
An Update Calculus for Expressing Type-Safe
Program Updates?

Martin Erwig and Deling Ren

Oregon State University
Department of Computer Science

Corvallis, OR 97331, USA
[erwig|rende]@cs.orst.edu

Abstract. Many software maintenance problems are caused by using text
editors to change programs. A more systematic and reliable way of per-
forming program updates is to express changes with an update language.
In particular, updates should preserve the syntax- and type-correctness of
the transformed object programs.
We describe an update calculus that can be used to update lambda-calculus
programs. We develop a type system for the update language that infers
the possible type changes that can be caused by an update program. We
demonstrate that type-safe update programs that fulfill certain structural
constraints preserve the type-correctness of lambda terms. The update cal-
culus can serve as a basis for higher-level update languages, such as for
Haskell or Java. We briefly indicate a possible design of these update lan-
guages.

Keywords: Update programming, type changes, type correctness, sound-
ness of updates, Haskell, lambda calculus

1 Introduction

A major fraction of all programming activities is spent in the process of updating
programs in response to changed requirements. The way in which these updates
are performed has a considerable influence on the reliability, efficiency, and costs
of this process. Text editors are a common tool used to change programs, and this
fact causes many problems: for example, it happens quite often that, after having
performed only a few minor changes to a correct program, the program consists of
syntax and type errors. Even worse, logical errors can be introduced by program
updates that perform changes inconsistently. These logical errors are especially
dangerous because they might stay in a program undetected for a long time. These
facts are not surprising because the “text-editor method” reveals a low-level view of
programs, namely that of sequences of characters, and the operation on programs
offered by text editors is basically just that of changing characters in the textual
program representation.

Alternatively, one can view programs as abstract data types and program
changes as well-defined operations on the program ADT. Together with a set of
combinators, these basic update operations can then be used to write arbitrarily
? Technical Report TR02-60-09, Department of Computer Science, Oregon State Univer-

sity, October 2002

complex update programs. Update programs can prevent certain kinds of logical
errors, for example, those that result from “forgetting” to change some occurrences
of an expression. Using string-oriented tools like awk or perl for this purpose is
difficult, if not impossible, since the identification of program structure generally
requires parsing. Moreover, using text-based tools is generally unsafe since these
tools have no information about the languages of the programs to be transformed,
which makes the correct treatment of variables impossible because that required
knowledge of the languages’ scoping rules. In contrast, a promising opportunity
offered by the ADT approach is that effectively checkable criteria can guarantee
that update programs preserve properties of object programs to which they are
applied; one example is type correctness. Even though type errors can be detected
by compilers, type-safe update programs have the advantage that they document
the performed changes well. In contrast, performing several corrective updates to a
program in response to errors reported by a compiler leaves the performed updates
hidden in the resulting changed program.

Generic updates can be collected in libraries that facilitate the reuse of updates
and that can serve as a repository for executable software maintenance knowledge.
In contrast, with the text-editor approach, each update must be performed on its
own. At this point the safety of update programs shows an important advantage:
whereas with the text-editor approach the same (or different) errors can be made
over and over again, an update program satisfying the safety criteria will preserve
the correctness for all object programs to which it applies. In other words, the
correctness of an update is established once and for all. One simple, but frequently
used update is the safe (that is, capture-free) renaming of variables. Other examples
are extending a data type by a new constructor, changing the type of a constructor,
or the generalization of functions. In all these cases the update of the definition of
an object must be accompanied by according changes to all the uses of the object.
Many more examples of generic program updates are given by program refactorings
[16] or by all kinds of so-called “cross-cutting” concerns in the fast growing area of
aspect-oriented programming [1, 13, 23, 5], which demonstrates the need for tools
and languages to express program changes.

The update calculus presented in this paper can serve as an underlying model
to study program updates and as a basis on which update languages can be defined
and into which they can be translated.

Our goal is not to replace the use of text editors for programming; rather, we
would like to complement it: there will always be small or simple changes that
can be most easily accomplished by using an editor. Moreover, programmers are
used to writing programs with their favorite editor, so we cannot expect that they
will instantly switch to a completely new way of performing program updates.
The often described phenomenon of “resistance to change” makes this situation
even less likely [4, 11]. However, there are occasions when a tedious task calls for
automatic support. We can add safe update program for frequently used tasks to
an editor, for instance, in an additional menu.1

Writing update programs, like meta programming, is in general a difficult task—
probably more difficult than creating “normal” object programs. The proposed
1 This integration requires resolving a couple of other non-trivial issues, such as how

to preserve the layout and comments of the changed program and how to deal with
syntactically incorrect programs.

2

approach does not imply or suggest that every programmer is supposed to write
update programs. The idea is that update programs are written by a experts and
used by a much wider audience of programmers (for example, through a menu
interface for text editors as described above). In other words, the update program-
ming technology can be used by people who do not understand all the details of
how update programs.

In the next section we illustrate the idea of update programming with a couple
of examples. In Section 3 we discuss related work. In Section 4 we define our object
language. The update calculus is introduced in Section 5, and a type system for the
update calculus is developed in Section 6. Conclusions given in Section 7 complete
this paper.

2 Update Programming

To give an impression of the concept of update programming we show some updates
to Haskell programs and how they can be implemented in HULA, the Haskell
Update LAnguage [15] that we are currently developing. We also briefly indicate
that the presented concepts apply more generally to other languages. We therefore
also sketch a small Java example.

Suppose a programmer wants to extend a module for binary search trees by a
size operation giving the number of nodes in a tree. Moreover, she wants to support
this operation in constant time and therefore plans to extend the representation of
the tree data type by an integer field for storing the information about the number
of nodes contained in a tree. The definition of the original tree data type and an
insert function are as follows:

data Tree = Leaf | Node Int Tree Tree

insert :: Int -> Tree -> Tree
insert x Leaf = Node x Leaf Leaf
insert x (Node y l r) =

if x<y then Node y (insert x l) r
else Node y l (insert x r)

The desired program extension requires a new function definition size, a changed
type for the Node constructor (since a leaf always contains zero nodes, no change
for this constructor is needed), and a corresponding change for all occurrences of
Node in patterns and expressions. Adding the definition for the size function is
straightforward and is not very exciting from the update programming point of
view. The change of the Node constructor is more interesting since the change of
its type in the data definition has to be accompanied by corresponding changes in
all Node patterns and Node expressions. We can express this update as follows.

con Node : {Int} t in
(case Node {s} -> Node {succ s}

| Leaf -> Node {1}); Node {1}

The update can be read as follows: the con update operation adds the type Int
as a new first parameter to the definition of the Node constructor. The notation

3

a {r} b is an abbreviation for the rewrite rule a b a r b. So {Int} t means extend
t on the left by Int. The keyword in introduces the updates that apply to the
scope of the Node constructor. Here, a case update specifies how to change all
pattern matching rules that use the Node constructor: Node patterns are extended
by a new variable s, and to each application of the Node constructor in the return
expression of that rule, the expression succ s is added as a new first argument
(succ denotes the successor function on integers, which is predefined in Haskell).
The Leaf pattern is left unchanged, and occurrences of the Node constructor within
its return expression are extended by 1. As an alternative to the case update, the
rule Node {1} extends all other Node expressions by 1.

