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ABSTRACT

A layered model of steady geostrophic ocean circulation driven by wind stress and buoyancy flux at the
surface is derived. Potential vorticity, or thickness, of the two near-surface layers is driven by Ekman pumping
and buoyancy pumping. The latter is represented as a flow of mass proportional to the modified buoyancy
flux, across the first submerged layer interface. This mass flux is modified by the advection of buoyancy in
the wind-driven Ekman layer. Though diffusive diapycnal buoyancy flux across deeper layers is neglected at
lowest order, it is essential for the global balance of the buoyancy budget. The global buoyancy balance
requirement determines such parameters as the midocean outcrop latitudes of layers that outcrop in the
subtropical gyre, and the depths of interfaces at the eastern boundary of layers that do not. These parameters
control the mean thicknesses of the layers and, with the diapycnal diffusivity, the mean diffusive flux of
buoyancy through each active layer. In this way the area-mean stratification is determined by the wind-driven
circulation and the surface buoyancy flux.

Model solutions were computed for two idealized runs differing only by the amplitude of buoyancy forcing.
In run A, the surface buoyancy flux was chosen to give a meridional buoyancy transport equivalent to0 0.15 PW
(1 PW = 1 petawatt) across the subtropical-subarctic gyre boundary. In run B, the buoyancy forcing was
adjusted to give an intergyre meridional buoyancy transport equivalent to 0.51 PW, In both runs diapycnal
diffusivities in the layers were held at O(10™* m? s™*). These two runs gave density contrasts over the active
layers of 8 kg m™3 (run A) and 18 kg m™ (run B). The latter is an extremely large figure compared to the
maximum density contrast across the ocean pycnocline observed in nature. The author concludes that the
ocean cannot accomplish meridional buoyancy transports equivalent to O{1 PW), while diapycnal diffusivities
are O(10~* m? s~') and density gradients across the pycnocline are €O(4 kg m™3/1000 m). It is necessary for
global buoyancy and heat balance that there are regions in the oceans with far larger diapycnal diffusivities than
O(10™% m? 5~*). Likely candidates for such regions are the upper layers of the ocean, where extremely powerful
mixing can be driven by surface wind stirring and convection, and the high-energy zones of the western boundary
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currents.

1. Introduction

The qualitative manner in which wind stress drives
ocean circulation on the rotating earth has been un-
derstood for forty years. That this circulation is con-
fined within the main pycnocline (roughly, the upper
kilometer) can be easily seen by inspecting transoceanic
sections of density. The thickness of the pycnocline is
controlled by the necessity of the ocean to maintain
its heat, salt, and buoyancy budgets in balance. Many
simple models assume a basic stratification of the ocean
and impose on it wind-driven distortions to represent
the circulation. Numerical models often embrace the
full range of dynamical mechanisms that are thought

_important to the ocean circulation: wind stress, buoy-
ancy forcing, turbulent diffusion, etc. For practical
reasons, these models are usually started from states
very close to the observed stratification of the natural

Corresponding author address: Dr. Roland A, de Szoeke, College
of Oceanic and Atmospheric Sciences, Oregon State University,
Oceanography Admin. Bidg. 104, Corvallis, OR 97331-5503.

© 1995 American Meteorological Society

ocean, or driven by Newtonian heating and salting
boundary conditions that force them close to the ob-
served distributions of surface temperature and salinity,
This procedure begs the question of why the basic ocean
stratification is the way it appears?

In this paper, the task is taken up of formulating a
simple, steady, quasi-analytical, physical model of
ocean circulation that contains the minimal dynamical
features necessary to represent and explain the strati-
fication and circulation in terms of wind stress and
surface-buoyancy forcing. The ocean stratification is
represented by a set of discrete density layers, some of
which outcrop at the surface. The surface layer is forced
by the wind stress curl and the surface buoyancy flux.
The latter is equivalent to conversion, at a rate pro-
portional to the modified surface buoyancy flux, of wa-
ter from the subsurface density layer into water of the
surface density layer, or vice versa if surface buoyancy
flux is upward (Veronis 1978; Luyten and Stommel
1986). The model dynamics explicitly take account
only of geostrophic motions, so the surface buoyancy
flux must be modified by the divergence of horizontal
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buoyancy transport in the Ekman layer. If buoyancy
crosses the sea surface, then that buoyancy must cross
submerged isopycnal surfaces (layer interfaces) for the
intervening layers not to be lightened. This diapycnal
buoyancy flux is accomplished in the model by spec-
ifying a conventional parameterization of diffusivity
multiplied by buoyancy gradient, expressed in appro-
priate layer-discretized form. However, by neglecting
diapycnal fluxes at lowest order (except the surface
flux), we obtain a system much like the ventilated cir-
culation models of Luyten et al. (1983, hereafter LPS),
Talley (1985), and de Szoeke (1987, 1992), in which
potential vorticity is approximately conserved in sub-
merged layers. After obtaining the lowest-order cir-
culation, we use the integral constraint on each layer
that the net throughput of buoyancy must be in balance
(impossible without the reinstatement of diapycnal
buoyancy fluxes) to determine such parameters as the
meridional outcrop spacings (for layers that outcrop
in the subtropics), or layer thicknesses along the eastern
boundary (for layers outcropping in the subarctic).
These parameters, arbitrarily chosen by LPS, Talley
(1985), and de Szoeke (1992), control the mean
thicknesses of the layers and, hence, the discretized
mean density gradient of the ocean. We find these pa-
rameters by a trial and error method in which we
continually refine choices and recalculate the mass
and buoyancy circulations until buoyancy balance is
achieved.

The theory of the circulation model is derived in the
following sections. Particularly novel is the inclusion
of surface buoyancy forcing and diapycnal buoyancy
flux, and the use of these, with the constraint of area-
integrated buoyancy balance, to determine the mean
stratification. We applied the model to an idealized
double-gyre circulation system. Two runs will be dis-
cussed: one in which the buoyancy forcing is quite
modest (equivalent to 0.15 PW subtropic to subarctic
heat transport, if buoyancy were due solely to temper-
ature), and one in which buoyancy forcing is fairly
strong (equivalent to 0.51 PW subtropic—subarctic heat
transport). In both runs we insisted on diapycnal dif-
fusivities no larger than O(107* m?s™'). This led to
a fairly strong density stratification in the first case and
an extremely strong stratification (many times stronger
than observed in nature) in the second. There is a sim-
ple nexus between buoyancy (or heat) throughput on
one hand, and diffusivity and density stratification on
the other. To achieve realistic density stratification for
buoyancy throughput equivalent to O(1 PW) requires
diffusivities far larger than can be justified from mea-
surements of turbulent microstructure in the ocean
(Gregg 1987). The main practical result of this paper
is to pose the following dilemma. If the oceans really
process meridional buoyancy transports equivalent to
O(1 PW) heat transport, as compilations of climato-
logical air-sea fluxes (Esbensen and Kushnir 1981;
Isemer and Hasse 1987) and direct estimates of oceanic
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heat transport (Bryan 1962; Bennett 1978; Bryden and
Hall 1980; Bryden et al. 1991; Toole and Warren 1993)
suggest, where can the necessary diapycnal diffusivities
in the ocean much larger than O(1 X 10™*m?s~!) be
found? Leading candidates are the upper layers of the
ocean where very strong episodic mixing can be
generated by surface wind stirring and convection
(de Szoeke 1980), and the western boundary currents
where strong shears may generate energetic turbulence.

2. The model

Let us represent the ocean by a stack of layers labeled
m,m+1,...,4,...,n, n+ 1, with densities p,,,
v e vsDjs- s Pn, Pur1 (Fig. 1). The base of the jth layer
intersects the surface (“outcrops”) along the line y
= Y,(x). The depth of the base of the jth layer, the
interface between densities pj, pj+1, 15 2 = —H,(x, y).

In the limit of infinitely closely spaced densities, the
interfaces would correspond to isopycnal surfaces. Fol-
lowing Gent and McWilliams (1990) and de Szoeke
and Bennett (1993), we take these to be surfaces of
equal density averaged over the scales of microstructure
turbulence (nominally, spatial scales smaller than 10
m with a horizontal to vertical aspect ratio close to
unity and timescales shorter than the buoyancy pe-

P1
P2

FIG. 1. Schematic of the wind- and buoyancy-driven pycnocline
model in an ocean with a subtropical-subarctic gyre pair.
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riod). The unresolved microstructure scales can affect
diapycnal exchange of material. Further averaging, over
mesoscale eddy variability, is taken with respect to these
fluctuating isopycnals, not with respect to fixed levels.
From this frame of reference, mesoscale variability does
not contribute to average diapycnal material exchange.
In the momentum balance, velocity fluctuation cor-
relations on isopycnals produce additional eddy mo-
mentum transport divergence terms similar in form to
the conventional Reynolds stress terms. We shall ne-
glect these terms except in an implicit surface Ekman
boundary layer. In what follows, the horizontal layer
velocities that appear are the thickness-weighted
mesoscale-average velocities &; = hu;/h; (though we
shall drop the caret, and the bars on the mean thickness
h; = H; — H;_, and mean pressure p;). The averages
are carned out within a fluctuating isopycnal layer.
Thickness-weighted averaging produces novel pressure
gradient/thickness correlation terms —#;V p’/ pofzj in
the mesoscale-average momentum balance in isopycnal
layers (de Szoeke and Bennett 1993). These are prob-
ably negligible except in regions of high mesoscale eddy
variability, like boundary currents, which our model
does not cover, and are omitted in the geostrophic bal-
ance, which we shall assume. This careful, precise
specification of mesoscale-average isopycnals is crucial
to our identification of the diapycnal flows in the model
solely with diffusive microstructure processes and not
with mesoscale eddy processes.

As stated, motion is taken to be geostrophic and
hydrostatic in each layer:
—Jv; = =Djx/pos  fi; = —Dpjy/ po,

Djz = —80p;.

(2.1a,b,c)

It is convenient to restrict the discussion for the mo-
ment to the subtropical gyre, in which all the layers
with indices in the range m < j < n — | are assumed
to appear at the surface. The (n + 1)th layer, we shall
suppose, is motionless. By integrating the hydrostatic
relation from this motionless layer, in which the hor-
izontal pressure gradient is zero, we can see that the
pressure in each layer is, within a constant,

pj = —p;8z + poPi(x, y) (2.2)

for m < j < n, where, with v; = g(p;s1 — p;)/ po,

Pi=~.H,+ YgsHy1 + ++« +v;H; (2.3)

is the Montgomery potential for each layer. Hence Eqgs.
(2.1a,b) become

—fo;= Ju; = —Pj,.

