AN ABSTRACT OF THE THESIS OF

KAMRAN MALIK for the degree of DOCTOR OF PHILOSOPHY

in ELECTRICAL AMD COMPUTER EMNGIMNEERING presented on 4 JUNE 1979

Title: DESIGNING A HIGH LEVEL MICROPROGRAMMING LANGUAGE

_Redacted for privacy

— — - = p—

TED LEWIS

Abstract approved:

The purpose of this research is to design a high level language
(HLL) suitable for microprogramming. A top down design technigque has
been adcpted which makes the language design process simple and
accurate.

The primitive operations of a high level language for producing
emulators is shown to include special purpose features specific to
virtual machine impleméntations. A hierarchy of data types, short
reliable language constructs, and control structures that minimize
emulator complexity are suggested by a goal-directed, structural design
methodology. In addition, structural clues generated by the lénguage
compiler assist in producing portable yet efficient horizontal micro-
code for partially encoded host architectures.

Furthermore, software tools in the form of a simulator-compiler
combination are presented which provide features for design, develop-

ment, test and eventual certification of microprograms.

©

Copyright by Kamran Malik

4 June 1979
All Rights Reserved

DESIGNING A HIGH LEVEL
MICROPROGRAMMING
LANGUAGE

by

KAMRAN MALIK

A THESIS
submitted to

Oregon State University

in partial fulfullment of
the requirements for the

degree of

Doctor of Philosophy

Completed 4 June 1979

Commencement June 1980

APPROVED:

Redacted for privacy

Associate Professor of Computer Science
in charge of major

Redacted for privacy -

4

Head of Depég;é;nt - Electrical and Computer Engineering

Redacted for privacy

- 11
Dean of Grad&ate School

i
}

Date thesis is presented 4 June 1979

Typed by Cheryl DeHart for KAMRAN MALIK

ACKNOWLEDGEMENT

I would like first of all, to thank my supervisor, Dr. Ted Lewis,
for his help, guidance and constant encouragement during the preparation
of this dissertation. The innumerable conversations, which I have had
with him over the years, have so vastly influenced my philosophical
views on computers and computation, that it is an intellectual debt I
shall always carry with me.

I also thank the members of my committee and, in particular,

Dr. V. M. Powers for his careful reading and critical comments on this
dissertation.

I cannot express the thanks I owe my parents through whom I have
received everything.

The computer programs were made possible by the facilities and
staff of the 0.S.U. Computing Center. In addition, the work reported
in this dissertation was supported by N.S.F. grant MCS 76-20710.

Last but not least, I would like to thank Cheryl DeHart for her

relentless typing of this thesis.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS
TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES

INTRODUCTION
1.1 EVOLUTION OF MICROPROGRAMMING
1.1.1 ECONOMIC ADVANTAGE
1.1.2 ARCHITZCTURAL COMPATIBILITY
1.1.3 DELAYED BINDING
1.2 MOTIVATION
1.2.1 HARDWARE DESCRIPTION LANGUAGES
1.2.2 TAILORED LANGUAGES
1.2.3 MACHINE INDEPENDENT LANGUAGES
1.3 OBJECTIVES

A LANGUAGE FOR MICROPROGRAMMING

2.1 INTRODUCTION

2.2 BASIS OF LANGUAGE
2.3 LANGUAGE DESIGN
2.4 DEFINITION OF VMPL

2.4.1 DECLARATIONS
2.4.1.1 VARIABLE DECLARATIONS
2.4.1.2 INFORMATION DECLARATIONS

2.4.2 ASSIGNMENT STATEMENTS, OPERATORS &
EXPRESSIONS

2.4.3 CONTROL COMNSTRULCTS
2.4.4 MISCELLANEOUS STATEMENTS
2.4.5 PROGRAM STRUCTURE

2.5 CONCLUSIONS

ii

PAGE
ii

vii

(Sl TR«) S) SR >SN O N NI N T o

13
13
14
15
34
34
34
37

47
54
58
58

3.

MACHINE CONSIDERATIONS
3.1 INTRODUCTION
3.2 m~COMPUTER ARCHITECTURAL FEATURES
3.2.1 STORAGE FACILITIES
3.2.2 FUNCTIONAL UNITS
3.2.3 DATA WIDTHS
3.2.4 BUSSES
3.2.5 MICROINSTRUCTIONS
3.2.6 INPUT, OUTPUT & INTERRUPT STRUCTURE
3.3 m~COMPUTER PRIMITIVES
3.4 m~COMPUTER CLASSES
3.4.1 CLaSS 1.
3.4.2 CLASS 2.
3.4.3 CLASS 3.
3.4.4 CLASS 4.
3.4.5 (CLAsSS 5.
3.4.6 CLASS 6.
3.5 CONCLUSIONS

PORTABILITY
4.1 INTRODUCTION
4.2 CLASSIFICATION OF TECHNIQUES
4.2.1 CONVERSION TECHNIQUES
4.2.2 INHERENTLY PORTABLE TECHNIQUES
4.3 APPLICATION TO MICROPROGRAM PORTABILITY
4.3.1 THE MALLETT-LEWIS MODEL
4.4 CONCLUSIONS

INTERMEDIATE MACHINE LANGUAGE

5.1 INTRODUCTION

5.2 IML FORMATS & ATTRIBUTES

5.3 INTERMEDIATE LANGUAGE
5.3.1 TIISG

iii

62
62
64
64
68
70
72
72
73
76
80
81
81
82
83
84
85
85

86
86
86
86
87
90
91
91

94
94
94
107
108

5.3.2 1IESG
5.3.1.1 TIESG FORMATS
5.3.1.2 1IESG STATEMENTS
5.4 CONCLUSIONS

RESULTS
6.1 SIMULATOR
6.2 VMPL COMPILER
6.3 VMPL-IML ANALYSIS
6.3.1 COUNTING EXPERIMENTS
6.3.2 VARIABLE ASSIGNMENT EXPERIMENTS
6.4 VMPL EXTENSIONS
6.5 CONCLUSIONS & FUTURE WORK

REFERENCES
APPENDIX A
APPENDIX B
APPENDIX C

GLOSSARY

iv

110
110
1lle
118

123
123
125
126
127
132
136
138

139
144
147
150

172

2.1
2.1a
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

LIST OF FIGURES

COST OF MICROPROGRAMMED CONTROL VS. CONVENTIONAL
CONTROL.

AN EXAMPLE PROGRAM WRITTEN IN MPL.
AN EXAMPLE DATA TYPE WRITTEN IN EMPL.

CARRY FLAG SETUP SCHEME.

CARRY FLAG SETUP AS A SUBROUTINE
OVERFLOW FLAG SETUP SCHEME.
DEFINITION OF D'STRUCTURES

VARIABLE ALLOCATION PROBLEM.

VMPL GLOBAL AND LOCAL VARIABLE DECLARATIONS.
VMPL GLOBAL INFORMATION DECLARATIONS.
WORDSIZE DECLARATION EQUIVALENTS.
VMPL LOCAL INFORMATION DECLARATIONS.
EXPECT & RETURN DECLARATION EXAMPLES.
EXAMPLES OF VMPL FIELD FACILITY.
PRECEDENCE RULES FOR VMPIL OPERATORS.
ENABLING VMPL FLAGS.

VMPL CONTROL CONSTRUCTS.
MISCELLANEOUS VMPL STATEMENTS.

MICROPROGRAMMED IMPLEMENTATION OF HIGH LEVEL
LANGUAGES.

OVERVIEW OF m~COMPUTER ARCHITECTURAL FEATURES.
HIERARCHY OF INSTRUCTIONS.

SOME ALU STRUCTURES.

NO ENCODING (a) vs. SINGLE LEVEL ENCODING (b).
MICROINSTRUCTION ENCODINGS.

A GENERAL ALU STRUCTURE.

HIGH LEVEL LANGUAGES AND COMPLICATION.

THE MALLETT-LEWIS MODEL OF A TRANSLATION SYSTEM
FOR PRODUCING INHERENTLY PORTABLE
MICROCODE.

19
20
21
27/28
32
38
40
41
43
45/46
51
53
55
57
59

65
66
69
71
74
75
77

89

92

5.1a
5.1b

5.1c

6.1
6.2
6.3a
6.3b
6.3c

A SMALL PART OF A VMPL PROGRAM.

THREE ADDRESS CODE FOR SOQURCE PROGRAM OF
Fig. 5.1a.

SINGLE ADDRESS CODE FOR SOURCE PROGRAM
OF Fig. 5.1a.

OTHERINFORMATION VALUES FOR IISG.
VMPL~IML EQUIVALENTS.

CLASS 6 IESG STATEMENTS.

CLASS 7 IESG OPERATIONS.

MICROCODE CORRECTNESS MODEL.

RESULTS OF COUNTING EXPERIMENT CE(2).

RESULTS OF VARIABLE ASSIGNMENT EXPERIMENT ON VML1.
RESULTS OF VARIABLE ASSIGNMENT EXPERIMENT ON VM2.
RESULTS OF VARIABLE ASSIGNMENT EXPERIMENT ON VM3.

vi

100

101

102
111
112
120
121

124
129
133
134
135

2.4

2.5

2.6

5.9

5.10

5.11

LIST OF TABLES

VMPL STANDARD FLAGS

ELSHOFF'S ANALYSIS OF 120 COMMERCIAL PL/I
PROGRAMS.

STACK OPERATIONS AND THEIR VMPL DESCRIPTOR
REPRESENTATIONS.

VMPL DIADIC OPERATORS.
VMPIL, SHIFT OPERATORS.
VMPL, ROTATE OPERATORS.

INSTRUCTION STREAM COMPARISON FOR THE ASSIGNMENT
STATEMENT.

BASIC QUANTITIES TO BE MEASURED FOR DEVELOPING
SOFTWARE SCIENCE CRITERIA FOR PROGRAMS.

BASIC QUANTITIES FOR THE PROGRAMS OF Fig. 5.1.

CALCULATED MEASURES FOR PROGRAMS OF Fig. 5.1.

CALCULATED MEASURES FOR VMPL PROGRAM AND ITS EQUIVALENT

OF APPENDIX C(a).
DECLARATIONTAG VALUES FOR IISG.
IML COLUMN DESIGNATIONS.
OPERAND MODIFIERS.
CLASS 1 IESG OPERATIONS.
CLASS 2 IESG OPERATIONS.
CLASS 3 IESG CPERATIONS.
CLASS 4 IESG OPERATIONS.
CLASS 5 IESG OPERATIONS.
RESULTS OF COUNTING EXPERIMENT CE(1).

RESULTS OF COUNTING EXPERIMENT CE(3).

vii

22
24

36
48
48

50
96

103
104

105

105
109
114
115
117
117
ll?
119
119
128

131

DESIGNING A HIGH LEVEL MICROPROGRAMMING LANGUAGE

1. INTRODUCTION

1.1 EVOLUTION OF MICROPROGRAMMING

Microprogramming was introduced by Wilkes (1) in 1951. His paper
(1) introduces the fundamental ideas which lie behind the concept of

microprogramming and can be summarized in his words as:

....consider the control proper, that is, the part of
the machine which supplies the pulses for operating the
gates associated with the arithmetical and control reg-
isters. The designer of this part of a machine usually
proceeds in an ad hoc¢ manner, drawing block diagrams
until he sees an arrangement which satisfies his require-
ments and appears to be reasonably economical. I would
like to suggest a way in which the control can be made
systematic, and therefore less complex.

Each operation called for by an order code of the machine
involves a sequence of steps which may include transfers
from the store to control or arithmetical registers, or

vice versa, and transfers from one register to another.

Each of these steps is achieved by pulsing certain of the
wires associated with the control and arithmetical registers
and I will refer to it as a 'micro-operation'. Each true
machine operation is thus made up of a seguence or 'micro-
program’ or micro-operations.”