The application of the update to the original program yields the new object
program:

data Tree = Leaf | Node Int Int Tree Tree

insert :: Int -> Tree -> Tree
insert x Leaf = Node 1 x Leaf Leaf
insert x (Node s y l r) =

if x<y then Node (succ s) y (insert x l) r
else Node (succ s) y l (insert x r)

It is striking that with the shown definition the case update is applied to all case
expressions in the whole program. In our example, this works well since we have
only one function definition in the program. In general, however, we want to be
able to restrict case updates to specific functions or specify different case updates
for different functions. This can be achieved by using a further update operation
that performs updates on function definitions:

con Node : {Int} t in
fun ‘insert x y:

(case Node {s} -> Node {succ s}
| Leaf -> Node {1}); Node {1}

This update applies the case update only to the definition of the function insert.
Here the backquote is used to distinguish Haskell variables from meta variables of
the update language.2 Uses of the function insert need not be updated, which is
indicated by the absence of the keyword in and a following update. We can add
further fun updates for other functions in the program to be updated each with its
own case update. Note that the variables x and y of the update language are meta
variables with respect to Haskell that match any object (that is, Haskell) variable.

We can observe a general pattern in the shown program update: a constructor
is extended by a type, all patterns are extended at the (corresponding position)
by a new variable, and expressions built by the constructor are extended either by
a function which is applied to the newly introduced variable (in the case that the
expression occurs in the scope of a pattern for this constructor) or by an expression.
We can define such a generic update, say extCon, once and store it in an update
2 The backquote is not needed for succ and s since they appear as free variables in RHSs

of rules, which means that they cannot reasonably be meta variables since they would
be unbound. Therefore they are identified the object variables.

4

library, so that constructor extensions as the one for Node can be expressed as
applications of extCon [15]. For example, the size update can then be expressed
by:

extCon Node Int succ 1

which would have exactly the effect as the update shown above. We plan to
implement extensions to text editors like Emacs or Vim that offer generic type-
correctness preserving updates like renaming or extCon via menus.

Of course, it is very difficult (if not generally impossible) to write generic update
programs that guarantee overall semantic correctness. Any change to a program
requires careful consideration by the programmer, and this responsibility is still
required when using update programs. We do not claim to free the update process
from any semantics consideration; however, we do claim that update programs
make the update process more reliable by offering type-preservation guarantees
and consistency in updates.

To give another example, consider the task of generalizing a function definition,
which works by identifying expressions in a function definition that should be made
variable. Then the function definition is extended by a new parameter and the
expressions to be abstracted are replaced in the function body by this new variable.
In addition, all applications of the function have to be extended by adding a new
argument, which we choose to be the abstracted expression so that the meaning of
the original program is preserved. In HULA this generic update is defined by:

genFun f e = fun f {w} : {e/w} in f {e}

Another application for update programming is the maintenance of programs that
have many variants. For example, there exist many different forms of lambda cal-
culus. We can use the following update to extend a data type Lam for representing
lambda expressions (containing constructors only for variables, application, and
lambda abstraction) and a corresponding evaluation function eval by constants:

data Lam : cs { | Con String} in
fun eval : ‘case x ‘of {Con ‘c -> Con ‘c} cs

The extension of the case expression in eval expresses that constants evaluate
to themselves. We can use the following update to extend the lambda calculus
implementation by let expressions:

data Lam : cs { | Let String Lam Lam} in
fun eval : ‘case x ‘of

{Let ‘v ‘d ‘e -> ‘subst ‘d ‘v ‘e} cs

We can apply both updates independently or one after the other (in any order)
to obtain a version of lambda calculus with constants and let expressions. If the
original lambda-calculus implementation changes, we can reapply the update pro-
grams to propagate the changes through the defined extensions. We can perform
similar updates for extending type inference or other functions as well.

Finally, we would like to mention that although we use Haskell in examples,
the idea and concepts of update programming translate to other programming
languages as well. For instance, the size example could be implemented in Java

5

as a class Tree with an int field value and two Tree fields left and right as
well as a method insert. The update could be expressed by a class update that
creates a new int field size, inserts an initialization into the constructor (at the
beginning), and extends the insert method by a size incrementation (also at the
beginning of the method):

class Tree:
{int size}
constr {this.size = 1;} c
method insert: {size++;} m

Since Java is much more verbose than Haskell, we use underlining to mark meta
variables.

3 Related Work

There is a large body of work on impact analysis that tries to address the problems
that come with performing changes to software [2, 7]. However, we know of no
work that attempts to exploit impact analysis to perform fully automated software
changes.

Performing program updates in a more structured way is actually not a new
idea. There exist a couple of program editors that can guarantee syntactic or even
type correctness and other properties of changed programs. Examples for such sys-
tems are Centaur [10, 27], the synthesizer generator [26], or CYNTHIA [37, 36].
The view underlying these tools are either that of syntax trees or, in the case of
CYNTHIA, proofs in a logical system for type information. An interesting observa-
tion is that the approach taken in the ML editor CYNTHIA is more powerful than
other approaches since it is based on a richer representation of programs, that is,
it exploits the Curry-Howard isomorphism [18, 22], which directly relates proofs of
type correctness with programs. In this respect it is very similar to proof editors
like ALF [21], however, in contrast to ALF, proofs are not the main objective of
CYNTHIA but rather used as a gluing representation between programs and their
properties.

We have introduced a language-based view of program updates in [14]. One
part of that work is the development of a general model of programs, updates, and
the preservation of arbitrary properties. We have also discussed a way of ensuring
type correctness for the simply-typed lambda calculus that is based on computing
required and provided changes in type assumptions. Viewing programs as abstract
data types goes beyond the idea of syntax-directed program editors because it
allows a programmer to combine basic updates into update programs that can
be stored, reused, changed, shared, and so on. The program update programming
approach has, in particular, the following two advantages: First, we can work on
program updates offline, that is, once we have started a program change, we can
pause and resume our work at any time without affecting the object program.
Although the same could be achieved by using a program editor together with a
versioning tool, the update program has the advantage of much better reflecting the
changes performed so far than a partially changed object program that only shows
the result of having applied a number of update steps. As the lambda calculus

6

updates indicate, we could actually use program updates as a basis to create a new
kind of syntax-aware versioning tool that can inform much better about program
changes than character-based programs like diff. Second, independent updates can
be defined and applied independently. For example, assume an update u1 followed
by an update u2 (that does not depend on or interfere with u1) is applied to
a program. With the editor approach, we can undo u2 and also u2 and u1, but
we cannot undo just u1 because the changes performed by u2 are only implicitly
contained in the final version that has to be discarded to undo u1. In contrast, we
can undo each of the two updates with the proposed update programming approach
by simply applying only the other update to the original program. Again, take the
lambda calculus updates as an example.