The conservation of mass in the jth layer, allowing
for cross- 1sopycna1 flows ¢;, ¢;_; across the ]th and (J
— 1)th interfaces, is governed by

'_ija (24a,b)

V-(uhy) = (2.5)

ej—-ls
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where h; = H; — H;_,. This is a discrete version of the
steady thickness equation derived by de Szoeke and
Bennett (1993). Substituting (2.4), we can write this

as
h.
f(Pj, 7’)= & = €1,

which is a form of the potential vorticity balance equa-
tion. We shall call 4;/ f the potential thickness of the
Jthlayer. Denote by R, the region where layer k occurs
at the surface, Y, (x) < y < Yi(x). Then in R, we
identify the flow across the ocean surface:

-1 = 2V X (7/pof) = we,

with the Ekman pumping velocity. Otherwise, the e;
are related to the divergences of buoyancy fluxes due
to microstructure turbulence. The latter can be written
using discrete analogues of de Szoeke and Bennett’s
(1993) forms for the diapycnal microstructure buoy-
ancy fluxes F; = (g/po)(€xpx); in each layer. (Starred
subscripts denote fluctuations due to microstructure.)
In terms of diapycnal diffusivity coefficients Kj, this
gives

(2.6)

(2.7a)

Yiex = Bo— Frwr, j=k (2.7b)
‘Yjej = F‘] - F‘j+ls .] > ka (2'70)

where
F= ;‘;1@(% ~p)/2hy, j> k. (27d)

The buoyancy flux across the surface layer F, = Bj is
an exception to (2.7d); it must be the air-sea buoyancy
flux at the ocean surface, but modified by the diver-
gence of buoyancy transport, within the surface layer,
by Ekman currents, which are not part of the geo-
strophic currents countenanced by (2.1) (Nurser and
Marshall 1991). The necessary modifications are
shown for discrete layers in appendix A. It is convenient
to call By the buoyancy pumping. For j = n, the dia-
pycnal velocities e; are taken to be zero. This is equiv-
alent to assuming that the eddy diffusivities K are zero
forj= n. Yin et al. (1992) considered a layered model
represented by equations similar to the above.

By summing the potential vorticity balances (2.6)
over all moving layers from the nth to the kth, we
obtain the Sverdrup transport relation in the form

“2'[;72 (YnH G+ Yo Hopoy + + oo + v HE) = Wiy,
(2.8)
This can be integrated to give
O = v, Hy+voHioy +  + + + viHi
= 0(x, y) + ®(»), (2.9)
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where Hy = H(H,.f), H=—H(H.f); (216)
: 17 8H, AR AN Y]
O(x,y) = f — e (¥, ¥)dx’ (2.10)  gimilarly for derivatives of the P,. We shall use (2.15)
to rewrite the terms on the left side of (2.14):
and

b 27%(a, y
¢(y)=f ——t—(—y—)dy’vL {vH?
y Po

+ . +'kak}:. (2.11)
The latter contribution, ¥(y), ensures that the onshore
geostrophic transport at the eastern boundary, x = a,
namely,

1 60, 1 aP 3P,
— . = — " +
2f ay f(h oy ' & ay)
= h,,u,, + -+ hkuk, (212)

balances the offshore Ekman transport 7%(a, y)//fpo
(de Szoeke 1992).

Suppose we neglect the diffusivity-driven cross-iso-
pycnal fluxes, that is, formally set the diffusivity coef-
ficients K; in (2.7) to zero. Then, except for j = k, k
+ 1, the right side of (2.6) is zero, and we can write

h
s
where the functions T'; remain to be determined. Lines

of constant 4;/ fand P; are called the geostrophic con-
tours of layer j. We can manipulate Eq. (2.6) for j

—k+ 1,
h
J(Pl\+l, }-‘Ll) = — &,

into a more convenient form by making use of (2.8)
and (2.13). By repeated use of (2.13) and (2.3), we
can write H,, P, as functions of H, and ffor k + 1
<jsn-—-1:

=Ty(P), j>k+1, (2.13)

(2.14)

H, ,=H, —frn(Pn) = Hn—l(Hnaf)
H, »=H, — T, ((Poo1) = H,.2(Hy,, [)
Hioy = Hiio = fTi2(Pria) = Hii (Hy, 1)

(2.15)

These equations, with (2.3), represent an implicit so-
lution for the discretely layered form of the equations
in continuous density coordinates:

with boundary condition P(p,;) = 0 (Huang 1988).
In what follows, it will be useful to introduce notation
for partial derivatives with respect to H, and f:

H, 1 - .
J<Pk+l, —kﬂ) = [7 (Pt iHir1 — Pryy Hitr)
fz Pk+lHk+l]ﬂana (217)

1

=— 7 J(Pivr, Hi) + f2 Py Hy Hpx
1, B 5
= — }‘ Py (H, Hyy — Hy Hyy) + 7 Py Hyy
+'j§'2' ’k+1Hanx- (218)

We see that (2.17) and (2.18) involve the partial de-
rivatives Hy,, Hyy, Hyx, Hyy. We shall use the Sverdrup
relation (2.9) to relate VH, to VH,. Note that the par-
tial sum
Oy = 7nH31 + S ’Yk+1H12c+1 (2.19)
is, because of (2.15), a function of H,,, f. Hence (2.9),
rewritten as
Oks1(Hp, f) + viHE = 0(x, p) + &(¥), (2.20)
can be used to relate H, and H,. Taking the gradient
of (2.20), we obtain
0k VH, + @k+16j + 2y HiVH, = V(0 + &),
(2.21)
We use this to eliminate H,,, H,, from (2.17) and
(2.18). After a great deal of tedious manipulation,
(2.14) can be put in the form
(Un + crsrynd) * VHe = @i e + bisrni—1, (2.22)
where

1
w==——(=9,,3:)(0 + ®), 2
U 2an( s 0x)( ) (2.23)
Cenn) __B
+1[n —
fH,
Hy — Hy Pl Hisy — ﬁkHH'kﬂ]
X - - H
H 7 Pios Yk
POt — Py 1Oy ]
- , (2.24
2Pis (2.24)
R
Ap+1(n = 2H P’ (2.25)
Hy — H,
brotin = — {_k_ﬂT__k
Pl Hypy —Pk+.H';<+1] f
- =— . (2.26
P;H-l Hn ( )
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The coefficients ¢, a, b can, because of (2.15) and
(2.20), be thought of as functions of Hy, as well as the
geographic coordinates x, y. An observer moving with
the velocity given by

AXir 1

d[ = Un + ck+l]ni

(2.27)

which follows a characteristic trajectory along H; ap-
pears to change by (2.22); that is,

dH,

I (2.28)

= Qi1 1n€k t+ k1 |n€i1.

The interpretation of the observer’s trajectory (2.27)
is interesting. It is composed of two parts: the Sverdrup
transport U,, averaged over the depth of the totality of
moving layers H,, and the generalized long Rossby
wave propagation speed cxy,. The latter has a familiar
form for the case of two moving layers, n = k + 1. In

that case H, = P, = 0, = 0, while H', = 1, P\, = 2y,
0, = v,H,, so that ¢,, becomes :
B'Yn—l | 1 -t
== + . 2.29
Cnin fz Hn—l Hn _ Hn—l ( )

This is the well-known two-layer long Rossby wave
speed. In the same two-layer context,

Hn - Hn—l

Auin = 1 H
n

and by = — (2.30)

For two layers, Egs. (2.27), (2.28) thus reduce to Luy-
ten and Stommel’s (1986) circulation equations for
wind and buoyancy forcing. On the other hand, in the
general case for an arbitrary number of layers, Eqs.
(2.27), (2.28), together with the Sverdrup relation
(2.9), and the potential thickness relations (2.13),
represent a complete system for the determination of
all the layer interface depths H;.

When ¢, = 0 (no buoyancy forcing), it can be shown
that k. / f is conserved along the characteristics given
by (2.27). Hence, the characteristics coincide with the
geostrophic contours for layer k£ + 1 in this case. When
ex # 0, so that potential thickness in layer k + 1 is not
conserved, the characteristics represent a generalization
of the idea of geostrophic contours. For this reason we
associate the characteristic x4 (f) with the index of
the next-to-surface layer k + 1. Although the geo-
strophic contours of a deeper layer are also character-
istics of the p.d.e. for that layer, we shall reserve the
term for the next-to-surface layer. Does the surface layer
possess characteristics? The question need not arise be-
cause the surface layer potential thickness equation has
been replaced by the sum of equations over all layers.
This gave the Sverdrup transport relation (2.8), whose
characteristics are merely constant latitude lines.
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a. Specification of potential thickness relations and
layer outcrops

It remains to determine the functional relations
T;( P)) between the potential thicknesses and Mont-
gomery pressures in (2.13). This is only an issue in the
anticyclonic part of the circulation gyre wheére surface
waters tend to be pushed equatorward and subducted
under lighter water. So the functions are specified along
outcrops like Y;( x), where H; = 0, and where layer j
+ 2 water is about to pass beyond the direct influence
of wind stress (surface layer) and buoyancy flux (sur-
face and next-to-surface layers) and thence conserve
its potential thickness. LPS were able to choose the
Y,(x) to be constant latitudes. However, de Szoeke
(1992) showed that under conditions where the along-
shore wind at the eastern boundary is nonzero the
proper satisfaction of the eastern boundary conditions
determines the shapes of the outcrops Y;( x) near the
boundary, given only their eastern boundary intersec-
tions y;. This influence on Y;( x) [and T';;2(Pj42)] ex-
tends only a finite distance into the ocean, beyond
which the outcrops may be taken to be constant lati-
tudes y}. De Szoeke’s (1992) treatment needs to be
modified to take account of buoyancy forcing. This is
done in appendix B.

b. Western boundary conditions

For a layer k that surfaces in the northern portion
of the subtropical gyre, the condition

U,,+Ck+1l,,>0 (231)

holds along the western boundary, x = 0. In this sit-
uation we must assign “initial” values for the surface
and next-to-surface layer depths H,, Hy., at the western
boundary. This is done as follows. The potential thick-
ness of the submerged layer is chosen to be constant
along the western boundary

(Hyyy — Hk)/f= {Hk+l/f}(0,}'k(0))- (2-32)

This requirement, with the Sverdrup relation (2.9),
serves to determine Hy, H,, along the portion of the
western boundary where layer k is at the surface. (The
deeper layers, Hy.a, . . ., H,, are determined by their
potential thickness—pressure relations.) The region of
layer k + 1 covered by characteristics that originate at
the western boundary is called the western shadow
zone. Condition (2.32) is motivated by LPS’s require-
ment that such layers [satisfying (2.31)] have homo-
geneous potential thickness. In the case of nonzero
buoyancy forcing, e, > 0, Eq. (2.22) [or Eq. (2.14)]
shows that the constant potential thickness value (2.32)
enforced at the western boundary does not persist
throughout the western shadow zone. As the charac-
teristics of layer k + 1 in the western shadow zone pass
under y = Y;_;(x), the potential thickness—pressure
relation for that part of layer k 4+ 1 is determined in
the same way as described above.



MaAy 1995

As noted in appendix B, an exception to this rule
applying a western boundary condition is made for the
layer (labeled 4 in appendix B), which does not surface
in the subtropics but is forced by buoyancy flux (and
would be stagnant otherwise).

