor of the tank. The model reservoir was set on

a very mild slope. As additional inflowing layers are



Water Supply

(Tap Water)

Timing Apparatus
1Wr pTar-

40 Mm Rev

10n-Off Controlling Cam I
Salt B!ine

Se uenal Cms

Timer Rev Rev

Mixing T

L__

11

Pressure Switch
(Normally Closed)

Solenoid Valve
(Normally Closed

Solenoid
Valve
(Normally

Solenoid Valve
(Normally Closed)

A

Standpipe Model Reservoir

Figure 11. Schematic of filling apparatus.

Mixing
Tank
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progressively more dense, they flow slowly by gravity along the

bottom of the channel under the other layers creating a minimum

amount of mixing.

4. Photography

Because of the complexity of the events during each two

hour run, photography was used to record much of the data.

An Argus C-3 35mm camera and a Nizo S8O super 8mm camera

were used to photograph the vertical dye streaks, and another

Nizo S-80 super 8 mm camera was mounted overhead to observe

the inllow conliguration. All cameras were used with Koda-

chrome II color film at ASA 40 in conjunction with photoflood

lights. The 35 mm camera had a 50mm Argus Cintar f3. 5 lens

while the 8mm cameras had a lOmm-8Omm zoom f2. 8 lens

which was used at 10 mm.

The tank had a 12:1 length to depth ratio, so the cameras

field of view covered a limited area. A reference station was

established 10. 5 feet from the mouth of the model stream, and

the horizontal cameras were positioned in respect to it. A

clock mounted near the wall of the model reservoir gave elapsed

time as recorded on film. An overhead camera was positioned

over the model stream mouth. A schematic drawing of the

positioning and coverage is shown in Figure 12.
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fields of view
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5. Measurement of Density Profiles

A conductivity probe and a Serfass Conductivity Bridge was

used to measure the electrical conductivity of the salt solution

as a measure of its density prior to and after every run. Several

investigators have used the exposed conductivity probe in conS-

junction with a conductivity bridge with much success as seen

from Spurkland (28) Lofquist (18) , and Rumer (26) . From

their conclusions it is desirable to use a small platinized probe

so that polarization and capacitance effects would be minimized,

The probe used in this study was made of two 1cm2 platinum

plates, spaced one cm apart as shown schematically in

Figure 13. The probe was connected to the conductivity bridge

by leads running through a water-tight glass tube indexed in a

Figure 13. Conductivity probe.
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centimeter scale. The conductivity was measured vertically at

two-centimeter in.tervals in the centerline of the tank. To obtain

conductivity-density relationship the probe was periodically

calibrated with a Christian Becker balance,reading specific

gravity directly. A typical density profile and the corresponding

calibration curve are shown in Figure 14.

6. Measurement of Flow Rates

After the conductivity profile had been measured, a Brooks

rotameterwasadjusted at both the inflow and discharge ends of

the model reservoir to maintain a constant inflow and outflow rate

of 12.6 cubic centimeters per second. Since the rotameters were

originally calibrated for a specific gravity of 1.000, they were

re-calibrated for each of the five specific gravity values used in

this study. The calibration is shown in Figure 15. Although this

plot indicates a small density influence on the flow rate, it is

small enough relative to the error inherent in reading the rotameter

that it may be ignored.

7. Measurement of Velocities

After the flow attained a quasi-steady state (five minutes),

potassium permanganate crystals mixed with carbon tetrachloride

were dropped into the model reservoir at the reference station
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forming time lines which deform with the currents. A new time

line is injected every 20 minutes for the two-hour period. At

least 20 slides were taken at regular time intervals and the movie

camera was run continually at one frame every two seconds. After

the film was developed, the frames were projected into a viewing

box constructed as shown in Figure 16. Time of travel measure

ments were taken from a grid after establishing the scale of the

image projecting the picture distance between the flume's bolts

at a constant scale. Measurements were taken near the center of

the projected area to minimize parallax.

The overhead camera was operated at 18 frames per second

during four intervals in the two-hour run. Time of travel measure-

ments of the inflow stream velocity and the inflow density current

were obtained by projection and frame counts.
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Li

Figure 16. Projection apparatus for viewing time lines.
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IV. EXPERIMENTAL RESULTS

Experimental runs were performed with the previously described

apparatus to determine the relationship between the entering stream-

flow and the model reservoir current patterns. The resulting current

regime produced in the model reservoir is described, and correlations

are established between the observed current parameters and the in-

flow characteristics for each of the main currents.

1. General Current Patterns

Major repetitive current patterns were created as the enter-

ing streamfiow, designed Q, flowed down the sloping streambed and

entered the initially static, density-stratified, model reseroir. At

the lowest streamfiow velocities, V. , little mixing occurred betweenin

the ambient fluid and the streamflow, and the majority of the stream-

flow density current proceeded down the reservoir slope until reach-

ing a reservoir depth having equivalent density. At this point the

streamfiow density current flowed horizontally across the reservoir

and became the main inflow current, Q1. At the higher streamfiow

velocities more mixing occurred creating a large mixing current,

and at the highest streamflow velocities, mixing was so



extensive that very little of the entering streamflow discharged

down the reservoir slope. As the mixing current, Q3, increased,

a reverse current at the surface, Q4, caused by entrainment to

the mixing current occurred, and an eddy in the vicinity of the

stream mouth was consistently formed. A fourth current, Q2,

was formed by the outflow necessary to keep the water surface

elevation constant. A typical or general current pattern existing

in the model reservoir during a test run is indicated in Figure 17.

Occasionally small intermediate currents were noticeable

between the major currents shown in Figure 17, but these were

relatively minor in magnitude and did not consistently appear so

they were not anaiyzed further.

The reverse current, Q4, was not analyzed either because

of the difficulty in observing the point of maximum velocity of

the dye trace which coincided with the water surface.

2. The Main Inflow Current

The major inflow current at low inflow velocities was Q1.

The pertinent independent variables involved in establishing a

dimensionless correlation between the current depth, h1, the

maximum velocity, V , and the inflow characteristics are:
1 max

D,b.,d)h =
1

pin- Po V., g, ' in in



Q.

Q4
---- - ---- ---- _t_

- Q3

___Q2___ _Q- out

Q1

Figure 17. General current pattern.
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and V f(p -P
1 max in g,

OUt'
b.in,

h1, D, h , b).out

Using normalizing techniques,the dependent variables may be

made dimensionless and written as a function of a number of

dimensionless groupings involving the independent variables:

xA B C
a1 1 1

Y1 (h) a i a2 a n_r)
A B2 C2 X

and y2(V ma) 2g 2
n - r,J

but there are several dimensionless groups involving h1, and

max'
and consequently many different possible groupings for

each a and . Also, since OL a and g are
1 n-r 1 n-r

dimensionless, they may group with each other in any possible

combination. However, from experience and consideration of

the type of variables involved, functional relationships would

be expected to be influenced largely by the following criteria:

VL
Re -, a form of Reynolds number;

Fr l'z' a form of Froude number;
(gh) /

a geometric ratio;
b
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max a density ratio.
x

The maximum velocity, V imax , of the inflow current, Q

was plotted in the form of a Reynolds number against the streamflow

Reynolds number in Figure 18. From this plot a relationship is

seen between the two parameters, but it varies parametrically with

density. Also a reinforcement of Q1 by the withdrawal current was

noticed for an inflow density p. 1. O1ZO gr/cm3. A density scaling

factor in the form of Dh was used and the new relationship is
1

shown in Figure 19. The plot shows that:

V b 7V. b.
D1 max / in in

= 4
V ' D-hres in

The above relationship was plotted on a semilogarithmic scale

(Figure ZO). The range of data obtained is nearly monotonical and
V. b.

fit by a straight line on this plot for a large range of in in (DDh
).

in
The relationship for V for1 max

Vb. V.b
3000 < in in

< in in
V. V.in in critical

is as follows:

V = -0.5res inin\ / D
)1

v

[(\V.b.\

/
1 max b Log

v ) D-h +
3651ifl/\ 1J

It is apparent that as the streamfiow velocity is increased,
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the magnitude of is reduced, and by extrapolating the curve to

V 0 a critical Reynolds number for the existence of Qimax
may be evaluated:

/v. b. '\ D-h
(Re) = (

lfl Ifl
= 1. 50x105 (

1)
crit v ; Din // critical

At lower values of streamfiow velocity the magnitude of is seen

to reach a maximum value, but complete understanding was not ob-

tamed because the nature of the model would not permit,

V. b.in in < 2000.D-n V.
1 in

The correct form of the relationship for h1 was found to be:

h ZVb
1 / in in ino

V 'D pJ\ in

The dimensionless depth,, was dependent upon iflifl only

in in in inin that for > , the current, Q1 did not
1) V Iin in / critical

exist. Figure 21 is a dimensionless plot of the depth current, Q1,

V. b. (V. b.in in in inversus a density parameter for
V. Vin \ in / critical

The plot also shows data from Spurkiand's (28) work with an under-

water diffuser discharging dense fluid into a stratified reservoir.

The difference in the relationships is due to the increased mixing
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associated with the entering streamflow passing through the free sur-

face which lessens the density of the inflow.

3. The_MixinCurrent

The major reservoir current at high streamfiow velocity was

the mixing current, Q3. The pertinent independent variables in-

volved in establishing the inflow-current relationship are similar to

those in the previous section,

and

h =f(h.,Q.,V.,p.,S,,v.,g,p),
3 in in in in in o

Lp
V = f(Q. , V. , S, , v , g, p , p , D, b. ).3 max in in y in in a in

The maximum velocity of the mixing current, Q3, was found

to be independent of the density of the incoming fluid. Figure ZZ is

a dimensionless plot of the mixing current, densimetric Froude

number versus the streamflow Reynolds number. The plot shows

that the relationship is linear through a large range of data, but at
V. b.

low values of it verifies a disappearance of Q3. Unfortun-

ately,insufficient data could be obtained in the region to establish a

criterion for the initiation of the mixing current. However, a linear

relationship may be provided for a limited range of streamflow Rey-

nolds numbers. The relationship (Figure 22) is
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for

r/p 1/2 c V. h 1_.ix 0) h g 1.67 x 10 + 0.423max p / 3 VL\ max/ L in

V. b.
2000

in < 11,000
V
in

It was expected that the depth, h3, of Q3 would follow a

relationship of the following form:

h V. b. ino
,

h.in
ID

mm
D p' in if-)'

in

but it is shown in Figure 23 that the depth of the mixing current,

h3 ID, was independent of all varied independent variables. From

this behavior, it must be concluded that h3/D must be a function of

variables held constant in this study or

h3
- = (Q. ,h. ).
ID in in

4. The Withdrawal Current

The withdrawal of water from the model reservoir, although

intended to be a simplifying step by maintaining a constant water sur-

face elevation during the duration of the experimental run, created a

withdrawal current at the elevation of the outlet which extended up the

length of the model reservoir. The outlet level was placed about mid-

depth in the reservoir and held constant in order to distinguish the

effect of the withdrawl current, Q2, as shown in Figure 24. The figure

shows a dimensionless plot of the difference in elevation of Q1 and
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versus the maximum velocity, V2, of the withdrawal current for a

constant Q. and Q . The reinforcing action of the combined Q andin out 1

Q2 is easily seen. The maximum reinforcing effect gave the com-

bined current a velocity of two and one-half times the magnitude of

the withdrawal current without any reinforcement.

5. Blocking

If the tests were continued for long times, the influence of the

length of the tank on the flow was noticed as a blocking phenomena.

As the currents approached the end of the tank,their forward movement

was impeded. In the case of Q1, when p. was large enough for

h1 > h2, blocking caused the withdrawal current to select entering

streamflow as shown in Figure 25.

Blocking

Figure 25. Influence of Q2 on the inflow after the blocking of Q.

This behavior was similar to the blocking prescribed by Spurk-

land (28) for a stratified reservoir containing a vertical obstacle or

submerged ridge with flows entering through a submerged diffuser.

There the main inflow approached a barrier or obstruction and was

blocked; with discharge at the barrier boundary another current was

created that carried part of the main inflow past the obstruction.
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V. DISCUSSION OF THE RESULTS

Some of the effects of entering streamllow on the currents of

a density stratified model reservoir were demonstrated in the

previous chapter. Correlations between the entering streamllow

and the resulting reservoir currents were detailed and some

critical parameters established.

In this chapter discussions of errors involved in measurement

oJ the various quantities; limitations present in the investigation;

model-prototype relationships; and suggestions for further study

will be presented.

1. Summary of Experimental Errors

It is generally realized that errors will be present in making

any type of measurement. The probable error present in measuring

flow rates, velocities, densities, viscosities, and depths in this

study can be estimated as follows in Table 1. The allowable

tolerances for the flow rates and length parameters were estimated

from the rotameter scale and the various length scales used, while

the tolerance for the average streamfiow velocity was estimated

from the frame speed of the movie camera.

It was first thought that variation in temperature or salt con-

centration might induce considerable variation in the density or



Table 1. Allowable tolerances in experimental measurements

Tolerance (Jn1s
Magnitude of average

measurement.

Q. 0.315 (crn3/sec) 12.6

V. 0 86 (cm/sec) 30.0in

V t 0.002 (cm/sec) 0.05
1 max

p. 0. 0005 (gr/cm3) 1. 0070

v ± 3x10 (cm /sec 1. 2x10

D± 0.1 (cm) 45

h1 0.5 (cm) 23

viscosity measurements, respectively, but after examining the

variation of temperature within the model reservoir (Figure 26)

and the difference between reservoir temperatures and calibration

emperature s, it was c oncluded that temperature was negligible in

controlling densities. It was also determined that the concentra

tions of salt; solution used had a very minor effect on viscosity.

In the measurements of the reservoir currents by means of

dye profiles, the steps involved the projection of slides into a

viewer cabinet. In doing so, the various images were first

aligned with reference bolts on the front side of the reservoir tank

in order to match the scale on the viewer cabinet. Moreover, the

distance in from the wall to various dye streaks was slighLy
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Figure 26. Initial variation of temperature
within model reservoir.



variable making slight parallax errors in the photographically

determined lengths. Thus, possibly the largest inherent error

in taking any measurement occurred in the determination of the

reservoir current velocities.

It is believed that the propagation of the above tolerances in

computing the parameters plotted in Chapter IV are the cause of

much of the scatter shown in Figures 18 through 24.

2. Limitations of the Investigation

Certain assumptions necessary to simplify the analysis in

this model study imposed limitations on the results obtained. The

streamfiow rate, Q, definitely varies with time in a prototype

situation and would be expected to have a large effect in reservoir

density current flows. In this study the strearnflow rate was held

constant. It was seen in the discussion of thermal stratification

that the density gradient varies with time and usually also changes

with depth. The density gradient was also made constant. The

effects of holding the streamfiow rate and density gradient constant

limits the results considerably. The existence of the h. variablein

is also limiting in that h.'s meaning should be questioned.

Figure 27 shows cross sections of the model conliguration and

an idealized reservoir.



h. (?)in

Idealized reservoir

h.in

Model reservoir

Figure 27. Configuration of an idealized reservoir and
the model reservoir.

In the model reservoir a double slope configuration is necessary

to insure correctly scaled stream.flow velocities while at the same

time providing adequate depth in the model reservoir. The depth

of water at the intersection of the two slopes is defined as h.in
An idealized reservoir is usually described with the bottom of the

reservoir and the streambed as one slope, and h. is not really

defined, although in some cases sediment may alter the conligurai-

tion, creating a type of h. parameter.

Time influenced the behavior of the model reservoir currents

in many ways. As the inflow currents approached the outlet of

the tank, their speed of advancement slowed down due to a blocking

phenomena, and the inflow current velocities became a function of



time. Secondly, a noticeable shift in the density profile appeared

after a period of time due to the combination of withdrawal and

inflow in a model reservoir of limited size. Figure 28 shows the

density profile both before and after a typical run. Both of these

effects were to be disregarded by making two restrictions on the

investigation. The experimental data was taken at a reference

station which was 10. 5 feet from the model stream mouth, and

the measurements were not taken beyond the time that blocking has

no influence. These restrictions limited the study to be valid only

for density flows in the upper reaches of a reservoir. This one

reference stationalsoprevented the results from including the

effects of variation in x.

Although the flow in the model reservoir was intended to be

two-dimensional, variations from two-dimensional flow were

observed in the reservoir currents as a meandering from side to

side as shown in Figure 29. The meandering presented difficulties

in the measurement of the actual reservoir currents

because from the side view, the currents appeared to vary in

velocity with time. The problem was solved by averaging the

photographed current velocities, V. to obtain a net average
1 max

velocity of advancement, V. . The meandering phenomenai max

appeared to be a function of the tank geometry and current veloc-

ity, and possibly the behavior could be described in terms of a
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Plan

Profile

Figure 29. Meandering of reservoir currents

Strouhal number or Brunt - V.is1 frequency.

3. Model - Prototype Relationship

The scaling of results obtained from a model study to a

prototype is based on the laws of similitude, which require the

model and the prototype to be similar geometrically, kinematically,

and dynamically. Geometric similarity implied that all significant

geometric parameters, in dimensionless form, are the same .for

the model and prototype, and kinematic similarity exists when the

streamline patterns in the model and the prototype are the same.

Dynamic similarity exists when the ratios of forces at correspon-

ding points in the flow have equal values in both model and prototype
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and implies both geometric and kinematic similarity.

The requirement for dynamic similar fluid motions of any

incompressible viscous free surface fluid in a gravity field is

equality of Froude and equality of Reynolds numbers in both systems.

Specifying the equality of the Froude numbers,

Fr V

Fr = Frr gL = 1.0

or V =IgLr 1 r r

From the equality of Reynolds numbers,

r pLr r

Since the velocity ratios must be the same, and since for terrestrial

events gr=1,

- ( r\ 2/3
Lr -;:) =v

For dynamic similitude of both viscous and gravity effects, the

choice of fluid determines the length ratio, and since similar fluids

are used in the model and the prototype, the criteria cannot be

satisfied unless the scale ratio is close to unity. Usually in open

channel systems, if the viscous effects are small in comparison

to gravity effects, only a Froude number similarity is required.
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Using a Froude number scaling criteria and a length ratio, =

Table 2 is formed. Table 2 shows the model-prototype scaling

parameters in this investigation.

Table 2. Model-prototype scaling parameters

Model Ratio Prototype

Reservoir:
length (ft) 20. 0

3Lr=5xl03 4000
width(ft) 1.50 Lr=5xl03 300
depth (ft) 1.48 Lr=5x10 296
surface aria (ft ) 30 AR=2. 5xl07 6

1. ZxlO
volume (ft )

44.4 V=J.25x10
83.55x10

Stream:
depth (ft)
width (ft)
velocity (ft/sic)
discharge (ft /sec)

0.01 Lr=5x1O
0.046 Lr-5x10
0. 1 -0. 9 Vr=0. 0708
4. 46x104 Qr=1. 77x10

2
29. 2
1.41-12.7
252

The Froude scaling assumption requires that the model is large

enough to ignore viscous effects. In the experimental runs,

however, it appeared that the model reservoir currents behaved

as laminar flow, meaning that viscous effects were significant.

How can laminar flow in a modeling scheme provide insight

into flows in a prototype reservoir, which are expected to be

turbulent because of the large scale or large Reynolds numbers,

and how does a model using a Froude scale criteria compare with

the prototype reservoir? Consider the inertia forces and resistance
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lorces in the form of a Reynolds number with eddy viscosity, E,

nc luded in the resistance te rrn.

1 inertiaRe =

Similarity between the laminar model currents and prototype

currents should occur if

(in.rtia ,. (inertia
\4-E )model )prototype

Since the model is laminar in hehavior,the eddy viscosity of

the model is assumed to be zero, Similarity will be established if

E can be of an order of magnitude to equalize the ratios.prototype

The turbulent eddy viscosity is difficult to quantitize, but

an order of magnitude value may be obtained. Assume that reser-

voir currents due to entering streamflow are a type of columnar

flow somewhat similar to a two-dimensional jet. For two-

dimensional jetfoS:hlihting (26) has shown that the turbulent

eddy viscosity may he expressed as a function of a characteristic

velocity, U , and a length denoting half the width at half depth,max

E = 0.026 b U
p max

2

Since it was seen that
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V 0, 043 h = 45 cm; E = 0; and
m sec m m

vm Vp = 1. 2x102 cm2/sec,

the modified Reynolds numbers are:

(195) (78)model prototype.

The Reynolds analogy hypothesis (29), i. e., the eddy

diffusion coefficient for mass transport approximates the eddy

viscosity coefficient for momentum transport, may also be assumed.

Predictions from lake and reservoir measurements by Bella (3)

and Orlob (24) have shown effective diffusion coefficients to range

from 0. Tcm2/sec to lOcm2/sec by assuming a one-dimensional

assumption with no velocity profile. Expecting the coefficient to
10cm2

be higher where density flows are involved E = may be
p sec

substituted into the prototype modified Reynolds number along

with the prototype values for velocity and width,

(195) i- (216)prototype.model

The two ratios of the same order of magnitude suggest that

viscosity in the small scale of the model simulates the eddy viscosity

in the actual reservoir allowing laminar flow to give insight to
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prototype reservoir flows. The validity of the Froude scaling could

be verified by comparing the characteristics of the model study with

characteristics of an actual prototype reservoir, but at this time

there is insufficient field evidence.

4. Suggestions for Further Study

A natural extension of this experimental work would be to

eliminate a number of limiting assumptions by examining the

effect of an increased number of interacting independent variables.

Important extensions would involve the variation of the streamfiow

rate and the density gradient. It would be also important to examine

the variation of various factors with the length of the tank and time.

An important aspect involving length of the reservoir and time is

the blocking effect and meandering. Specifically when and where

does blocking occur?

Another phenomena which merits more study is the reinforcing

effect between inflowing density currents and withdrawal currents.

This phenomenon appears significant in the control of reservoir

detention time.

Field data for reservoir density currents is insufficient.

Field studies are needed for the verification of laboratory scaling

criteria and a greater understanding of the behavior of flow

patterns.
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VI. SUMMARY AND CONCLUSIONS

An experimental study of entering streamflow effects on

currents of a density stratified model reservoir was made. The

major conclusions will be summarized as follows:

1. For the range of values tested,the entering model stream-

flow created two possible main inflow density currents in the model

reservoir.

2. The upper inllow current increased its magnitude and

the lower inflow current decreased its magnitude as the model

streamfiow Reynolds number increased. For the range of stream-

flow parameters tested,these currents could be described by the

following relationships:

V=i max
-0.5 Log

(
in in)

Dh1)J I

Vres [ [ /V b. \ 7 D + 365

L\ in /
1/2 -4 V b[/ max p o h 1 67x1 0 in in

3 max
L

g]
[ Vin

+ 0.421.

3. The lower inflow current will no longer occur at a model

strearnflow number greater than

V. b. D-h\
in in

= 1.50x105 ( D )V

4. The elevation of the upper inflow current was independent
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of V. and p. . The elevation of the lower inflow current wasin in

dependent on p and the mixing which occurred at the stream mouth.

5. The interaction between two reservoir density currents

created a significant reinforcement of both currents.

6. The blocking effect due to reservoir stratification and

the influence of geometry may have significant influence on internal

model reservoir currents created by entering model streamfiow.

7. A reservoir model with laminar behavior probably gives

much insight to problems associated with flow in prototype

reservoirs.
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APPENDIX A. Summary of Notations.

For simplicity, symbols of secondary importance which are

defined in the text are omitted from the following list:

C Concentration of solute in the stratified fluid

D Depth of model reservoir
/

D Diffusion coefficient

Density gradient

Turbulent eddy coefficient

Fr Froude number

g Gravitational acceleration

h1 Depth from free surface

h. Depth of change in slope

k Coefficient of entrainment

P Pressure

Q1 General current designation

Re Modified Reynolds number including a turbulent
eddy coefficient

S Slope of streambed

Sr Slope of upper reservoir floor

s' Rectangular coordinate in direction of streambed

t Time

Rectangular coordinate normal to s"vertically



APPENDIX A (continued)

T Temperature

u Velocity component in x-direction

/1/u(s, t, v) Lagrangian velocity in s-direction

v Velocity component in y-direction

Rectangular coordinate normal to s' and t'

V1 max Maximum instantaneous velocity of various
reservoir currents

V Maximum average velocity of various reservoir1 max currents

x Horizontal rectangular coordinate

y Vertical rectangular coordinate

Specific weight

e Angle of upper reservoir slope

p Kinematic viscosity

Dynamic viscosity

p1 Density

P(I ( Lagrangian density with respect to s, v, t

T1 Shearing stress

Angle of streambed

9'
Streamfunction

Gradient operator



APPENDIX A. (continued)

Subsc ripts

a Ambient fluid

1 General subscript

in Inflowing fluid

m Model

max Ivlaxirnun-i

out Outflow

p Prototype

res Reservoir



APPENDIX B. Values of Physical Constants

D

b.
3-n

b

L

d
0

h
0

S
S.

Q.in

Q
0

h.in

g

max

45cm.

4.45cm.

45.7cm.

580.cm.