Programs that manipulate programs are also considered in the area of meta
programming [29]. However, existing meta programming systems, such as MetaML
[30], are mainly concerned with the generation of programs and do not offer means
for analyzing programs (which is needed for program transformation). In fact, in a
recent overview only a few source-level program transformations have been reported
[35]. Among these, only software rephrasing and refactoring work on one and the
same language. Refactoring [16] is an area of fast growing interest with a few
existing tools to perform refactoring automatically [28]. Refactoring (like the huge
body of work on program optimization and partial evaluation) leaves the semantics
of a program unchanged. Program transformations that change the behavior of
programs are also considered in the area is aspect-oriented programming [1], which
is concerned with performing “cross-cutting” changes to a program. AspectJ [20,
3], Hyper/J [23, 19], and composition filters [5, 12] are some of the existing tools
that can be used to deal with aspects in Java programs. These tools are used to
merge a cross-cutting concern into one particular object program at a time. It is not
possible, for example, to compile and typecheck aspects independently of programs
to obtain type-safe reusable transformations.

Our approach is based in part on applying update rules to specific parts of a
program. There has been some work in the area of term rewriting to address this
issue. Traditionally, rewrite systems consider the strategy in which rewrite rules are
applied to be more or less fixed. In theorem proving tactics have been introduced
to overcome the limitations of having only fixed strategies [24]. The ELAN logical
framework introduced in addition to a fixed set of tactics a strategy language
that allows users to specify their own tactics with operators and recursion [8, 9].
Visser has extended the set of strategy operators by generic term traversals [34],
pattern matching operators [31], and other rewrite strategies that are specifically
useful for language processing [32] and has put all these parts together into a
system for program transformation, called Stratego [33]. These proposals allow a
very flexible specification of rule application strategies, but they do not guarantee
type correctness of the transformed programs.

A specific task related to updates on programs is program integration, which
is concerned with the combination of two variants A and B of a program P . The
algorithm developed by Horwitz and others detects whether the updates that lead
from P to A and B, interfere and if not, combines these updates into a single
program that includes all functionality from P as well as the changes from A and
B [17]. Algebraic properties of such a program integration operation have been
studied by Reps [25].

7

A related approach that is concerned with type-safe program transformations
is pursued by Bjørner who has investigated a simple two-level lambda calculus that
offers constructs to generate and to inspect (by pattern matching) lambda calculus
terms [6]. In particular, he describes a type system for dependent types for this
language. It is principally possible to write update programs in such a two-level
lambda calculus. However, symbols must retain their types over transformations
whereas in our approach it is possible that symbols change their type (and name).

4 The Object Language

To keep the following description short and simple, we use lambda calculus together
with a standard Hindley/Milner type system as the working object language. The
syntax of lambda-calculus expressions is shown in Figure 1.

e ::= c | v | e e | λv.e | let v = e in e

Fig. 1. Abstract syntax of lambda calculus.

Constants are taken from a set C that is indexed by the available base types
b. In addition to the base types, we have type variables (a) and function types;
see Figure 2. Type schemas are used to enable polymorphic typing for let-bound
variables. We abbreviate a list of type variables a1 . . . an by ā. FV gives the set
of free variables of an expression, a type, or a type environment. Likewise, BV
computes bound variables. We denote by [w/v]e the capture-free substitution of
the variable v by the variable w in the expression e.

t ::= b | a | t → t
s ::= t | ∀ā.t

Fig. 2. Types for lambda calculus.

The type system defines judgments of the form Γ ` e : t where Γ is a type
assumption, that is, a mapping from variables (v) to type schemas (s). The inference
rules are shown in Figure 3.

con`
c ∈ Cb

Γ ` c : b
var`

Γ (v) = ∀ā.t′ [ti/ai]t
′ = t

Γ ` v : t

abs`
Γ, v : t′ ` e : t

Γ ` λv.e : t′ → t
app`

Γ ` e : t′ → t
Γ ` e′ : t′

Γ ` e e′ : t

let`

{ā} = FV(t′) − FV(Γ)
Γ, v : t′ ` e′ : t′ Γ, v : ∀ā.t′ ` e : t

Γ ` let v = e′ in e : t

Fig. 3. Type system for lambda calculus.

Since the theory of program updates is independent of the particular dynamic
semantics of the object language (call-by-value, call-by-need, ...), we do not have
to consider a dynamic semantics.

8

The main idea to achieve a manageable update mechanism is to perform some-
how “coordinated” updates of the definition and all corresponding uses of a symbol
in a program. We therefore consider the available forms of symbol definitions more
closely. In general, a definition has the following form:

let v = d in e

where v is the symbol (variable) being defined, d is the defining expression, and
e is the scope of the definition, that is, e is an expression in which v will be used
with the definition d (unless hidden by another nested definition for v). We call
v the symbol, d the defining expression, and e the scope of the definition. If no
confusion can arise, we sometimes refer to d also as the definition (of v). β-redexes
also fit the shape of a definition since a (non-recursive) let v = d in e is just an
abbreviation for (λv.e) d. However, the treatment of let differs from functions in
the type system (allowing polymorphism) and also in the update language since it
allows recursive definitions.

Several extensions of lambda calculus that make it a more realistic model for a
language like Haskell also fit the general pattern of a definition, for example, data
type/constructor definitions and pattern matching rules. We will comment on this
in Section 5.2.

5 The Update Calculus

The update calculus basically consists of rewrite rules and a scope-aware update
operation that is able to perform updates of the definition and uses of a symbol. In
addition, we need operations for composing updates and for recursive application
of updates.

5.1 Rules

A rewrite rule has the form:
l r

where l and r are expressions that might contain meta variables, that is, variables
that are different from object variables and can represent arbitrary expressions.
Expressions that possibly contain meta variables are called patterns; their syntax
is defined in Figure 4.

p ::= m | c | v | p p′

Fig. 4. Patterns.

If we remove meta variables, patterns reduce to expressions that do not intro-
duce bindings. Binding constructs will be updated by a special form, scope update,
that takes care of the peculiarities of free/bound/fresh variables and their types
that can occur with updates.

We extend the type system from Figure 3 by the following rule for meta vari-
ables:

meta`
Γ (m) = t

Γ ` m : t

9

This rule is similar to the rule var`, but we only allow the binding of types (and
not type schemas).

An update can be performed on an expression e by applying a rule l r to e
which means to match l against e, which, if successful, results in a binding σ (called
substitution) for the meta variables in l. The fact that a pattern like l matches an
expression e (under the substitution σ) is also written as: l� e (l�

σ
e). We assume

that l is linear, that is, l does not contain any meta variable twice. The result of
the update operation is σ(r), that is, r with all meta variables being substituted
according to σ. If l does not match e, the update described by the rule is not
performed, and e remains unchanged.

We use the matching definitions and notations also for types. If a type t matches
another type t′ (that is, t� t′), then we also say that t′ is an instance of t.

