

AN ABSTRACT OF THE THESIS OF

Jason Aaron Greco for the degree of Honors Baccalaureate of Science in

Computer Science presented on August 19, 2010. Title: Automatically Generating

Solutions for Sokoban Maps.

Abstract approved:

__

Alan Fern

Generating solutions to Sokoban levels is an NP-hard problem that is difficult for

even modern day computers to solve due to its complexity. This project explores

the creation of a Sokoban solver by eliminating as many potential moves as

possible to greatly limit the overall search space. This reduction is achieved

through abstracting out moves that don’t involve a box push and also through

removing any deadlocked states where the problem is in a state that makes it

unsolvable. The result is a Sokoban solver that shows substantial improvement

over a standard exhaustive approach.

Key Words: Sokoban, Artificial Intelligence, Search

Corresponding e-mail address: grecoj@onid.oregonstate.edu

Automatically Generating Solutions for Sokoban Maps

by

Jason Aaron Greco

A PROJECT

 submitted to

Oregon State University

University Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Computer Science

Presented August 19, 2010

Commencement June 2011

Acknowledgments

 I would like to thank my Honors Thesis Chair, Alan Fern, PhD, and my

Honors Thesis Committee Members, Mike Bailey, PhD and Prasad Tadepalli,

PhD from Computer Science, for their time, support, and feedback during the

completion of this honors thesis.

 I would also like to thank my family for their ongoing patience and

support throughout this project.

Table of Contents

Page

Introduction ..1

Thesis Statement ..2

Background ..2
Significance ...3

Methodology ..5

Exhaustive Search Method ..5

Improved Method ..5
The Box Pushes ...5
Duplicate Checking ..6
Deadlocks ...8

Reconstructing the Winning Path ..10
Summary ..10

Results ..11

Deadlock Removal ...11

Comparing the Methods ...13

Summary ..18

Conclusions ..19

Limitations ...19
Future Work ...19

Bibliography ..21

List of Figures

Figure Page

1 First level of the original Sokoban game ...2

2 Two states with different sets of movable locations7

3 Box trapped in a corner ..8

4 Two boxes trapped against a wall ..9

5 Deadlocked states on Microban level 10 ...11

6 Microban levels 2 and 10 with deadlocks removed13

List of Tables

Table Page

1 Number of box locations before and after deadlock removal12

2 Number of generated states before finding a solution15

3 Execution times in ms for levels 1-20 with each of the solvers.................16

4 Speedup over standard breadth-first search method17

Introduction

Non-deterministic polynomial hard, also referred to as NP-hard, problems

pose a difficult challenge in solving them because current computing solutions

require an exponential running time to successfully find a solution in worst case

scenarios. Algorithms of exponential complexity are effectively useless because

of the limitations of computational power, and it is necessary to rely on alternative

methods to exhaustive search by utilizing clues from the input to reduce the

overall search space (Dasgupta, Papadimitriou, & Vazirani, 2006).

Although these problems are very difficult for machines to solve, it is

often possible for humans to do some of them in a much shorter time frame. The

game Sokoban is a great example of an NP-hard problem and the task of

generating solutions to its problems is of interest for study because it doesn’t have

a large number of rules yet still remains a complex problem (Dor & Zwick, 1999).

Despite its simple rules, Sokoban has a very high branching factor, and many

optimal solutions can require upwards of 600 moves to solve, making exhaustive

search extremely difficult (Botea, Muller, & Schaeffer, 2003).

This project explores the possibility of creating a program capable of

solving puzzle maps for Sokoban. The effects of abstracting movement to the

individual boxes from the solution algorithm are analyzed for their impact on both

the speed of finding a solution, and its level of optimization. Also covered are the

effects of checking for different sets of trapped moves and how removing them

from potential solutions affects the overall performance of the solver.

2

Problem Statement

The purpose of this research is to design and implement an algorithm capable of

generating a solution to Sokoban maps.

