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Introduction 

Non-deterministic polynomial hard, also referred to as NP-hard, problems 

pose a difficult challenge in solving them because current computing solutions 

require an exponential running time to successfully find a solution in worst case 

scenarios. Algorithms of exponential complexity are effectively useless because 

of the limitations of computational power, and it is necessary to rely on alternative 

methods to exhaustive search by utilizing clues from the input to reduce the 

overall search space (Dasgupta, Papadimitriou, & Vazirani, 2006). 

Although these problems are very difficult for machines to solve, it is 

often possible for humans to do some of them in a much shorter time frame. The 

game Sokoban is a great example of an NP-hard problem and the task of 

generating solutions to its problems is of interest for study because it doesn’t have 

a large number of rules yet still remains a complex problem (Dor & Zwick, 1999). 

Despite its simple rules, Sokoban has a very high branching factor, and many 

optimal solutions can require upwards of 600 moves to solve, making exhaustive 

search extremely difficult (Botea, Muller, & Schaeffer, 2003). 

This project explores the possibility of creating a program capable of 

solving puzzle maps for Sokoban. The effects of abstracting movement to the 

individual boxes from the solution algorithm are analyzed for their impact on both 

the speed of finding a solution, and its level of optimization. Also covered are the 

effects of checking for different sets of trapped moves and how removing them 

from potential solutions affects the overall performance of the solver.  
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Problem Statement 

The purpose of this research is to design and implement an algorithm capable of 

generating a solution to Sokoban maps. 

Background 

Sokoban is a single player puzzle game first created in 1982 which involves 

moving a set of boxes onto a set of goal platforms by strategically navigating them 

through a two-dimensional maze. The words “soko ban” are Japanese for 

“warehouseman” (Wagner, 1988) and the game “Sokoban is analogous to the problem of 

having a robot in a warehouse move specified goods from their current location to their 

final destination, subject to the topology of the warehouse and any obstacles in the way” 

(Junghanns & Schaeffer, 2001, p. 220). 

 
Figure 1: First level of the original Sokoban game 

In Sokoban a map is composed of both wall squares, which cannot be occupied 

by either a player or a box, and free squares, which can be freely occupied by both boxes 

and the player. The objective of the game is to move all of the boxes onto the set of goal 

squares. A move is defined as when the player moves to a location that is adjacent to the 
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current position, while a push is when the player pushes one of the boxes over one 

location. The player is only allowed to push one box at a time and can only push the 

boxes, not pull them. 

The problem of generating a solution to a Sokoban map has been proven to be 

PSPACE complete
 
(Culberson, 1997) indicating that it is also in the set of NP-hard 

problems. Because of the complexity of such problems it becomes necessary to find more 

specialized solutions than what many of the more general algorithms can offer by 

themselves. One of the major challenges in solving Sokoban levels is the problem of 

trapped moves, also known as deadlocks. It is possible for the player to push a box into a 

location such that it then becomes impossible for the level to be solved. Despite being 

unable to solve the problem, unless the search algorithm is aware it has reached a dead 

end, it will continue to look for potential solutions by moving around the non-trapped 

boxes effectively wasting search time (Takes, 2007). 

Significance 

No polynomial time algorithm has yet been discovered for NP-hard problems 

such as generating Sokoban solutions, making even moderately difficult solutions too 

time consuming to solve through traditional means (Dasgupta, Papadimitriou, & 

Vazirani, 2006). This research aims to find ways of improving the efficiency to the NP-

hard problem of generating solutions to Sokoban problems so that it becomes possible to 

solve them in a realistic timeframe. The problem of generating solutions to Sokoban 

maps is a good platform for developing the tools involved in solving these more 

advanced problems in Artificial Intelligence because of its simple design and high 

branching factor. 
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One of the key advantages humans have over computers is the ability to utilize 

past knowledge gained from previous similar puzzles rather than starting each new level 

from scratch. This project could potentially help lay the foundation for more advanced 

Sokoban solvers that utilize machine learning techniques to simulate a person’s reasoning 

abilities. 
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Methodology 

Breadth-First Search Method 

A basic method of generating a solution to a Sokoban problem is through a 

breadth-first search algorithm. This method searches through every possible move the 

player could make until it finds a state in which all of the goal squares are occupied by 

boxes. While it could solve any problem on a theoretical computer with unlimited 

processing power and storage, this method is very impractical without any extra logic to 

reduce the number of potential moves. A standard breadth-first search method is used in 

this project as a test benchmark in order to objectively measure the differences in other 

methods against it. 

