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Heat transfer to moving packed beds of solids has been studied

extensively but predictions are usually specific to the experimenter's

own equipment. In order to obtain a more general predictive equation,

the heat transfer coefficient was measured for a single vertical tube

immersed in a moving packed bed of glass beads, sand, or copper in air

at atmospheric pressure and compared to measurements performed by

independent researchers with various experimental configurations.

High speed photography was used to observe the motion of the

particles as they flowed past the heated wall. The particle separation

from the wall could not be determined. There was little interchange of

the wall particles with the particles in the bulk beyond the wall

layer. Likewise, the particles in the layer adjacent to the wall

showed very little rotational or cross-flow motion.

A numerical method, based on the unsteady state conduction

equation, was developed to predict the heat transfer coefficient

between the wall and the flowing bed of solid particles. This method

could be used to predict the experimental heat transfer coefficients

obtained provided the correct value of the particle separation from

the wall was used in the numerical solution. This separation cannot be



predicted a priori so that the numerical method is, therefore, not

suitable for predicting the heat transfer coefficient.

The experimental data showed good agreement with the analytic

solution obtained by Mickley and Fairbanks (1) at long contact times.

At short contact times, the data do not agree with the Mickley and

Fairbanks solution but the heat transfer coefficient tends to level

off at an asymptotic value.

An empirical correlation was obtained by which the contact time

at which the data depart from the Mickley and Fairbanks solution may

be predicted. The following equation, was found to be valid for the

data of the present work and for data of other researchers who used

different geometries in their work.

tcr
0.3622 + 9.691 L.

d pp s

This equation may be used in conjunction with the Mickley and

Fairbanks solution to predict the heat transfer coefficient for a

given flowing packed bed over a wide range of contact times.
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Symbol

Arod

NOMENCLATURE

Description Units

surface area of the heated
section available for heat
transfer. m2

Cps heat capacity of the solids. J/kgK

D heated rod diameter.

dp particle diameter.

dpi diameter of particles of
size "i".

fD (fW) friction coefficient between
a tube and dry (wet) solids.

h heat transfer coefficient. W /m2K

hi local heat transfer
coefficient. W /m2K

kg

ke

kgs

L

LC

thermal conductivity of gas. W/mK

effective thermal
conductivity of solids-gas
emulsion. W/mK

reduced thermal conductivity
of gas. W/mK

heated length parallel to
the flow path of solids.

heated length across the flow
path of solids
(characteristic length).

n number of sides of polygon.

hd
Nud

kg

h D

Nu')

p

kg

Nusselt number based on
particle radius (dp).

Nusselt number based on
heated rod diameter (D).

- power input to the heater.

m



Symbol Description Units

Cpsdppplis
Ped = Peclet number based on

kg particle diameter (dp).

CpsDpbUs
Pep = Peclet number based on

kg heated rod diameter (D).

rp particle radius.

Rc contact resistance (due to
gas film). m2K/W

s,x distance from heated wall.

T
g

temperature of the gas.

Ts bulk temperature of the
solids.

Tw steady-state average surface
temperature of the rod.

t - residence time.

tcr critical or separation time.

tmax - time where maximum heat
transfer occurs.

Us linear solids velocity. m/s

Xi - mass fraction of particles of
size "i".

GREEK SYMBOLS

Symbol Description Units

oe effective thermal
diffusivity (emulsion).

as effective thermal
diffusivity (solids).

ratio of gap width to
particle radius.

m2/s

m2/s



Symbol Description Units

porosity of packed bed.

60 void fraction for wall
separation distance greater
than 0.7d

P.

Er void fraction for wall
separation distance less than
0.7d

P.

accomodation coefficient.

A mean free path of gas
particle.

bulk density of solids. kg/m3

density of solids. kg/m3

thickness of the gas layer.

effective shear stress for
dry (wet) solids. N/m3

Pb, Pe

Ps

a

TD, (TO
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Heat Transfer Between Moving Beds of Solids

and a Vertical Tube

I. INTRODUCTION

The most important aspect of heat transfer

information for any kind of heat exchanger is the

average heat transfer coefficient to an immersed heated

surface. This quantity is usually obtained by measuring

the power dissipation from the surface to the

surrounding media. Reliable data and correlations for

the average heat transfer coefficient have great

commercial importance, therefore an increase in heat

transfer can nearly proportionally reduce the cost of

the exchanger.

Ever since gas-solid systems have been recognized

for their excellent heat transfer characteristic,

considerable research has been conducted in this field

especially for fluidized beds. However, less data is

available for moving packed beds of solids than for

fluidized beds. Existing predictions have generally

been compared against the researcher's own data instead

of equally considering data from the literature.

Consequently, there has been little study to explain

deviations between data by various experimental setups.

The knowledge of these heat transfer variations over a

wide range of particle sizes and velocities would be of

great interest when designing or selecting materials for
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solid-gas heat exchangers.

For this purpose, this study presents heat transfer

coefficient measurements to granular media flowing by

gravity past a vertical heated tube and compares it to

the limited number of data available in the literature.

The comparison shows that the heat transfer coefficient

to vertically oriented heaters may be predicted

graphically and a unique empirical solution to predict

the heat transfer coefficient is proposed.
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II. SELECTED PREVIOUS WORK

A considerable amount of work has been done on the

flow patterns as well as heat transfer behavior of

granular media in systems such as fluidized beds, packed

beds, moving beds, and suspension. In spite of many

attempts, the mechanism of convective heat transfer

to/from surfaces immersed in flowing solids is not yet

well understood. Related past research is briefly

reviewed in this chapter.

Mickley and Fairbanks (1) were among the first to

obtain data for the instantaneous heat transfer

coefficient in fluidized beds and provided an

analytical solution for the proposed version of the

"packet" theory. The packet (i.e. moving particles with

entrained gas) is assumed to be in contact with the

heated surface for a short time and then is replaced by

a new packet from the bulk of the bed. They considered

the packet to be homogeneous with uniform thermal

properties and derived an expression for the local

instantaneous heat transfer coefficient hi,

hi

at

Their results indicated that heat transfer resistance

exists in the layers of particles closest to the wall,
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but the independent effect of particle size is not

included.

Harakas and Beatty (2) considered the heat transfer

from a flat plate immersed in a rotating bed of granular

material (the flow of particles was parallel to the

plate). They varied particle size as well as

interstitial gas and observed an increase in average

heat transfer coefficient by either increasing

interstitial gas conductivity or decreasing particle

diameter. Their experimental findings are presented in

Chapter IV. Fine grained materials were considered a

one-component continuum and effective properties of this

continuum were used to predict a mean heat transfer

coefficient. However, great discrepancies in the model

predictions occurred as the particle size increased.

This result is expected since the thermal gradient which

forms within the "packet" in a short residence time does

not extend beyond one or two particle diameters from the

surface.

The convective heat transfer from a vertical flat

plate to various granular materials was investigated by

Sullivan and Sabersky (3). To explain their

observations analytically, they defined an idealized

model called the "discrete particle model". In this

model it was assumed that the conductance at the wall

was the same as that existing between adjacent rows of
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particles and that the conductance was inversely

proportional to the average thickness of the gas film

between particles and the heated plate.

Studying the mechanism of heat transfer between a

fluidized bed and immersed surfaces Baskakov (4)

introduced an additional contact resistance Rc, in

series with the thermal resistance of the packets, Re,

as defined by Mickley and Fairbanks (1). The contact

resistance, Rc, is assumed to represent the additional

thermal resistance of the layer next to the wall due to

increased porosity.

Denloye and Botterill (5) studied the heat transfer

in flowing packed beds. They obtained data by varying

the particle sizes of different interstitial gases.

They concluded that the heat transfer coefficient

increases with increasing gas thermal conductivity,

decreasing particle size, and particle residence time.

Spelt (6) investigated the heat transfer to a

granular material flowing in an inclined chute. He

found that the heat transfer coefficient increased to a

maximum and that decreased as the velocity of the solids

across the plate increased. The phenomena is believed

to occur due to changes in the packing density of the

flowing media.

Russian researchers Donskov (7) and Kurockin (8)

also experimented with flowing packed beds. Donskov (7)
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investigated the heat transfer coefficient by varying

the tube diameter and pitch of the tubes in a tube bank.

The results showed that the heat transfer coefficient

increases with a decrease in the ratio between pitch and

tube diameter. Kurockin (8) investigated the heat

transfer coefficient between dry and wet material, and a

single tube. He concluded that heat transfer increased

as the velocities of the granular material increased,

and he correlated his results with the following

equation:

Nu') = 0.22 Pep j [710.33
dp tfw rw

Ernst Rudolf (9) concluded that for moving beds of

solids and vertical or horizontal tubes at "short"

contact times the heat transfer coefficient is only

important within 0.1mm to 1mm away from the heated

surface. He also found that the heat transfer

coefficient at short contact times exhibits a maximum

value which is independent of the physical properties of

the particles but depends on particle size.

Colakyan's (10) work on heat transfer from a single

tube to various granular materials flowing in a

direction perpendicular to the cylinder axis provided an

empirical value for the contact resistance Rc first

introduced by Baskakov (4). The resistance was



estimated to be

Rc
6.7 x 10-5 dp2

k
g

Previous work preformed by the author (11) upon the

heat transfer coefficient between a horizontal finned

tube and moving beds of solids led to the following

empirical correlation:

0.3 dp 0.33
Nud = 2.37 Ped(3-25

g
Lc

The equation predicts the heat transfer coefficients for

plain and finned tubes within ±20%, but is restricted to

tubes with fin heights equal to or smaller than that

used for this research.

It was observed that the heat transfer coefficient

is greatest for particles with small diameters as

compared to the large diameter particles of the same

substance. The heat transfer coefficient also depends

on the velocity of the particle flow over the heated

surface as explained later.

Other research concerning flow of solid material,

porosity distribution, gas properties, surface

influence, etc. is discussed elsewhere in the related

sections.
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III. EXPERIMENTAL EQUIPMENT

An experimental test system was developed to

determine the heat transfer coefficient for granular

materials flowing by gravity past a vertical heated

tube. Particles having various solids properties and

sizes were selected for measurement as a function of

transport velocity. A physical description of each

component is reviewed here.

III.A. Solids

In the present work only granular materials are

considered; porous materials in which a solid medium has

a closed gaseous space were not considered. Four types

of solids, sand, glass beads, copper, and iron were used

as the granular media. Properties of the materials used

in the experiments as well as the range of operating

conditions are given in Table (III.A.1). Table (III.A.2)

lists all the properties of the four different solids

used in the experiments. Effective properties were

calculated using Eq. A.2 in Appendix A.

Microscopic photographs of these particles

revealed the glass beads had the most smooth and regular

shape distribution. In contrast, the iron solids have a
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Table (III.A.1). Properties of Materials Used and
Operating Conditions.

Material Range of Operating Conditions

Particle Diameter, dp 0.044 0.8 mm

Solids Density, ps = 2500 - 8900 kg/m3

Bulk Density, Pb = 1500 5360 kg/m3

Solids Thermal
Conductivity, ks = 0.8 384 W/mK

Solids Heat
Capacity, Cps = 380 1080 J/kgK

Linear Solids
Velocity, Us = 0.004 0.3 m/s



Table (III.A.2). Properties of Solids.

Material d

(mm)

ks Ps ps

(W/mK)(kg/m3)(J/kgK)

E Pb ke

(W/mK)(kg/m

aex108 asx108

) (m2/s) (m2/s)

Sand 0.11 0.80 2700 780 0.488 1280 0.14 14.0 0.38

Sand 0.80 0.80 2700 780 0.436 1410 0.17 15.5 0.38

Sand 1.2 0.80 2700 780 0.424 1440 0.18 16.2 0.38

Glass 0.044 1.04 2500 1080 0.426 1435 0.26 16.6 0.53

Glass 0.18 1.04 2500 1080 0.400 1500 0.28 17.3 0.53

Glass 0.80 1.04 2500 1080 0.400 1500 0.29 17.7 0.53

Copper 0.21 384 8950 383 0.419 5200 0.46 22.4 11000



wide size distribution and a flaky texture. When

pressed together, the iron would cling in clumps.

The mean diameter, dp, of each solid was

calculated according to the following formula:

d
P

=

where

1

Xi
dpiL

(III.A.1)

xi = mass fraction of particles of size "i".

dpi = diameter of particles of size "i".

III.B. Heater Rod

11

The instrument illustrated in Figure (III.B.1)

consists of a stainless steel tube 0.0127m 0.D., 0.4572m

long with a 600W (115V) heating element 0.1524m long

imbedded in it. Temperature at the inside surface of

the stainless steel rod was measured with a single

imbedded T-type thermocouple positioned along the axial

center of the heater element. Power to the heater was

regulated by a 115V 5amp variac and measured with a

Jewell electric wattmeter to 5% tolerance. A

calibration procedure was performed to determine the

metal resistance (k/x) between the thermocouple and the

rod outside surface. Corrected temperatures were then

used for calculations of the heat transfer coefficient.

A table for heat transfer coefficients using corrected



STAINLESS STEEL HEATER ROD (0.4572m long)

T-type thermocouple

/1.1114111.11111.111MI.moo. ----111111ftum
/,--"Iiii1111111111=0.

power cord

cartridge heater(0 1524m long)

Figure (III.B.1). Heated stainless steel tube.
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temperatures is presented in Appendix E.

The surface of the heated rod, in which the

heating element is installed, maintains a constant

temperature axially over a 0.1524m length. Some

experiments were conducted to verify this condition and

temperatures along this length were observed within 0.5F

deviation.

III.C. Test Section and Solids Transport System

The heater rod was centered within a 0.0381m I.D.

tube and its position was maintained by three retaining

screws at either end of this 0.4572m long tube. The

tube was made of clear plexiglass to permit visual

examination of granular flow about the heater rod. A

small hole in this vertical test section near the center

of the heated section of the rod allowed a thermocouple

to penetrate and measure solid temperature near the tube

wall during the experiment. A cone centered at the base

of the heater rod and inside the bottom opening of the

test section maintained an equal radial distribution of

solids flow about the rod length and its height could be

adjusted to vary the flow rate of solids leaving the

bottom of the test section.

A ten gallon supply hopper acted as a solids

reservoir and emptied its contents through a 2in I.D.

pipe which was kept capped until the experiment was



14

HOPPER

FUNNEL

POSITIONING SCREWS

TRANSPARENT TEST TUBE

HEATED TUBE (0 4572m long)

CARTRIDGE HEATER
(0 1524 m long)

POSITIONING SCREWS

INVERTED FUNNEL
(solids flow conrtoller)

THERMOCOUPLE CONECTORS

POWER CORD

Figure (III.C.1). General layout of moving bed
apparatus.
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ready to begin. Solids were fed through a funnel into

the test section and collected into a bucket below. To

recirculate the flow, solids were manually transferred

into the supply hopper. The depth of the supply hopper

outlet pipe into the funnel was kept constant throughout

experiments with all materials and the height of solids

in the hopper was maintained at the same level as much

as possible. Maintaining these positions constant was

essential to assure constant flow rate. The funnel

outlet size limited the rate of mass flow into the test

section and was largely responsible for the maximum

transport velocities achieved (Figure III.C.1).

Two thermocouples, one to measure ambient air, the

other to measure solids leaving the funnel, were

employed to determine static two phase (gas-air)

temperatures. These two thermocouples, including the

heater rod thermocouple, were wired through a selector

switch to a ±0.1F digital thermocouple reader.

III.D. Particle Motion and Porosity

Measurement Equipment

In order to record motion of particles which slide

against the surface of the heating rod, an apparatus

was devised whereby a high speed motion picture camera

could be focused upon a small portion of the rod. A

plexiglass tube with an outer radius identical to the
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heater rod was constructed within a test section to

enable photography of particles through the tube wall

under conditions closely resembling particle contact

with the heater (Figure III.D.1). A small vertical

section of both this tube and the test section wall was

removed and a tunnel between the two openings was

installed. A Hycam model 41-0004 rotating prism camera

was focused through the tunnel upon the outside edge of

the tube and the subject was illuminated from 3 feet by

a 1000W tungsten-halogen spotlight. To assure focus and

alignment, the test section was firmly clamped to the

equipment support column and the camera was positioned

on a level surface over a rubber mat. Framing speeds

may be measured directly from the film margin since

timing marks are exposed on the film during camera

operation by an internal time dot generator. The motion

was recorded at speeds to 2000 frames per second on a

high speed 16mm film, Kodak RAR 2484, developed for 8min

in D19 developer at 20C to a sensitivity of 1250 ASA.

Film spools of approximately 40ft were used for each

run. When imaged with a Sopelem macro zoom lens set for

highest magnification (250mm f/5), a view field of

3mm x 5mm was obtained, the latter dimension closely

approximating the arc length of rod surface in view.

Due to this high magnification, an extremely short depth

of field ensured only those particles within 1mm of the



CROSS SECTION

camera view

OUTER TRANSPARENT TUBE

INNER TRANSPARENT TUBE

........

FOCUSING WALL

17

Figure (III.D.1). Transparent test section used with
high speed camera.
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tube wall could be imaged.

Spherical particles of glass (0.8mm) and copper

(mixed sizes of 0.8 to 0.2mm) were filmed for porosity

measurements for moving packed beds. The glass beads,

in an attempt to obtain a better photographic image,

were colored with blue paint.

III.E. Experimental Procedure

III.E.1 Heat Transfer Coefficient Measurement

This section provides details of the steps

performed in the experiment, experimental equipment

operation constraints or criteria chosen to select a

particular range of operation, and calculations required

to obtain a measured value of the heat transfer

coefficient as a function of solids velocity. The

experimental procedure required the heat transfer

coefficient to be measured under steady state

temperature conditions. Once the cap of the supply

hopper was removed and the flow rate through the test

section was adjusted, power to the heating rod was

applied. Steady state was reached when the temperature

variation at the surface of the rod was negligible with

time (a deviation of not more than 0.1 to 0.2F over a

few minutes). When the rod temperature stabilized, the

time required for solids leaving the test section to
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collect in a beaker for mass survey was measured and the

thermocouple readings and power were recorded.

Measurements were repeated several times for a single

solids type, flow setting, and power level.

Precautions regarding power levels, and therefore

operating temperatures of the rod, were taken. First,

the rod surface temperature could not exceed 300C to

avoid errors introduced by T-type thermocouples which

are not designed to operate at these higher

temperatures. Second, by providing the maximum possible

temperature difference Tw-Ts the highest precision was

ensured. In all experiments this difference is at least

50C. It was also observed that at power levels below

75W significant deviation existed in heat transfer

coefficient calculations from rod temperatures compared

to those calculations at all higher power levels.

Therefore, experimental power levels were maintained

within a range of 75 to 200W.

Solids depth in the supply hopper influenced flow

velocity and therefore rod temperature changed a small

percentage as the hopper was replenished. Maintaining

an equal level within the hopper as well as performing

multiple measurements reduced what affect this variation

might have.

In a large number of test runs under different

conditions of solids velocity, the test section was
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rotated with respect to the rod to confirm that the rod

thermocouple gave identical readings when placed in

different radial positions.

The heat transfer coefficient h is calculated for

each run using the following relationship.

where

h

Arod(Tw Ts)

P = power input to the heater (W)

Arod = surface area of the heated section

available for heat transfer (0.00608048m2).

Ts = bulk temperature of the solids (K).

Tw = steady state average surface temperature of

the rod (K).

Flow velocity was calculated from the time

required for solids discharged from the test section to

fill a survey beaker and the mass which accumulated.

III.E.2. Velocity Measurements

The velocity was measured in two different ways:

1. The amount of solids discharged from the test

section in a given time was collected and

weighed. Knowing the properties of the

material and the limiting cross sectional area

available for flow, the velocity was estimated



using the following relationship

(mass flow rate)
us

(bulk density) (flow area).
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2. The velocities were estimated by visual

observation of the particles near the

transparent wall by measuring the time taken

for the particles to travel a given distance.

This method assumes that solids are flowing in

plug flow.

For data analysis, velocities measured by the first

method were used. Flow velocities at the wall were also

recorded for comparison by high speed photography.

111.E.3. Particle Motion and Porosity Measurement

At the high magnification required to photograph

particle movement, alignment and stability of the camera

and test section was critical. Film changes were

therefore performed without moving the camera position

and both alignment and focus were verified prior loading

each film. Also, the solids were allowed to flow

through the section before switching on the spotlight

and camera and precautions were taken to isolate

movement by the operator from the equipment while the

exposure was taking place. Solids velocity was

regulated by the height of an inverted funnel centered

at the bottom of the test section and a different
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velocity was set for each run. A solids velocity

measurement by sampling the mass and duration of solids

accumulated from the test section occurred

simultaneously.

The photographic experiment was exposure limited

because of the recording speed required. Therefore, the

lens aperture was opened fully throughout the experiment

so the inherent camera aperture of f/3 was the only

restriction on the intensity of exposure. Due to the

narrow opening of the view tunnel into the test section,

spotlight placement had an effect on the intensity and

clarity of the image of the particles viewed through the

lens. Some experimentation with spotlight placement was

therefore necessary for initial runs.

Film processing occurred on site to minimize delay

for analysis. To analyze the films, a 16mm film editor

was used to view particle motion and velocity whereas an

enlarger displayed individual frames for porosity and

particle separation. A film of a static packed bed for

each particle type was used for comparison. Particle

speed was computed by tracking a vertically moving

particle throughout the height of the frame image,

counting the consecutive frames, and calculating the

corresponding elapsed time using the timing marks

exposed on the film. Individual frames selected for

appearance of distinct particles were projected upon a
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sheet of paper where the measurements were recorded. At

least 10 to 20 distinct frames were sampled from each

film to measure particle separation and interpret

particle number per frame touching the rod wall.
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IV. HEAT TRANSFER RESULTS

The following section provides a graphical

presentation of the experimental results for heat

transfer from a vertical bare tube and moving beds of

solids. A graphical comparison between results of the

present study and some available data from the

literature for various experimental setups accumulated

from either tables or digitized from original figures is

also included.

IV.A. Present Study

Figure (IV.A.1) presents the heat transfer

coefficient as a function of the linear solids velocity

for glass beads of 0.8mm, 0.18mm and 0.044mm in

diameter. As expected from the results of the previous

workers, the heat transfer coefficient increases with a

corresponding increase of the solids velocity. The heat

transfer coefficient can be observed to level off with

increasing velocity for all three sizes and the maximum

value for the heat transfer coefficient decreases as

particle size increases. When data are plotted on a

log-log scale all three particle diameters follow a

straight line with a slope of 0.4 and only the heat

transfer coefficient for glass beads of 0.8mm diameter
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appears to level off (Figure IV.A.2). Figure (IV.A.3)

presents data for silica sand, and Figure (IV.A.4)

presents heat transfer to glass beads and copper against

time. Figure (IV.A.4) shows moderately higher values in

the heat transfer coefficient were obtained for copper

than for glass, although the conductivity of copper is

384 times higher than glass.

IV.B. Data Comparison with

Other Researchers

Heat exchangers are observed to be more efficient

when the fluid flows perpendicular to the heated

surface. This phenomenon is often explained by the

formation of a thinner laminar boundary layer which

forms when the fluid flows normal to the heated surface.