Background

Sokoban is a single player puzzle game first created in 1982 which involves

moving a set of boxes onto a set of goal platforms by strategically navigating them

through a two-dimensional maze. The words “soko ban” are Japanese for

“warehouseman” (Wagner, 1988) and the game “Sokoban is analogous to the problem of

having a robot in a warehouse move specified goods from their current location to their

final destination, subject to the topology of the warehouse and any obstacles in the way”

(Junghanns & Schaeffer, 2001, p. 220).

Figure 1: First level of the original Sokoban game

In Sokoban a map is composed of both wall squares, which cannot be occupied

by either a player or a box, and free squares, which can be freely occupied by both boxes

and the player. The objective of the game is to move all of the boxes onto the set of goal

squares. A move is defined as when the player moves to a location that is adjacent to the

3

current position, while a push is when the player pushes one of the boxes over one

location. The player is only allowed to push one box at a time and can only push the

boxes, not pull them.

The problem of generating a solution to a Sokoban map has been proven to be

PSPACE complete

(Culberson, 1997) indicating that it is also in the set of NP-hard

problems. Because of the complexity of such problems it becomes necessary to find more

specialized solutions than what many of the more general algorithms can offer by

themselves. One of the major challenges in solving Sokoban levels is the problem of

trapped moves, also known as deadlocks. It is possible for the player to push a box into a

location such that it then becomes impossible for the level to be solved. Despite being

unable to solve the problem, unless the search algorithm is aware it has reached a dead

end, it will continue to look for potential solutions by moving around the non-trapped

boxes effectively wasting search time (Takes, 2007).

Significance

No polynomial time algorithm has yet been discovered for NP-hard problems

such as generating Sokoban solutions, making even moderately difficult solutions too

time consuming to solve through traditional means (Dasgupta, Papadimitriou, &

Vazirani, 2006). This research aims to find ways of improving the efficiency to the NP-

hard problem of generating solutions to Sokoban problems so that it becomes possible to

solve them in a realistic timeframe. The problem of generating solutions to Sokoban

maps is a good platform for developing the tools involved in solving these more

advanced problems in Artificial Intelligence because of its simple design and high

branching factor.

4

One of the key advantages humans have over computers is the ability to utilize

past knowledge gained from previous similar puzzles rather than starting each new level

from scratch. This project could potentially help lay the foundation for more advanced

Sokoban solvers that utilize machine learning techniques to simulate a person’s reasoning

abilities.

5

Methodology

Breadth-First Search Method

A basic method of generating a solution to a Sokoban problem is through a

breadth-first search algorithm. This method searches through every possible move the

player could make until it finds a state in which all of the goal squares are occupied by

boxes. While it could solve any problem on a theoretical computer with unlimited

processing power and storage, this method is very impractical without any extra logic to

reduce the number of potential moves. A standard breadth-first search method is used in

this project as a test benchmark in order to objectively measure the differences in other

methods against it.

Improved Method

The improved method used in this solver combines the effects of abstracting man-

moves through a push() method, duplicate checking, and checking for deadlock states to

eliminate. This combination greatly reduces the overall number of potential moves

making it possible for the solver to solve Sokoban problems within a realistic timeframe.

This method works out well because lots of Sokoban levels get their challenge by making

many of the player’s moves result in a deadlocked state leaving only a few moves that

will actually help advance towards a solution.

The Box Pushes

One of the most costly parts of finding a solution in Sokoban is the extremely

high number of ineffective moves the player can make while moving between boxes,

where an ineffective move is one that doesn’t either push a box or advance the player

closer to another box. Because of the huge number of potential moves in Sokoban, these

6

ineffective moves can use up very large amounts of the computer’s resources exploring

all of these different paths.

Abstracting the movements between boxes from the automated solver greatly

reduces the overall number of possible moves. The reason this is possible is, due to the

nature of the game, there will never be a necessary move that is not either a box push or a

move to another box.