In a microprogrammed control unit a memory is used to hold a program
comprised of microinstructions. The execution of this program performs
the function of the control unit--fetching and interpreting machine
language instructions and then activating the appropriate control lines
to execute the instructions. Each instruction in this program is termed
a microinstruction since the level of control exercised by each is at the
gate level.

Although microprogramming received some attention during the 1950Q0's
(2), (3), it wasn't until the early 1960's that technological development
made it economically feasible to be used in computer design. IBM in the
mid 1960's employed microprogrammed processors in most of the models of
the system 360. The reason for microprogrammed processors given by IBM
(4) was:

"....1t has been used to help design a fixed instruction

set capable of reaching across a compatible line of machines

2
in a wide range of performances in the cheapest way possible."

Some general reasons for building microprogrammed processors are:

1.1.1 ECONOMIC ADVANTAGE

There is a clear economic superiority of microprogrammed control
over conventional logic. One of the most widely used graphs (3) to
illustrate this fact is reproduced in Fig. 1.1. Here by complexity
we mean the richness of the instruction repertoire. From this curve
we see that after a heavy initial investment incurred for microprogram
control, the cost of implementation by microprogram control increase
slowly as compared to conventional logic. This curve and the obvious
cost advantage which it indicates is the leading force behind the
implementation of microprogrammed control units for commercially

produced computers.

1.1.2 ARCHITECTURAL COMPATIBILITY

Looking at economic advantages from a software point of view, we
see that by providing a basic set of machine instructions in a whole
line of new computers we can run the same software with little modifi-
cations on all the ‘'different' computers. As a result we get architec-
tural compatibility achieved through the use of microprogrammed control
units. The IBM 360 series, as mentioned earlier, is a good example of
this concept. Furthermore, because of the changing trend of software
being costly or 'hard' and hardware being cheap or 'soft', we would
rather duplicate computers with different performance levels, etc. but
having the same machine instructions--this being achieved wvia micro-

programming, so that we can execute the same software on all of them.

1.1.3 DELAYED BINDING

Architectural extensions and modifications are possible when we
use microprogrammed control units. This results in what is known as

the 'delayed binding' of the computer to its hardware. The hardware

X CONVENTIONAL
COsT CONTROL

MICROPROGRAMMING
CONTROL

COMPLEXITY OF COMPUTER

Fig. 1.1 COST OF MICROPROGRAMMED CONTROL
' VS CONVENTIONAL CONTROL

4

design primitives are known and are used to build the machine. The
processing primitives may be defined at any later time and even changed
or modified. This aspect of microprogramming also introduces the
concept of 'amorphous' machines.

Continued technological improvements have facilitated the develop-
ment of user microprogrammable computers. In these computers the con-
trol memory is of the read/write type. As such, new microprograms can
be readily introduced into this memory by the user and thus user-
microprogramming is possible. A large number of user-microprogrammable
computers are available in the market today, with a variety of architec-

tures (5).

1.2 MOTIVATION

The rapidly increasing acceptance of user-microprogramming because
of the availability of a large number of user-microprogrammable computers,
has focused increasing attention on the problems associated with writing
microprograms. Traditionally, a user was provided a high level language
translating system for programming. Some reasons which have been offered
(6) for using high level languages are:

1) They do not require the user to be aware of such specific

machine features as registers, internal representation of
data, etc.

2) They offer the possibility of transferring programs from
one machine to another. This means that they provide a
degree of independence from a particular machine or system.

3) They allow programs to be written more easily than is
possible in machine language. Furthermore, the whole soft-
ware development cycle involves less time and effort and
hence is efficient and cheap.

4) They allow programs to be written in problem-oriented terms.
Examples of this include the ability to give symbolic names
to data and the inclusion of mathematical operators and

expressions in programming languages.

5

From the reasons enumerated above we see that a high level language
translating system should also be provided for microprogramming. A
microprogrammer would thus be free from machine register allocations,
primitive I/0 referencing, concurrency recognition, etc. 1In short,
the microprogrammer would be able to concentrate more on the programming
tasks of implementing his algorithm rather than the intricate features
of the particular computer being used.

The earliest reference to a high level microprogramming language
is made by Husson (3). The basic language is procedural in nature and
is an adaption of the FORTRAN and PL/I languages with additional state-
ments and declarations. The language is implemented via a multipass
translator system. In the first pass the high level language statements
are converted into a sequence of intermediate language statements. This
intermediate language is a macro language. In the second pass the com-
piler 'expands' the macros to produce machine dependent microcode. Thus
the compiler must have access to a library of macros which contain the
microcode equivalent for each macro statement.

Several other efforts have been carried out in the direction of
high level microprogramming languages since Husson's proposal. These
languages can be classified into three basic groups (7) which are:

1) Hardware description.

2) . Tailored.

3) Machine independent.

We review this classification scheme for two reasons:

1) This review will assist the reader in getting a better
perspective of the various microprogramming languages which
have been designed in the past. Thus he will see what
can be done and what has been done to solve the problem
of user microprogramming support and he will become
aware of the richness of the attempts in several competing
directions.

2) Furthermore, this review will indicate +that no current
microprogramming language is truly high level and machine

independent. This will in part justify this research.

1.2.1 HARDWARE DESCRIPTION LANGUAGES

Hardware description languages are basically used in the design of
computers but have been proposed as high level microprogramming lang-
uages (8). APL, CDL and ISP belong to this class of languages (8).
Specific resource assignments are done by the microprogrammer who is
also responsible for taking care of all machine details. The micro-
programmer must have a complete knowledge of the host computer in
order to program in these languages. Therefore, these languages are

not high level.

1.2.2. TAILORED LANGUAGES

Most of the high level microprogramming languages belong to the
tailored language group. The language lets the microprogrammer interact
with the machine at the register transfer level. The syntax of these
languages resembles the syntax of traditional high level languages like
ALGOL or PL/I. Control constructs and a limited use of symbolic
variables are allowed. This level of abstraction shields the micro-
programmer from the trivial details of the computer's environment, but
constraints him to the functions which are available on the computer
since they are the only ones available in the language.

SIMPL is a tailored language proposed by Ramamoorthy (9). It is an
ALGOL-1like language with the conventional ALGOL reserved words. All
variables are predefined and explicitly name all host machine resources.

Lloyd (10) describes a high level microprogramming language which
was designed for the microprogrammed control unit (MCU) of the AN/UKY-17
Signal Processing Element. The syntax of the language resembles LSD (11)
with several added built-in functions which correspond directly to
testable conditions available on the MCU.

Tailored languages are designed to fit a particular machine. As such
they are successful in producing microprograms for a spacific machine,
This means a different high level language for each different machine.
Besides being impractical, this approach also goes against the basic

objectives underlying machine independent high level languages.

1.2.3 MACHINE INDEPENDENT LANGUAGES

Theoretically, any existing high level language like ALGOL, PL/I,
etc. could be included in this group. However, these languages are
often complex and require a large runtime support system which is
difficult to maintain on most microprogrammed computers. This diffi-
culty primarily arises from the high cost of control memory, resulting
in the restriction of the amount of microcode which can be stored in it.
A high level microprogramming language should be simple and not incor-
porate complex data structures or operations found in languages for
general purpose use.

MPL, a microprogramming language designed by Eckhouse (12), was the
first true attempt to define a machine independent microprogramming
language. MPL is a procedure oriented language and is essentially a
dialect of PL/I. There are basically six types of data items:

1) Machine registers and their parts--both real and virtual.

2) Memory--main and control.

3) Local and auxiliary storage.

4) Events which correspond to testable machine conditions.

5) Constants.

6) Variables which take on constant values.

There are three types of statements in MPL:

a) DECLARATIVE STATEMENTS: These statements are used to declare

various data items along with their various attributes.

b) ASSIGNMENT STATEMENTS: These are very simple in nature,

allowing at most two operands on the right hand side of
the assignment operator. A provision has been made in the
syntax of the language to allow concatenated registers

as single operands.

Cc) CONTROL STATEMENTS: An IF and DO statement is provided.

The IF statement permits branching on the value of some
testable event which is previously declared.
An example of part of a preogram written in MPIL and taken from (13) is
given in Fig. 1.2. The following comments can be made about MPL.

1) Although Eckhouse claims that his language is machine

INTERDATA3: PROCEDURE OPTIONS (MAIN):
DECLARE (RO,R1,R2,R3,R4,R5,R6,Ar,DFR,MDR) BIT (8)
MS (0:32767) BIT (16)

MAR BIT (16)
MAH BIT (8) DEFINED MAR POSITION (1)
MAL BIT (8) DEFINED MAR POSITION (9)

"LOCCNT" BIT (16)
(CARRY, SINGL,CATN,TRUE,FALSE) EVENT:

FETCH: PROCEDURE

/*INSTRUCTION FETCH, LOC CNTR UPDATE & OP CODE DECODE*/

MAR = RO//R1; /*INSTRUCTION ADDRESS*/

MDR =S (MAR) ;

RO//R1 = RO//R1+2 /*INCREMENT LOCATION COUNTER*/

R4//R3 = MDR /*GET OP CODE*/

R5 = R3.RSH.3; /*RIGHT JUSTIFY R1/X1*/

AR = (R3.LSH.1)/1; /*LEFT SHIFT REGISTERS R2/X2%/
/*0OF THE EMULATED 360 MACHINE*/

R2,DFR = R4.RSH.4 /*INTO AR WITH LSB SET*/

IF CARRY THEN GO TO RXFORM:

RRFORM: R6 = AR&l; /*REG-REG FORMAT*/
R4 = 0;

DECODE: IF SNGL/CATN THEN GO TO SUPORT:

SUPRET: R3 = R4&OFX: /*MASK OP CODE*/
AR = R3+(R3.LSH.l); /*MULTIPLY BY 3%/
DFR = R2;

IF TRUE THEN GO TO ILLEG:
ELSE IF FALSE/CARRY THEN GO TO TROUBL:

END/FETCH:

END INTERDATA3:

Fig. 1.2 AN EXAMPLE PROGRAM WRITTEN IN MPL. (INCOMPLETE PROGRAM
FRAGMENT)

independent, it is so in only a very limited sense.
Since real machine registers show up as predefined
variables, programs written in MPL are not trans-
portable from machine to machine.

2) Semantic interpretation of some of the basic opera-
tions is drawn from the particular implementation.
For example, shifts may or may not be circular. 1In
other words, the actual interpretation is implementa-
tion dependent. This makes the language machine
dependent.

3) MPL programs are compiled down into a simple machine
language (SML). This language resembles the cbde of
a single address computer. Arguments needed for
operations must first be loaded into argument or A-
registers. Results of operations are left in result
or R-registers, and may be stored in other registers
or memory locations. Temporary or T-registers are
available for intermediate results. This process
generates redundant loads and stores which produce

more microcode than is necessary.

A recent addition to the family of machine independent languages
is EMPL (14). This language is based on the core approach to language
design (15) which allows the language to include only very basic fea-
tures. Thus the user is permitted to extend the set of data structures
and operations included in the core to customize the language.

Syntactically, EMPL is very much like MPL with the added state-
ments which help define user data types. These statements are known
as EXTENSION statements. An extension statement includes the new data
structure, the operations on that data structure and the microperations
which correspond to these operations. An example of a data type named
STACK taken from (14) is shown in Fig. 1.3. Analyzing both these
machine independent languages, we see that:

1) MPL specifically is machine dependent since real machine

registers show up as predefined variables in the language.