3. Circulation in the subarctic

We now turn to the theory of circulation in the sub-
arctic. Because the meridional component of the Sver-
drup flow is poleward, characteristic trajectories [ Eq.
(2.27)] move poleward. Because Ekman pumping is
upward, surface layers tend to shoal along these char-
acteristics. This effect is exacerbated by generally neg-
ative surface buoyancy flux, which also tends to di-
minish the surface layer thickness. Hence, the surface
layer tends to shoal to nothing, to be replaced as surface
layer by the next denser layer. This leads to a nesting
of ever denser outcropping layers in the subarctic.

First, we shall define what we mean by the terms
“subarctic” and “subtropical.” Consider the region
R, in which layer » — 1 is found at the surface and
overlies layer n, the only other O(1) moving layer. In
this region Ekman pumping reverses sign along some
line (Fig. 2); that is, from (2.23),

H,V, = 8 fig = 0. (3.1a)

Now U, is usually positive in the vicinity of wg, = 0,
though decreasing towards the east, while ¢,;,, < 0, so
that somewhere along this line

U, + cun = 0. (3.1b)

[If this does not occur, then we look in the adjacent
regions R, or R,_,. In other words, conditions are al-
lowed to define the index »n.] The conditions (3.1a,b)
describe a point for the differential equation (2.22) at
which four stagnant characteristics meet, two arriving
(one each from the eastern and western boundaries),
and two departing. Because |U, + cui| = O at the
stagnant point, an “observer” following any of the four
characteristics takes forever to arrive or depart from
it. All other layer-n characteristics are first attracted to,
and then repelled by the stagnant point, called the
“Rossby attractor.” The regions north and south of the
pair of stagnant characteristics approaching the Rossby
attractor are called the subarctic and subtropics, re-
spectively (Fig. 2). If the zero Ekman pumping line is
zonal, that is, along y = b, then these stagnant char-
acteristics will coincide with y = b. The circulation in
the subarctic (subtropical ) region will then be entirely
cyclonic (anticyclonic). Otherwise, circulation in the
subarctic (subtropical ) region will be mostly cyclonic
(anticyclonic ), though with a small wedge between the
stagnant characteristic and the zero Ekman pumping
line where it is anticyclonic (cyclonic).

Now we integrate Eq. (2.22) [or (2.27), (2.28)] in
the subarctic region for k = n — 1. Equations (2.29),
(30) give Cuin> Gnjn, bnjn. Except in the small anticy-
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subarctic \

"‘-_S.ubtropics /

ik
x=0

FIG. 2. The Rossby attractor (RA), where U, + ¢p.i = 0, and the
zero Ekman pumping line wg, = 0 (dashed). Regions of positive and
negative Ekman pumping are north and south of this line. The char-
acteristics arriving at RA from the eastern and western boundaries
define the boundary between subarctic and subtropical regions. Note
that subarctic (subtropical) is not synonymous with positive (negative)
Ekman pumping.

X=a

clonic wedge, Ekman pumping is positive, €,., = wg
> 0. If the buoyancy forcing is negative, then e,
< 0. Both terms on the right side of (2.28) are negative
and tend to reduce the surface layer depth H,_, along
the characteristics given by (2.27). Eventually the sur-
face layer depth may dwindle to zero. This will define
an outcrop line for layer n — 1; namely, y = Y, (X)
[or x = X, (p) if the outcrop is multivalued as a func-
tion of x} and a boundary for region R,_;. Beyond
Y,-1(x), in region R, the surface and next-to-surface
layers have indices #, n + 1. The layer depths in this
region are described by Egs. (2.9), (2.22) with » re-
placed by n + 1, and & = n. These equations can be
integrated throughout R, following layer n + 1 char-
acteristics given by Eq. (2.27), with n replaced by n
+ 1 and k = n. Buoyancy forcing e, puts layer n
+ 1, inert in regions R, |, R, 5, ..., into motion in
R,. Along y = Y, ((x), the characteristics are initialized
by the terminal values of H, from the integration along
layer # characteristics in R, ; H,,, is given by H,..,(a,
b), the constant value of the depth of layer n + 1
throughout regions R,., ..., and in particular along
the eastern boundary. The surface layer depth H, in
region R, may also decline to zero along layer n + 1
characteristics. This defines the subarctic outcrop Y,(x)
of layer n. To integrate beyond Y,,(x) into region R, ,
we simply repeat the procedure outlined. In this way
we may get a nest of ever denser outcropping regions
R,—1, R, Ry41, - . ., Ry in the subarctic. The index N
refers to the densest outcropping layer in the subarctic.
At any point in the subarctic only two layers are in
motion, the surface and next-to-surface layers.

4. Balancing the global buoyancy budgets

There remains a number of arbitrary parameters,
one associated with each layer. For each layer ; that
outcrops in the subtropical gyre, that is, for j < n — 2,
there is the arbitrary latitude y§ at which the outcrop



924

intersects the eastern boundary (or alternatively, the
latitude y} of the midocean outcrop line). For each
layer j outcropping in the subarctic circulation, that is,
J = n — 1, there is the depth of that layer H;y = Hy(a,
b), specified at the subarctic~subtropical transition on
the eastern boundary. There is a rational way to choose
these parameters; it follows from considering the net
balance of buoyancy flowing through each layer.

In this discussion we must reinstate the diapycnal
velocities e; driven by the diffusive diapycnal buoyancy
fluxes F; [Eq. (2.7)], but neglected after Eq. (2.13).
Yin et al. (1992) studied a layered model of deep-water
formation, similar in its basic form to the present one.
However, they considered the contributions to the
cross-isopycnal flows only of deviations of the depen-
dence of fluxes F; on layer depths 4; from some static
background state; the effects of which were discarded.

a. Buoyancy balance
[) LAYER ]

We begin with the layer, arbitrarily labeled 1, which
we take to be the lightest layer, abutting the equator-
ward boundary, at which there is no normal transport.
Water crosses the base of layer 1 at rate ¢, per unit area
and is exported (or imported) across the outcrop Y,
by the Ekman transport at rate E; [Eq. (A3)]. For
steady state these mass sources and sinks must balance

—E +f endA =0 (4.1)
VR
(Fig. 3). Now ¢, is given by (2.7b) for k = 1:
e; =(Bo— F2)/vi, in Ri:y<Y,, (42)

where Bj is the modified surface flux and F; is given
by (2.7d). The integral over R, of the modified buoy-
ancy flux (A2) is, because of (AS),

BodA BodA + 'YlEl (43)
Ry
Then (4.1)-(4.3) give
BodA = | FdA. (4.4)
Ry Ry

This expresses the simple fact that, in steady state, the
total buoyancy received at the sea surface by layer 1
must be balanced by the area-integrated diffusion of
buoyancy F, through layer 2. The volume balance
statement (4.1) is evidently equivalent to the buoyancy
balance statement (4.4). Though e, is given in terms
of the modified buoyancy flux Bj, it is the net surface
buoyancy flux By that appears in (4.4). The diversion
of surface buoyancy flux to alter the Ekman transport
across the outcrop Y, while important to the internal
redistribution of layer 1, does not figure in its integrated
buoyancy balance.
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Ekman
Layer

P1

Pz

P3

F1G. 3. Schematic illustrating that the surface buoyancy flux, in-
tegrated over waters lighter than a certain value, must be balanced
by the diffusive flux integrated over the submerged interface separating
the lighter waters from the denser waters. See Eq. (4.11).

2) LAYER 2
Next, we consider the mass budget of the next denser
layer, labeled 2. This is given by
—Ez + E] + f esz - eldA = 0, (45)
RUR, Ry
(Fig. 3) where E; is the Ekman transport across outcrop
Y,, and
e = (Bo — F3)/v2, (4.6a)
= (Fy — F3)/72, (4.6b)

with F,, F; given by (2.7d). By adding (4.1) and (4.5),
we obtain

in R2

in .R1

Y|<y< Y2
y<n,

—E, + f exdA = 0. 4.7)
RyUR,
Also, similar to (4.3), we obtain
BydA = BodA + v, E,. (4.8)
Ry R,
Hence, (4.7) may be written
BodA + f F2d/1 = F3dA, (49)
R, R, R{UR;
or, by adding (4.4),
f BodA = FidA. (4.10)
RUR, R\UR;
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3) LAYER

Indeed, this argument may be repeated for any layer
that outcrops, for example, layer j, to the effect that

ux, BodA = fURk Fji1dA,

k<j

(4.11)

k<j

where Fj,, is given by (2.7d). Equation (4.11) illus-
trates a fundamental buoyancy balance principle of
the stratified ocean. The buoyancy acquired through
air-sea exchange at the ocean surface by all layers
lighter than, and including, the jth must balance the
diffusion of buoyancy through the (j + 1)th layer. The
fundamental importance of diapycnal diffusion to the
maintenance of the buoyancy balance is clear. Without
it, it would be impossible to accommodate a nonzero
distribution of buoyancy flux into the ocean surface.
The relation (4.11) may be readily generalized to the
continuously stratified ocean (Speer and Tziperman
1992). The validity of (4.11 ) does not depend on the
parameterization (2.7d) of diapycnal fluxes. Nor does
it depend on the quite mild neglect of the divergence
of along-isopycnal fluxes in (2.7b,c), because the area
integral in (4.11) ensures their disappearance. For ex-
ample, the parameterization of alongisopycnal buoy-
ancy flux, which Gent and McWilliams (1990) pro-
posed, would have no effect on the appearance of
(4.11). Still, the parameterization (2.7d) relating
buoyancy fluxes to density gradients by means of dia-
pycnal diffusivity coefficients provides a convenient
closure of the problem, one that has considerable em-
pirical basis in oceanic microstructure measurements
(Gregg 1987; Ledwell et al. 1993). We emphasize that
with the definition of average isopycnal surfaces (or
discrete layer interfaces) given in section 2, only mi-
crostructure processes can contribute to the diapycnal
buoyancy flux in (4.11).

A special case of (4.11) is for J = N, the densest layer
to outcrop at the ocean surface in the subarctic. Then
the left side of (4.11) is the integral of buoyancy flux
over the entire area of the ocean. For steady state, this
must vanish. Indeed, we shall require surface buoyancy
flux fields to satisfy

f BodA =0.
UR,

k<N

(4.12)

This requires that the right side of (4.11) also vanish
for j = N. We effect this in our model by setting K.,
= 01in (2.7d), that is, no diffusion in layers below the
densest outcropping layer.

b. Determining the Stratification

The imposition of the buoyancy balance require-
ment (4.11) for each layer settles the last remaining
indeterminacies in the model. These were the midocean
outcrop latitudes )" of layers that outcrop in the sub-
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tropics (or, equivalently, the eastern boundary inter-
sections y; of the outcrops) and the choice at the east-
ern end of the subtropic-subarctic boundary of the
depths of deeper layer interfaces Hj that do not outcrop
in the subtropics. The qualitative way in which these
parameters influence (4.11) can be easily seen. By in-
creasing H;,| o or Yj+1, whichever parameter is appro-
priate, the average thickness of layer J + 1 tends to be
increased (Fig. 3). This reduces the right side of (4.11).
Conversely, by decreasing Hj, p or y)%, the right side
of (4.11) can be enhanced. So by varying these param-
eters, the balance (4.11) can be achieved. (Of course,
for each choice of these parameters, the entire distri-
bution of layer depths must be recalculated.) In this
way the requirements represented by (4.11) of balance
of integrated buoyancy flux through each layer deter-
mine parameters that, together with the requirements
that the wind-driven circulation makes on layer depth
distributions, determine the mean stratification of the
ocean.