In order to find optimal paths to boxes, the solver utilizes Dijkstra’s algorithm to

calculate shortest distances to everywhere on the map. The algorithm runs in

O(E*log(V)) time, where V represents the number of open locations on the map and E is

the number of potential moves between locations, and is only run once for any given

state. After running Dijkstra’s algorithm on the map it not only lets the solver know

which different boxes it has access to, but also provides a shortest-distance path to that

box. This, along with a quick check to see whether or not the spot the box is being moved

to is open, allows the solver to know all possible moves that could be made from the

current player location.

Duplicate Checking

One of the most important parts of the solver is duplicate checking. Without it the

solver could potentially alternate between the same set of moves indefinitely and never

actually find a solution. By introducing duplicate checking it also allows the solver to

eliminate a very large number of redundant checks on moves that have already been

checked. Although it is necessary, the cost can becomes very high as more and more

different potential moves are explored. To minimize its impact on the solver, all of the

different moves that have been explored are added to a hash table using Java’s HashMap

7

in the java.util library.

A hash table was chosen as the data structure to store each visited state because it has

both an efficient add() and an efficient contains(). A new item is added to the hash table

every time a new non-duplicate move is discovered and is completed in constant time.

Although many data structures have constant time adds, a hash table is ideal because it

also has a contains method with an average time of O(1) which is important because it is

used whenever a non-deadlocked move is discovered (Drake, 2005).

Another form of duplicate checking is to remove instances where the boxes are all

in the same locations but the player’s location is different. An example of this duplicate

would be if a player pushed a box left and then immediately pushed it right. In this

instance the player would be on the right of the box after the first push, and on the left of

the box after the second. This can be achieved by ignoring the player’s current location

when storing a state for duplicate checking. In a few instances, such as the example in

Figure 2, it is actually necessary to differentiate between these scenarios, which is done

by comparing the sets of movable locations for each of the different states. If the sets of

movable locations are equal then the state is a duplicate and it is then ignored, otherwise

it is not a duplicate and the state is added to the set.

Figure 2: Two states with different sets of movable locations

8

Deadlocks

In Sokoban there are many states known as deadlocks where a box has been

moved to a position that does not allow the player to successfully complete the level.

These deadlocks are potentially very costly to the solver because, unless it is aware of its

inability to proceed, it will continue attempting to move other boxes around effectively

wasting large amounts of resources. The actual process of checking for deadlocks is

theoretically just as difficult as the actual solving of the level because there is likely no

efficient way to detect all possible forms of deadlock. In the detection of deadlocks it is

important to distinguish between two different possible types: single block deadlocks and

multiple block deadlocks.

Figure 3: Box trapped in a corner

Single Box Deadlock:

A single box deadlock is a position on the map where if any box is placed it is

unable to be moved onto a goal platform. Figure 3 shows an example of one such

deadlock where a box is trapped in the corner and can no longer be pushed by the player.

Another example of this type of deadlock would be when a box is up against a wall

without a goal square on that wall because there is no way to push the box off of the wall.

9

Because these deadlocks only involve a single box, the solver can check for these

potential hazards before actually beginning to solve the problem. Doing this at the

beginning significantly reduces the overall cost of deadlock checking because the major

checks only need to be done once. The solver checks each square on the map to see if a

box will be trapped when placed there, and then during the solution algorithm only needs

to perform a single check to see if the box can be moved to that location. This method

reduces the cost of this form of deadlock detection to a time of O(1) after the initial one

time check.

Figure 4: Two boxes trapped against a wall

Multiple box deadlock:

These forms of deadlocks differ from the single box deadlocks because they also

depend on the locations of other boxes in the level. Figure 4 illustrates an example of this

form of deadlock where the two boxes up against a wall create a deadlock because

neither of the boxes can now be moved by the player. These deadlocks are more costly to

detect than those involving only one box because they change each time a box is moved

so they cannot be simply checked at the beginning and must instead run through a series

of checks after every time a box is pushed. To reduce the cost of this form of deadlock

10

detection only deadlocks involving the last pushed box are checked for. Because the rest

of the map remains unchanged, it can be assumed that no new trapped boxes will be

introduced that do not include the most recently moved box. By only checking around the

specific box, the overall time required to check for these deadlocks is reduced to a

constant time operation.