Improved Method 

The improved method used in this solver combines the effects of abstracting man-

moves through a push() method, duplicate checking, and checking for deadlock states to 

eliminate. This combination greatly reduces the overall number of potential moves 

making it possible for the solver to solve Sokoban problems within a realistic timeframe. 

This method works out well because lots of Sokoban levels get their challenge by making 

many of the player’s moves result in a deadlocked state leaving only a few moves that 

will actually help advance towards a solution. 

The Box Pushes 

One of the most costly parts of finding a solution in Sokoban is the extremely 

high number of ineffective moves the player can make while moving between boxes, 

where an ineffective move is one that doesn’t either push a box or advance the player 

closer to another box. Because of the huge number of potential moves in Sokoban, these 
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ineffective moves can use up very large amounts of the computer’s resources exploring 

all of these different paths. 

Abstracting the movements between boxes from the automated solver greatly 

reduces the overall number of possible moves. The reason this is possible is, due to the 

nature of the game, there will never be a necessary move that is not either a box push or a 

move to another box. 

In order to find optimal paths to boxes, the solver utilizes Dijkstra’s algorithm to 

calculate shortest distances to everywhere on the map. The algorithm runs in 

O(E*log(V)) time, where V represents the number of open locations on the map and E is 

the number of potential moves between locations, and is only run once for any given 

state. After running Dijkstra’s algorithm on the map it not only lets the solver know 

which different boxes it has access to, but also provides a shortest-distance path to that 

box. This, along with a quick check to see whether or not the spot the box is being moved 

to is open, allows the solver to know all possible moves that could be made from the 

current player location. 

Duplicate Checking 

One of the most important parts of the solver is duplicate checking. Without it the 

solver could potentially alternate between the same set of moves indefinitely and never 

actually find a solution. By introducing duplicate checking it also allows the solver to 

eliminate a very large number of redundant checks on moves that have already been 

checked. Although it is necessary, the cost can becomes very high as more and more 

different potential moves are explored. To minimize its impact on the solver, all of the 

different moves that have been explored are added to a hash table using Java’s HashMap 
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in the java.util library.  

A hash table was chosen as the data structure to store each visited state because it has 

both an efficient add() and an efficient contains(). A new item is added to the hash table 

every time a new non-duplicate move is discovered and is completed in constant time. 

Although many data structures have constant time adds, a hash table is ideal because it 

also has a contains method with an average time of O(1) which is important because it is 

used whenever a non-deadlocked move is discovered (Drake, 2005). 

Another form of duplicate checking is to remove instances where the boxes are all 

in the same locations but the player’s location is different. An example of this duplicate 

would be if a player pushed a box left and then immediately pushed it right. In this 

instance the player would be on the right of the box after the first push, and on the left of 

the box after the second. This can be achieved by ignoring the player’s current location 

when storing a state for duplicate checking. In a few instances, such as the example in 

Figure 2, it is actually necessary to differentiate between these scenarios, which is done 

by comparing the sets of movable locations for each of the different states. If the sets of 

movable locations are equal then the state is a duplicate and it is then ignored, otherwise 

it is not a duplicate and the state is added to the set. 

 
Figure 2: Two states with different sets of movable locations 
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Deadlocks 

In Sokoban there are many states known as deadlocks where a box has been 

moved to a position that does not allow the player to successfully complete the level. 

These deadlocks are potentially very costly to the solver because, unless it is aware of its 

inability to proceed, it will continue attempting to move other boxes around effectively 

wasting large amounts of resources. The actual process of checking for deadlocks is 

theoretically just as difficult as the actual solving of the level because there is likely no 

efficient way to detect all possible forms of deadlock. In the detection of deadlocks it is 

important to distinguish between two different possible types: single block deadlocks and 

multiple block deadlocks. 

 
Figure 3: Box trapped in a corner 

Single Box Deadlock: 

A single box deadlock is a position on the map where if any box is placed it is 

unable to be moved onto a goal platform. Figure 3 shows an example of one such 

deadlock where a box is trapped in the corner and can no longer be pushed by the player. 