EMPL on the other hand becomes machine dependent because

10

TYPE STACK

DECLARE STX (16) FIXED;
DECLARE STKPTR FIXED;
DECLARE VALUE FIXED;
INITIALLY DO;
STKPTR=0;
END;
PUSH: OPERATION ACCEPTS (VALUE)
MICROOP: PUSH 3 O;
IF STKPTR=16 THEN ERROR;/*OVERFLOW*/
ELSE DO; /* PUSH VALUE */
STKPTR=STKPTR+1;
STK (STKPTR) =VALUE;
END;
END,
POP: OPERATION RETURNS (VALUE)
MICROOP: POP 3 O;
IF STKPTR=0O THEN ERROR; /*underflow*/
ELSE DO; /* POP VALUE */
VALUE=STK (STKPTR) ;
STKPTR=STKPTR-1;
END;
END,
ENDTYPE:

Fig. 1.3 AN EXAMPLE DATA TYPE WRITTEN IN EMPL.

11

of the customizing feature which is primarily just a
variation of the real resource associations found in
MPL.
2) Furthermore, the languages are machine dependent due
to the early binding to their host machine architecture.
3) The languages are designed without any consideration
of the fact that code will eventually be produced for
microprogrammable computers, i.e., no primitives were
identified for writing code on microprogrammable
computers. We believe that certain features of a
special-purpose high level language for microprogramming
must reflect the fact that efficient microcode is a

design and implementation goal.

Because of these reasons the compilers for these languages fail to
produce efficient code. 1In general the earlier tailored and machine
independent languages can be viewed as just another set of languages.
Some of them are tailored to certain machines and produce efficient
code, while others are partially portable but incapable of being trans-—
lated into efficient microcode for a variety of target machines. Further-
more, in both these cases we see that a general microprogramming support
system has not been provided. A microprogramming support system consists
of utilities that support the construction, debugging and testing of
microprograms. when a microprogram has been produced from a program
written in a high level language, then it should be tested for correct-
ness. This can be achieved by providing a simulator for the micro-
programmable machine. This would require a simulator for each micro-
programmable machine for which microcode is to be produced. An alter-
nate way is to compile the high level language program into an inter-
mediate code and provide a simulator for this code. An even better
situation would be to provide an interpretive system for the high level
language so that the user could debug his programs in an interactive

mode.

12

1.3 OBJECTIVES

The problem we have identified in the previous sections are:
PROBLEM 1: 1In order to produce low cost microprograms, a machine
independent high level microprogramming language is needed, yet
according to the analysis above, no such language exists.

PROBLEM 2: The languages which have been designed have not solved
PROBLEM 1 effectively. This is because of two reasons:

1) The language designers have not identified the primitives

for writing code on microprogrammable computers.

‘2) No design principles for designing high level micro-

programming languages have been fabricated or adhered

to. As such earlier language design is not justified

in any manner.
PROBLEM 3: A general tool has not been provided. Specifically, the
problem of portability has not been addressed or solved effectively.
PROBLEM 4: No testing mechanism has been provided; e.g. a topdown
design cycle for firmware engineering which includes testing of

microprograms etc. before implementation.

In Chapter 2 we present the formal definition of a new high level
language for microprogramming. The design of this special purpose
language includes constructs specifically suited for emuiation,
and simultaneously, the constructs that foster production of 'correct'
emulators.

Chapter 3 considers the characteristics of current m-computers.
The architectural features of m-computers are studied in detail and a
formal classification scheme for m-computers is presented.

Chapter 4 discusses the various problems associated with producing
portable software. Since our goal is to produce microcode for a
variety of m-computers, we discuss the portability model which we have

adopted to attain this goal.

In Chapter 5 we present a variety of intermediate language
formats and their attributes. A number of experiments are done to
find out the best possible format. We select the quadruple format
and formally present all the intermediate language constructs.

In Chapter 6 we discuss the language translator and the inter-

mediate language simulator. Based on well known software engineering
techniques we present the results of a number of experiments which
were done on the high level language and the intermediate language.
A summary of the overall significance and contribution of this research
is presented, along with suggestions for further study. Finally, there
are several appendices which give in-depth presentations of the
material discussed in Chapters 2 through 6.

A list of references and a glossary of terms follows the

appendices.

13

2. A IANGUAGE FOR MICROPROGRAMMING

2.1 INTRODUCTION

Before we study the various m-computer (we abbreviate: m-computers
for microprogrammable computers) hardware features that have such an
influence on microprogramming, we have to ask ourselves:

What is the language going

to be used for

i.e., what kinds of programs are we going to write in the language. By
knowing the kind of problems we are going to program in the language, we
can put constructs in the language which will make this task, i.e., of
programming these problems in the language, simpler. If the problems
are numerical in nature, then maybe the language should be similar to
FORTRAN (40). If it is business programming we have to do, then a COBOL
(41) like syntax is more appropriate. Then again, maybe we want to do
all these things, i.e., make a universal language more on the lines of
UNCOL (42) or PL/I (43). But is all of this really practical? The
answer is no, and there are two reasons for this.

1) All the languages pointed to above reguire a large run

time support system. This requires a lot of memory.
Control store in m-computers is very limited (2-8 K
words) and as such not enough to support a large
runtime support system.

2) Scientific, business programming, etc., are not the

most common applications of microprogramming.

Historically, microprogramming has been viewed as an emulation tool
or a means of extending hardware instruction sets (44). According to
(5) the most common application of microprogramming is emulation. This
leads us to conclude that the most frequent program written in our
language for microprogrammable computers will be an emulator, i.e. a program
which realizes the functional characteristices of a computer. The usual

term for such a system is a virtual machine. The computer, i.e., the

14

m-computer on which the virtual machine is realized, is known as the
host and the virtual machine itself is known as the target machine. We
have thus constrained the problem to writing emulators.

Problems 1 and 2 (chapter 1) can now be restated in terms of the
following six objectives and constraints referred to as the basis on

which the language is to be designed.

2.2 BASIS OF LANGUAGE

PREMISE 1l: The language should be 'high level' and facilitate the
writing of programs which realize virtual machines.

PREMISE 2: The language should have simple, reliable constructs.

PREMISE 3: The language should be compilable into compact microcode for
a variety of microprogrammable computers.

PREMISE 4: The microprogrammable computers taken into consideration are
those with horizontal microinstructions.

PREMISE 5: The class of target machines emulated are register oriented,
word addressable machines.

The first premise is a general statement of the problem as outlined
in PROBLEM 1 Chapter 1. Premise 2 is an objective of any good high level
language design experiment. The reliability data available about syntac-
tical entities of computer languages should be used in designing the
language. Simplicity, of course, is a key to good design. Premise 3 is
motivated by the need for fast execution of target machine emulators.
Efficient microcode is defined as horizontal (parallel) microcode that
takes maximal advantage of host machine concurrency. Efficiency is
contradictory to generality, however, and the goal poses a problem for
portability (PROBLEM 3 Chapter 1). Premise 4 is used to make the problem
more general. The problem of producing code for m-computers with vertical
microinstructions is a degenerate case of the more general problem of
producing code for m-computers with horizontal microinstructions. Prem-
ise 5 is included to solve the following problem:

Although we have narrowed the scope of problem 1, by constraining
the universality of the language, we are still covering a very wide range

of targets, i.e., the sub problem is still nearly universal. Should the

15

language have the capability of writing emulators of targets as distinct
and far apart as the IBM 360/50 and the INTEL 8080 (45)? No. IBM 360/50
is a very complex machine and a very difficult one to emulate. Further-
more, things like the I/O channels and interrupt structure of IBM 360
like machines (28) will be very difficult to emulate. INTEL 8080 on
the other hand is a simple machine to emulate. This leads us to modify
our constraint of virtual machine realization to one of word addressable,
register oriented second generation machines as the targets which we will
use in writing emulators. The qualifiers 'Word addressable, register
oriented' have been included only to define what we mean by second
generation machines.

In the rest of this chapter we refer to the language and programs
written in the language interchangeably. The language is called VMPL

which is an acronym for Virtual MicroProgramming Language. A reference

to machine instructions of a target machine refer to the instruction
set processor (46) representation of the target machine. The premises

are reference by numbers Pl (Premise 1), P2 (Premise 2), etc.

2.3 LANGUAGE DESIGN

We are now at the stage where the problem has been completely
defined and are ready to proceed with the design of the language.
In the previous section we have specified a set of premises which

form the basis of the language. Next, we specify eight implications

or design features of the language. Each feature is justified by
reference to the premises and what is known about programming language

in general. 1In following this approach we 'derive' the language.

IMPLICATION 1: VMPL must have facilities for declaring variables,

performing basic operations on the declared variables, and executing

a basic set of control structures.

16

JUSTIFICATION 1l: Since VMPL is going to be used for writing virtual

machines (P1l), it should be able to describe and represent storage and

transformation/control entitizs which comprise a virtual machine.

What this means is that:

1) VMPL must be able to describe all the storage resources
of the target machine like registers, memory, etc.

2) VMPL should be able to describe (perform) the various
functional processes of a computer (target), e.g.,
instruction fetch, instruction decode, operations on
storage resources, etc.

This can be achieved in VMPL in the following way:

1) Declare variable types in the language which can be
associated with the various storage resources of
the target.

2) Provide a set of operators which can operate on the
variables and a set of control structures which can

be used to control the flow of the program.

IMPLICATION 2: The variables declared in VMPL should have various

attributes associated with them.

JUSTIFICATION 2: Although some programming languages allow the pro-

grammer to associate sizes with the declared variables, these sizes are
a multiple of a fixed size, e.g., FORTRAN's (40) single and double
precision words. Furthermore, this size is implicit and dependent

upon the computer on which FORTRAN is being executed, i.e., the size

of a double precision FORTRAN variable on the CDC 6600 (47) is 120 bits
whereas on a PDP 11/40 (48) it is only 32 bits.

In VMPL since the variables declared are used to represent reg-
isters, etc., they should have an explicit SIZE attribute associated
with them. This attribute indicates the width of a register or in
other words the precision of a variable explicity. This is required
because of Pl and P2 which require high level machine independence.

Since the language is used to write emulators for different targets (P5),

17

each with (possibly) different word widths, we cannot have an implicit
(built in) precision associated with all variables of a given program.
Therefore, each individual declaration of a variable should carry the
information about its size. But in case it doesn't, for programmer
convenience, a default size for a variable is taken from a globally
defined parameter.

To declare storage entities like memory, stack, etc., a DIMENSION
attribute has to be associated with some variables. The dimension
attribute then gives the number of elements contained in the array.

Target machine registers often serve both general and special
purposes. As an example, a stack pointer register is incremented or
decremented automatically before or after a push or a pull operation.
Thus, a variable which represents the stack pointer register should have
this information associated with it as a DESCRIPTOR attribute.

Finally, we describe the CLASS attribute through the following
illustration. Suppose a particular host machine and target machine
both have a stack. Further, suppose the target machine stack can be
mapped down exactly into the host's stack. Pl and P2 forbid us to make
this association, directly. 1In fact, as far as P2 is concerned, we are
not even be aware that the host has a stack. How can the 'virtual'
stack be mapped into the real stack? The only sensible or efficient
way to do this is to retain the identity of the storage resource which
a particular variable is representing. This is achieved by the CLASS
attribute of a variable. Thus, the compiler retains the identity of the
target resources and may (if possible) associate a certain variable
with a certain resource on the host. The target memory is an obvious
and trivial example of this attribute. Target memory should be (has to

be) mapped into the host memory for a successful emulation of the target.

IMPLICATION 3: The language should have a provision to declare a stan-

dard set of condition code flags. Furthermore, there should be a
mechanism to indicate directly which flags are to be affected in a
particular operation. For example, an action like an assignment state-

ment in the language must be able to affect the condition codes.

18

JUSTIFICATION 3: ' Condition code flags are an important part of a

computer. The setting/clearing of these flags is a function of the
various machine instructions of a computer. A number of approaches can
be adopted to represent the target flags in the emulator program.