Following the same reasoning, a similar behavior for a

gas-solid system should be expected.

When the data for sand of 0.8mm diameter flowing

past horizontal and vertical heater configurations was

plotted jointly in Figures (IV.B.1 and IV.B.2), the

horizontal configuration seems to provide higher heat

transfer results. Apart from material properties,

"time" that solids spend in contact with the heated

surface is the second most important parameter when

predicting the heat transfer coefficient. Thus, Figures

(IV.B.3 and IV.B.4) present the same data in the time
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domain. The result was "almost" unexpected; vertically

oriented heaters showed higher heat transfer results

when plotted against velocity. As opposed to horizontal

heaters, vertical heaters without external obstructions

have an equally distributed flow of solids at the

surface without formation of gaps or stagnant zones.

Flow patterns about horizontal tubes are characterized

by higher particle-wall porosity and results in

decreased heat transfer. A detailed explanation of

solids flow is given in section V.D.1. Therefore, it is

concluded that for vertical and horizontal heaters with

equivalent characteristic length higher values of the

heat transfer coefficient are expected for vertical

configurations.

Experimental results from Ernst (9), Wunschmann

(12), and this study are given in Figure (IV.B.5). As

shown, they all follow the same line till they level

off. The plateau where the maximum heat transfer occurs

varies with different heater arrangements.

In Sullivan's (3) study of the heat transfer

coefficient characteristic of granular media flowing

past a thin vertical plate, moderately lower results

were obtained than would be expected (Figure IV.B.6).

Uncontrolled heat losses due to their experimental

apparatus or even a minor obstruction in the particle

flow may produce the results which they obtained.



1000

1

E
100 7

10
0.010

O A 1.mm glass Wunschmann (12)
0-3.1mm glass Wunschmann (12)

417

A 0.8mm glass present study
6e5

0.18mm glass present study
P!!to 0.044mm glass present study

Etpc,
o .5.7 mm sand Ernst (9)

.3.5 mm sand Ernst (9)
O .1.2 mm sand Ernst (9)

0.100 1.000 10.000
Time (s)

100.000

Figure (IV.B.5). Comparison between heat transfer coefficients as a function
of contact time with the heated surface for Ernst's (9),
Wunschmann's (12), and the present data.



E

1000

100

4t

present study:
0-0.044mm glass

0.18mm glass
6, 0.8mm glass
Sullivan and Sabersky (3):
o 0.33mm glass

1.35mm glass

10
0.010 0.100 1.000 10.000 100.000

Time(s)
Figure (IV.B.6). Comparison between heat transfer coefficients as a function

of contact time with the heated surface for Sullivan's (3)
data and the present study.



37

V. MODEL ASSUMPTIONS

The significance of heat transfer coefficients from

a design standpoint has already been emphasized.

Therefore the ability to predict this quantity in terms

of bed dimensions and properties is of invaluable

importance. Two representative theories of particle bed

heat transfer exist: (1) the bed may be assumed to

comprise of homogeneous properties of solid and gas and

modeled as a region with a single property or, (2) a

more complex mechanism of separate gas-particle heat

transfer interactions. The bed itself cannot be

considered homogeneous since heat transfer response is

different for solid and gas phases but for long bed

heating times this has been shown to be a good

approximation. The latter approach is most important as

the velocity of the bed increases since heat propagates

among too few particles from the heated surface for the

bed to be considered homogeneous. Modeling heat

transfer discretely between gas and particle is however

complicated because of gas movement and particle

separation, transitions from the heated surface, and

particle contact with the wall are not fully understood.

In this chapter an attempt to explain the

simplifying assumptions of the heat transfer mechanism

to moving beds of solids will be provided.
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V.A. The Role of the Gas Phase

In a moving packed bed of solids, heat is

transferred from an immersed surface by particles

directly touching the surface and by interstitial gas

(air in this study) which is moving with the particles

at the same velocity past the heated surface. Since the

volumetric heat capacity of the air is quite low in

comparison to that of solids it is assumed that heat

removed by gas convection is negligible. Most of the

heat is absorbed by the solid phase. In spite of this,

the gas plays an important role as a heat transfer

medium between the heated surface and the first row of

particles as well as between the particles themselves.

Without the gas, heat removal by only particulate solids

would be very poor regardless of the solid properties as

demonstrated in some experiments for vacuum conditions

(2,12). Figure (V.A.1) shows experimental data

reproduced from Wunschmann and Schlunder (12). Some

researchers have found that the heat transfer

coefficient between the heated surface and granular

material increases with an increase of the thermal

conductivity and/or thermal capacity of the gas (Harakas

& Beatty (2)). The physical property of the

interstitial gas has a great influence on the heat

transfer coefficient.
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V.B. Contact Resistance

This important factor must be considered when

trying to understand heat transfer between two immobile

touching solids. Baskakov (4) was first to introduce

the concept of contact resistance to account for the

discrepancies between experimental data and the Mickley

and Fairbanks model (1). Baskakov's (4) explanation was

instrumental in explaining the observed dependence of

the heat transfer coefficient on particle size (as dp

increases h decreases). The problem of determining a

resistance term for correction with the Mickley and

Fairbanks model (1) has been handled in many ways either

by defining an appropriate effective thermal

conductivity or by introducing an arbitrary set zone of

increased voidage close to the surface. Many

researchers questioned the physical existance of the gas

gap at the contact point although it appeared almost

impossible to explain or fit the experimental data

without it. Others such as SchlOnder (13) or Decker and

Glicksman (14) abandoned the use of a gas film

separating the surface from the first row of particles.

Schlunder (13) suggests that a known formula from the

kinetic theory of gases for estimation of reduced gas

conductivity should be used to define the gas

conductivity in the region where the mean free path of



the gas molecules is larger than the distance between

the particle and the wall, namely

where

kgs =
kg

A (2 /)
1 2

a 1

(V.B.1)

kgs = reduced thermal conductivity of gas (W/mK).

kg = thermal conductivity of the gas as a

continuum (W/mK).

A = mean free path of gas molecules (m).

a = thickness of the gas layer (m).

/ = accommodation coefficient.
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The phenomena of the reduced thermal conductivity

implies heat transfer is decreased as particle size

decreases since the percent of area within one mean free

path of the contact wall increases.

The contact resistance can be treated more

realistically by considering the microscopic structure

of the surface especially at contact of the particle

and heater. When viewing the solid surface with even an

optical microscope only structures above 0.1Am are

visible. Thus a highly rugged structure can exist at

the optically smooth surface. The physical properties

at the surface interface such as surface energy,
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tension, and conductivity arise as a result not only

from the bulk atomic structure but also from somewhat

different atomic arrangement at the surface. Some

properties, such as surface energy which is inversely

proportional to the particle size, are instrumental in

explaining the phenomena of adhesion and/or

agglomeration that is most likely to occur in a bed of

fine particulate solids. Due to existing surface

forces, the impurity-free surface of a freshly formed

solid will be covered by layers of gas molecules in less

than a second. Physically adsorbed gas can be removed

from the surface either by heating the solid to its

melting point or by degassing the surface under high

vacuum. Brenner (15.) observed that oxygen adsorbtion on

iridium surfaces reduces surface free energy. Therefore

much larger friction coefficients were measured for

flow by surfaces under vacuum than in the presence of

air. In the case of nonmetals (e.g. diamond or NaC1)

the friction coefficient increases six times when

measured under vacuum. All these facts provide support

for the long disputed existence of an adsorbed gas layer

which is obviously carried along with each particle as

its own atmosphere. However the thickness and changes

that occur according to experimental conditions are

uncertain. Thus for the gas in gas-solid systems the

difference should be made between the strongly adsorbed
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gas (air) which cannot leave the particle surface freely

and acts more like part of the solid, and the bulk gas

(air) that moves freely between the particles. When the

particle is in contact with another solid surface it is

beyond imagination that adsorbed gas can be removed only

by particle weight. It is more probable to expect the

generation of a "binding force" between the particles

and the wall as well as between particles themselves.

Also, it has been evident that surface phenomena can be

related to the forces between atoms and molecules. In

general, interatomic forces are short range but

sometimes they can act across or between interfaces

(London forces). As particle size decreases the

importance of forces like inertia or gravity flow

decrease, until the atomic forces become dominant.

Adhesion that usually occurs in a bed of fine solids is

only one of the examples where the sum of the binding

forces between the particles is higher than

environmental forces. Apart from the adsorbed gas most

solids will pick up moisture from the surrounding air,

as observed for glass beads of 0.044mm and iron

powders. The adsorption layer is not freely moveable

but particles can come closer to each other much easier

than when they are clean. Attraction forces between the

particles are usually caused by Van der Waals,

electrostatic, or magnetic forces. These forces are
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considerable when particles are close together and they

decrease rapidly with distance. Since the adsorbed

layer is thicker around smaller particles and at the

same time the roughness peaks are lower than for large

particles, the ability of such particles to approach

each other closer and with larger surface area is

increased.

Therefore it is believed that reduction in particle

size can bring some improvement in the heat transfer

coefficient since the greater interparticle forces will

not allow separation at increased solids velocities as

in the case of large particles. On the other hand, when

particles become too small and interparticle forces are

dominant, most of the gas (air) will be adsorbed at the

solid surface while the amount of freely moving gas

(air) will decrease leading to a consequent decrease in

heat transfer. At this point, the gas conductivity

changes since there are very few gas molecules in free

motion. Therefore, lower values for the heat transfer

coefficient than for air alone are possible.

V.C. Particle Shape

Beds of particles of irregular shape or size should

increase heat transfer since surface area in contact

with the wall or adjacent particles is minimized for

uniform sized spheres. Although particle packings of
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extremely irregular shape and size may require

individual measurements of heat transfer coefficient,

something could be said about what one would expect for

a heat transfer coefficient to a packed bed of

irregularly shaped particles if each particle closely

approximates a sphere. In fact, for randomly packed

beds of irregular particles porosity varies

proportionally with sphericity (16). Since effective

properties of the heat transfer medium are a strong

function of porosity, increased porosity at the wall is

responsible for lower heat transfer coefficients.

Provided porosity distribution from the heated wall

to the bed is understood a computer calculation to

simulate heat transfer to the most irregular bed would

then appear possible. However, in this research similar

or even lower heat transfer coefficients were measured

under flow conditions which implies packing at the wall

may become poorer with decreased sphericity.

V.D. Flow and Porosity Distribution

The degree of separation between particles either

between themselves or the heated wall and their motion

relative to the wall may change with bed velocity and

particle shape. An increased porosity at the wall can

be reasoned to lower the effective conductivity of the

flowing medium and in fact a reduced heat transfer
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coefficient is normally observed. Also, the amount of

heat removed from the wall depends on the nearby

particle velocity and exchange of particles in layers

streaming adjacent to the wall. Bed velocity may also

affect suspension of flowing particles. Therefore, heat

transfer prediction is largely influenced by

interrelated dynamic properties of the bed and static

particle separation within.

V.D.1. Flow Properties

Hiroshi Takahasi and Hiroshi Yanai (17) studied a

flow profile and void fraction of granular solids in a

moving bed. They observed that in some cases spherical

particles flowing down the tube form two regions. In

the shear region, which extends 4-8 particle diameters

from the wall, particles were observed to flow slower

that in the main body of the core or plug flow region.

When the ratio of bed height to column diameter

approached about 2 to 3 the velocity profile became

fully developed. This pattern of velocity variation

across the test section was not observed for shallow

beds of spherical particles neither for irregularly

shaped coal, although the latter was not discussed in

their paper. In their experiments the void fraction of

the particles was found to be influenced by velocity,

and to reach an asymptotic value for higher flow rates.
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Also, Sullivan (3) observed that the solids adjacent to

the wall slide along with approximately the same speed

as the bulk flow. He therefore concluded that no

boundary layer exists near smooth walls.

For flow studies perpendicular to a heated tube,

Sullivan (3) noticed the formation of a cavity

immediately downstream of the cylinder. This gap

appeared even for very low solid velocities but its size

increased with flow rate. In the same study a

triangularly shaped stagnant region of solids at the

upstream face of the cylinder was observed but its shape

and size was velocity independent.

Unlike a fluidized bed, particles in a packed bed

are not suspended and free to wander about but are

pinned between their neighbors. Only if a particle is

balanced near a void large enough to accommodate it will

it move to drop in. Particle propagation may then only

extend about one particle diameter at a time. The

frequency of particle interchange as well as rolling

over the heated length would be an important measure of

the degree of increased heat transfer expected.

Using the high speed camera described earlier,

motion of 0.8mm diameter glass beads at the heated

surface were investigated in detail. The fraction of

particles observed to interchange position from all

particles viewed in the area of one frame over the
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duration between interchanges was noted for each film.

About one interchange per 160 particles flowing past the

frame was likely to occur at low velocities. At high

velocities, an alternating pattern of particle

streaming occurred as particles settled into voids left

by supporting particles. Few particles were observed to

rotate at the wall, while all others were slipping

without rotation. For two films, the focus and lighting

was set to image particles within the bed more than lmm

away from the wall. In each of these films the

particles flowed in a linear pattern and no particle

interchange was ever observed. This indicates that the

majority of interparticle motion appears to occur at the

wall where it may make the most significant change in

heat transfer. Despite this, few particles would

interchange position at the wall so it is reasonable to

assume interparticle motion has a negligible effect on

increasing heat transfer.

An investigation into the porosity change at the

rod wall with flow velocity was performed using the high

speed camera and glass beads. Analysis of the films

revealed a small change in porosity occurred up to a

velocity of 0.5m/s, the maximum velocity investigated.

The porosity change at the wall could not be modeled due

to insufficient amount of data. Since the lens' focal

length allowed particles within one millimeter of the
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wall to appear in focus it was difficult to distinguish

a particle separation from the wall. Therefore, it was

not possible to conclude if a gap separates a particle

from the wall or how this gap changes with velocity.

Instead, particle separation between each neighbor was

measured. The particle orientation as observed did not

depart from an orthorhombic array at velocities of 0 to

0.5m/s; another indication porosity did not change

greatly. If a bulk porosity change did occur, the

solids velocity measured by weight of the discharge

solids would be suspect. However, particle velocity at

the rod surface was comparable within experimental error

to the bulk solids velocity computed by assuming

porosity remains as that of the static randomly packed

bed.

V.D.2. Static Properties

The bed porosity for perfect spheres can be taken

as 0.4 throughout the entire bed except for the first

row of particles touching the wall where voidage is

greater than that in the bulk of the bed and can be

calculated using the relation



x 0.378

1 co 0.7d
P

given by Kimura and Kaneda (18) where

er = void fraction at the distance smaller than

0.7d
P.

co = void fraction at the distance larger than

0.7dp.

x = distance from the wall (m).

dp = particle diameter (m).
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(V.D.2.1)

If particles form closely a regular array or pattern

between themselves an equation for porosity distribution

within a packed bed to one particle diameter from a

plane wall may be obtained. Random packing of spherical

particles normally form an orientation closely

approximated by cubic or orthorhombic arrays, the

orthorhombic array being most prevalent. When the

particle array is divided into its smallest decomposable

unit of a single particle and the void surrounding it

(Fig. V.D.2.1), this region appears as a sphere

inscribed in a 4 or 6 sided prism (rhombohedron).

Viewed from the contact point of a side tangent to the

sphere, the region is azimuthally symmetric. The

apparent particle area heated from the surface of one

side may then be represented two dimensionally by a
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Figure (V.D.2.1). Particles in orthorhombic array.
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plane intersecting the region a distance s from the side

(Fig. V.D.2.2). This allows an equivalent representation

of the temperature gradient between two and three

dimensional models of the particle-in-a-prism region.

The ratio of void to particle surface area in the

intersecting plane at distance s is

where

x(2(s/r)-(s/r)2)
E(s) = 1 (V.D.2.2)

n tan(w/n)

n = number of sides of polygon represented by

intersection the of plane to region.

r = radius of particle.

The porosity of the region based on volume is

E = 1

2w

3n tan(r /n)

and, for example, c=.395 for n=6.

Assuming heat transfer through particle contact

points is negligible, then, heat transfer may be modeled

two dimensionally over the particle-in-a-prism region

where the heated surface is located at s=0.

Measurements by researchers such as Benenati et.

al. (19) have shown the porosity distribution from the

wall into a packed bed of spheres appears as a damped
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Figure (V.D.2.2). Scheme for porosity calculation by
penetration s into orthorhombic
array of spheres.
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sinusoid asymptotic to a porosity of 0.4. When

integrated over distance traversed from the wall, Eq.

V.D.2.2 closely approximates their findings. For tube

to particle diameter ratios (D/dp) less than 6, particle

size has a significant influence on the bed porosity

distribution function and Eq. V.D.2.2 would no longer

hold. When this ratio is larger than 6 the porosity

distribution function drops from unity to 0.4 within 0.7

particle diameters from the wall (19). The results for

voidage at the wall were independent whether the wall

was concave or convex.

V.E. Summary

It is obvious that extensive knowledge of all the

above mentioned variables and flow behavior of two phase

systems is necessary to understand the phenomena of heat

transfer between heated surfaces and flowing granular

media. The following general assumptions may be made

regarding heat transfer to flowing packed beds of

solids:

1. Thermal properties of the interstitial gas

largely determine heat transfer throughout the

bed.

2. The assumption of a contact resistance term

between heated wall and particle is necessary
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to model experimental data. A definite

physical explanation of the resistance is

complicated. The complication arises in

modeling the gas adsorbed at the solid surface

alone or an additional gas gap separating the

solid from the wall.

3. Bulk porosity distribution appears independent

of bed velocities common to most research with

flowing packed beds. The particle rotation

and propagation at the wall is too rare an

event to significantly enhance heat transfer.

However the velocity dependence of a gas film

which separates particles from a vertically

heated surface is unknown.

4. Porosity of a static bed as a function of

distance from the wall varies as defined by

Eq. V.D.2.2 for beds of regular spheres

provided the ratio of tube to particle

diameter is greater than 6.
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VI. HEAT TRANSFER COEFFICIENT MODELS

This section reviews the effectiveness of several

analytic and numerical models of increasing complexity

upon prediction of the heat transfer coefficient given

the assumptions of the last section. A unique empirical

model is also presented which assumes the departure from

the Mickley and Fairbanks (1) model at low residence

times is most dependant upon a characteristic change of

flow properties.

VI.A. Analytic Models

To date, any experimental apparatus used to record

heat transfer to a flowing bed of particles measures

steady state temperatures on the heated surface and

within the bed once flow of solids has been adjusted to

a constant velocity. The heat transfer coefficient is

then calculated by the temperature difference from the

bed the heated surface finally assumes. To represent

heat transfer to a flowing bed of solids mathematically,

a moving coordinate system is typically used whereby the

point of reference travels with the particle. This

representation models the process as an unsteady state

heat conduction problem where the bed is assumed to

possess some initial temperature and heat is applied

from the surface for a time assumed equivalent to that
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required by the particle to traverse the length of the

heated section in the experimental system. The heat

transfer coefficient is then calculated for the amount

of heat added to the bed and the temperature of the wall

relative to that of the bed initial temperature.

In any experimental system, heat transfer to the

bed begins when the gas-solid mixture flows past the

heated boundary and continues for the length of the

heater. What is measured therefore is a heat transfer

coefficient averaged over that length. For comparison,

the coefficient predicted by the moving coordinate

system corresponds to a single time or point along the

heated length and therefore this instantaneous value

must be averaged over the time of flow past this length.

The problem of any simple analytic treatment of

heat transfer to flowing beds which does not account for

contact resistance, such as the Mickley and Fairbanks

(1) equation, is that as the simulation time decreases

to zero the heat transfer coefficient modeled approaches

infinity when actually a maximum value is observed.

Nevertheless, the equation is a reasonable model to be

used at large residence times. A comparable model

applied to rod geometry as opposed to slab geometry was

derived and appears in Appendix A. Models applied to

both geometries are comparable at low residence times,

however the rod model heat transfer coefficient flattens
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out for higher time and decreasing radii. Figure

(VI.A.1) shows only a small deviation from either

geometry model is observed for 0.8mm and 0.18mm glass

particles about 30sec. A greater magnitude of heat

transfer appears by both analytic models when compared

to experimental data due to the effective conductivity

calculated by Eq. A.2

The simplest way of accounting for contact

resistance analytically is to separate the treatment

into a gas gap region and a solid region in order to

model unsteady state conduction to a particle adjacent

to the wall. A second analytic model was then developed

based on a derivation for a composite semi-infinite slab

and appears in Appendix B. Unfortunately, because

particle size and curvature is not accounted in the

method it would not be expected to fit data for

different particle sizes.

Once the composite slab model was modified to treat

a hemispherical interface at the wall, the model became

appropriate to predict the value of the heat transfer

coefficient which occurs during heating of the gap. The

derivation, which appears in Appendix C, is useful until

the heat transfer coefficient becomes equivalent to that

of the Mickley and Fairbanks (1) equation based on

effective properties. This is an inherent limitation

since only half a particle from the wall could be



1000 7:

E

100

O

v

rod model
slab model (M&F)

.147 mm glass H&B (2)

0 .044 mm glass present study
.180 mm glass present study

A 0 .8 m m glass present study
1.0mm glass Wunschmann (12)
3.1 mm glass Wunschmann (12)
.5.7 mrn sand Ernst (9)

- .3.5 mm sand Ernst (9)
O .1.2 mm sand Ernst (9)

10 1 1111111 I 1 1111+11 I I I I 11}1-1 1 1 1 111111 1 1 1 111111 1 I 1

0.001 0.010 0.100 1.000 10.000 100.000
Time (s)

Figure (VI.A.1). Comparison between heat transfer coefficients as a function
of contact time with the heated surface for rod and slab
analytic models and experimental data.



60

modeled whereas heat propagation from one to three

particle diameters into the bed is necessary before the

solution assumes the behavior of the Mickley and

Fairbanks equation (1).

The maximum heat transfer coefficient due to gas

gap heating predicted by the above model appears as a

time independent value particularly for particle

diameters less than a millimeter. This maximum is not

influenced by solid properties and is given

approximately by

where

kg w
h Arctan[i 1

r I 6+2 6 6 2

kg = gas conductivity (W /m2 -K).

r = particle radius (m).

6 = ratio of gap width to particle radius.

Denloye (20) assumed conduction into the bed could

be modeled by a high porosity region nearest the wall

and a second region which assumes the bulk porosity of

the bed. As opposed to the above model, with this

treatment he was able to approximate the heat transfer

coefficient extending to a time where agreement with the

Mickley and Fairbanks equation (1) is possible using

appropriate effective properties for each region.

However, the multiple use of effective conductivity
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correlations which increases the subjectivity of the

heat transfer coefficient prediction is to be

discouraged when a more direct method to determine the

coefficient is possible numerically.

VI.B. Numerical Model

To be able to calculate the heat transfer

coefficient to packed beds without use of effective

conductivity correlations and to explore the effects of

different contact resistance terms and gas-particle

orientations, a finite difference method was developed

to model two-dimensional heat conduction in slab and

cylindrical geometries with spatially dependent

properties. Detailed explanation of the equations,

assumptions, input preparation, as well as verification

of the method is given in Appendix D.