0.952cm.

cm. 23.0

degrees 9. 2

3gr/cm 1.001

3cm /sec 12.6
3cm /sec 12.6

cm. 1.27
2cm/sec 980

3gr/cm 1.017



APPENDIX C. Summary of Data

Test 11 12 13 14 15 16 17

S 0. 0052 0.0070 0. 0070 0.0052 0. 0096 0. 0096 0. 0096
V

V. (cm/sec) 5.45 6.37 7. 28 5.85 8. 32 7.47 8. 38

p. (gr/cm3) 1.0155 1.0123 1.0087 1.0054 1.0155 1.0120 1.0083

(gr/cm )xlO 3. 13 3.25 2.95 3. 16 3.31 3. 13 3. 24

d. (cm) 0.518 0.445 0.388 0.484 0.340 0.379 0.338
in

T. (°C) 13.0 12.5 13.0 12.5 12.5 13.5 12.5

\). (cm2/sec)x102 1.213 1.227 1.213 1. 227 1. 227 1. 199 1.227

V (cm/sec)x102 4.07 8.48 5.93 6.57 3.81 5.60 5.80
1 max

V (cm/sec)x102 5. 72 8.48 6. 00 5. 21 5. 68 5. 25 5. 34
2 max

V (cm/sec)x102 4.49 4. 74 4.66 4. 66 4.87 4. 75 4.53
3 max

h1 (cm) 38.0 24.5 19.5 10.5 37.0 26.5 18.0



APPENDIX C. (continued)

Test 11 12 13 14 15 16 17

h2 (cm) 23.0 23. 5 23. 0 23. 0 23. 0 23. 0 23. 0

h3 (cm) 6.0 7.0 6.0 6.0 6.5 6.5 6.0

T (°C) 17.0 17.5 16.5 17.0 17.0 17.5 17.0re S

V (cm2/sec)x102 1.093 1.079 1.106 1.093 1.093 1.079 1.093re S

V b1 max
170.5 359.0 245.0 275.0 159.5 231.0 242.7

re s

V. b.
2006.0 2311.0 2670.0 2120.0 3010.0 2770.0 3040.0

6.43 2. 20 1. 77 1. 30 5.62 2.43 1. 67D
1

0.845 0. 545 0.433 0. 233 0. 822 0. 589 0.400

0.133 0.155 0.133 0.133 0.144 0.144 0.133
D



APPENDIX C. (continued)

Test 11 12 13 14 15 16 17

h .-h01
-0. 333 -0. 033 -. 078 0. 278 -0. 311 -0. 078 0. 111D

2V d
2n-iax o 2

x 10 0.411 0.610 0.434 0.375 0.408 0.377 0. 384Q
out

p(in o\
D)p 1.032 0.772 0.577 0.309 0.977 0.780 0.500

V
3 max

x102 0.453 0.443 0.470 0.470 0.472 0.460 0.457
max O

g h3

max
IV. b. \

(in
in D

12870. 5080. 4720. 2760. 16900. 6740. 5080.
v D-h

\ in) 1



APPENDIX C. (continued)

Test 18 19 20 21 22 23 24

S 0.0096 0.0165 0.0183 0.0165 0.9165 0.0218 0.0209V

V. (cm/sec) 8.48 11.19 11.13 13.47 12.20 16.36 13.81

P(gr/cm3) 1.0054 1.0155 1.0118 1.0087 1.0054 1.0155 1.0120

(gr/cm4)x104 3. 33 3. 16 3. 13 3.07 3.00 2.96 3.06

d. (cm) 0. 334 0. 253 0. 255 0. 210 0. 232 0. 173 0. 206in

T.(°C) 13.0 12.5 13.0 13.0 12.0 11.0 11.5

V (cm2/sec)x102 1.213 1.227 1.213 1.213 1. 242 1.270 1.256

V (cm/sec)x102 6. 40 3. 56 5. 21 5. 20 6. 23 3. 18 4. 661 max

-
2V (cm/sec)xlO2 max

-
2V (cm/sec)xlO3 max

h (cm)

5.38 5.38 6.10 4.36 4.95 5.34 5.08

4.49 4.87 5.26 5.34 5.00 5.72 5.04

10.5 37.5 26. 0 20.5 9. 5 37. 0 29. 0



APPENDIX C. (continued)

Test 18 19 20 21 22 23 24

T (°C) 17.0 17.5 17.0 16.5 16.0 14.5 14.0
res

1.093 1.079 1.093 1.106 1.120 1.165 1.181resm2/sex102

V b1 max 267.8 151.0 218.1 220.9 254.2 124.8 180.5
re s

V.b.in in 3110.0 4050.0 4070.0 4930.0 4360.0 5730.0 4890.0

D-h1 1. 30 6. 00 2. 37 1.84 1. 27 5.63 2.82

h
0. 233 0.834 0. 518 0.455 0. 211 0.822 0.645

h
0.133 0. 144 0. 144 0. 133 0. 155 0. 155 0. 133

h -h
D

1 0.278 -0. 322 -0. 067 0.056 0.300 -0. 311 -0. 133



APPENDIX C. (continued)

Test 18 19 20 21 22 23 24

V d2
2 max o
Q x 102 0.387 0.387 0.439 0.313 0.356 0.384 0.365
out

p _p
in o

0.294 1.021 0.767 0.557 0.326 1.090 0.799D Ap

V
3 max

102 0.452 0.472 0.510 0.525 0.468 0.534 0.509Lx
r/p -p\
umax OIhI
L"\ p 1 31

max -

/Vb\
çin in)

D
4040. 24,300. 9660. 9070. 5540. 32,210. 12,800.v D-h

in 1
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Test 25 26 27 28 29 30 31

S 0. 0326 0. 0387 0. 0383 0. 0409 0. 0387 0. 0622 0. 0030

V. (cm/sec) 20. 28 21. 10 23.03 23.52 22.70 28.83 4. 16

p. (grlcm3) 1. 0155 1. 0155 1.0120 1.0089 1.0050 1.0151 1.0108

4 4-(gr/cm )xlO 3.16 3.13 3.00 3.06 3.13 3.18 3.11

d. (cm) 0. 140 0. 134 0. 123 0. 120 0. 125 0.098 0. 410
in

T. (°C) 12.0 12. 0 12.0 12.5 12.0 13.0 22. 0

). (cm2/sec)x102 1. 242 1.242 1. 242 1. 227 1. 242 1. 213 0. 969

(cm/sec)x102 2.80 2.54 3.39 1.53 10.21 1.70 11.96

1 max

V (cm! sec)xl 02 4.91 5.59 6. 35
2 max

4.91 5.04 5.34 11.96

V (cm! sec)xl 02 5.72 5.84 6. 14 6. 18 10. 21 6.42 1. 99
3 max
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Test 25 26 27 28 29 30

h1 (cm) 35. 0 37. 0 28.5 13. 5 7.5 37. 0

h2 (cm) 23. 0 23. 0 24. 0 23. 0 23. 0 23. 5

h3(cm) 7.0 7.0 7.5 7.5 7.5 7.0

T (°C) 16.0 16.0 16.0 16.0 16.5 16.0re s

V (cm2/sec) 1.120 1.120 1.120 1.120 1.106 1.120re sVb
114.3 103.7 138.4 185.0 422.0 69.4

re s

V. b.

7260.0 755.0 8250.0 8530.0 8130.0 10,580.0

D
D -h

1

h
1

D

4.50 5.63 2.72 1.43 1.20

0.778 0.822 0.634 0.300 0.167

5.63

0. 822

22. 5

0. 960

1910. 0

2. 05

0.510



APPENDIX C. (continued)

Test 25 26 27 28 29 30 31

D
0. 155 0.155 0. 166 0. 166 0. 166 0. 155 0. 178

h0-h1

D
-0. 266 -0. 311 -0. 122 0.211 0.344 -0. 311 -0. 011

V d 22 max o 0.353 0.402 0.457 0. 353 0. 362 0. 384 0. 861

Q
out

p. -p
in

D
1.029 1.033 0.814 0.572 0.283 0.986 0.710

V3max j_x1o2
Pmax Po'

0.534 0. 54 0.554 0. 554 0. 921 0. 600 0. 175
[g(

h31
[

max1

Vb\/ injn\ D
v ID-h 32, 600. 42, 500. 22,400 12, 200 9750. 59, 600. 3920. 0

\ in, 1



APPENDIX C. (continued)

'fest 32 33 34

S 0. 0021 0. 1575 0. 0011V

V. (cmlsec) 3. 52 55.5 2. 74

p. (gr/cm3) 1. 0087 1. 0150 1. 0123

(gr/cm4)x104 3. 06 3. 12 3. 01

d. (cm) 0. 423 0. 048 0. 438In

T. (°C) 22. 0 18.5 18. 5in

v.(cm2/sec)x102 0.969 1.030 1.030

V (cm/sec)x102 5. 76 0.53 6. 06
1 max

V
2 (cm/sec)x102 4.53 4. 90 4. 62max

V (cm/sec)x102 0.98 30. 90 1.953 max



APPENDIX C. (continued)

Test 32 33 34

h1
(cm) 13. 0 34. 0 29. 0

h2 (cm) 23. 0 23. 0 23. 0

h3 (cm) 6.0 7.0 7.5

T (°C) 22.5 20. 0 20. 0
re 5

v (cm2/sec) 0.960 1.004 1.004
res

V b1max
274. 0 24. 2 277

re s

V. b.mm
1615.0 24,000 1186

D

D-h1

h1

D

1.41 4.09 2.81

0. 289 0. 756 0. 634



APPENDIX C. (continued)

Test 32 33 34

h

0. 133 0. 155 0. 166D

h0-h1
0. 222 -0. 200 -0. 133D

V d

x io2 0.326 0.353 0.332
out

pin-p0

D Lp

V
3 max

max
-

g h3
max

V. b.
in in D
V. D-h
in

0.572 1. 029 0.814

x i02 0.099 2.910 0. 170

2280.0 98,300. 3330
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ABSTRACT

A marker and cell method for computations involving nonhomogeneous,
incompressible, viscous fluids is developed. New boundary conditions
which are useful in hydrodynamic and oceanographic simulation are presented.
A wide range of applications are included featuring both graphic and numerical
computer output. A flow chart and a listing for those interested in imple-
menting the method are included.
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THE NUMAC METHOD FOR NONHOMOGENEOUS
UNCONFINED MARKER-AND-CELL CALCULATIONS

I. INTRODUCTION

In the field of fluid mechanics, the governing equations of mo-

tion are non-linear partial differential equations. Because of this

non-linearity, analytical solutions can be obtained only for highly

simplified flow patterns. In order to solve the equations of motion

for more sophisticated problems, various numerical methods have

been successfully applied. These methods include: (1) reduction to

ordinary differential equations so that numerical integration tech-

niques may be used; (Z) linearization techniques to reduce the equa-

tions to the point where analytical solutions may be obtained; and

(3) finite-difference methods to reduce the equations to a set of

algebraic equations which are solved by either direct or iterative

techniques.

The first two of these methods are limited in application because

they are restrictive and involve much detailed analytical work. A

stringent restriction placed on fluid problems by these techniques is

that of steady flow; i. e. , time derivatives of variables must vanish.

The third method mentioned above--finite differences--allows the user

to solve most types of fluid problems, including those involving un-

steady flow.

1
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Fluid flow is generally described using one of the following view-

points. (1) Eulerian: Attention is focused on some point in space and

the changes in the fluid can be described as functions of time at this

point. (Z Lag rangian: Attention is focused on an infinitesimal fluid

element and the changes in this fluid element can be expressed as

functions of time. Major analytical works in fluid dynamics use one or

both of these viewpoints; correspondingly numerical techniques have

developed along these lines.

The early papers on numerical techniques for fluid problems

(Harlow, 1955; Evans and Harlow, 1957) used the Lagrangian viewpoint.

Instead of considering every infinitesimal fluid element, attention was

focused on a finite number of these elements. By marking the ele-

ments being considered, the fluid was conveniently represented by an

array of particles. This representation by particles is the primary

feature of all Lagrangian numerical techniques; the fluid properties

such as density and velocity are localized to a finite number of particles

which move with the fluid.

Lagrangian methods have the following advantages. Some parts

of the fluid may be resolved more finely than others, fluid interfaces

including free surfaces may be precisely defined, and arbitrarily

shaped rigid boundaries can be used. On the other hand, large distor-

tions from the initial configuration produce large errors.

Later (Langley, 1959; Welch etal. , 1966) Eulerian techniques



3

were developed for fluid problems. Instead of considering the fluid at

all spatial points, attention is focused on a finite number of fixed

points. Eulerian numerical techniques are characterized by finding

the values of the fluid variables at the mesh points of a fixed grid.

Eulerian methods have several useful advantages. The fluid may

undergo arbitrarily great distortions without loss of accuracy and out-

flow walls are particularly easy to handle. However, local resolution

is difficult to achieve and interfaces become blurred.

It was shown by Welch etal. (1966) that a system containing two

discrete fluids could be handled using a mixed Eulerian-Lagrangian

scheme. In this scheme the velocity and pressure were considered as

Eulerian variables and found at the mesh points of a fixed grid. The

density was considered a Lag rangian variable and was localized to

fluid particles.

The method developed by Welch et al. at Los Alamos Scientific

Laboratory was called the Marker-And-Cell (MAC) method. It repre-

sented a significant advancement in the art of computer simulation of

nonhomogeneous, incompressible, viscous fluids.

One of the shortcomings of the original MAC code was its inflex-

ibility in the type of boundary conditions it could handle. For instance,

MAC was restricted to inlet velocities that were constant across the inlet

and held fixed for the entire run. Such inlets are not useful for finding

the transient flow from an "infinite" reservoir whose upstream section
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is modeled by an inlet.

A second drawback was the consumption of computer time. By

adding the technique of overrelaxation, it was found that savings of up

to fifty percent could be obtained.

This paper presents the NUMAC, a method for nonhomogeneous

unconfined marker-and-celicalculations. The NUMAC is especially

useful in oceanographic and hydraulic problems which require an inlet

or outlet for modeling regions upstream or downstream from the

region of interest. Two types of nonhomogeneities are considered:

those involving two immiscible fluids and those involving a single

fluid with small local density variations. Examples of both types are

included in Chapter IX.
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II. EQUATIONS AND BOUNDARY CONDITIONS

To describe the motion of a nonhomogeneous incompressible

fluid with constant viscosity it is necessary to determine

velocity, uT+ vT;

density, p; and

pressure, F;

as functions of time and position. To find these unknowns Mercier

(1968) has shown it is sufficient to solve the equations describing

conservation of mass,

conservation of momentum, and

incompres sibility.

These equations are respectively:

The incompressibility equation

+ ( v)p = 0 (2. 1)at

The continuity equation

V. = 0 (2. 2)

The equation of motion for laminar viscous flow, commonly known as

the Navier-Stokes equation



- - -p-- + p(w.v)w= pg - vP+ 2(v v)w +vx(ivxw), (2.3)

g being the gravitational forces per unit volume and . the vis-

cosity.

When solving equations numerically, it is frequently desirable

that the variables be nondimensionalized and have magnitudes less

than unity. Equations (2. l)-(2. 3) can be scaled by the transforma-

tion of variables

By defining the operator

x Lx'

y = Ly'

1- =
L
w

w = Ww'

p Rp'

P = RW2P'

a aV=+-----
ax' ay'

Equations (2. 1), (2. 2), (2. 3) become respectively

ap'----+ (w'.v')p' = 0.

0,

+ p('.v')' = p'' - v'P' + 2(c'. 'v)w+ V'x('V'xw
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where g' LgIW2 and = /LRW. Thus the equations to be

solved have the same form before and after scaling. Hereafter, it

will be assumed that the equations have been scaled appropriately.

Boundary Conditions

In addition to the equations of motion, boundary and initial con-

ditions must be satisfied. There are usually free surface and material

boundary conditions. It is frequently desirable to study some small

portion of a larger flow. Consequently, inflow and outflow boundary

conditions are also considered.

Let s(x, y, t) 0 be the entire fluid surface. In general s

may contain material boundaries, free surfaces, inlets and outlets.

The unit vector normal to s is defined

as- aS.-
7s ' +_i_n= = 8s 2 as)2vsj (;) + (

Thus, we may express n as

where

;=n T+ T (2.4)x y

as
axn and n =
Vs y k7s

The unit vector tangent to s is any vector of unit length which is a



solution to n m 0. In order that n and rn form a right

handed coordinate system choose

-n T+ T. (2.5)
y x

At a material boundary the normal component of the velocity vanishes.

The velocity can be expressed

w = (w n ) n + (w m ) m.

Thus, the velocity at a material boundary satisfies

w n = 0, (2. 6)

At a free surface the normal and tangential components of the stress

must vanish.

The stress o at a point on a free surface with normal n is

0 =H n.

Here fl is the stress tensor

Tjj Tijxx xy

11=

Tji Tjj
yx yy

Therefore, o is given by



Tii Tij nixx xy x

0 =

Tji Tjj njyx yy y

(nT +nT )i+(nT +nT )Txxx yxy xyx yyy

Since Equations (2. 4) and (2. 5) can be solved for i and T to

yield

i n n - n mx y

n n + n m
y x

0 can be expressed as

(n T +n T )(n n-n rn) + (n T +n T )(n n+n rn)xxx yxy x y xyx yyy y x

setting

cr = u n + 0 mn m

2 2= (n T +n n T +n n T +n Tn xxx xyxy xyyx y yy
2...(n n T -n I +n I +n n I

).n-i xyxx yxy x yx xyyy

In general for a Newtonian fluid

01
8u aul rau avi

. 0

=1
2n + +I

av 8v au av I

[ VLo pJ LJ Lj
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For an incompressible fluid the last bracketed term vanishes.

Substituting the Ii components into the equation for ci,

2 au auav 2
0 = n (-P+2p.) + 2n n p.(---+---) 1- n (-P+Zp.)
n x 8x xy x y

Using the condition that n + n 1, this may be rewritten as
x y

2 au 3u 8v 2 8v
n x 8x xy 8x8y y 8y

Similarly, if the components of II are substituted into the equation

for ci the result ism

avau 2 2 8u av
ci = Zn n p.( ay a

+ (n -n )p.(+----)m xy x x y

The free surface boundary condition is expressed by setting ci

and ci equal to zero. Thus,m

2 au au av 2 av
+ Zn p. ; (2. 7)Zn F' + Zn n p.( -

ax ax xy

av au 2 2 8 avZn n (---) + (n -n )(+--) 0. (2.8)xyay ax x y

The density at an outlet must satisfy

0.
an

This condition is also frequently used at an inlet but is not necessary
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in all cases.

Two inlet velocity boundary conditions have been successfully

used. One holds the inlet velocity constant; that is, the other requires

the normal derivative to vanish at the inlet.

(n V)w= 0.

Any initial condition may be assigned for p, w or P.
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III. DIFFERENCE EQUATIONS

The general method of solution of the system of partial differen-

tial equations (2. l)-(2. 3) will be to represent the continuous variables

x, y and t as multiples of ox, Oy, and Ot. Then the partial

differential equations can be approximated by finite difference equa-

tions and solved numerically for w, p, and P, at x iOx,

y = jOy and t = nOt for discrete index values of i, j, and n.

The choice of the difference ooerator and the choice of the values

of i, j, and n for which to define the variables are different as-

pects of the same problem: to find the best approximations to Equa-

tions (2. l)_(2. 3).

Variable Placement

The region in which the flow takes place is covered by a double

grid system (see Figure 1). The solid grid divides the system into

cells; the dashed grid is used for variable placement. The horizontal

component of velocity is defined at the sides of a cell, the vertical at

the top and bottom. Pressure, density and viscosity are defined at

the center. Although there are placements of the field variables rela-

tive to the mesh difference from that shown in Figure 1, Harlow (Welch

etal. , 1966) reports that this is the only one currently developed which

satisfies the physical laws.
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j+1

--i-
-----i---

i-H-
jl

i-i i.-- i+k i+l

6y

Figure 1. The double Eulerian mesh. The locations of the fluid
variables are indicated by, : p, P; A: u; I: v. Theth cell is highlighted.

Before the Navier-Stokes equation is finite dilferenced it is con-

venient to put it into a slightly different form. Substituting Equations

(2. 1) and (2. 2) into the left side of Equation (2. 3) and simplifying, the

Navie r-Stokes equation, written separately in the i and j direc-
tions becomes

8(pu) a 2. ) a au 8 au(pu ) + (puv) + 2{(i) +8x

a 8v au
+ [(-- )j, (3. 1)
ay ax ay

and

8(pv) a a 2 a a 0v a av+ (puv) + (pv ) p + 21(v) +at 8x 8y 8x 8x 8y 8y

3 3
(3.2)dx dx ov
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Although the partial differential equations are equivalent, it is

clear that the finite difference forms of (2. 3) and (3. 1), (3. 2) are not.

Harlow (Welch etal. , 1966) has shown that the finite difference

analogy of (3. 1) and. (3. 2) satisfied Newton's Second Law more pre-

cisely than the analogous form of (2. 3). The system of Equations

(2. 1), (2. 2), (3. 1) and (3. 2) can be written in finite difference form

as follows:

p+1_pij
+

Jj

+
ijij (3. 3)

ot Ox by

+ = 0, (3.4)
Ox by

(pu)11. = . + (P. -P. .), (3. 5)
1+3 i+j Ox 13 1+13

where
2 2

(pu )..-(pu ). (puv). i. -puv). i.

- /

13 1+ lj i+j - 1+3+-
1.-pu,. +w. +

1+3 i+j Ox by

2
+ [ (u. 3-u i.)-..(u. 1.-u 1fl

(Ox)2
i+lj 1+23 1+J 13 1+23 12J

u. 1. -u, . 1

I i+j+l 1+fl i+Ij+- ij-i-
+ F.L. 1. 1 +

by 1+3+ by Ox

U .-u. V.........1i+J i+j-1
+

i+lj- ij-
+

by Ox

n+1 Ot
(pv).. i = .. i + (P P ) (3. 6)

1J+ ij+ by ij ij+1



where
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2 2(puv). (puv). (pv )..-(pv
= (pv).. + Ot l+3+a

+
13 ij+l

13+ Ox Oy

+

U. -u. 1. V. . LV..
I. i+-j+1 1+j i+1j+ 1J+

+ Ox i+j+ o
+

ox

U. 1. -U. 1. V.. 1-V.1_J+1 l-fl 1J+ 1- 1J+
-F-1. . + -i-p.. 1g

oy Ox 13+- y

Equations(3. 3)-(3. 6) require quantities which have not yet been

defined. For terms involving variables where they have not been de-

fined, e. g. p. .. , an average of defined quantities is used. Thus1+23

P. 1. = (p. .+p,.)i+j 2 i+lj ij

For terms involving products such as (pu). . a product of the
1+23

respective quantities is used.

(pu). 1. (P. .)(u. .)1+n 1+-3

= (p. 1.+p..)(u.).

The only exception is the momentum flux terms such as

(puv). .. which are evaluated
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p.. +p. V.. 1+v.ijl 1+13 ij- i+lj-
jU. i. /

V.. i+V.

2
1+lJ-)

Q

(puv).+1. =
a3 2 V +V.

. 1

13 i+lj
)(u 1 )(

1+lJ2)
2 i--j 2

if +1

A similar prescription applies to the other momentum flux terms.

For computational purposes it is convenient to put Equations

(3. 3)-(3. 6) in a different form. Equation (3. 3) becomes

= p.. t
13 13 ôx

n+lEquation (3. 4) can be solved for u. .;

1 (P -P
i+-j

+
ii ij

i+j n+l ôx n+1
Pjf.ij

n+ 1Equation (3. 8) can be written for u. . as1-J
(P. -P..)

1-13 13

i-j n+l ox n+l
1. D

23

For the v components

(P -p
Vn+1 1j+..

+
ij ij+1

ij+ n+l Oy n+l
p.. p..
13+ 1J+

(3. 7)

(3. 9)

(3. 10)
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(P.. -P..)
11 = _.J_ + 13 - 1 ij

(3 11)
1J_ n+l by n+l

P.. 1 P.. 1

13-i 1J-

If Equations (3. 7)-(3. 10) are substituted into the continuity

equation (3. 3) for t (n+l)bt, the result is

1
1.i+j . 1.

i- bt 13 i+lj P. .-P..
1- lj 13

bx n+l n+l +
bx n+l n+1

P. 1.1+J .1_J P. .

1+fl P. 1.i-fl

1 1 '. .-.. -n..
+

1 ij+- ij-
+

bt ij ij+l ij-1 jj 0
by n+l n+l bx n+l n+lp.. i .. 1

. 1.1Jr2 13a liai 1J_

This may be put in the form

P.. = B.P ........ p .... p B4P + A... (3. 12)
13 13 1+13 13 i-lj 13 ij+1 13 ij-1 13

The coefficients are given by

1.± 1+-J
. 1.i_fl .. I

1J+
.. I
13-iA = -i---

ij C.. bx n+l +n+l by n+ll n+l
13 p. p. i_. p.. p..1m23 1-23 13+2 13-2

1 1 bt 1
B.. C.. 2 n+l

13 bX p. 1.1+fl

2 1 61: 1
B..

C.. 2 n+l
ij bx p. .



and

3 1 at i

B.. C.. 2 n+l
13 öy

13 2

4 1 at i

B.. C.. 2 n+l
13 öy p..

13 2

at i i at 1 1

2 n+1
+ +

2 n+l + n+l
ax a

Differenced Boundary Conditions

The region in which the fluid motion occurs has been covered

with a mesh. It is necessary to approximate the boundary of the

fluid, s, in terms of line segments for the mesh. The algorithm

requires quantities from surrounding cells for the calculations in any

particular cell. Thus to calculate quantities near a boundary, it is

necessary to create a layer of image cells outside the boundary of the

fluid. The quantities for these cells are determined by the boundary

conditions at the interface of the image and actual cells. In this way

the boundary conditions are accounted for in the algorithm.

After the boundary has been !rectangularizedl into line segments

of the mesh, all cells are flagged according to the following scheme.

I. Interior cells

A. EMP cell containing no fluid particles.

B. SUR cell containing particles adjacent to an EMP cell.

C. FULL cell containing particles with no adjacent EMP cell.

D. REG interior cell containing particles.



II. Boundary (BND) cells.

A. OUT = cell defining outlet.

B. Inlet cells.

1. INC inlet cell with constant velocity.

a. INM = inlet cell with velocity matching the adjacent

interior cell.

C. Rigid boundaries.

1. NOSLP = boundary cell with no tangential component

of velocity.

2. FRSLP boundary cell with tangential component of

velocity equal to adjacent interior cell.

3. COR = boundary cell with interior cells on two sides,

may be either FRSLP or NOSLP.

D. EMPBDN BND cell that is needed only for indexing

urpose S.

Boundary cells never change flags; interior cells may change flags as

particles enter or vacate a cell. Figure 2 shows how the cells are

flagged for a typical problem.