The flags can be declared as variables. Each time a flag is used,
i.e., set or cleared, emulation code has to be written corresponding
to the usage of the flag. Consider the example of a carry flag used
during the emulation of an addition instruction Fig. 2.1. The addition
operation is followed by code which emulates carry generation. A result
of zero or one is placed in the carry flag. Adapting this approach for
a flag like overflow becomes even more complex Fig. 2.2. This approach
is thus complex and costly, producing a lot of microcode contradictory
to P3.

An alternate procedure is to implement flag processing code as a
sub-procedure which is called when needed Fig. 2.la. This approach has
the cost of subroutine linkage and parameter passing associated with it.
Host machines usually lack subroutining facilities and as such trying
to create this enviromnment is costly and impractical. Parameter passing
is specially costly because of the allocation/deallocation scheme used
for assigning VMPL variables to host machine registers discussed later
on.

Both approaches neglect the fact that the host may provide a set of
target flags that can be enabled directly. All that is required then,
is to declare the flags using some standard (reserved) names. Then when
an operation happens, a way should be provided to indicate which flag
is to be affected by the operation. The exact way in which the desired
results (on the flags) are obtained, is left to the compiler until the
point when the compiler knows the machine for which microcode is being
produced.

Four standard flags have been provided for in VMPL Table 2.1.

Lunde (49) suggests that a limited number of conditions are sufficient
for an instruction set processor. Therefore, the four standard flags

used in VMPL appear to be adequate.

19

ADDITION OF : SRCl, SRC2
RESULT TO BE STORED : DEST.
CARRY FLAG : CARRY.

CODE PRODUCED

*NOTE :

BEGIN
DEST = SRC1l + SRC2 ;
IF DEST { SRCl* THEN CARRY = 1
ELSE CARRY = 0;

END

IN CASE DEST IS DISTINCT FROM BOTH SRC1 AND SRC2
THEN DEST CAN BE COMPARED AGAINST EITHER ONE,
OTHERWISE DEST HAS TO BE COMPARED AGAINST THE
"SOURCE' WHICH IS DISTINCT FROM IT.

Fig. 2.1 CARRY FLAG SET-UP SCHEME

20

PROCEDURE CARRY (SRC, DEST):

BEGIN

IF DEST < SRC1l THEN CARRY = 1
ELSE CARRY = 0;

END:

PROCEDURE MAIN;

BEGIN

DEST = SRC1l + SRC2;

CARRY (SRC1l, DEST); /*THIS INVOKES THE CARRY
PROCEDURE*/

Fig. 2.la CARRY FLAG SET-UP AS A SUBROUTINE

21

ADDITION OF : SRC1, SRC2

RESULT TO BE STORED : DEST.

OVERFLOW FLAG : OVFLAG

FUNCTION AVAILABLE : MSB-GETS THE MOST SIGNIFICANT

BIT OF ITS PARAMETER, i.e., THE SIGN BIT

CODE PRODUCED

BEGIN
SIGN1 = MSB(SRC1l),
SIGN2 = MST(SRC2);

DEST = SRCl + SRC2;
IF ((SIGN1=SIGN2) A (SIGN1=MSB(DEST)))
THEN OVFIAG = 1
ELSE OVFIAG = 0;

END

Fig. 2.2 OVERFLOW FLAG SET-UP SCHEME

TABLE 2.1 VMPL STANDARD FLAGS

FLAG VMPL NAME
c CARRY
0 OVERFLOW
N NEGATIVE (SIGN)
Z ZERO

22

23

IMPLICATION 4: The language should support very simple assignment

statements using infix notation. It should allow only one variable
on the left hand side and at most two operands and a diadic operator
on the right hand side. However, the operands on the right hand side
can have one of a number of monadic operators associated with each

of them.

JUSTIFICATION 4: A study carried out by Elshoff (50) on 120 commercial

PL/I programs found that assignment statements account for 41.2% of

all program statements Table 2.2. 1In this same study it is revealed
that 98% of all expressions (right hand side of assignment statements)
have zero or one operator (excluding the assignment operator). Another
study of 440 Fortran programs (51) produced similar results: 60% of all
assignment statements contained no operator other than the assignment
(=) operator.

Based on this data, VMPL is designed to support very simple assign-
ment statements. VMPL allows only one variable on the left hand side,
and at most two operands and one diadic operator on the right hand side
of the assignment operator.

There can be two objections to using the above mentioned data as
the basis of our justification. The first one is that the data was
gathered from the pre-structured program era and as such the sample
programs are 'bad'. Secondly, some of the data comes from business
programs rather than emulators.

The first objection is overruled simply because no other data exists.
Until data is collected for emulators, we are obliged to use what is
known. The second objection is overruled on the basis that data collected
for business and scientific applications seems to agree, even for diverse
applications and languages such as PL/I and FORTRAN. This indicates
that there is something consistent about the use of assignment statements
in at least two samples. We assume that our results will be the same.

The next question deals with the number and type of operators that
should go into an emulator-writing language. An instruction set proces-

sor has a large number of operators. Allowing a large number of operators

TABLE 2.2 ELSHOFF'S ANALYSIS OF 120

COMMERCIAL PL/I PROGRAMS

STATEMENT PERCENTAGE
ASSIGNMENT 41.2
IF 17.8
GOTO 11.7
END 7.5
DO 7.2
DECLARE 6.3
WRITE 2.6
CALL 2.0
READ 0.5
PUT 0.4
NULL 0.5
PROCEDURE 0.2
PREPROCESSOR 0.1
OTHER 2.0

24

25

in the language will increase its complexity and affect reliability (P2).
An alternate is to include a primitive set of operators only. There are
two different considerations for selecting these operators. One is to
use the data available on frequency of usage of various operators in
programs and the effect they have on the reliability of the language.

The other consideration is to determine which operators are best for

the language based on their similarity with the instruction set processor
of target machines to be emulated. The 'rotate' and 'shift' instruc-
tions, for example, are common target machine instructions.

Although relational operators are present in VMPL they are not used
in assignment statement expressions but instead limited to boolean
expressions. Gannon (52) shows that this makes expressions more reliable
and reduces errors in assignment statements by 20%. Similarly, limiting
the assignment operator to assignment statements and not allowing it in
expressions reduces errors by 20% (52). It is also found (52) that the
'traditional' infix precedence expression evaluation technique is 5%
more reliable than 'APL' (52) like expression evaluation technigque and
much more readable.

The model of an assignment statement based on Elshoff's and Gannon's
data-single variable on the left and two operands and a diadic operatorxr
on the right of the assignment operator-is an extremely simple and
reliable one and as indicated in the implication above is the basic
one adopted by VMPL assignment statements. However, we augment this model
based on the characteristics of host ALU's.

Since masking and shifting capabilities are available on host
computers, VMPL expressions are modified to reflect these resources. We
handle these 'side-effect' operators by a number of 'monadic' operators.
These operators are 'shift', 'rotate’, 'mask', 'field extraction',
‘indirection' and 'register concatenate'. Each of the two operands on
the right hand side can be modified or operated upon by one of these six
operators. 'Shift' and 'rotate' make use of the shifter associated with
the ALU. 'Mask' uses the masker and 'field extraction' uses both the
shifter and the masker. 'Indirection' and 'register concatenate' makes
use of the iterative capabilities of the host machine. ‘'Indirection' is

the fetching of data from (host) memory via an indirect address and

26

'register-concatenate' operates on two more registers or data words as

if they were a cascaded pair, i.e., a single long data word.

IMPLICATION 5: The control constructs of the language should be simple

in nature and tailored to the needs of emulator writing.

JUSTIFICATION 5: The control constructs of the language should be of the

D' type according to Kosaraju's hierarchy of control structures (53).
The reason for choosing these structures is that they are found to be
reliable, structured, simple (P2) and as pointed out by Ledgard (54) -
'the need for higher level (above D') control structures remains
unproven'. The D' structures include the sequence, conditional, loop
and case statements Fig. 2.3. However, in VMPL these structures have
been modified for emulator writing.

For specifying loop operations two constructs are provided. One
allows the execution of the loop, a fixed number of times and can take
advantage of the iterative mechanism available on the host. The other
is a conditional looping mechanism.

Before any computer (target) executes any instruction, it has to
decode it. This process is done by making a decision based on the
opcode of the instruction (macro) and then executing it by enabling the
appropriate circuit. The equivalent of this in VMPL is a special form
of the case control structure. A jump to a multiple statement case
statement is made based on the value of a variable. The statement to
which the jump is made is another jump statement which mades a jump to
a procedure (part of the program) which executes the instruction. This
form of the case statement fits nicely into the N-way branch instruction
available on hosts.

At times an equivalent operation is done wherein a number of condi-
tions are checked one after the other and if any of them are true, to
execute the code associated with them and then check the next condition.
The case statement won't do this as it executes code corresponding to
only one branch, i.e., one true condition. This is provided by an alter-

nate version of the case statement.

27

>
S Sl S2
a, ACTIONS b, COMPOSITIONS
T
T
Sl S
1
s >
S
F 2 -
¢, IF-THEN-ELSE d, IF-THEN
T
A S P

f, REPEAT-UNTIL
e, WHILE-DO

5,571 Sy - STATEMENTS

P - PREDICATE
T - TRUE
F - FALSE

Fig. 2.3 DEFINITION OF D'STRUCTURE

g, CASE

Fig. 2.3 DEFINITION OF D'STRUCTURES

28

29

In VMPL boolean expressions only the three relational operators

which are found to be used 85% of the time by Elshoff (50) are used.

Because of target machines capabilities of doing bit testing, which can
be achieved on hosts by masking and shifting, we have explicitly pro-
vided for a way of directly indicating a certain bit of a variable as
the one under test in a boolean expression (explicit feature). This can
be considered as programmer convenience since the same effect can be
obtained by using the 'shift' and 'mask' monadic operators discussed
earlier (implicit feature). However, since some hosts do provide direct
bit test capability, it is better (efficient) to keep this feature in

the language explicitly and let the compiler decide on what to do.

IMPLICATION 6: The language should have the provision of declaring

external procedures, variables, flags, etc. These are 'implemented' in
runtime support microcode and linked to the rest of the emulator

program.

JUSTIFICATION 6: There are two aspects of emulation which have not been

discussed until now. These are Input/Output and interrupts. It is
extremely difficult to match host I/O and interrupt structure to target
machine I/O and interrupt structure without knowing the target machine
in advance.

The true solution to this problem lies in the design of host
machines. Host machines should provide a 'soft' (38) I/O and interrupt
structure that can be mapped into primitive functions (in VMPL) which can
in turn be used to describe the I/0 and interrupt structures of various
targets. Without soft I/0 and interrupt structures, m-computers do not
share a common set of properties that can be characterized for a class
of machines. This aspect of emulation is further complicated by the
wide variation of I/O and interrupt structures in various target machines.
Although this wide variation is somewhat narrowed down because of P5, by
limiting ourselves to targets which do not have I/O channels, I/O proces-
sors, direct memory access and other sophisticated I/O and interrupt

structures (P5), we still have not found enough common primitives in

30

hosts and target machines to have some kind of primitive language con-
structs which can be used to specify target I/0 and interrupts.

This problem is temporarily ‘solved' in VMPL by the use of externals.
Each external name has associated with it the descriptor attribute which
indicates whether the name is a procedure, a flag or a simple variable.
Any peculiarity of the target which cannot be described in VMPL can thus

be described in this way.

IMPLICATION 7: The overall program is broken into arbitrary sized

blocks called procedures or subprocedures. All variables used within
the block are declared at the start of the block. A priority status is
associated with the variables used in a block by the programmer. The
code is executed sequentially from one block to the next. There are
two cases where control is nonsequential: 1) when a subprocedure is
called, or 2) a 'case' statement is executed which jumps to another

block.