Reconstructing the Winning Path

Without the ability to store the path leading to a solution the Sokoban solver

would not be very useful. In order to accomplish this with minimal impact to the overall

running time of the algorithm, each major state occurring immediately after a push stores

both the previous major state and the path the player had to take to move between the

two. After a solution is found the solver traces through all the previous states until it

reaches the beginning and then reverses all of those to construct the path taken.

Summary

This project combines all of the effects of utilizing box pushes, removing

duplicates, and checking for deadlocks to create a usable Sokoban solver. By reducing

the total number of potential moves through these methods, it decreases the large

branching factor allowing the solver to effectively find a solution.

11

Results

To test the overall performance of the Sokoban solver both the effectiveness of

removing deadlocked spaces and the overall performance are analyzed. A package of

small Sokoban problems known as Microban was used to test the effectiveness of

different versions of the solver. Despite their smaller size, the Microban levels were all

designed to demonstrate at least one or two different concepts in Sokoban (Skinner,

2000).

Deadlock Removal

Figure 5: Deadlocked states on Microban level 10

The removal of trapped states from potential solutions is very important to the

Sokoban solver. This greatly reduces the total number of movable spaces making the

solver capable of turning a level into a much more manageable size. This process can be

seen working in Figure 5,which depicts Microban level 10, with each deadlock that has

been detected by the solver marked with a black square to signify that a box cannot safely

be pushed to that location. Table 1, shown below, lists the total number of potential box

locations before and after deadlock removal for each of the first 20 problems in the

Microban pack.

12

Level
Total Box
Locations

Non-Deadlock
Box Locations

Percent
Reduction

1 14 9 36%

2 19 5 74%

3 20 11 45%

4 20 8 60%

5 27 12 56%

6 28 14 50%

7 30 12 60%

8 27 15 44%

9 13 8 38%

10 27 14 48%

11 25 13 48%

12 23 9 61%

13 20 14 30%

14 16 6 63%

15 19 8 58%

16 31 21 32%

17 17 9 47%

18 22 13 41%

19 19 11 42%

20 23 12 48%

Average 22.0 11.2 49%
Table 1: Number of box locations before and after deadlock removal

With an average reduction in potential box locations of almost 50%, the deadlock

removal is effective in reducing the total number of moves the solver must check to find a

solution. The worst case level, number 13, still has its potential locations reduced by

almost a third of their total, and in level 2 the deadlock detection is able to remove almost

three quarters of the total box locations. Figure 6 shows a comparison of these two levels

with deadlocked states marked in black. Level 2 is able to remove so many spaces

because there are no goal squares along any of its major walls, while level 13 is only able

to remove a few of its corner squares as deadlocks.

13

Figure 6: Microban levels 2 (left) and 10 (right) with deadlocks removed

Comparing the Methods

To gain an accurate measurement for how effective a given Sokoban solver is the

measurement should reflect the time required to execute. The only portion of the Sokoban

solver that doesn’t require a constant time is the check to see if a particular state has

already been explored. Although this is made as efficient as possible through the use of a

hash table, it is still the slowest part of a Sokoban solver. Because of this, the efficiency

of an algorithm can be determined by both the number of states that have been generated

searching for a solution and the overall running time required to generate a solution. The

following algorithms were tested to see how many states were generated before finding a

solution to each level:

 Standard breadth-first search – Performs an exhaustive search of every possible

move using a breadth-first search with duplicate detection until it finds a solution.

This is the most basic of the algorithms and involves minimal logic.

14

 Breadth-first search with deadlock prevention – Same as the standard breadth-

first search, however also adds checks to prevent boxes from being moved into

known deadlock scenarios.

 Push method – Utilizes box pushes rather than individual man moves along with

duplicate detection and does not have any form of deadlock prevention.