Another example of this type of deadlock would be when a box is up against a wall 

without a goal square on that wall because there is no way to push the box off of the wall. 
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Because these deadlocks only involve a single box, the solver can check for these 

potential hazards before actually beginning to solve the problem. Doing this at the 

beginning significantly reduces the overall cost of deadlock checking because the major 

checks only need to be done once. The solver checks each square on the map to see if a 

box will be trapped when placed there, and then during the solution algorithm only needs 

to perform a single check to see if the box can be moved to that location. This method 

reduces the cost of this form of deadlock detection to a time of O(1) after the initial one 

time check. 

 
Figure 4: Two boxes trapped against a wall 

Multiple box deadlock: 

These forms of deadlocks differ from the single box deadlocks because they also 

depend on the locations of other boxes in the level. Figure 4 illustrates an example of this 

form of deadlock where the two boxes up against a wall create a deadlock because 

neither of the boxes can now be moved by the player. These deadlocks are more costly to 

detect than those involving only one box because they change each time a box is moved 

so they cannot be simply checked at the beginning and must instead run through a series 

of checks after every time a box is pushed. To reduce the cost of this form of deadlock 
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detection only deadlocks involving the last pushed box are checked for. Because the rest 

of the map remains unchanged, it can be assumed that no new trapped boxes will be 

introduced that do not include the most recently moved box. By only checking around the 

specific box, the overall time required to check for these deadlocks is reduced to a 

constant time operation. 

Reconstructing the Winning Path 

Without the ability to store the path leading to a solution the Sokoban solver 

would not be very useful. In order to accomplish this with minimal impact to the overall 

running time of the algorithm, each major state occurring immediately after a push stores 

both the previous major state and the path the player had to take to move between the 

two. After a solution is found the solver traces through all the previous states until it 

reaches the beginning and then reverses all of those to construct the path taken.  

Summary 

This project combines all of the effects of utilizing box pushes, removing 

duplicates, and checking for deadlocks to create a usable Sokoban solver. By reducing 

the total number of potential moves through these methods, it decreases the large 

branching factor allowing the solver to effectively find a solution.  
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Results 

To test the overall performance of the Sokoban solver both the effectiveness of 

removing deadlocked spaces and the overall performance are analyzed. A package of 

small Sokoban problems known as Microban was used to test the effectiveness of 

different versions of the solver. Despite their smaller size, the Microban levels were all 

designed to demonstrate at least one or two different concepts in Sokoban (Skinner, 

2000). 

Deadlock Removal 

 
Figure 5: Deadlocked states on Microban level 10 

The removal of trapped states from potential solutions is very important to the 

Sokoban solver. This greatly reduces the total number of movable spaces making the 

solver capable of turning a level into a much more manageable size. This process can be 

seen working in Figure 5,which depicts Microban level 10, with each deadlock that has 

been detected by the solver marked with a black square to signify that a box cannot safely 

be pushed to that location. Table 1, shown below, lists the total number of potential box 

locations before and after deadlock removal for each of the first 20 problems in the 

Microban pack.  
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Level 
Total Box 
Locations 

Non-Deadlock 
Box Locations 

Percent 
Reduction 

1 14 9 36% 

2 19 5 74% 

3 20 11 45% 

4 20 8 60% 

5 27 12 56% 

6 28 14 50% 

7 30 12 60% 

8 27 15 44% 

9 13 8 38% 

10 27 14 48% 

11 25 13 48% 

12 23 9 61% 

13 20 14 30% 

14 16 6 63% 

15 19 8 58% 

16 31 21 32% 

17 17 9 47% 

18 22 13 41% 

19 19 11 42% 

20 23 12 48% 

Average 22.0 11.2 49% 
Table 1: Number of box locations before and after deadlock removal 

With an average reduction in potential box locations of almost 50%, the deadlock 

removal is effective in reducing the total number of moves the solver must check to find a 

solution. The worst case level, number 13, still has its potential locations reduced by 

almost a third of their total, and in level 2 the deadlock detection is able to remove almost 

three quarters of the total box locations. Figure 6 shows a comparison of these two levels 

with deadlocked states marked in black. Level 2 is able to remove so many spaces 

because there are no goal squares along any of its major walls, while level 13 is only able 

to remove a few of its corner squares as deadlocks. 
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Figure 6: Microban levels 2 (left) and 10 (right) with deadlocks removed 