Perhaps this method of determining the stratification
can be illustrated by an analogy with a simpler system.
Suppose a longitudinal rod made of material of known
thermal diffusivity is heated on one end at a known
constant rate by electrical heating coils. We might ask,
what is the eventual steady distribution of temperature
in the rod? An approximate method to answer this
question might consist of guessing the positions of a
number of isotherms along the rod, computing the heat
flux (diffusivity X temperature gradient) along the rod,
comparing with the imposed heat flux, readjusting the
positions of the isotherms where the agreement is worst,
and repeating the process until acceptable agreement
is obtained. This procedure fails if the total range of
temperature in the rod is grossly underestimated in the
initial guess. This manifests itself as the initial guessed
heat flux being everywhere far smaller than the imposed
heat flux. The remedy is plain: to choose a larger total
range of temperature. Then the above procedure can
be used to refine the positions of isotherms. The rele-
vance of this simple analogy to the ocean model is
obvious. The relaxation procedure is far more arduous
in the ocean model because the layer topographies and
circulation must be calculated for each trial setting of
the layer parameters. The average thickness of layers
is analogous to isotherm spacing in the rod. By the
remarks about the inadequacy of the initial guessed
temperature range in the rod, we anticipate a major
result of this paper: that a prior choice of density range
in the model ocean guided by observed density ranges
from nature cannot match the buoyancy flux through
the pycnocline with the surface buoyancy flux; a much
larger density range is necessary.

It must be emphasized that this procedure does not
Jointly determine layer densities and depths, but only
the latter, as long as a sufficient total range of density
is allowed for.
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There is a parameter, Hjo or y}', for each layer that
outcrops anywhere in the ocean basin. There is a re-
lationship like (4.11) for each outcropping layer. Hence
there are, prima facie, just enough unknown parame-
ters and equations to determine them. However, the
fact just noted, that the Nth version of (4.11) is guar-
anteed by specifying By so that (4.12) holds and K.,
= (J, removes the power of that equation to constrain
the Hjo, y;'. This indeterminacy should be understood
as follows. It has been convenient in this paper to take
surface buoyancy flux B, as a given. In fact, there are
constituents of the surface buoyancy flux, such as the
sensible and latent heat fluxes, which depend on the
air-sea temperature difference (Haney 1971). If this
air-sea coupling of the flux constituents is taken into
account, then the steady-state requirement (4.12) is
not merely a constraint on an externally imposed By(x,
¥) but is a true constraint on the area-average surface
temperature (or density). In terms of the model, this
is a constraint on the positions of the layer outcrops,
and hence on the determination of the Hjy, y} param-
eters. Failing such a coupling dependence in the surface
flux, the one-parameter indeterminacy is simply a re-
flection of the fact that the thermodynamics of the sys-
tem is invariant to an arbitrary shift of all the layer
densities.

The (N + 1)th layer is put into motion by nonzero
en [Eq. (2.7b) with Fy,, = 0]. Hence, we have cal-
culated a layer topography Hy,(x, y) for this layer,
given an eastern boundary value Hy, . The choice of
this parameter is quite arbitrary and inconsequential
as this layer does not participate in the buoyancy bal-
ance (because Ky, = 0). The depth Hy(x, ») is
really a proxy for the pressure distribution in the (N
+ 1)th layer.

¢. Buoyancy-driven corrections to the circulation

In section 2 we neglected all diapycnal diffusivities
K; = 0. The apparent inconsistency of this with the
requirements of (4.11) is resolved if the diffusive con-
tributions to the diapycnal fluxes e; are merely small
compared to surface Ekman pumping wg,. Formally,
the corrections to layer depths should be calculated
from the linearized form' of (2.6),

p® h}” (1) hf(‘o) _ O (1) 13
P; ,.,—f— + J P ,—f— =e ' —ejii, (4.13)
where #" = H — HO, PO = yH + ..

+ v H f,‘j), the H {n being the corrections to the zero-
order depths HJ(» ) obtained above. These corrections
are forced on the right by the contributions to the ¢;
proportional to K;; namely,

ye' = BV — Fl, (4.14a)

FjV = fK,—(ij — i)/ 2k, (4.14b)
0
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where zero-order thicknesses h;o) are used to estimate
the diffusive fluxes. In addition to (4.13), the depth
corrections must not alter the (linearized) Sverdrup
balance (2.9). Hence, they must satisfy

vHOH" + oo+, HOHD = 0. (4.15)

The calculation of these corrections is beyond the scope
of this paper, although in the example calculations in
section 5, we will obtain the corrections along the sub-
tropical-subarctic gyre boundary so that we can show
how the cross-gyre exchange, which is associated solely
with the diffusive corrections, accomplishes the trans-
port of buoyancy from subtropics to subarctic.

5. Model runs

We shall show two model runs designed to illustrate
the role of buoyancy forcing in ocean circulation. In
both runs we chose the following analytic form for the
midocean zonal wind stress over the rectangular basin,
O<x<a,—-b<y<3b:

TH¥) =170 U £(y) sin&(y),

.1
7 (5.1a)

where

Ey)=&(1 ~ |y — b|/2b). (5.1b)

This gives a Sverdrup transport forcing function (2.10)
of

Jo
where 0y = 7, foaé s/ poBb, and

-— —1’
y) = 1,

The value £, = £ b) = 2.029 is chosen to be a zero of
(5.2a); ¢ = 1.391 is the maximum value of (sinf + £
cos{), attained at |y — b|/2b = 0.47. For the zonal
and meridional extent of the rectangular basin, we
chose a = 5000 km, 4b = 6000 km. Other physical
parameters were fo = 107#s7!, 8=2X 107" m ' s7!,
po = 1000 kg m™>. In both runs we used 7o = 0.104
N m~? for the midocean zonal wind amplitude; this
gives 0y/2fo = 24.5 Sv (1 Sv = 10° m* s7") for the
approximate strength of the subtropical gyre. The
Sverdrup function O is plotted in Fig. 4. A constant
alongshore wind 77 is taken to blow along the eastern
boundary;' we set 7% = —0.05 N m~2? (equatorward).
For the surface buoyancy flux, we chose

2
0= G)O(i) o' (sinf + £ cos§)e(y), (5.2a)

>b
Y (5.2b)
y<b. :

! This may be accomplished by adding a wind stress of the form
7 = 12 EINS(BN) ! Inf + §)

to the zonal wind of Eq. (5.1a). This produces no Ekman pumping
and makes no contribution to (5.2a).



MaAy 1995

BUOYANCY W m~2

—

—-1500 -+
0 5000 -50

(o) (b)

FIG. 4. (a) The Sverdrup wind forcing function ©/2f; used in runs
A, B; units: 10° m3s™'. (b) The surface buoyancy flux cpBy/ag; units:
W m™2, Run A (solid); run B (dashed).

By = B,(—b——}i)(l - e—(2b'|y—bl)/>\5)_ (5.3)
2b

The exponential factor (decay scale Ag = 600 km) was
introduced to bring the buoyancy forcing to zero at y
= —b, 3b. The buoyancy-forcing function is shown in
Fig. 4b. For run A, we chose the buoyancy-forcing am-
plitude to be B; = 1.5 X 1078 m? s>, Multiplied by
the factor poc,/ga = (4.0 X 106 Jm™3°C')/(9.8
ms2)(2X 107*°C™') = 2.0 X 10° T m™* s?, this is
equivalent to a surface heat flux amplitude, analogous
to B, in (5.3), of 30 W m~2. (Not to be confused with
the maximum surface heat flux, of 16 W m~2, which
occurs at y = —598 km.) The area-integrated equivalent
heat flux into the subtropical ocean gyre (—b < y < b)
is 0.15 PW (1 PW = 10'> W); a similar rate of equiv-
alent heat transport crosses the meridional gyre
boundary at y = b and leaves the surface ocean in the
subarctic gyre (b < y < 3b).

In run B, the buoyancy forcing amplitude differed
from run A in being more than three times as large:
B, =5 X 1078 m?s~3. This is equivalent to a surface
heat flux amplitude of 100 W m~? (with maximum
surface heat flux of 54 W m™?) and an area-integrated
equivalent heat flux into the subtropical ocean gyre of
0.51 PW. The wind forcing was identical to run A.
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When running the model, it is necessary to select
the densities of the layers. It is possible, in principle,
to select a standard density difference, say Ap = 1.0
kg m™, and then vary the Hj, or y} layer by layer
until buoyancy balance is achieved. For a smaller
choice of Ap we must anticipate a larger total number
of layers. Hence, to control this total number (for
computational convenience we have sought to restrict
it to 6 or 7), a judicious choice of Ap must be made
so that the total range of density required by the buoy-
ancy balance is covered in a model with such a modest
number of layers. This is arrived at by the considera-
tions outlined in the discussion following Eq. (4.11)
above.

It is not necessary or even desirable to insist on the
same Ap between each pair of layers; Tables 1 and 2
show the density differences and reduced gravities that
have been used in runs A and B. The partitioning of
the continuous density profile of the natural ocean into
the discrete densities of the layered model is clearly not
unique. A different choice of layer densities will lead
to different topographies of layer depths. Still, by in-
voking the principle of consistency, that in the limit
of a large number of layers with ever smaller density
differences the layer equations approach the continuous
isopycnal-coordinate equations of motion, we may ar-
gue that circulation solutions for particular discrete
density partitions provide useful insights into natural
ocean circulation.

The topographies of the depths H; of the bases of
the six layers of run A are shown in Fig. 5a. Table |
lists the depths Hj at the northeastern corner (q, b) of
the subtropical gyre of the interfaces that do not outcrop
in the subtropics, and the midocean outcrop latitudes
yj" of those that do. These have been determined by
the trial and error relaxation methods outlined in sec-
tion 4. Also shown are the eastern boundary intersec-
tions y; of the outcrop. Layer 3 carries most of the
anticyclonic circulation of the subtropical gyre, deep-
ening from 100 m along the eastern and southern
boundaries, and the subtropical-subarctic boundary,
to more than 600 m in the center of the gyre. Figure
6 shows the Montgomery potentials for the layers, from
which the velocities may be calculated [Egs. (2.3),
(2.4)]. Layers 2 and 1 lie nested atop layer 3 in the

TABLE 1. Parameters for run A, layers 1-6. Reduced gravities v;, relative densities p;, — p,, eastern boundary depths Hj, outcrop latitudes
Y7, y5, diffusivities K;, mean inverse thicknesses /;, exposed surface areas A;-; of waters lighter than p;.