 Push method with deadlock prevention – Combines the box push method with

deadlock prevention and will always be the best of the four algorithms.

Table 2 shows a comparison of each of the different algorithms tested to see how

many different states were generated before finding a solution. Levels 5 and 7 were not

included in the calculation of any of the averages because they took more than 500,000

generated states to solve with the standard breadth-first algorithm that did not utilize

deadlock detection which would have required excessive storage space and running time

to let run to completion.

15

Level

Standard
Breadth-First

Search

Breadth-First
With Deadlock

Detection

Push Method
No Deadlock

Detection

Push Method
With Deadlock

Detection

1 1,404 811 101 34

2 2,076 298 17 7

3 4,178 2,117 252 116

4 49,120 4,429 4,062 161

5 >500,000 78,256 20,203 1,420

6 139,803 25,434 8,810 1,058

7 >500,000 161,501 101,218 4,255

8 9,394 4,476 397 180

9 1,515 581 95 16

10 13,628 5,012 781 276

11 13,354 5,383 608 186

12 5,945 1,024 153 27

13 45,124 17,654 3,447 825

14 2,400 590 169 24

15 2,851 935 138 41

16 240,957 96,032 13,602 3,753

17 11,863 1,749 1,159 89

18 10,564 3,888 456 160

19 3,848 1,900 244 120

20 8,950 2,700 465 139

Average 31,499 9,723 1,942 401
Table 2: Number of generated states before finding a solution (averages do not include levels 5 and 7)

Deadlock detection by itself reduced the total number of generated states by

69.1%, while utilizing box pushes reduced the number of states by 93.8%. Combining

these effects resulted in a reduction of generated states of 98.7% from the original solver.

Level 2 was by far the fastest, requiring only 7 generated states to find a solution with the

final solver, which can most likely be credited to it having the highest number of

deadlocked states removed, with 74% of its box locations having been removed.

Because of the increased cost per state incurred from both deadlock detection and

the shortest path computations, it is also important to look at the actual running time of

each algorithm to make sure that these don’t offset the benefits of the reduction in states

16

generated. Table 3 shows the total running time (in milliseconds) required to find a

solution for each of the solvers.

Level

Standard
Breadth-First

Search

Breadth-First
With Deadlock

Detection

Push Method
No Deadlock

Detection

Push Method
With Deadlock

Detection

1 56 39 13 8

2 60 10 1 1

3 120 61 17 10

4 1,501 126 122 12

5 N/A 3,470 732 58

6 4,938 1,152 367 52

7 N/A 7,556 3,811 177

8 488 304 18 12

9 69 11 2 1

10 508 182 28 13

11 450 178 19 7

12 198 28 5 1

13 1,381 564 125 31

14 81 11 4 1

15 66 21 4 2

16 11,080 4,430 548 194

17 397 34 25 5

18 298 100 13 5

19 100 176 8 3

20 260 72 55 7

Average 1225.1 416.6 76.3 20.3
Table 3: Execution times in ms for levels 1-20 with each of the solvers

As can be seen in Table 3, the decrease in running time of the improved solver is

slightly less dramatic than the decrease in number of states generated, however there is

still a significant improvement. Table 4 illustrates how much more effective each of the

methods is over the standard breadth-first approach by showing their speedup on each

level. Each value represents how many times faster the given solver was than the

standard solver when comparing their execution times. These values could not be

17

computed for levels 5 and 7 because there was insufficient data due to their excessive run

times on the standard breadth-first solver.