 

Comparing the Methods 

To gain an accurate measurement for how effective a given Sokoban solver is the 

measurement should reflect the time required to execute. The only portion of the Sokoban 

solver that doesn’t require a constant time is the check to see if a particular state has 

already been explored. Although this is made as efficient as possible through the use of a 

hash table, it is still the slowest part of a Sokoban solver. Because of this, the efficiency 

of an algorithm can be determined by both the number of states that have been generated 

searching for a solution and the overall running time required to generate a solution. The 

following algorithms were tested to see how many states were generated before finding a 

solution to each level: 

 Standard breadth-first search – Performs an exhaustive search of every possible 

move using a breadth-first search with duplicate detection until it finds a solution. 

This is the most basic of the algorithms and involves minimal logic. 
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 Breadth-first search with deadlock prevention – Same as the standard breadth-

first search, however also adds checks to prevent boxes from being moved into 

known deadlock scenarios. 

 Push method – Utilizes box pushes rather than individual man moves along with 

duplicate detection and does not have any form of deadlock prevention. 

 Push method with deadlock prevention – Combines the box push method with 

deadlock prevention and will always be the best of the four algorithms. 

Table 2 shows a comparison of each of the different algorithms tested to see how 

many different states were generated before finding a solution. Levels 5 and 7 were not 

included in the calculation of any of the averages because they took more than 500,000 

generated states to solve with the standard breadth-first algorithm that did not utilize 

deadlock detection which would have required excessive storage space and running time 

to let run to completion. 
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Level 

Standard 
Breadth-First 

Search 

Breadth-First 
With Deadlock 

Detection 

Push Method 
No Deadlock 

Detection 

Push Method 
With Deadlock 

Detection 

1 1,404 811 101 34 

2 2,076 298 17 7 

3 4,178 2,117 252 116 

4 49,120 4,429 4,062 161 

5 >500,000 78,256 20,203 1,420 

6 139,803 25,434 8,810 1,058 

7 >500,000 161,501 101,218 4,255 

8 9,394 4,476 397 180 

9 1,515 581 95 16 

10 13,628 5,012 781 276 

11 13,354 5,383 608 186 

12 5,945 1,024 153 27 

13 45,124 17,654 3,447 825 

14 2,400 590 169 24 

15 2,851 935 138 41 

16 240,957 96,032 13,602 3,753 

17 11,863 1,749 1,159 89 

18 10,564 3,888 456 160 

19 3,848 1,900 244 120 

20 8,950 2,700 465 139 

Average 31,499 9,723 1,942 401 
Table 2: Number of generated states before finding a solution (averages do not include levels 5 and 7) 

Deadlock detection by itself reduced the total number of generated states by 

69.1%, while utilizing box pushes reduced the number of states by 93.8%. Combining 

these effects resulted in a reduction of generated states of 98.7% from the original solver. 

Level 2 was by far the fastest, requiring only 7 generated states to find a solution with the 

final solver, which can most likely be credited to it having the highest number of 

deadlocked states removed, with 74% of its box locations having been removed. 

Because of the increased cost per state incurred from both deadlock detection and 

the shortest path computations, it is also important to look at the actual running time of 

each algorithm to make sure that these don’t offset the benefits of the reduction in states 
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generated. Table 3 shows the total running time (in milliseconds) required to find a 

solution for each of the solvers. 

Level 

Standard 
Breadth-First 

Search 

Breadth-First 
With Deadlock 

Detection 

Push Method 
No Deadlock 

Detection 

Push Method 
With Deadlock 

Detection 

1 56 39 13 8 

2 60 10 1 1 

3 120 61 17 10 

4 1,501 126 122 12 

5 N/A 3,470 732 58 

6 4,938 1,152 367 52 

7 N/A 7,556 3,811 177 

8 488 304 18 12 

9 69 11 2 1 

10 508 182 28 13 

11 450 178 19 7 

12 198 28 5 1 

13 1,381 564 125 31 

14 81 11 4 1 

15 66 21 4 2 

16 11,080 4,430 548 194 

17 397 34 25 5 

18 298 100 13 5 

19 100 176 8 3 

20 260 72 55 7 

Average 1225.1 416.6 76.3 20.3 
Table 3: Execution times in ms for levels 1-20 with each of the solvers 