Vi, T Hy v yi K; h; Ay
j (ms? (kg m™) (m) (km) (km) (107 m?s7) (m) (10" m?
1 0.015 0 - —754 —1409 —_ — _
2 0.015 1.53 — ~152 —-1113 0.11 28 3.47
3 0.0135 3.06 100 — —_ 1.84 230 6.61
4 0.02 4.44 700 — — 0.69 234 15.4
5 0.02 6.48 1500 —_ — 2.36 892 274
6 0.0075 8.52 2400 — — 0 901 30.0
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TABLE 2. Parameters for run B; similar to Table 1.

87 i = Py Hyp e y§ K; A Ap
J (ms7?) (kg m™) (m) (km) (km) (10 m?2s™) (m) (10" m?)
1 0.05 0 — ~954 ~1377 — — —
2 0.03275 5,10 — 420 767 0.13 37 2.55
3 0.03275 8.44 100 — — 1.35 166 9.50
4 0.03275 11.79 500 — - 1.15 234 15.7
5 0.025 15.13 1000 — — 3.31 556 24.7
6 0.025 17.68 2000 — — 0 1030 30.0

southern sector of the gyre, with maximum depths of
only 60 m and 30 m, respectively. Overlaying of the
Montgomery potentials shows the rightward turning
of the currents with depth, as required by the beta spiral.
Layer 3 outcrops very closely around the northern,
eastern, and southern rim of the subarctic gyre, ex-
posing layer 4, which is found at the surface over about
three-quarters of the gyre.

0
1500

5000 O

Figure 5b shows the pattern of characteristics for
run A of the first submerged layer in each of the regions
of surface exposure of the layers. In R; (where layer 3
is exposed at the surface), characteristics for layer 4
start from both eastern and western boundaries. There
is a stagnation point (Rossby attractor) rather close
to the eastern boundary at x 4910 km on the
subtropical-subarctic gyre boundary (y = 1500 km)

5000

1500

Layer 4

5000

Layer 5

-
e Jad

7

269200

Layer 6

1500
0

5000

0 5000

F1G. 5. (a) Depths of bases of layers 1-6 for run A. Shaded regions indicate absence c?f ghe layer.
Layers 5, 6 have constant depths in the subtropics, which are not shown. (b) Characteristics of the
next-to-surface layers in the various outcropping regions for run A.
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from which emerge limiting characteristics, which di-
vide R, into subregions reached by characteristics
starting from the eastern and western boundaries
(de Szoeke 1992). All characteristics return to the
western boundary in the subtropics or reach the outcrop
of layer 3 in the subarctic. A cusp develops in the out-
crop of layer 4 in the subarctic where characteristics
that originate from eastern and western boundaries
near the subarctic-subtropical boundary converge.
Only two layers are in motion at any given point in
the subarctic: layers 3 and 4 in R;, layers 4 and 5 in
R4, and layers 5 and 6 in Rs. Even so, the deeper of
these pairs is very sluggish. The pattern of the depths
of layers 4 and 5 contains most of the cyclonic circu-
lation of the subarctic gyre.

Figures 7 and 8 show the interface depths, char-
acteristics, and Montgomery potentials of the layers
for run B. Qualitatively these figures resemble those
for run A. Table 2 lists the layer densities and other
parameters relevant to run B, similar to Table 1.
Again, we emphasize that the depths H,,, or sub-
tropical outcrop latitudes y}’, have been determined
by the consideration of layer buoyancy balances
(section 4). The major contrast between runs A and
B is the much larger density differences, two or three
times larger, that have been employed in the latter.
These choices were dictated by the requirement of
keeping the same number of active layers (six) in
the two runs.

In Tables 1, 2 we list for runs A, B the average inverse
thicknesses and areas of the submerged portions of the
layers, defined by

1500 ‘ -

ﬁ)//

e
e

—1500
0

5000
F1G. 5. (Continued)
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- 1 1
h=(— | —a'A)”‘
! (A; 1R Ay

dA. (5.4)

where  4;_, =f
URk

k<i1

These quantities are important because they appear on

the right side of Eq. (4.11), which expresses the buoy-

ancy budget of layers lighter than the jth, and may be
Pi+1 — Pj-1

written
BodA =
f 0 2hj+[

The 71 are functions of 1n1t1al” interface depths Hjo
(or outcrop latitudes y;). Using these mean thick-
nesses, we have constructed mean density profiles for
runs A, B from Tables 1, 2; these are shown in Fig. 9.
Our design goal for these runs was to use diapycnal
dlifuswmes K; of the canonical order of magnitude 10~
m? s~} and to vary the Hjo (or y}"), while recalculating
the depth topographies of the layers for each trial, until
Eq. (5.5) was brought into balance. Because this pro-
cedure is rather arduous and diffusivities are in any
case uncertain, we did not insist on exact balance of
(5.5) for predetermined values of K. Instead, the K;
shown in Tables 1, 2 are the values that ensure, a pos-
teriori, perfect balance of (5.5). Except for layer 2 in
both runs, the a posteriori K are within a factor of 2
or so of the canonical 107 m?s™'. For layer 2, K,
= 0.1 X 107*m? s ! is required for buoyancy balance.
A smaller choice of p3 would allow a larger K, and so
would a more southerly choice of y{, the midocean
outcrop of layer | that partially controls the thickness
of layer 2. We chose not to pursue this issue because
layers 1 and 2 are so slight in thickness and play a
minor role in the circulation.

The total density contrast over the six active layers
of run A was 8.5 kg m™>. This is larger than, though
comparable to, the observed density contrast in the
real ocean pycnocline. The diffusivities K; for run B
were similar to those for run A—of order 10 ‘m2s™!
(again excepting layer 2). The total density contrast
for run B was 17.7 kg m™3, twice as large as for run A.
Evidently, to process 0.5 PW equivalent heat flux
through the system of layers of run B by satisfying the
buoyancy constraints (4.11) or (5.11) requires a much
stronger pycnocline than the slighter buoyancy
throughput of run A. The magnitude of this density
contrast is not found in the natural ocean. Even the
8.5 kg m™ density contrast found necessary in run A
is quite large. To reduce the density contrast in run B
to, say, 5 kg m™> would require diffusivities several
times larger than those in Table 2.

A (5.5)

j+l

a. Discussion

The relation between the buoyancy flux and the re-

~ sulting density contrast across the pycnocline can be



930 JOURNAL OF

PHYSICAL OCEANOGRAPHY

5000 O

VOLUME 25

5000

-1500

0 5000 O 5000
4500 ~~ w

wgij I :/m®

A& 7 - T
( Layer 5 '/ Layer 6

1500 - =

0 5000 O 5000

FIG. 6. Montgomery potentials of layers 1~6 for run A (unit: m? s72). Shaded regions indicate
absence of the layer. Layers 5, 6 have constant potentials in the subtropics, which are not shown.

understood by a simple scaling argument. Suppose the
mean surface buoyancy flux 0.34 B, [the factor 0.34
comes about from averaging (5.3 ) over the subtropics]
is balanced by diapycnal diffusion across a pycnocline
of thickness /,, with density contrast Ap,. This is ex-
pressed by

Aoy

QM&~£mh
D

(5.6)
Po .

[cf. (5.5)]. Forrun A, the parameters Ap, ~ 8 kg m ™,

B, = 1.5 X 10 m?s73, h, ~ 1500 m (see Fig. 5),
and K; ~ 10™* m? s~ satisfy the order of magnitude
balance (5.6) quite well. Similarly, for run B, the pa-
rameters B; = 5 X 10* m?s™3, Ap, ~ 18 kgm™3,
with K; ~ 10™* m?s™!, and A, ~ 1200 m satisfy (5.6).
Equation (5.6) illustrates the link between diapycnal
diffusivity, density gradient, and surface buoyancy flux.
Given a canonical diffusivity of 107 m? s™! [which

can scarcely be exceeded if microstructure measure-
ments are to be believed (Gregg 1987)], sustaining
an average surface buoyancy flux of 0.5 X 1078
m? s in the subtropics requires a density gradient
through the main pycnocline about twice as large as
is observed (run A). This buoyancy flux is equivalent
to an average heat flux of 10 W m™2 and drives an
equivalent meridional heat transport of 0.15 PW into
the subarctic gyre. Substantially larger average sur-
face buoyancy fluxes, such as in run B, which are
equivalent to meridional heat transports of about 0.5
PW into the subarctic, require density gradients
across the pycnocline many times larger than ob-
served. Substantially larger diapycnal diffusivities
than O(10™* m?s™!), combined with reasonable
density gradients, could satisfy (5.6), but these seem
very difficult to reconcile with microstructure obser-
vations (Gregg 1987). Indeed, diapycnal diffusivities
rather smaller than this, about 0.1 X 107 m?s~!,
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have been estimated from dye release experiments
in the ocean (Ledwell et al. 1993).

Our model does not include a representation of the
western boundary current. One might object that the
neglect of the western boundary introduces a serious
error into the calculation of the right side of the buoy-
ancy balance (4.11) on two possible grounds: mean
density layer thicknesses in the boundary current may
become smaller; diapycnal diffusivities in the boundary
current ought to be larger because of higher currents
and current shears. On the first point, pycnoclines do
intensify (isopycnal spacing becomes thinner) as they
rise near the western boundary, but an inspection of
ocean sections suggests that perhaps isopycnal spacing
in the boundary current is half what it is in the open
ocean. For the second point, quantitative information
about diffusivities in western boundary currents is
sparse, though what there is does not support larger
diffusivities (Winkel et al. 1992). In any case western
boundary currents occupy less than 5% of the ocean
area. For the contribution of the western boundary re-
gion to (4.11) to be significant, diapycnal diffusivities
at least an order of magnitude larger than the canonical
midocean value, 10~ m? s 2, would be required.

The present model runs may be compared to Bryan’s
(1987) calculations of ocean circulation and heat flux
using the Bryan—-Cox primitive equation model (Cox
1984). Bryan (1987) explored the sensitivity of this
model to vertical and horizontal eddy diffusivities of
heat Ky, Kyy. It must be emphasized that the effective
diathermal (i.e., across isotherms) eddy diffusivity in
such models is, as Redi (1982) and McDougall and
Church (1986 ) make clear,

Ky = Ky + Kun|Vzr|?,

where Vz; is the slope of isotherms. Bryan (1987)
shows a calculation (his experiment 1) in which Ky
=05X10"*m?s™!, Kyy = 1.0 X 103> m?s7}, and
the surface heating is such that the poleward heat
transport across 45°N, the subtropical gyre boundary,
is 0.4 PW. The 10°C isotherm outcrops along 45°N,
approximately. Estimating an average (37/3z)gc
~ 0.025 C m™!, from Bryan’s (1987) published model
cross section, over the submerged area of the 10°C
isotherm, 5000 km X 6000 km = 3 X 10'* m?, one
obtains for the flux across 10°C, in the interior portion
away from the western boundary current, where |Vzy|
< 10_5, Kd ~ KHV:

Enterior = (pCKHVaT/aZ)(area) = 015 X 1015 W

This is substantially too small to account for the trans-
port across 45°N. However, in the boundary current,
where |Vzy| = 1073, K, is dominated by the second
term, which is about 20 times larger than Ky

(Kd)WBC ~ KHHIVZTIZ ~ 10 X 10—4 In2 S_l.
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Hence, the flux of heat through the isotherm in the
western boundary current is

FWBC = pCKa' %Z:AWBC =0.19 X 1015 W,
where we used Awsc =~ 2 X 10'2 m?. The sum of Finerior
and Fwac then substantially accounts for Bryan’s pole-
ward heat transport across 45°N. Yet it must be em-
phasized that the major contributor is Fwpc, which is
entirely due to the form of parameterization of diffusion
processes in the model. This is precisely the situation
of which Veronis (1975), Redi (1982), and McDougall
and Church (1986) warned. There seems to be little
observational basis for accepting an effective diathermal
diffusivity as high as 10 X 10™* m? s~! (Gregg 1987;
Winkel et al. 1992), even in western boundary current
regions. Bryan (1987) shows another run (experiment
4), with KHV =25X 10_4 II'l2 S—l, KHH = 10X 103
m? s~ !, in which a poleward heat transport of 1.0 PW
across 45°N is achieved. Again, the greater portion of
the net diathermal heat transport across the 10°C iso-
therm (which again outcrops at about 45°N) takes
place in the western boundary current with effective
diathermal diffusivities of

(K )wse =~ KHH|VZT|2 ~ 40 X 10" m?s™.