Figure 3 depicts a boundary between a cell and its image. The

quantities u .,, u. ., v ........... , and P. are needed in
1--J 1-:j i-lj- i-lj 1-1J

the calculations and must be determined from the boundary conditions.

All types of boundary conditions are derived for a cell and a boundary

oriented as in Figure 3. All other orientations of boundaries are



analogous. ForaboundaryorientedasinFigure3
fix

= 1 and 0.

L OUT

EMP

REG

FRSLP
EMPBND OUT 1

I EMPIBND
ZCOR

Figure 2. Cell flags for a typical reservoir problem.

U. 3.

Boundary

Figure 3. Cell i-i, j is a boundary cell.

For all types of boundary cells,

Pi_li Pu
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At a solid wall two ways were used to determine the tangential

component (in this case v ) of velocity. A wall was NOSLP if
1- 3-2

A wall was FRSLP if

w= 0.

(n.v)w = 0.

Continuity in the boundary cell was used to calculate u. .. The
1-23

pressure boundary value was found by substituting the density and

velocity values into Equation (3. 5) written for the 1Jth cell.

FRSLP Boundary Conditions:

u . = 0
1-3

U 3 = -u
i_-j i+2-j

v 1vi-1j- 13-i

P..=P.. p. .g Exi-li 13 13 x

NOSLP Boundary Conditions:

U. . 0
I--

u. . = U.
.

2J 1+j

V. i-v.. i
i-1j-

1J-
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p p
4.u

j_lj ii ôx oy

p. .g ox
13 X

The boundary condition at an inlet is also of two different types. If

the velocity was constant and normal to the boundary,

U.
.
= U

i- IN

v. 1 v.. 1
i-1j- '3-i

If the velocity profile matched the profile inside the boundary,

U = U. 1. = u. 1.
i-j 1_fl 1+iJ

V. . l=V.. i

i-lJ- li-i

As for the solid wall, the pressure is found from Equation (3. 5)

INC Boundary Conditions:

U. 1. = U
i- IN

V. 1-v.
'-'3-i '3-i

U. = U. 1.i-fl 1+fl

2..
P. = P.. p..g Ox ' (u. -u

1- 13 13 13 X OX 1+fl IN
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INM Boundary Conditions:

U. 3. = U. . = U. 1.
1_ 1-fl 1+fl

V. l=V.. 1i-lj- ij-

p. =p.
1-13 13

At an outlet u. . and u 3. were calculated frcm continuity.1-fl 1-fl
A satisfactory pressure boundary condition was found to be

p. =p..i_lj ij

It was assumed that the fluid did not accelerate as it left through an

OUT cell. Thus

V.
. 1 = 1i-lj- i3-

OUT Boundary Conditions:

ox
u = u 1. +(v.. 1-v.. i)1-fl 1+fl Oy ij+ 13-i

V. i=V.. 1i-lj- ij-
ox

U = 1. + (v. i-V.
. i)i-fl 1-fl OY 1- 13+ 1- lj

p. =p.i-i) 13

1With acceleration terms from Equation (3. 5 present, velocities
at the outlets were much too large.
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At a free surface,Equation (2. 7) may be differenced for a pres-

sure boundary value. As pointed out by Hirt and Shannon (1969) for

the free surface velocity boundary condition, Equation (2. 8) is difficult

to apply without knowing the exact location of the free surface. The

approximation for the free surface in terms of the differencing grid is

inadequate; there seems to be no general method for determining the

free surface in terms of the fluid particles. Continuity does not yield

a surface velocity boundary condition since it is valid only for regions

completely filled with fluid. An improved approach due to Chan

(1969) involves interpolation for the velocity boundary values from

"within" the fluid toward the free surface. The cases when there are

one, two, three, or four EMP cells surrounding a SUR cell are con-

sidered.

With one empty cell as in Figure 4a the velocity v. is in-
1J+

2
terpolated and the pressure is calculated from Equation (2 7)

V.. i=2V.. 1-v.. 3
13+ 1J_- 1J_

21j.P..(v.. i-v.. i)
1J by ij+- 13-i

With two empty cells as in Figure 4b both velocities are inter-

plated.
2 The pressure is calculated from Equation (2. 7) using

2When it is impossible to interpolate because the cell across
from the free surface is a BND cell.,the free surface value is set
equal to the boundary value.
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1 1and fly Thus

u 1. = 2u. . u. .i+j-1 i+j-Z,

V.. 1 = 2V.. 1 - ..

1J- 1-2

1 1P.. = (u. 1.+u. 1.-u. 1. i-u.
13 2 öy i-j 1+3 1-3-1 i+-j-1

1+(v ..........
ox ij+ 13-i 1- 1j+ 1- 1j_

If there are three empty cells as in Figure 4c,the value of v..
13 + 2

3
is interpolated. The horizontal values u. . and u. . are1+3 1_J

calculated using the values from the previous time cycle.

u 1.=(u. i.) +g otOLD xi+J 1+J

U. j. 1.
1--3 1+J

V.. = Zv 1 -v..
13-i: 13-i

P.. = 0
13

Finally, for four empty cells as in Figure 4d

u =(u. .) +g OtOLD xi+j 1+3

u. 1. = u. 1

1-fl 1+.j

3See footnote 2, page 24.
4Here in free surface boundary values is the only time velocity

values are needed from a previous time cycle.
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EMP

V..
13 +

END, SUR BND,
FULL, FULL,

or or
SUR SUR

V..
1J-

FULL or
SUR

Figure 4a. One empty cell

EMP

u
1-3

Figure 4c. Three empty cells

EMP

V. 1

ii +

BND, SUR EMP
FULL,
U. I u 1

1_*j P.. i+j
or SUR

V..13-i

FULL or
SUR

Figure 4b. Two empty cells.

EMP

U. .
1-

EMP

V
ii +

SUR

p..
13

V..

EMP

EMP

U.
.1+3

Figure 4d. Four empty cells.

Figure 4. STJR cell configurations.
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(v.. 1) + g öt
OLD x1j+ 13+

V. V
1j- ij+

p.. = 0
13

If the boundary cell is a corner cell (see Figure 5), special cal-

culations are required. There are two types of corner cells depend-

ing on whether the boundary in which the corner occurs is FRSLP or

NOSLP. For either type

u =0
i+

V. 1
13 +

If the boundary is FRSLP

U. = U.
.

1--J i--j+l

V. 1=Vij- i+1j-

The pressure P.. is different in the calculation of P. and
13 1+13

P.. . For P..ij+l ij+l

while for P.
1+ lj

P..=p
13 ij+1

P.. = P. p. .g 8x
'3 i+lj i+lj x



j+1 u. i

j u.
1-2

1 i+l

Figure 5. COR cell.

If the boundary is NOSLP,

U. :: -U. 1.
1-53

V. 1 -V. . 1
i3_ i+lj_.

The value of P.. for the calculation of P..
13 ij+l

tuting the above velocity values into Equation (3. 6

P.. for P. . from Equation (3. 5).
13 i+lj

In calculation of . .
only:

1+23+

for FRSLP, u 1 = u.
.

+-j +-+i

for NOSLP, u. = -u
1+j i+j+1

is found by substi-

Similarly, find



In calculation of r.+1.+1 only:

for FRSLP, v = vij+ i+lj+-

for NOSLP, v.. = -v. .
1J+ i+lj+

In calculation of A. only:
1+ lj

r, {(z +L +
1i+lj+ i+1j+ 4x6y i+lj ij+l i+lj+l i+j+1'

1. = P........ (not literally)
1+ 1+13

In calculation of A.. only:ij+1

ot
+ [(2.1. +.L +i+j+1 i+j+1 4x6y ij+l i+lj

1 P - P (not literally)ij+l ii

In calculation of horizontal velocities of particles in upper half

of cell (i+l,j), u. . 0.
i+:aJ+ 1

In the calculation of vertical velocities of particles in right

half of cell (i, j+l), v. . =
1+ lJ+-
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IV. OVERRELAXATION

The form of Equation (3. 12) is familiar to all those who have

studied numerical solution of partial differential equations. It is the

usual finite difference form for solving Poisson's equation

V2P(x,y) = f(x,y) (4.1)

Let s be a region in the x, y plane. Let öx and öy be the

spacing in the x and y directions, respectively, of a grid which

covers s. (It is assumed that the boundary of s is the union of a

finite number of straight lines, each of which is either horizontal or

vertical, although the technique described below will work for other

configurations either by changing the coordinate system or by inter-

polating at the boundary.) Then the partial derivatives in (4. 1) may

be approximated, as in Chapter III, by

and

a i. P ......... + P.
1+13 13 1- lj (4. 2)

2 2
öx ox

2 P -2P..+P..
ij+1 ij iji (43)

2 2
Oy by

Using (4. 2) and (4. 3) and rearranging, Equation (4. 1) may be approxi-

mated with
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P +P. P +P
1 i+lj 1_1J+ ij+l ij__l

p.. =
1 1 2 2 - f(x0, y0) (4. 4)

1)
2(+-----) ox

Ox Oy

There are several schemes available for solving (4. 4), the easiest of

which is an iteration process called simple iteration. This technique

consists of the following steps:

(1) An initial guess (usually zero) is made for the function P

at each point (x., y.) of the mesh (except, of course, at

the boundaries). Call these initial values

(2) Using Equation (4. 4), new values, called are com-

puted using P and boundary values.

(3) The difference between the new values and the old values is

checked against a tolerance. If the values of P. are too
ii

far different from those of new values P, areii '3

computed from P as in Step (2).
13

(4) Steps (2) and (3) are repeated until, for some k, the

are sufficiently close to the At this
13 13

point the iterations are stopped, the solution is said to have

converged, and the process of simple iteration is said to

"work" for this problem.

A more efficient scheme, called Seidel's Method or simple re-

laxation, is the same as simple iteration except for one refinement.

Instead of using only quantities from the previous iteration to compute
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new ones, simple relaxation uses new values, as soon as they have

been determined, in the calculation of other new values. It is clear

that the time saved by using this process will be dependent on the

order in which the points are taken during an iteration. An order

which takes maximum advantage of the refinement over simple itera-

tion is called a consistent order. One such ordering is to start with

the lower left-hand point, work across to the right, then left-to-

right on the next higher row of points. This is continued throughout

the mesh, ending with the upper right-hand point. It can be shown

(Forsythe and Wasow, 1960) that if simple iteration Tworks whenever

a consistentorder is used, then simple relaxation "works" exactly

twice as fast.

An even more efficient method for solving Equation (4. 4) exists.

This scheme, called overrelaxation, speeds the convergence of sim-

ple relaxation by multiplying the changes between iterations by a fixed

number greater than one. The following discussion will help to clarify

this.

Define the new quantity,

P. in the following way:

called the kth residual of
13

l) p) (k)
13 1 1 i+lj i-lj ij+l ij-1

+
2

-f(x0, ii
ôx öy ox oy

(4. 5)
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where the superscript has the value of either k or k-i.

Equation (4. 4) can now be written:

(l)
+ . (4.6)

13 13 13

This is the equation which is used in simple relaxation. A more gen-

e ral equation can be written to cover all types of relaxation processes:

1) + qR. (4. 7).
13 13 13

When q < 1, the process is termed underrelaxation; when q = 1,

the process is the simple relaxation already discussed; and when

q > 1, it is called overrelaxation.

Forsythe and Wasow (1960) have also shown that when a consis-

tent order is used, if simple relaxation "works, " then overrelaxation

"works. " The amount of time saved by using overrelaxation will, of

course, depend on the overrelaxation factor, q. Using a matrix

analysis of the operations involved, a relation between the rate of con-

vergence and the overrelaxation parameter may be obtained. This

relation is depicted in Figure 6; several observations can be made

from this curve.

(i) Underrelaxation is not profitable; it requires more time

than any other relaxation method.
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tR

tSR

(2) An optimum overrelaxation factor, exists.

(3) Although depends on the problem being considered,

its value lies in the interval 1 < q < 2.
out

(4) Approaching from the left, the curve has an infinite

slope, while the slope is one for q
. ciopt + 0. Thus it is

better to use q = + E than to use q = , for

1

0
0 1 2

some small E > 0.

Figure 6. Overrelaxation factor curve.

time required
for any relax-
ation process

time required
for simple
relaxation

In general, determination of the best overrelaxation factor to

use cannot be done exactly. The next section describes a method for

finding approximately, and also shows how to obtain

exactly for the special case when R is a rectangle.

Determination of Overrelaxation Factor

As was noted above, the best overrelaxation factor cannot, in

general, be computed exactly. However, a method, shown below, does
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exist for estimating

If a problem is stated by using simple relaxation (q = 1), then

an estimate of the rate of convergence, r, will be given by

(k)
II r as (48)

R
1)

Any matrix norm will suffice for this estimate. Fortunately, a rela-

tion exists between r and qopt

2

l+l-r (4. 9)

Thus, one may run for, say, ten iterations using q = 1, form the

quotient R / R jj, compute a new q from (4. 9), and con-

tinue by using overrelaxation. It should be pointed out that the quo-

tients in (4. 8) will behave in a random manner when q / 1, while

with q = 1 they will steadily decrease until r is reached.
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V. THE ALGORITHM

The basic algorithm for marker-and-cell calculations can be de-

scribed briefly in the following nine steps:

(1) Predict new densities using Equation (3. 7).

(2) Using these densities calculate new pressure coefficients

and obtain a rough pressure by relaxing Equation (4. 7).

(3) Using these pressures calculate new velocities using Equa-

tions (3.8) and (3. 10).

(4) Find new particle positions assuming that the particles

move with this velocity field.

(5) Calculate new densities and viscosities by averaging the

densities and viscosities of the particles.

(6) Compare this value of the density with the previous value.

If different,go back to 2 with new densities; if same, the

density values has converged. Continue.

(7) Calculate the pressures more precisely for this density.

(8) Find final velocities.

(9) Move particles

These nine steps relate all the essential features of the algo-

rithm. Steps 1, 5, and 6 are the predictor-corrector portion. The

calculation cycle continues until the density remains unchanged.

Steps 2, 3, 7, and 8 are the Eulerian calculation of the variables P,

u, and v. Steps 4, 5, and 9 are the Lagrangian calculation of the
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particle positions and the density in each cell.

In the Lagrangian calculation of the particle positions, the veloc-

ity used to move each particle is a weighted average of nearby veloc-

ities. The calculation of these weights is given below for the horizon-.

tal velocity, u.

A rectangle of dimension ox by Oy is centered over the

four nearest horizontal components of the velocity field. A similar

rectangle is centered over the kth particle. The particle rectangle

and the velocity rectangles overlap (see Figure 7). Each velocityg

weight is the fraction of the particle's rectangle that it covers.

U
+.j-1

Figure 7a. A particle and the four nearest horizontal velocities.

A

A

LA
A

A

Figure 7b. The velocities and their weights.



Thus, the particle's horizontal velocity is given by

u
1 (A u .+A u. 1 .+A u. 1. +A u. 1.k öxöy 1 i+j 2 i--j 3 i--j-1 4 _-1

The particle's new x- coordinate is given by

n+l
Xk Xk+Uköt

Similar calculations are performed for the vertical velocities

and the y-coordinate.

The stability criteria for this procedure are reported to be

(Welch, 1966):

Zöxöcot<
6x+ 8y

where C is the wave speed of the fluid, and

22
2v5t

< öx +öy

In addition, Shannon (1967) reports that the following criteria should

also be met:
2

4v

2 ox

<u2
max
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and

öx6t<
5u.input

a(u
1 2 1 2 maxôtu +ôx <V.
2 max 4 6x

Similar inequalities hold in the y direction.

Hwang (1968) derived an additional criterion for the case when

the viscous and inertial forces were in relative balance

2Lh2u2 2h2v20 0öt <mm
2 2 2 2 2

2+v2)(h2 2 2v+4Vp(u0 +v0 )(h u0 +4v ) p(u0

where u0 and v0 are the steady-state velocity components, and

h is the dimension of the square mesh cell.

The NUMAC algorithm as described above has been made into a

computer program and used to examine several typical fluid flow prob-

lems A flow chart for this program is given on the next page and a

listing can be found in the Appendix.

The following is a description of the subroutines. The numbers

refer to Figure 11.

1. CELSET flags the cells initially: boundary, empty boundary,

full, free surface, or empty.

2. PARSET creates the initial particle configuration and assigns

the particles their appropriate densities and viscosities, then
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Figure 8. The NUMAC flow chart. Numbers refer to the list
of subroutines.
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calls REFCEL

3. DENVIS calculates the density and viscosity fields and bound-

ary conditions.

4. BNDCND does the following, depending on the value of the

calling argument:

BNDCND (2) calls FSBDCD (2), calculates temporary velocity

boundary conditions at solid walls, and then calls

INBDCD and OTBDCD.

BNDCND (3) calls FSBDCD (3), otherwise is the same as

BNDCND (2).

BNDCND (1) calls FSBDCD (1), and is the same as BNDCND

(2) except that all the velocity boundary conditions are

final.

4a. FSBDCD does the following, depending on the value of the

calling argument:

FSBDCD (1) and FSBDCD (2) calculate all the velocity bound-

ary conditions associated with the free surface.

FSBDCD (3) calculates only the velocities in the empty cells

next to the free surface.

4b. INBDCD calculates the velocity boundary conditions at an INC

or INM wall.

4c. OTBDCD calculates the velocity boundary conditions at an

OUT wall.
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L prints or plots specified information at specified

IS by calling appropriate subroutines, saves informa-

tape at specified intervals so the problem may be re-

later, and, depending on whether it is time to stop

:ulations, either advances time (t) and continues, or

stops the program.

6. QNTPRS (1) calculates and for each cell and B',

B2, B3, B4, and A for each full cell. QNTPRS (2) only cal-

culates B', B2, B3, B , and A for certain cells: cells which

change density and the four bordering cells for the two-layer

model, and each full cell for the continuous density model.

7. PRSITN calculates the pressure field by using the method of

overrelaxation to solve the finite-difference form of Poisson's

equation. Only full cells are relaxed, but pressures for solid,

in, and out walls are computed within the iteration loop, as

these pressures are functions of the pressures in the full

cells next to them. Free surface pressures remain the

same throughout the time cycle, since they are functions of

velocity and viscosity only.

8. VELCTS(K) calculates the velocity field from the general

equations for velocities between two full cells, two free sur-

face cells, or a full cell and a free surface cell, then calls

BNDCND(K).
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9. MOVPAR moves the particles with the current velocities.

10. DENCHG finds the cells which have changed density as a re-

suit of a temporary particle movement.

11. REFCEL reflags the cells which have changed, i. e. , free sur-

face to empty, destroys and creates particles as needed, calls

BNDCND (1), and calculates the free surface pressures.

REFCEL also calls FLGCEL for the two-layer model, and

FLGCEL flags interface and contributing cells appropriately.
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VI. MODELING

Once the computer program has been written, the most impor-

tant aspect of simulation is the choice of boundary and initial condi-

tions. Thus, care must be taken that boundary conditions be developed

that are analogous to physical boundary conditions.

Two models were used for the density stratification, each

having advantages and disadvantages. The fluid can be divided into im-

miscible fluid layers each with a different density. This approach has

the advantage that any densities can be assigned to the layers, but if

mixing is a significant factor the results will be unrealistic, Calcula-

tion time increases with the number of layers used.

An alternate approach is to assign the fluid an arbitrary contin-

uous density. This model takes slightly more calculation time than a

two-layer model and requires that local density variations be small. On

the other hand,it models a single fluid with variable density quite well.

Noslip a'd freeslip walls were tried for reservoir problems.
y,rj noslip walls, b oundary layer build-up never exceeded two cell

heights. Since boundary layers are only a few percent of the depth for

prototype problems; freeslip walls give a more realistic model for

reservoirs less than 100 cells deep. Figure 2 (page 20) shows the

modeling for a typical reservoir problem.
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VII. PROBLEMS SIMULATED WITH NUMAC

NUMAC was written with two types of nonhomogeneities in mind:

(1) Intrusion of one fluid into another. Such problems occur for exam-

pie in the disposal of wastes. (2) Density stratified flows. These

arise naturally in lakes and reservoirs. There is no restriction to

these types of density variations,but many problems in oceanography,

hydraulics, and meteorology are of these two types. NUMAC is a use-

ful tool for investigating these density phenomena.

A representative oceanographic application is given in Figure 9.

A salt water wedge flows into a shallow layer of fresh water. To simu-

late the sloping beach, the roblem was run with a grid parallel to the

bottom but with a horizontal giavity component.

Another problem of interest is the motion of a dense block of

fluid through a less dense layer under the influence of gravity. This

represents the disposal of a pollutant in a river. This sequence is

presented in Figure 10.

Figure 11 shows the flow of a bouyant plume into a density strati-

fied tank.

The increased exploitation of the sea requires the development

of improved criteria for undersea pipelines and structures. NUMAC

is used to show impact pressures on submerged structures to give in-

creased understanding of wave force phenomena. Figure 12 shows a



47

/
.. ., /.._., /

2.'0.

-)

-r . ,. 000
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Figure 9. The intrusion of a salt water wedge.
1 above and 1. 2 below. Viscosity 1i.

10. .00

The densities were
0001.



T 2.500

T 5. coo

T 10. coo

Figure 10. The flow of a denser pollutant. Fluid density is 1, pol-
lutant density is 1. 2, Viscosity is . 0001.
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kaRl!]

Figure 11. Flow into a density stratified tank. The density profile is
linear and the incoming fluid has a density that matches
one of the tank strata.
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_fl:.:..

T 2.500

T 5.000

n

500

T 10.000

-

T 2.500

T 5.000

- ii__ 5\

I._..

n

T = 7. 500

T = 10. 000

Figure 1 . Wave motion over a submerged conduit. On the right are
pressure contours.
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wave passing over a submerged conduit. Accompanying the simulation

sequence are the corresponding pressure contour plots.

Withdrawal From a Density Stratified Reservoir

Stratified currents are of engineering interest in such problems

as meteorologic disposal of industrial wastes and reservoir sedimen-

tation with selective withdrawal of quality waters. The flow from a

density stratified reservoir has been studied in detail.

The research procedure was to simulate a reservoir and investi-

gate the effects of viscosity variation, density stratifications, and the

presence of a submerged ridge on the flow pattern. Both the continu-

ous and the two-layered models were used.

Figures 13 and 14 contain selected frames from two reservoir

simulation problems using the two-layered model: withdrawal with

and without a submerged ridge. These reservoir problems were

normalized so that the following two conditions held. The reference

density (in this case the density, p1, of the upper layer) was scaled

to unity. Gravity, g', was scaled to unity. Scaling the variables in

this way, and using a density in the lower layer p2 1. 2 with a

lower layer depth d2 = . 7, the normalized upstream steady state

velocity in the lower layer approached = . 1, during machine

calculation. Thus, the Froude number for the lower layer



52

. .: ..
-;

T 10.000

1 1.,. .)Q)

.

j

T 2.500

Figure 13. Flow from a two-layered reservoir. The density is 1 in
the upper layer, 1. 2 in the lower. Viscosity is . 0001.
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Figure 14. Flow over a submerged ridge. The same densities and

viscosities as in Figure 13 were used so the effect of the
ridge could be studied.
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F2 =
U

oo2 -
. 293

_2-pl)
p2

"Jg'd2

According to Yih (1965), stagnation occurs for F2 < 1 liT. Vortex

formation can be observed in the last two frames in both sequences.

A reservoir with a submerged ridge was also simulated in a

fluid with a linear stratification. Figure 15 shows the effect of the

ridge. As expected, the ridge hinders withdrawal from the lower

strata and blocking forces the contributing layer up.

Figure 16 shows the effect of viscosity in the model. It is seen

that for reduced viscosity, velocity is increased uniformly in the

fluid.

Figure 17 illustrates the effects of the density gradient in the

linearly stratified reservoir. For an increased density gradient the

inertial effects are seen to increase the flow from the lower layers.
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0 5 10
Time

Figure 15. The effects of a submerged ridge The reservoir was
originally stratified linearly with normalized
density 1 on the surface and 1. 2 on the bottom.
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1. 0

E!J

1. 0

n.

.05 .07 .09 .11
Speed

P -

.05 .07 .09 .11

Speed ;i
Figure 16. illustration of viscosity effect on velocity profiles. The

profile is one quarter of the model width downstream
from the orifice. The normalized density was held con-
stant at p = 1.
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Lp ,

.05 .07 .09 .11

Speed ;i

.05 .07 .09 .11

Speed

Figure 17. illustration of the effect of density gradients on velocity
profiles. The profile is one quarter of the model width
downstream from the orifice. The normalized viscosity,
1-' = 0001.



VIII. DISCUSSION

The NUMAC method has been presented as a general method for

finding the transient flow of a nonhomogeneous, viscous, incompres-

sible fluid. The results in the preceding section were obtained using

800 cells and 3000 particles. The storage requirement was typically

65, 000 locations. Using a time step that was near the maximum al-

lowable by the stability conditions, one time cycle took seven seconds

on a CDC 6600. A typical run of ZOO cycles took twenty ..three minutes.

It is felt that this size and the running times are nearly minimal. For

proper simulation and for ?roblems that are geometrically more corn-

plex, more cells and particles should be used. Detail and accuracy

are limited only by the size of the machine available.

The current version of NUMAC admits only boundaries that are

expressible in terms of the grid, i. e. , those which have been rec-

tangularized." If circular or oblique boundaries are desired,the bound-

ary may be approximated in terms of the grid. Standard techniques in

the numerical solution of partial differential equations may then be

used to apply to the oblique or circular boundary conditions in the

- boundary cells.

Similarly, NUMAC has been presented in a two-dimensional form.

The method is valid for three dimensions but requires a good deal

more programming and quite a bit more storage.
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The usefulness of NUMAC in its present form has been demon-

strated. Because of its generality, the user will find it a valuable tool

in many types of hydrodynamic problems.
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103

104

106

107

lop

i op

7 pp

700

PIj .j) =0.
PCI J) .0.
SP(T , J) =0.
SRT CT .J) =0.
Or' 2 11,NJP1
00 71=1,NIP1
PSI (T.,))fl.
(Jr I ,J) =0.
UT IT .J)0.
V (I .J) =0.