Level

Breadth-First
With Deadlock

Detection

Push Method
No Deadlock

Detection

Push Method
With Deadlock

Detection

1 1.4 4.3 7.0

2 6.0 60.0 60.0

3 2.0 7.1 12.0

4 11.9 12.3 125.1

5 N/A N/A N/A

6 4.3 13.5 95.0

7 N/A N/A N/A

8 1.6 27.1 40.7

9 6.3 34.5 69.0

10 2.8 18.1 39.1

11 2.5 23.7 64.3

12 7.1 39.6 198.0

13 2.4 11.0 44.5

14 7.4 20.3 81.0

15 3.1 16.5 33.0

16 2.5 20.2 57.1

17 11.7 15.9 79.4

18 3.0 22.9 59.6

19 0.6 12.5 33.3

20 3.6 4.7 37.1

Average 4.5 20.2 63.1
Table 4: Speedup over standard breadth-first search method

On average the deadlock prevention appears to speed up the solver around 3 to 4

times by turning it on, and abstracting out the individual man-moves sped up the solver

by a factor of 20. The final algorithm can find a solution to a Sokoban level on average

63 times faster than the exhaustive approach, indicating a rather large improvement in

execution time for the solver.

18

Summary

The Sokoban solver developed in this project shows definite improvement over

the exhaustive approach. With 49% of potential box locations eliminated as deadlocks

and an average speedup of 63 the new solver shows significant speedups in smaller

Sokoban problems. Because of Sokoban’s complexity solving problems that are much

larger and more difficult would likely require combining the techniques of this solver

with more advanced methods.

19

Conclusions

Generating solutions to Sokoban problems presents an interesting challenge

because it is possible that no truly optimal solution will ever be discovered. The large

number of potential moves in Sokoban problems makes exhaustive search impractical,

and solvers must instead rely on other methods to go about this challenge. This project

has explored the ideas of both looking at only box pushes rather than man moves and the

removing of deadlocked states as a means of reducing the overall number of potential

moves the solver must explore in finding a solution. The solver created shows substantial

improvement over the original breadth-first search, although it could still be adapted to

utilize more advanced heuristics to help further improve its efficiency.

Limitations

The difficulties encountered by this Sokoban solver appear to be with problems

that are either very large or have lots of boxes. The challenge with large problems comes

from the large branching factor and with lots of open space that can’t be eliminated

through deadlock prevention. Consequently, it becomes difficult for the solver to process

all of the different potential moves. Levels with large numbers of boxes are also difficult

because it reduces the effectiveness of abstracting out the man-moves.

Future Work

The most time consuming portion of the Sokoban solver is the process of

checking to see if a particular state has already been explored. Despite using the

relatively efficient hash table this operation is still the only part of the solver that

becomes slower the longer the program is run. If this process could be sped up in any

20

way it would provide a significant boost to the solver’s ability to function on larger

problems.

Another possibility for future research with Sokoban solvers would be to combine

them with a form of machine learning to help the solvers recognize patterns and learn

what does and does not work well. This form of solver could also read through replays of

humans solving Sokoban problems and analyze their methods in an attempt to recreate

similar problem solving strategies.

The solver could also be adapted to find an optimal solution requiring the fewest

possible number of man moves. This presents an interesting challenge because the

algorithm would be unable to look at only the box pushes, forcing the solver to find

different ways of reducing the total number of available moves.

21

Bibliography

Botea, A., Muller, M., & Schaeffer, J. (2003). Using Abstraction for Planning in

Sokoban. Computers and Games, 360-375.

Culberson, J. C. (1997). Sokoban is PSPACE Complete. Department of Computing

Science, University of Alberta.

Dasgupta, S., Papadimitriou, C., & Vazirani, U. (2006). Algorithms. McGraw-Hil.

Dor, D., & Zwick, U. (1999). Sokoban and Other Motion Planning Problems.

Computational Geometry, 215-228.

Drake, P. (2005). Data Structures and Algorithms in Java. Upper Saddle River: Prentice

Hall.

Junghanns, A., & Schaeffer, J. (2001). Sokoban: Enhancing general single-agent search.

Artificial Intelligence, 219–251.

Skinner, D. W. (2000, April). Microban. Retrieved August 1, 2010, from

http://users.bentonrea.com/~sasquatch/sokoban/index.html

Takes, F. (2007). Sokoban: Reversed Solving. Leiden University.

Wagner, R. (1988). Puzzling Encounters. Computer Gaming World, 42–43.