The same objections to such a high diffusivity may be
made.

The final point to be made in comparing Bryan’s
(1987) runs to ours is that his subtropical gyre area
was about twice as large as in our runs. This is an im-
portant factor in comparing runs since the heat trans-
ports are expected to scale with the area. Hence, our
run A (equivalent poleward heat transport = 0.15 PW)
is comparable to Bryan’s experiment | (0.4 PW), and
run B (0.51 PW) to experiment 4 (1.0 PW).

It is worth emphasizing that the shortcomings of the
buoyancy cycle in Bryan’s (1987) coarse-resolution
model cannot be amended with a parameterization of
alongisopycnal buoyancy transport by mesoscale ed-
dies, such as proposed by Gent and McWilliams
(1990). The essential difficulty in ocean models with
diapycnal diffusivity coefficients of order 10™* m? s™!
is their inability to get buoyancy across isopycnals; re-
distributing buoyancy along isopycnals does not resolve
the difficulty.

b. Layer transports across the subtropical-subarctic
boundary

We shall calculate the way in which volume and
buoyancy are transported across the subtropical-sub-
arctic gyre boundary. In the absence of buoyancy forc-
ing and diapycnal diffusion, there is no mass exchange
across the subtropical-subarctic boundary, either in the
interior or the western boundary current, in any layer.
Given buoyancy forcing and diffusion, the pointwise
vertical exchanges of mass, layer by layer, can be cal-
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FI1G. 7. (a) Depths of layer bases and (b) characteristics for run B, similar to Fig. 5.

culated from (2.7b-d). Integrating these over the sub-
tropics gives the required layer by layer exchange across
the boundary with the subarctic.

Run A. For example, we can calculate the area-mean
diapycnal fluxes F,, Fs from the average inverse thick-
nesses of layers 4 and 5 in the subtropical gyre (0 < x
< a, —b < y < b; see Fig. 5), and the diffusivities Ky,
K; from Table 1, using (2.7d). In this way, we obtain
Fy=050X 108 m?s™3, Fs = 0.59 X 1078 m?s73.
Since the integral of the buoyancy flux through layer
3 over the subtropics must equal the surface buoyancy
flux over the subtropics, it is easy to calculate F;
= f¢r BodA/Ast = 0.51 X 107 m? s7* from (5.3).
These three fluxes are nearly the same. By hypothesis,
the vertical flux through layer 6, which never outcrops
in the subtropics or subarctic, is zero, Fg = 0. From
these mean fluxes the average entrainment velocities
across the various interfaces may be calculated from.-
Eq. (2.7¢): & =06 X 10 ms™!, & =—-45X 1078
ms', & = 0.30 X 107® m s™!, s = 0. The first two

of these &3, &, are so small because of the near can-
cellation of F3, F,, Fsin (2.7¢). The transport of layer
Jj across the subtropical-subarctic gyre boundary, y = b,
is given by

T; = (& — €;_1)Asr, (5.7)

where Ast = 15 X 10'2 m? is the area of the subtropics.
(For j = 3, simply take &, = 0.) From this formula we
obtain 73 = 0.1 Sv, T4 = —0.8 Sv, T's = 5.1 Sv, T
= —4.4 Sv. These add to zero, as they must. The first
two of these are small because of the smallness of é;, .
&,. This is connected with the outcropping of the bases
of layers 3 and 4 in the subarctic gyre in such a way
that the net buoyancy loss from the two layers is quite
small. Because of this, very little mass exchange in the
two layers across the subarctic—subtropical boundary
is required. However, the buoyancy gained by the ocean
in the subtropics must migrate across these layers,
eventually to be given up at the surface in the subarctic
by denser layers. This is the reason for the close identity
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FIG. 7. (Continued)

of 3, F,, Fs. The net buoyancy transport across y = b
is given by

v6Ts + (ve + vs)Ts + (v6 + vs + va) Ta + (6

4+ ys+ s+ v3)T3 =76 X 10°m*s™, (5.8)
which matches [, BodA, as required. If the buoyancy
was due solely to temperature, this buoyancy transport
would be equivalent to 0.15 PW. The buoyancy trans-
port across the subtropical-subarctic boundary is ac-
complished principally by the exchange of about 5 Sv
of layers 5 and 6 water, with a small modification due
to southward transport of about 0.8 Sv of layer 4 water.
The relationships of the horizontally averaged buoy-
ancy fluxes, the averaged layer-interface entrainments,
and the volume transports across the subtropical-sub-
arctic boundary are shown in a schematic meridional
section in Fig. 10a.

The layer volume transports just quoted at the sub-
tropical-subarctic boundary are the totals for each
layer: the geostrophic interior transport plus western
boundary current transport. While the theory does not
take explicit account of the dynamical mechanisms of
the boundary current, we can calculate the geostrophic
transport in each layer in the ocean interior and the
required compensating boundary current transport by
subtraction. At lowest order, that is, neglecting all dia-
pycnal diffusivities, K; = 0, there is no meridional geo-
strophic motion across y = b in any layer. Layer 3, in
contact with the surface wind, carries —9.5 Sv (equa-
torward ) in its Ekman layer. Presumably, a like amount
is carried poleward in this layer in its western boundary
current. This lowest-order view of the circulation across
the subtropical-subarctic boundary cannot account for
the necessary exchange of buoyancy. We will consider
the modifications to this picture at first order in K that
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are necessary to bring the circulation system into
buoyancy balance.
The lowest-order Montgomery pressures P

P5 , P6 are constant along, and to the south of| y
= b. Hence, Eq. (2.6) may be approximated by
wa b
W ’ay—;’,— =¢;") — e (5.9)

forj = 4, 5, 6, where the (0) superscripts refer to fields
computed by neglecting the diffusivities K, and the

(1) superscripts refer to first-order fields co Puted by
taking the K; into account. In particular the ¢; " on the
right of (8. 9) are given by
vel) =F" - Fl, (5.10)
where
1
S tv-)
K; 0 , Jj>3 (5.11a)
M _ h;
F; g
0, Jj=3. (5.11b)
The 1}” are ¢ = 2400 — 1500 = 900 m, hs” = 1500
— 700 = 800 m, and 4 = 700 — 100 = 600 m. They
are constant along y =b. Hence FY =0 (by hy-

pothesis), F§"” = 0.59 X 107 m?s~3, F{ = 0.19
XlO‘sms3, and e{’ = 0, e5)~030><10“6
ms el =—020X10"m s, ¢ = —0.14 X 108
m s~!. The entrainment velocmes e§ ) , ef;” along y
=p need not be the same as the averages &;, €, over
the subtropics. Equation (5.9) may be 1ntegrated from
east to west along y = b, assumlng P (a b)=0,to
obtain P (x b). Clearly, the P will be linear func-
tions of x. The same linear relatlon (2. 3) holds between
the first-order corrections P( ) and H ) as holds for
the total fields P; and H,. Hence the changes in H;
caused by the first-order entrainments can be calcu-
lated. The results are shown schematically in Fig. 10b:
Hy shoals from east to west from 2400 to 2215 m, H;
deepens from 1500 to 1700 m, and H, shoals from 700
to 549 m. The layer-3 depths ought to be recalculated
from (2.9) (with n = 6, k = 3). Unfortunately, this
leads to absurd (imaginary!) depths for H; beginning
not far out from the eastern boundary. This is merely
a sign of the southward reorientation of the position
of the outcrop line H; = 0 of layer 3, whose lowest-
order position in the subarctic is quite close to y = b
(Fig. 5). This reorientation is made necessary by the
nonzero e; . (The recalculation of the surface outcrops
is beyond the scope of this paper.) The meridional
transport of layer 5 in the geostrophic interior is

j; (Hs — Hs)f ™ (8Ps/x)dx.

Because Hg, Ps, etc., vary linearly in x across the geo-
strophic interior, this integral is simply
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and may be very readily calculated to be 7.6 Sv (pole-
ward). To restore the total meridional transport cal-
culated above for layer 6, —4.4 Sv, a western boundary
current transport of —12.0 Sv (equatorward) is re-
quired. A similar calculation of the meridional interior
geostrophic transport across y = b in layer 5 gives ~19.6
Sv (equatorward). To restore a total of 5.1 Sv requires
a western boundary current transport of 24.7 Sv (pole-
ward) in layer 5. For layer 4, the meridional interior
geostrophic transport across y = bis —2.4 Sv (assuming
that layer-3 thickness goes to zero in the west). Re-
turning the —0.8 Sv total for layer 4 requires a western
boundary current transport of 1.6 Sv. We have not
attempted to calculate transports for layer 3 because it
evidently vanishes at some point across the section.
Run B. A similar calculation of the layer transports
across the Subtroplcal—subarctlc boundary can be done

Hs)yo + (Hg —

for run B. The mean vertical buoyancy fluxes through
the layers in the subtroplcs are Fg=0,F;=191X 1078
m?>s™3, Fy = 1.61 X 1078 m?s™3, F; = 1.70 X 10~%
m? s = , calculated by means similar to run
A. The average entrainment velocities across the layer
interfaces are then [Eq. (2.7¢)] & = 0.03 X 107°
ms! e =-009 X100 °ms™! es =076 X 1076
m s~ !, g = 0. Hence, the total transports of the layers
across the subtropical-subarctic gyre boundary are T3
=04Sv,Tys=—1.88v,Ts=129Sv,Ts = —11.5Sv.
Asinrun A, F;, Fy, Fs are very similar, so that é&;, &,
are quite small, as are the subtropic—subarctic merid-
ional transports 73, T4. The buoyancy gained at the
surface in the subtropics crosses layers 3 and 4 and is
given up in the subarctic by layer 5. The net buoyancy
transport across the gyre boundary, calculated by sub-
stituting in the left side of (5.8), is 2.55 X 10°m?*s73,
the same as [s; BodA. This is equivalent to a heat
transport of 0.51 PW. Layers 5 and 6 are primarily
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submerged thicknesses in Tables 1, 2.

responsible for exchanging buoyancy across the gyre
boundary. The situation is summarized in the sche-
matic meridional section across the subtropical gyre
shown in Fig. 11a.