5.2 Update Combinators

We can build more complex updates from rules by alternation and recursion. For
example, the alternation of two updates u1 and u2, written as u1 ; u2, first tries
to perform the update u1. If u1 can be applied, the resulting expression is also
the result of u1 ; u2. Only if u1 does not apply, the update u2 is tried. Recursion
is needed to move updates arbitrarily deep into expressions. For example, since
a rule is always tried at the root of an expression, an update like 1 2 has no
effect when applied to the expression 1+(1+1). We therefore introduce a recursion
operator ↓ that causes its argument update to be applied (in a top-down manner)
to all subexpressions. For example, the update ↓(1 2) applied to 1+(1+1) results
in the expression 2+(2+2). (We use the recursion operator only implicitly in scope
updates and do not offer it to the user.)

The update operations described thus far do not take into account the scope of
identifiers; they are rather like global search-and-replace rules. In contrast to global
updates, scope updates always operate only on the uses of a symbol introduced by
a particular definition.

In a scope update, each element of a definition let v = d in e, that is, v, d, or
e, can be changed. Therefore, we need an update for each part. The update of the
variable can just be a simple renaming, but the update of the definition and of the
scope can be given by arbitrarily complex updates. We use the syntax {v v′: ud}uu

for an update that renames v to v′, changes v’s definition by ud, and all of its uses
by uu. (We also call ud the definition update and uu the use update.) Note that uu is
always applied recursively, whereas ud is only applied to the root of the definition.
However, to account for recursive let definitions we apply uu also recursively to
the result obtained by the update ud.

At first sight it seems that we also need a combinator to generate fresh variables
in order to rename variables and to create new definitions. However, we can always
identify precisely all the parts of an update where fresh variables are required
so that we can integrate the generation of fresh variables into the semantics for
updates.

The preceding discussion leads to the syntax of updates shown in Figure 5.
We use x to range over variables (v) and meta variables (m), which means

that we can use a scope update to update specific bindings (by using an object
variable) or to apply to arbitrary bindings (by using a meta variable). Either one

10

u ::= ι Identity (No Update)
| p p Rule
| {x x: u}u Change Scope
| { v[= e]}u Insert Scope
| {x e}u Delete Scope
| u ; u Alternative
| ↓u Recursion

Fig. 5. Syntax of updates.

of the variables (but not both) can be missing. These special cases describe the
creation or removal of a binding. In both cases, we have an expression instead of a
definition update. This expression is required in the case of binding removal where
it is used to replace all occurrences of the removed variable. (Note that e must
neither contain x nor a possible object variable that matches x in case x is a meta
variable.) In the case of binding creation, the expression is optional and is used, if
present, as a definition for the newly introduced variable, which must be an object
variable. We use an abbreviated notation for scope updates that do not change
names, that is, we write {v: ud}uu instead of {v v: ud}uu. The updates of either
the defining expression or the scope can be empty, which means that there is no
update for that part. The updates are then simply written as {v: ud} and {v}uu,
respectively, and are equivalent to updates {v: ud}ι and {v: ι}uu, respectively.

Let us consider some examples. We already have seen examples for rules. A
simple example for change scope is an update for consistently renaming variables
{v w}v w. This update applies to a lambda- or let-bound variable v and renames
it and all of its occurrences that are bound by that definition to w. The definition
of v is usually not changed by this update. However, if v has a recursive definition,
references to v in the definition will be changed to w, too, because the use update
is also applied to the definition of a symbol.

Recall the function generalization update from Section 2. A generalization of a
function f can be expressed by the following update u.

{f:{ w}1 w}f f 1

u is a change scope update for f, which does not rename f, but whose definition
update introduces a new binding for w and replaces all occurrences of a particular
constant expression (here 1) by w in the definition of f. u’s use update makes
sure that all uses of f are extended by supplying a new argument for the newly
introduced parameter. Here we use the same expression that was generalized in f’s
definition, which preserves the semantics of the program. (Note that in order to
express a function like genFunwe have to extend the update calculus by abstraction,
application, and variables.)

To express the size update example in the update calculus we have to extend the
object language by constructors and case expressions and the update calculus by
corresponding constructs, which is rather straightforward (in fact, we have already
implemented it in our prototype). An interesting aspect is that each alternative
of a case expression is a separate binding construct that introduces bindings for
variables in the pattern. The scope of the variables is the corresponding right hand
side of the case alternative. Since these variables do not have their own definitions,
we can represent a case alternative by a lambda abstraction—just for the sake of

11

performing an update. A case update can then be translated into an alternative
of change-scope updates. For example, the translation of the size update yields:

{Node:t Int->t}
({Node}({ s}Node Node (succ s));
{Leaf}Node Node 1);
Node Node 1

The outermost change-scope update expresses that the definition of the Node con-
structor is extended by Int. The use update is an alternative whose second part
expresses to extend all Node expressions by 1 to accommodate the type change
of the constructor. The first alternative is itself an alternative of two change-scope
updates. (Since the ; operation is associative, the brackets are strictly not needed.)
The first one applies to definitions of Node which (by way of translation) can only
be found in lambda abstractions representing case alternatives. The new-scope up-
date will add another lambda-binding for s, and the use update extends all Node
expressions by the expression succ s. The other alternative applies to lambda
abstractions representing Leaf patterns.

This last example demonstrates that the presented update calculus is not re-
stricted to deal just with lambda abstractions or let bindings, but rather can serve
as a general model for expressing changes to binding constructs of all kinds.

5.3 Semantics of Updates

In the definition of the semantics for alternative updates (u ; u′) we need a judgment
of the form u�@e that tells whether or not the update u applies to (the root of)
expression e: we apply u′ only to e if u�@e does not hold. (Note that we cannot
simply use a test like [[u]]ρ(e) 6= e because, for example, ι applies to any expression
but does not change it.) The formalization of this relationship is straightforward:
for identity, rules, and recursion we have: ι�@e, l r�@e if l� e, and ↓u�@e if u�@e,
respectively. An alternative applies if either sub-update applies, that is, u ; u′�@e
if u�@e or u′�@e. Any scope update of the form {x . . .} . . . principally applies to
any expression that binds a variable v with x� v, that is, any expression of the
form let v = d in e, λv.e, or (λv.e) e′. More precisely, a scope deletion does not
apply to β-redexes, and a scope change applies to a lambda abstraction only if the
definition update ud is ι. Finally, the insert scope update { v . . .} . . . applies to
any expression.

It might seem that the definition of ↓u�@e is overly simplistic because u might
apply by virtue of recursion somewhere down deep in e. However, for our specific
purpose, namely deciding whether or not to apply the second update in an alter-
native, the chosen definition is sufficient since we do not have to deal with updates
like ↓u ; u′ because we use ↓ only implicitly in use updates.