JUSTIFICATION 7: Register allocation/deallocation is a major problem in

producing compact microcode (P3) for m-computers. Briefly, the problem
is as follows. Suppose either the number, the size, or both of the
target registers defined as variables in the VMPL program are greater
than the local storage registers available on the host. Because of this
disparity, the compiler is unable to permanently store these variables in
local storage. The variables will have a copy somewhere in the main
memory as the need arises. Now, when the compiler is binding (allo-
cating) a variable to a register in the local storage, it may have to
produce microcode to store the register (deallocate) in main memory.
This may be necessary because the register may be associated with
another variable and its copy in main memory is not fresh (active vari-
able). Suppose at this point the compiler has the option of allocating/
deallocating more than one register. Which one should the compiler
choose? Similarly, the compiler has a very limited amount of look ahead
and doesn't know what requirements for variables will be in the next
statements. As such it might generate a large number of load-store

instructions and hence a lot of microcode which goes against P3. This

31

situation is depicted in Fig. 2.4 and illustrated by the following
example.

A four register (RO, R1, R2, R3) local storage host is assumed to
have variables Al, A2, A3, A4, respectively, at some point within the
compilation process. The compiler needs to put variable AO in one of
the four registers. However, if it stores the variable in any of the
registers, it has to store the variable already present there back in
main memory. Which register should the compiler choose? For example,
if the compiler knew that variable A2 is not going to be used in the
next statements, then it will store it back in main memory and allocate
register R2 to variable AQ0. How is the compiler supposed to know this?

Sophisticated schemes have been developed to minimize register-
variable swapping (14). One thing overlooked in these schemes is the
fact that the programmer knows what variables are used in a certain
'block' of code. Why not take advantage of programmer 'look-ahead' with
a compiler that uses this information when allocating/deallocating
registers? This is achieved by making the program modular. All vari-
ables used throughout the program are declared at the start of the pro-
gram. These are the glgggl_variables. At the start of each block the
programmer specifies which of the globals are going to be used in a
block of code and declares them as such. He also declares variables
which are local to the particular block and will only be needed as long
as the block is executing. The compiler uses this declarative infor-
mation when allocating/deallocating variables. Since the variables
which have not been declared will not be used in a block, they need not
be kept in local storage.

An implicit priority associated with the local-global classification
of variables. Globals are given a higher priority than locals. By this,
we mean that if the compiler has to allocate both a global and a local
variable, it will first allocate the global variable. Similarly, if it
has the similar options of deallocating variables, it will deallocate
the local variable first. Further levels of priorities can be associated
as tags with various variables. This provides the compiler with a hier-

archy of look ahead. The compiler thus has finer control over which

RO

R2

R3

RO

R1

R2

R3

RO

R1

R2

R3

32

Al

A3

INITIALLY
A2

A4

(a)

Al

A3
AQ AQ HAS TO BE

ALLOCATED TO A
A2 REGISTER

A4

(b)

Al

A3

FINALLY ~ A2 DEALLOCATED
A0 AO ALLOCATED TO RO.

A4

(c)

Fig. 2.4 VARIABLE ALLOCATION PROBLEM

33

variables to allocate/deallocate based on the information provided by
the programmer. Furthermore, the reliability of emulators is improved
by introducing the redundant declarative information. The compiler can
use the redundant declarative information to check for program consis-
tency by seeing that only those variables which have been declared at
the head of a block are used within the block.

Since the VMPL program is broken up into arbitrary sized blocks,
program execution proceeds from one block to the next in a sequential
manner. However, some blocks can be declared as subprocedures. These
are the same as FORTRAN's subroutine (40). The sequential execution of
a VMPL program is thus broken when a call to a subprocedure.is made .
Subprocedures return control to the place of their invocation. Another
situation of non-sequential execution is the execution of a 'case' like

statement. This will be discussed later on.

IMPLICATION 8: A subprocedure should be declared before it is used.

JUSTIFICATION 8: The reason for this is that the state of the machine

(host), in terms of what is contained in its local storage at the entry
and exit to a subprocedure, has to be known before a call is made to it
from any other place in the program. Thus, the subprocedure is declared
before it is used so that it gets compiled first. Then information
about the state in which subprocedures expects and leaves the machine

is known. The global variables that are expected by a subprocedure and
those that are returned by it must be explicitly declared as such. The
only variables that are passed as parameters are the local variables of
the block making the call to the subprocedure. This is because the only
variables not 'accessible' to the subprocedure are the locals of the
calling block, since the globals are global to all the blocks.

The idea presented here is not in any way associated with the prob-
lems which arise with one pass compilers (55). As we will see later on,
ours is not a one pass compiler. The only point of importance is that
the subprocedure has to be compiled before it is used. 'Declaring’' it
before it is used also helps the programmer in structuring his whole

program.

34

2.4 DEFINITION OF VMPL

In this section we specify the syntax of VMPL. The complete BNF
representation of VMPL is given in Appendix A. The various syntactic
entities of the language have been grouped together according to the
implications presented in the previous section. Any syntactic feature
of VMPL which is not covered by the implications of the previous section
is justified as being in the language for programmer convenience.

All implications discussed in the previous section are referred to

as Il, 12, 13, I4, I5, 16, I7 and 1I8.

2.4.1 DECLARATIONS

Declarations for the various data items provide the attributes of
the items. Declarations can be grouped into the following four types:

1) Global variable declarations.

2) Global information declarations,

3) Local variable declarations.

4) Local information declarations.

2.4.1.1 VARIABLE DECLARATIONS

The syntactic description of VMPL variable declarations is:

DCL TYPE PRIORITY CLASS NAME
: DIMENSION : DESCRIPTOR : SIZE

The TYPE of the variable is eiﬁher LOCAL or GLOBAL. Variables which are
used throughout the program are declared at the start of the program and
are of the GLOBAL type. Variables used in any particular block (dis-
cussed later on) are of type LOCAL. Globals have a higher priority than
locals (I7). 1In VMPL a further level of PRIORITY is associated with
variables. The PRIORITY of a variable can be either PERMANENT or TEMP-
ORARY. Permanents have a higher priority than temporaries. We will see
in Chapter 6 how this hierarchy of priorities helps the compiler in

producing efficient code.

35

There are six classes of data items or variables (I2 & I6). This
is given by the CLASS entity of the variable declaration. The six

classes are:

1) MEMORY
2) STACK
3) PSTACK
4) FLAG

5) SIMPLE

6) EXTERNAL
The MEMORY variable is used to define the target memory. It has asso-
ciated with it the dimension attribute which is an integer defining the
number of words (elements) which the memory has. In case the target has
a stack, it can be described by the STACK variable. The stack pointer
is described by the PSTACK class. In VMPL, we can only declare one stack
and one stack pointer (target machines with one stack at most). The
stack declaration requires the stack pointer declaration. However, the
stack pointer declaration does not necessarily require the stack declar~
ation. This covers those targets which have stack pointers but no explicit
stack. In this case, the wvariable declared as MEMORY will be the default
stack. 1In these machines the stack resides in the main memory. The ques-
tion is why we need the PSTACK class, i.e., why treat the stack pointer as
a special register. It could be covered by the same declaration which
covers the other registers of the target. The reason is that the most
frequent operations done on a stack are the PUSH & POP operations via
the stack pointer. The PUSH & POP operations along with the knowledge
about whether the stack grows upwards (from higher address towards low
addresses) or downwards (from lower address towards higher addresses)
completely determine the actions of the stack pointer. These actions
are grouped together and shown in Table 2.3. The notation given in the
last two columns of Table 2.3 is used in the DESCRIPTOR part of the
PSTACK variable. Thus, by declaring the PSTACK variable, the compiler
knows what code to generate to emulate the PUSH & POP operations which
are a part of VMPL syntax. It may also match the stack pointer of the
host (if one is present) to that of the target since it has all relevant

information.

36

TABLE 2.3 STACK OPERATIONS AND THEIR VMPL
DESCRIPTOR REPRESENTATION

FOR PUSHING FOR POPPING DATA CORRESPONDING VMPL NOTATION

DATA INTO FROM THE STACK PUSHING POPPING
STACK

(PUSH, INC) (DEC, POP) (v, -,

(INC, PUSH) (POP, DEC) (+, 4’) T)

(PUSH, DEC) (INC, POP) v, - +, ™)

(DEC, PUSH) (POP, INC) (-, ¥) (T ,+)

(a) (b)

37

Single bit flags are described in VMPL via the FLAG class. One of
four descriptors may be associated with a flag variable. These descrip-
tors are C, O, N, Z. The C descriptor makes the flag equivalent to the
CARRY flag. For example, flag variable 'LINK' has associated with it
the descriptor C. 'LINK' can now be used in conjunction with an assign-
ment statement. Suppose the operation in the assignment statements is
the add operation. Any carry generated would be stored in the flag vari-
able 'LINK'. All the programmer has to do is to specify whether he
wants LINK to be effected or not by a certain operation. The compiler
then generates the code (I3) which actually affects the flag. The O,

N and Z descriptors are associated with the overflow, negative and zero
flags, respectively.

Target registers are described in VMPL via the SIMPLE class. The
use of the reserved word SIMPLE is optional however. LOCAL variables
can only be of the SIMPLE class or FLAG class.

The external problem as outlined in (I6) is covered by the EXTERNAL
attribute in VMPL. The external data element can be a flag, a subpro-
cedure or a simple variable. This qualification is done via the des-
criptors F, P or S, respectively.

The DIMENSION and SIZE entities of variable declaration are given
by positive integers. The DIMENSION entity is enclosed in rectangular
(I1) brackets. Examples of VMPL declarations which illustrate the

various aspects discussed above are shown in Fig. 2.5.

2.4.1.2 INFORMATION DECLARATIONS

There are three global information declaration statements in VMPL

and four local information declaration statements.

2.4.1.2.1 GLOBAL INFORMATION DECLARATIONS

Since the size attribute is associated with data items of different
types and since it usually is the same for most of them in one program
(the width of target stack registers memory words, etc. is usually the

same), it seems better and convenient to make a global declaration of

EQUIVALENT {

DPCL GLOBAL

DCL GLOBAL

DCL GLOBAL

DCL GLOBAL

DCL GLOBAL

DCL GLOBAL

PERMANENT MEMORY

PERMANENT STACK

PERMANENT PSTACK

TEMPORARY FLAG

PERMANENT SIMPLE

PERMANENT

DCL EXTERNAL PERMANENT

DCL LOCAL PERMANENT SIMPLE

DCL LOCAL TEMPORARY FLAG

38

MEM: [4096]+12
STK+{32]s:12
PSTK= (¥ ,+) =5
LINK:C, OV:0
ACC: 8,T1:12

Bl:8, B2:12

.
12

REGl:5:4,I0OHAND:P;

REG2:8

FLG

Fig. 2.5 VMPL GLOBAL AND LOCAL VARIABLE

DECLARATIONS

39

this fact. This is done via the WORDSIZE. declaration as shown in Fig.
2.6a.

Each individual declaration of a data item may carry the informa-
tion about its size, but in case it doesn't, and the information is
required for that type, then the default value of the size is taken from
the globally provided information. Fig. 2.7 illustrates this wherein
both (a) and (b) are equivalent declarations for an 8-bit register Rl.

The two. basic ALU arithmetic modes for computers (targets & hosts)
are one's-complement and two's complement arithmetic. The host ALU may
perform arithmetic differently than the target ALU. In order to keep
VMPL machine independent, possible conflicts must be handled at compile
time. The VMPL programmer declares the mode of arithmetic to execute
under, (the mode of arithmetic done on the target) and the compiler
then handles any mismatches which may occur. The declarations are
shown in Fig. 2.6b and c.