The changes in the interface depths H; caused by
the diffusion-driven entrainments along the subtropi-
cal-subarctic gyre boundary can be calculated by the
same method used for run A. This shows that H shoals
from 2000 m at the eastern boundary to 1950 m in
the west, just outside the western boundary current;
H; deepens from 1000 m in the east to 1113 m; and
H, deepens from SO0 m in the east to 598 m. Again
the corrections to H; cause it to shoal to zero along
the gyre boundary, signaling a southward repositioning
of the outcrop line, where H; = 0, of layer 3, whose
lowest-order position is quite close to the gyre bound-
ary. A schematic zonal section along the subtropical-
subarctic boundary is shown in Fig. 11b, illustrating
the perturbed layer-interface positions. The figure also
shows the meridional volume transports in the interior
of each layer (excluding the western boundary current),
which can be calculated by the same method described
above for run A, and the required compensating west-
ern boundary current transports in each layer.
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Comparing runs A and B, we see that the same layers
(5 and 6) are primarily responsible for the buoyancy
exchange across the subtropic-subarctic gyre boundary
(Figs. 10a, 11a), although the volume transports for
run B are more than twice as large [ the reduced gravities
between the two layers are comparable: 0.02 m s 2 (run
A), 0.025 m s~ (run B)]. The product of volume
transport and reduced gravity accounts for the tripling
of buoyancy transport between run A and run B. The
partitioning within a layer of its total meridional trans-
port between western boundary current and geo-
strophic interior shows no particular pattern (Figs. 10b,
11b) though individual magnitudes up to 25 Sv are
seen. In run A, the western boundary current transports
14.3 Sv poleward across the subtropical-subarctic
boundary, with an equal and opposite return in the
interior. In run B, the boundary current transports 19.7
Sv poleward.

The model ocean of run B, carrying buoyancy
across the subarctic-subtropical boundary at an
equivalent heat flux rate of 0.5 PW, requires very large
density differences across the layers (numbers 3, 4, 5,
and 6) involved in the transfer, given a diapycnal dif-
fusivity of order 10™* m? s~!. Such large density dif-
ferences would not be required if a more vigorous
mixing mechanism, giving a much larger effective
diapycnal diffusivity, were available. A leading can-
didate for such a role would be mixing in the upper
ocean, caused by a combination of wind stirring and
buoyant convection, in which effective diapycnal dif-
fusion coefficients several orders of magnitude larger
than 107* m2s~! can be episodically but reliably
achieved. In terms of run B, if such a mixing mech-
anism could be built into the model, the necessity for
large density differences between layers 3, 4, 5 nec-
essary to sustain large diapycnal buoyancy fluxes,
could be short circuited by large diapycnal exchanges
where the bases of these layers come close to the ocean
surface.

6. Concluding remarks

A model consisting of discrete density layers, some
of which outcrop at the ocean surface, was developed
to compute the stratified ocean circulation driven by
surface wind stress and buoyancy flux. At lowest order,
only the Ekman pumping and surface buoyancy flux
drive the surface and next-to-surface layers, while
deeper layers conserve potential vorticity. At higher
order, the buoyancy budgets of the layers cannot be
balanced without considering diapycnal diffusion
through the deeper layers. The requirements of buoy-
ancy balance were used to determine parameters, such
as layer-interface outcrop latitudes, or interface depths
along the eastern boundary, which determine the
mean stratification of the ocean for a given integrated
surface buoyancy throughput. Two idealized runs
were shown. In both runs an identical wind stress pat-
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buoyancy flows F; (unit: 107® m? s73), layer interface entrainment velocities ¢; (unit: 107 m s7"),
and meridional volume transports (Sv) across the subtropical-subarctic boundary. (b) Schematic
zonal section along the subtropical-subarctic boundary showing first-order variations of layer
depths and partition of volume transports among the western boundary current and geostrophic
interior: run A.

tern and magnitude was imposed, which drove an an- (equivalent to heating) in the subtropics, negative
ticyclonic gyre in the subtropics and a cyclonic gyre (cooling) in the subarctic, but differed in magnitude
in the subarctic. Buoyancy forcing was positive between the two runs, giving a poleward buoyancy
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FIG. 11. As in Fig. 10: run B.



MAY 1995

transport across the subtropical-subarctic boundary
of 7.6 X 10* m* s~ (equivalent to a poleward heat
transport of 0.15 PW) in one case, and 2.55 X 10°
m* s~3 (equivalent to 0.51 PW) in the other. By in-
sisting on diapycnal diffusivities no larger than O(10™*
m? s~') we found that density contrasts of 8 kg m™>
and 18 kg m™3 across the pycnocline, respectively,
were required in the two cases. A simple scaling ar-
gument based on buoyancy balance [Eq. (5.6)] con-
firms these magnitudes and shows the link between
diapycnal diffusivity and density gradient in the pyc-
nocline, and buoyancy throughput.

It is very disquieting that such large density gra-
dients—giving far larger density contrasts than are ob-
served in nature—are required to accomplish an
equivalent heat throughput of O(1 PW). Meridional
oceanic heat transports of such a magnitude have been
computed from budgets of air—sea heat exchange (Sell-
ers 1965), as a residual of the atmospheric heat budget
(Carissimo et al. 1985), and from direct estimates based
on oceanographic measurements ( Bryan 1962; Bennett
1978; Bryden and Hall 1980). Speer and Tziperman
(1992) calculated the so-called watermass transfor-
mation function, the transport of buoyancy across the
area of ocean surface contained within a density in-
crement about a particular contour of surface density,
from climatological compilations of air-sea heat and
freshwater exchanges, and displayed it as a function of
density. The left side of (4.11) is the integral of surface
buoyancy flux over all surface waters lighter than p;.
In the continuous limit, it is the integral with respect
to density of Speer and Tziperman’s (1992 ) water mass
transformation function and must be related, according
to (4.11), to the diapycnal buoyancy flux across the
submerged isopycnal surface p;. Parameterizing dia-
pycnal buoyancy flux by the continuous analog of
(2.7d),

£ K.op/0z,
Po

one may readily confirm from Speer and Tziperman’s
(1992) figures, and from reasonable estimates of dp/
0z, that the buoyancy balance (4.11) cannot be
achieved with diffusivities K, of order 10 * m?s™!.
Microstructure measurements of turbulence in the
ocean, from which estimates of diapycnal buoyancy
flux (actually diathermal heat flux) and diffusivity
may be made, have been accumulating in recent
years. Gregg (1987) has written a very useful review
of this field. The turbulence measurements give no
support for mean diffusivities larger than O(10~*
m?s~!); if anything, rather smaller estimates are
consistently indicated. Numerical models of ocean
circulation such as Bryan’s (1987) do achieve me-
ridional heat transport as large as 1 PW, but analysis
suggests that much of the required diathermal heat
flux is achieved in the western boundary current
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where, as Redi (1982) and McDougall and Church
(1986) point out, fictitiously high effective diather-
mal diffusivities, perhaps up to two orders of mag-
nitude larger that 10~* m? s™!, can occur because of
the strong tilting of isotherms and the assumed form
of the horizontal diffusivity.

The suggestion inferred from such models that much
of the diapycnal (diathermal ) reprocessing of buoyancy
(heat) takes place in the western boundary currents
may well be correct. However, it is germane to point
out that the required order of magnitude of diapycnal
diffusivity remains to be observed (Gregg 1987). Per-
haps this is due to a lack of turbulence measurements,
because of overwhelming practical difficulties, in the
highly energetic layers of the western boundary currents
(but see Winkel et al. 1992). It is certainly troubling
that models are based on parameterizations of diffusive
transport that lack observational support or even con-
tradict it.

Western boundary currents, the regions near them,
and their extensions into the midocean where they
separate from the boundary are regions of intense me-
soscale eddy activity. Can mesoscale eddies bring about
some diapycnal mixing? We have emphasized in the
derivation of the layered equations (section 2 ) that the
layer interfaces of the discrete model are analogs of
isopycnal surfaces that we take to be constructed from
density fields averaged only over small-scale micro-
structure processes (Gent and McWilliams 1990; de
Szoeke and Bennett 1993). Further averaging on fluc-
tuating isopycnal surfaces over mesoscale variability
produces no further diapycnal exchanges. The price
for taking this approach to averaging the momentum
and thermodynamic equations is the appearance of an
extra term —/7'V p’/ poh, due to thickness—pressure gra-
dient correlation, in the momentum equations in ad-
dition to terms similar to the usual Reynolds stress
divergence. While de Szoeke and Bennett (1993) sug-
gest that this term is negligible, this may not be so in
high-eddy regions. Then this term may drive an en-
hancement of the effective layer transport velocity.
Gent and McWilliams (1990) propose a parameter-
ization of this mesoscale enhancement that, whatever
its other merits, produces no diapycnal flow and cannot
reconcile the difficulty of achieving the necessary dia-
pycnal buoyancy flux in the pycnocline to balance the
surface sources.

How else could O(1 PW) meridional heat transports
be accomplished in the ocean? In other words, how
can integrated surface buoyancy flux of order 0.5 X 10¢
m* s73 (equivalent to 1 PW) into waters lighter than
a certain density be carried across the corresponding
submerged isopycnal in order to satisfy the equilibrium
buoyancy balance (4.11)? In the North Atlantic, Speer
and Tziperman (1992) found an integrated surface
buoyancy flux [—gp ™' [* F(p’)dp' in their notation ]
of this magnitude in waters lighter than ¢ = 23.25
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kg m™3, This isopycnal is found at quite shallow depths
in the subtropical North Atlantic, say above 150 m.
Hence, it is likely that far more vigorous mixing pro-
cesses, driven from the surface by wind stirring and
convection and able to attain very large effective dif-
fusivities, are responsible for the diapycnal buoyancy
flux required for balance on the right side of (4.11).
This seems to imply that the buoyancy pathwaiys n
the ocean are conﬁned to quite shallow depths in the
pycnocline.
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APPENDIX A
Ekman Layer Buoyancy Advection

The total downward buoyancy flux at the ocean sur-
face is (Gill 1982)

By = gaQo/poc, + gBSo(P — E), (A1)

where Q, is the total downward heat flux (W m™2) at
the ocean surface, and P, E are precipitation and evap-
oration rates (m s™!), @ = —p~'9p /a7 is thermal ex-
pansibility of seawater, 8§ = p~'9p/d.S is saline expan-
sibility, ¢, is specific heat of seawater, and .S, is mean
surface salinity. The modified buoyancy flux Bj, which
appears in the definition of ¢, [Eq. (2.7b)], and hence
in the circulation equation (2.22), is given by

Bi(x, y) = Bo(x, y) + > viEfi(x, ),

J

(A2)
where

== oy rea (A3)

is the total Ekman transport across the jth outcrop y
= Y x). The sum in (A2) is taken over all outcropping
interfaces. The correction term in (A2) is necessary to
account for the change in density of water being pushed
across outcrops by the ageostrophic Ekman transport;
the buoyancy source for this density modification is
subtracted from the surface buoyancy flux By. The
shape function #;( x, y) distributes this subtraction over
a region in the vicinity of Y;(x); it must satisfy the
normalization condition

faj(x, y)da =1, (A4)
where the integration is taken over the entire domain
of the ocean. For outcrops in the subtropical gyre we
chose i; so that

f tjdA =1 (subtropics), (A5)
R;
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where R; is the region where layer j is in contact with
the surface and #;is identically zero outside R;. The
interpretation of such a shape function in (A2) is
that the buoyancy necessary to change water of den-
sity p;+; flowing south in the Ekman layer across the
Jth outcrop into density p; should be subtracted from
the surface buoyancy flux in region R;, and the re-
mainder Bj applied to modifying the density of water
entrained across the submerged part of the jth in-
terface at the rate ¢; given by (2.7b,¢). Nurser and
Marshall (1991) introduced a similar Ekman trans-
port correction to the surface buoyancy flux in a
continuous theory of the interaction between the
mixed layer and the thermocline.