An update u is applied to an expression e relative to a set of names that
define the scope of the update. These scopes are constructed by scope updates
and are reduced when recursion moves into expressions that bind variables already
contained in the scope. A rule can be applied only if all the free (object) variables
of the left side are contained in the scope. We also have to consider the set of
variables that are bound by the expression being currently updated but that are
not in scope of the update, because in the semantics definition we have to ensure

12

that newly introduced bound variables are fresh, that is, they must not be bound
in the expression being updated. We can represent both sets by a two-set partition
ρ = (ρS , ρB) where ρS contains the variables that are in scope of the update and
ρB contains the variables that are bound in the update expression but that are not
in scope. We need two operations for moving variables between ρS and ρB:

(ρS , ρB)〈v := (ρS ∪ {v}, ρB − {v})
(ρS , ρB)〉v := (ρS − {v}, ρB ∪ {v})

We define the semantics as judgments of the form [[u]]ρ(e) = e′; see Figure 6. The
semantics of the recursion operator is standard; we have therefore omitted it to
save space. We also have omitted all no-change rules and we make by default a
“no-change assumption”, that is, when none of the shown rules applies, [[u]]ρ(e)
yields e. We also write [[u]](e) instead of [[u]](∅,∅)(e).

We use the notation v〉eρw to express the fact that w is a variable that is fresh
with respect to the expression e and the environment ρB. This is a variable that
is neither bound in e or the current context (ρB). (It is not a problem when v
occurs in ρS , because in that case the v in ρS will be either renamed or deleted.)
If v has this property, it will be chosen, otherwise an appropriate name will be
constructed (for example, by repeatedly appending a prime symbol until a fresh
symbol is found). In the semantics rules shown in Figure 6 we use the abbreviation
v〈x x′〉eρw that expresses the condition that x matches the bound variable v and
the fresh variable generated from x′ is w. The predicate is defined as:

v〈x x′〉eρw ⇐⇒ x�
σ

v ∧ σ(x′)〉eρw
We also use the notations u〈 for the update u with all free occurrences of x sub-
stituted by v, u〉 for the update u with all free occurrences of x′ substituted by w,
and u〈〉 for the update u with all free occurrences of x substituted by v and with
all free occurrences of x′ substituted by w.

Pairs of updates can be classified according to their possible interaction. Two
updates u and u′ are called competing iff ∃e : u�@e ∧ u′�@e. Dually, u and u′ are
called independent, written as u‖u′, iff they are not competing. The goal of these
definitions is to obtain criteria, for example, for the well-definedness of updates
and for their type safety. In particular, we require type changes for competing
updates to be compatible in a way to be defined below, whereas type changes for
independent updates will result in alternative type changes.

6 A Type System for Updates

The goal of the type system for the update calculus is to find all possible type
changes that an update can cause to an arbitrary object program. We show that
if these type changes “cover” each other appropriately, then the generated object
program is guaranteed to be type correct. Updates that have this property are
called safe.

6.1 Type Changes

Since updates denote changes of expressions that may involve a change of their
types, the types of updates are described by type changes. Type changes are es-
sentially represented by pairs of types. Changes that apply (through recursion) in

13

 [[]]

l�
σ

e σ(r) = e′ FV(l) ⊆ ρS

[[l r]]ρ(e) = e′
ι[[]]

[[ι]]ρ(e) = e

{:}chg
[[]]

v〈x x′〉eρw [[u
〈〉
d]]ρ(d) = d′ [[↓u〈〉

u]]ρ〈v〉w(e) = e′

[[{x x′: ud}uu]]ρ((λv.e) d) = (λw.e′) d′

v〈x x′〉e d
ρ w [[↓u〈〉

u]]ρ〈v〉w([[u
〈〉
d]]ρ〈v〉w(d)) = d′ [[↓u〈〉

u]]ρ〈v〉w(e) = e′

[[{x x′: ud}uu]]ρ(let v = d in e) = let w = d′ in e′

v〈x x′〉eρw [[↓u〈〉
u]]ρ〈v〉w(e) = e′

[[{x x′: ι}uu]]ρ(λv.e) = λw.e′

{:}ins
[[]]

v〉eρw [[↓u〉]]ρ〉w(e) = e′

[[{ v = d}u]]ρ(e) = let w = d in e′
v〉eρw [[↓u〉]]ρ〉w(e) = e′

[[{ v}u]]ρ(e) = λw.e′

{:}del
[[]]

x� v [[↓(u〈 ; v e0)]]ρ〈v(e) = e′

[[{x e0}u]]ρ(let v = d in e) = e′
x� v [[↓(u〈 ; v e0)]]ρ〈v(e) = e′

[[{x e0}u]]ρ(λv.e) = e′

;[[]]
u1�@e [[u1]]ρ(e) = e′

[[u1 ; u2]]ρ(e) = e′
u1�@/e [[u2]]ρ(e) = e′

[[u1 ; u2]]ρ(e) = e′

Fig. 6. Semantics of updates.

subexpressions are described by context type changes, which are given pairs of con-
text types. Context types can be thought of as type derivations in which a specific
subpart (a type) is exposed. A context type is given by an application of a type
context to a type. A type context is either empty (ε) or a pair t′ 7→t where t′ is the
exposed type of the derivation for the type t (t′ can also be empty). The application
of a type context C to a type t yields a context type and is written as C〈t〉. The
meaning of a context type is given by the following equations.

ε〈t〉 = t

t1 7→t2〈t〉 =
{

t2 if t� t1 ∨ t1 is empty
error otherwise

The rationale behind context types is to capture changes of types that possibly
happen only in subexpressions and do not show up as a top-level type change.
Context types describe the type changes for use updates in scope updates. The
type changes might refer to the types of the variables manipulated by the scope
update, whose types can be constrained by the context of the object language
expressions in which they matched during an update. To describe this dependency
we also introduce the notion of a constrained type, which is a type t together with
a type context C that possibly constrains t, written as t|C . The meaning is:

t|ε = t

t|t1 7→t2 =
{

t if t1 is empty ∨ t 6= a
t1 otherwise

To summarize, a context type evaluates for non-empty contexts to the root/top-
level type of the applied context, which means to ignore the inner/nested type,

14

whereas a constrained type evaluates to the exposed type of the derivation (if it
is not empty). An empty context has no effect on the type argument of a context
type or constrained type. The syntax of contexts and type changes is summarized
in Figure 7.

δ ::= τ τ
�
� δ|δ

τ ::= b | a | τ → τ | C〈τ 〉 | τ|C
C ::= ε | [t]7→t

Fig. 7. Type changes.

Let us consider some examples. The update u = { w}1 w changes the ex-
pression 1 to λw.w with the type change Int a->a. However, applied to odd 1,
u yields λw.odd w with the type change Bool Int->Bool. How can we describe
and explain these two different type changes? First, w is a new variable so we as-
sume a fresh type variable a for it. Second, the type of the use update 1 w is
determined as Int a. However, since the use update is performed recursively,
the type change for the new-scope update is described using context types, that
is, instead of Int a we expect something like C〈Int〉 C〈a〉. Third, the type
for the newly introduced abstraction has to be taken into account. Here we have
to observe that the type of w cannot be a in general, because w might be (again
through the recursive application of the rule) placed into an expression context that
constrains w’s type. This can be expressed by using the constrained type a|C for w.
Therefore, the type change of u is C〈Int〉 a|C->C〈a|C〉, which can be instanti-
ated with the two contexts ε and Int7→Bool, respectively, to the above shown type
changes. As another example we consider the renaming update u = {x y}x y.
For the update we obtain a type change C〈a|C〉 C〈b|C〉, which is the same as
C〈a|C〉 C〈a|C〉. The context and constraint C results for the same reason as in
the previous example. Applying u to the expression λx.1 yields λy.1 with a type
change a->Int a->Int, which can be obtained from u’s type change by using
the corresponding context 7→a->Int. Similarly, u changes λx.odd x to λy.odd y
with a type change Int->Bool Int->Bool. This type change is u’s type change
specialized for the context Int7→Int->Bool.