Input to the program was prepared to follow the

porosity distribution by distance into the bed given by

Eq. V.D.2.2. It was discovered a separation between

particles themselves needn't be represented to fit the

data once an appropriate gas gap separated the first

particle from the wall. Figures (VI.B.1 and VI.B.2)

show the comparison between calculated and experimental

data for glass beads of 0.8mm and 0.18mm diameter

respectively. For this research, an air gap of 21Am for

0.8mm diameter and a gap of 15Am for 0.18mm diameter
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glass was required to fit the experimental findings.

Introduction of a greater contact resistance appears

necessary for smaller particles since a proportionally

thicker gas gap to particle size ratio is needed to fit

the data.

As mentioned before, each particle may possess an

adsorbed gas layer at its surface and so modeling the

solid by a direct contact with the wall would be

improper. In order to demonstrate the necessity of

contact resistance, then, the number of nodes

representing each particle diameter was consecutively

increased for several cases so that the area of contact

with the wall decreased. The solution appeared to

converge gradually with decreasing contact area but an

increase in the computed heat transfer coefficient

continued beyond the data with a slope of 0.2 on a log-

log plot as opposed to 0.5 characteristic of the Mickley

and Fairbanks (1) solution. The analytic solution

applied from Appendix C without a gas gap confirmed this

deviation. The importance of a gas gap, however, was

observed only for short contact times since for longer

contact times the numerical solution approached the same

value with different particle sizes, various gas gaps,

and, although poorly, for no gap at all (Figure VI.B.3).

To demonstrate the importance of the concept of

reduced gas conductivity as opposed to a gas gap, the
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conductivity calculated from Eq. V.B.1 was applied in

the vicinity of the contact point by defining a narrow

region separating the particle from the wall with

reduced gas conductivity. The effect on the solution,

however, was insignificant in comparison to

implementation of a gas gap of equal width. The

additional complexity of modeling reduced gas conduction

was therefore judged unnecessary.

VI.C. Empirical Model

The major deficiency of the present analytic and

numerical methods as well as solutions from other

authors is that no changes in particle separation from

the wall influenced by mass flow rate are assumed. If a

change in flow properties is responsible for existence

of a boundary layer of fluid stagnant at the wall, a

maximum heat transfer coefficient is obtained when this

fluid film is all that is heated. The importance of the

gas gap is negligible once heating extends far into the

bed. It is therefore possible to fit data by the

present calculational methods assuming a constant width

gas gap, or, in the experimental sense, the fluid film

at the wall reaches a constant width independent of

velocity before heating extends no further than the film

itself. Unfortunately, judging by the conflicting

results often obtained between independent researchers,
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a single criteria does not seem to hold for all

experimental setups, and cannot be generally used.

Experimental data show good agreement with the

analytic solution for heat transfer by Mickley and

Fairbanks (1) at long contact times although the

observed slope is somewhat different than predicted by

their equation (Figure VI.C.1). Great discrepancy is

observed for short contact times where experimental data

level off. To know this point of separation is

important so that the maximum heat transfer coefficient

may be predicted.

In order to obtain some general correlation for the

heat transfer coefficient, the existing correlations

and experimental data were examined for vertically

oriented heating elements provided by Ernst (9), Desai

(21), Sullivan (3), and this present study. The

experimental equipment used by Wunschmann (12) and

Harakas and Beatty (2) was studied. Intuitively one

would expect that moving bed coefficients be rather

similar when compared in the same system of reference.

The difference in heat transfer coefficients observed

by various researchers when compared at identical

contact times (see Chapter IV) appeared to be influenced

from the fluid dynamic behavior specific for each given

arrangement.

The choice of parameters that were considered
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important and their combination brought interesting

results. It is still not possible to offer the complete

analytical solution to this problem, however, and only a

simple general technique is proposed for vertically

oriented heaters (rods or plates) when gravity flow of

solids is not obstructed by either heated or supporting

parts. The simple mass flux equation developed predicts

empirically the departure point from the Mickley and

Fairbanks (1) equation

where

tcr
0.3622 + 9.691 L

d pp s

L = heated length (m).

d = particle diameter (m).

ps = solid density (kg/m3).

tcr = critical or separation time (s).

(VI.C.1)

A graphical approximation of the heat transfer

coefficient about the inflection point is simple.

1. Calculate the critical time from equation

V.C.1.

2. Using this time calculate the maximum heat

transfer coefficient from the average Mickley

and Fairbanks (M&F) (1) model

hmax = 2]

keCpspb

Irtcr
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3. Draw a horizontal line at hmax till it

intercepts the M&F line.

The heat transfer coefficient curve is expected to

follow the M&F line and gradually depart to the value of

hmax, the curvature about the inflection point

increasing with particle radius. A correlation for the

time the curve assumes the hmax value is given by

tmax

d pp s

0.29087 + 0.0492 ln(L) (VI.C.2)

The curve for the heat transfer coefficient appears

to level off at tmax, but further extrapolation is

impossible. It is expected that the heat transfer

coefficient decreases at velocities above those now

measured due to an increase in porosity when solids flow

by gravity. For particle sizes below 0.044mm or

smaller, problems with solids flow will occur because of

high interparticle forces. The heat transfer

coefficient is therefore expected to drop and none of

the existing models can predict its value.

A demonstration of the graphical method with

experimental data of Ernst (9), Desai (21), and this

study are given respectively in Figures (VI.C.2 through

VI.C.5) of this chapter.

The results by Harakas and Beatty (2) could not be

fitted to the correlations since in their experimental
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system solids did not flow by gravity. The maximum

value of heat transfer coefficient did not occur,

however their data follow the expected trend at lower

contact times as presented in Figure (VI.C.6).
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VII. CONCLUSIONS

VII.A. Summary of Findings

The heat transfer coefficient between a single

vertical tube and a moving bed of solids in air at

atmospheric pressure was measured and compared to

measurements performed by independent researchers

characteristic of a number of different experimental

configurations. The gas and solid properties, contact

time with the heated surface, and experimental

configuration were observed to have the greatest

influence on the heat transfer coefficient. The

distinct improvement of heat transfer from vertically

oriented tubes as compared to horizontal tubes could

also be explained.

Simple models of heat transfer to packed beds such

as the Mickley and Fairbanks (1) model assume the bed

may be modeled with effective properties. As particle

size increases and residence time decreases, however,

the measured heat transfer coefficient gradually assumes

a maximum value, contrary to the model. More accurate

predictions of the heat transfer coefficient assume a

contact resistance exists between the heated surface and

the bed. Analytic and numerical models applied in this

research confirm this resistance must exist.

A static gas adsorption layer on the particle



78

surface and a flow dependent particle separation or gas

gap from the wall may both contribute to an observed

contact resistance. High speed photographic studies of

flowing packed beds performed by the author show an

insignificant porosity change occurs up to bed

velocities of 0.5m/s but a measure of gas gap was

impossible. Since inter-particle separation and

movement appeared rare, heat transfer at high velocities

is most influenced by changes in the wall porosity

distribution and thickness of the gas gap layer.

Computer simulation of heat transfer to a packed bed

showed a steady width gas gap of 21Am for 0.8mm and 15Am

for 0.18mm glass beads was capable of fitting

experimental data.

On the assumption that the heat transfer

coefficient is flow dependent, an empirical correlation

was fitted and predicts the time of departure from the

Mickley and Fairbanks (1) equation independent of heat

transfer properties of the bed.

tcr

d pp s

0.3622 + 9.691 L (VI.C.1)

This correlation is the only of its kind which can

predict the departure point from the Mickley and

Fairbanks (1) equation to data obtained by the

researchers evaluated here for various heated lengths.
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VII.B. Further work

To demonstrate the existence of a velocity

dependent gas film about the boundary to a flowing

packed bed a more refined experiment using high speed

photography should be attempted. Since the distance

from the wall the particles could remain in focus was

much greater than the gas gap expected to fit data by

computer solution, a fiber optics plate should be used

to couple the image from the surface of a flowing packed

bed. The extremely short range of focus characteristic

from the optical surface of a fiber optics plate may

enable photographic observation of a gas film.

The behavior of the heat transfer coefficient

requires further study due the shortage of measurements

once a maximum value occurs. Using particle sizes on

the order of one half millimeter or more and high

conductivity solids such as copper would ensure an

observation of early departure from the Mickley and

Fairbanks (1) equation. The residence time may also be

decreased by increasing the flow rate of the particle

bed and decreasing the heated length of the surface.

This should allow an opportunity to collect more data to

verify theories regarding heat transfer to flowing

packed beds for velocities greater than the Mickley and

Fairbanks (1) equation applies.
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Appendix A

Analytic Heat Transfer Coefficient for Rod

Given a heated rod of radius a surrounded by a bed

of effective thermal diffusivity a and conductivity k,

the heat flux at the surface of the rod is given by

4kV e-au du

ar2 10 u(J02(ua) + Y02(ua))

where V = T(a,t) T. (1,2).

Since the heat transfer coefficient is given by

q"/V we have

2,
4k °0 e-r^ iva dz

h(t) =
ax2 Jo z(J02(z) y02(z))

where

(A.1)

Foa = Fourier number based on rod radius a.

= at/a2.

When averaged over the interval of 0 to Foa the

heat transfer coefficient is

h(t)

r

1

4k °0 (1 e-"a
2
z) dz

aFoar2 0 z3(J02(z) + Y02(z))

The indefinite integral above has been solved here

using a 15 point Gauss-Legendre numerical integration

method summed over progressively larger segments of the

integral range until the contribution of the last

segment does not change the final sum by an error of
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10-6. Answers using this method were comparable within

10% to approximate values tabulated by Jaeger and Clarke

(3).

The following program creates a file of heat

transfer coefficient values for the cylinder using the

numerical method described above and for the Mickley and

Fairbanks model for five decades of time values.

Material properties are read from a file supplied as

input and the heat transfer coefficients are output to a

file called GAUSS.OUT. Rod radius A and average gas

temperature of the bed TGAVE are entered in a data

statement in the program. Effective conductivities of

the bed are calculated using Kunii's equation (4).

where

ke 1 E

kg kg
+

ks

E = porosity of bed.

0 = 0.2 e2.

(A.2)
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GAUSST.FOR



Print file "gausst.for"

PROGRAM HPLOT
C CONSTRUCTS A PLOT OF AVERAGE HEAT TRANSFER COEFFICIENT VS TIME BY M&F AND

C CYLINDER MODELS
REAL KE,KS,KG
CHARACTER TITL*75,FNAME*30
COMMON FDA

C ROD RADIUS, A (m)
C AVERAGE GAS TEMPERATURE, TGAVE (C)

DATA A,TGAVE /.00635,40./
PI=ACOS(-1.)

C

PRINT *,'Enter property file name'
READ(5,'(A)')FNAME

C

C READ MATERIAL PROPERTIES
OPEN(7,FILE=FNAME)
READ(7,,(A),) TITL
READ(7,*) ROS,ROE,DP,KS,CP
CLOSE(7)

C

C CALCULATE EFFECTIVE ALFA & K
EPS=1.-ROE/ROS
PHI=0.197*EPS**1.904
CPRL=CP*ROE/PI
KG=(TGAVE+273.)*.0000741+.004038
KE=KG*(1.-EPS)/(KG/KS+PHI)
ALFA= KE /(CP *ROE)

C

C WRITE TIME, AVE CYLINDER H, M&F H TO FILE GAUSS.OUT
WRITE(6,15)
OPEN(8,FILE=1GAUSS.OUT')
DO 10 1=1,55
IF(I.LT.10) T=.001*I
IF(I.GE.10.AND.I.LT.20) T=.01+7
IF(I.GE.20.AND.I.LT.30) T=.144
IF(I.GE.30.AND.I.LT.40) T =1 +T

IF(I.GE.40.AND.I.LT.50) T=10+7
IF(I.GE.50) T=100+T

FOA=ALFA/A**2*T
HCYL=(4*KE)/(FOA*A*P1**2)*GAUSS(0.,1E-3,15,1E-4)
HMF =2*SORT(KE*CPRL/T)
WRITE( *,20)T,HCYL,HMF

10 WRITE(8,20)T,HCYL,HMF
15 FORMAT(/' t Hcyl-ave Hmf-ave')

20 FORMAT(3F10.3)
200 END

C

FUNCTION GAUSS(A1,B1,M,EPS)
C CALCULATES INTEGRAL OF INTEGRAND FUNCTN FROM LIMITS Al TO INFINITY
C WITHIN ERROR EPS BY ITERATED M POINT GAUSSIAN INTEGRATION
C B1 IS A SEED VALUE FOR INITIAL INTEGRAL
C

C REFERENCE:
C

C CARNAHAN, BRICE, H. A. LUTHER, AND,JAMES O. WILKES. *APPLIED NUMERICAL
C METHODS*, JOHN WILEY & SONS, 1969, 101-105.
C

EXTERNAL FUNCTN
DIMENSION NPOINT(7),KEY(8),Z(24),WGHT(24)
DATA NPOINT/2,3,4,5,6,10,15/
DATA KEY/1,2,4,6,9,12,17,25/
DATA Z /0.577350269,0.0 ,0.774596669,

1 0.339981044,0.861136312,0.0 ,0.538469310,

2 0.906179846,0.238619186,0.661209387,0.932469514,
3 0.148874339,0.433395394,0.679409568,0.865063367,

88
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Print file ogausst.for"

4 0.973906529,0.0 ,0.201194094,0.394151347,
5 0.570972173,0.724417731,0.848206583,0.937273392,
6 0.987992518 /
DATA WGHT / 1.0 ,0.888888889,0.555555556,

1 0.652145155,0.347854845,0.568888889,0.478628671,
2 0.236926885,0.467913935,0.360761573,0.171324493,

3 0.295524225,0.269266719,0.219086363,0.149451349,
4 0.066671344,0.202578242,0.198431485,0.186161000,
5 0.166269206,0.139570678,0.107159221,0.070366047,
6 0.030753242 /

B=B1

A=A1

DO 1 1=1,7
1 IF(M.EQ.NPOINT(I))GOTO 2

GAUSS=0.
WRITE(*,7)M

7 FORMAT('ERROR GAUSS: M IS 2,3,4,5,6,10, OR 15 NOT ',I3)
RETURN

2 N=0
SUM1=0.

3 SUM=0.

JF=KEY(I)

JL=KEY(1+1)-1
C=(B-A)/2.
D =(B +A) /2.

DO 6 J=JF,JL
IF(Z(J).E0.0)SUM=SUM+WGHT(J)*FUNCTN(D)

6 IF(Z(J).NE.0)SUM=SUM+WGHT(J)*(FUNCTN(Z(J)*C+1))+FUNCTN(-2(J)*C+D))
SUM=C*SUM
SUM1=SUM1+SUM
1F(SUM/SUM1.LT.EPS)GOTO 9
C=B

N=N+1

841*(1+SUM1/(4*N*SUM))
A=C
GOTO 3

9 GAUSS=SUM1
RETURN
END

C

FUNCTION FUNCTN(U)
C INTEGRAND FUNCTION TO BE USED BY GAUSS FOR AVERAGE H

COMMON FOA
REAL JO,J1

FUNCTN=( 1-EXP(-FOA*U**2))/(U**3*(J0(U)**2+Y0(U)**2))
RETURN

END
C

C POLYNOMIAL APPROXIMATIONS TO JO & YO BESSEL FUNCTIONS
C

C REFERENCE:
C

C ABRAMOWITZ, M. AND I. E. STEGAN, ED., *HANDBOOK OF MATHMATICAL FUNCTIONS*,
C US DEPT. OF COMMERCE, AMS 55, 1970, 369-370.
C

REAL FUNCTION J0(X)
1F(X.LE.3.0.AND.X.GE.-3.0) THEN
B=(X/3)**2
J0=1-2.24999970*B +1.2656208*B**2-.3163866*B**3+.04444790*B**4

& -.003944400*B**5+.00021000*B**6

ELSE1F(X.GE.3.0) THEN
JO=FO(X)*COS(PHIO(X))/SQRT(X)
ELSE
WRITE(*,*) 'ILLEGAL ARGUMENT CALL TO JO:',X
ENDIF



Print file mgausst.for*

C

C

C

RETURN
END

FUNCTION YO(X)

REAL JO
IF(X.GT.O..AND.X.LE.3.0) THEN

B=(X/3)**2
YO=ALOG(X/2)/ACOS(0.)*J0(X)+.36746691
& +.605593660*B -.74350384*B**2+.25300117*8**3-.04261214*B**4
& +.004279160*8**5-.00024846*B**6
ELSEIF(X.GE.3.0) THEN
YO=F0(X)*SIN(PHIO(X))/SORT(X)
ELSE

WRITE(*,*) 'ILLEGAL ARGUMENT CALL TO YO:',X
ENDIF
RETURN
END

FUNCTION FO(X)
B=3/X
FO= .797884560 -.00000077*B -.00552740*B**2-.00009512*11**3

& +.001372370*13**4-.00072805*B**5+.00014476*8**6

RETURN
END

FUNCTION PHIO(X)

B=3/X
PHIO=X-.78539816 -.04166397*8 -.00003954*B**2+.00262573*B**3

& -.000541250*8**4-.00029333*B**5+.00013558*8**6
RETURN
END

90



Appendix B

Heat Transfer Coefficient for Two Region

Semi-infinite Slab

Consider the composite semi-infinite slab with

constant temperature wall at x=-L and zero initial

temperature as shown in Figure (B.1). The temperature

gradient at x=-L as a function of time has been listed

by Carslaw and Jaeger (1).

8x x=-L
[ 1 + 22

c o - ln
e-(nL) alt)2 /(]aT -V

'wait n=1 a + 1

where a = (k2 /k1),/al /a2 and V is the temperature

difference at the wall. In terms of the heat transfer

coefficient at the wall this becomes

h(x,t)
1(1

1 + 22 cn
co

e-n 2
/Fol.

'wait n=1

where

FoL = alt/L2 and

a 11

c

la + 1 j

91

(B.1)

For very small or large FoL numbers, the solution may be

simplified since

co

2 cn e-n2/F0L 0

n=1

c/(1-c)

small FoL

large FoL
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Two region composite semiinfinite slab

Region

1

Region

2

T(x,0) = 0
T( L,t)= V

x L 0 co >

Figure (B.1). Representation of composite slab.



Then

h = h1

h = h2
iwa2t large FoL

So that h1 and h2 are solutions for the Mickley and

Fairbanks equation for region 1 and 2, respectfully. A

good approximation for the heat transfer coefficient for

moderate values of FOL. is given by

h = k1 /L.

When B.1 is plotted on a log-log scale against time, the

heat transfer coefficient can be identified to form

three portions: a linear portion where the coefficient

behaves only by heat transfer to region 1, a transition

region where heat transfer develops into region 2, and a

second linear portion once region 1 completes heating

and the temperature gradient in region 2 is most

significant.

k1

/wait

k2

small FoL

93
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Appendix C

Heat Transfer from Wall to Particle

Through Interstitial Fluid

An approximation for heat transfer from a heated

wall to a spherical particle for low heating times may

be obtained by a special treatment of B.1 over a slab

with a hemispherical interface. Assume as usual slab

geometry and heat conduction only perpendicular to the

wall is significant. Then using B.1 integrate by length

1 over the hemispherical interface by height z over 0 to

r (Fig. C.1) to find the average

h 1(1 [1+2; cn I/:-n2(Ax+r(1-cos9))2/ait cos8d8]
/wait n=1 0

1(1 m 2

1+22 cn en (6+1-cos8) 2/Fo r cos8d8 (C.1)
/wait n=1 0

where For = alt/r2, S = Ax/r and c is as defined in

Appendix B.

Equation C.1 cannot be integrated further

analytically, however a 6 point Gauss-Lengendre

numerical integration method obtains a sufficiently

accurate solution. Agreement between the equation C.1

and the finite difference treatment described in

Appendix D is quite good for short contact times.
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Gas Particle

r

Figure (C.1). Representation of separation distance
between a spherical particle and wall.
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The asymptotic values of h for very low or high For

numbers are the same as for the composite semi-infinite

slab. In most cases if not all the gas conductivity is

much less than that of the solid and the gas thermal

diffusivity is greater than the solid, therefore the

value of c is very close to unity. A good approximation

for h at moderate values of For may then be obtained.

Assume c = 1 then

0
h/hi = 1+22

72
e-n

2
(6+1-cosi?) 2/Fo r cos0d0

n=1 0

By use of the Euler-Maclaurin summation formula we can

say

Then

1

e-P2 = e-P2dp - 1/2
p =1 0 2

2;

1

If/:-n2(6+1-cos0)2/For cosOd8 =
n=1 0

2
112 %-n2(6+1-cosO)2/Fordn cos0d8 =
0 0

w/2 I iFor
l'e-k22 dk 1 /2J =

0 16+1-cos8 0 J

cos0d0
iwFor - 1

0 6+1-cos0

And finally

6+2
h/hi = iirFor Arctan -

6+2 6 6 2

or
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k1 w

h = Arctan (C.2)
r 6+2 6 6 2

This accounts for the plateau value of h for moderate

values of For and is independent of the solid

properties (c=1). This equation could be used to

account for a gas gap resistance term.

As seen from heat transfer prediction by the finite

difference treatment for a particle array from the wall,

equation C.1, C.2, and the finite difference treatment

agree well at the time required for heat to propagate to

one half of the particle diameter.
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HCMSG6.FOR



Print file "heesg6.form

PROGRAM HCMPS
CHARACTER*30 RAMIE

C COMPUTES THE HEAT TRANSFER COEFFICIENT TO A COMPOSITE SOLID WITH
C HEMISPHERICAL INTERFACE

COMMON N,R,ALFAT,WIDTH
DATA EPS/.0001/
PI=ACOS(-1.)