In VMPL bits of a n bit data item are numbered from O to n-1 start-
ing at the right or the least significant bit. The 'field extract'’
operation is frequently done in the instruction decode part of a virtual
machine. A field is meant to be the result of the logical AND operation
between a data item and a mask followed by a shift operation. The shift
may be left or right. Fields are declared and given a name in VMPL.
They have two or three integer parameters associated with them. The
first two (equivalent to the mask) indicate the range in bit position
which has to be masked out. The third optional integer indicates the
shift amount. Its absence indicates no shift. A left shift is indicated
by a negative number and a right shift by a positive number. The field
OPCODE in Fig. 2.64 refers to bits 9, 10 & 11 to be extracted and shifted
right by 9 positions. ADDRES on the other hand is a reference to the
extracted bits 0 to 8 but doesn't shift them. The way fields are used

is discussed later on.

2.4.1.2.2 ILOCAL INFORMATION DECLARATIONS

As discussed in I7, we expect to improve the efficiency of the

microcode produced by indicating to the compiler the global variables

DCL

DCL

DCL

DCL

Fig. 2.6 VMPL GLOBAL INFORMATION DECLARATIONS

WORDSIZE
(a)

ARITHMETIC
(b)

ARITHMETIC
(c)

FIELD

()

12 ;

OPCODE (9,11,9)

ADDRES (0,8)

.
7

12

40

Fig.

DCL GLOBAL PERMANENT R1:8;
(2)

DCL WORDSIZE 8;

DCL GLOBAL PERMANENT R1;

(b)

2.7 WORDSIZE DECLARATION EQUIVALENTS

41

42

which will be used in a certain block. This information is provided
by importing the global variables used in a certain block, see Fig. 2.8a
{(global USE variables).

The next two information declarations are associated only with sub-
procedure blocks. The only variables passed as parameters to a sub-
procedure are the variables which will be local to the block from which
the subprocedure is called. Global variables (like FORTRAN's (40)
COMMON) needn't be passed as parameters since they can be declared as
global USE variables as discussed above. Thus, within the subprocedure
we‘have three kinds of variahles being used; the subprocedure paraﬁeters,
the global variables imported with the USE statement, and any variables
LOCAL to the subprocedure block. We have already discussed the reasons
why a subprocedure has to be compiled before a call to it is made (IS8).
The non-local variables (i.e., variables not declared by the LOCAL state-
ment) can be used in three ways within the subprocedure.

a) Their value is used somewhere within the subprocedure

block, i.e., the subprocedure expects their value when

a call is made to it or it doesn't modify the variables
value.

b) They are assigned a value somewhere within the subpro-
cedure block, i.e., the subprocedure returns their value
when a call is made to it or it modifies the variables
value.

c) Both a & b happen.
We will discuss these ‘three cases by the VMPL code shown in Fig. 2.9.
The subprocedure block is named SUB. It has one parameter PAR. The
procedure block which 'calls' SUB is block MAIN. It has a local vari-
able LOCL which it passes to SUB, i.e., PAR is the formal parameter and
LOCL is the actual argument. We assume that SUB doesn't use any global
variables. The m-machine for which code is being produced has two reg-

isters Rl & R2 in its local storage.

CASE a
SUB expects the value of PAR, i.e., LOCL when it is called from
MAIN.

Since SUB is compiled before MAIN, we associate a certain register,

DCL

DCL
DCL
DCL

DCL

DCL

Fig.

GLOBAL USE MEM, ACC, T1;

(a)

GLOBAL EXPECT REG2;
LOCAL EXPECT T™P1;
LOCAL RETURN T™MP1;
LCCAL PERMANENT VALL, VAL2:3;

(b)

SPROC USE SUB;

(c)

2.8 VMPL LOCAL INFORMATION DECLARATIONS

43

44

say Rl, with the parameter PAR. This means that when we compile
SUB and we want the value of PAR (statement 9), we assume it to
be in Rl and pick it up from there. Thus, when we call SUB from
MAIN, we first store the value of LOCL in Rl and then do the call
operation. It also means that when we compile SUB, we do not use
Rl for any other variable being used in SUB until statement 9,
i.e., until the time when we first use PAR (Rl), we want to pre-
serve it since it has the value which was passed from MAIN to SUB.
From there onwards all registers are handled by the compiler in
the same manner.

All this can be done if within SUB we make a declaration of
the fact that the value of the variable PAR is EXPECTED from the
block which makes the call. Thus, all global variables and para-
meters which are expected by a subprocedure are declared as having

this property.
CASE b

SUB returns the value of PAR, i.e., LOCL when it is called
from MAIN.

After having compiled SUB, we know that PAR is in register
R2. Within MAIN after producing the code for making the call
to SUB (statement 24), we have to produce code for statement 25.
For this statement and the following statements, we know LOCL
is in R2 since that is where SUB leaves it or returns it. This
information is available if we declare PAR within SUB to have the
RETURN attribuﬁe. Now when the compiler compiles SUB, it will
preserve R2 from the point where it last stores the value of PAR

in it to the point where it leaves and returns to MAIN.

— -

45

——— . SUBPRCCEDURE (SPROC)
DECLARATION

PROC:MAIN;
DCL LOCAL PERMANENT LOCL:8;

— —

+

"EXECUTE SUB(LOCL);

— -

SPROC:SUB (PAR:8) ;

DCL LOCAL EXPECT PAR;
DCL LOCAL PERMANENT T1,T2;

= PAR;

- #

CASE a

[*STMT.No. 9%]

P

[*STATEMENT NO. 24%]

+H

(a)

SPROC:SUB (PAR:8) ;

DCL LOCAL RETURN PAR;
DCL LOCAL PERMANENT T1,T2;

#

— —

PAR = T1; [*STMT. No.
24%*]
CASE b

Fig. 2.9 EXPECT & RETURN DECLARATION EXAMPLES

46

SPROC: SUB(PAR:8);
DCL LOCAL EXPECT PAR;
DCL LOCAL RETURN PAR;

DCL LOCAL PERMANENT T1,TZ;

FF

CASE ¢

Fig. 2.9

EXPECT & RETURN DECLARATION EXAMPLES

47

CASE ¢

This is just a combination of cases a and b. For this case
a variable has to be declared both as an EXPECT & RETURN variable.
Examples for these declarations are shown in Fig. 2.9b.

Using the same arguments, we can say that upon entry to a
block if the compiler knows which, if any, subprocedure will be
called from within that block, then it can produce more efficient
code. This is because while producing code for the block, the
compiler knows at entry which variables are going to be expected
and returned by the subprocedure which is going to be called from
within the block. It knows the registers which will hold those
values when the call is made to the subprocedure since the sub-
procedure has been compiled first. Thus, for the statements
before the call statement in the block, it tries to utilize the
machines registers in a way which will make the change to the sub-
prcedure's environment efficient. As in our previous example,
case a, if the compiler knows that SUB is going to be called from
within MAIN, then while producing code for statements 1 through
23, it will try to keep LOCL in Rl so that when the call is made
to SUB, the value of LOCL needn't be loaded into Rl (extra code).

2.4.2 ASSIGNMENT STATEMENTS, OPERATORS & EXPRESSIONS

A very simple model for the assignment statement is discussed
in I4. Expressions in assignment statements are limited to diadic
arithmetic operators and special monadic operators. Logical and
relational operators are limited to boolean expressions. The basic
arithmetic, logical and relational operators available in VMPL are
shown in Table 2.4. Each operand of an assignment statement can
have a number of monadic operators associated with it. These mona-

dic operators are:

48

TABLE 2.4 VMPL DIADIC OPERATORS
ARITHMETIC LOGICAL RELATIONAL
+ .AND. .GT.
- .OR. .LT.
* . XOR. .EQ.
/

TABLE 2.5 VMPL SHIFT OPERATORS

SHIFT DIRECTION

FILL UP BIT

VMPL NOTATION

RIGHT @ .SHTRA.
RIGHT 1 .SHTRL.
LEFT 2 .SHTLD.
LEFT 1 .SHTL1.
(a)
A = B.SHTR@.6 ;
X = Y.SHTL1.2 + 3

(b)

49

a) SHIFT AND ROTATE: There are four monadic shift operators available

in VMPL. A data item can be shifted left or right and the bit positions
which become available can be filled by either a one (1) or a zero (0)
Table 2.5a. 1In reality, a shift operator is diadic because it requires
another operand which specifies the shift amount. In VMPL this operand
has to be an integer, i.e., the shift amount is fixed at compile time.
Table 2.5b illustrates the use of the 'monadic' shift operator. 1In the
first example, variable B is right shifted and zero filled by six posi-
tions and the result stored in A. In the second example Y is shifted as
indicated by the shift operator and the shifted result is added to 3.
The result is then stored in X.

Similarly, two other operators which correspond to rotation are
available. These are used for left and right rotation of data items.
ROTL is used for left rotation and ROTR is used for right rotation.

Like shift, the rotate operator also requires an integer specifying

the amount of rotation Table 2.6.

b) FIELD EXTRACTION: As mentioned in the section on global information

declarations, in VMPL a programmer can define field operators, which
effectively mask and shift various bits out of a data item, i.e., per~
form the extract operation. The statements in Fig. 2.10b use the fields
defined in Fig. 2.10a. The first statement extracts the OPCODE field,
i.e., (bits 9, 10 and 11 shifted 9 places to the right) from the vari-
able IR and stores the result in OPCD. The second statement extracts
the ADDRES field from IR, adds the result to 20 and stores this result
in PAGE.

c) INDIRECTION: One of the most common addressing modes found on var-

ious target machines is the indirect memory mode. In VMPL we define an
indirection operator by the @ sign. It can only be used on the MEMORY
class of data item. If M is a memory variable and ADDR & IR are simple
variables, then

IR

@M [ADDR]

is equivalent to

IR = M [M[ADDR]]

which by itself is not allowed in VMPL. The square brackets ([]) are

50

TABLE 2.6 VMPL ROTATE OPERATORS

ROTATE DIRECTION VMPL NOTATION
LEFT .ROTL.
RIGHT -.ROTR.

A = B.ROTL.7 ;

Rl = REG1l.ROTR.3;

(c)

DCL FIELD

OPCODE (9,11,9) ,
ADDRES (0,2) ;

(a)

OPCD = OPCODE (IR} ;

PAGE = 20+ ADDRES (IR) ;

Fig.

(b)

2.10 EXAMPLES OF VMPL FIELD FACILITY

51

52

themselves a monadic operator which are used to index into dimensioned
variables, i.e., variables which have the DIMENSION attribute. In the
example above, once the data at the ADDR index of M is obtained, it is
used to index again (indirection) into M to fetch new data which is then

assigned to IR.

d) CONCATENATION: The concatenation operator allows concatenated items

to appear on either side of an assignment. Two SIMPLE variables A and
B, can be concatenated together and then logically used as if they

existed as a single entity, i.e.,
A//B = A//B+2

The integer 2 is added to the logically formed variable A//B and the
result stored back in A//B.

e) BIT SELECTION: Last of all an operator is available which can test

a selected bit of a data item. This operator is limited to boolean
expression only. It returns a value of true if the bit in question is

a 1, otherwise it returns a false value:
(IR, 6)

This means that the sixth bit of IR is to be tested to see if it is true
or false.

Since we have defined a number of diadic and monadic operators,
precedence rules have to be established for expression evaluation. The

primary rule for expression evaluation is:

All monadic operators are executed

before the diadic operator is executed

We present these rules in the form of a chart as shown in Fig. 2.11. The
blank entries mean that the corresponding entries cannot occur simultan-
eously in an assignment statement or a boolean expression.

There is only one predefined variable in VMPL. This is the reserved
name POP. Its value is the value of whatever gets popped off the stack,
i.e., it is a way of getting data off the stack via the pop function.

POP is treated as a simple variable and it can be used anywhere a simple

53

-xI0¥: | AN Vv V] Y A ANEAN AN AN AN A
sxxzus: | A v | v VY YA A SIS
et Vv N e
‘LT v N V.
Io° Y/ N Vv
10N | AL NNV A oS N[N A A A
gox | Al V| V| VIV
ot | A V] V[V
Yool EaSRVARVARYIRY
N VANEVAEVARYARY
x |A[NV|VIV]
VA VIV VYV
+ | AV VN
A
@ [NV
I v
H“ N
1]
x| %
2
al leiel L] - |E|E
__HO@U+4H.*/M.mmmmm.m.~ﬂm

MEANS 5. IS DONE

(EXECUTED) BEFORE P.