As can be seen in Table 3, the decrease in running time of the improved solver is 

slightly less dramatic than the decrease in number of states generated, however there is 

still a significant improvement. Table 4 illustrates how much more effective each of the 

methods is over the standard breadth-first approach by showing their speedup on each 

level. Each value represents how many times faster the given solver was than the 

standard solver when comparing their execution times. These values could not be 
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computed for levels 5 and 7 because there was insufficient data due to their excessive run 

times on the standard breadth-first solver. 

Level 

Breadth-First 
With Deadlock 

Detection 

Push Method 
No Deadlock 

Detection 

Push Method 
With Deadlock 

Detection 

1 1.4 4.3 7.0 

2 6.0 60.0 60.0 

3 2.0 7.1 12.0 

4 11.9 12.3 125.1 

5 N/A N/A N/A 

6 4.3 13.5 95.0 

7 N/A N/A N/A 

8 1.6 27.1 40.7 

9 6.3 34.5 69.0 

10 2.8 18.1 39.1 

11 2.5 23.7 64.3 

12 7.1 39.6 198.0 

13 2.4 11.0 44.5 

14 7.4 20.3 81.0 

15 3.1 16.5 33.0 

16 2.5 20.2 57.1 

17 11.7 15.9 79.4 

18 3.0 22.9 59.6 

19 0.6 12.5 33.3 

20 3.6 4.7 37.1 

Average 4.5 20.2 63.1 
Table 4: Speedup over standard breadth-first search method 

On average the deadlock prevention appears to speed up the solver around 3 to 4 

times by turning it on, and abstracting out the individual man-moves sped up the solver 

by a factor of 20. The final algorithm can find a solution to a Sokoban level on average 

63 times faster than the exhaustive approach, indicating a rather large improvement in 

execution time for the solver. 
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Summary 

The Sokoban solver developed in this project shows definite improvement over 

the exhaustive approach. With 49% of potential box locations eliminated as deadlocks 

and an average speedup of 63 the new solver shows significant speedups in smaller 

Sokoban problems. Because of Sokoban’s complexity solving problems that are much 

larger and more difficult would likely require combining the techniques of this solver 

with more advanced methods. 

  



19 

 

Conclusions 

Generating solutions to Sokoban problems presents an interesting challenge 

because it is possible that no truly optimal solution will ever be discovered. The large 

number of potential moves in Sokoban problems makes exhaustive search impractical, 

and solvers must instead rely on other methods to go about this challenge. This project 

has explored the ideas of both looking at only box pushes rather than man moves and the 

removing of deadlocked states as a means of reducing the overall number of potential 

moves the solver must explore in finding a solution. The solver created shows substantial 

improvement over the original breadth-first search, although it could still be adapted to 

utilize more advanced heuristics to help further improve its efficiency. 

Limitations 

The difficulties encountered by this Sokoban solver appear to be with problems 

that are either very large or have lots of boxes. The challenge with large problems comes 

from the large branching factor and with lots of open space that can’t be eliminated 

through deadlock prevention. Consequently, it becomes difficult for the solver to process 

all of the different potential moves. Levels with large numbers of boxes are also difficult 

because it reduces the effectiveness of abstracting out the man-moves. 

Future Work 

The most time consuming portion of the Sokoban solver is the process of 

checking to see if a particular state has already been explored. Despite using the 

relatively efficient hash table this operation is still the only part of the solver that 

becomes slower the longer the program is run. If this process could be sped up in any 
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way it would provide a significant boost to the solver’s ability to function on larger 

problems. 

Another possibility for future research with Sokoban solvers would be to combine 

them with a form of machine learning to help the solvers recognize patterns and learn 

what does and does not work well. This form of solver could also read through replays of 

humans solving Sokoban problems and analyze their methods in an attempt to recreate 

similar problem solving strategies. 

The solver could also be adapted to find an optimal solution requiring the fewest 

possible number of man moves. This presents an interesting challenge because the 

algorithm would be unable to look at only the box pushes, forcing the solver to find 

different ways of reducing the total number of available moves. 
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