C READ INPUT PARAMETERS AND ECHO INPUT

C CK1 = CONDUCTIVITY OF GAS
C ALFA1 = THERMAL DIFFUSIVITY OF GAS
C CK2 = CONDUCTIVITY OF REGION SOLID
C ALFA2 = THERMAL DIFFUSIVITY OF SOLID

C WIDTH = WIDTH OF GAP SEPARATING SOLID FROM WALL
C D = PARTICLE DIAMETER
C FNAME = T,H OUTPUT FILE NAME

READ(5,*)CKLALFALCK2,ALFA2,WIDTH,D,FNAME
WRITE(6,45)CKLALFALCK2,ALFA2,WIDTH,D,FNAME

C PRELIMINARY CALCULATIONS

SIGMA=CK2/CK1*SORT(ALFAl/ALFA2)
Cm(SIGMA-1)/(SIGMA+1)
R=0/2

C COMPUTE & PRINT TIME DECADE VALUES OF THE HEAT TRANSFER COEFFICIENT
OPEN(8,FILE=FNAME)
DO 30 1=1,60

IF(1.LT.10) T=.00001*I

IF(I.GE.10.AND.I.LT.20) T=.0001+7
IF(I.GE.20.AND.I.LT.30) T=.001+T
IF(I.GE.30.AND.I.LT.40) T=.01+T
IF(I.GE.40.AND.I.LT.50) T=.1+T
IF(I.GE.50) T=1.+T

ALFAT=ALFAl*T
N=1

SUM=C*GAUSS(0.,P1/2,6)
C SUM TERMS UNTIL CONTRIBUTING TERM ADDS LESS THAN EPS TO SUMNEW

20 N=N+1

SUMNEW=SUM+C**N*GAUSS(0.,P1/2,6)

IF(ABS(SUMNEW-SUM).LE.EPS*ABS(SUM)) GOTO 25
SUM=SUKNEW

GOTO 20
25 H=CK1/SORT(Pl*ALFAT)*(1+2*SUMNEW)

WRITE(8,50) T,H
30 WRITE(*,50) T,H

CLOSE(8)
45 FORMAT('1K1 = ',1PE12.4,' ALFA1 = ',E12.4/' K2 = ',E12.4,

' ALFA2 = ',E12.4/' WIDTH = ',E12.4,' DIAMETER =',E12.4/
S ' OUTPUT FILE = ',A)

50 FORMAT(' ,1P2E12.4)

END

FUNCTION FUNCTN(X)
C INTEGRAND TO AVERAGE HEAT TRANSFER OVER FACE OF PARTICLE

COMMON N,R,ALFAT,WIDTH
FUNCTN=EXP(-(N*(R*(1-COS(X))+WIDTH))**2/ALFAT)*COS(X)
RETURN
END

FUNCTION GAUSS(A,B,M)
C CALCULATES INTEGRAL OF INTEGRAND FUNCTN FROM LIMITS A TO B
C BY M POINT GAUSSIAN INTEGRATION
C

C REFERENCE:
C

C CARNAHAN, BRICE, N. A. LUTHER, AND JAMES O. WILKES. *APPLIED NUMERICAL
C METHODS*, JOHN WILEY & SONS, 1969, 101-105.
C

100
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Print file "hoseg6.for*

EXTERNAL FUNCTN
DIMENSION NPOINT(8),KEY(9),2(40),WGHT(40)
DATA NPOINT/2,3,4,5,6,10,15,32/
DATA KEY/1,2,4,6,9,12,17,25,41/

DATA Z /0.577350269,0.0 ,0.774596669,0.339981044,

1 0.861136312,0.0 ,0.538469310,0.906179846,

2 0.238619186,0.661209387,0.932469514,0.148874339,
3 0.433395394,0.679409568,0.865063367,0.973906529,

4 0.0 ,0.201194094,0.394151347,0.570972173,
5 0.724417731,0.848206583,0.937273392,0.987992518,

6 .0483076656,.1444719615,.2392873622,.3318686022,

7 .4213512761,.5068999089,.5877157572,.6630442669,

8 .7321821187,.7944837959,.8493676137,.8963211557,

9 .9349060759,.9647622555,.9856115115,.9972638618/
DATA WGHT /1.0 ,0.888888889,0.555555556,0.652145155,

1 0.347854845,0.568888889,0.478628671,0.236926885,

2 0.467913935,0.360761573,0.171324493,0.295524225,
3 0.269266719,0.219086363,0.149451349,0.066671344,
4 0.202578242,0.198431485,0.186161000,0.162269206,
5 0.139570678,0.107159221,0.070366047,0.030753242,

6 .0965400885,.0956387200,.0938443990,.0911738786,
7 .0876520930,.0833119242,.0781938957,.0723457941,
8 .0658222227,.0586840934,.0509980592,.0428358980,

9 .0342738629,.0253920653,.0162743947,.0070186100/

DO 1 1=1,8
1 IF(M.EO.NPOINT(I))GOTO 2

WRITE(*,7)M
7 FORMAT('ERROR GAUSS: M IS 2,3,4,5,6,10,15 OR 32 NOT ',I3)

RETURN
2 GAUSS=0.

JF=KET(I)
JL=KEY(14,1)-1

SUM =O.

C=(B-A)/2.

02(B+A)/2.
DO 6 J=JF,JL
IF(Z(J).E0.0)SUM=SUM+WGHT(J)*FUNCTN(D)

6 IF(Z(J).NE.0)SUM=SUM+WGHT(J)*(FUNCTN(Z(J)*C+D)+FUNCTN(-Z(J)*C+0))
GAUSS=C*SUM
RETURN

END
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Appendix D

Finite Difference Calculation of

Heat Transfer Coefficient to Packed Beds

D.1. Summary

The programs reviewed in this appendix have

advantages over previous moving packed bed heat transfer

programs. Similar methods of numerical analysis to

determine the heat transfer coefficient to a bed of

solids have been used by researchers since Botterill and

Williams (2) however these methods incorporate a

comparably slow relaxation method of temperature

convergence to solve the unsteady state heat transfer

equation. Unlike the earlier programs, a simpler and

apparently more accurate finite difference

representation for the temperature gradient at the

heated wall is used to calculate the heat flux. Both

programs, one each to treat slab and cylindrical

geometries, are unique in that they allow any node in

the map to assume a property (i.e. conductivity,

density, and specific heat) defined by the user. No

particular pattern of node and property arrangement

needs to be followed. Finally, the method's speed

facilitates longer simulation times and larger map

sizes.
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D.2 Provisions

1. One of ten individually defined properties may be

selected for each node.

2. A choice of ten node dimensions for the axial and

radial directions may be separately defined.

3. The time step size and frequency of output summary

listings may be changed as the program proceeds.

4. The results of a run may be copied to a binary dump

file from which a run may be restarted at a later

time.

5. The instantaneous values of the heat transfer

coefficient may be saved to a file which may be

read by a plotting program.

6. A map size of up to 50x50 node elements may be

defined. This is limited only by the maximum array

size accommodated by the MS FORTRAN compiler.

7. The implicit alternating direction (IAD) method has

been employed with a tridiagonal Gaussian

elimination matrix solution to ensure minimum time.
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D.3. Model Assumptions

1. Material properties may vary in two dimensions.

For the slab material properties may vary in both

vertical and horizontal directions whereas for the

cylinder materials may vary radially and axially

but not azimuthally.

2. Node sizes may vary in two dimensions.

3. Temperature at the heated wall remains constant.

4. The bed configuration is symmetric at the top and

bottom boundaries of the map so that its axial

temperature distribution has a mirror image about

these boundaries. Therefore the temperature

gradient is defined as zero here.

5. To model the right hand boundary as if it extended

infinitely, the zero temperature gradient is

defined there.

6. The transient heat conduction equation is solved

for temperatures relative to the initial

temperature of the bed and so the bed is

represented with a zero temperature difference at
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time zero.

7. Material properties do not change with time or

temperature.

D.4. Derivation of Finite Difference Equations

A finite difference solution of the transient heat

conduction equation requires a discrete representation

of temperatures at the intersection points of a grid of

nodes, each node interior modeling a different two

dimensional position or material property. To each node

and its adjacent nodes is applied a finite difference

expression of the transient heat conduction equation and

boundary condition equations are added to treat nodes at

boundaries of the map. Using either a relaxation or

matrix solver method the equations are solved

simultaneously for all node temperatures at small time

increments beginning from an initial temperature state,

each time step chosen small enough to ensure convergence

of the solution. A heat transfer coefficient local to

each node at the "heated" boundary is calculated from

the temperature gradient and node conductivity there.

The local heat transfer coefficient is then averaged and

recorded. The development and programming of the finite

difference equations, the coefficients of the IAD

solution, and heat transfer coefficient calculation is
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D.4.1 Representation
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Figure (D.1) illustrates the map used to represent

position and property in cylindrical or slab geometries.

The map has M-1 cells and M interior points radially or

horizontally. A node may be distinguished as a cell and

a point. Cells outside and adjacent to the zero

temperature gradient boundaries are indicated by dashed

lines and possess properties identical to their

neighbors across the boundaries. At the right hand

boundary the temperature gradient is approximated by

aT TkN TkN+1

ax AxN

This requires TkN = TkN+1 for a zero temperature

gradient. The top and bottom boundaries could be

treated similarly but a more accurate representation

would account for symmetry about the boundary and so we

treat temperatures on either side of the boundary as

equivalent. The boundary condition equations are then

1. Left: Tko = Twall
2. Right: TkN = TkN+1
3. Top: Tm_ij = Tm+ij
4. Bottom: Toj = T2j (D.1)

Consider the dashed region at the intersection of

four nodes as shown in Figure (D.2). At each one

quarter node region adjacent to the intersection
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temperature is assumed single valued. Each cell and its

characteristic property is identified by number or by

indices k,j. The transient heat conduction equation

aT
VkVT = pCp4

will be integrated over the equivalent node volume

represented by the dashed region.

VkVT dV =
V at v

pCpdV (D.2)

To simplify the analysis, the divergence theorem will be

applied to the LHS of D.2.

VkVT dV = kVTn dS
V

where n is a unit outward normal.

D.4.2. Cylinder

(D.3)

The RHS of D.3 may be separated into radial and

axial components

kVTndS = kVTerdS + kVTexdS (D.4)

where er and ex are radial and axial unit vectors,

respectfully. Evaluate the integral for the finite

difference terms of the LHS of D.2 using D.3 and D.4 as

substitutions



Tkj_1
kVTerdS k2

Arj 2

+k3
2

1(1

Arj+1

+k4

fi

2

2

kVTexdS
Tk+lj-Tkj

[1(2[7frj2 w(rj-Arj/2)2]
Axk+1

+k1 [x(rj+Arj+1/2)2-irrj21]

k3[wrj2 x(rj-Arj/2)2]
Axk

+k4[x(rj+Arj+1/2)2-xrj211

After some simplification,

where

1 kVTerdS = x[aTkj+1 + bTkj_i (a+b)Tkj]

kVT.e dS w[cTk+lj dTk-lj (c+d)Tkj]

a

(klAXki.1 + k4AXk)(rj + Arj+1/2)

Arj+1

(k2Axic+1 + k3Axk)(rj - Arj/2)
b

Arj

110

(D.5)



c

d

k2Arj(rj - Arj/4) + k1Arj.1.1(rj + Arj+1/4)

"k+1

k3Arj(rj - Arj/4) + k4Arj.1.1(rj + Arj+1/4)

Axk

Evaluate now the integral term on the RHS of D.2.

1v
pCpdV = -71

2

-.(piCplAxkAArj+I(rj + Arj+1/4) +

p2Cp2AxkilArj (rj - Arj/4) +

p4Cp4Axk Arj+1(rj + Arj+1/4) +

p3Cp3Axk Arj (rj Arj/4))

= r (At/2) e

where
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(D.6)

e = [(p1CplAx10.1 + p4Cp4Axk)Arj4.1(rj + Arj+1/4) +

(p2Cp2Axki.1 + p3Cp3Axk)Arj (rj - Arj/4))]/At.

Combining D.5 and D.6 yields the finite difference

equation for the interior nodes of the cylinder

aT
--af(At/2)e = aTkj+1 + bTkj_i (a+b)Tkj +

cTk+ij + dTk_ij (c+d)Tkj (D.7)

The same form of equation set D.7 is used at the

map boundaries only the constant terms a, b, c, d, and e

may be simplified since cells immediately across the

boundary have like properties.

Top: k = M

a = 2k4Axm(rj + Arj41/2)/Arj.1.1

b = 2k3Axm(rj - Arj/2)/Arj
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c = d

d=
k3Arj(rj Arj/4) + k4Arj.1.1(rj + Arj+1/4)

Axk

e = 2Axm(p4Cp4Arj+1(rj+Arj44/4)+
p3Cp3Arj (rj-Arj/4) )/At

Bottom: k = 2

a = 2k1Ax2(rj + Arj+1/2)/Arj+1

b = 2k2Ax2(rj - Arj/2)/Arj

k2Arj(rj - Arj/4) + k1Arj+1(rj + Arj+1/4)
C =

Axk+1

d = c

e = 2Ax2(piCp1Arj+1(rj+Arj+1/4)+
p2Cp2Arj (rj-Arj/4) )/At

Bottom right: k = 2, j = N

b = 2k2Ax2(rN ArN/2)/ArN

c = 2k2ArNrN/Ax2

d = c

e = 4rjp2Cp2Ax2ArN/At

Top right: k = M, j = N

b = 2k3AxM(rN ArN/2)/rN

c = 2k3ArNrN /AxM

d = c

e = 4rjp3Cp3AxmArN/At



Right: j = N

b

113

(k2Axki.1 + k3Axk)(rj - Arj/2)

Arj

c = 2k2ArNrN /Axk +1

d = 2k3ArNrN/Axk

e = 2rjArN[p2Cp2Axk.4.1 + p3Cp3Axk]/At

D.4.3. Slab

The derivation of the finite difference equations

for the slab is similar. Separate the RHS of D.3 into

vertical and horizontal components

kVTndS = kVTexdS + kVTeydS (D.8)

where

vectors,

ey and ex are vertical and horizontal

respectfully. Evaluate each

kVTexdS = (K2AYk+1

unit

term of D.8

k3AYk)

k4AYk)

S 2Axj

Tkj+i-Tkj

(k1AYk+1
2 xj+1

j kVT.e dS (klAxj+1 + k2Axj)

2AYk+1

(k4Axj+1 + k3Axj).

After simplification
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1 kVT.exdS = [aTkj+1 + bTkj_i (a+b)Tkj]/2
S

(D.9)

1 kVTeydS = (cTk+ij + dTk_ij (c+d)Tkj]/2

where

a = (klAyk +1 k4Ayk) /Axj +1

b = (k2Ayk +1 k3AYk)/Axj

c = (klAxj.1.1 + k2AxWAYk+1

d = (k4Axj+1 + k3Axj)/Ayk.

The LHS of D.2 as applied to slab geometry is

pCpdV =
.1V

(P1CP1AYk+1Axj+1 + P2CP2AYk+1Axj +

p3Cp3AykAxj + P4CP4AYkAxj+1)/4

= (At/2)e/2 (D.10)

where

e = (P1CNAYki-lAxj+1 P2CP2AYk+1Axj

p3Cp3AykAxj P4CP4AYkAxj+1)/At

Once D.9 and D.10 are combined for the finite difference

approximation for the slab we obtain D.7. Finally, the

constant simplifications at the slab boundaries are.

Top: k = M

a = 2k4AyM /Axj +l

b = 2k3AyM /Axj

c = d

k3Axj + k4Axj+1
d

Aym
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e = 2Aym(p4Cp4Axj+1 + p3Cp3Axj)/At

Bottom: k = 2

a = 2k1Ay2/Axj+1

b = 2k2Ay2/Axj

c = (k1Axj+1 + k2Axj)/Ay2

d = c

e = 2Ay2(p1CplAxj+1 + p2Cp2Axj)/At

Bottom right: k = 2, j = N

b = 2k2Ay2/AxN

c = 2k2AxN/AY2

d = c

e = 4p2Cp2AxNAy2/At

Top right: k = M, j = N

b = 2k3Aym/AxN

c = 2k3AxN/Ay2

d = c

e = 4p3Cp3AxNAym/At

Right: j = N

b = (k2Ayk+1 + k3Ayk)/AxN

c = 2k2AxN/Ay k+1

d = 2k3AxN/Ayk

e = 2AxN(p2Cp2Ayk+1 + p3Cp3Ayk)/At
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D.5. Implicit Alternating Direction (IAN_

Solution Method

To solve the system of five point difference

equations defined by D.7 for nodal temperatures the IAD

algorithm is employed (1). The IAD method requires

significantly less computation time and array size than

Gaussian elimination or Gauss-Siedel methods of matrix

inversion. The method uses two difference equations to

represent temperatures in a single dimension. The

equation for each dimension applies for one half a time

step, which the method repeatedly applies for a solution

of all successive time steps. This enables tridiagonal

matrix solutions separately implicit by row (k) or

column (j). The finite difference equations for the IAD

method applied to heat conduction in a cylinder

originate from

Tkji+1 Tkj*
pCpdV =

At/2 V

1 S S

kVTkj*-erdS + kVTkji.4.1-exdS

Tkj* - Tkji

At/2 V

pCpdV =

kVTkj*erdS + kVTkjiexdS

where time step subscript i indicates temperatures prior
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a time step, 1+1 indicates temperatures following a full

time step, and * references temperatures at one half a

time step.

This becomes, after use of 0.7,

-aTkj+1*-bTkj_1*+(a+b+e)Tkj*

= [cTki.lj+dTk_ij-(c+d-e)Tkj]i (D.11a)

-aTkj.4.1*-bTkj_1*+(a+b-e)Tkj*

= [cTki.lj+dTk_ij-(c+d+e)Tkj]i+1 (D.11b).

The method first solves the map for temperatures at one

half time step (LHS of D.11a) from initial temperatures

(RHS of D.11a), then temperatures are solved at the full

time step (RHS of D.11b) from the half time step

temperature map. The coefficients of D.11 may be

generalized into the upper, lower, and diagonal terms of

a tridiagonal matrix.

where

UkTki4.1*-1-1-kTki_1*-1-41Tkj*

= [UjT1(4.1j+LiTk_lji-DilTkj]i

UkTkj+1*-akTki_1*-FplaTki*

=

Uk = -a,

U.
J

= c,

Lk = -b,

L.
J

= d,

a + b + e

Dji = -(c + d e)

Dk2 = a + b - e

Dj2 = -(c + d + e)

(D.12a)

(D.12b)

At the map boundaries, use of boundary equations

D.1 into D.12 requires modification of these constants.



tk -b,

c

8ottom:

tIL

ft

A

UJ

2

c 1.

0ki

t --.

d,

k _b,

DJ

a ' b *

Zi

1

4 *4 0

Okz

-(c 'A'
d e

a

)

D

b

Sotto
01.0

'(c *

e

*

0k 0
ight.

e)d

4.- J

Uj *4
*

0

.

k

0 -

t ..-

d

,

-b,

0

b* e

tJ

j1 .,

0,

D kz

-(c *
d

.

D.

b _

e)

Top

'(c I.

Uk '0?si

2 .

ght:

d * e)

U

J

.

.

J ' 0,

0

tk .....

0 .

D.

b *

-b,

li
JI

.,

c

0
-(c

* d

kz .

0,12

b e

e)

Right:

"(c 1.

Uk

j ...

d * e)

' 0,

a

DJ

4.

.1 -4.

b *

0
-(c

kz .

d

DJz .

a

e)

* b

(c

e
ci I.

k.1 b

e)

118



119

Uj = c, Dj1 = -(c + d e)

Lk = -b, Dk2 = b e

Lj = d, Dj2 = -(c + d + e)

D.6. Heat Transfer Coefficient Calculation

The previous sections covered finite difference

formulation of the transient heat conduction equation,

boundary conditions representation, and coefficient

definition. This section will explain calculation of

the local and average heat transfer coefficient at the

heated wall from the temperature solution. As with the

assumptions outlined earlier, both properties and axial

or radial step size may vary in this solution.

The local heat transfer coefficient is given by hk

= q"k/Vo where Vo is the temperature difference from the

wall to the initial bed temperature and q"k is the heat

flux at the wall for cell k. Refer to Figure (D.3)

which is a representation of axial nodes and cells

adjacent to the heated wall. If

cl

aT (Tko Tkl)uk=-1(
ar Arl

where conductivity k is an average for the properties of

the cell separating Tko and Tkl, then the heat flux term

at the wall is

qui(

rk0 Tkl kk +1,lAxk +1 kk,lAxk

Ari Axk+1 Axk
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M

Dxm

M-1

Dxm_i

3

Dx3

2

Dx2

M -1I H

1- --1

3 1-

I I

1
Dr1 Dr2

hM

h3

h 2

h1

Figure (D.3). Finite difference scheme at wall to
obtain axial average heat transfer
coefficient.
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Since half height cells lie at the top and bottom of the

map and these have a constant conductivity, the heat

flux there is

= k21

qM = kMl

(T10 T11)

Ari

(TMO TM1)

Ari

For an average h about the map height we use

M

E hk (Axk + Ax10.1)/2

have (fLh dx)/L k=1
L

where
M

L = 2 Ax
k=2

and for the symmetric top and bottom boundary cells Axi

= Ax2 and Axm = Axm+1

D.7. Verification

Both slab and cylinder geometry codes were verified

repeatedly for temperature and/or heat transfer

coefficient calculation with the following analytic

methods:

1. Homogeneous properties for slab and cylinder

with large inner radius specified.

2. Cylinder with homogeneous properties

(Eq. A.1).
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3. Two region composite slab for slab and

cylinder with large inner radius (Eq. B.1,

C.1).

4. Steady state solutions for slab and cylinder

chosen for large time solutions and mixed

materials.

D.8. Input Selection

This section introduces constraints which when

applied to input selection ensure the numerical model

performs well under finite node size and region length

assumptions. This treatment is subjective but has

demonstrated to be effective.

D.8.1. Length of Region

The numerical solution assumes a satisfactory

result for the heat transfer coefficient may be obtained

by considering a region of finite width with the

temperature gradient set to zero at the boundary. As

shown previously, the temperature gradient at the

boundary will eventually be non-zero. The question then

arises to what accuracy would we expect the numerical

solution to have for the region length as a function of
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time. Consider the region to have homogeneous

properties, then the temperature gradient at the heated

surface for the semi-infinite slab is

aT

ax

where

x=0

-V -V

L = radial length of region.

FoL = at/L2.

t = total time of solution.

The temperature gradient at the heated wall for a finite

slab with insulated boundary is

aT

x

2V m
_ E e-at[(2n+1)71./(2L)]

2

x=0 L n=0

2V m
_ E e-at[FoL((2n+1)112) 2

]

L n=0

To calculate a heat flux equivalent to either model we

would like these temperature gradients equal, or as

close as possible with a relative error c so

00

. 1 _ w E e-ff[w(2n+1)/4)2]

n=0

where w = 2/71.FoL. This function has been plotted and

appears in Figure (D.4). For an error of at most 10%,

then, we would choose FoL = .33 or less. Our criteria

is then to choose an FoL so that Fol. < FoL(c) where

FoL(c) was calculated with the equation above for error

E.



1.000

0.100

0.010

0.001
0.000

Figure (D.4).

0.200 0.400 0.600
FoL

Error introduced by modeling a semi-infinite slab as a finite
slab.
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If the region is not homogeneous (as all numerical

solutions of interest for h will be) then the region's

effective properties are used and the above criteria is

still a good assumption since it is known that as the

region is heated it becomes increasingly accurate to

model it with effective properties (hence the assumption

that by heating three particle diameters from the heated

surface the region may be treated as effective).

D.8.2. Choice of Step Size and Simulation Time

The numerical treatment of the transient heat

conduction equation depends upon dividing the heat

conducting region into cells small enough such that the

temperature gradients may be reasonably approximated as

the slope of temperature points separated by a cell.

Due to the thermal diffusivity characteristic of a heat

conducting material, heat requires a finite time to

propagate. Cell size should be chosen for some length

less than the distance heat will propagate over one time

step otherwise temperature gradients will not be

calculated correctly. With regard to the temperature

gradient at the heated surface, there is some time and

cell size for which the temperature gradient cannot be

calculated correctly once the solution begins from

initial state. If the first cell is small compared to

the entire region we could assume the temperature



gradient as the node begins to heat is given by

aT

ax

-V

x=0 ixat
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which is that of the semi-infinite slab. Numerically,

the temperature gradient could be represented as

aT

ax

-V

x Ax

however an improved numerical approximation for the

derivative is:

as

aT

ax

-V

x 2Ax

Set the analytic and numerical derivative together

-v -v

ixatd 2Ax

and solve

4/1. = Fod

where Fod = atd/Ax2. Since smaller Ax values lead to a

better representation for the gradient our criteria is

Fod < 4/x. This criteria should be applied to the cell

with the smallest size and largest thermal diffusivity

to determine td, the maximum time step of the solution.