6P

*% y=T,

*XX=L0O

Ll

RO

R1

Fig. 2.11 PRECEDENCE RULES FOR VMPL OPERATORS

54

variable is used, i.e., an operand in an expression, index to the vari-
able of class MEMORY, etc. However, it should be remembered that using
this variable has a side effect on the PSTACK variable. The PSTACK vari-
able gets incremented or decremented as defined by its descriptor.

In I3 and I5, we mentioned that the setting/clearing of VMPL's pre-
defined flags can be directly indicated in an assignment statement. This
is shown in Fig. 2.12. For this example we assume CARY and ZRO are user
defined flags associated with VMPL defined carry and zero flags (via the
descriptors C and Z). Variable B is added to C and the result is stored
in A. The carry and zero conditions generated by this cperation is
reflected by the setting/clearing of the CARY and ZRO flags. The code

to achieve this is generated by the compiler.

2.4.3 CONTROL CONSTRUCTS

In I5 we indicated the need for a simple and complete set of control
constructs modified to the needs of emulater writing.

Conditional statements, which according to Elshoff's (50) study
make up 17.8% of a program, are provided for in VMPL by the IF....THEN...
ELSE....construct with certain modifications. Two IF statements are pro-
vided in VMPL; IFTRUE which causes the THEN portion to be executed if
the boolean expression is true, and the IFFALSE, which avoids confusion
over negative predicates by executing the THEN clause when a predicate
is false. This will hopefully remove the semantic difficulty for a
programmer, when deciding between:

IF NOT (Boolean expression)
or
IF (Boolean expression)

The FOR statement allows the repetition of a loop a fixed number of
times. As such the FOR statement only allows integers to be used as it
indexes~-so it may be easily mapped into loop counter mechanisms avail-
able on some host machines. The WHILE statement provides a way for con-
ditional looping, executing the loop as long as the condition is true.

As mentioned in I5, the case statement of Pascal (56) has been

modified so that it can be directly mapped into a N-way branch

A = B + C {CARY, ZRO)

REGL = REG2 + REGS {zrRO> ;

Fig. 2.12 ENABLING VMPL FLAGS ;

i

55

56

instruction found on many host machines. VMPL's case statement is the
SELECT statement. An example is shown in Fig. 2.12. The selection in
the example is done based on the value of OPCD (first operand). If its
value is 1 (target operand), a jump is made to the procedure block LABl
(target label 1); if its value is 2, a jump is made to LAB2, etc. The
digit 4 (second operand) following the identifier OPCD is a count of

the number of labels available to the SELECT statement. This provides
two pieces of information tovthe compiler. One, it indicates to the
compiler how many bits of the first operand (in our example OPCD) will
be used for the jump selection. This quantity (the number of bits of
the first operand used for jump selection) is Logs of the second operand
(in the example Log,4=2). It is used by the compiler to mask any extra
bits from the second operand (OPCD) if it is wider than it (in the
example if OPCD is wider than 2 bits, it's significant bits are masked
to make it only 2 bits wide). Secondly, it indicates to the compiler the
number of jumps involved in the select operation. The host may have a
larger or smaller n-way branch instruction and as such has to handle
these cases appropriately. Again, a multipass compiler can handle this
situation by counting the number of labels a jump has to be made to, and
as such the presence of the second operand indicates redundancy. As
mentioned earlier redundancy leads to reliability, one of the require-
ments put on VMPL by P2.

The CONDition statement is eguivalent to the SELECT statement in some
respects. Each boolean expreséion is evaluated and if true, the corres-
ponding block of code is executed Fig. 2.12. However, unlike the SELECT
statement, the CONDition statement after executing the block of code
tests the next condition to see if it is true, and so on, until the end
of the statement. Also, unlike the SELECT statement the CONDition state-
ment requires each block of code to follow the statement rather than as
a separate procedure block.

Two things are obvious from Fig. 2.12. One is the consistent use of
'"BEGIN - END' brackets for all five control constructs. Since the 'END'
recognizes the statement to which it belongs (ENDIF, ENDFOR, ENDWHILE,
ENDSELECT, ENDCOND), it solves the dangling END problem which reduces

errors by atleast 5-9% (52) and makes VMPL more reliable. The other is

IFTRUE (A .EQ. B) THEN ; BEGIN ; --———- END ; ELSE
BEGIN ; =—--——- END ; ENDIF ;
WHILE (A .LT. B) ; BEGIN ; ---- END ; ENDWHILE ;
FORA =3 TO 6 ; BEGIN ; —-=-——= END ; ENDFOR;
SELECT (OPCD,4) FROM; COND ;
(0,LARL) (A.EQ.B) ; BEGIN ;
(1,LaB2) ; (P.EQ.Q) ; BEGIN ;
(2,LAB3) ; ENDCOND ;
(3ILAB4) i
ENDSELECT ;

Fig. 2.13 VMPL CONTROL CONSTRUCTS

57

i

-~-~ END
---- END

.
7

i

58

the consistent use of the BEGIN-END bracket within four of the control
constructs. This helps to contain and delimit the statements if more

than one of them is present within the control structure.

2.4.4 MISCELLANEOUS STATEMENTS

There are a few more statements available in VMPL. Elshoff (50)
and Knuth (51) determined that increment and decrement accounts for
many of the operations in assignment statements. As such an INCrement
and DECrement statement is provided. Since register clear (all zeroes)
and set (all ones) is a common instruction found in most target instruc-
tion set processors, VMPL provides the CLEAR & SET instructions.

In order to be able to push data into the stack, the PUSH statement
is available in VMPL. As mentioned earlier, data always pops out of
the stack when POP is referenced.

EXECUTE and RETURN statements are provided to transfer control to
and from a subprocedure.

VMPL does have a GOTO statement. However, we have limited the
scope of the GOTO destination to its block, i.e., the label to which
a GOTO transfer's control has to be in the same block as the GOTO state-
ment. The LEAVE statement is used to leave one block of code and enter
another. The only other statement which can transfer control from
within one block to another is the SELECT statement since its labels
are names of other blocks. Thus, the compiler knows the place within
a block from where control passes from one block to another. The default
place for this transfer is the last statement within the block.

A HALT statement is provided to map the targets halt instruction
into the host's halt instruction.

Examples of these statements are given in Fig. 2.13.

2.4.5 PROGRAM STRUCTURE

I2, I7 and I8 indicate that the VMPL program is made up of two parts.

First come the global declarations. These are followed by a set of

Fig.

ING A // B;

DEC A[pPOP] ;
SET ADDR ;
CLEAR IR ;
PUSH DATA ;
LEAVE IABELL ;
HALT ;

GOTO IOEND;

2.14 MISCELLANEOUS VMPL STATEMENTS

59

60

blocks each with their own set of declarations and executable code. The
blocks are of two tvpes: PROCedures and SubPROCedures, and each has a
unique name. Each block declares all the variables it is going to use
from the global variable set, all the subprocedures it is going to call
and any LOCAL variables it requires. Local variables exist only for the
execution life time of the block.

All identifier and labels in VMPL can have any number of charac-
ters. The first character has to be alphabet and the first seven
should be a unique combination. A colon (:) must follow a label to indi-
cate the termination of the label.

Comments can be placed anywhere in a VMPL program. They have to be
enclosed by ((*) and (*)) brackets. The only restriction is that they
should not split a basic token in the language, e.g., an identifier, a

reserved word or an integer.

2.6 CONCLUSIONS

In this section we have presented the design and syntax of VMPL.
The language design is based on a set of 'bases' which are used to
derive a set of implications, each of which have been rigorously exam-
ined and justified. By providing a basis for the language and a set of
implications, we provide a uniform way for making modifications and
extensions to the language. This may be required for two reasons.
1) Once a sufficient number of programs have been written in
VMPL, we should have enough information about its strong
and weak points. We can then go back to our original
bases and see which are the ones which require modifi-
cation. Having done that we can go through the whole
process of redesigning the language in the way we did
originally. The point is that, since we tried to justify
the constructs of the language when we designed them, it
will be easier to change them based on the data we obtain

about the language at a later time.

6l

2) We may want to make extensions to the language by removing
some of the constraints which we put on the problems we
are trying to solve, e.g., we may want to include third
generation computers with I/O processors in the list of
target machines we can emulate using VMPL. This can be
done by making the appropriate extensions to the original
set of 'bases' and then design the constructs needed to
fit this new requirement. Since we have the complete
'design plan' of the language in the form of an impli-
cation-justification 'chart', we can see which parts of
the language are affected by the new extensions and which
are not. Thus, the language can grow easily or be extended
according to new demands without requiring the language
designer to start from ground zero every time he has to
make some changes in the language.

The only bias of the author which becomes obvious in this language
design experiment is the usage of the instruction use and reliability data
available about other programming languages. We feel that it is neces-
sary to use this data to design programming languages. This helps the
language designer in producing a language each of whose syntactical
constructs have justified their inclusion. It also tells him all the
constructs which should not be included. Already we see that this
approach is being used in designing a major universal programming

language (65) which may revolutionize the whole software industry.

62

3. MACHINE CONSIDERATIONS

3.1 INTRODUCTION

As indicated in chapter 1 problem 2, one of the reasons why earlier
efforts have not effectively solved the high level microprogramming
language problem is the lack of identification of primitives for writing
code on m-computers. What are the characteristics of the host machine?
Can we develop sufficient generalizations about the host? Can these
generalizations be used to transport a higher-level language emulator
which in turn effectively manipulates the host? Are there any common
characteristics among the various machines which defines a class of host

machines for which a portable VMPI system is suitable?

If we want to design an efficient compiler for a

high-level machine-independent language for a m-machines,

we must classify the host machines before generating code

Eckhouse (13) was the first one to make an attempt in this direction. He
took sixty-five architectural features and seven m-computers and made a
table of features appearing in the various computers. However, his
investigation has the following problems:
1) Four out of the seven m-computers investigated were micro-
programmed computers {(INTERDATA 3 & 4, IBM 2025, and the
SPIRAS 65). Another one of the computers was Rosin's (16)
hypothetical MPP. Another was the IBM 2050, host for the
IBM System 360 Model 50 and as such not truly user micro-
programmable. His analysis thus included only one
computer, the Standard MLP-900, which is user micropro-
grammable. Although this m-computer was designed for
general purpose emulation, it is not widely used. In fact,
the only know MLP-200 is the PRIM project machine at the
University of Southern California {17).
The results which Eckhouse obtained were truly based

on one machine, which is not widely used.

63

2) A closer look at the features which Eckhouse selected
indicate that they are tailored for the seven machines
chosen for the tabulation. 2As such some of the results
which he obtained in terms of the specific categorizations
or the general features of m-computer architecture, are

biased and not general enough.

A valuable result obtained by Eckhouse related to Input/Output
states:

"I/0 is generally integrated into the basic machine

(m~machine) architecture. Therefore, I/0 programming

is a task which requires specific knowledge of timing

constraints, device idiosyncracies, etc.”
However, while designing MPL (his language) Eckhouse doesn't specifically
deal with the problem of I/0 and gets around it by saying:

"...problem with I/0 is the particular device-dependent
structure of I/O at the microprogram level which tends
to prevent a generalized, higher level language approach
to the problem. However, if we consider the simpler
machines such as MPP and the INTERDATA 3, we can easily
discover several ways to treat I/O0."

This further reinforces our earlier claim of the machine dependent nature
of MPL. Furthermore, it indicates that the results about m-computer
architecture which Eckhouse derives were subsequently not used in design-
ing the language, or modified and narrowed down to specific cases. In
order to recognize the architectural features of m-computers, we studied
approximately 30 m-computers (18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37).