Since contexts can be nested, we define their composition as follows.

ε·C := C
C·ε := C

t1 7→t2·t′1 7→t′2 :=
{

t′1 7→t2 if t′2 � t1 ∨ t1 is empty
error otherwise

It is easy to verify that with this definition we have

C·C′〈t〉 = C〈C′〈t〉〉
t|C·C′ = (t|C)|C′

which means that the outermost contexts affect context types, whereas the inner-
most context is relevant for constrained types. Finally, since the inference rules
generate, in general, context constraints for arbitrary type changes, we have to
explain how contexts are propagated through type changes to types:

C〈τ τ ′〉 := C〈τ〉 C〈τ ′〉
C〈δ|δ′〉 := C〈δ〉|C〈δ′〉

15

Types and type changes can be applicative instances of one another. This rela-
tionship says that a type t is an applicative instance of a function type t′ → t,
written as t

→≺ t′ → t. The rationale for this definition is that two updates u and u′

of different types t1 t2 and t′1 t′2, respectively, can be considered well typed in
an alternative u ; u′ if one type change is an applicative instance of the other, that
is, if t1 t2

→≺ t′1 t′2 or t′1 t′2
→≺ t1 t2, because in that case one update is just

more specific than the other. For example, in the update

{f: succ plus}f x f x 1 ; f f 1

the first rule of the alternative f x f x 1 has the type change Int Int whereas
the second rule f f 1 has the type change Int->Int Int->Int. Still both up-
dates are compatible in the sense that the first rule applies to more specific occur-
rences of f than the second rule. This fact is reflected in the type change Int Int
being an applicative instance of Int->Int Int->Int. The relationship is defined
in Figure 8. The definition for alternative type changes can identify applicative
instance pairs in alternatives, which can then be generalized (see below).

refl→≺
τ

→≺ τ
c→≺

τ
→≺ τ ′

C〈τ 〉→≺C〈τ ′〉
τ

→≺ τ ′

τ|C
→≺ τ ′

|C

→→≺
τ

→≺ τ2

τ
→≺ τ1 → τ2

→≺

τ1
→≺ τ ′

1 τ2
→≺ τ ′

2

τ1 τ2
→≺ τ ′

1 τ ′
2

|→≺
τ1 τ2

→≺ τ ′
1 τ ′

2

τ1 τ2|δ →≺ τ ′
1 τ ′

2|δ′

Fig. 8. Applicative instance.

We say that two type changes δ and δ′ are applicative-instance compatible,
written as δ

→≡ δ′, if δ
→≺ δ′ or δ′ →≺ δ. Given two applicative-instance-compatible types

we can compute their generalization as follows.

gen(τ1 τ2, τ
′
1 τ ′

2) =
{

τ1 τ2 if τ1 τ2
→≺ τ ′

1 τ ′
2

τ ′
1 τ ′

2 if τ ′
1 τ ′

2
→≺ τ1 τ2

gen(δ1|δ, δ2|δ′) =
{

gen(δ, gen(δ1, δ2)|δ′) if δ1
→≡ δ2

δ1|δ2|gen(δ, δ′) otherwise

Since u and u′ have to be independent to generate a type-change alternative (see
Figure 9), it follows that | is commutative. Therefore, alternative type changes can
be treated like bags, that is, we can reorder contained type changes as needed in
the application of gen.

With this generalization operation, the type system infers a most general type
change for alternative updates whose types are applicative-instance compatible. On
the other hand, the types of independent update alternatives is collected in type-
change alternatives. For example, the updates u = 1 2 and u′ = True False
are independent, which allows them to be placed in an alternative update because
their incompatible type changes result in a type-change alternative, that is, u ; u′ ::
Int Int|Bool Bool.

Finally, note that a type change t t′ does not necessarily mean that an update
u : t t′ maps an expression e of type t to an expression of type t′, because u might

16

not apply to e and thus we might get [[u]](e) = e of type t. Thus, the information
about an update causing some type change is always to be interpreted as “optional”
or “contingent on the applicability of the update”.

6.2 Type Change Inference

 .
∆` ` p : t ∆r ` p′ : t′

∆ . p p′ :: t t′
ι.

∆ . ι :: t t

;.
∆ . u :: δ ∆ . u′ :: δ′ δ

→≡ δ′

∆ . u ; u′ :: gen(δ, δ′)

∆ . u :: δ ∆ . u′ :: δ′ u‖u′

∆ . u ; u′ :: δ|δ′

{:}chg
.

∆[, x x′ :: t|C t′|C] . ud :: t[|C] t′[|C] ∆[, x x′ :: t|C t′|C] . uu :: δ

∆ . {x x′: ud}uu :: C〈δ〉

{:}ins
.

{ā} = FV(t) − FV(∆r) ∆[, w : t[|C]] ` e : ∀ā.t[|C] ∆[, w :r t|C] . u :: δ

∆ . { w = e}u :: t[|C]→r C〈δ〉

∆[, w :r t|C] . u :: δ

∆ . { w}u :: t[|C]→r C〈δ〉 {:}del
.

∆[, x :` t|C] . u :: δ ∆r ` e : t[|C]

∆ . {x e}u :: t[|C]→̀C〈δ〉

Fig. 9. Type change system.

The type changes that are caused by updates are described by judgments of the
form ∆ . u :: δ where ∆ is a set of type-change assumptions, which can take one
of three forms:

(1) x x′ :: t t′ expresses that x of type t is changed to x′ of type t′. The following
constraint applies: if x′ is a meta variable, then x′ = x and t′ = t.

(2) v :r t expresses that v is a newly introduced variable of type t.
(3) x :` t expresses that x is a variable of type t that is only bound in the expression

to be changed.

Type change assumptions can be extended by assumptions using the “comma”
notation as in the type system.

The type-change system builds on the type system for the object language. In
the typing rule for rules we make use of projection operations that project on the
left and right part of a type-change assumption. These projections are defined as
follows:

∆` := {x : t | x x′ :: t t′ ∈ ∆} ∪ {x : t | x :` t ∈ ∆}
∆r := {x′ : t′ | x x′ :: t t′ ∈ ∆} ∪ {x′ : t′ | x′ :r t′ ∈ ∆}

The type-change rules are defined in Figure 9. The rules for creating or deleting
a binding have to insert a function argument type on either the right or the left
part of a type change. This type insertion works across alternative type changes;
we use the notation τ→̀δ (τ→r δ) to extend the argument (result) type of a type
change to a function type. The definition is as follows.