A time step less than td should be chosen to ensure

accuracy of the solution. An increase in time step is

however a possibility once cells of minimum td value
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have been heated long enough such that the temperature

difference across them has become negligible.

If the time step size is significantly less than

the minimum td value of all cells adjacent to the heated

wall then this characteristic value represents the

minimum simulation time whereafter the solution first

becomes correct. To demonstrate this criteria, the

numerical method was applied to calculate h for a semi-

infinite slab with constant material properties--a

solution which is known analytically. When arranged in

the following non-dimensional form

hAx/k = 1/(iwFod)

the Mickley and Fairbanks equation should appear as a

straight line when the LHS is plotted log-log against

Fod. Figure (D.5) shows both numerical and analytic

results agree well only when Fod is greater than 1, or

near the criteria value of 4/w. When Fod is less than

the criteria value h approaches the constant value of

k/Ax. The numerical solution may also be shown to

depart significantly from the analytic result upon this

figure when the FoL number is not satisfied.

D.8.3. Selection of Cell Number

Since porosity contour is only approximated by

position of block shaped cells, the smaller the cell

size and the larger the number of cells used to



10.000

1.000

0.010

0.001
0.01 0.10 1 .00

Fod

10.00

Figure (D.5). Accurary of heat transfer solution to a semi-infinite slab on
Fod value.

100.00
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represent the curve should improve the approximation.

This approximation to curvature may lead to an

exaggeration of particle surface in contact with the

wall and therefore a corresponding increase in heat

transfer coefficient should be observed. The number of

cells per particle radius was increased from 5 to 10,

20, 40, 60, and 80, and the heat transfer curves were

compared. When no gap was introduced, the descent of

the heat transfer curve from a plateau value occurred at

progressively earlier times as cell number increased.

The data could be made to fit well this manner but

usually with an inordinately large map size. Once a gap

was introduced, then for as small a gap as .001dp a cell

number of 5 to 10 per particle radius produced less than

20% difference in heat transfer.

Because the curvature of boundaries separating

curved regions of unlike properties can only be

approximated by placement of box-like cells, for cells

that intersect the boundary an attempt to weight by cell

area on either side of the boundary was made. A

difference in heat transfer solutions with and without

curvature correction was 1% or less for particle

representations of 5 cells per radius. It therefore

appears the additional complexity for curvature

correction in programs by previous researchers including

finite element modeling is unjustified (2,3). For the
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degree of particle heating required to compare

calculations of the heat transfer coefficient to data

obtained for as short as 0.1s a number greater than 10

cells per particle radius does not appear to be

required.

D.9. Program Utilities

To ease the chore of preparing an input map

representative of porosity change with distance from the

heated wall, the program MAKMAP was devised. This

program produces a map of equally dimensioned square

cells with property indices of 0 (void) and 1 (solid)

for an array of particles. The number of cells used to

represent a particle, the number of contact points to a

particle, and the number of particles extending in the

radial direction is selected on input. MAKMAP writes

its completed map to the file MAKMAP.OUT which is later

appended to an input file for the heat transfer

calculation codes.

Since the porosity by distance formulation (Eq.

V.D.1) is to be used to select a discrete number of void

or solid cells in the input map, an average porosity for

cell width Au is

E(u) = 1

w[1-Au((u-1)+Au/3)-(u-1)2]

n tan(r /n)

where an n of 6 was chosen to model orthorhombic arrays
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of particles.

MAKMAP displays the number of cells chosen for void

and solid using the cell average porosity defined above

as well as the solid fraction apportioned to a cell when

the number of solid cells does not divide equally into a

column.

D.10. Sample Run

The following input file, 385-21.txt, was prepared

to compute the heat transfer coefficient to a packed bed

of 0.8mm glass spheres in air through a 21Am gap. This

solution applied the program for cylindrical geometry

with a rod radius of 6.35mm. The input map was

generated by the MAKMAP utility for five nodes per

particle radius and an orthorhombic configuration. For

a simulation time to lOs the criteria on Fogy (section

D.8.1) required a total radial length of 2.24mm and the

Fod criteria (section D.8.2) required a td no greater

than 20As limited by the gap and a 50ms time step

limited by the 80Am node size beyond the gap. A gradual

increase in time step from 10As to 20ms while the gap

heated was chosen to maintain stability. The output

listing is presented as 385-21.out and a plot file h185-

21 and binary restart file b185-21 was also generated.

A solution time of about 5min was required on an IBM AT.



132

D.11. Program Listings

Two versions of the heat transfer coefficient

program BLAUSIS appear here to treat cylindrical and

slab geometries for compilation on an IBM AT with MS

FORTRAN. Source files with increased array sizes to

treat a 130 x 130 node map for compilation on a high

level workstation or mainframe were used but are not

listed here. The program utility MAKMAP follows these

listings.
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385-21.TXT



Print file "385-21.txt"

Glass: 0.8mm diameter (21micron gap, 6 contacting particles)

4,",,h185-21',1b185-21'
100.,0.00635,6,31,1,2,2
1,80e-6

8,80e-6
9,21e-6
1,1.04,27E5
0,2.9282E-2,1.047E3

100,1E-5,100,1,5
100,1E-4, 50,1,5
100,1E-2, 20,1,5
500,2E-2, 50,1,5

1111111111111111111111
9888888888888888888888888888E188
0000000000000000000000000000000
0000111100000011110000001111000
0001111110000111111000011111100
0011111111001111111100111111110
0111111111111111111111111111111
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385-21.0UT



Print file "385-21.out"

1 Glass: 0.8mm diameter (21micron gap, 6 contacting particles)
INPUT REVIEW

CENTER TEMPERATURE 1.000000E+02

INNER RADIUS 6.350000E-03
NUMBER OF AXIAL NODES 6

NUMBER OF RADIAL NODES 31

NUMBER OF AXIAL STEP CARDS READ 1

NUMBER OF RADIAL STEP CARDS READ 2

NUMBER OF PROPERTY CARDS READ 2

NUMBER OF TIME STEP CARDS READ 4

H PLOT FILE NAME h185-21

DUMP FILE NAME b185-21

AXIAL STEP CARDS
ID DX

1 8.000000E-05

RADIAL STEP CARDS

ID DR

8 8.000000E-05
9 2.100000E-05

PROPERTY CARDS
ID K RHO*CP

1 1.040000E+00 2.700000E+06
0 2.928200E-02 1.047000E+03

TIME STEP CARDS
NUMBER DT NPRT MSKP NSKP

100 1.00000E-05 100 1 5

100 1.00000E-04 50 1 5

100 1.00000E-02 20 1 5

500 2.00000E-02 50 1 5

AXIAL NODE SIZE (RIGHT=TOPMOST)
LOCATION MAP (BY ID)

RADIAL NODE SIZE
LOCATION MAP (BY ID)

9888888888888888888888888888888

PROPERTY

LOCATION MAP (BY ID)

0000000000000000000000000000000
0000111100000011110000001111000
0001111110000111111000011111100
0011111111001111111100111111110
0111111111111111111111111111111

TOTAL RADIAL LENGTH 2.421000E-03
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Print file "385-21.out"

TOTAL AXIAL LENGTH 4.000000E-04

H SOLUTION FOR 0.000000E+00 TO 9.999999E-04 SECONDS

PRINT TEMPERATURE MAP EVERY 100 1.00000E-05 SECOND TIME STEPS FOR EVERY 5 RADIAL NODE

TEMPERATURE MAP AT 1.00000E-03 SECONDS

5 10 15 20 25 30

0.163523E+01 0.291312E-02 0.446713E-05 0.126211E-080.219265E -12 0.119535E-16

0.530756E-02 0.143233E-02 0.311287E-08 0.433062E-09 0.669578E-16 0.304987E-17

0.185718E-03 0.372636E-03 0.336079E-10 0.752225E-10 0.369566E-18 0.392623E-18

0.733127E-05 0.631582E-06 0.356047E-12 0.467077E-13 0.220466E-20 0.139556E-21

0.384397E-06 0.440424E-08 0.338205E-14 0.149723E-15 0.126558E-22 0.274069E-24

0.139207E-06 0.727768E-10 0.555285E-16 0.127009E-17 0.131883E-24 0.148844E-26

HEAT FLUX
6 1.44204E+04 1.44204E+02
5 1.58051E+04 1.58051E+02
4 2.11873E+04 2.11873E+02
3 3.93284E+04 3.93284E+02
2 1.35841E+05 1.35841E+03
1 1.37648E+05 1.37648E+03

AVERAGE H @ 1.00000E-03 SECONDS: 5.76392E+02

TOTAL RADIAL LENGTH

TOTAL AXIAL LENGTH

2.421000E-03

4.000000E-04

H SOLUTION FOR 1.000001E-03 TO 1.100000E-02 SECONDS

PRINT TEMPERATURE MAP EVERY 50 1.00000E-04 SECOND TIME STEPS FOR EVERY 5 RADIAL NODE

TEMPERATURE MAP AT 6.00000E-03 SECONDS

5 10 15 20 25 30

0.182894E+01 0.540537E-02 0.421630E-04 0.119690E-06 0.899429E-09 0.284641E-11

0.942900E-01 0.317573E-02 0.147280E-05 0.694811E-07 0.221190E-10 0.173407E-11

0.256942E-01 0.106132E-02 0.288327E-06 0.229563E-07 0.345031E-11 0.635835E-12

0.615280E-02 0.244420E-04 0.415443E-07 0.429799E-09 0.403584E-12 0.103282E-13

0.164876E-02 0.213678E-05 0.449349E-08 0.304368E-10 0.358686E-13 0.583607E-15

0.913877E-03 0.404577E-06 0.749565E-09 0.473469E-11 0.498381E-14 0.749022E-16

HEAT FLUX
6 1.42125E+04 1.42125E+02
5 1.55701E+04 1.55701E+02
4 2.07618E+04 2.07618E+02
3 3.77074E+04 3.77074E+02
2 1.25058E+05 1.25058E+03
1 1.29893E+05 1.29893E+03

AVERAGE H 2 6.00000E-03 SECONDS: 5.42299E+02

TEMPERATURE MAP AT 1.10000E-02 SECONDS
5 10 15 20 25 30

0.194243E+01 0 .654737E-02 0.542806E-04 0.168729E-06 0.134212E-08 0.462154E-11

0.193550E+00 0 .400456E-02 0.381001E-05 0.100923E-06 0.761917E-10 0.288512E-11

0.871689E-01 0 .139218E-02 0.133204E-05 0.343168E-07 0.237566E-10 0.108248E-11

0.363011E-01 0 .498395E-04 0.356513E-06 0.102372E-08 0.570343E-11 0.309104E-13

0.172559E-01 0 .733603E-05 0.741354E-07 0.132179E-09 0.106355E-11 0.368455E-14

0.126157E-01 0 .234188E-05 0.233500E-07 0.380641E-10 0.303402E-12 0.102026E-14
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HEAT FLUX

6 1.41404E+04 1.41404E+02
5 1.54730E+04 1.54730E+02
4 2.05379E+04 2.05379E+02
3 3.68349E+04 3.68349E+02
2 1.19558E+05 1.19558E+03
1 1.24556E+05 1.24556E+03

AVERAGE H 2 1.10000E-02 SECONDS: 5.23503E+02

TOTAL RADIAL LENGTH 2.421000E-03
TOTAL AXIAL LENGTH 4.000000E-04

H SOLUTION FOR 1.099999E-02 TO 1.011000E+00 SECONDS

PRINT TEMPERATURE MAP EVERY 20 1.00000E-02 SECOND TIME STEPS FOR EVERY 5 RADIAL NODE

TEMPERATURE MAP AT 2.11000E-01 SECONDS

5 10 15 20 25 30

0.839442E+01 0.213273E+01 0.706441E-01 0.645534E-02 0.127650E-03 0.320485E-04

0.682873E+01 0.211021E+01 0.392352E-01 0.565404E-02 0.378581E-04 0.212877E-04

0.704141E+01 0.203370E+01 0.420421E-01 0.470824E-02 0.339188E-04 0.115880E-04

0.751188E+01 0.192834E+01 0.499976E-01 0.377332E-02 0.355434E-04 0.265703E-05

0.792600E+01 0.162199E+01 0.582741E-01 0.295621E-02 0.397742E-04 0.199767E-05

0.808665E+01 0.149063E+01 0.617622E-01 0.262738E-02 0.418705E-04 0.180481E-05

HEAT FLUX
6 1.30884E+04 1.30884E+02
5 1.39466E+04 1.39466E+02
4 1.68068E+04 1.68068E+02
3 2.62980E+04 2.62980E+02
2 9.17444E+04 9.17444E+02
1 9.50055E+04 9.50055E+02

AVERAGE H 2 2.11000E-01 SECONDS: 4.05685E+02

TEMPERATURE MAP AT 4.11000E-01 SECONDS
5 10 15 20 25 30

0.143643E+02 0.603602E+01 0.544655E+00 0.142961E+00 0.586427E-02 0.103238E-02

0.129852E+02 0.607037E+01 0.461220E+00 0.141221E+00 0.374912E-02 0.945396E-03

0.132070E+02 0.615719E+01 0.487548E+00 0.136749E+00 0.399892E-02 0.801009E-03

0.136732E+02 0.631815E+01 0.541364E+00 0.131102E+00 0.463995E-02 0.625992E-03

0.140757E+02 0.561624E+01 0.591694E+00 0.111346E+00 0.528709E-02 0.531744E-03

0.142306E+02 0.530060E+01 0.612065E+00 0.102810E+00 0.555674E-02 0.495032E-03

HEAT FLUX
6 1.17613E+04 1.17613E+02
5 1.27768E+04 1.27768E+02
4 1.61496E+04 1.61496E+02
3 2.56405E+04 2.56405E+02
2 8.48541E+04 8.48541E+02
1 8.78371E+04 8.78371E+02

AVERAGE H 2 4.11000E-01 SECONDS: 3.78440E+02

TEMPERATURE MAP AT 6.11000E-01 SECONDS
5 10 15 20 25 30

0.192658E+02 0.967169E+01 0.146836E+01 0.561026E+00 0.436791E-01 0.147317E-01
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0.179964E+02 0.975233E+01 0.135292E+01 0.561731E+00 0.357365E-01 0.142605E-01

0.182098E+02 0.999791E+01 0.140437E+01 0.563035E+00 0.377593E-01 0.130657E-01

0.186498E+02 0.104637E+02 0.150454E+01 0.567931E+00 0.420459E-01 0.113504E-01

0.190263E+02 0.948774E+01 0.159610E+01 0.499322E+00 0.461113E-01 0.102599E-01

0.191705E+02 0.904117E+01 0.163279E+01 0.468805E+00 0.477660E-01 0.982647E-02

HEAT FLUX
6 1.10059E+04 1.10059E+02
5 1.19468E+04 1.19468E+02
4 1.52399E+04 1.52399E+02
3 2.45926E+04 2.45926E+02
2 7.97041E+04 7.97041E+02
1 8.24954E+04 8.24954E+02

AVERAGE H a 6.11000E-01 SECONDS: 3.56468E+02

TEMPERATURE MAP AT 8.11000E-01 SECONDS

5 10 15 20 25 30

0.233939E+02 0.129212E+02 0.268311E+01 0.122671E+01 0.147306E+00 0.698999E-01

0.222066E+02 0.130374E+02 0.254887E+01 0.123357E+01 0.131264E+00 0.685382E-01

0.224113E+02 0.134019E+02 0.262021E+01 0.125325E+01 0.136888E+00 0.646679E-01

0.228279E+02 0.141094E+02 0.275619E+01 0.129216E+01 0.148198E+00 0.587605E-01

0.231816E+02 0.129358E+02 0.287917E+01 0.115711E+01 0.158692E+00 0.549348E-01

0.233167E+02 0.123944E+02 0.292823E+01 0.109608E+01 0.162924E+00 0.534048E-01

HEAT FLUX
6 1.04433E+04 1.04433E+02
5 1.13070E+04 1.13070E+02
4 1.44284E+04 1.44284E+02
3 2.35220E+04 2.35220E+02
2 7.54326E+04 7.54326E+02
1 7.80682E+04 7.80682E+02

AVERAGE H 2 8.11000E-01 SECONDS: 3.37892E+02

TEMPERATURE MAP AT 1.01100E+00 SECONDS

5 10 15 20 25 30

0.269205E+02 0.158291E+02 0.406690E+01 0.206824E+01 0.337267E+00 0.194580E+00

0.258003E+02 0.159730E+02 0.392109E+01 0.208339E+01 0.312461E+00 0.191920E+00

0.259973E+02 0.164271E+02 0.400763E+01 0.212910E+01 0.322863E+00 0.184044E+00

0.263938E+02 0.173190E+02 0.417048E+01 0.221787E+01 0.343298E+00 0.171618E+00

0.267285E+02 0.160009E+02 0.431674E+01 0.200937E+01 0.362052E+00 0.163561E+00

0.268559E+02 0.153899E+02 0.437492E+01 0.191423E+01 0.369581E+00 0.160329E+00

NEAT FLUX
6 9.96644E+03 9.96644E+01
5 1.07758E+04 1.07758E+02
4 1.37409E+04 1.37409E+02
3 2.25446E+04 2.25446E+02
2 7.18070E+04 7.18070E+02

1 7.43116E+04 7.43116E+02

AVERAGE H a 1.01100E+00 SECONDS: 3.22015E+02

TOTAL RADIAL LENGTH
TOTAL AXIAL LENGTH

2.421000E-03
4.000000E-04

H SOLUTION FOR 1.010999E+00 TO 1.101100E+01 SECONDS
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PRINT TEMPERATURE MAP EVERY 50 2.00000E-02 SECOND TIME STEPS FOR EVERY 5 RADIAL NODE

TEMPERATURE MAP AT 2.01100E+00 SECONDS

5 10 15 20 25 30

0.389641E+02 0.267877E+02 0.115123E+02 0.741560E+01 0.265672E+01 0.215755E+01

0.380884E+02 0.270066E+02 0.113426E+02 0.748026E+01 0.258900E+01 0.214728E+01

0.382581E+02 0.276903E+02 0.114659E+02 0.767136E+01 0.262429E+01 0.211608E+01

0.385873E+02 0.290002E+02 0.116906E+02 0.801383E+01 0.269160E+01 0.206633E+01

0.388597E+02 0.273695E+02 0.118888E+02 0.748211E+01 0.275242E+01 0.203295E+01

0.389623E+02 0.266068E+02 0.119670E+02 0.723538E+01 0.277667E+01 0.201951E+01

HEAT FLUX

6 8.32472E+03 8.32472E+01
5 8.91588E+03 8.91588E+01
4 1.10315E+04 1.10315E+02
3 1.75859E+04 1.75859E+02
2 5.95000E+04 5.95000E+02
1 6.15820E+04 6.15820E+02

AVERAGE H 2 2.01100E+00 SECONDS: 2.63973E+02

TEMPERATURE MAP AT 3.01100E+00 SECONDS

5 10 15 20 25 30

0.461754E+02 0.341275E+02 0.181977E+02 0.130701E+02 0.664325E+01 0.593733E+01

0.454156E+02 0.343585E+02 0.180384E+02 0.131585E+02 0.655788E+01 0.592252E+01

0.455668E+02 0.350907E+02 0.181705E+02 0.134343E+02 0.660805E+01 0.587667E+01

0.458557E+02 0.365294E+02 0.184077E+02 0.139588E+02 0.670289E+01 0.580091E+01

0.460924E+02 0.348587E+02 0.186151E+02 0.132531E+02 0.678825E+01 0.575142E+01

0.461812E+02 0.340749E+02 0.186967E+02 0.129239E+02 0.682222E+01 0.573149E+01

HEAT FLUX
6 7.31152E+03 7.31152E+01
5 7.89236E+03 7.89236E+01
4 9.91509E+03 9.91509E+01
3 1.57515E+04 1.57515E+02
2 5.23076E+04 5.23076E+02
1 5.41314E+04 5.41314E+02

AVERAGE H 2 3.01100E+00 SECONDS: 2.33176E+02

TEMPERATURE MAP AT 4.01100E+00 SECONDS
5 10 15 20 25 30

0.511833E+02 0.396173E+02 0.239617E+02 0.184888E+02 0.114184E+02 0.106307E+02

0.504964E+02 0.398468E+02 0.238147E+02 0.185860E+02 0.113290E+02 0.106140E+02

0.506343E+02 0.405729E+02 0.239460E+02 0.188936E+02 0.113852E+02 0.105622E+02

0.508956E+02 0.420162E+02 0.241801E+02 0.194982E+02 0.114912E+02 0.104751E+02

0.511085E+02 0.403882E+02 0.243840E+02 0.187274E+02 0.115864E+02 0.104188E+02

0.511882E+02 0.396234E+02 0.244640E+02 0.183671E+02 0.116242E+02 0.103962E+02

HEAT FLUX

6 6.61235E+03 6.61235E+01
5 7.14761E+03 7.14761E+01
4 9.05122E+03 9.05122E+01
3 1.45222E+04 1.45222E+02
2 4.73704E+04 4.73704E+02
1 4.90177E+04 4.90177E+02

AVERAGE H 2 4.01100E+00 SECONDS: 2.11813E+02

TEMPERATURE MAP AT 5.01100E+00 SECONDS
5 10 15 20 25 30

0.550495E+02 0.440793E+02 0.290579E+02 0.235920E+02 0.164337E+02 0.156318E+02
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0.544175E+02 0.443010E+02 0.289215E+02 0.236907E+02 0.163457E+02 0.156146E+02

0.545448E+02 0.450008E+02 0.290482E+02 0.240034E+02 0.164031E+02 0.155616E+02

0.547850E+02 0.463990E+02 0.292732E+02 0.246282E+02 0.165110E+02 0.154717E+02

0.549802E +02 0.448436E+02 0.294688E+02 0.238504E+02 0.166080E+02 0.154139E+02

0.550531E+02 0.441125E+02 0.295454E+02 0.234864E+02 0.166465E+02 0.153906E+02

HEAT FLUX
6 6.08847E+03 6.08847E+01

5 6.57637E+03 6.57637E+01
4 8.34536E+03 8.34536E+01
3 1.35163E+04 1.35163E+02
2 4.35852E+04 4.35852E+02
1 4.50984E+04 4.50984E+02

AVERAGE H 2 5.01100E+00 SECONDS: 1.95233E+02

TEMPERATURE MAP AT 6.01099E+00 SECONDS

5 10 15 20 25 30

0.582683E+02 0.479229E+02 0.336729E+02 0.283819E+02 0.214066E+02 0.206232E+02

0.576817E+02 0.481340E+02 0.335457E+02 0.284784E+02 0.213221E+02 0.206064E+02

0.578000E+02 0.487995E+02 0.336663E+02 0.287834E+02 0.213783E+02 0.205545E+02

0.580229E+02 0.501321E+02 0.338799E+02 0.293982E+02 0.214838E+02 0.204660E+02

0.582036E+02 0.486598E+02 0.340654E+02 0.286415E+02 0.215785E+02 0.204093E+02

0.582711E+02 0.479675E+02 0.341381E+02 0.282873E+02 0.216162E+02 0.203865E+02

HEAT FLUX
6 5.65474E+03
5 6.10378E+03
4 7.74608E+03
3 1.26274E+04
2 4.04476E+04

1 4.18506E+04

AVERAGE H 2 6.