VT (1, J) 0.
ZFT CT ,J) =0.
00 3 )(1,NP
P5(1(1.0
UP(K) .0.
VP (1(1=0.
XP(X) =0.
YP (K) =0.
DO 104 J.l,Nj
00 10 I.1,tJI
0 103 (.3,6
C(T,J7.tMP(K).CR.(C5(T,J),ANfl.MKCCK)
Cccl, JI 6.CR. (CS CI ,J) .AND.MKC)
KTS*TMP (2)
C (1, J) KT.OP. (CS (1 .J) .ANfl.lKr (2)1
CALL CFLSET
CALL 'APSET
CALL DEtiVIS
CALL RNOCNO(3)
CALL CNTROL
IF (,e).EO.2) GO TO 173
'CEO
I t 7 P = 0

LLLo
CALL DMTPRS(1)
00 lOP J.1Nj
00 io T=1,Nl
Cd!, J) IMP (13) .OR.
I TEl=D
ITFPvTTER.l
I rNTQ.TCNTP I
I TST.4
FPS=.000B
CALL DQS!TN
IF (I(D.FQ.21 GO TO
no io J=1,NJ
00 1°Q T=1,NI
NKT(T, ))=O.
SDT (7 ,J) *0.
CALL FLCTS(PI

CALL CVPA
IF li(r.EQ.2) 60 TO
CALL 1EIJCH
IF (IL.E0.0) (10 TO
IF (LL.GT.9) GO TO
IF (LLL.LF.9) 60 TO
TC=O
(' TO
I 0= 10. I
IF (Tr.(1T.10) (10 TO
LI LLL

(CS (I ,J) .API0.MKCC 1 3))

I ñ6

106

112
702

700

112

207 CALL DNTPPS(2)

110

111

H,

113

1000
700)
1 007
1 001

1004

I 006
1007

loop

IF (TTFR.NE.3) GO TO 109
00 1)1 J=2,iJMI
00 17) I=2,NPl1
K11=CdCl.J).A"In.MSK Ill)
1(11.1(1 1OV Ill)
I! (1(I1.EQ.2) GO TO 110
KIOCS(I,J) ,ANO.MSK(1O)
KIOK1O*DV (10)
IF (K)O.NE.2) 0O TO 111
K13cCS(J,J).4lJfl.MS1( 113)
K13K3*DV C 13)
IF q3.E.1) 60 TO 111
Cd(1,.J)UTMP(1O).Op.(CS(I
GO TO 111
P(13=CcU,J) .A'It).MSK(I3)
K731C13*DV(13)
IF (173.NE.1) 60 TO 711
CS C! II ZIMP (11) OP. (CS (I
CONT!'J"E
GO TO 107
ITEST=13

0002
WRITF (MC,10l1)
CALL PPSITN
IF (K.E0.2) GO 70 106
CALL VLCTS(1)

J) .A,10.MKC(10) I

I) .AND.MKC(71) I

CALL 4OVPAR
IF (K0.E0.2) 60 TO 106
CALL EVIS
IF (KD.FIl.2) 30 TO 106
CALL OEFCFL
GO TO 10
CALL TVEND
STOP
FORMAT C 11 10)
FORMAT 17F10.0)
FORMAT I I 1O,AF1O.0)
FORMATCIHI,10X49HMA0 METP400 SOLUTION CF TWO-MATERIAl. FLUID PROBLEM
///I4_,1OX5HTNPIJT/l_,2IMNR1.12X3HNP2,13X2HNI,13X,HNJ.13*?MNP,12
X3HNP. 12X3M1V0)
FOPM4T(IH .lc)x,711d,
FOPMAT(IHO,24*Il-lW,l4xlHH,13X2WGX,13X2H6Y,13X?P4UO,13X2MV0,I3X2WDT)
FORMAT(IH ,10,7FIc.qI
FORMAT C(p40,2?X3NMlII.12X3MMU2.1lX4HRI4CI,11X4MRHO2,I3X2MT1,9X.H0ELTA

'S I ?X 1MI)TP)
FORMAT(1HO,21x4M0T0p,1TX4HOTPP,1IX4MOTVP.IIX4WOTPP,12XIHOXp,17X3HD

7000 FOAT(IMO,23X7HNF,i,X3H1P0,17X3HYP0.I2X3NXPL,12X3HYPL,12x34UP0,12
X3MV'1)

1010 FORMATI7N .1OX,Il5,F15.P)
1011 FORMATI1ICO)
1017 FOPMATC1HO,?0 (IT IF,11X4kTWrtG,11X?lCMC,96I4tSPACC)
1071 FOPMATI llCO.27X1H0X0,I2X3HOYC)

F I0
SIlPP'lTINF CFI SFT
C0MMO)/TVPCCL/PLMIN,ILMAX. XMI, MA* .TXMTN,TXMA* ,TYMTN,TVMAX
CMO\(,TVC,tIT0r/TMCW.TFXT. TTV
C0MMOI/TVFAC1/FA0T
COSISV'\I/TVTIIrIF/LPFN,I PFF,ITAI TWTP.4K,pTS,IPT.CIIP
COMl0-si rFLTac,I,T,oT,.nT4r)x.prr)y,nTrp,r)Tr) ,r)T0Y,DT0S,0T1)yS,0TP,



flTPP.flTVP,0XO,0XCfl,,DXT4,0!TN.flXP,0YC,flYCD2,flYY4,DYI.0YP CS(1,J,1T..(CS,J.1).An.MKC(4))coi''I Eps,r,,0N,c,x.xr),exnT,qv,Gyr,C,vDT,H,TCNTR,ITEqT.KU,KKK,t.L. K13*TMP(7)
1y,MC,4tJ1,MU2,NA1,Np2,NI,NT,NIp1.F.jJ,NJM1,NjP1,pJP,NDR.NTP, Cc(!.J)rKT.0P.(Cs(T.J).ANn.Mr(7),I X,X2,XI,00V,00Y?.0DYI,PI,P2.T,TCP.TL,T0,TPP,TVD,IJ0, 3*MP($)I fl,W,TVC,flXC?0Y,0yO2flX,0XC0Y.flY0DX Cc(!,J+I).<T.CR.(CS(T,J,1).ANfl.MKC(f))c0'4MC A(40,2O),pl(40,20),p2t40,20),R3(40,20),84(40,20),CS(40.20), 204 IT.1$ flV(1S),TMPU,MC15,MSK1I),MU(40,2O).NF(301,NK(4fl,?O), IF xeI .LE. xn(M4fl 202,205I
KT(40,2O),P14O,2O),PSl300A),PST(41,21),RC40,2fl).SP(40.20), 205 I! (Y(1.2)YR(M.1)) 206,236,207I SRT(40,2O),IJ(41,21),UP(300),UT(41,2fl,V(41,2l).VP(30Ofl). 206 K12*P4PCS)

I
VT(41,2I),XC(40),XP(3000),XP030),XP1(30),YC(20),YP(3O0O). CSU_1.J)1KT.CR.(CSUI,J).4Wfl.MKC(5))I YP0(30),yPL(30),ZET41.2i).UPO(3O),VP0t3O) GO T 236

COMMO'j NPP,NPP,NRP2,XR1(2l),X82.YR1(2I),YG2(21),XXI(?O), 2fl7 CS(T,J)al.OR.tCS(I,j).ANO.MKC,I XT3TMP(7)RFAL
CS(I,JKT.CR.((S(T.J).AN0.Mr(7))INTE:E: CSS Go rr 231

DT'4E:SJITON 1A(100,,TYpF(20,,XR(22),Yf?2) 20R 1zxA(4)*O0X,I.999I'JTE:GFP TYPE: J.YR('4)*COY?.0O1PTMPj.fl. 20Q C(I,I)a2.CR.(CS(!.J).ANP.MKClPyqAx=Q. K7aTv(M)'jMP2)PJ4PJ*0.
Cc(T,J).KT.CP.(Cs(T,J).ANO.MKC(2))PJM4X0. KT.2.TMP(4)00 300 IEI,NI
CS(T,J-1)KT.P.(CS,T,J-1,AP4r).MKr(4)).PTMP4.AMIN1 (XC(T)0XC,PIMIN) KT4*TUP(7)300 PV4AXAMAX1(XC(j).0XC,P!MAX) C5(I,J)KT.CR.(CS(t,J).ANfl.MKr.(7)fl 301 JaI,NP KTB4*TMP()

P.JMTP4MIN1 (YC(J)-0YC,PJHTN) CS(T,J-1).P(T.3R.fCStI,J-1).A4fl.MKC())301 PJ'4Ax=A4AX1(YC(J).f)YC,PJMAX) 211 XT-iIF (T,0LLE.fl) 00 T 302 IF (xC(I).GE.XPCM,1 20,212
212 IF (yR(M.2)-YR(M.1)) 2j4,236.213PL'tAXs4.0625 213 K12*TVP(S)00 T' 303

CS(T.1.J)aKT.R.(CS(T,),J).ANfl.MKC(5))302 PIMI4MIN1(PIM!N,PJMIN) GO TO 236
PLMA.4MAK1(PTMAX,PJMAX) 214 CS(I,J)1.OR.(CStJ,M,AN0.MKC1303 XMIN'LMIN KT*4*TMP(7)XMAXD1MAX C(T,J)KT.CP.(C5(I,J).A.MKO(7))XTUPLATN GO 10 231
XAPL4AX 215 IF (Yq(M).LT.Y(M.1)) 216.223

216 I.X(4)*CDX.2.00I
NPP.1q1 217 CS(I,J)2.OR.(CS(I.J),ANfl.MKC)?oo 2F40 (4I,2000) (X8tT),YS(T),T.].N) KTaTYPF(M)'TMP(?)PFAO (MI,2001) (TYPtI),Isl,NR)

CS(I,J)L(T.CR.(C5(I.J).ANO.MKC(2))Xl(P,I,.1).XRf2) KT.2DTMP(4)
C(T-1,j)PT.OP.(CS(T-1,J).ANfl.MKC(4))t)O 100 M.1,NB KTu.20TMP7)IF (T,0G.LE.0) GO 304 C(I.J)KT.OP.(CS(!,j).AN0.MKrt7)X (S.*XB (M) YR (MI I p5.2 KTa2*YMP (RI
CIU.1,Ja1.OR.CT1,J.AtIo.MKCCRII

21 J.J+i
YFz(YR(M,1),.2*X(M.1))/1.04 IF (YC(J).LE.YR(M.1)) 217,220- os 220 IF (x(.2)-xR(M,1)) 222,236,2213fl4 XsX(M) 221 KT?.TMP(5)ycy(u)

CS(!.I1)zKT.CP.(CS(T,J1).ANfl.MKC(ç))XF.XR(M+1)

222
GO TO 736
CS(I,J)x1.CR.(C51,J.AND.MWCYFYRlM,1)

nç IF (YR(M)_XR(M.1)) ,fl1,2lc,20R I(T=7*7MP(7)
2rfl Ix(q)*CflX.2.00I CS(T,,)aKT.CP.(CS(T.J).AN0.MKc(7))Jy(.)*coY.1.qqq

223
G 10 .31
IZX0()*0DX41.9gq202 CI(T,J).2.CP.(CS(I,,JI.Nfl.MKCl
Jyq ()*Y+ .gqqKTTY'F (M)IMP(2)

CS(I.J).KT.CP.(CS(T,I).AN0.MO(2 24 CS(T,J)2.CP.(CS(1,.p).A4fl.MKC)K1a2*TMP(4) KTTYF(M)'IMP(?)



CS(! , SKI. CR. (CU, 1) . Alr (2)

KT.?*IMP(4)
CS ( T.I.J) .CR. (CS) T1.J) .AND.HKC (4)
CS)!, JIMP(7).CR.(rc!,J).ANr,MK7))

276 JJ-1
JF (Yr(J.GE.Y(M.fl) 224.227

277 Ir ('l.LT.NR) 22R,236
22 IF (1j.i.2)-XR(M,j)) 229,716,230
224 K132*TUP(5)

CS)! ,J+l) 3KI.CR, (CS (I .J.1) .4p4r),MKC (Sn
G' IC 236

210 CSCT,J)*1.CR.(CS(I,J).AND.Mr
CS)! , j)z IP (7) .00. (Cc)! , J) .AND.MKr (7)

21 IF ('(.LT.N)) 732,211
237 K4P1&4.)

GO IC 234
211 KMP(zI
214 IF (TVPF(M).F0.3.CR.TYP(KMPr,.EQ.3) 23,236
215 pT3.!'lP(2)

Cq(!,J)3K'I.Cp.(CS(t.J).AMI).MKC(e))
21 IF (TYPF(M).F0.7) GO IC OR

IF (B.Q.2) GO IC 97
XP1 (M)XS
XR1 (M.I)3XF
YRI (M)UYS
Y1 (Mel) vYF
XXI (4)uO.
GO IC 100

97 XR2)'4)XS
XR2 Me I .XF
YR2 (M) YS
YR2(M.l)3YF
XX2(M).0.
GO IC 100

OR IF (MRP.Q.2) GO 70 99
XXI ('4)l.
GO IC tOO

00 XX2(M)31.
100 CeN1IMtJ

IF (M02.NF:.0) 237.23A
237 NPaJ7

K43P37
NRP2z'4Rel
Ge IC 200

21R KCDz1
DC 26' J31,MJ
DC 264 131,NT
K13CS(T,J) .AND.MSX
K7UCS(T,J) .ANI).M%K(,)

(43Cc) ,J) .ANI).MSK (4)
K431(400V (4)
IF (2.F.1) GO IC 258

730 IF (T.EQ.1) 740,743
240 L31
74 Li

s(7asrc(r.1,J-1).ANr).MSK(2,
KPAEI(2A*DV (2)
jF !0.4) (;C TO 755

747 K79C5(T,),J+I).ANO.MSK(2)

GO I 253
241 IF (T.0.4!) 744,247
244 L1
245 L132

K7CXCS (I-i .J-1) .AND.MSI( (2)
K2C3K7C0V(2)
IF (7C.EQ.4) GO IC 255

246 K783C5(I-1,J+1).AND.MSK(2)

GO IC 253
247 248,250
740 L*I

K2D3CS(T-1,J.1) .AND,MSK(2)
K7031(?fl*DV (2)

IF (?D.Q.4) GO 10755
240 K783C5(I,1,Jel).AND.MKC(2)

K7R.I(?00V (2
GO IC 25)

250 IF (J,.NJ) 751,256
251 Lzl

K7FCS (I-) 'J-l) .AND.MSP< (2)
K2(7E*DV(2)
IF ('(2.Q.4) GO IC 255

252 BaS(I.1,J-1).ANfl.MS(7)
K?R?*DV (2)

251 IF t?R.E'.4) r,e IC 755
OC IC 75

254 L2
GO 10 241

255 K132*TMP(3)
CS ( I J) CR. ( CS (I ,J) .AND 3)

256 IF (1.O.1) GO IC 250
2157 IF ftl.EQ,1) 50 IC 245
250 IF (CIE.O.2) GO 70 262
5q IF (4.FQ.2) GO TO 262

260 KODEa)
IF (I(1.EO.2) GO IC 264

261 CS(I,J)1.CR.(C5(I,J).ND.MkC,
GO IC 264

267 CflE.1
IF (1.EQ.2) C TO 764

21 )(CDEs2
CS (I,)) 3.CR. (CS)!,.)) .ANO,MKC)

264 CC'4IIMIPF
DC 26 JaI,NJ
DC 76 I=l,NT
Kc=Cc(T.J .4JP,MSK(S
KS=I(c°DV (5)
IF (15.FQ.1) ',C IC 76
K41a05 (I-i ,J) .AN).MSK (4)
K4l(4IDV (4)
F (I(41.E5.2) GO TO 765

CS)! , .J) WIMP (7) .OR. (CS (I,J) .A,rn.MKf (7
GO TO 768

765 KT?*TiP)7)
cc)!, j) aKT.CP. (CS (1 j) .ANr).Mkr (7

766 CCJIT'JUF
OF I I P .I

7000 FrPMAT(7F10.0)
200) FCPMAT(7!I0)

F 'Ifl



S)'RRUTINE PAPSFT
CMOJ/TVPCL/PLMTN.PLMAX .XMTW, XMAX,TXM!N,TXMAX ,TYMN.TYMAX
CCMI'J/TVGU1 DF./TMCtW TFXT TTV
CO(MOl/TVFACT,rAr.T
CCMMOS4/TVTIJNE/LPFN.LPF, ITAL, yWTNy, TrTS, IPI, tjP
COMM0J DELTAS,DT,DT7,0140X ,DT4DV,F1TCP,OTOX ,DTriY ,DTDxS.OTDVS,DTP,

0TPP,f)TVP,DX',0XCfl2,DXT4,DDJ,DXP,0VC,flVCD2,0VT4,DVIM,0
COMMO4 FPS,G.6H,GX,0X0,GX0T,r,Y,GVn,nYnT.k,ICNTR,ITEST,K,KKK,LL,

TV,flXO,flY,DYC2flX,DXOflY.DYO0X
C0M1O A(40,20),q1(40,20),92(40,20),93(40,20),84(40.20),CS(40.20),

S flV(l5),IMP(1S),MKC(15),MSKUS),MU(40,2O),NF(30),N1((40,2O)S NXT(40,2O),Pq40,20),p(3O0O),PS1(41,2fl,R(40,2fl),SP(6Oe20),
S SPT(40,20),U(41,21),UPC3000),t?T(41,2l),V(41,21),VP(30001,
S VT(41,21),XC(40),XPf3000),XP30),XPL(30),YC(20),VP(3000),
S VPO(30),VPL(30),ZFTI4),21).UDO(l0),VPO(30)
COMl0J (NBP,NRP,pRP2,XR1(2fl,X)32(?l),YR1(21),VB2(21).XXl(2O),

5

PAL u),Mtt1,MII2,WK,MKT
IWTF6!P Cs,PS
nr ?q Jaj,Nj
DO 29 T.1,NI

2Q9 NK(I,J)0.
00 300 K1,NP

100 Pc(a3.P.(P$(K.At.J0.MKC)
K 1

DO 301 J.1,NJ
00 301 I1'T
KT4eP4P (q)

30) (J)T,OR.(Cs(I,j).ANfl.Ml(C(9))
T4Pxa0XP
TEMPY z) VP
00 11! TT-1'NPP
t1XPTMPX
VPTjPy
IF (T5PAC.LE.0) GO TO 900
IF (4c(II).E.1) GO TO 900
0xP.0xp..s
DYD.0yO*.5

90t) C01TP4IJ!
YRYPO C TI)

)? X.XPO(TT)
30 I.X*0)X42.

JY"0Y+2.
K1CS(1 ,J) ,APt'J.MSK
K2Cc(T,J) ,AN0.M5K()
K?*(p*flV(2)
IF ().FO.1) ('IC TO 109
IF (().F0.2) 60 TO 3)0

304 Cc(T, ,).4,CR.(CS(T,j).ANO.MKC)
PS(I() 1.OR. (PS(w) .ANO,MKC)

400 KT&lrLIt)IMP(3)
PS(I()iiKT.OR.(PS(K) .AND.MKC(3)
XTaIM(4)
Pç(K)zI(T.OR.(PS(K) .ANO.MKC(4))
P1K(T.j)NK (t,J).1
KQ.Cc (1 'J) ,A1p.Mcj (0)

P(QKq.r)V (9)
IF f(9.NF.4) C TO 305
Kr-NF (It) .IMP (9)
CS(t,.J)ZKT.OR.(CS(T.J).ANO.Mkt(9))

GO TO 10
305 IF (4F(jI).EQ.K) GO TO 306

KTz3*TMP(9)
CS (I, J) KT.CP. (Cc (I .j) .ANO.MkrCq)

30, UT(T,J)UPO(TT)
VT (1 .1) uVPO (TI)
UT (T.l.J) (1PO( It)
VT CT, J' 1) .VPO (Tfl

307 XP(K)zX
VP(K) V
KzK.)

IOq XX.0XP
IF (x.GT.XPL(tI)) 3o0,303

309 V.Y.OVP
IF (Y.GT.YPLUT)) 315,302

310 IF (.N.1) ("0 TO IOR
111 PS(().2.OP.(PS(K).AMfl.MKC)

K7CS(T,J) .ANU.MSK(7)
K7K7*0V(7)
KTK7°TMP (2)
P(IXT,CR.(PS(K).AND.MKCi2))
GO TO 400

319 CONTI9'Jr
DC 36 J1,Nj
DO 316 I1,NT
C5(I , J)BIMP (10) .OR, S(I,J) .AND.MKC(1O))

316 C9(T,J)TMP(11) OR. (C5(I.J) .AP4D.MKCUI)
XTaT4' (5)
00 317 Kzl,NP

3)7 PS(X)itKT.OR.(PS(K).AND.MKCCS)I
KT*2*TMP (5)
00 39 K1,NP
IF (XP(K).GT.1.024.APD.XP(K),IT.1,026) GO TO 318
IF (XP(K).GT.2.024.A'0.XP(K).LT.2.026) 00 70 118
I (XP(K).GT.:3,024.Afl.XP(K).LT.3.0?f,) GO TO 118
00 TO 319

319 PS(K)a(T.OP.(PS(K),AND.MKC(5))
319 CO)TT4I1E

CALL PFCEL
PFTUR'l

'40
SI)RPOUTINE FLOCEL
COMMO.J/TVPCOL/PLMIN,PLMAX XMTP.XMAX ,TXMIN,TXMAX,TYMTN,TVMAX
COI4MOWTVGUI0E/TMO0F ,TEXT .TTV
CCMMO'4/TVFACT/FACT
C0/TVTUNF/LPEN,LPEF, ITAL, !WTNK.TPTS, IPT, ItJP
COMMO9 DELTAS,DT,072,DT4DX ,OT4OV,DTCP,DTDx ,DTDY,DTDxS,DTDVS,UTP,

S DTPP,OTVP,DXC,0XCO2,t)XT4,D,IIN,D*P,DYC,DVCD2,0V14,DVIM,DYP
C0MMO S,G,GH,r,X,cx0,GXoT,Gv,GYD,GybT,M,TCNTR,ITEcT.kT),)cK(.LL,

5 MT,MO,MIJ1,MIJ2,!181,P4B2,P4I,Nt41,NIP1,NJ,MJM1,NJP1,MP,NDR,NTP,
S ODX,ODX2,ODX5,ODV,O0V2,Y9,1 ,Q2,T.TCP,TL,TP,TDP,TVP,U0,

vo,W, IVO,DXO2OY,DyO2OX,0XCflY,OYODX
COMMOM 6(40,20) ,R1(40,20) .G?(a0,20),93(40,20),94(40,20),CS(40,20),

Dv(15),tMP(1c,,MKC(15),MSK(15),MU(a0,20),NF(3O),MC(4fl,2O),
S N)(T(40,20),Pf40,20),Pc(3000),PSI(41,21),R(40,20),SP(40,20),
S SpT(4o,2n),IJc41,21,,Up(300n).JT(41,21),V(41,1),VP(3rI0fl).
S VT(41,21),XC(4O),XP(3000),XPflC30),XPL(30),YC(20),Y(10fl0),
S YPO(30),YPL(3fl),ZET(41,21).UPO(30),VPO(30)
COMMO') KNRP,MRP,NRP?.XP1(21),X92(?l),Y81(21),V82(21I,X*l(?0),

S XX2(20),I5AVF,XT,XA,jWflG,0TP,TDP,WC,ISPACE,r)UM(9)
PF4L Mtt,MtJ1,Mt12,NK,MKT
IMTEC,FP cS,Ps



qq J=?,riJM)JMljl
Jol.: I. 1
DC 818 I=2,NTM1
P41=1-I

K)=Cs(!,J) .ANfl.M5K
IF (K1.FG.4) GO TO 00
IF (I(1.NE.S) rc yc 818

800 Kq=cS(r,J).Af1o.MsK(g)
K01(Q*flV (9)
IF (19.NE.3) (0 TO 815

I KT12D1P(11)
K12.2*TMP (10)
Cs (I, j) KT1 .CR. (CS (1 ,J) .AND.MC C 1))
CS C I, JP1) T1.CR. C CS (I,JPI) A.I0.MKC I II)
CS CIP1 ,JP1 ) KT1 .OP. (CS (IPI ,JP1 ) .ANI).MICC (11
CS(TP1,J)*KT1.CP.(CS(1P1,J).AI0.MKC(Ifl)
CS(TDI,JMI)KT1.OP.CCS(tPl,,JM1).4W0.MKC(ljI)
CS(I,J4flsKTl.CR.CCSC!,JM1).AW0.MKCC11))
CS(IMl,JM1)KT1.CR.(c5(IMJ,JM1).AN.MKC(1j))
CS C I J) .KT1.CR. (CS C IMI ,J) AM0.MICC1))
Cc I ,JPI) KTI.CR. (CS ((Ml ,JP1) .AND.MKC(1 I I
CS(I,J)'KT2.OP.(CS(T,J).ANO.MKC(lfl))
CS(I,JP1).KT2.OP.(CScI,JP1).AND.MI(CCI0))
CS ( IPI, JP1) RKT?,CR. C IPI .JP1) , AND.MIC( 10)
CS (IPI,J) =)T?.OP. (CS C IP1,J) .4JD.MKC(1fl)
CS(IP1,JM1)KT2.CP.CS(IPI,JMI).AND,Ms(C(IO))
CSC!,JM1)=XT2.OR.(Cc(hJM1),AMD.M,C(10))
CS(I41,JM1)mKT2.CR.(CS(IMl,JMfl.AI0.MkC(10))
CS (1'41 ,J) =KT2.OP. (CS ft.i1 ,J) .440.MI(C (10))
CS (I 4I JP1) KT2.CR. (CS (TM) .JP1) .AND.M$C (In)
Mi.)
MR. 1
MR.)
MT.1
KARCS(IMl,J) .AND.MSK
IF (c1A.0.2) ML2
K18.CS(TP1,J) .AMO.MSK
IF (I(18.FQ.2) MP.2
K)C.CS(I,JM1) .A?4fl,MS4(
IF CK1C.EO.2) P48=2

n.rcCt,JP1).ANrI.Mcw
IF (!(1fl.FQ.2) MT=2
IF (lL,MR.MB.MT.PE.4) GO TO Rol
JM2SI-7
JP?.j.2
IU2=I?
1P21 +

7 KT2.7*TMPCIO)
CSC1,JP2).KT2.CR.CCS(t,JP2).AMO.MP(Ct10))
CS C IP1, J02) XT2,OR. CCS( IP,JP) .AMO.MIC( In)
CS(tP7,JP2)T2.CR.(CS(IP2,JP2).AP4!).MKC(ICI))
CS(IP7,JP1)*KT2.CP.CCSCIP,,JP)).A10.MKC(1n))
CS I T'7, J) KT2. CR. (Cc UP?. JD.MKC( in)
S(IP.JMl).)(T?.R,(S(1P7,JMI).AN0.MKC(10))

CS(TD?,jM2)Kt?CR.(CS(1P2,JM7).AN0.MKC(1O))
C5(j,jM2)T2R(rS(IPt,JP4).AN0.MC(1O))
Cc(1,JM2)=KT7.Cp.CCS(T,JM2).A!ID.M)(C)10))
Cc(Pl1,jM2)z,(T7.CP.(CSCIMl,JM,).AI0.MKC(tfl))
CS(I.JM2).KT?.CP.CSCIM?,JM7).AN').MKC(in))

CS(Pl7,J).KT?.OR.CCStTM2,,J).APD.MKC(1fl))
CS(T1,jP1).KT2.CP.(CS(IM?sJP!).A(4f).MKC(10))
CS(1M7,jP2),(T2.0R. CrS 1M2.JPP) .A,0.M'(C (10))
CS C IM1, JP2) KT7.CR. (CS( IMI ,JP7) .ANO.MKC( ir))
(30 TO 818

801 IF (ML+MR+MR,N.A) 80 TO 802
JP2 j 2

3 $çy?*1MP(10)
CS(T , jP7) s$CT2 CR. C CSU , JP) 4'iD NyC C tO)
CS(1P1.JP2).KT2.CP.(CS(IP1,JP).AM0.MKCCI0))
CS(TM1,JP2)T2.OR.CCS(IMI,JP7).A!jD.MKC(1f)))
GO TO P18

802 IF C +,p.1T.h'r.6) 00 TO 803
JM2.J-?

4 KT2?TVP(1O)
CSCT,JN?)=I(T?.CR.(Cc(!,JN2).API0.MKC(I0))
CS (I .JM2) KT?.CR. (CS( IP1. JM2) .Apr).MKC( if) I
CSCT'41,JM2)KT2.CR. (rS(XM) .JM7) .ANr).MKC(10)
GO TO 18

803 jF (L.MB.MT.N.6) GO TO 04
1P2=1,?