τ→̀(τl τr) := (τ → τl) τr

τ→r (τl τr) := τl (τ → τr)
τ→̀(δ|δ′) := (τ→̀δ)|(τ→̀δ′)
τ→r (δ|δ′) := (τ→r δ)|(τ→r δ′)

17

The inference rule . connects the type system of the underlying object language
(lambda calculus) with the type-change system. This rule is rather simple since rule
updates cannot contain binding constructs, which means that all variables used in
either e or e′ have to be brought into ∆ by scope updates.

We have several rules for scope updates. To save space we combine two rules
for each case by using square brackets to indicate optional rule parts. For example,
in the rule {:}new

. if and only if the premise can be proved without using the
assumption for w, then there is no constraint C on the type t in the conclusion.

6.3 Soundness of the Update Type System

In this section we present the main result of this paper: a characterization of a
class of updates by a normal form so that the application of a well-typed update
from this class is guaranteed to preserve the well-typing of any transformed object
language expressions. An update that, when applied to a well-typed expression,
yields again a well-typed expression is called safe. In other words, we will show
that typeable updates in normal form are safe. The normal form captures the
following two requirements:

(A) An update of the definition of a symbol that causes a change of its type or
its name is accompanied by an update for all the uses of that symbol (with
a matching type change). This rule prevents ill-typed applications of changed
symbols as well as unbound variables.

(B) No use update can introduce a non-generalizing type change, that is, for each
use update that has a type change t t′|δ we require: t′ � t. This rule prevents
that changed symbols break the well-typing of their contexts.

An intuitive explanation of why such a normal form implies safety for well-typed
updates can be obtained by looking at all possible ways in which an update can
break the type correctness of an expression and how these possibilities are prevented
by the type system or the normal-form constraints. We can find out about possible
type errors by looking at the type system for lambda calculus (see Figure 3):
Essentially, type inference fails either in the rule var` if the type for a variable
cannot be found in the type environment or in the rule app` if the parameter type
of a function does not agree with the type of the argument to which it is applied.
On the other hand, the rules abs` and let` eventually refer to var` and app`
to ensure typing constraints that might fail. Let us now consider how updates can
possibly introduce these errors.

Unbound variables. The free-variable problem can be introduced into an expres-
sion by an update that renames a bound variable without accordingly renaming all
references to that variables; unrenamed variables might become free, thus leading
to an error in the var` rule, or they might be bound by an enclosing λ or let
and thus might change the type that is obtained by the var` rule, thus breaking
eventually the app` rule. These kind of changes are prevented by condition (A)
and the type-change rules. Free variables could also be introduced by rules, such
as 1 x (where x is not bound). However, these kinds of updates are prevented by
the type-change system since we cannot derive a type change for 1 x when we
have no assumption about x in the type-change environment.

18

Incorrect application. An application can become ill typed if the type of the
function or the argument changes without a corresponding change of the other
part of the application. Types can be changed by rules that replace objects of one
type by objects of another type as in 1 True. Such a change is only problematic
if it is applied to a sub-expression; otherwise, a rule cannot change only one part
of an application. However, since application to sub-expressions can only happen
through the recursion in use updates, such an update is not possible since it violates
the condition (B) (in the example: Int is not an instance of Bool). Types can also
be changed by change-scope updates. By just changing the type of a variable, say
v from t to t′, we can break the type correctness in two different ways: applications
of v as well as contexts of v (that is, applications of other expressions to v) can
become ill typed. Both cases are prevented by conditions (A) and (B) together
with the type-change system, because (i) having an update u = v e causes all
occurrences to be changed (not necessarily by this rule, but no occurrence of v
is left unchanged), and (ii) the type change t t2 derived by the type system is
required to be “generalizing” (that is, t2 � t, see below), which ensures that e fits
all contexts typewise.

Let us now express the normal-form constraint more formally. We first identify
some properties of change-scope updates. Let u = {x x′: ud}uu be an arbitrary
change-scope update and let x x′ :: t t′ be the assumption that has been used
in rule {:}chg

. to derive its type change, say t1 t2|δ.
(1) u is self-contained iff x 6= x′ ∨ t 6= t′ =⇒ ∃u, u′ : uu = u ; x p ; u′.
(2) u is smooth iff t′ � t or t

→≡ t′

(3) u is generalizing iff t2 � t1

An update u is in normal form iff it is well typed and all of its contained change-
scope updates are self-contained, smooth, and generalizing.

When we consider the application of a normal-form update u to a well-typed
expression e, the following two cases can occur: (1) u does not apply to e (u�@/e).
In this case e is not changed by u and remains well typed. (2) u applies to e and
changes it into e′. In that case we have to show that from the result type of u we
can infer the type of e′.

The following lemma captures the obvious fact that an update that does not
apply to an expression leaves the type of that expression unchanged (because the
update does not change the expression):

Lemma 1. u�
@/e ∧ Γ ` e : t =⇒ Γ ` [[u]](e) : t

The next lemma gives the main result, namely that normal-form updates pre-
serve the type correctness of expressions to which they apply.

Lemma 2 (NF Soundness). If u is in normal form, then

∆ . u :: [τ→X]C〈t〉 C〈t′〉|δ ∧ u�
@
e ∧ ∆` ` e : t =⇒

∆r ` [[u]](dom(∆`),∅)(e) : C〈t′〉
Finally, the following theorem is a corollary that combines the results from

Lemmas 1 and 2.

19

Theorem 1. If u is in normal form, then

∆ . u :: [τ→X]C〈t〉 C〈t′〉|δ ∧ ∆` ` e : t =⇒
∆r ` [[u]](dom(∆`),∅)(e) : t′′ ∧ (t′′ = t ∨ t′′ = C〈t′〉)

Let us consider the safety of some of the presented example updates. The func-
tion generalization update is safe, which can be checked by applying the definitions
of normal form and the rules of the type-change system. The first size update is also
safe, although to prove it we need the extension of lambda calculus by construc-
tors and case expressions. In contrast, the second size update is not safe since the
case update will be applied only to the definition of insert. The lambda-calculus
updates are safe; however, the updates might leave some functions that use ex-
pressions of the Lam data type unexpanded. Now, for programs that only use Node
expressions in a function insert the second size update is safe. Similarly, programs
that use Lam expressions only in a function eval, the lambda calculus updates do
not introduce non-exhaustive case expressions. We discuss this aspect briefly in
the next section when we talk about extensions of the system.

7 Conclusions and Future Work

We have introduced an update calculus for expressing changes to lambda-calculus
expressions. The type-change system for the update calculus ensures that updates
in normal form are safe, that is, they preserves the well typing of lambda-calculus
expressions. We have indicated how the presented calculus can serve as a basis for
high-level update languages that can be translated into the calculus. We already
have an implementation for the update calculus. Currently, we are working on the
implementation for the update language for Haskell.

There are many directions for future work. Regarding the presented calculus,
we believe that the following aspects are most promising with respect to extending
the expressiveness and usefulness of the calculus:

Named type changes. Currently, the type-change system only reports a possible
change for the result expression. For larger updates it would be interesting to
obtain, for example, renamings and type changes for all (or at least all non-local)
definitions. This extension seems to be orthogonal to the current system and not
difficult to realize.