H

5.65474E+01

6.10378E+01
7.74608E+01
1.26274E+02
4.04476E+02
4.18506E+02

01099E+00 SECONDS: 1.81355E+02

TEMPERATURE MAP AT 7.01099E+00 SECONDS
5 10 15 20 25 30

0.610848E+02 0 .513571E+02 0.379165E+02 0.328738E+02 0.262035E+02 0.254535E+02

0.605378E+02 0 .515567E+02 0.377977E+02 0.329662E+02 0.261234E+02 0.254373E+02

0.606483E+02 0 .521851E+02 0.379116E+02 0.332581E+02 0.261772E+02 0.253876E+02

0.608560E+02 0 .534451E+02 0.381132E+02 0.338489E+02 0.262783E+02 0.253026E+02

0.610243E+02 0 .520581E+02 0.382881E+02 0.331259E+02 0.263690E+02 0.252482E+02

0.610872E+02 0 .514058E+02 0.383566E+02 0.327874E+02 0.264051E+02 0.252263E+02

HEAT FLUX
6 5.27496E+03
5 5.69189E+03
4 7.22031E+03
3 1.18170E+04
2 3.77096E+04
1 3.90169E+04

AVERAGE H 2 7.

H

5.27496E+01

5.69189E+01
7.22031E+01

1.18170E+02
3.77096E+02
3.90169E+02

01099E+00 SECONDS: 1.69169E+02

TEMPERATURE MAP AT 8.01099E+00 SECONDS

5 10 15 20 25 30

0.636252E+02 0.544923E+02 0.418530E+02 0.370E49E+02 0.307673E+02 0.300564E+02

0.631139E+02 0.546802E+02 0.417418E+02 0.371726E+02 0.306917E+02 0.300411E+02

0.632172E+02 0.552715E+02 0.418489E+02 0.374491E+02 0.307427E+02 0.299939E+02

0.634113E+02 0.564579E+02 0.420386E+02 0.380102E+02 0.308385E+02 0.299133E+02
0.635686E+02 0.551544E+02 0.422031E+02 0.373256E+02 0.309245E+02 0.298616E+02

0.636272E+02 0.545412E+02 0.422675E+02 0.370051E+02 0.309587E+02 0.298408E+02



143

Print file "385-21.out"

HEAT FLUX

6 4.93126E+03 4.93126E+01

5 5.32038E+03 5.32038E+01
4 6.74636E+03 6.74636E+01
3 1.10672E+04 1.10672E+02
2 3.52439E+04 3.52439E+02
1 3.64653E+04 3.64653E+02

AVERAGE M a 8.01099E+00 SECONDS: 1.58152E+02

TEMPERATURE MAP AT 9.01102E+00 SECONDS
5 10 15 20 25 30

0.659567E+02 0.573892E+02 0.455220E+02 0.410324E+02 0.350784E+02 0.344082E+02

0.654782E+02 0.575656E+02 0.454179E+02 0.411151E+02 0.350073E+02 0.343937E+02

0.655749E+02 0.581210E+02 0.455185E+02 0.413757E+02 0.350554E+02 0.343493E+02

0.657565E+02 0.592357E+02 0.456966E+02 0.419052E+02 0.351457E+02 0.342732E+02

0.659037E+02 0.580122E+02 0.458510E+02 0.412602E+02 0.352268E+02 0.342244E+02

0.659585E+02 0.574367E+02 0.459115E+02 0.409582E+02 0.352591E+02 0.342048E+02

HEAT FLUX

6 4.61579E+03 4.61579E+01
5 4.97985E+03 4.97985E+01
4 6.31271E+03 6.31271E+01
3 1.03692E+04 1.03692E+02

2 3.29828E+04 3.29828E+02
1 3.41258E+04 3.41258E+02

AVERAGE H a 9.01102E+00 SECONDS: 1.48031E+02

TEMPERATURE MAP AT 1.00110E+01 SECONDS
5 10 15 20 - 25 30

0.681174E+02 0.600835E+02 0.489507E+02 0.447326E+02 0.391357E+02 0.385057E+02

0.676692E+02 0.602491E+02 0.488531E+02 0.448103E+02 0.390690E+02 0.384920E+02

0.677598E+02 0.607703E+02 0.489476E+02 0.450553E+02 0.391143E+02 0.384503E+02

0.679299E+02 0.618164E+02 0.491147E+02 0.455533E+02 0.391992E+02 0.383787E+02

0.680676E+02 0.606688E+02 0.492595E+02 0.449471E+02 0.392754E+02 0.383325E+02

0.681190E+02 0.601289E+02 0.493163E+02 0.446632E+02 0.393057E+02 0.383144E+02

HEAT FLUX
6 4.32272E+03 4.32272E+01
5 4.66393E+03 4.66393E+01

4 5.91110E+03 5.91110E+01
3 9.71654E+03 9.71654E+01
2 3.08885E+04 3.08885E+02
1 3.19588E+04 3.19588E+02

AVERAGE M a 1.00110E+01 SECONDS: 1.38642E+02

TEMPERATURE MAP AT 1.10111E+01 SECONDS

5 10 15 20 25 30

0.701302E+02 0 .625986E+02 0.521592E+02 0.482006E+02 0.429469E+02 0.423554E+02

0.697103E+02 0 .627539E+02 0.520678E+02 0.482736E+02 0.428843E+02 0.423425E+02

0.697952E+02 0 .632426E+02 0.521563E+02 0.485036E+02 0.429268E+02 0.423033E+02

0.699545E+02 0 .642237E+02 0.523130E+02 0.489713E+02 0.430065E+02 0.422361E+02

0.700836E+02 0 .631477E+02 0.524488E+02 0.484022E+02 0.430780E+02 0.421931E+02

0.701317E+02 0 .626416E+02 0.525020E+02 0.481357E+02 0.431065E+02 0.421758E+02

HEAT FLUX
6 4.05065E+03 4.05065E+01
5 4.36997E+03 4.36997E+01
4 5.53763E+03 5.53763E+01
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3 9.10601E+03 9.10601E+01
2 2.89379E+04 2.89379E+02
1 2.99406E+04 2.99406E+02

AVERAGE H Q 1.10111E+01 SECONDS: 1.29894E+02

Fortran STOP
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PROGRAM BLAUSIS
C CALCULATES TEMPERATURES AND HEAT TRANSFER COEFFICIENTS FOR TWO DIMENSIONAL SLAB

C VARIABLE NODE SIZE AND PROPERTIES ALLOWED
C PC VERSION

REAL LJ,LK
DIMENSION T(50,50),ITYPE(50,50),DK1(50,50),DJ2(50,50),

TS(50,50),C2P(50),H(50),IXSZ(50),IYSZ(50),
SIXDX(10),DY(10),DX(10),NSTEP(10),CK(10),ROCP(10),DT(10),NPRT(10),
SNSKP(10),MSKP(10),INDX(10),IYDX(10)
COMMON UK(50,50),LK(50,50),DK2(50,50),UJ(50,50),

SLJ(50,50),DJ1(50,50),F,M,N
CHARACTER TITLE*80,HNAME*40,DNAME*40,RNAME*40

C INPUT PREPARATION
C RECORD 1:

C TITLE - 80 CHARACTER PROBLEM DESCRIPTION
C RECORD 2:
C NTM - NUMBER OF TIME STEP CARDS TO BE READ
C RNAME - RESTART FILE NAME. IF PRESENT READ ONLY TIME STEP CARDS AFTER THIS CARD

C HNAME - H PLOT FILE NAME. IF PRESENT WRITE T,HAVE(T) TO HNAME.

C DNAME - DUMP FILE NAME. IF PRESENT WRITE DUMP FILE TO DNAME.

C RECORD 3:
C CENT - TEMPERATURE @ X=0

C A - NOT USED. PRESENT FOR COMPATIBILITY OF CYLINDER INPUT FILES

C M - TOTAL NUMBER OF VERTICAL NODE ENDPOINTS (=TOTAL NODES - 1)

C N - TOTAL NUMBER OF HORIZONTAL NODES
C NYSZ - NUMBER OF VERT NODE SIZE CARDS TO BE READ

C NXSZ - NUMBER OF HORIZ NODE SIZE CARDS TO BE READ
C NPROP - NUMBER OF PROPERTY CARDS TO BE READ

C READ NYSZ VERT NODE SIZE CARDS:
C IYDX - INDEX OF NODE SIZE (0-9)

C DY - NODE SIZE

C READ NXSZ HORIZ NODE SIZE CARDS:
C IXDX - INDEX OF NODE SIZE (0-9)
C DX - NODE SIZE
C READ NPROP PROPERTY CARDS:
C INDX - INDEX OF PROPERTY (0-9)

C CK - THERMAL CONDUCTIVITY
C ROCP - DENSITY*SPECIFIC HEAT

C READ NTM TIME STEP CARDS:
C NSTEP - TOTAL NUMBER OF TIME STEPS ACTIVE FOR THIS CARD
C DT - TIME STEP SIZE

C NPRT - NUMBER OF TIME STEPS A TEMPERATURE/H COEFF SUMMARY IS PRINTED

C MSKP - PRINT FOR EACH MSKP VERT NODES

C NSKP - PRINT FOR EACH NSKP HORIZ NODES

C READ VERT NODE SIZE MAP FOR M-1 NODES FROM TOP MOST POSITION (1 CARD)

C READ HORIZ NODE SIZE MAP FOR N NODES FROM RIGHT MOST POSITION (1 CARD)

C READ PROPERTY LOCATION MAP (M-I ROWS WITH N COLUMNS)
C END OF INPUT
C READ DATA

READ(5,1) TITLE
WRITE(6,2)TITLE
READ(5,*) NTM,RNAME,HNAME,DNAME

IF(RNAME.E0.")THEN
READ(5,*) CENT,A,M,N,NYSZ,NXSZ,NPROP
WRITE(6,5)CENT, M,N,NYSZ,NXSZ,NPROP,NTM,HNAME,DNAME

C READ AXIAL STEP SIZE CARDS

DO 31 I=1,NYSZ
READ(5,*) IYDX(I),DY(IYDX(I)+1)

31 WRITE(6,7)IYDX(I),DY(IYDX(I)+1)
WRITE(6,32)

C READ RADIAL STEP SIZE CARDS
DO 34 I=1,NXSZ
READ(5,*) IXDX(I),DX(IXDX(I)+1)

34 WRITE(6,7)IXDX(I),DX(IXDX(I)+1)
WRITE(6,36)

146
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C READ PROPERTY CARDS
DO 3 I=1,NPROP
READ(5,*) INDX(I),CK(INDX(I)+1),ROCP(INDX(I)+1)

3 WRITE(6,7)INDX(I),CK(INDX(I)+1),ROCP(INDX(I)+1)
C READ TIME STEP CARDS

WRITE(6,8)

DO 4 I=1,NTM
READ(5,*) NSTEP(I),DT(I),NPRT(I),MSKP(I),NSKP(I)

4 WRITE(6,9)NSTEP(I),DT(I),NPRT(I),MSKP(I),NSKP(I)
C READ VERTICAL STEP SIZE LOCATION MAP

WRITE(6,37)
CALL WRTHD(M)

READ(5,20) (IYSZ(K),K=M,2,-1)
WRITE(6,21)(IYSZ(K),K=M,2,-1)

C READ RADIAL STEP SIZE LOCATION MAP
WRITE(6,38)
CALL WRTHD(N)
READ(5,20) (IXSZ(J),J=1,N)
WRITE(6,21)(IXSZ(J),J=1,N)

C READ PROPERTY LOCATION MAP
WRITE(6,39)
CALL WRTHD(N)
DO 10 K=M,2,-1
READ(5,20) (ITYPE(K,J),J=1,N)

10 WRITE(6,21)(ITYPE(K,J),J*1,N)
C ADJUST SIZE AND TYPE ID TO AVOID ZERO ARRAY INDEX

DO 11 K=2,M
IYSZ(K)= IYSZ(K) +1

DO 11 J=1,N
11 ITYPE(K,J)=ITYPE(K,J)+1

DO 41 J =1,N

41 IXSZ(J)=IXSZ(J)+1
THE =O.

ELSE

C PERFORM RESTART FROM FILE RNAME
OPEN(8,FILE= RNAME,FORM= 'UNFORMATTED')

READ(8)CENT,A,M,N,NXSZ,NYSZ,NPROP,IXDX,IYDX,DX,DY,CK,ROCP,INDX,
S ITYPE,IXSZ,IYSZ,T,TS,TME

CLOSE(8)
WRITE(6,18) RNAME
WRITE(6,5)CENT,M,N,NYSZ,NXSZ,NPROP,NTM,HNAME,DNAME
DO 42 I=1,NYSZ

42 WRITE(6,7)IYDX(I),DY(IYDX(I)+1)
DO 43 I=1,NXSZ

43 WRITE(6,7)IXDX(I),DX(IXDX(I)+1)
WRITE(6,36)

DO 13 I=1,NPROP
13 WRITE(6,7)INDX(I),CK(INDX(I)+1),ROCP(INDX(I)+1)

WRITE(6,8)
DO 14 I=1,NTM
READ(5,*) NSTEP(I),DT(I),NPRT(I),MSKP(I)

14 WRITE(6,9)NSTEP(I),DT(I),NPRT(I),MSKP(I)
WRITE(6,37)
CALL WRTHD(M)
WRITE(6,21)(IYSZ(K)-1,K=M,2,-1)
WRITE(6,38)
CALL WRTHD(N)
WRITE(6,21)(IXSZ(J)-1,J=1,N)
WRITE(6,39)
CALL WRTHD(N)
DO 16 K=M,2,-1

16 WRITE(6,21)(ITYPE(K,J)-1,J=1,N)

ENDIF
F=CENT

C SUM INTERVALS TO FIND TOTAL LENGTH
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YLEN=0
DO 17 K=2,M

17 YLEN=YLEN+DY(IYSZ(K))
XLEN=0
DO 19 J=1,N

19 XLEN=XLEN+DX(IXSZ(J))
IF(HNAME.NE.") OPEN(7,FILE=HNAME)
DO 200 L=1,NTM
WRITE(6,23)XLEN,YLEN,TME,DT(L)*NSTEP(L)+TME
WRITE(6,24)NPRT(L),DT(L),NSKP(L),MSKP(L)

C PREPARE TRIDIAGONAL COEFFICIENT MATRIXES
C TREAT WALL AS INSULATED BOUNDARY

C CENTER CONDITIONS FOR CONSTANT TEMPERATURE
DO 40 J=1,N
DO 40 Kz1,M
IF(K.EQ.M)THEN

C TREAT TOP CONDITIONS
IF(J.E0JOTHEN

C TREAT TOP WALL
B=2*CK(ITYPE(M,N))*DY(IYSZ(M))/DX(IXSZ(N))
C=2*CK(ITYPE(M,N))*DX(IXSZ(N))/DY(IYSZ(M))
D=C
E=4*ROCP(ITYPE(M,N))*DX(IXSZ(N))*DY(IYSZ(M))/DT(L)
UJ (M,N)=0
LJ (M,N)=C+0
DJUM,N)=-(C+D-E)
DJ2(M,N)=-(C+D+E)
UK (M,N)=0
LK (M,N)=-B
DK1(M,N)=B+E
DK2(M,N)=B-E

ELSE
C TREAT TOP INTERIOR AND CENTER

A=2*CK(ITYPE(M,J+1))*DY(IYSZ(M))/DX(IXSZ(J+1))
I1=2*CK(ITYPE(M,J ))*DY(IYSZ(M)) /DX(IXSZ(J ))

O=(,CK(ITYPE(M ,J ))*DX(IXSZ(J ))+

CK(ITYPE(M ,J+1))*DX(IXSZ(J+1)))/DY(IYSZ(M ))

D=C
E=2*DY(IYSZ(M))*

(ROCP(ITYPE(M 01+1))*DX(IXSZ(J+1))+
S ROCP(ITYPE(M ,J ))*DX(IXSZ(J )))/DT(L)

UJ (M,J)=0
LJ (M,J)=C+D
DJ1(M,J)=-(C+D-E)
DJ2(M,J)=-(C+D+E)
UK (K,J)=-A
LK (K,J)=-B
DK1(K,J)=A+B+E
DK2(K,J)=A+B-E

ENDIF
ELSEIF(K.E0.1)THEN

C TREAT BOTTOM CONDITIONS
IF(J.EG.N)THEN

C TREAT BOTTOM WALL
B=2*CK(ITYPE(2,10)*DY(IYSZ(2))/DX(IXSZ(N))
O=2*CK(ITYPE(2,N))*DX(IXSZ(N))/DY(IYSZ(2))
D=C
E=4*ROCP(ITYPE(2,N))*DX(IXSZ(N))*DY(IYSZ(2))/DT(L)
UJ (1,J)=C+D
LJ (1,J)=0
DJ1(1,J)=-(C+D-E)
DJ2(1,J)=-(C+D+E)
UK (K,N)=0
LK (K,N)=-B
DK1(K,N)=B+E
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DK2(K,N)=B-E
ELSE

A=2*CK(ITYPE(K+1,J+1))*DY(IYSZ(2))/DX(IXSZ(J+1))
B=2*CK(ITYPE(K+1,J ))*DY(IYSZ(2))/DX(IXSZ(J ))

C=(CK(ITYPE(K+1,J ))*DX(IXSZ(J ))+

CK(ITYPE(K+1,J+1))*DX(IXSZ(J+1)))/DY(IYSZ(2 ))

D=C
E=2*DY(IYSZ(2 ))*

(ROCP(ITYPE(K+1,J+1))*DX(IXSZ(J+1))+
S ROCP(ITYPE(K+1,J ))*DX(IXSZ(J )))/DT(L)

UJ (1,J)=C+0
LJ (1,J)=0

DJ1(1,J)=-(C+0-E)
0J2(1,J)=-(C+0+E)

UK (K,J)=-A
LK (K,J)=-B

DK1(K,J)=A+11+E

DK2(K,J)=A+B-E

ENDIF
ELSE

C TREAT VERTICAL INTERIOR CONDITIONS
IF(J.E0.11)THEN

C TREAT VERTICAL INTERIOR WALL
B=(CK(ITYPE(K+1,J ))*DY(IYSZ(K+1))+

CK(ITYPE(K ,J ))*DY(IYSZ(K )))/DX(IXSZ(J ))

C=2*CK(ITYPE(K+1,N))*DX(IXSZ(N))/DY(IYSZ(K+1))
D=2*CK(ITYPE(K ,N))*DX(IXSZ(N))/DY(IYSZ(K ))

E=2*DX(IXSZ(N))*
$ (ROCP(ITYPE(K+1,N))*DY(IYSZ(K+1))+

ROCP(ITYPE(K ,N))*DY(IYSZ(K )))/DT(L)
UJ (K,J)=C
LJ (K,J)=0

DJ1(K,J)= -(C+D-E)

DJ2(K,J)=-(C+D+E)
UK (K,N)=0
LK (K,N)=-B

DK1(K,N)=B+E
DK2(K,N)=11-E

ELSE

C TREAT VERTICAL INTERIOR RADIAL INTERIOR AND CENTER
A=(CK(ITYPE(K+1,J+1))*DY(IYSZ(K+1))+

CK(ITYPE(K ,J+1))*DY(IYSZ(K )))/DX(IXSZ(J+1))
B=(CK(ITYPE(K+1,J ))*DY(IYSZ(K+1))+

CK(ITYPE(K ,J ))*DY(IYSZ(K )))/DX(IXSZ(J ))

C=(CK(ITYPE(K+1,J ))*DX(IXSZ(J ))+

CK(ITYPE(K+1,J+1))*DX(IXSZ(J+1)))/DY(IYSZ(K+1))
D=(CK(ITYPE(K ,J ))*DX(IXSZ(J ))+

CK(ITYPE(K ,J+1))*DX(IXSZ(J+1)))/DY(IYSZ(K ))

E=((ROCP(ITYPE(K+1,J+1))*DY(IYSZ(K+1))+
ROCP(ITYPE(K ,J+1))*DY(IYSZ(K )))*DX(1XSZ(J+1))+

(ROCP(ITYPE(K+1,J ))*DY(IYSZ(K+1))+
ROCP(ITYPE(K ,J ))*DY(IYSZ(K )))*DX(IXSZ(J )))/DT(L)

UJ (K,J)=C
LJ (K,J)=0
DJ1(K,J)=-(C+D-E)
DJ2(K,J)=-(C+D+E)
UK (K,J)=-A
LK (K,J)=-B
DK1(K,J)=A+B+E
DK2(K,J)=A+B-E

ENDIF
ENDIF

40 CONTINUE
C BEGIN TIME STEPS

DO 200 I=1,NSTEP(L)
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TME=TME+DT(L)
CALL IADSLV(M,N,UK,DK1,LK,UJ,DJ2,1.J,T,TS)

IF(AMOD(REAL(I),REAL(NPRT(L))).E0.0)THEN
WRITE(6,25)TME,(J,J=NSKP(L),N,NSKP(L))
DO 140 KmM,MSKP(L),-MSKP(L)

140 WRITE(6,26)(T(K,J),J=NSKP(L),11,NSKP(L))

C CALCULATE HEAT FLUX LOCAL TO X=0 AND H, AVERAGE N (NAVE)

DO 150 K=1,M
IF(K.EQ.1)THEN
02P(1)=(CENT-T(K,1))/DX(IXSZ(1))*CK(ITYPE(2,1))
H(1) 412P(1)/CENT
NAVE =N(1).DY(IYSZ(2))/2

ELSEIF(K.ED.M)THEN
02P(M)=(CENT-T(K,1))/DX(IXSZ(1))*CK(ITYPE(M,1))

N(N) =02P(N)/CENT
HAVE =KAVE+H(M)*DY(IYSZ(M))/2

ELSE
Cl2P(K)=(CENT-T(K,1))*(CK(ITYPE(K+1,1))*DY(IYSZ(K+1))

+CK(ITYPE(K ,1))*DY(IYSZ(K )))/

(DX(IXSZ(1))*(DY(IYSZ(K+1))+DY(IYSZ(K))))
H(K) =02P(K)/CENT
HAVE =HAVE+H(K)*(DY(IYSZ(K))+DY(IYSZ(K+1)))/2

ENDIF
150 CONTINUE

HAVE=HAVE/YLEN

C WRITE HEAT FLUX, N, HAVE AND WRITE TO FILE HNAME FOR PLOTTING
WRITE(6,27)
WRITE(6,28)(K,02P(K),H(K),K=M,MSKP(L),-MSKP(L))
WRITE(6,29)TME,HAVE
IF(HNAME.NE.' ')WRITE(7,30)TME,HAVE