S KT2?TMPC10)
CS(!P2,JMiKT2.OR.f,S(IP7,JMl).AJf.MKC(10))
CS C I P..J) .IcT7. OP. C CS C IP2, , AWO .MXC (10)
Cc(IPP,JP])kT7.OP.(CS(!P2,JP1).AWD.MKC (In))
GO TO 818

804 T (MR.M8+MT.JE.6) GO TO 805
IM?=T-2

e KT2.o7MPtI0
CS C t'4',JM1) $<T2.CR, 'CS C 1M2.JM1) .AND.MKC C 1) I

CSC1?,JPI).KT2.CR.tCS(IM2,JP1).AND.'4KC(10II
GO TO 818

805 IF ('41.MR.NE.4) GO C 806
JM2 J-2
JP2=J.?

7 KT2.7°1P4P(10)

CSCT,JP2)=XT2.OR.CCS(T,JP7).ADMPCC(10))
CS (TP1 .JP2)KT2.CR. (CS C IPI .JP7) .ANO.MWC C 10))
CSCI(1 ,JM)*yT7,R. IrS dM1 ,JP47) .ANO.MkC (10))
CS(T,JM?),I(T?.Cp.(Cc(I.JM7).AJ0.MWCC1n))

(10))
GO T 818

0A I CL,MR.NE.4) GO TO 807
JP7J.2
!P?1 .-

P P(T2.7'T'IP(iO)
CS C PAl ,JP7) K12.CR. 0S C IMI ,JP) .AWD.MKC (10))
CS CT PP2) .KT7. CR, ( CSli, JP7) MiD. MKC( 10)
CS(1P1,JP?)(T2.OR.CCS(TP1,JP7).AN0.MKC Cml)
cc (!P,jP2) =KT7.CR. (CS (1P7.JP7) .AND.MK (in))
Cc(tD?,JP1)(T2.CR.fCS(IP?,JP1).A.MKCC10))
cs(!,j)=KT?.CP.(Ccq1P2,J).AID.M1(CM0))
CSC1,,,JM))T.CR.(CS(IP7,JM1).AMD.MKCC10))
or To 81(3

807 IF ClL.MT.JE) GO TO 80(3
JM2 = -7
(P2=1.?

Q KT2.7DTMP(IO)
CSC1,.JPl)(T7.OQ.(CS(1P,,J1).1n.MC(10))



14 T?*TMP(1O)
CS(Tp1,JM2)T..P.CS(IP1,JM?).AND.MKC(1O))

CS(tD1,JM2)KT?.CR.I5(IP1,JMp).4,4D.MKc(1, CS(I.J'2)T2.OP.(CS(T,JM2).j0.MI(C(1n))
C1,jM2)T2.Op.cccfIJM2.a,o.MIC(1o,) CcUu1,JM2)T.OP.frSIM1,JM?).AMt.MKC()M))

Cc(I,JM2)KT2.OR.S(tM?,JM2).ANl).MKC(1O)
GO TO RIP Cc(I?,JM1)KT2.CH.uS(IM'.JM1).AMO.MXC(IO))

ROR IF p.NE.4) p CcCtM?.J.KT.CR.(CcfIM2,J).AN0.MkClO))
Cc ( ,JPI) KTP.OR. (CS( 1M7,JPI) .AN0.MC C in)

XM2zT-2
In KT2?TMP(10) Cs(I4l,JP2)=s(T2.oR.crS(IM1,Jp2).Awn.MxCUo))

CCT,JMI)KT?.OP.rCSCIM,,JM1).AN0.MKcC1n)) Cc(I,JP2)ZKTP.3P.CCSCI,JP2).AND.MWC(10))
CS(T'17,J)KT2.OR.(Cc(TM2,J.AD.M,(C()0), CS(TPi,JP2T2.C.CCS(l,Jp7).MKCU0
C(IM2,JP2)KT2.CR.CCSCIM2eJPP).AND.MKC(1o)) GO TO 18

CS(1M7,JP1)*KT2.OR.fcSCIM2,JPl).ANO.$IcCCIn)) All IF (.ME.2) GO TO P14

C(IMI,JP2)'kT2.OR(CS(IMI,Jp2).A0.MKCUO)) JP2m.J,2
CSCI,JP2&(T2.OR,CCSCI.JP2).AND.MCCI0)) IM2I2
CSCIPl,JP2)KT2.OP.(S(IP1,JP).AwD.MKC(1nfl IP2zI,'

1 KT22TMP(1O)
R0Q IF I.MT.N.4) AC TO 810 Cc(I,2,JMi)LKT2.CR.tCS(TM2,JMi).AWO.MWCCi0))

JMaJ.2 CcC11?,J)&(T2.OR.(CS(IM2,J).8W0.MKCC10))
jM2j-2 CcCI',JPi)2KT2.OP.(CS(IM2sJDfl.AIO.MKCC10))

II KT2**tMP(l0) CS(1M2,JP2).KT2.OR.(CSCIM2,JP2).AND.MKC(10))
CS(1,JP2)*KT2.OR.tC(IM1gJP?).AWC).MKC(10))

CSCT,JM2).XT2.C9.(CcCI,JM2).AWD.M,C(I0)) CcCI,JP2)KT.OR.CCcC1,Jp2).AD.MKC(IO))
CCIM1,JM2)SKT2.R,(CSCIM,JM?).AN0.MKCCIr)))
C$(2.J2)(T2.CP,ç5(IM.JMp).ANO.MKC1o)) C5(IP),JP2)SKT2.CP.(CS(IP2,JP).AND.MC(1C)))
CS(TM?,PMI)T2.OR.5(TM2,JM).A,ID.MKCClrfl) CS(IP,.JPi)T2.C.CCSCIP2.JPl).AND.MKC(iO))
CCIf2,J)=I<T?.OR.Cc(IM2,M.Aw0.MKCCIn CjD?.J)KT?.OR.tCcTP2..J).APJD.MkC(IO))
C(TM2.JPI)T2,OR.tcS(IM?,JPl).A0.P4KC(In)) CS(I,)Ml)KT2.OR.CCSCIP2,JMI).APiO.MKCC10))
GO TO 818 GO TO 818

810 TF (8.MT.NE.4) C 70 811 814 IF T.NE.2) GO ic
!M2.T-2 JM2J-2
IP2NT+2 IM2I-2

12 K1'22'tMP(10) !P2I.2
CS(I,JPl)KT2.OP.fcS(IM2,JP1).A,n.MJC(1fl)) 14 Wr2w*TMP(1O)
CSC!C?,J)zkT2.O8.tCJIM2,J).AN0.MKC(IO)) CS(1P2,JPI)ZKT?.3R.((SCIP2,JP1).AP4t.MKC(1fl))
CS(IM,JM1).KT2.R.(S(IM2.JMI).AND.MKC(1)) C(IP,,J)PT2.OR.(Cc(IP2.J).AI,0.MKC(lO))
CrP2,JPI)2KT2.oR.(cs(IP2,Jpfl.AN0.MKcC1) CS(T,JMi)(T2.OP.ICSCXP?,JM1).AND.MCC(1O))

C5(t.JM2)aT2.CR.CCS(IP2.JM7).ANn.M1C(1O))
CS(!.JM1)KT2.R.CC5(IP2,JM).AN0.MIcC(lt)) CS(ID1,jM2).K12.0R.(CS(IPI.JM?).AND.MKC(10))
GO TO 9 cc(!,jM?)*KT,.Cp.CCcCI,JM2).apJ0.MCC1n))

811 IF (L.NE.2) GO TO 812 CSCT4I,JM2)KT2.OR.fCSC1M1,JM).AJD.MKC(10))
JM2=J-2 Cc(TlP,JM?).K12.CR.CCS(IM2,JM2).APJn.M(CC1O))
JP2J.2 Cc(T,JMI)L(T2.OP.lCS(IM2,JM1).AN.MKCC1O))
1P2*T.2 Cc(142,J)KT?.OR.(CSCIM2,J).4ND.MCCCI0))

I KT2*IMPC10) Cç(TM,JP1)KT2.OP.CCSCTM7,J#l).A)D.KC(Ifl))
CS(t$1,JP2)KT2.0R.(CS(IMI,JP7).AN0.MC(10)) GO TO RIP
CccI,JP?).KT2.OR.(Cc1,JP2).aN0.t4xC(lo)) AI KqA5CSCI,JP1).ANfl.4cK(9)
CS(TPl,JP2)T2.CR.(CS(IPl,JP2).AND.MKC(10)) K9A.K9A0VC9)
Cs(IPP,JP2)KT2.CR.lSc!P2,JP?),AN.MKC(1n)) IF CKQ.EO,K9A) GO 10 816
CSCI2,JP1).KT2.OR.CCSIP,JP1).4P40.MKCC1O)) IF (RA.0.4) $0 TO 816
CS(T,,J).KT2.CP.(CCIP2,j).APd0.MKC(I0)) K1A*CS(I,JP1).ANfl.MSk
CSCID',JMI)T2.CR.tCSCIP2,JMl).AHD.MKC(1O)) IF (KIA.E0.2) GO TO 818
CS(I,JM2)*KT2.OR.(CSCIP2,JM?).A.MKC(1O)) JP2J.?
CCTP1,JM2)(T2.OR.(CSl!P1,JM2).AWD.MkCC1n)) 17 7)g*TMP(jj)
C(T,JM2)aKT?.OR.(CCT,JM2).AN0.MKCC10)) CC(!,J)KTl.CR.USf1,J),ANC).MKCC11))

CS C I. jPI) iKT1.CR. (CC I,JP1) AID.M,(C(11)
GO TO 818 kT?'.TPCiO)

817 jr CD.NE.2) GO TO 8 CcCI,J)KT2.OP.(CS(T.J).AN0,MCCin))
JM2J-2 C5(11 ,P1)T?.CR.(ccft.JP11.AM0.MKCCIfl))
Jp2J. CS(T,JD2)=KT2.OP.(CctI,JP7).AID.UWCC1O))
1M2z1-? cScI,JP2)=KT2.OR.SCtP1,JP,).ANn.PKCCin)
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700

701

70

701

300

101

00 703 Jx),NJ
DC 703 Isl.NT
K?zCc(t,J) .ANU.MSK(2)
K2K?*OV (2)
IF c'.NE.1) 60 T 703
K7CS(I,J) .AN!D.HSP (7)
K7.K7'DV(7)
jF (K7.Ffl.4) (30 10 702
IF (K7.Q.3) GO TO 701
IF (K7.Q.2) r,c TO 700
117(1 ,J)sIIT ( t.?,J)
UT (1.1 i) 5(11(1 J)
GO 10.703
UT (I 1J) =111 (I-I .J)
UT (Tel ,J)s(IT (I ,J)
GO 10 103
VT (I J) svT (I ,J.2)
VT (7 ,J+1 ) aVT (I ,J)
GO TO 103
VT (1, J) *V7 (I
VT(1 J+1 ) cVT (1 1J)
CO NT I N' (F

PFT URN

StIRROLITINE FSBflC0(KK)
CCMMON/1VPC0L/PLM!N,PLM4X,XMTN,XM4X,TXMT4,TXMAX,TYMTt.T'MAX
COM40N/TVGUI OE/TMCDE , TEXT ITV
CO O\/T A OT/FA CT
C0MON/TVTUNE/LPFPuI,LPEF,ITAL,TW1Nl,TNTS,IRT.IUP
CONUON OELTAS,OT,DT?,11140X.OT4DY ,rltCP,DTDX,DTDY,DTDI(S.DTDVS.DTP.

0TPP,t)TVP,DXe.DXCD2,DXT4,DTN,flXP,DYC,DYCD2,flYT4,DYIM,flYP
COMMON EPS,G,GH,GX ,eXD,0T,AV,GYOY0T,M,tCNTR,ITET.0,K1cX.LL,

MT,MC,MlJ1,MU?,pIR1,NB2,NI,NTl),NTPl,MJ,NJMl,NJP3,NP,NDR,NTP,
C0X,00X2,CDXc.O0Y,O0V2.CDYS,R1,R?,T.TCP,TL,T0,TPP,Tv,UO,
V0,W, TVO,OXO7I)Y,0Y020X.DXOflY,DYCDX

COMMON A(40,20),R1(40.20).P2(40,20),P3(40,2O),M(40,2fl)1CS(0,2O)
Dv(15),IMp(Ic,,Mc(15)eMsK,Mu(4O,20),NF(3°).(40.2O)
(U(T(40,20),P(40,2O),PS(3000),PSt(41,?t).R(40,20),SR(0,20)
SRT(40,20) ,U141.21,) ,U(30O0) ,UT(41,21) .V(41,21 ,VP(3000)
VT(4l,21),XC(40),XP(30fl0),X'0(30),XPL(30),YC(20),(3Ofl°)t
YPO(30),YPL(30),ZET(41,21),UPO(30),VPO(30)

COMMON NBP,N8P,NPP2,XB1(2fl,XB2(2i),Yl(?1).Vk2(2l),XX1(2O)e
XX2(20),TSAV!,XI,XA,TW0G,0TR,TPP,NC.TSPACE,0UM()

REAL MllMlP1,MJ2,NK,JKT
INTEGER CS,PS
IF ($(kt(.EQ.3) GO TO 005
00 101 J52,NjMI
DC 101 152.NTM1
K1CS(T,J).AND.MSK
IF (l(1.NE.5) (30 TO 301
K1RCS(IGl,J) .AN0.S
IF (X1F'.NF.3) GO TO 100
OIl Tél, .3) .111 Tl, J) ,AXI1T

GO TO 101
K30CS(T,J+l).4Nfl.SK
IF (D.NE.3) 60 TO 101
VIII, l+1)V(T,J.3 I .AYflT
CO NT 7 'II IF
00 411 1=2,NjM1
00 411 Iz?,NTM)
K1Cc(T .J) .ANI).Mc((
)F (c1.I'W.5) 60 70 41

l(3Asrc(Tj,J) .ANr.McK
IF (X1A.NF:.3) (30 10 407
UT (I ,.)) UT (1.1 ,.))
GO TO 4L)0

47 K3RsOcII,1,J).A)n.Mcw
IF ('(10.NE.3) 60 10 408
07(1.1 ,J)sUT (1 ,J)

4110 )(lCsCc(I,J-1).ANT).McK
IF (XIC.NE.3) GO TO 409
VT II, J) $VT (I ,Jj

409 Klr)=Cc(T,J.1).4Nr,.Msi
GO TO 411
IF (1P.WF.3) GO TO 4)1
VT I I , J.l) aVT (TiM

411 CONTTN'IF
DO 43 Js2,NJMI
JMsJ..)
JPrJ.3
DO '#15 1s2,NTMI
IMst-1
10.1,1
KICS(T,J) ,A#jf).MS((
F t).NE.5) 130 TO 415

K18s0S( TM,J) .ANr).MI(
J(1RcSlTP,J) .AND.MSk
KiC=ç(1,JM) .NflMSK
K)r(sc CT ,JP) .ANO.MSK
IF (K)A.NE.3.AN0.tiD.EQ.3.AN0.((I0.0.3.4N0, (K1C.E0.4.OR.X1C.EQ.5))

8? 70 416
IF (CIA.E0.3.AND.XIfl.EO.3.ANI).KlB.N!.3.AND. (k1C.E.4.0P.K1C.F0.5))

c r,o TO 417
IF 1A.NE.3.AN0.CKiF).EQ.4.Op.P1D.E0.5) .AM0.l(1B.E8.1.ND.X1C.FQ.3)

GO TO 4)0
IF (P(l.EQ.3.AN0. (X)r1.EQ.4.OR.I(1D.EC1.53 .A,0.KJB.NE.i,AND.l(IC.EQ,3)

* (3? TO 419
IF (1A.EQ.3.AN0.10.EQ.3.ANfl.K1R.!0.3.ANfl. (KIC.E0.4.OP.KIC.E0.$))

* 6 TO 420
IF ((34.FQ.4.CR.Ic1A.EQ.5) .ANfl.K1fl.E0.3.A.K1B.E0.3.4Nfl.1C.O.3)

70 41?
IF (lA.Efl.3.AND.(X1r.EQ.4.OR.lD.E(3.5) .AND.KlA.EG.1.4N0.WIC,FQ.3)

* 60 7? 413
IF (X)A.EQ.3.AND.((lfl.FQ.1.AND. (K1R,Fo.4.0p.1R.EO.5, .AND.K1C.FQ.3)

I AC TO 414
r,o TO 415

41A UT(j,j)sl1T (TP,J'4) tJT(IP.JM1I,T(ID,J2)
VT(I,.IP)SVT(T,j).VT(T.J)-VT(T,JM)
60 10 435

417 UT (I, 3) SIlT IT ,JM) clii (I ,JM) ..IJT (7 ,J-2)
VT(I, jP) sVI( I J) .VT IT ,J) -VT (7 ,JM)
GO TO 415

410 UT(TD,J),IiT(1P,JM),ilT(IP,1M)_IlT(!D,J2)
VT(T , J) $VT I I , JP) cvi U JP) -VT I' J.7)
GO TO 415

430 01(1. J)sIlT(I,JM),IlT(T.JM)_UTtT,J2)
V7(T,j)sVT(I,JP),VT(I,JP)Vi(?,J,7)
GO 70 415

420 VT U, (P3 zVT (I ,J) ,VT (7 ,J)-VT IT ,JM)
GO TO 415

41' lIT (70, 1) zii7 IT ,J) .111(1 .J) 1JT IT'J)
A? TO 415

431 VT (I, J)SVT(T ,JP1 .VT(T ,JP)VT (
6' 1' 15



44 'T CT I) =111 C !'J) .IIT I'D,J)..IJT(,,J)4c C'NT1'J''f
J,NjM

jMJ-1
JD= J.T
r) Rr. T=?,NTM1
K1CS(1.J) .ANT).MSK
T t!.NF.5) (;C ro rC4

1cs(TP,J) .ANfl.1Sw
KC=rS(J,JM) .ANfl.MS1
Kin S ( I jP) AN) MS
I.EO.3.AND.K1A.P.3.AND.l1B.NE.3

.A.(Kth.(Q.4.CP.$(1fl.FO.I)) 40 T 90r)

TF.O.3.ANb.K1A.NE.3.ANtC.k1R.N.
A.CK1C.EQ.4.CP.K1C.F0.c)) 40 70 O3

IF (w1A.Q.3.4Mr. (K1R.Q..Cp.g.!Q.5).ANfl.KiC.P4E..AN!).K1D.NE.3)
(0 TO 402

IF (ci.Fo.ANn.(K,a.Eo.4.cR.KIA.EC.c,.AwD.w1c.N..A.(Ir).NE.3)
G' TO q03

Gr TO 404
acm vrcr, J)VT(I,JP).VT(T,JP)-VT(T,J.9)

GO TO 404
Rni VT( T.jP)VT (i,J) .VTfI,J)VT(y,JM)

3" 7 41)4
4')? CJT(T,flztlT(IP,J),IJTCTP,J)_CCT(T.2,J)

r,o T 404
M0 UT (jP,J)IT (T,J),UT (T,J)-UT(TM,J)
404 CONTINUE
405 1) 4flF, j.2,MJMI

JMaJ..j
Jpzj.I
DC 406 Ie2,NTMI

IF (K1.NE.5) GO TO 406
IMT-i
IPX! .1
1(145Cc C TM,)) .ANG.MSK
KJRCS C TP,J) .AND.MSI(
qCRCSCI,JM) .AN1).MS'(
KiflCS(I,JP) .4P41).MS1(

lqczIs(IM,JP) .AND.MqK
KiFslS(IP,JP) .AN1).M5Kuos C IP,JM) .ANO.MSK
K1MxCSCTM,JM) .AN1).McK
IF (K N3.OQ.1(TF.NE.3) 40 TO 807
VT(ID, IP)aVTCI,JP)
IF (iA.0.4.C4.KIA.FQ.5) VT(,P,JP)sVT(T,JP).VT(I,J)-VT(TM,JP)

fl7 IF C A.NE.3.CR.KTF.NE.3) 'O TO 8o4
VT C I M, .IF') sVT (I JR
IF (Ki4.FQ.4.OR.K1.FQ.i) VTCTM,JP)RVT(I ,Jp)evT II,JP).VTUP,JP)

404 IF' ((IC.NE.3.OR.KTF.NF.3) GO TO 8n
I), (T.)P)&)T (IP,))
IF. C C.EQ.'.OR.1(lC.FQ.S) 'IT (rP,JP)aIIT (IP,J) .UT (IR,J)UT(TP.JM)
xc (1C.NE.3.C4.K1r,.'E.) GO TO RIO
UT I TP,JM) silT I JP,J)
IF CKlfl.FQ.4.'P.K1l).FQ.5) UTITP,JM)sllT(IP,J) .UT (I,J).UT(TP,JD)

411) IF (l(1R.NF.3.CP.KIG."IE.3) (,O TO RiI
VI (T',J) sVT (I ,J)
IF (K14.0.4.C.K1A.F1).3) vT(,P.fl.VT(t.J) .VT(f,J)VTUIM,J)

911 IF (1A.NF.3. .1(1H.PlF.3) r'C rO R
VT C IM,l =VT CT .J)
IF (wiR.F().4.C.KIR.FQ.S) VT ('M,J) myTh,)) .VT(I,J)-vTCt,J)

RI? IF C1(Ifl.N..OR.l()F..3) GO TO R1
lIT CT. IP) sIT C I .J)
IF (KIC.FQ.4.CP.1(IC.E().S) liT CT,JP)IIITCT.J) UT(I,J)-IITCT,JM)

411 IF KiC.NE.3.OP.1(1H.IIE.3) 60 TO 806
UT C I iN) .111 CI ,J)
IF C1()0.EQ.4.OR.K1D.F0.5) UT (T,JM)IIT(T,J)+IJTII,J)-IIT(I,JP)

406 CCNTTNI'E
RFTURN
END
SUPPOJTINE ONTROL
C0MMOJ/TVPCCL/PLMIN.PLMAX .XMD', XMAX ,TXMIN,TXMAX,TYMTN.TYMAX
CCMMCJ/TVGUTDE/TMCnF,TF*T. ITV
COMMON/TVFACT/FACT
COMMCl/T VTU F/LPEN,t REF. t TAL, I WINK, IPtTS, ToT, IUP
CONNON 1)ELTAS,OT,OT?.OT4DX,flT4DY,1)TCP,DTDX,f)TDV,DTDXS,DTDYS,OTP,

3

COMMON EPS,6,c,H,GX ,r.X0,Gx1)T ,r,v,f,Yr,,GVDT,M,ICNTR,ItST,1(1),KKW .IL.
3 MT,MC,NI}I,MII?,N8j,N42,NI,NT1I,NTPT,NJ,NJMI.N.IP1,NP,Nl'R,NTP,
3 cDx,Cox2,cDxs,oDY,00'y?.Orvs,pi ,R2,T,TCP,TL,TD,TPP,TVP.Il0.