Conditional update safety. The normal form that is required to guarantee safety
of updates is rather strict so that some useful program updates would not be
classified as safe. However, in many situations, “complete” safety is not mandatory.
Instead, a form of conditional safety is sufficient. For example, the second size
update and the lambda calculus update could be considered to be conditionally
safe in the sense that type safety is preserved for those object programs that
satisfy some constraints (such as referring to non-globally updated objects only in
restricted places). This property is not as strong as unconditional safety, but it is
more widely applicable and is still much better than having no information at all.

Allow non-generalizing type changes. Currently, updates in normal form can
change symbols only to more general types. This restriction is required to ensure
type correctness because other type changes can break the well typing of contexts,

20

which could only captured by requiring an update that applies to all possible con-
texts and basically inserts expressions that revert the type change. However, with
the concept of conditional update safety we can relax the covering criterion.

References

1. ACM. Communications of the ACM, volume 44(10), October 2001.
2. R. S. Arnold and S. A. Bohner. Impact Analysis – Towards a Framework for Com-

parison. IEEE Int. Conf. on Software Maintenance, pp. 292–301, 1993.
3. AspectJ, 2002. http://aspectJ.org.
4. M. W. Bauer, editor. Resistance to New Technology: Nuclear Power, Information

Technology, and Biotechnology. Cambridge University Press, Cambridge, NY, 1997.
5. L. Bergmans and M. Askit. Composing Crosscutting Concerns using Composition

Filters. Communications of the ACM, 44(10):51–57, 2001.
6. N. Bjørner. Type Checking Meta Programs. Workshop on Logical Frameworks and

Meta-Languages, 1999.
7. S. A. Bohner and R. S. Arnold, editors. Software Change Impact Analysis. IEEE

Computer Society Press, Los Alamitos, CA, 1996.
8. B. Borovanský, C. Kirchner, H. Kirchner, P. E. Moreau, and C. Ringeissen. Rewriting

with Strategies in ELAN: a Functional Semantics. Int. Journal of Foundations of
Computer Science, 2001. To appear.

9. B. Borovanský, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. ELAN: A
Logical Framework Based on Computational Systems. Workshop on Rewriting Logic
and Applications, 1996.

10. P. Borras, D. Clèment, T. Despereaux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. Centaur: The System. 3rd ACM SIGSOFT Symp. on Software Development
Environments, pp. 14–24, 1988.

11. B. M. Bouldin, editor. Agents of Change: Managing the Introduction of Automated
Tools. Yourdon Press, Englewood Cliffs, NJ, 1989.

12. Composition Filters, 2001. http://trese.cs.utwente.nl/composition_filters.
13. T. Elrad, M. Askit, G. Kiczales, K. Lieberherr, and H. Ossher. Discussing Aspects of

AOP. Communications of the ACM, 44(10):33–39, 2001.
14. M. Erwig. Programs are Abstract Data Types. 16th IEEE Int. Conf. on Automated

Software Engineering, pp. 400–403, 2001.
15. M. Erwig and D. Ren. A Rule-Based Language for Programming Software Updates.

3rd ACM SIGPLAN Workshop on Rule-Based Programming, pp. 67–77, 2002.
16. M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,

Reading, MA, 1999.
17. S. Horwitz, J. Prins, and T. Reps. Integrating Non-Interfering Versions of Programs.

ACM Transactions on Programming Languages and Systems, 11(3):345–387, 1989.
18. W. A. Howard. The Formulae-As-Types Notion of Construction. In J. P. Seldin

and J. R. Hindley, editors, To H. B. Curry; Essays on Combinatory Logic, Lambda
Calculus and Formalism, pp. 479–490. Academic Press, 1980.

19. Hyper/J, 2001. http://www.alphaworks.ibm.com/tech/hyperj.
20. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

Getting Started with AspectJ. Communications of the ACM, 44(10):59–65, 2001.
21. L. Magnusson and B. Nordström. The ALF Proof Editor and its Proof Engine. Types

for Proofs and Programs, LNCS 806, pp. 213–237, 1994.
22. P. Martin-Löf. Constructive Mathematics and Computer Programming. 6th Int.

Congress for Logic, Methodology and Philosophy of Science, pp. 153–175, 1979.
23. H. Ossher and P. Tarr. Using Multidimensional Separation of Concerns to (Re)shape

Evolving Software. Communications of the ACM, 44(10):43–50, 2001.

21

24. F. Pfenning. Logical Frameworks. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, chapter 21. Elsevier Science Publishers, Amsterdam, NL,
2001.

25. T. Reps. Algebraic Properties of Program Integration. Science of Computer Pro-
gramming, 17:139–215, 1991.

26. T. W. Reps and T. Teitelbaum. The Synthesizer Generator: A System for Construct-
ing Language-Based Editors. Springer-Verlag, New York, 1989.

27. L. Rideau and L. Thèry. An Interactive Programming Environment for ML. Rapport
de Recherche 3139, INRIA, Sophia Antipolis, 1997.

28. D. Roberts and J. Brant. Refactoring Tools. In M. Fowler, editor, Refactoring:
Improving the Design of Existing Code, chapter 14, pp. 309–352. Addison-Wesley,
Reading, MA, 1999.

29. T. Sheard. Accomplishments and Research Challenges in Meta-Programming. 2nd
Int. Workshop on Semantics, Applications, and Implementation of Program Genera-
tion, LNCS 2196, pp. 2–44, 2001.

30. W. Taha and T. Sheard. MetaML and Multi-Stage Programming with Explicit An-
notations. Theoretical Computer Science, 248(1–2):211–242, 2000.

31. E. Visser. Strategic Pattern Matching. 10th Int. Conf. on Rewriting Techniques and
Applications, LNCS 1631, pp. 30–44, 1999.

32. E. Visser. Language Independent Traversals for Program Transformation. Work-
shop on Generic Programming, 2000. Technical Report UU-CS-2000-19, Universiteit
Utrecht.

33. E. Visser. Stratego: A Language for Program Transformation Based on Rewriting
Strategies. 12th Int. Conf. on Rewriting Techniques and Applications, LNCS 2051,
2001.

34. E. Visser, Z. Benaissa, and A. Tolmach. Building Program Optimizers with Rewriting
Strategies. 3rd ACM Int. Conf. on Functional Programming, pp. 13–26, 1998.

35. E. Visser, et al. The Online Survey of Program Transformation.
http://www.program-transformation.org/survey.html.

36. J. Whittle, A. Bundy, R. Boulton, and H. Lowe. An ML Editor Based on Proof-
as-Programs. 9th Int. Symp. on Programming Language Implementation and Logic
Programming, LNCS 1292, pp. 389–405, 1997.

37. J. Whittle, A. Bundy, and H. Lowe. An Editor for Helping Novices to Learn Standard
ML. 14th Int. Conf. on Automated Software Engineering, 1999.

22