ENDIF
200 CONTINUE

C DUMP FINAL RESULTS TO RESTART FILE
IF(DNAME.NE.' ')THEN
OPEN(8,FILE=DNAME,FORMs'UNFORMATTED')
WRITE(8)CENT,A,M,11,NXSZ,NYSZ,NPROP,IXDX,IYDX,DX,DY,CK,ROCP,INDX,

S ITYPE,IXSZ,IYSZ,T,TS,TME
CLOSE(B)

ENDIF
CLOSE(7)

STOP
1 FORMAT(A)

2 FORMAT('1',A)
5 FORMAT(' INPUT REVIEW'//' CENTER TEMPERATURE',T35,1PE12.6 /' NUMBER

SOF AXIAL NODES',T35,I3/1 NUMBER OF RADIAL NODES,,T35,13/1 NUMBER 0
SF AXIAL STEP CARDS READ1,735,I2/' NUMBER OF RADIAL STEP CARDS READ
S',T35,12/' NUMBER OF PROPERTY CARDS READ',T35,I2 /' NUMBER OF TIME
SSTEP CARDS READ,,T35,12/1 H PLOT FILE NAME',T35,AP DUMP FILE NAME
S',T35,A//' AXIAL STEP CARDS'/' ID',T13,'DX')

32 FORMAT(//' HORIZ STEP CARDS'/' ID1,713,'DY')
36 FORMAT(//' PROPERTY CARDS,/, 101,T13,,K1,T25,,RIWCP1)
7 FORMAT(' ,l2,2(3XOPE12.6))
8 FORMAT(//' TIME STEP CARDS'/' NUMBERI,T15,,DP,T25,,NPRT,,T32,1MSK

SP',T38,11ISKP')

37 FORMAT(//' AXIAL NODE SIZE (RIGHT=TOPMOST)')
38 FORMAT(//' RADIAL NODE SIZE')
39 FORMAT(//' PROPERTY')
9 FORMAT(' ,16,2XOPE12.5,3(2X,14))

18 FORMAT(/' RESTART DATA FROM FILE ',A)
20 FORMAT(130I1)
21 FORMAT(' ,130I1)

23 FORMAT(//' TOTAL RADIAL LENGTH',T30,1PE12.6 /' TOTAL VERTICAL LENGT

SIP,T30,E12.6,//' H SOLUTION FOR ',E12.6,' TO ',E12.6,' SECONDS'//)
24 FORMAT(' PRINT TEMPERATURE MAP EVERY 1,14,1XOPE12.5,1 SECOND TIME

S STEPS FOR EVERY ',I3,' HORIZ NODES AND ',I3,' VERT NODES' /)
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25 FORMAT(' TEMPERATURE MAP AT ',1PE12.5,' SECONDS1/10(5X,I3,5X))
26 FORMAT(' ',10E13.6)

27 FORMAT(/6X,'HEAT FLUX',8X,'H')
28 FORMAT(' ',I3,1P2E12.5)
29 FORMAT(/' AVERAGE H 2 ',1PE12.5,' SECONDS: ',E12.5//)
30 FORMAT(' ',1P2E12.5)

END

FUNCTION RHS(ITIM,T,K,J)
C RETURNS THE VALUE OF THE RIGHT HAND SIDE OF THE IAD EQUATIONS
C ITIME - HALF (1) /FULL (2) TIME STEP (IN)

C T - TEMPERATURE ARRAY (IN)

C K,J - COLUMN, ROW INDICES (IN)
COMMON UK(50,50),LK(50,50),DK2(50,50),UJ(50,50),
SLJ(50,50),DJ1(50,50),F,M,N
DIMENSION T(50,50)

REAL LK,LJ
C BE CERTAIN UJ(N,J) AND UK(K,N) ARE 0 TO TREAT TOP CONDITIONS CORRECTLY

IF(ITIM.E0.1)THEN
C COMPUTE RHS AT HALF TIME STEP

IF(J.E0.1)THEN
IF(K.EQ.I)THEN
RHS=UJ(1,1)*T(2,1)+DJ1(1,1)*T(1,1)-LK(1,1)*F

ELSE

RHS=UJ(K,1)*T(K+1,1)+LJ(K,1)*T(K-1,1)+DJUK,1)*T(K,1)-
$ LK(K,1)*F

ENDIF
ELSE

RHSUJ(K,J)*T(K+1,J)+LJ(K,J)*T(K-1,J)+DJ1(K,J)*T(K,J)
ENDIF

ELSEIF(ITIM.E0.2)THEN
C COMPUTE RHS AT FULL TIME STEP

IF(J.EQ.1)THEN
RNS=UK(K,1)*T(K,2)+LK(K,1)*F+0K2(K,1)*T(K,1)

ELSE
RHS=UK(K,J)*T(K,J+1)+LK(K,J)*T(K,J-1)+DK2(K,J)*T(K,J)

ENDIF
ENDIF
RETURN
END

SUBROUTINE IADSLV(M,N,UK,DK,LK,UJ,DJ,LJ,T,TS)
C SOLVES THE IAD EQUATIONS USING GAUSSIAN ELIMINATION FOR A FULL TIME STEP
C M - NUMBER OF COLUMNS (IN)

C N - NUMBER OF ROWS (IN)

C UK,DK,LK,UJ,DJ,LJ - COEFFICIENTS FOR IAD EQUATIONS (IN)
C T - FULL TIME STEP TEMPERATURE ARRAY (OUT, IN)

C TS - HALF TIME STEP TEMPERATURE ARRAY (OUT,IN)

REAL LK(50,50),LJ(50,50)
DIMENSION DK(50,50),DJ(50,50),UK(50,50),UJ(50,50),

ST(50,50),B(50),TS(50,50)
EXTERNAL RHS

C COMPUTE TEMPERATURES AT END OF HALF TIME STEP IMPLICIT BY COLUMNS
DO 70 K=1,M
B(1)=DK(K,1)
TS(K,1)=RHS(1,T,K,1)/11(1)

C FORWARD GUASSIAN ELIMINATION
DO 65 J=2,N
B(J)=DK(K,J)-LK(K,J)*UK(K,J-1)/B(J-1)

65 TS(K,J)=(RHS(1,T,K,J)-LK(K,J)*TS(K,J-1))/B(J)
C BACK SOLUTION

DO 70 J=W-1,1,-1
70 TS(K,J)=TS(K,J)-UK(K,J)*TS(K,J+1)/B(J)

C COMPUTE TEMPERATURES AT END OF FULL TIME STEP IMPLICIT BY ROWS
DO 130 J :1,N
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B(1)43.1(1,0
T(1,J)=RHS(2,TS,1,J)/11(1)

C FORWARD GUASSIAN ELIMINATION
DO 110 K=2,M

B(K)=DJ(K,J)-LJ(K,J)*UJ(K-1,0/B(K-1)
110 T(K,J)=(RHS(2,TS,K,J)-LJ(K,J)*T(K-1,J))/B(K)

C BACK SOLUTION
DO 130 K=M-1,1,-1

130 T(K,J)=T(K,J)-UJ(K,J)*T(K+1,J)/B(K)
RETURN

END

SUBROUTINE WRTHD(N)

C WRITE MAP POSITION HEADING

CHARACTER HEAD*130
HEAD =' '

L=1

DO 6 1=1,11/10

HEAD=HEAD(1:L)//1-

6 L=I*10+1

WRITE(6,12)HEAD
12 FORMAT(' LOCATION MAP (BY ID)' / /A)

RETURN

END
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PROGRAM BLAUSIS

C CALCULATES TEMPERATURES AND HEAT TRANSFER COEFFICIENTS FOR TWO DIMENSIONAL CYLINDER

C VARIABLE NODE SIZE AND PROPERTIES ALLOWED
C PC VERSION

REAL LJ,LK
DIMENSION T(50,50),ITYPE(50,50),DK1(50,50),DJ2(50,50),
$ TS(50,50),Q2P(50),H(50),IRSZ(50),IXSZ(50),
SIRDX(10),DX(10),DR(10),NSTEP(10),CK(10),ROCP(10),DT(10),NPRT(10),
SNSKP(10),MSKP(10),INDX(10),IXDX(10)
COMMON UK(50,50),LK(50,50),DK2(50,50),UJ(50,50),

SLJ(50,50),DJ1(50,50),F,M,11
CHARACTER TITLE*80,HNAME*40,DNAME*40,RNAME*40

C INPUT PREPARATION
C RECORD 1:

C TITLE - 80 CHARACTER PROBLEM DESCRIPTION
C RECORD 2:

C NTM - NUMBER OF TIME STEP CARDS TO BE READ

C RNAME - RESTART FILE NAME. IF PRESENT READ ONLY TIME STEP CARDS AFTER THIS CARD

C HNAME - H PLOT FILE NAME. IF PRESENT WRITE T,HAVE(T) TO HNAME.

C DNAME - DUMP FILE NAME. IF PRESENT WRITE DUMP FILE TO DNAME.

C RECORD 3:

C CENT - TEMPERATURE 2 R=0

C A - INNER RADIUS OF CYLINDER

C M - TOTAL NUMBER OF AXIAL NODE ENDPOINTS (=TOTAL NODES - 1)

C N - TOTAL NUMBER OF RADIAL NODES

C NXSZ - NUMBER OF AXIAL NODE SIZE CARDS TO BE READ

C NRSZ - NUMBER OF RADIAL NODE SIZE CARDS TO BE READ

C NPROP - NUMBER OF PROPERTY CARDS TO BE READ

C READ NXSZ AXIAL NODE SIZE CARDS:
C IXDX - INDEX OF NODE SIZE (0-9)

C DY - NODE SIZE
C READ NRSZ RADIAL NODE SIZE CARDS:

C IRDX - INDEX OF NODE SIZE (0-9)
C DX - NODE SIZE

C READ NPROP PROPERTY CARDS:
C INDX - INDEX OF PROPERTY (0-9)

C CK - THERMAL CONDUCTIVITY

C ROCP - DENSITY*SPECIFIC HEAT

C READ NTM TIME STEP CARDS:
C NSTEP - TOTAL NUMBER OF TIME STEPS ACTIVE FOR THIS CARD

C DT - TIME STEP SIZE

C NPRT - NUMBER OF TIME STEPS A TEMPERATURE/N COEFF SUMMARY IS PRINTED

C MSKP - PRINT FOR EACH NSKP AXIAL NODES

C NSKP - PRINT FOR EACH NSKP RADIAL NODES

C READ AXIAL NODE SIZE MAP FOR M-1 NODES FROM TOP MOST POSITION (1 CARD)

C READ RADIAL NODE SIZE MAP FOR N NODES FROM RIGHT MOST POSITION (1 CARD)

C READ PROPERTY LOCATION MAP (N-1 ROWS WITH N COLUMNS)

C END OF INPUT
C READ DATA

READ(5,1) TITLE
WRITE(6,2)TITLE
READ(5,*) NTM,RNAME,HNAME,DNAME
IF(RNAME.E0.")THEN
READ(5,*) CENT,A,M,N,NXSZ,NRSZ,NPROP
WRITE(6,5)CENT,A,M,N,NXSZ,NRSZ,NPROP,NTM,NNAME,DNAME

C READ AXIAL STEP SIZE CARDS
DO 31 I=1,NXSZ
READ(5,*) IXDX(I),DX(IXDX(I)+1)

31 WRITE(6,7)IXDX(I),DX(IXDX(I)+1)
WRITE(6,32)

C READ RADIAL STEP SIZE CARDS
DO 34 I=1,NRSZ
READ(5,*) IRDX(I),DR(IRDX(I)+1)

34 WRITE(6,7)IRDX(I),DR(IRDX(I)+1)

WRITE(6,36)
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C READ PROPERTY CARDS
DO 3 I=1,NPROP
READ(5,*) INDX(I),CK(INDX(I)+1),ROCP(INDX(I)+1)

3 WRITE(6,7)INDX(1),CK(INDX(1)+1),ROCP(INDX(1)+1)

C READ TIME STEP CARDS
WRITE(6,8)

DO 4 I=1,NTM
READ(5,*) NSTEP(I),DT(I),NPRT(I),MSKP(I),NSKP(I)

4 WRITE(6,9)NSTEP(I),DT(I),NPRT(I),MSKP(I),NSKP(I)
C READ AXIAL STEP SIZE LOCATION MAP

WRITE(6,37)
CALL WRTHD(M)

READ(5,20) (IXSZ(K),K=M,2,-1)
WRITE(6,21)(IXSZ(K),KM,2,-1)

C READ RADIAL STEP SIZE LOCATION MAP
WRITE(6,38)
CALL WRTHD(N)
READ(5,20) (IRSZ(J),J=1,N)
WRITE(6,21)(IRSZ(J),J=1,N)

C READ PROPERTY LOCATION MAP
WRITE(6,39)
CALL WRTHD(N)
DO 10 K=M,2,-1
READ(5,20) (ITYPE(K,J),J=1,N)

10 WRITE(6,21)(ITYPE(K,J),J=1,N)
C ADJUST SIZE AND TYPE ID TO AVOID ZERO ARRAY INDEX

DO 11 K=2,M
IXSZ(K)=IXSZ(K)+1

DO 11 J=1,N
11 ITYPE(K,J)=ITYPE(K,J)+1

DO 41 J=1,N
41 IRSZ(J)=IRSZ(J)+1

TME=0.

ELSE
C PERFORM RESTART FROM FILE RNAME

OPEN(8,FILE=RNAME,FORWUNFORMATTED')
READ(8)CENT,A,M,N,NXSZ,NRSZ,NPROP,IXDX,IRDX,DX,DR,CK,RCCP,INDX,

ITYPE,IXSZ,IRSZ,T,TS,TME
CLOSE(8)
WRITE(6,18) RNAME
WRITE(6,5)CENT,A,M,N,NXSZ,NRSZ,NPROP,NTM,HNAME,DNANE
DO 42 I=1,NXSZ

42 WRITE(6,7)IXDX(I),DX(IXDX(I)+1)
DO 43 I=1,NRSZ

43 WRITE(6,7)IRDX(1),DR(IRDX(1)+1)
WRITE(6,36)

DO 13 1=1,NPROP
13 WRITE(6,7)INDX(1),CK(INDX(1)+1),ROCP(INDX(1)+1)

WRITE(6,8)
DO 14 I=1,NTM

READ(5,*) NSTEP(I),DT(I),NPRT(I),MSKP(I),NSKP(I)
14 wRITE(6,9)NSTEPOLDT(1),NPRT(1),MsKPOLNSKP(I)

WRITE(6,37)
CALL WRTHD(M)
WRITE(6,21)(IXSZ(K)-1,K=M,2,-1)
WRITE(6,38)
CALL WRTHD(N)
WRITE(6,21)(IRSZ(J)-1,J=1,N)
WRITE(6,39)
CALL WRTHD(N)
DO 16 K=M,2,-1

16 WRITE(6,21)(ITYPE(K,J)-1,J=1,N)

END IF

F=CENT

C SUM INTERVALS TO FIND TOTAL LENGTH
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XLEN=0
DO 17 K=2,M

17 XLEN=XLEN+DX(IXSZ(K))
RLEN=0

DO 19 J=1,N
19 RLEN=RLEN+DR(IRSZ(J))

IF(HNAME.NE.") OPEN(7,FILE=HNAME)
DO 200 L=1,NTM
WRITE(6,23)RLEN,XLEN,TME,DT(L)*NSTEP(L)+TME
WRITE(6,24)NPRT(L),DT(L),NSKP(L),MSKP(L)

C PREPARE TRIDIAGONAL COEFFICIENT MATRIXES
C TREAT WALL AS INSULATED BOUNDARY
C CENTER CONDITIONS FOR CONSTANT TEMPERATURE

R=A
DO 40 J=1,N
R=R+DR(IRSZ(J))
DO 40 K=1,M
IF(K.EQ.M)THEN

C TREAT TOP CONDITIONS
IF(J.EQ.N)THEN

C TREAT TOP WALL
B=2*CK(ITYPE(M,N))*DX(IXSZ(M))*(R-DR(IRSZ(N))/2)/DR(IRSZ(N))
C=2*CK(ITYPE(M,N))*DR(IRSZ(N))* R/DX(IXSZ(M))
D=C

E=4*R*DR(IRSZ(N))*DX(IXSZ(M))*ROCP(ITYPE(M,N))/DT(L)
UJ (M,N)=0
LJ (M,N)=C+0
DJUM,N)=-(C+D-E)
DJ2(M,N)=-(C+D+E)
UK (M,N)=0
LK (M,N)=-B
DK1(M,N)=B+E
DK2(M,N)=B-E

ELSE
C TREAT TOP INTERIOR AND CENTER

A=2*CK(ITYPE(M,J+1))*DX(IXSZ(M))*(R+DR(IRSZ(J+1))/2)/
DR(IRSZ(J+1))

B=2*CK(ITYPE(M,J ))*DX(IXSZ(M))*(R-DR(IRSZ(J ))/2)/

$ DR(IRSZ(J ))

C=(CK(ITYPE(M ,J ))*DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4)+

CK(ITYPE(M ,J+1))*DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4))/
DX(IXSZ(M ))

D=C
E=2*DX(IXSZ(M))*

(ROCP(ITYPE(M ,J+1))*DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4)+
ROCP(ITYPE(M ,J ))*DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4))

S /DT(L)
UJ (M,J)=0
LJ (M,J)=C+0
DJUM,J)=-(C+0-E)
DJ2(M,J)=-(C+D+E)
UK (K,J)=-A
LK (K,J)=-B
DKUK,J)=A+8+E
DK2(K,J)=A+B-E

ENDIF

ELSEIF(K.E0.1)THEN
C TREAT BOTTOM CONDITIONS

IF(J.EQ.N)THEN
C TREAT BOTTOM WALL

B=2*CK(ITYPE(2,N))*DX(IXSZ(2))*(R-DR(IRSZ(N))/2)/DR(IRSZ(N))
C=2*CK(ITYPE(2,N))*DR(IRSZ(N))* R/DX(IXSZ(2))
D=C
E=4*R*DR(IRSZ(N))*DX(IXSZ(2))*ROCP(ITYPE(2,N))/DT(L)
UJ (1,J)=C+D
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LJ (1,0=0
DJ1(1,J)=-(C+D-E)
DJ2(1,J)=-(C+D+E)
UK (K,N)=0

LK (K,N)*-B
DK1(K,N)=B+E
DK2(K,N)=B-E

ELSE

A=2*CK(ITYPE(K+1,J+1))*DX(IXSZ(2))*(R+DR(IRSZ(J+1))/2)/
S DR(IRSZ(J+1))

B=2*CK(ITYPE(K+1,J ))*DX(IXSZ(2))*(R-DR(IRSZ(J ))/2)/

DR(IRSZ(J ))

C =(CK(ITYPE(K +1,J ))* DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4)+

CK(ITYPE(K+1,J+1))*DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4))/

DX(IXSZ(2 ))

D=C
E=2*DX(IXSZ(2 ))*

(ROCP(ITYPE(K+1,J+1))*DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4)+
ROCP(ITYPE(K+1,J ))*DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4))

/DT(L)

UJ (1,J)=C+D
LJ (1,0=0
DJ1(1,J)=-(C+D-E)
DJ2(1,J)=-(C+D+E)
UK (K,J)=-A
LK (K,J)=-B
DK1(K,J)=A+B+E
DK2(K,J)=A+B-E

ENDIF
ELSE

C TREAT AXIAL INTERIOR CONDITIONS
IF(J.EQ.N)THEN

C TREAT AXIAL INTERIOR WALL
B=(CK(ITYPE(K+1,J ))*DX(IXSZ(K+1))+

CK(ITYPE(K ,J )) *DX(IXSZ(K )))*(R-DR(IRSZ(J ))/2)/

DR(IRSZ(J ))

C=2*CK(ITYPE(K+1,N))*DR(IRSZ(N))*R/DX(IXSZ(K+1))
D=2*CK(ITYPE(K ,N))*DR(IRSZ(N))*R/DX(IXSZ(K ))

E=2*R*DR(IRSZ(N))*(ROCP(ITYPE(K+1,N))*DX(IXSZ(K+1))+
ROCP(ITYPE(K ,N))*DX(IXSZ(K )))/DT(L)

UJ (K,O=C
LJ (K,J)=0

DJ1(K,J)=-(C+D-E)
DJ2(K,J)=-(C+D+E)
UK (K,N)=0
LK (K,N)=-B
DK1(K,N)=B+E
DK2(K,N)=11-E

ELSE
C TREAT AXIAL INTERIOR RADIAL INTERIOR AND CENTER

A=(CK(ITYPE(K+1,J+1))*DX(IXSZ(K+1))+
S CK(ITYPE(K ,J+1))*DX(IXSZ(K )))*(R+DR(IRSZ(J+1))/2)/
$ DR(IRSZ(J+1))

B=(CK(ITYPE(K+1,J ))*DX(IXSZ(K+1))+
CK(ITYPE(K ,J ))*DX(IXSZ(K )))*(R-DR(IRSZ(J ))/2)/

S DR(IRSZ(J ))

Cm(CK(ITYPE(K+1,J ))*DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4)+

CK(ITYPE(K+1,J+1))*DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4))/
S DX(IXSZ(K+1))

D=(CK(ITYPE(K ,J ))*DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4)+

CK(ITYPE(K ,J+1))*DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4))/
DX(IXSZ(K ))

E=((ROCP(ITYPE(K+1,J+1))*DX(IXSZ(K+1))+
ROCP(ITYPE(K ,J+1))*DX(IXSZ(K )))*

S DR(IRSZ(J+1))*(R+DR(IRSZ(J+1))/4)+
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S (ROCP(ITYPE(K+1,J ))*DX(IXSZ(K+1))
+ROCP(ITYPE(K ,J ))*DX(IXSZ(K )))*

$ DR(IRSZ(J ))*(R-DR(IRSZ(J ))/4))/DT(L)

UJ (K,J)C
LJ (K,J)"D
DJUK,J)=-(C+D-E)
DJ2(K,J)=-(C+0+E)
UK (K,J)=-A

LK (K,J)=-B
DK1(K,J)=A+8+E
DK2(K,J)=A+B-E

ENDIF

ENDIF
40 CONTINUE

C BEGIN TIME STEPS
DO 200 181,NSTEP(L)
TME=TME+DT(L)
CALL IADSLV(M,N,UK,DK1,LK,UJ,DJ2,LJ,T,TS)

IF(AMOD(REAL(I),REAL(NPRT(L))).E0.0)THEN
WRITE(6,25)TME,(J,J=NSKP(L),N,NSKP(L))
DO 140 K=M,MSKP(L),-MSKP(L)

140 WRITE(6,26)(T(K,J),J=NSKP(L),N,NSKP(L))

C CALCULATE HEAT FLUX LOCAL TO R=0 AND H, AVERAGE H (HAVE)

DO 150 K=1,M

IF(K.EQ.1)THEN
02P(1)*(CENT-T(K,1))/DR(IRSZ(1))*CK(ITYPE(2,1))
H(1) =02P(1)/CENT
NAVE =H(1)*DX(IXS2(2))/2

ELSEIF(K.E0.M)THEN
02P(M)=( CENT-T(K,1))/DR(IRSZ(1))*CK(ITYPE(M,1))