V0,W,IVC,flXCr)Y,0VO()X.DXOnY,r)YODX.
COMMON A(40,20),R1140,20).42C40,20),43(40,20),B4(40,20),CS(40.20),

3 )V(15),IMp,MKC(I5),M(lc).Mu(6n,20),F(10),NP(C4fl,20),
S NKT(40,20),P(40,20),PS13000),PST(41,?I),R(40,20),SPC4O.20),
S SRT(4O,20),IlC41,2I),Up(300n),IIT(4I.2I),vC41,1),VP(31)0O),
S VTC41.21),XC(40),XP(3flfl0),XP0(30).XPL(3O),YC(2G),YP(I0fl0),
S CPO(30),YPLC31)),ZFTC4T,?I),1JP0130),V00(30)

COMMON NAP,NBP,MBP,,XB1C?1),XR2(?1),Y1C?1),VR2C21),XXIC70).
xx? (20) . ISAVE .XI,XA, IW1G ,DTPP.TPP .NC TSPACE,r)UM (5)

RFAL MIl,MIj),MU2,NK,NKT
INTE3E CS.S
DTIAEPISTON AA(31107),JTIMF(7)
EOUIVALFNCE (AA,OELTAS)
CALL STATICS (JTIME)
IF' (ISAVE.GT.0) GO TCI 607
IF (T.NE.0.) (30 TO oo
CALL DLTPAP
CALL CELPRT
TP.DTP
T(paflTrP
TDPwf)TPP
TVPLITVP
TPR.OTPR
WRITE (NTP) 1)IIMMY
01 TO 605

600 IF (1(.EO.2) GO TO 606
IF CJTTME(3).GT.1S000) GO TO 595
CALL LTPAR
CALL 'PSPLT
GO TO S'6

.R5 STIM.JTTME(I)
ITIMFzST!M.001
CALL RSPL.T
IF (T.LT.TP-.0000000)) GO TO 601
CALL atTPAR
TpsT.r)7P

601 TF(T.LT.TCP.0000000i) GO TO 602
CALL CELPRT

596 WPTIF ('10,6002) T,ITTME
WP!TF (P.TP) 44



IF (.IT1MF(3).LE.1SOrn) GO 'r
TFXTj.

TCPT.0TCP
607 IF (T.LT.TPP-.00000001) 7 KK2

CALL APPRT KK3O
TDPT.0TPP 00 707 K=3,NP

601 IF (T.LT.TVP-.00000001) GO TO 604 KP.P(K).AND.MSK
CALL ,LTVrL 1W (,DfQ3) r,o TO 702
TVP.T.OTVP IF (!90G.LE.0) GO 70 604

04 IF (T.GF.TL.0000000fl I0? X.(5.*XP(k)-YP(x))/c.2
Oc T=T.r,T Y.(YD(W)..2*XP(K))/1.04

WPITF MC,6004) JTTMF'(l) GO TO 605
RFTUP 604 XXP(C)

AflA CALL CLPT YYPqi
CALL '49PP1 605 IsXP().*OflX+?.
WPTT (MO,6000) J*YP(IO*00Y2.
GO TO MIs KtCSU,J).A40.MSK
p I0IM1,!WfG IF (kI.F0.2) GO TO '102

609 RFAO('JTP) 0!Y IF ((I.E0.I) 30 TO 702
FA0(JTP) AA KK1sK(11

IF(O1',(IF1X(T,.5),5 ).NE.o) PACKSPACE NIP X1(Kk1)X
PtMpJXI Y1(Kl)aY
P 'lAXXA 7')? CONTI1UF

XMT'.J=X
IF (K'(l.EQ,O) GO TO 701

XMAXXA CALL TVPLCT(*1,Y1,KKfl
ISA VF0 701 00 703 .1,NP
WPTT IMO,6003) T KP.PS(K).AND.MSK
GO 1!' MIS IF (19.F0.3) '30 TO 7fl3
Kfl=? XDA*7S(().A4.Msl<(3)
ENG FILF NtP KPAL(DA*OV(3)
RFWJr NTP IF (,(PA.NE.2) GO TO 70
GO TO MIS IF (T4.LE.0) 3C T 606

400() FORlAT(1N1,I0X,41HARNOMAL STOP -- LOOK FOP ANOTHER MESSAGE) X5(S.*XP(K)YPCK))/5.2
6001 FOP'4AT 7F10.0) Y.(YP(K) ..2XP(K) ) /1.04
6007 FOP'44T(IH-,IOX,1SHSAvIP9G AT 7 ,F6.3,25k -- ACC,iMiJLATEO TIME GO T A07

,t6,Ai sECONDs 606 X.XPC'C)

6001 F0R4AT(lH1,10,1PkPFSTAPT1N6 AT T ,W6.3/)H1) YaYP(()
',004 FORMAT(INO,30X,24H*..I. FLAPE0 TIME 1,21H MILLTSECONOS 607 jXP(()*O0X.?.

JVPK)*O0Y+2.
fPJfl KICS(T,J).AND.MSK
StGRo1TINE PL1AP IF (K1.E0.1.OR.K1.EQ.2 GO TO 703

COMMO'/Tk'POOL/PLMTN,PLMAX. XMIPJ,XM4X.TXMjM.TXMAA,TYMTN,TYMA
CM/I VGtIIOE/TMCOF,IEXT.TTv XX
COM',O'.J/TVFACT/FACT Yl (KK!)Y
COMi0/TVT(E/LPEN,LPEF,17AL,TWTNK,DITS,IT,IUP 703 CONTjMIJE

coo OELTAS,OT,OT,.0T40x.0140Y,OTCP.OTDX.0.TOY,OTDYS,OT0YS,OTP. IF (K2.E0.0) GO TO 900
PTPP,flTVP,OXO,OXCO?.0XT4,011N,OXP,DYC,DYCO2,0Y14,DY!M,UYP 00 704 L1.S

COM'4O EPS,G,.q;*.GXfl,GX0T,CY,GYfl,GY0T,H.ICNTR,ITEST,K0,IC,LL, 704 CALL rVPLOTx1,y,Kw)
IAT,MC,11,MU2,Nq1,NR2,NI,NTMI.NTP1ØJJ,NJM1,N.JP1,NP,NPP,NTP, 900 00 903 Kl,NP
COX.O0X?.OGXS,Cf)Y,10V?.00YC,P1,P2.T,TCPITL,TD,TPP,TVP,!10. KPP(K).AN0.MSK

I VO,W,TVO,OXO,0Y,OYC2OX,OXOOY.flYCOX 0

1W (('.FQ.3) GO 10 903
COM'4O4 A(40,?O),R1(4r),20).92(40,20),P3(40,20).84(40,211).CS(40,20).

I pV(15).TMp,Mc1,MS)S),NU(40,2fl),NF(10),NK(40,?0), KPR.#R*0V(5
I lK1(40.20),P(40,2fl,PS(3000),PSI(4).2I),R(40,2fl),SQ(40.20). IF 'R.E0.1i GO TO 901
I SPT(4r.?o).Uf41,2I),upf3fl0fl),IIT(41,?l),V(41,?1),VP(3fl0fl). IF (Tflr,.LE.0) GO TO 901
I V(41,?),XC4),XP(30rI0),XP0(30).XDL(30),YC(2fl),YD(1000).

YP030),YPL(1fl),Z(Tf4l,21).1JPfl(30),VP030)
C0MMOt kNRP,NPP,tRP,,XRI(21),YR2(1),YR1(21).Y2(21),*X1I?0). GO TO 907

I %X2(2fl,ISAVF.XI,XA,1WflG.0TDP.TPP,NC,T5PACE,flUM() 901 XXP(K)
PrAL I,MJ1,MII2,PIK,MKT Y.YP(')
IMTESF° CS.PS 90 IaXP('()'0flX42.
i)1ME15I3N X1(3000),Yfl3000)
CALL ,LTRNG K1Cs(1.J).ANf.PSK



901

Q4
70

599
600

60)

399
e0
60

604

6000

IF 1.EQ.1.NLK1.Fr).2) GC 'rC 903
KK3=(3s1
Xl ()X
Vi 1ki(I)aY
C4T I
IF X3.FO.0) OC IC 705
OC 904 LNI,10
CALL TVPLCT(x,y1,KleI,
CALL TVNFXT
PFTUP..J

SI) C)TINF PLTBt.jfl
CMCJ/TVPCCL/PLMIN,PLMAX.XMtN,XMAX ,iXM1M,TXMAX,TYP4'N.TVMAX
CoMCi/TvcIJInE/rMC0F,TrxT.!7v
CCMMCJ/TVFACT/FACT
CCMiCM/TvTt)N/LpN, PEF,lTAL.TWTNV,!P,TS.IcT,IUP
CCMMC' flLTAS,r)T ,DT',074t1x .0740Y,OICP,DTDX,IITOV ,DTDXS.OTDVS.OTP,

S flTpP,DTVp,0xr,0XCD?,DXt4,0x!J,nxP,DyC,DyCO2,0VI4,0ylM,0YP
C0MMC) FPS,G,C'HXx0,sxoT,v,GV,oT,W,tCITR,IitcT,KO,KKc,LL,

MI,MC,MIJI,MU;,NR1,NB2,NI,NT41,NIP1.MJ,M,JM1.NJPI,MP.NPR,NTP.
S COX,00X2,CDXS,CDY.COV2,00VS,p1 ,92,T.TCP,TL,TP.TPP,TVD,(I0,
S VQ,W,Ivo,r)Xc7riV,D'r2ox,DX0oY.n'vC0X
CCMMCl A(4O,pO),q1(4Ø,O).92(O,2n),R3(4fl,2O),B4(4O,2),C(4O,20),

S 0V5),TMPt1c).MKC(15).MS((15i,MU40,PO),NF(1O,WK(4O,0),
S NKI(40,20),P(40,20),PS(3000),P5I(41,21),R(40,20),SR(40,20),
S SRT(40,20),U(4I,2I),UDt300fl).Ui(41,2I).V(41,.VP(30Ofl),
s VT(41,211,XC(40),xP(3000),XPO(30).XPL(30),YC(20),VP(3000),

VPo(3o),yi'L(c)),ZETf41.21),Upo(3O),VPO(3O)
CCMM1 KN9P,NpP,N9P,XR1(21),XB2(?l),V91(2I),yB2(21,,XXI(?O),

5 XX2 (20)., TSAVE,XI, ,!W0G,DTPR.TR,MC, ISPACE,OUM(5)
RF4L II,M1J1,MI'2,NK,NKT
IPTEGEP cs,PS
DTMENSTCN Xl (1),Yl (Pt)
TEXT.O.
ir (K1RP.EQ.2) tIC TO 601
DC 600 M1,NpF
It (XXl(M).NE.0) GO 73 600
X) (J)NXB) (N)

X1(2)sXB1 (Miii
Yi(I)SVRI (Mi
VI (2) aVAI (Mi))
DC 39 I.12
CALL TVPLCT(Xi,Vj,2,
CONTINuE
ic (,(I4RP.!Q.I) r,c TO 6o3
DC 60? MNI,NRPP
IF (xX2(M).NE.0) GO TO 60
Xi (1)NXEI2(M)
X) (2)NXB2(Ml)
VI (1)*V82(M)
V1(2)zVA2(Mi)
DO 599 I.i2
CALL TVPLOTIX1,Vi,2)
C CMI I NII!
WRITE (98,6000) 7
DC 604 Ia12
CALL TVLTR(924.,72..0,3)
PFTtJR4
FORMAT(4HT N ,F6.3)
END
S,,RROUTTNF C!L PRY
CON OJ/T VPOOL/PLNIN,PLMAX,XMTM.XMAX,TXMIN,TXMAX,TVMTN,TYMAX

CON N/Tvr,tJIDF/TMCflF,1XI. liv
CCMMCl/TvFACT/FAcT
CM/TVTIJNE/LP!N,LpEF,TTAL,yWIN,.T,TS,IRr,Tt)P
COMMON DLTAS,0T,0T7,pT4Dx.PT4DV,0TCP,0T0X,DTDY,DT0*S,flTDy5,0Tp,

I 0TPP.0TVP,0Xr,PXC0?,DXT4,0IN,0XP,DYC,DYCD2,r)YT4,DV!N,flVP
COMMON EPS,G,H,GX,r,xD,GXoT,Gy,GYn,t4yDI,M, ICNIR,ITEST,K0,KKK,LL,

MI,M3,Ji,MU?,N9j,N82.NI,NTNi,NTpi,NJ,NJM1,NJP1,NP,?JDp,NyP,
5 ODX,O0X2,3DXs,CDV,D'v,CnVS,P1,R2,,iCO,TL,TD,iPR,TVD,u0,
S V0,W, TVC,DXCPDV,DYCPDX,DXCOV,OVCDX
COMMON A(40,20),R1(40,20),92(40,20),93(40,20),84(40,20),CS(40.20),

S DvC15.IM1S).Mu(C(15),HSK(i5),Mu(40,2O.NF(lO),NK(40,p0),
S NKT(4O,2O),P(4O,20),PS(30O),p5j(4i,2l),R(4Q,20),SR(4O,2O),
S SRT(40,20),U(41,21),Up(3000),uy(41,21),v(41,pl),VP(3000),
S VT(41,21),XC(40),XP(3O00),XPO(3O),XPL(30),YC(2),YP(3000),
S VPQ(30),VPL(Io),ZEy(4l,2l).uPo(30),VPO(30)

COMMON KNGP,NBP,NRP2,XB1(21),XB2(21),V81(21),V82(211,XX1(20),
S XX2(20),ISAVF,XI,XA,IWDG,DTPR,TPR,NC,ISPAC!,OUM(5)

REAL M$J,MUl,Mt)2,N(,NKT
INTEGER cs,Ps
LIMESO
WRITE (MO,8000) 7
WPIT (MO,8001)
DO BOO JN1,NJ
DO 8Ô0 INIsNI
IF (LINE.LT.50) GO 73 80)
LINEsO
WRIT! (MC8003)
WRITE (NO.8001)

$01 UJ..5*(U(Il,J),Ij(I,J))
VV..5*(VU,J,1),V(I,J))
VE(_.SORT(UU1)( '.VVVV)
Fp.P(I,J)/(R(I,J)vLavEL)
WPIT!(MC,800?) i.J,UU,VV.V!L,P(t,J,Rrf,J,Mu(I,J),Fp.CSU,JI
L.INE.LINE.l

800 CONTINIJE
WRIT! (NO.8004) 7

RETURN
BOOQ FORMAT(IHI,IOX22HCEIL. PRINT rOR TIME N
8001 FCRMAT(1H 5XIHI,3XIHJ,1OX444tjRAR,1OXAHVBAR,4XIONTOTAL V!L..6*BHPRE

SSSURE,YX7HOENSITV,SX9IIVISCOSITY,4X1014 PRES COEF,7XI0KCELL. FLAGS/i
8002 FORMATUM ,4X,12,I4,7E14.S.2x.O13i
800 FCRI4AT(1P4I)
$004 rçRMAT(1MO.20X3611.*... END OF CELL PRINT FOR TIME ,F6.l,7H '

I**/1141)
END
SUBROUTINE PARPR7
CCMMCN/TVPOCL/PLMIN,PLMAX .XMTN, XMAX , TXMIN, TXMA*.TYM)M. TYMAX
COMMON/I VGUIDE/TMODF ,T,I TV
COMMON/I VFACT/FACT
COMMO/TVToJNE/LPEP1,LPEF,ITAL, yWINK, TNTS, IT, IUP
COMMON DELTAS ,DT,DTP,DT4DX,OTAOV.OTCP,OTOX,DTDV,DTDXS,OTDVS,DTP,

S DTPP,DTVP,DX,DXCD2,DXI4.OxIN,DXP,DyC,DYCD2,nYI4,OyIw,flYP
COMMON EPS,G,GH,GX,GXD,GXflT,Gys8Yfl,GyDT,H,ICNTR,ITEST,K0,K,LL,

S MT,MO,MtJj,MUP,N8I,NB2,NI,NTMI .NIPI ,NJ,MJM1 ,NJPI ,NP,NPR,NTP,
S OOX,CDX2,00XS,00V,00VP.CDYR,R1 .92,T,TCD,TL,TD,TPP,TVP.uJ0,
S V0,W,TVO,DXOPOY,DVO?0X,DXODY,DYODX
COMMON A4O.20),B1(4O,20).82C40,20).R3(40,20),B4(40,2n),CS(4O.20),

S DV(15),IMP(15),MKC(1S,,MSK(15),MU(40,20),NF(10,,NM(40,20),
S NKT(40,20),P(40,2O),PSf-3000),PSI(41,21).R(4O,20),SQ(40.20),
S SRT(40,20),u(41,21),up(3000,UT(41,21),v41,,l),vP(3000),
S VT(41,21),XC(40),XP(3ri00),i(P0t30).KPL(30),VC(20),YP(3000),
S VPO(30) 'YPLf3O) ,ZET(41,21) ,IJPO(30) .VPO(30)



COMICN KNRP,NRP,NRP2.XB1(21),x82(1).'v81(21),VB2(21,,XX1(20).
XX21?0),j%AVE,X1,X4,IWDG,DTPR,TPR,NC,ISPACE,flUM(S)

PEAL 4U,N()1,MIJ2,NK,PJjcT
IP11!GER CS,PS
LINE.0
WRITE (MO,90Q0) T
WRITE (P40,9001)
DC 900 K.1,NP
KPPS(K) .AND,MSK
ir (KP.E0.3) QO 10 900
W!T (P40,9002) K,XP(K),YP(K),UPlK),VP(),PS(K)
L1NE.INEe1
IF (LTP4E,P1E.0) GO T 900
LI NE.O
WRITE (P40,9003)
WpIT (P40,9001)

900 CONTINUE
WRITE (P40,9004) T
RETURN

9000 FORMAT(1H1,1OX26P4PARtICLE PRINT FR TIME
9001 F0R'4T(1H ,9X1HK,14XjNX,14Xjps,14XtMU,14XlP4V.X2MPS)
9002 FCR'44T(IH ,I10,4!1.6,2X,O)
9003 FOR'4AT(1HI)
9004 F3RM4T(1HO,2OX40$4*ii* END OP PARTICLE PRINT FOR TIME

S !I/1H1)
SUBROUTINE PLTVEL
CCMM0N/TVPOCL/PLMINPU4AX,XMTN,XMAX,TXMIN,TXNAX,TYMTN,TYMA*

CM4CWTVGUIDE/TM0DE,TEXT, ITV
COMMCMITVFACT/FACT
COP4M$/TVTUNE/LPfN,LPEF, ITAL, YWINK, !NTS, 1*1'. TIP
COMMON DCLTAS,DT,DT?,DT4OX,DT4DY,DTCP,OTDX,DTDY,DTDXS,DTOYS,DIP,

S DTPP,DTVP,DXC,DXCD2,DX!4,DXIN,DXP.DYC,DVCD2,0Y14,OV!N,DYP
COMMON EpS,G,GH,SX,AxD,XDT,Gy,GYD,GyDT,H,ICNTR,1TE,ST,KD.KKIC,LL,
I M ,N0,MIJI ,MU2,N1 ,N92,NI .Nfl .P4!P1 ,NJ,NJMI ,NJPt ,19P,NPR,NTP,

S C0X,CDX2.0DXS,0DY.CDY2.COY,R1 ,R2,T,TCP,TL,YP.TPP,TVR,U0,
S VO,W, IVO,DXO20Y,0YC2DX,DXCIY.DYODX

COMMON *140,20) ,B1(4O,Z0) .52(40,20),B3(40,20).B4140,20),CI(40e20).
$ DV(15),IMP(tS),MKC(15),MSK(1),MUl0,20),NF(i0).NK(40.20)
S NKT(40,20).P(40,20),PS(3000),PSI(41,21I,R(40,20).Sfl(40,Z0I,
S SRT(40,20),U(41,21),LJP(3000).UT(41,21),V(61,?l).VP(l000).
S VT(41,21),XCI4O),XP(3000),XP0(30),XPL(30),YC(2t)).YP(l000),
S YP0(30),YPL(3Ô),ZET(41,21),UPO(30),VPO(30)
COMMON KN9P,NAP,NBP2,Xl(2I),XB2(21),Y81(2I),YB2(21).XX1(2O),

S XX2(20) ,ISAVE,XI,XA,IWDG,DTPR,TPR,NC,ISPACE,DUM(5)
REAL itj,MLI1,MU2,NK,NKT
INTEGER CSPS
OZMENS!CN XV(2),VV(2)
CALL. RLTRND
TEXTuD.
no io J.2,NJMI
00 100 I2.PIMl
K1.CS(I.J) .APID.145K
IF (KI.NE.4.AND.K1.PIE.5) GO TO 100
XV IT) .XC II)
XV1).XV(1)DELTASIU(T1.J).PI(I.J))
Vv(1).YC(J)
YV(2,.VVU)+DELTAS*(V(I,J.1).VtI,J))
DC 99 1.1.2

99 CALL TVPLCT(XV,YV.2)
100 CCP4TtP4UE

CALL TVNEXT

R!TURM
END
SIJSRÔUT!NE PRSPLT
CCP44,l/TVPOO/PM!N.PLNAX.XMTN,XMAX,TXM1N,TXMAX,TYMIN,TVMAX
CCM#4CP4/TVGUIOE/TNODE .TTv
cOMMCN,TVPACT/FACT
CCM)4CN/TVTUNE/LPEN,LPEF, ITAL, TWINP,INT$,IRT,tUP
COMMON DEL.TAS,DT,OT2,0T40X,DT40Y,DTCP,DTDX,DTOY,DTDXS,DTDYS,DTP,

S DTPP,DTVP,OXC,DXCD,DXT4,DxIN,DXP,DyC,DVCD2,flYI4.DyIW,DYP
COMMON £PS,G,GM,GX,RX0,GX0T,GY,OYO,AYDT,M,!CN7R,ITfT,I(0,KKK,LL,

$ MI,MC,Muj,P4U2,NB1,N82,NI,NTMI,NIPI,N,J,NJMI,NJP1 ,14P,NDR,NTP,
S 0DX,00X2.oOXS,00Y,00Y2,00YS,R1 ,R2.T,TCP,TL,TP,TPP.TVP,U0,
S V0,W,IVO,DXC2OY,DYO2DX,DXODY,DYCDX
COMMON A(40,20),91(4O,20.B2(40,20),83(4O,20),B4140,20) ,Cs(o,2o),

S DV(1S),IMP(1S),MKC(15),MSK(15).MU(40,20),NF(10),NK(40,20),
$ NKT(40,20),P(0,20),PS(3000),PSI(41,21),R(40,2D).SR(40,20),
S SRT(40,20),U(41,21),UP13000),tJT(4I,2I),V(41,1),VP(3000),
$ V7(41,21 pXC(40) ,XP(3000) .XPO(30) ,XPL(30) .YC(20) ,YP(1000),
S VPO(30) ,YPL(3)) ,ZETIAI,21),UPO(30) ,VPO3O)
COMMON KPIAP,NBP,NBP2,XBl(21hXS2(21).VR1(21),YB2(21,,XX1(20),

$ XX2(20),TSAVE,XI,XA,IWDB,OTPR,TPR,NC.ISPACE,DUM(5)
PEAL MU,MLJ1,MU2,NK,P(KT
INTEGER CS,P$
DIMENSION PC(30)
I! (T,LT.TPR-.00QOOfl GO TO 919
I NC.EQ.0) GO TO 939
TPR.T.OTPP
CALL. PtTBND
TEXT.0.
PMIN,O.
PM*XaO.
DC 900 Ju1,NJ
DO9QO
PMIN.AMIN1(PMIN,P(I,J))

900 PMAXNAMAXI(PMAX,P(I,J))
DP.PMAX.PMAX-PMIN.PMN) /FLOAT (NC-I)
DP.0P. AND 777740000000000ô00008
I? (DMjN.LT.O.) BC TO 903
SUM..3DP

901 IF (SUM.GT.PMIN) 60 TO 902
SUM.SUMDP
GO TO 901

$02 SUM.SUMDP
GO TC 905

903 SUM.,S'DP
904 IF (SUM.LT.PMIN) GO TO 905

SUM-SUM-OP
GO TO 904

905 09 906 L.1,NC
PC(L) .SUM

906 SIJM.SUM.DP
LP.Nç
DO 800 L.1,NC
IF (.PC(L).LE.PMAX) GO TO 800
LP.t.
AC T 801

609 CCNTINUE
801 CONTINUE

WRITE (M3,9000) PCW,PC(LP),DP,T
DC 936 J.2,NJM1

JP.J.1



P DC e
IRI
IPRI.1
I(1C3(I,J) .AND.MSK
K1AC$(I,JP) ,ANfl.M5(
Ki8.C3(IP,J) .AND,MSK
K'IC.CS(IP,JP) .AND,M$K
IF (fl.E0s2.CR.XIA.F0.2.CR.Kl8.EO.2,CR.K1C.EO.2) SO T 935IF (I,J)-PCI,JP)) 907,914,908

907 JI.IJP
J1J
GO TO 909

90 Jw.J
JL.J

909 D 913 L1,NC
IF GO TO 913
IF (C(I.)-P(TP,J)) 910,913.911

910 J4JL
GO T 912

911 J4.J4
912 CALL PSTCRECI,JL,I,JN.1p,J,I,J4,pC(L),
913 CONTINUE
914 1! (P(I,J)-P(!P,J)) 915,922,916
915 IHuili

IL.!
90 10 917

916 *H.T
II-uiuj

917 DQ 91 L.1.NC
IF (DccL).LE.PUL.J)OR.PC(L1.9E.PUM.J1) SC TO 921
I! (DC(L).P(1,jp)) S,92j.9l9

91 I! !C(L),0T.P(1D.J,).92O.921
919 (DC(L).0E.P(Ip,J) SC TO 21
920 CALPSTOREUL,J.1H.J,I.jp,Tp,J,PC(L,,
921 CNTpiUE
922 1! (P(IP,J).P(TP,JP), 923.930,924
921 J$.JP

JL.J
GO TO 925

924 JMMJ

925 DC 9 L.*,NC
IF (PC(L).LE,PUP.Ju,OR,MCIL,.GC.PqTp,JN)I SO TO 929I! (ClLl-P(T,JP)) 926.929.927

924 J4JL
G T 928

921 J4SJH
928 CALL DSTORE(IP,JL,!P,JN,t,JP,IP,JA,PCIL))
929 CçNTI'dtJE
930 IF tDU,JP)-PUP,JP)) 931.938,932
931 IN.TD

IL.!
SC 13 933

932 IN.!
It-RIP

933 00 937 L.1,NC
IF. (PC(L).LE.PUL,JP).CR,PCIL.S,D(TH,JP)) GO TO 9T
IF (C(L)-P(TP,J)) 934,937,93S

914 IF IPC(L).GT.PU,J,, 936,937
935 I (PCtL).G(.P(I,JP GO TO 937
934 CALL PSTORE(IL,JP,TM,Jp,Ip,J,,,JP,DCfL,)
937 CONTINUE

gig CONTINUE
CALL TVNEXT

939 RTUPj
9000 FORP4AT(1u ,1OX7HPMIN ,E12.5,SX7I4PMAX E12.5,5XTMDELP

35X7$TIME ,F6.3)
END
SU8ROUTINE P5T0RE(IL,JL,1u,JH,13,J3,T4,J4,pPC
COMMCN/TVPCCL/PLMIN.PLMAX. XNIN, XMAX ,TXMIN,TXMAX. TVMTN,TYMAX
COMMON/TVGUIDE/TMODE.TEXT. ITV
COMMON/I VFACT/FACT
CCMMON/TVTUNE/LPEN,LPU, ITAL,TWINW,TNTS,IRT,IUP
COMMON DELTAS,DT,DT2,DT4DX,DT4DY,OTCP,DTDX,DTOY,DTDXS,DTDYS,DTP,

3 DTPP,DTVP,DXC,OXCD2,0XT4.DXIN.DXP,DyC,DYCD2,0Y14,DYIN,flVP
COMMON EPS,G,GH,GX,gXfl,GXDT,gy,9Th,GyDT,I4,ICNTR,ITEST,KD,KXK,LL,

3 MI,MO,MU1 ,MU2,NB1 ,N82.PdI ,NyN1 ,p41P1,NJ,NJM1 .NJP1 ,NP,NPR,NTP,
3 ODX,00*2,00XS.ODY,00Y2.O0Y%,R1,R2.T,TCP.TL,TP,TPP,TVP.U0,
3 V0,W, !VC,OXO2DY ,DYO2DX ,DXOY,Dy0DX
COMMON A(40,20).81(40,20),82(40,20),83(40.2O),84(40,20),CS(40,201.