For outcrops in the subarctic gyre, it is more con-
venient to choose #; so that it is zero outside region
Ry and

f #jd4 = 1 (subarctic). (A6)
Rjy1

A similar interpretation of this specification can be
given: the buoyancy necessary to change p;,, into p;
is subtracted from the surface buoyancy flux in
region Rjy.

In either the subtropics or subarctlc considerable
scope is still available for choosing 7, x, y). We chose
the simplest alternative: to set #; equal to the inverse
of the area of R; (subtropics) or R;, (subarctic).

With these strictures, Eq. (A2) has a simple inter-
pretation in the limiting case of continuous stratifica-
tion. Integrating (A2) over a small area d4 = (Y
— Y;_1)dx of the region R; in the subtropics, we can
show that as Y; = Y;_(, p; = pj+1,

By = B+ Ug- v
0~ Do Ek* V0, (A7)
po _

where Ug, = 7 X 2/pof. Hence, By differs from B, by
the advection of buoyancy —gp/po in the surface Ek-
man layer. Similarly, integrating (A2 ) over an area dA
= (Y51 — Y;)dx of region R;y, in the subarctic, and
taking the continuous limit, we again obtain (A7) with
the same interpretation.

APPENDIX B
Potential Thickness Relations and Outcrops

We consider the structure of an outcrop near the
eastern boundary and how to determine it in the case
of nonzero modified buoyancy flux. To make -the
discussion concrete consider the situation, sketched
in Fig. B1, of a system of three layers labeled 2, 3, 4.
The outcrop Y,(x) of layer 2 intersects the eastern
boundary at y$ and lies along y% in midocean. Along
the eastern boundary the depths of the three layers
are known and displayed in Fig. Bl H, is a constant
H40, and .
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HS HS

FI1G. Bl. Characteristics and outcrop near the eastern boundary.
Outcrop is determined by shooting along characteristics of layers 3,
4 such as AA'A”, BB'B", CC'C", varying A, B’, C’ to match boundary
conditions for layer depths at 4”, B”, C” on the eastern boundary
(right panel). CC'C" is the northernmost characteristic combination
that can reach the eastern boundary again. Beyond C’ the outcrop is
chosen to be a constant latitude.

_27.2‘,’ 1/2
(b— y)] ,
PoY3

H; = Hi(y) = [H§o +

ys5<y<b (B.la)

5(¥%9), v<)§ (B.1b)
~27} 2

Hz.=H§’(y)=[ (yé—y)] , ¥y<¥5 (B.lc)
PoY2

(cf. de Szoeke 1992). At the outset suppose we know
only y% and must determine Y,(x) (and y%), and the
potential thickness relation T'y(P,). The procedure for
doing this goes as follows. We already know one piece
of the I'y(P,) relation: points from y < y$§ on the eastern
boundary give the line segment T'y = (Hy
— H5(¥5))/ [ 5, Py = v4H 4. Start a characteristic from
a point A north of y5 (Fig. B1); that is, integrate Eqs.
(2.27),(2.28) with k = 3, n = 4, and initial conditions
X4(to) = a, ya(to) = ya, Hs(to) = H5(),), along the
characteristic of layer 4, as shown. Stop the integration
at some guess 4’ of the outcrop position of layer 2.
Since the layer depths H3, H, are known from the in-
tegration to this point, they can be used to compute a
provisional point P4, I'{  of the potential thickness
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relation, labeled 4’ on Fig. B2. Restart the integration
of (2.27), (2.28) from this point with k = 2, n = 4,
that is, for a characteristic of layer 3, with H,(t;) = 0,
where ¢4 is the time at which an observer starts from
A'. Proceed until the eastern boundary is again re-
crossed at A” (Fig. B1). At this point Hy, H;, H, will
have reached certain values that ought to be compared
with Hyo, H5(3%), H5(y%). If they match within an
acceptable tolerance, then the coordinates of 4’ may
be accepted as a good approximation of the outcrop
position and the point corresponding to 4’ on Fig. B2
as a good approximation of the potential thickness re-
lation. If they do not match acceptably, the degree of
mismatch may be used to devise an improved guess of
the outcrop position A'. This shooting procedure may
be repeated until an acceptable approximation of 4’ is
obtained. Our experience shows that this works quite
well and efficiently. Next, we may try a layer-4 char-
acteristic starting from B, north of A, going to a guessed
layer-2 outcrop position at B’, returning to the eastern
boundary at B” along layer-3 characteristic, iterating
until point B’ is found that gives an acceptable match
of depths at B”. Our experience indicates that extrap-
olation of points 4’, B’, etc., produces quite good first
guesses of further outcrop positions.

De Szoeke (1992) drew attention to the importance
of the point y3 on the eastern boundary, at which U,
+ ¢34 = 0, so that a characteristic reaching this point
is tangential to the boundary. The point y3 may be
determined beforehand from (2.22), (2.24). (Note that
¢34 = €33H3/ H,4 along the eastern boundary where
dP,/dl'y = 0.) We have shown in Fig. Bl a layer-3
characteristic starting at C, going to the outcrop at C’
where it joins the limiting layer-4 characteristic, which
reaches the point C”(a, y3 ) (with the appropriate layer
depths). The point C may be determined as accurately
as desired by the above procedure. For no layer-4 char-
acteristic sent out from any point north of C is there
a choice of outcrop position that will allow it to join a
layer-3 characteristic that regains the eastern boundary.
Rather, the choice of outcrop beyond C' appears to be
quite arbitrary. We will follow de Szoeke (1992) in

Ty

Heo—H3(y3) |
e
I3 A
"

e
ge D

T
74Hao Pa

F1G. B2. Potential thickness versus pressure relation determined
at the points 4', B’, C', D', E' in Fig. Bl.
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choosing the outcrop extension to be the latitude line
yY¥ passing through C'. In this way, we will have de-
termined the series of points A’, B, ... C’' on Fig. B,
starting at (a, %), which define the outcrop Y;(x),
and a corresponding series of points on Fig. B2 that
define T'4(P4). The region bounded by the limiting
characteristic C'C” and its southward extension, the
outcrop Y,(x), and the eastern boundary forms the
analog of the region termed the eastern shadow zone
for layer 3 by de Szoeke (1992). Because of buoyancy
forcing, motion in this layer is not stagnant, nor is its
potential thickness conserved. The eastern boundary
conditions determine the segment A'B'C’ of the po-
tential thickness relation I'y(P,). Hence, we call this
segment the eastern boundary-ventilated portion of
T4(Py).

The latitude of the point C’ defines y5, which can
be thought of as a function of y%. The functional re-
lation can be inverted: y$ can be varied, and the above
procedure followed to determine outcrop and potential
thickness relation until a desired y?¥ is attained. West
of (" layer-4 characteristics terminating at y¥, such as
DD’ in Fig. Bl, define the I'y(P,) relation along the
segment C'D’, ... We call this segment of I';( P;) the
outcrop-ventilated portion.

The vertical Ekman velocity (2.7a) is chosen so that
it is zero along the latitude line y = b: this ensures that
Vs = 0][Eq. (2.23)]. Also U, > 0 along y = b, though
decreasing eastward, while ¢44 < 0[Eq. (2.29)]. Hence,
there will be a point at which U, + ¢4)4 = 0, the location
of the so-called Rossby attractor. The line y = b is a
layer-4 characteristic: it joins another characteristic at
the attractor which strikes the layer-2 outcrop at E'.
For layer 4 only, that is, the layer which is not exposed
to the surface in the subtropics, we choose the T'y(Py)
relation west of E’ to be the extrapolation of D'E’ in
Fig. B2. This means that H,, H, are specified by the
Sverdrup relation (2.9) and this relation along y¥ west
of E'. To determine H;, H, in the remainder of R;,
Egs. (2.27), (2.28) are integrated backward (in the
negative ¢ direction ) starting from points along y5. We
do this rather than requiring homogeneous potential
thickness in layer 4 along the western boundary (as we
will for lighter layers) so that in the limit of zero-buoy-
ancy forcing, layer 4 will be stagnant, as it is for LPS
and de Szoeke (1992).

Outcrops of lighter layers and their potential thick-
ness relations may be obtained in a similar way. For
example, the outcrop of layer 1, given by Y;(x) and
joining y§ and yY, is found as follows. First, send out
a layer-3 characteristic from the eastern boundary from
a point such as 4 between y$ and y3 (Fig. B3), to
terminate at a guessed outcrop position A’. Then restart
a layer-2 characteristic at A’ to return to the eastern
boundary at 4”. Compare the outcomes of the depths
H,, Hy, H,, H, [(2.27), (2.28)] at A" to Hy,
H5(y5), H5(y%), H{(y%) and improve the guess 4’
until the match of depths is acceptable. This shooting
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Fi1G. B3. Similar to Fig. B1 but for a more southerly outcrop. Char-
acteristic combinations can begin from the eastern boundary (44'4”,
CC’'C") or from the more northerly outcrop (DD'D”, EE’E"). Beyond
E' (which connects to the eastern boundary at the next outcrop E”)
the outcrop is chosen to be a constant latitude.

procedure is repeated with more northerly choices of
initial point 4 to construct the outcrop and the poten-
tial thickness relation I';(P;). The most northerly
choice of initial point on the eastern boundary is C at
the latitude y3 : this gives the line CC'C”. Beyond this
point layer-3 characteristics may be started from points
D, ..., E along the outcrop y¥. The last of these ter-
minates on the layer-1 outcrop at E’, where it joins
onto a layer-2 characteristic that strikes the eastern
boundary at yT, which, for the same reasons as given
by de Szoeke (1992), is usually taken to coincide with
the position of the next outcrop (layer O in Fig. B3) at
the eastern boundary, y§. West of E’ we take the layer-
1 outcrop to lie along the latitude y7, which E’ defines.
The layer depths along the outcrop A'C'D'E’ define
T'3(Ps), the potential thickness relation for the eastern
shadow zone portion coming from points on the out-
crop west of E’.

These remarks can be extended to cover any number
of outcrops and potential thickness relations.
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