H(M) =02P(M)/CENT

HAVE *HAVE+H(M)*DX(IXSZ(M))/2

ELSE
02P(K)=(CENT-T(K,1))*(CK(ITYPE(K+1,1))*DX(IXSZ(K+1))

S +CK(ITYPE(K ,1))*DX(IXSZ(K )))/

(DR(IRS2(1))*(DX(IXSZ(01))+DX(IXSZ(K))))
N(K) =02P(K)/CENT

HAVE =HAVE+N(K)*(DX(IXSZ(K))+DX(IXSZ(K+1)))/2

ENDIF
150 CONTINUE

HAVE=HAVE/XLEN
C WRITE HEAT FLUX, H, HAVE AND WRITE TO FILE NNAME FOR PLOTTING

WRITE(6,27)
WRITE(6,28)(K,02P(K),H(K),K=M,MSKP(L),-MSKP(L))

WRITE(6,29)TME,HAVE
IF(HNAME.NE.")WRITE(7,30)TME,HAVE

ENDIF

200 CONTINUE

C DUMP FINAL RESULTS TO RESTART FILE
IF(DNAME.NE.' ')THEN

OPEN(8,FILE=DNAME,FORWUNFORMATTED')
WRITE(8)CENT,A,M,N,NXSZ,NRSZ,NPROP,IXDX,IRDX,DX,DR,CK,ROCP,INDX,

ITYPE,IXSZ,IRSZ,T,TS,TME

CLOSE(8)
ENDIF
CLOSE(7)
STOP

1 FORMAT(A)
2 FORMAT('1',A)

5 FORMAT(' INPUT REVIEW'//' CENTER TEMPERATURE',T35,1PE12.6 /' INNER
SRADIUSI,T35,E12.6/1 NUMBER OF AXIAL NODES',T35,13 /' NUMBER OF RADI

SAL NODES',115,13/1 NUMBER OF AXIAL STEP CARDS READ',T35,12/' RUNE
SR OF RADIAL STEP CARDS READ',T35,I2 /' NUMBER OF PROPERTY CARDS REA
SD',135,12/' NUMBER OF TIME STEP CARDS READ',T35,I2/' H PLOT FILE N



159

Print file ohcyl9pc.for*

$AME',T35,A /' DUMP FILE NAME',T35,A //' AXIAL STEP CARDS' /' ID',T13,

SW')
32 FORMAT(//' RADIAL STEP CARDS'/' ID',T13,'DR')

36 FORMAT(//' PROPERTY CARDS' /' ID,,T13,,K1,T25,0RHO*CP1)

7 FORMAT(' 1,12,2(3XOPE12.6))
8 FORMAT(//' TIME STEP CARDS'/' NUMBER ',T15,'DT',T25,'NPRT',T32,'MSK

$P,,T38,41SKPI)
37 FORMAT(//' AXIAL NODE SIZE (RIGHT = TOPMOST)')

38 FORMAT(//' RADIAL NODE SIZE')
39 FORMAT(//' PROPERTY')

9 FORMAT(' 1,16,2XOPE12.5,3(2X,14))
18 FORMAT(/' RESTART DATA FROM FILE ',A)

20 FORMAT(130I1)
21 FORMAT(' ,13011)

23 FORMAT(//' TOTAL RADIAL LENGTH',T30,1PE12.6/1 TOTAL AXIAL LENGTH',
S T30,E12.6,//' H SOLUTION FOR ',E12.6,' TO ',E12.6,' SECONDS' //)

24 FORMAT(' PRINT TEMPERATURE MAP EVERY 1,14,1XOPE12.5,1 SECOND TIME
$ STEPS FOR EVERY ',I3,' RADIAL NODES AND ',13,' AXIAL NODES'/)

25 FORMAT(' TEMPERATURE MAP AT ',1PE12.5,' SECONDSI/10(5X,13,5X))

26 FORMAT(' ',10E13.6)

27 FORMAT(/6X,'HEAT FLUX',8X,'H')

28 FORMAT(' ',/3,1P2E12.5)

29 FORMAT(/' AVERAGE H a ',1PE12.5,' SECONDS: 1,E12.5//)

30 FORMAT(' ',1P2E12.5)
END

FUNCTION RHS(ITIM,T,K,J)

C RETURNS THE VALUE OF THE RIGHT HAND SIDE OF THE IAD EQUATIONS

C ITIME - HALF (1) /FULL (2) TIME STEP (IN)

C T - TEMPERATURE ARRAY (IN)

C K,J - COLUMN, ROW INDICES (IN)
COMMON UK(50,50),LK(50,50),DK2(50,50),UJ(50,50),

$1.J(50,50),DJ1(50,50),FAN
DIMENSION T(50,50)
REAL LK,LJ

C BE CERTAIN UJ(M,J) AND UK(K,N) ARE 0 TO TREAT TOP CONDITIONS CORRECTLY

IF(ITIM.EQ.1)THEN
C COMPUTE RHS AT HALF TIME STEP

IF(J.EQ.1)THEN
IF(K.EQ.1)THEN
RHS=UJ(1,1)*T(2,1)+DJ1(1,1)*T(1,1)-LK(1,1)*F

ELSE
RHS=UJ(K,1)*T(K+1,1)+LJ(K,1)*T(K-1,1)+DJ1(K,1)*T(K,1)-

$ LK(K,1)*F
ENDIF

ELSE
RHS=UJ(K,J)*T(K+1,J)+1.J(K,J)*T(K-1,J)+DJ1(K,J)*T(K,J)

ENDIF

ELSEIF(ITIM.EQ.2)THEN
C COMPUTE RHS AT FULL TIME STEP

IF(J.EQ.1)THEN
RHS=UK(K,1)*T(K,2)+LK(K,1)*F+DK2(K,1)*T(K,1)

ELSE
RHS=UK(K,J)*T(K,J+1)+LK(K,J)*T(K,J-1)+DK2(K,J)*T(K,J)

ENDIF
ENDIF

RETURN
END

SUBROUTINE IADSLV(M,N,UK,DK,LK,UJ,DJ,LJ,T,TS)
C SOLVES THE IAD EQUATIONS USING GAUSSIAN ELIMINATION FOR A FULL TIME STEP

C M - NUMBER OF COLUMNS (IN)

C N '- NUMBER OF ROWS (IN)

C UK,DK,LK,UJ,DJ,LJ - COEFFICIENTS FOR IAD EQUATIONS (IN)

C T - FULL TIME STEP TEMPERATURE ARRAY (OUT,IN)
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C TS - HALF TIME STEP TEMPERATURE ARRAY (OUT,IN)

REAL LK(50,50),LJ(50,50)
DIMENSION DK(50,50),DJ(50,50),UK(50,50),UJ(50,50),
ST(50,50),B(50),TS(50,50)
EXTERNAL RNS

C COMPUTE TEMPERATURES AT END OF HALF TIME STEP IMPLICIT BY COLUMNS

DO 70 Ka1,M
B(1)=0K(K,1)
TS(K,1)=RHS(1,T,K,1)/B(1)

C FORWARD GUASSIAN ELIMINATION
DO 65 J=2,N
B(J)=DK(K,J)-LK(K,J)*UK(K,J-1)/B(J-1)

65 TS(K,J)a(RNS(1,T,K,J)-LK(K,J)*TS(K,J-1))/B(J)
C BACK SOLUTION

DO 70 JaN-1,1,-1
70 TS(K,J)=TS(K,J)-UK(K,J)*TS(K,J+1)/B(J)

C COMPUTE TEMPERATURES AT END OF FULL TIME STEP IMPLICIT BY ROWS

DO 130 Ja1,N
B(1)=DJ(1,J)
T(1,J)=RHS(2,TS,1,J)/B(1)

C FORWARD GUASSIAN ELIMINATION
DO 110 K=2,M
B(K)=DJ(K,J)-LJ(K,WUJ(K-1,J)/B(K-1)

110 T(K,J)=(RNS(2,TS,K,J)-LJ(K,J)*T(K-1,J))/B(K)

C BACK SOLUTION
DO 130 K=M-1,1,-1

130 T(K,J)=T(K,J)-UJ(K,J)*T(K+1,J)/B(K)
RETURN
END

SUBROUTINE WRIND(N)
C WRITE MAP POSITION HEADING

CHARACTER HEAD*130
HEAD ='

La1

DO
::A:=I211/NEA6(11!)//1. 8

6 LaI*1041
WRITE(6,12)HEAD

12 FORMAT(' LOCATION MAP (BY ID)'//A)

RETURN
END



Table E.1.

Appendix E
Experimental Data

Table of Experimental Conditions and Heat Transfer
Coefficients for Glass Beads.

ks = 1.04 W/m-K
Cps = 1080 J/kg-K
Ps = 2500 kg/m3

pb - 1500 kg/m3 dp - 0.00018 m

Power
(W)

Linear
Solids

Velocity
(m/s)

Mass
Flow
Rate
(kg/s)

Tw

(C)

Ts

(C)

Contact
Time
(s)

Heat
Transfer

Coeffivient
(W/m4-K)

% Error

147. .03860 .0599 127.5 28.2 3.948 243.4 4.4
203. .03860 .0599 156.7 25.0 3.948 253.5 3.2
97. .03860 .0599 97.6 30.2 3.948 236.7 6.6
98. .07730 .1199 80.3 31.2 1.972 328.4 7.1

150. .07730 .1199 107.6 31.9 1.972 325.9 4.7
200. .07730 .1199 132.6 33.7 1.972 332.3 3.5
200. .10840 .1682 121.3 35.1 1.406 381.4 3.7
148. .10840 .1682 98.9 35.7 1.406 385.0 5.0
99. .10840 .1682 76.5 35.7 1.406 399.5 7.5

104. .00700 .0109 167.4 30.8 21.771 125.2 5.5
106. .01200 .0186 148.2 33.3 12.700 151.7 5.6
107. .02300 .0357 124.9 34.0 6.626 193.5 5.8



107. .03200 .0496 113.6 34.2 4.762 221.5 5.9
107. .05200 .0807 99.3 34.4 2.931 271.3 6.2
106. .07500 .1163 90.2 34.6 2.032 313.3 6.5
107. .09300 .1443 85.0 33.5 1.639 341.5 6.6
106. .11950 .1854 80.0 34.9 1.275 386.2 6.9
106. .16650 .2583 74.5 34.5 .915 435.8 7.2
106. .26000 .4033 67.2 33.6 .586 519.5 7.7
105. .24700 .3832 67.8 33.9 .617 506.4 7.7
105. .29000 .4499 65.9 33.9 .526 539.9 7.9

pb = 1500 kg/m3 dp = 0.0008 m

Power
(W)

Linear
Solids
Velocity
(m/s)

Mass
Flow
Rate

(kg/s)

Tw

(C)

Is

(C)

Contact
Time
(s)

Heat
Transfer

Coefficient
(W/m4-K)

% Error

100. .02570 .0399 119.8 28.0 5.930 179.2 6.1
148. .02130 .0330 170.6 29.3 7.155 172.2 4.1
146. .00487 .0076 248.1 29.9 31.294 110.0 3.9
100. .00590 .0092 182.8 30.3 25.831 107.9 5.7
100. .04530 .0703 111.7 32.0 3.364 206.4 6.3
148. .04380 .0679 145.3 33.1 3.479 216.9 4.3
147. .07730 .1199 129.4 33.9 1.972 253.1 4.5
98. .07700 .1194 102.3 33.9 1.979 235.7 6.6
98. .14200 .2203 93.9 33.6 1.073 267.4 6.8

149. .14320 .2221 119.4 33.6 1.064 285.6 4.5
149. .25300 .3925 116.9 34.2 .602 296.3 4.6
101. .23800 .3692 92.3 34.3 .640 286.6 6.7
98. .23500 .3645 90.8 34.4 .649 284.4 6.9



pb = 1435 kg/m3 dp = 0.000044 m

Power
(W)

Linear
Solids
Velocity
(m/s)

Mass
Flow
Rate
(kg/s)

Tw

(C)

Ts

(C)

Contact
Time
(s)

Heat
Transfer

Coeffqient
(W/m4-K)

% Error

93. .00794 .0118 153.2 29.1 19.194 122.6 6.2

148. .00750 .0111 220.2 29.3 20.320 127.6 3.9
149. .00980 .0145 204.3 30.8 15.551 141.2 3.9

100. .00945 .0140 161.3 32.2 16.127 127.4 5.8
100. .01705 .0253 126.8 34.3 8.938 177.8 6.1

100. .02250 .0334 116.3 34.4 6.773 200.9 6.2

100. .07830 .1162 91.9 33.5 1.946 282.0 6.7

100. .04450 .0660 96.3 34.3 3.425 265.4 6.6

118. .00448 .0066 216.1 27.1 34.018 102.7 4.8
74. .00560 .0083 148.2 27.2 27.214 100.6 7.6

76. .01410 .0209 110.7 31.7 10.809 157.2 7.9

101. .01460 .0217 132.9 31.9 10.438 164.5 5.9

101. .01660 .0246 128.8 33.5 9.181 174.4 6.0
101. .02330 .0346 116.0 34.0 6.541 202.7 6.2

101. .03500 .0519 102.3 34.1 4.354 243.6 6.4

102. .04520 .0671 96.0 34.2 3.372 271.5 6.5

102. .07100 .1054 83.9 33.5 2.146 332.8 6.9



Table E.2. Table of Experimental Conditions and Heat Transfer
Coefficients for Sand.

ks - 0.80 W/m-K
Cps = 780 J/kg-K
ps - 2700 kg/m3

Power
(W)

pb - 1280 kg/m3 dp - 0.00011 m

Linear Mass
Solids Flow Tw
Velocity Rate
(m/s) (kg/s) (C)

Heat
Ts Contact Transfer % Error

Time Coefficient
(C) (s) (W/m4-K)

100. .01860 .0246 123.0 25.7 8.194 169.1 6.0
126. .01740 .0230 149.9 27.3 8.759 169.0 4.8
126. .04140 .0548 123.2 28.6 3.681 219.0 5.0
101. .04140 .0548 103.1 29.3 3.681 225.3 6.3
101. .08180 .1083 90.6 30.1 1.863 274.7 6.6
125. .08180 .1083 103.8 30.1 1.863 279.0 5.4
126. .15200 .2012 93.8 30.7 1.003 327.2 5.6
100. .15200 .2012 81.1 30.6 1.003 325.5 7.0
99. .22700 .3005 76.0 30.7 .671 359.2 7.3

128. .22300 .2952 88.7 30.9 .683 362.9 5.7
128. .22700 .3005 91.0 31.6 .671 353.1 5.6
147. .03370 .0446 144.8 26.3 4.522 204.1 4.2
147. .06150 .0814 122.5 30.2 2.478 261.9 4.5
147. .08570 .1134 116.4 30.7 1.778 282.0 4.6
146. .02115 .0280 162.0 27.3 7.206 178.2 4.2



100. .02115 .0280 117.8 29.3 7.206 185.9 6.1
98. .05430 .0719 95.8 30.8 2.807 248.0 6.6

150. .05380 .0712 127.0 30.9 2.833 256.7 4.4
101. .05380 .0712 101.2 31.9 2.833 239.8 6.4
50. .05380 .0712 67.5 32.6 2.833 235.9 12.9
50. .08200 .1085 63.6 33.3 1.859 271.1 13.3

100. .08200 .1085 92.8 33.5 1.859 277.6 6.7
148. .08200 .1085 122.8 34.3 1.859 274.1 4.5

Pb - 1400 kg/m3 d
P

= 0.0008 m

Power
(W)

Linear
Solids
Velocity
(m/s)

Mass
Flow
Rate
(kg/s)

Tw

(C)

Ts

(C)

Contact
Time
(s)

Heat
Transfer

Coefficient
(W/m4-K)

% Error

100. .01930 .0281 121.1 27.1 7.896 174.8 6.1
125. .01920 .0280 145.4 29.0 7.937 176.6 4.9
100. .02430 .0354 121.3 31.1 6.272 182.3 6.1
125. .02920 .0426 137.1 30.5 5.219 192.8 4.9
100. .06040 .0881 103.0 31.3 2.523 229.5 6.4
151. .06080 .0887 133.6 31.4 2.507 243.0 4.3
151. .09900 .1444 126.4 32.0 1.539 263.2 4.4
101. .09840 .1435 99.5 32.1 1.549 246.2 6.4
100. .18300 .2668 92.8 31.6 .833 268.9 6.6
148. .18400 .2683 120.3 31.9 .828 274.5 4.5
148. .16100 .2348 122.5 32.0 .947 268.9 4.5
99. .16500 .2406 95.6 32.3 .924 257.3 6.6

148. .01500 .0219 189.7 32.0 10.160 154.4 4.0
147. .01270 .0185 184.2 27.7 12.000 154.5 4.0



147. .02400 .0350 160.3 33.6 6.350 190.8 4.2
145. .05700 .0831 138.1 30.0 2.674 220.5 4.4
148. .06600 .0962 139.9 31.6 2.309 224.7 4.3
50. .02170 .0316 83.4 32.8 7.023 162.4 12.0

100. .02170 .0316 129.0 32.9 7.023 171.2 6.0
151. .02170 .0316 170.3 33.1 7.023 181.0 4.0
146. .05150 .0751 139.8 30.3 2.959 219.4 4.3
100. .05150 .0751 109.5 32.0 2.959 212.1 6.3
50. .05150 .0751 71.6 32.7 2.959 211.2 12.6

pb - 1440 kg/m3 dp = 0.0012 m

Power
(W)

Linear Mass
Solids Flow Tw

Velocity Rate
(m/s) (kg/s) (C)

Heat
Ts Contact Transfer % Error

Time Coefficient
(C) (s) (W/m4-K)

100. .06500 .0968 105.3 32.8 2.345 226.9 6.4
100. .06500 .0968 152.3 30.3 2.345 134.8 5.8
150. .01740 .0259 120.3 28.5 8.759 268.7 4.4
149. .02500 .0372 114.8 27.9 6.096 282.0 4.5
96. .04130 .0615 138.4 27.9 3.690 142.9 6.1

150. .05740 .0855 132.0 29.8 2.655 241.4 4.3
100. .05740 .0855 97.8 28.9 2.655 238.9 6.5
100. .06200 .0923 101.2 29.6 2.458 229.8 6.4



Table E.3. Table of Experimental Conditions and Heat Transfer
Coefficients for Copper.

ks = 384 W/m-K
Cps = 386 J/kg-K
ps - 8950 kg/m?,

Pb = 5200 kg/m3
d = 0.00021 m

Power
(W)

Linear Mass
Solids Flow Tw

Velocity Rate
(m/s) (kg/s) (C)

Heat
Ts Contact Transfer % Error

Time Coeffivient
(C) (s) (W/m4-K)

153. .10700 .5931 84.2 28.7 1.424 453.5 5.1
100. .10700 .5931 65.6 29.4 1.424 455.1 7.8
200. .10700 .5931 104.4 29.8 1.424 440.7 3.8
198. .03770 .2090 136.7 30.1 4.042 305.3 3.5
150. .03770 .2090 111.4 31.9 4.042 310.3 4.6
100. .01840 .1020 113.7 32.5 8.283 202.4 6.2
150. .01840 .1020 158.1 32.3 8.283 196.1 4.1
200. .01840 .1020 185.0 32.3 8.283 215.3 3.2
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The % Error term of Tables E.1 to E.3 was derived

using the following relations:

h

A AT

dh dP dA dAT
+ +

h P A AT

where AT = Tw - Ts. After application of measurement

precision,

dh 5 .5 1

= __
h P A AT

dh
% Error = 100 *

h
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Table E.4. Table of Experimental Conditions and Heat
Transfer Coefficients for Falling Solids.

Particle
Diameter

(m)

Linear
Solids

Velocity
(m/s)

Heat
Transfer

Coefficient
(W/m-K)

Material

0.11 0.52 98.72 Sand
0.11 0.52 112.75 Sand
0.11 0.52 98.0 Sand
0.11 0.52 103.93 Sand
0.8 1.84 68. Sand
0.8 1.84 64.3 Sand
0.8 1.84 54. Sand
1.2 1.89 57. Sand
1.2 1.89 50. Sand
0.214 1.65 89. Copper
0.214 1.65 107. Copper



Table F.1.

Appendix F
Statistical analysis

Regression Analysis of Model.
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Linear model:
to

= a + bL
d pp s

Parameter
Standard

Estimate Error Value

Intercept (a)
Slope (b)

0.362193
9.69099

0.017465
0.254237

20.7375
38.118

Analysis of Variance

Source Sum of Squares Df Mean Square F-ratio
Model 3.0933 1 3.0933 1452.98
Error 0.017031 8 0.0021289

Total (Corr.) 3.110348 9

Correlation Coefficient = 0.997258
Stnd. Error of Est. = 0.046140
R-squared = 99.45%

Table F.2. List of All Data used to Fit the Model.

Heated
Length

Particle
Diameter

tcr Material Author

(m) (m)
(m211,4)

0.005 0.0002 0.432 sand Ernst
0.005 0.0004 0.421 sand Ernst
0.005 0.0006 0.439 sand Ernst
0.0116 0.00016 0.519 sand Desai
0.0116 0.0008 0.472 sand Desai
0.0116 0.00015 0.461 copper Desai
0.0116 0.00017 0.407 copper Desai
0.0116 0.00063 0.449 copper Desai
0.1524 0.00018 1.776 glass This study
0.1524 0.0008 1.905 glass This study
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Appendx G
Particle Size Distribution

Table G.1. Size Distributions of Particles

Silica Sand

%Weight %Weight
dp = 0.11mm

Tyler Mesh
dp = 0.8mm

Tyler Mesh

-42 + 60 2.18 -20 + 24 35

-60 + 80 5.5 -24 + 28 21.37

-80 + 100 9.57 -28 + 35 21.16

-100 + 115 17.83 -35 + 48 15.21

-115 + 150 19.2 -48 7.26

-150 + 170 16.37
dp = 1.2mm

-170 + 200 13.4 Tyler Mesh %Weight

-200 + 250 6.77 -10 + 14 67.84

-250 + 270 5.25 -14 + 20 31.25

-270 + 325 2.5 -20 + 24 0.693

-325 1.43 -24 0.218

Copper

Tyler Mesh %WeightTyler Mesh

dp = 0.214mm

%Weight

-20 + 24 0.3 -80 + 100 11.70

-24 + 28 0.78 -100 + 115 3.35

-28 + 32 5.24 -115 + 150 3.78

-32 + 48 43.3 -150 + 170 4.98

-48 + 60 1.75 -170 7.26

-60 + 80 17.52
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Glass

%Weight
18mm

%Weight
dp = 0.8mm

Tyler Mesh
dp = 0

Tyler Mesh

-14 + 20 23.94 -45 + 60 0.5

-20 + 24 72.2 -60 + 70 38.8

-24 + 28 3.05 -70 + 80 49.7

-28 + 32 0.39 -80 + 100 6.0

-32 + 35 0.2 -100 + 120 2.0

-35 + 40 0.17 -120 + 140 3.0

-40 0.05