S Dv(15I,IMP(1,MKC(15),MSK1!),MU(40,20),MF(3O1,NK(40,20),
S NKT(4O,20),P140,20,,P%f3000),PS1(41.21),R(4O,20),SP(40,20).
S SRT(40,20),U(41,21),UP(3000).UT(41,21),V141,,1,,VP(3000),
S VT(41,21),XC(40),XP(3000).Xp0(3O),XPLI3O),YC(20),YP(3000).
S YPOt3O) .YPL(3O) ,ZET(41.21),UP0(30),VPO30)
COMNOM KMRP,PIBP,NBP2,X51(21) ,2(*11,181(2l),YGat21%.xXt(20.

S X2(?0) ,!%AVE1X!,XA,IWflG,DTPQ,TpR.NC,T;PACE,rUM(5)
REAL MU.MU1.MU2,NK,NKT
!PJTES!P cS.P
DIMENSION XXC(2) ,YYC(2l
T1.(P(!I4,JN)PPC)/(P(IH,JN)-PlIL,JL))
T2.(P(14,J4)-PPO)/(P(14,J4)-P(13.J3))
XXC(i).XCtIH)-TI.(XcUH).xC(I1))
VYCfl)SYC(JH)RT1*(YC(JM)-YCIJI))
XXCI).XC1I4)T2fI*C(I41-!C(II))
YYC(2).YC(J4)T2(YC(J4)-YCfJ3))
C*U.. TVPLCTCXXC,YYC,2)
RETURN
END
SUBROUTINE OPdTPRS (KKKI)
CCMt4ON/TVPCOL/PLMIN,PLMAX.XMTN,XM*X.TXM!N,TXMAX.TYMTN.TYMAX
CMMON/TVGUI pE/IMODE TEXT. ITV
CCMMON/TVFACT/FACT
CCMMOPI/TVTUNE/LPEN,tPEF.ITAL,TWINK, INTS.IPT-, IUP
COMMOW DELTAS,DT,0T2.0T40x,DT4DY,DTCP,DTOX .DTDY,OTDXS,DTDYS,DTP,

$ DTPP,DTVP,DXC,DXCO2.0114,DXIN,DXP,DYC,DYCD2,0Y74,DYIN,DYP
COMMON EPS,G,GH,GX,AXD,GXDT.Sy.SYD,9yDT,H,ICNTR.ITEST,X0,KKIC,LL.

S MI ,MO,MUj ,MU2,N91 .N82.NI .NTMI ,NIP1 ,NJ,NJMZ ,NJPI ,PIP,NPR,NTP,
S OOX,ODX2,00XS,00Y,00Y2,00YS,81 ,R2,T.TCP,TL,TP,TPP,TVP,U0,I V0W IVO,OXO?DY,DY020X,DXOpY.DYODX
COMMON A40,20),e1l4n,2o),I32I4o,2o),g3(4o,2O),B4(4o,2o),CS(4o.2o),

3 DVI13,1MPI1S),MICt1S),M3Kt1S),MUI4O,201,NFt30),NK(40.20),
S NKT(4Q,20).P(40,20),PS(3000),P5!(41,21).R(40,20),Sg(40,20),I SRT(40,20) ,U(41,21),UP(3000) ,UT(41,?1),V(41,21 ,VP(3000),
S VT(41,21),XC(40),XP(3000),XP0(30),XPL(30),YC(20),YPVI000),
S YPO(30),YPL(10),ZET(41.21),UP0130),VPO(30)
COMMON KN8P,NGP,N8P2,X83(2j),XB2(21).YR1(1),Y82t21),XX1(20),

S XX2(20) ,ISAVE,XI,XA,IWflG,DYPR,TPR,NC,ISPACE,nUM(S)
REAL MU,MtJl,MU2,NK,NKT
INTER CS.Ps
iF. (,cXKK.E0.2) GO T 525
DC 2O J.j,NJM)
JMuJ-1



300

501

502

30
304

305
306

DC 520 I1sNTM1
I Mu I-I
ID.I.
ITT T1
JJJJ.'
(JM 1 uU (I P , JM)
UPi(J( TP,JP)
VU1.V C I N, JP)
VPIuV C TP,jP)
KIUCS(T,J) .*N0.H5P(
I! (t(3.N.2) GO TO sol
Ki GuCS C IP,J) .ANO.MSIC
IF (1G.Fo.4) 00 TO 500
1! (KIR.NE.5) TITlu?
K1D.CS(I,JP) .AND.MS,(
IF CI(1D.EQ.4) GO TO 1O
IF (IC1D.NE.5) JJJJup
0; isio
If (K1.EQ..4) GO TO 502
I! (ifl.NE.5) GO TO 320
KlBuCS(IP,J) .AND,MSK
IF (KIR.E0.3) 1111u2
K1D.CS(I,JP) .AII0.MSK
IF (K1D.E0.3) JJJJu7
IF (j!TI.O.?) GO TO 506
K2CSCS(1,JM) .AP4f.MSK (2)
K2Cs((7CDV (2)
K2DCS(I,JP).AND.MSK(2)
K2DuK?)DV (2)
KFuCS(IP,JM) .AND.MSK(2)
K2FuC2F'Dv (2)
KGueS C IP,JP .AN0.M (2)
K2GrK?G*DV (2)
JC5CuCS(I,JM) ,ANO,M5K(5)
K5C.iSCDV(5)
KSDWCSCI,JP) .ANr).MSpc(5)
KDsK50flV CS)
K5YsC3(TP,JM) .ANr.M$p((5)
K5F.K5F*OV (5
KGuCS(IP,JP) .AND.MSK (5)
KGuK5G'Dv (5)
Ir( C D.E0.4.AND,K5o.Eo.2 .CR. (K2.F0.4.Ati0.K3G.E0.7F
IF( Cpc2r).o.3.Nn.)csr1.Eo.2) .P. (K2f,.!0.3.gf).ic3G.Q.7))

TO 304
UP1u-P(TP,J)
IF C (IC7C.Q.4.AN0.K5C.EO.2) .OP. (K2F.Ffl.4.ANr).KSF.EO.7))
IF C (K?C.Q.3.ANO.K5r.Q.2 .OR. (K2F.!o.3.AwI),K5F.(0.2
00 1? 306
UM3aL)(IP,J)
IF (JJJJ.EQ.2) GO TO 510
K4uc(TM,J) .ANC).MS,(12)
K7AaK7A*DV(2)
K7uCS (IP,J) .AND.MSw (2)
K?B.C?R0V (2)
K,ruCS(IM,JP) .AND.MSK2
K7u(2FflV (2)
K?r,urs(IP.JP) .AND.McKC2)
K76.K'00V (2)
KSAuCS(TM,J) . r.P4SK C)
K54uiCSAflV (SI

KRuCS (TP,J) .ANfl.MS c)
I(u)(5*DV (5)

507
505

309
510

511
5)7

3"
31*

3)5

GO T 503
UP! U C TP,J)

GO T 03
UMTaUC?P,J)

316
317

siR
5)9

KcENC5UJM,JP) .AND.MSK(5)
K3zK5F*r)%J CS)
KSGRCS(IP,JP) .ANII.MSK(5)
KG.K3GDV(5)
IF(CK25.F0.4.AND.X5R.0.2).OR.(K2fl.F0.4.*N0.K3G.EQ.,)) GO TO 507
IFC 2R.F0.3,ANO. R.to.2.3P.(K20.FO.3.AND.K3G.EO.2) VPJ.VIT,JP)
0; TO 505
VP1-VCT,JP)
IFC (?A.F0.4.AND.K3A.EQ.2 .CR. (K2T.F0.4.Ap)0.KSE.E0.p) GO 10 509
TF(CA.0.3.AN0.K5A,.2).OR.(K2F.,3.A.$(5t.EO.2)I VM1uVCT,JP)
GO 10 510
VM1uV CI ,jP)
IF CIT!I.Q.2 GO T55
VAVF1u.SO(V(1,j)eVCTp,J)
VA V7u.5. C V (T , JP ) +V C ID, JP
ARl..,(RU.J) .p1P,j))
IF CVAV1.Lt.0) GO 70 511
K)CuCS(I,JM) ,AND.MSK
KIOuCS(TP,JM) .AND.M3K
IF(K1C.EQ.3.OR.K1G.F0.1 GO 70 511
RVII.Se(P(I,JM),PtTP.JM) )*UM),VAVFI
GO TO 512
RV)uAR1*U ( IP,J)*vAVF
I CVAVF2.GE.0) GO TO 513
K!DuCS (I ,JP) .6N0.MSK
K!HBCSCIP,JP) .A0.51c
I, fKD.0.3.OR.KIM.rQ.3) oc to Sil
RV2*.3.(RCI,JP),R(TP,JP))*UP)*VAVF2
00 TO 514
PV2.AP1°CJ( IP,J)*VAVFP
UISUI I .J) ,IIC 7P,J)
U2SU(TP.J) UcI.2,J)
PSI C TD,J) uAR1*)I( j +T4flX* CI, M *U)*U1.R C IP,J) *U2*II2) .riTDY (RVI

.RV2),flT0X3.(MU(IP,,)*(I,CT.2,J)UCIP,J))MUCT,J)*CUCIP,J
)C1(I,jI)).DT4DY*1(MUCT.J).MUCI,JP)MUCTP,JD)NUCTP,j))*
(ODy.CI,pl_(gCIp,J)),ODXaCVCTP,Jp).VCT,JP))).CMUIT,JM).MU(
I.J).MIJ(TP.J).MIJ(IP,JM))*CCtY*((IP,J)UMi).OD**CV(TP,J)
V(1,J)W.APIOGXDT

I! CJJJJJQ.2) 60 To 520
UAV!u.5.CU(T,J).'i(T,JP))
UAVE?u.5* ((H JP,J) Gil (TP,JP))
AP2.,5*(R(I.J).RCT,j'))
IF Ct!AV1.LE.0) GO 70 516
KIA*CS(IM,J) .AND.MSK
KIFaCS (IM,JP) .ANO.M3K
IF KIA.F0.3.OR,KIE.F0.3 GO TO 56
Pn1..3aCRCIM,J).P(T,JP) )VM1'U*VFI
60 TO 317
P(P1sA2V( T,JP).,IAVFI
IF tLJavE:2.GE.c) GO T SIR
K1RsCS(IP,J) .ANlflM5((
KIHuCSCIP,JP) .AND.McK
IF Cc1R.F0.3.OR.K1M.F0.3) 00 70 515
P)I?*.3*(P(ID,J),R(IP,JP) )*VPI.UAVF?
GO TO 519
R(J2sa'*VCI,jP)*iiAVF?
V1uV CT ,J) .V( .JP)
VPuVT.JD) +VT,J.2)
ZFTCT,JP)AR2*V(1,JDI,DTDX.(1H11RU2).0T40'V*CR(I,J)*Vl*Vl.PCT,JP)V

2*V2),riTflyc*(Mi)C1,JP)*(v(t,J.2)_VCI,JP))4U(I,J)*(VC1,JP
I )-v(T,j))),ti741*l(4UII,J).MU(l,JP).MU(TP,JD).Mtj(TP,J))

CCflY*(i(iD,JP)IJ(XD.J)).ODX*CVP1VCT,JP)))(MU(TM.J).MUC
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20r)

201

70
204

PJf)

S'D1RO1J1TN PRSTTN
COM4O.J/TVPCOL/PLMP.J.PLMAX.XMYW,XMAX,TXMIN,TXMAX ,TYMTN.Tv144*
COMMOM/TVGUII)E/TMCOF , TUT I TV
CoM!,TvrACT/FAcT

IRT. ItiP

C0MMI 0LTAS,0T.0T7.0T4DX.0T6DY,flTCP.DTDX,0T0Y,DTO*S,0T0YS.0TP,
I)TPP,r)TVP,oxr,Dxco2,0x14,oxIN,r,xp,Dyc,0yCO2,ny,4,oyI,..J,nyp

C0MM0J EPS,G,GH,GX,GX0,GXflT,(3y,6yl),qv0T,H,1CNTR,1TçT,I(0,KK,,LL,
,NTP) ,NJ,PJJM1,NJP) .NP,P49,NTP,

S Ofl*,C0x?,,Ooy,oy,C0yi,9) ,92,T,TCp,TL,TD,TPD,TVP,uO.
S V,W. 1VC,0*02flY,Dy0?,0XCfly,r)yI)X
C0NM1 A(40,70),q1(40,20),R2(40,2r)),p3(40,20),B4(40,20),CS(40,20),

S 0V(15),TM),MKC(1),M(1),MtJ(4fl.20),NF(0,.NK(4fl,2O,,
S NKT(40,20),P(40,20),Pç,3000),pSj(41,?1),p(40,2O),SD(40,2O),
* SPT(4O.2O),U(41,21),Upf30ofl),Uy(4j,21),Vf41,,1),vp(3,).
S
S

cMM
S XX2(?O) .TSAVr,XT,XA,jwfl6,0Tp#,TPR,NC,TSPAC!,flUu()
PFAL MII,Mt)1,Ml2,Ic.NT
INTEGP CS,PS
DIMENSION PP4(40.20)
EDUTVAIFNCE (P('$,SRT)
DO 2D Jal,Nj
0, 2r

(j J).P (I ,J)
I rNTDaO
a. 1.

ERR.o.
'00 213 L.1,ITFST
1(N7.ICNTP.1
PS! 0.0.
00 211 J.2.NJMI
JMUJ..)
Jp.J.)
DO 2)) !.2.?IIMI
I M I -,

I!RT.1
Kt.CS(I,J).ANO.MSK
Ic (w1.NE.4) 0 TO 2)1
K4aC U.)) .AND.MSK ()
4.4*0V (4)

II CK4.F0.1) GO TO 210
r.cs U ,JP) .APIfl.MSW

IF ('(1fl.NE.2) (30 TO 204
K?n.rs (I ,JP) .AND.MSw 2)
k20uK20*DV (2
IF (?0.EQ.1) (30 TO 203
tr cw20.E0.2) GO TO 203
P1¼t( I,IP).PN( I .J) . (I .J)Ov0
IF 0.Q.3) GO TO 204
AMIJ.V(J,J)
p*l(1,.)p).pN(T,Jp).flyT4*AMJ.Vy(1,j).flX.(o7(Tp,J)*(AMyJ.Mu(p,J))

S

GO T 204
P'(I. (P).PN(T,j)
K1CZrSU.JM) .ANrM51
IF O(1r.PIE.2) GO TO 207
k2CstS (I JM) .AND.McK (2)
I(7C.7C*flV(2)
IF 110 TO 706

IF ((PC.E0.2) GO TO 206
PN( I ,,)M) .PN( T J)_p (7 ,J)Gyfl
IF (K?C.EQ.3) GO TO 207
AMjJ.MI)(j,J)

PM(I,JM).PN(I.JM0'V14*AM,Jóv,(I,J)_ODXe(uTUP,J)*(AMTJ,MU(Tp,J))
ç

GO TO 207
206 PW(T,JM).PN(I.J)
207 K .rSUP,J) .AND.M5

I! (Pq.WE.2) GO TO 1
K2(3CSUPIJ) .Afl.M2
K2R.K2'0V (2)
IF (K2R.EQ.1) GO TO 200
IF (7R.EQ.?) (30 TO 200
PWlI,J).PN(T,J).Rt7,J)*OX()
IF (K2B.E0.3) GO TO I
AMTJaM(I( I ,J)

.VT(!,J)*(AMIJ4M,J(T,JM)))
GO TO 1

209 PP4(1,J).PNly,J)
1 K)A.C5(TM,J) .ANn.MSK

IF I*.NE.Z 00 TO 2)0
KpA.Cc(IM,J) .AND.PISK(2)
K2A.K2A*DV (2
I (k?A.E0.1) GO TO 3
IF (K2A.E0.2 60 TO 1
PN(yM,J).PN(,j)_p(,J)*(3*fl
IF (Iç2A.rO.3) (30 TO 210
6M1J.M(l(T,j)
PN(IM,J).PN(IM,J)flX74AMjJ.t)T(1P,J)C0y.(VTU.JP)*(AMIj.MLJ(T,JP))
S
60 TO 210

I P'I(tM,J).PN(I,J)
210 R!SIDN B1 (I,J)ePN7P,J.2e7..H'PHyM,J.fl.JaPp,ly.JP).R4,I,J

5 PN(X,Jp4) .A(I,J)-PN(7,J)
PW( T,J)UPN(I J) .0*RFS!DN
PFSI().AMAX1 (ABS #ES!0r4 .RS1D)
IF (t.FO.ITEST) ERP.4M4*I,Pp,A65fpN(T,J)p(I,J)).0H/ABS((I,J),)

211 CONTp1IJE
D )p J.),NJ
DC 212 I.1.MT

212 P(I,J).PN(I,J)
IF (9ES!D.EQ.0) GO TO 213
IF (1C'4TP.E0.11) PFSTDL.RSI0
I (ICNTP.Q.12) Q.2./U..SQt()...tII')/RFStD1))

213 CONTINUE
IF (FP.1T.EPS) GO 70 214
IF (TONTP.LT.1000!TFST) GO TO 201

WOIT! (NO.2000) T.IrMTR,LL
00 To 2)

214 WDIT! (MC,2001) TCNTP.T,IeNTP,LL
2l RFTUN
2000 F0MAT(1H-/iH-,20X30HTOO MANY !TDAT?0N5 AT TIME Fe,.3,1o.wICNi

SR ,74,1OXSNLL .74)
200) FR'4AT(1H ,10k,14,?l,4 ITFATTONS A' TIME ,F6.3,1Xqc4TCP.1TQ .14

S,10xcl1L .14)
END
SU000UTINE DENCNG
COMMON/TVPOCL/PLMIN,PLMAX. XMTN.XMAX,TXMIN,TXMA*,TYP4TN.TYMAX
CMM0NTVGUIDE/TM0DF,TEXT. !TV



400

601

690

40,

COM'4O"J/TVFACT,FArT 1To cs,Ps
r )q

CO'4'1OJ r)ELTAS.flT,I)T?,n140x,OT4PY,OTCP,DTDX,DTDY,DTDXS.flTDYS,0TP. KD.PS'() .AN0.SK
DTPP,flTVP,DXr,DXCfl,DxT4,Dct,DXP,pYC,DYCD2,r1YT4,DyI1,flYP IF GO To 149

COM'%J PS,Ci,GR,GX,GXD,GXnT,6y,GYfl,RynT.H,1CNTR,ITET.K0,K,LL, P4M.1
0 C.XPc10DX.2.

O0X,ODx2,O0K5,ODY,DY?.OI)YS,p1,p2,T.TCP,TL,TP,TPP.TVP,lP0,
VO,W, 1VO.0X0V,DYO2DC,DXOflY.flYC0X

COMMO* £(40,?0),f6ô,20).92(40,20),R3(40,20),84C80,2f1),CS(40.20), j.Q

4KT('0,2O1.P0,2.P%t300,PS141.211.RIb0,201,S(40.?O).
SRT(4,2),Uf4l,21).UPf3O00),IIT(41.21),V(4.1),YP(300fl1. K1C9(I,J).ANO.MSK
VT(41,21),XCf40),P(10flO),Xø0t30),XD1l0).YC(2V)I.YP(30A0), IF c1.F:Q.4) GO TO 00
YP0(3o),yLr1o),ZF:tt41,2l).UPfl(30),VP0f3O) I! (.Nr,) GO TO IG

C4oi KP,PRP,NRp2,x81f2fl,xB2(21).Ye1(21).Y82(21),**l(20), 90 ir ('(K.Q.?) 00 TO 100
XX2(2O),1SAVF,X1,XA,TwflG,DTDq,TpD,r1C,ISPAC,rUM(5) K10.ecCI,J).AP40.MSK(11)

RFAL 4t,MtJ1,M!!2,JKØJT $10.I0DV(1D)
1'TFP CS.PS IF ('c10.0.1) GO TO !4G
11.0 100 IF IFY.LT..5) GO TO 101
D 4) J.j,NJ JPO.j
DC 40 GO TO 102
Cc(I!J)!NPC12),OR.(5(I,J).6p4D.MKC(12)) 101 JPR.J-1
DO 402 Ja2,1jMI 102 TP.I.1
DC 602 1.2.N!M1 JPP.JPR.1

HPSX..S'C0XV(C(I)-XP(K))
IF (1.0.4) GO TO 601 HP3V..S.ODY(YCJPR1.flyC-YDfK))
1!(1.ME.5) e,o IC fl2 HM$X.1.-HPSX
K!1c(1,J).ANfl.MSKi11)
Ki 1.WI1*0Vt1I) 011-liT (!.JPR)
IF (I11.0.1) GO TO 602 Ut?.tJT(T,J)
IF ((I,J).NKT(7,J),FQ.0.) GO 10 602 UT3aUT(IP,JPP)
PHO.CSP(t,J).SRT(I.J1)/(MFII,j).NWtlT,J)) UT4.UT(IP,Jl
IF (p4..G.P(I,J)) GO TO 602 UT.UTI,JPR)
PfI,,).RHC Ut6.UT(IP,JPR)
1tL1.1 104 1! (VThNr.0.) GO TO 10
Kt7elMP(12) U.U1?

60 T 107
K1.2.IMP(13) )G K!A.C$(I.1.J).AN0.4v()
CS(I. J).T.Oo.(cs(y.J).Ao.wr(13,) K%A.FSA'DV(S)

I, (KSA.E0.1) GO TO 106
RFTJP ui.o.

GC TO 107
SOOt)TIMF MCVPAP toe
COMO/TVPOCL/P1MIN.PLMA*.XMTN,XMA,TMIN.TXM*X,TYMTN.TY$K 107 Jr UT3.N.0.) 60 TO lOG
*4.JTVGtJ!0/TMCDF.TXT. Ttv U?.U14

CCMMO4/TVFACT/FACT GO TO 110
C1MMCJ,TVTUNr,LP!N,,.PY.!1AL,,WINW,TNTS,1RT,IUP JOG KR.S(XP,J).AI1O.MS()
COM4OI DELTAs,DT.flT2,0t4t1.UT4DY,OTCO.G1DX.DTDY,OTDvS.OTOYS,DTP.

DTPP.l)TVP,DXr.0*CO2,74,D1TN.flXP,DYC.DYCD2,OYT4.DYI.flYP IF (5R.0.1) GO TO 109coo PS,G,r,H.GX,r,xh,GXoT,6v,6Th,ayOT,W,ICNfR,ITET.KO,KKk,1L. 02.0.
M1,Mc,M.I1,Mu2,NB1,wR2,N1,N,1.NIPI,NJ.rrJN1,1iP1,P4P.N0R.NTP, GO 10 110
oDx,onx2.Ooxc.ony,oDv,.OnY,G1.o2.y.TCP.TL,1D,TP,1V.IJO, 109 U2Lt1
vo,w,,vC,n*O,nY,DY020x.OXOflY.flYODX 110 Yr lLJT5.r.J.0.) GO to 113

COMMO A(40.?0),1(40.20).R2(80,2fl),P3l4O,201,84t40,20).CS16O.20), J.UT2
flvU5).!MP(1),MKCf1S).MSKr1c),MU(40,20).NFl1O),4K(40.2O), 00 TO 113

1 KcA.csfI-1,J).ANn.M,c(s)
Rj(40,2O).,JI41,21).UPt30O0),ItT(41.21).Vt4h2lI.VP(30Ofl). KA.wSADV(5)

IF (KA.Q.1) GO TO 12
'rP0t3o.yPLtn,2FT41,23).UP0(30).VPO(30)

COUOJ KNRp,NAP,cpPp,*1(2fl,xA22t,.YM1(211.yB2t?1).*1(20), GO 1 113
XX2120) .tçAVr.y1,X4,TWflG,0TPsTOR,C,I6PAC.UM(G) 112 UaJT

PFAL 111 IF fflY6.!Jt.0.) GO TO 114



tJ4tJT4
GO T 116

114 KRsrS(1P,J).A40.MSI(()
KR'csPrv 5
IF (((.FQ.1) GO TO )1!
U4*3.
GO TO 1)6

11 04iJTA
I IA

1F (l.E0.2) *P(K)Xp(K)-S*flP
XPT.XP(K) .UPT*flT
IF (FY.LT..5) 30 TO 1)7
TPPT
GO TO hR

ii? IOR*1.i
)IR JDz,J,3

IPRPRT PP. 1
Hpsx.'5.00X (xc ( TPP) .DXCn-P
H (YC (J) (K) I

HMSX1 .HPSX
H'.4SY=1 .-HPSY
VT)sVT tPRJP)
VT2VT (I ,JP)
V3.VT ( IPRP.JP)
VT4.VT C IPReJI
VT5.VY (I ,J)
vTe.vT tjppP,j)

)r IF vT1.9E.O.) GO TO 121
Vi .VT
G TO 123

121
K'5C*KSC*DV(5)
I! (KC.O.1) GO TO 122
VT.fl.
GO TO 3.3

172 Vt.VT1
)21 IF (VT3.N.0.) GO Yr 124

V2sVT?
GO T 176

1.4 KCCzOS(T,JP).AN0.MW(3)
cscSC*0v(5

Ic lKSC.Q.1) GO TO 125
v,.0.
GO 1 326

17! V2.VTI
)A IF (VT4.N.O.) GO T 127

v3Vt5
6 TO 12R

177 kSfl.CS(I,J1).ANfl.McV(S)
Kcn.5r0v (5)
1 fp(Sfl.F0.)) GO TO 128
Va.,.
or T )?

)2R V1VT4
)2 IF (VTA.NF.0.) GO 130

V4.VTS
G T 132

)lfl PCc(T,J1).A.4C)((!)
Kco.wsfl.DV CS)
r f)(3,j) C,0 TO 131

V4.O.
r T 11?

13) V4.VTA
112 VPT.MDSX.HMSy*Vl,Mcx*HMSY*V7.HP5X*HPSYV3.HMSX*HPSY*V4

IF (ui.EQ.3) YP(K).YP(K)-SflYP
YPTzYP(K) ,VP3*OT
I j .X T' CD X42

Ji.YPTØOOY.2.
IFtM'.Q.2) 1.1-s
IF(MM.Q.3)JrJ-S
IF (I1.L.NI.AND,J1.LE.NJ.AP4b.11.A.1.A'1D.J1.OE.1) GO TO 300
OC T 301

100 J(1SCS(I,J).AND.MSK
IF (Wi.EQ.1) GO TO 30)
IF (1.4t.2) GO TO l
K.C5(TJ) .AND.MSK(21
K2.KP*OV (7)
KP.PStK).AND.MSK
IF (K,.F0.1.AND.KP.r0.2) GO - 133

301 PS(IO.3.CR. (PS(K) .AMO.MKC(3))
KT.IMP(5)
P5(K) .KT.OR. (P5(X) .AND.MKC(5))
XP (K) *0.
YP(X) cO.
UP (XI .0.

VP(K).0.
1 148

13 I! (K.tQ.1) GO TO 134
UP(K) .UPT
XP(K).XPT
VP (K) .VPY

VP C K) sYPT

GO TO 146
134 IF (J.PIE.J1) GO TO 135

IF (7,!0.I1) GO TO 148
11! kP*.DS(K).AND.MSK(3)

XPA.KADV(3)
ir (pA.ra.e) GO TO 136
SPY (1..J).SRT(I,J)R1
581(11 .J1)S81 (II ,J1 1.82
00 TO 137

134 SDT(T,J).SRT(I.JU82.
SPT(I1.J1)*SPT(I1 .Ji 1.82

17 N$T(I,J).NKTlI,J).).
NKT(I) ,J1)PNKTU) iJfl1.
60 TO 148

138 K2.CS(T.J).AP40.MSK(2)
K7.K2eDV (2)
I! (K2.HE.1) GO TO 148
IF lTvO.0.0 GO TO
IF (KXK.F0.2) GO TO 200
KI0.cS(I,J).AND.HSK(h0)
K hONK 10'fl V C 10

if (K10.Q.1) GO TO 148
200 K7.C5(I'J) .A.jD.M5K(7)

K7.X7*OV (1)
xc (K?.F(3.4) GO TO 1
IF IXY.FQ.3) GO TO 2
IF (X7.FQ.2) GO TO 1

K1A.cc(I.l.J) .AWO.M
IF (XIA.F0.3) GO TO 148
XP ( IC I S XP (K) * OXP

MM.?
S.'.



T Q3

T (().0.3) '30 10 14R
XPC)XP(K)0XP
MM 7

G T QH' zqfT,J.I).4Nr).MqK
D (CIC.E0.3) r,O TO 1
VP (((I wYP (K) '0 VP

3

Set.
GO TO q

1 KiD.rT,J-1).AND.McKjr GO TO 14
VP ( ) a VP (K) 0 VP
(Ma 3
S.-'.
60 TO '3

4 (J77ajT (1,.i)
JT8.LJT (1.1 ,J)
VT7.VT (y,J)
VTA.VT (1 J'1)

14') K7.CS(T.J).AfJfl.MSK(7,
K7.K7*0V (7)
IF (7.Q.I) 60 TO 144
IF (7.EQ.2) 'C TO 143
IF (wlJO.3) 60 TO 141
T7.vT7*OT
fyIPJ..T2
KT.4*TMP (2)
PS(K),ICT.OR. (PS(K) .*Nfl.(4PCC(21)
GO T 142

141 TpaVIR*DT
DVDJ.12
KT*3*Y'4P (2)
Pc((c).KT.OR.(PS(K).AWD.MKC(2))

149 VPT.yP(K).T2
XPT.XP (K I

GO TO 146
143 Ti.UT7DT

MT4.-T1
KTs??'4P(2)
Pc(K).KT.OP.(PS(K) .ANf1.MKC(2))
GO TO 145

144 T).uTq.DT

Pc (K) .!MP (2) .OR. (PS (K) .aNn.MKe(2))
14 X0TaX0(K).TI

144 IF (KKK.O.2) GO TO 147
T1a$'T0flX2.
J)aYP'Te0flY.2.
G TO 134

147 XD(K).XPT
VP (K) aVPT

14A CONTTP'F
14Q PrTUP'1

F'Jfl
SP0OITINF VLCTS(KWKK)

TV6lJIflE/TMOW,T*T. liv

C0P4MO1,IvFACT/FAcT
C0MO\J/TVTUNF-/LPFN.t PFF, jTL.,WINk .!!TS.IPT,1UP
CC'I'0J OELTAS,DT,flT?,0T40X eDT4l)YgflTCP.DTDX.DT0VtDTDXS.flTCVSDTPt

S flTPP,flTVP,0XO,flXCO2,0XT4.DYTIh0XP,DYC,flVCD?,flYT4.DY1l.flYP
COMMO"I EPS,G,6k,GX ,'3XD,G*')T ,flV.GVf),r,VflT,4,TCWTP,ITEST.KD,KKK,LL,

S
5 CDX, X2,00Xc,00Y,00V7.ODYc,01,P2.T,TCP,TL,70,TPP,TVP,I'O,
S VO W VO ,flXC9Y ,DYO2OX ,OXOnv sOVOOX
C0'4MCJ A(40,20),R1(4fl,20).P2(40,20).P3(40,2O),84(40,2')),CS(40,20).

S DV(1S),P(1S),MKc(1S),MSKI1S).MU(40,20).NF(3O).NIc(40,70),
S NKT(40,20),P(40,20).PS(3000),PSI(41.21),R(40.20).SP(40,20),
S SPT(40.20),U(41,21),U0(3000).tIVt41.21),V(41,21),VP(3000),
S VT(41,21),XC(40),XP(3000).X0013O),XPL(30).YC(20),VD(3000),* VPO(30),YPLf30),ZET(41,21).UPO(30),VPO(30)
CCMMC'9 KP.NPP,MR7,XR1(2I),XP2(P1).VP1(21),V82(21).XX1(?0),

* XX2(20),I5AVF,XI,XA.TWr,G.OTPR.TPD.NC,ISPACE,flUP-((S)
RFAL kAIJ,MlJ1,MH2,NK,NKT
INTVIFP CS,PS
DO 40 J.2,'(JM1
JP.J. 1
DO 404 I.2,NT1
10.1.1
Ki.CS (1 ,J) .4P40.M5K
IF lKl.EQ.4) GO TO 400
IF (K1.N.5) GO TO 4fl6

40fl K28*CS(IP.J) .A).M5w
IF 60 10 401

407 T1.(DS1(TP,J).DTDX*(P(1.J)0U9,J) )1/(Pf1.J).PtIP,J))
(JTUP,j)aTIT1

401 KlD.CS(I.JP).AND.MSW
ir (K1D.WE.4.4N0.K)D,ME.S) Go TO A

4O T2.(Z!T(I.J) ")TDY'(P(l,J)PU'JP1 ) )/(R(I.J) .P(I.JP))
VT (1 JP) .T2T2

406 COP1TT"I"E
CALL GNOCPJO(KKKK)
PU UP

SOOPOLPYTNE DFNVTS
C0*40j/TVPOOL/PLMIN.PLMAX ,XMIN, XM4X , TXMIN,TX,4AX.TVNIM,TYMAX
C'44OM/TVGU10E/TMODF ,TEXT ITV
CC*4MOP,WTVFACT/FACT

COMM0'( DELTAS,DT,DT?,0140X,0T4DV,DTCP,DTDX ,flTV.DT0yS,DTOyS,D?P,
S 0TPP,0TVP,DX(,DXCO2,DXT4,OXINeDXP,DYC,DYCD2.flYT4,OYJN.flYDcCO' Ps'G.O4X ,6XD,GXflT,Ay.GV0.AV0T,M,ICNIR. ITEST.Kfl,KKK,LL.
S M1,MO,MIJ1,MU2,NS1,NO2,Pdl.NT'41 ØIIP1,IJJ,WJM1.NJPI,NP.NPP,NTP.
S OOX,00X2,00*S.ODY,00Y2,00V*,P1 .R2,T,TCP.TL,TP.TPP.TVD,IJO.
S V0,W,TVO,DXC?DY,0V02t1X,DXO0Y,DYOOX
COMMO'I A(40,20),131(40.2O).02(40,2fl).P3(40.2O),$4(40,20).CS(40.20).

S Dv(15),!'4ptIc).MKCUS).MSK(1S)ø4U(40.20).PW(1O),'*(40.20).
S p4,c1140,20),pc40.20).Dc(3000).psI(41,21),R(40.2n),Sp(40,20),
S SRT(4D,20),u(41,21),UD(30O0).(JT(4I,2I).V(41,1).VP(3')00),
S VT(41,21),XC(40),XP(3000),XPD(30),XDL(1O),VCf2')).YP(lOflO),
S VP0(30),VPL(lrfl,ZrF(41,21),UPO(301.VP0(30)
COMMOS KNRP,N8P.NPP7.XR1(21).,B2(2l).Y1(?1).V$2(?I,XX1(?0I,

S XX2(20),IcAVF,X1,XA,IW0O,0TDP,TPR,NC,T%PAC.0UM(S)
PFAL .411,MtJ1 ,l(J2,NK.PKT
I'TE0!P CSPS
DT'4FSICN SM(40,7Q)
EQUIVALENCE (SM,NKT)
DC 300 Jw1,NJ
DO 3D) I.l,jT



354 PtI,JCrR(TM,JM)
SOC I ,J) 0. HI C I ,J) CMII ( IM,JM)

300 SM(T,J)0. GO TO 157
KKj 355 RC!,JcR(TM,jP)
DO 303 MtI(j,J)aMIJUM.JP)
KPrPS().AN0.MSK GO TO 357
IF ((DFQ.3) (30 TO 303 356 R(I,JaP(TP,JM)

Mt C C! , J) ZMII( tO, JM C
357 CCNT4'1E

J'YPt)CPY.2. GO TO 307
KPA=OSCK).AND.M5KC3) 306 (0.2
IcPAzKPA*Dv(3) WOTIF lC,300O) T
r (.EO.?) GO TO 30! 307 RFTJ0M
SP(I,J)5P(!,J),o1 3000 FOR TC1H-/DI.,20X314O PARTTrLFS TM SYSTFM AT TIME z ,F63)
SM(t,I)ZSM(t .J),MlIJ EM)
GO 1" 302 SII000JTIME REFCEL

10 SO(I,J).SR(!,J).P2 CCM4OM/TVPOOL/PLMIM,PLMAX,XMTM,XMAX.TXMTN,TXMAX.TYMTN,TY1AX
SM(T.j)SM(I,J),MtJ2 CMMOM/TVGlJI0E/TMO0E,TEXT.TTV

3O W1(I,J).WK(I,J),I. CCMMO'I/TVFACT/FACT
303 CONTTM'JE

IF C.E0.1) (30 TO 3(36 CCMM0 DELTAS,OT,0T2,DT4DX.0T40Y,DTCP,DTDX,DTOV,DTDXS.DTOVS.OTP,
00 305 Ja3,MJ S DTPPDTVP,DXC,DXCO2,DXT4,DXIN,0XP,DYC,DYCD,0YT4,DYTM.0YP
DO 305 I),MT CCMM0 EPSG,GH,GX,4X0,GXDT,GY,GYD,OYDT,K.ICMTR,ITEc1,K0,K,L.
IF (M(I,J).EQ.(3.) (30 70 305 5 M!sMC,4II1,MU7,Np1,N82,Nt,Ny1,NTpl,NJ,WJ$1,Njp,Jp,Npp,NTp.
R(T,J)SRfT.J)/NK(T,J) S OOX,Or)X2,00XS,00Y,00Y?,00YS,01,02,TSTCP,TL,TO,TPP,TVP,CJO,

S V0,W,!VC.DXO?DYIDYO2DX,DXOOY,DVODX
10 C4T1JI(F COMMOM A(4OP0).Rl(4fl,20).p2(40,20),p3(40,20,,R4(4Q,2fl),CS(40,2O),

00 17 Jl,r4., S DV(1S),!MP(15),MKCC),MSKC1 ,MU(60,20),MFC10,N((4r,,70),
JM.J-1 S

JP=J+! S
00 357 t.1,NT S VT(4l,21),XC(4O),Xpf3(3(3O),XpOC30),XpL(3Q),yC(2,ypUt)O0),
IN.!..)
ID.T+C COMMOM KNRP,NBP,P?,XR1(21),X82(21),',B1C21),y82C21C,XX1Cp0(,
K!CS(T,J).ANfl.MS(( XX2(20),ISAVF,XI,XA,IWDG,DTOP,TOR,MC,TSPACE,OUMCS)
IF ((1.NE.2) GO TO 33 REAL MtI,MtI1,M)12,wKønel
7C5(T,J).AND.MSKCl) INTE8EP CS,Ps

K7.((7'rw(T) DTMEM!TCN St'(41,2!),SV(41.21,
IF (7.E0.4) GO TO 352 IF (T.EQ.0t GO TO I
IF C7.E0.3) GO TO 53 DO 710 Kwl,MP
IF (I(7.l3.2) GO TO 350 KP.PS(K).AND.MSK
R(I,j)sP(!P.J) IF CK.EO.3) GO TO ljO
MI!(T.J).M(I(IP,J) r (0.Ne.2) GO TO 710
60 TO 7 t.XPtK)*CDX'!.

350 R(I,.J).R(TC.i,J) J.YP(CO*OOY.2.
MII(t,J)zMl(IM,J) 701 KCS(,J).1!N0.M5K()
GO TO 357

35 R(T,JP(I,JP) IF (?.EQ.1) GO TO 710
MIP(T,J).Mu)(I,JP) DO 707 Lr1,NP
GO TO 357 LPSPS(i).AND.MSK

35 PCT,J).P(!,JM) IF (LD.FQ.3) GO TO 7(33
MlJ(I,J).MJ(I.JM) 70? CONTT'J'PF
GO TO 357 90 TO 710

153 1 (I).NE.1) GO TO 357 7(33 KR.P%(K).ANf).M5((2)
t(7.CS(T,J).AND.r4SP(C7 KP.K(3'DVC2)
t(7.)C7*GV(7) KPA.'S($() .AND.MSK(3)
IF (7.Fr3.4) 60 TO 1!6 KPA.OA*0VC3)
IF (7.FQ.3) 00 TO 55 IF(PA.EQ.1) GO TO 698
IF C7.EQ.2) ';o TO IF(TSOACE.LE.0} GO TO 69(3

IF (7.NF.l) GO TO 3d DTM.0XP*.5
P(, ()(P'.JP) DYIM.OYO..5
MI,(T.Jt.MIP(IP,JPC GO TO 99
60 T' 357 AQ fl!M.0X"



fly I 4.r)yp

,,qq r ((5.NF.4) G3 TO 7fl4
IF (V'(K).GE.0) GO T 71')

VD(L)ZYP(K) +OVIN
GO T 705

704 jF (KR.ME.3) GO IC 706
IF (V(K).LE.0) 60 TO 710
V(L) zVP(K) OVIN

705 XD(L)zXP(K)
GO TO 709

704 7F (KB.N.l) (,C TO 7O7
IF (tI(K).L.0) GO TO 710
XP(L) XD(K)-r)xIN
GO TO

707 IF ($(K).GF.0) GO TO 710
X°(L) xXP (K) .r)XIN

70 VP(L)aYP(K)
709 P5(L)?.CP.(PS(L).ANfi.MKC)

PS(i()1.OQ.(PS(K).4W0.P4KC)
KTKtI4P (2)
PS CL) (T.OR. (SCL) .A).fl.MKCt2))
K3PSCK) .AND.MSK(3)
K3K*flV(3)
KTZK3.TMP(:3)
P5(L) T.OR. (PS(L) ,AP4D.MKC(3))
K4.PS U) .ANO.MSK (4)
K44*OV (4) 1

IF (i4.F().8) <4.1
KTK4*P'P(4)
PS(L)ZKT.OR.(PS(L).AND.MKC(4)1

710 CONTTUF
DO 711 J21,NJ
no ui Iz1,NI
KT='.*P4P(9)

711 CS(Y,J)UKI.OR.(Cc(T.J).AND.MKO(9fl
DC 717 J.1'J
DO 712 I.1,NT
SU(I.J)O.

712 SV(I,J)0.
00 714 K.1,p
KP.PS(K).ANO.MSK
IF (KP.EQ.3) GO TO 714
IEXP(K)*O0X,2.
J.yp()*OOY+2.
IF (T.LT.1.O.J.LT.1.CR.I.GT.NI.OR.J.T.NJ) 60 10 2
Kj.CS(T,J) .4P40.M5K
IF 1.EQ.1) GO TO
IF (Kl.N.2) GO TO 3
K?CS C I ,J) .AND.M5K (2)
K7.K7*DV (2)
IF (2.NE.1) GO TO 7

I 5tJ( I ,j) .Sii(I .J) .)IP(K)
SV (I.)) .SV (I ,J),VP (1<)
KQaCS(T'J) .AND.MSK(0)
KQ.N9*OV (9)
KPAz5 (K) .AP4D.MSK(I)
KPA.KP4*DV (3)
IF (K.N(.4) GO TO 73
KT.KP4IP4P(9)
Cc(I,j)=KT.CP.(rS(T.J).AWD.MKC(Q)1
GO T 14

713 IF (A.F0.KQ) nO t0 714

KT.3*TiP (9)
CS C I ,J) KT.0P. (Cs Ct .j) .ANO.MKC(9))
GO TO 714
PS C K) .1. R. C PS (K) 4M0 .MKC)

VT.! '.17 (5

XD (K) zO.

VP (K) .0.
UP (K) =0.
V(K)0.

714 COP.JTiIt1
DC 716 J.2,NJMI
JM.J-J
JP.J,)
DC 7)6 T.2,NTMI
IM.I-1
IP.I.1
KIUCS CT .J) .4P40.MSV
IF (K).N.5) GO TO 71S
IF (lW(t,J).N.0) GO T3 716
C5(I.J)3.OR. (CS(I,J) .AND.MKC)
K1.4eTMP(9)
C$(!,.J)LKT.CR.(CS(t.J).AND.MKC(9))
P (I'J) '0.

R(T,J)'0.
MCI (I, J)*0.

60 TO 716
715 IF (K).NF.3) GO TO 716

P(J,j)s0,
K1A.c5(IM,J) .*ND.MSI

K1R.CSCTP,J) ,AND.MSK
KIC.C5(I,JM) .AND.M5I(
KD.CS(I,JP).4ND,MS,c
IF (Wt4.Q.3) 'JT(I,J)'O.
IF (K1.Q.3) IT(IP.j)s0.
rr (K)C.EQ.3) VT(I,J0.
IF CKlfl.EQ.3) VTCI,JP).0.
IF (NK(I,J).FQ.o) Go 10 716
CS(I, j)..OR (CS I J) .AND.MKC)
KIAseS (TM,J) .AND.MSK
K1RaCS(TP,J) .4P40.MSK
K1C.CS(I,JM) .AND.M$K
K1D.CS (j ,JPI .ANO.MSK
K?A.C5(IM,J) .AND.MSK(2)
K.A.K2A0V (2)

(7)
KBuK7R*0V(2)
K2C.CS (I ,JM) .AND,M5$( (2)
K2C.K?CDV (2)
K?DSCS(I,JP) .AND.MSKC2
KD.K20*DV(2)
IF (K14.FQ.3,OR.K24.F9.2) (JT(T,J).S(J(T,J),WK (I...))
IF (KIR.E(1.3.OR.K2P.FO.2) (JT(YP,J).Sv(1,J),NK tI.J
IF (K1C..0.3.CP.K2C.FQ.2) VT (t'J).SVIT eJ)/PIK (TóJ)
IF (i(1fi.Q.3.C.K2fl.FQ.2) VT (T.JPI.SV(T,J)/NK(t,J)

716 CCNTPI(IE
1 00 773 J.2,NJM3

JM.J.. I

JP.J,1
DC 773 I.2,NIMI
IM.I.1
'P_I.'



77

71P

710

7 ?n

771

7"
7,3

776

777

IF ('(T.J).Ffl.0) R TO 773
KCc(I,J) .ANO.MSK
KIAZCS (It$,J) .ANO.M(
K1R=CS(IP,J).AND.MSk
KIC=CStI,JM) .4N0.MS
KiDCS(I,JP) .ANfl,M%
IF ('1.NE.4) GO TO 7
IF
C. T 723
CS(I, OR. ( CS (I. J AND .MKC,
P(T ,J .0.
G T 723
PU,JyzO.
IF (W1.NF.5) GO TO 773
so.o.
AN 0
IF (iA.E0.3) GO TO 723
IF (1A.ME.4 GO TO 719
SD.SP+P(IM,J)
Aw=AJ. 1.
1F (I(1F.E0.3) GO TO 723
IF (l.NE.4) GO TO 720
SPSP,P(IP,J,
AN.A4.I.
IF (Kl.EQ.3) GO TO 723
IF IqC.N.4) GO TO 721

I ,JM
AP'IA'.t. 1
IF .E0.3) GO TO 723
IF (1r.NE.4, GO TO 722
SPSP.P ( T ,JP

1 .
Cc(I,J)4.OR.(CS(i,J).AND.MKC
IF (A'I.NF.0) PU,J)sP/AN
CNTTJtE
CALL NDCN0(1)
DO 737 Ji2,NJM1
JPJ-1

7R P(!,p)MIJ(j,J)*.5*(r)y*flJ(I,j),(J(,p,J)(J(T,JI4)U(TP,JM) 1,00X*(
V(t,JP).V(I,.J)-v(TM,Jp)-V(,l,J)))

GO T 732
7 P(I,J)2.S*MIJ(I,J)*(ODY*(U(TP,J)4U(!.J)_U(IP,JP)_UU,JP) )+ODX*(

V(IM,JP).V(TM,J)-v(T,JD)V(T,J)))
GO TO 732

730 P(I, J)..5*MII(t ,J)*(fly*tJ(Ip, IP) IUT,JP)-u(IP.J)4)CT'j) )OOX*(
GO TO 7i7 S VcjP.JP,v(TP,J)-vI,Jp-V(t,J)))

GO TO 132
731 )ODX*(

S V(1,JP),V(I.J).V(ID,JP-V(YP.J) I I

732 CCNTr'IIF
CALL FLGCEL
RFTtJR4
END

Jp= j+1
DO 732 1z2,NIM1
TMZI_1
IPT.I
,(ICc(T,J) .AND.MSI
F (iq.N.S) (iO TO 732

KiAsec (TM,J) .4NflM5w
KlR=rc(IP.J> .AND.MSK
K!CS(I.JM) ,AND.MSK
xir=rc(1,JP).Arn.fr1Sw
IF ((1 A. .3.A KlR.I'4E.3.AND.KlC.IF.3.ANU,K1D.NE.3I
IF I(1 A.NF.3.ANf).R.EQ.7.ANfl.X1C.4F.3.AMD.Klfl,NE.3)
I
IF (fl A.N.3.AND.K.NE.3.4N0.K1C.M.3.AND.K1D.EQ.3l
IF ((1 4.NE.3..K1F.EQ.3.ANfl.KtC..1E.3.AND.K1D.EQ.3I
JF (CIA.NE.3.A.K)R.EG.3.ANr,.KIC.F0.3.ANO.K1D.NE.3
IF (KI .FQ.3.A?In.cIR..3.aNr).p1c.E0.3.AND.K1n.NE.3I
IF (CI

P(T, j:0.
GO T 732
PC!. ,)rOOX2*UI(T,JI*(U(IP,j)_IP(T, ) I

G T' 732
PU.J,aODY2*)(I.J)*f\d(!.J)_v(T,J)I
GO TO 732

O TO 726
GO T 726
O To 727

GO T 727
40 TO 72R
rO TO 79
t T 730
GO TO 711
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