In the next section we will describe and analyze briefly the
architectural features of m-machines with particular emphasis on those
features that impact on generality. The notion of "generality" is in-
cluded to make conclusions about m~machine architecture general enough
to be machine-independent. This will then lead to a classification of

machines acceptable to WMPL's compiler.

64

3.2 m-COMPUTER ARCHITECTURAL FEATURES

The features of m~computer architecture which we will discuss are:

1) Storage facilities.

2) Functional units.

3) Data widths.

4) Bus structure.

5) Microinstructions.

6) Input, Output & Interrupt Structure.

Although we discuss these features in general, we make specific refer-
ences to emulation. Emulation is not only the most common application
of microprogramming (5), The execution of a program in some language is
sometimes performed as an emulation of a virtual machine (target machine)
that interprets some high level language. Microprograms are used to
implement high level language programs in a variety of ways as shown

in Fig. 3.1.

All facilities where 'data' (program + data) can reside are known
as storage facilities. In m-computers, we find a hierarchy of storage
units quite different from other computers. The functional units are
usually combinational circuits which operate on data in various ways.
The data width along with the bus structure determines the computer's
real usefulness in emulation. Microinstructions are the mechanism
through which the programmer exercises control over the various facili-
ties available on the machine. 1Input, Output & Interrupts are sources
through which the m-computer communicates with the external world.

An overview of the various features of m~computers taken into

account is shown in Fig. 3.2.

3.2.1 STORAGE FACILITIES

The storage facilities of an m-computer can be classified into the

following four categories.

a) LOCAL STORAGE: Local storage consists of host machine registers

usually used by the target machine as working registers. Efficient
emulation requires atleast as many dedicated and general purpose regis-

ters as the target machine being smulated. A number of single bit

65

TRANSLATED

HLL ,_TRANSIATED ,__INTERPRETS

—> INTERMEDIATE £ —% MICROCODE
LANGUAGE

INTERPRETS

Fig. 3.1 MICROPROGRAMMED IMPLEMENTATION OF
HIGH LEVEL LANGUAGES (HLL)

66

1- STORAGE

LOCAL STORAGE
MAIN MEMORY
CONTROL STORE
NANO STORE

2= FUNCTIONAL UNITS

ALU

SHIFTERS

MASKERS

EXTRACTERS

OTHER FUNCTIONAL UNITS

3- DATA WIDTH

FIXED
ITERATIVE CAPABILITY
FLOATING

4= BUSSES

FIXED
FLOATING

5- MICROINSTRUCTIONS

VERTICAL
DIAGONAL
HORIZONTAL
ENCODING
RESIDUAL CONTROL
SEQUENCING

6= INPUT, OUTPUT AND INTERRUPTS

FIXED
FLEXIBLE
SOFT

Fig. 3.2 OVERVIEW OF m-COMPUTER ARCHITECTURAL FEATURES.

67

registers usable for storing condition codes and other status bits can
also be of great utility. Special purpose registers or storage hardware
frequently improve the efficiency of a machine. For example, the presence
of a hardware stack has two advantages. First, it can be used to facili-
tate the emulation of target machines that have stacks. Second, it

can be used for subroutine linkage at the microprogram level. Another
type of local storage, present in the market these days, is the availa-
bility of intergrated circuits which form a 2, 4 or more bit wide local
storage register. However, the physical units (IC's) containing this
local storage can be concatenated together to form a local storage

registers of any width.

b) MAIN MEMORY: Arbitrary target machine instructions (macro instruc-

tions) reside in main memory. Thus, word width, total number of words
available and the addressing modes are important factors for general

purpose emulation.

c) CONTROL STORE: Control store refers to the memory containing micro-

instructions of the m-computer. The structure, size and volatility of
the control store is a large contributing factor in determining different
classes of m-computers. Depending on volatility this memory can be read
only (ROM) or read/write (RAM). In order to have concurrent fetch &
execution of microinstructions, the control store support registers (e.q.
the address register, data register, etc.) should be separate from other
local storage registers. Further support units may be provided to
address this memory in different ways, i.e., a separate ALU may be pro-

vided to do address calculations, etc.

d) NANO STORAGE: This is a read/write memory, one level below the

control store. 1In the nano storage are stored nano-instructions which
make up the nano program. Each microinstruction is associated with a
nano-program. A microinstruction is thus executed by executing its
corresponding nano program. The nano program is thus the micro-
architecture emulator. This is equivalent to a macro-instruction being

executed by its corresponding microprogram which is made up of a set

68
of microinstructions. This level or hierarchy of instructions is shown
in Fig. 3.3. The reason why some machines (38) are provided with a
nano-storage is that the user can have a much more 'finer' control over
the machine. With microinstructions he can define his own macro-instruc-
tions. With nano-instructions the user can define his own micro- instruc-
tions. This helps him in designing the microinstructions which are most

suitable for designing the macro-instructions.

3.3.3 FUNCTIONAL UNITS

The most common and dominant of the functional units is the arith-
metic logic unit (ALU). One or more ALU's provide the basic functional
operations (ADD, SUBTRACT, AND, OR, etc.) done by the m-machine on data.

Generality of ALU's requires them to process data in different
arithmetic conventions (one's and two's complement), process data of
different arithmetic modes (binary, decimal, etc.) and process data of
varying length (word, byte, etc.). The availability and generality of
various kinds of status flags (CARRY, ZERO, etc.) associated with the
ALU are also important characteristics of the machine. The presence of
a separate set of flags for the target-virtual flags, is a definite help
for target flag emulation.

At times secondary ALU's are provided for a fixed set of tasks like
evaluating the effective address, operating in a certain mode, etc.
Typically, a fixed size of ALU is available, i.e., it can operate on
operands of a certain length. However, one or more of the ALU's can be
physically'cascaded to form an ALU of larger width, if it is required to
operate on operands of a larger width. This effect can also be achieved
in some m~computers which have an iterative or/and residual control
mechanism for the ALU (20).

A shifter unit (or units may be associated with either the inputs
or the outputs of the ALU (implicit shifting) or it may be a separate
unit in the machine (explicit shifting). Shifters may be single or
multiple bit shifters, arithmetic, logical or circular shifters and may

shift single or double words.

EXECUTED

GROUP OF MACHINE
OR MACRO INSTRUCTIONS

. EXECUTED

GROUP OF MICRO-
INSTRUCTIONS

GROUP OF NANO
INSTRUCTIONS

Fig. 3.3 HIERARCHY OF INSTRUCTIONS

69

70

Masking of data before sending it to the ALU or after receiving it
from the ALU is achieved by units known as maskers. They can also be
implicit or explicit units. As mentioned earlier, this facility of the
machine improves the generality of the ALU functions. It can also,
along with the shifter, be used to extract a field of arbitrary length
and position from a word or a register. This 'extract' feature can
also be provided in a variety of different ways including a special
register designed to provide extract capabilities or have hardware
assisted features which decode target machine instructions by extracting
various fields. 1In the case of implicit shifters, the capability of pre
or post shifting, along with pre or post masking of data to and from the
ALU is useful for calculations involving variable bit arithmetic, bit
testing, etc.

Fig. 3.4 illustrates some common ALU structures found in current
m—-computers (5).

Other types of functional units are also available on m—computers.
A common set of units found on some machines is the multiply and divide
unit. This may also be present implicitly in a machine by providing a
microperation which does the basic multiply-step/divide-step used in a

repeated addition/subtraction algorithm for multiplication/division.

3.2.3 DATA WIDTHS

Data widths characterize the machine according to the width of the
previous two features and the busses connecting them. The target data
width can be smaller, equal to or greater than the data width available
on the host. This poses a problem in emulation which can be solved in
various ways, e.g9., by masking, shifting, iteration, etc. Alternately,
physical concatenation of modular units can be used to achieve wider
data widths. However, once configured, the host data width is permanent
since it is hardwired, but the emulated target machine data width may

be multiples of the host machine.

ALU —

% SHIFTER

— ALU

2 MASKER

A\ 4

ALU —% SHIFTER p—mm>
—_—

ALU SHIFTER MASKER

Fig. 3.4 SOME ALU STRUCTURES

72

3.2.4 BUSSES

Often, all the functional units and storage units are connected to
each other by a number of data paths called busses. The bus structures, in
terms of the number of busses and their width, affects the flexibility.
and ease of microprogramming the machine. By generality we mean that
this aspect of host machines can ease the process of emulating targets
with a wide variety of (macro) instruction formats and addressing modes.
These two aspects of the bus structure also affect the addressing and
microinstruction format which in turn leads to generality of the machine.
At times, the bus structure is alterable in that connections can be set
up and altered under microprogram control through special purpose local

storage registers called residual control registers.

3.2.5 MICROINSTRUCTIONS

The mechanism through which the microprogrammer exercises control
of the various facilities available on the machine, mentioned in the
previous features, is obtained through microinstructions. Each facility
in an m-computer is either directly or indirectly controlled by micro-
operations which in turn are combined together in different ways to
produce microinstructions. We can classify microinstructions depending
on the fixed number of micro-operations per microinstruction.

1) Vertical microinstruction format represents at most one

Or two micro-operations and resembles classical machine
language instructions.

2) Horizontal microinstruction format represents several

micro-operations. Thus a single horizontal micro-
instruction controls a number of hardware facilities
at the same time.
3) Diagonal microinstruction format lies between the two
extremes. It has a limited capability to perform
a few micro-operations in parallel.
Micro-operations within microinstructions are represented either by

single bits or multiple bits known as fields. The latter approach is

73

known as encoding of micro-operations. In the simplest design, remini-
scent of Wilkes' original proposal (1), there is no encoding at all and
each bit represents one micro-operation (direct control), i.e., controls
one resource or operation in the machine. Typically, single level or
direct encoding of micro-operations is represented as a field within the
microinstruction. Bits that control mutually exclusive resources, such
as operations that an ALU can perform, are combined into fields as shown
in Fig. 3.5.

The next step is to have two level or indirect encoding wherein
mutually exclusive micro-operations may be combined to form fields. The
meaning of a field depends on the value of another field. This scheme
is known as bit steering. The various forms of microinstruction
encoding are shown in Fig. 3.6.

The most common technique for microinstruction sequencing is to
include the address of the next microinstruction within the current
microinstruction. A second technique is to provide an incrementing
capability for the microinstruction address register. Conditional and
unconditional branches are implemented in both sequencing techniques. By
storing the next address in the microinstruction, multiple or n-way
branch capability is obtained. This is a useful feature to have in

m-machines used for general purpose emulation.

3.2.6 INPUT, OUTPUT & INTERRUPT STRUCTURE

Requirements for input/output facilities and an interrupt structure
depends on the environment in which the machine is to be used. For
general purpose microprogramming any 'reasonable' I/O and interrupt
structure provides the required support. However, if the machine is to
be used for general purpose emulation the requirements for I/O and inter-
rupt structure are very demanding. Mapping of target I/O facilities to
host I/0 facilities must be complete. This means that the host should
allow the emulation of all target I/O facilities and I/O activities.

Interrupts should be soft (38) for the sake of generality. This

means that interrupts set up bits for examination rather than forcing

74

NO ENCODING ENCODED ALU OPERATION
00000001 000 1- ADD
00000010 001 2~ SUBTRACT
00000100 010 3~ ADD WITH CARRY
00001000 011 4~ SUBTRACT WITH BORROW
00010000 100 5~ AND
00100000 101 6~ OR
01000000 110 7~ COMPLEMENT
10000000 111 8~ COMPLEMENT + 1
MICROINSTRUCTION MICROINSTRUCTION

———

i

Decoding (> 1 of 8
Net

(a) ' (b)

Fig. 3.5 NO ENCODING (a) VS SINGLE LEVEL ENCODING

5 Bits

L

LU

Each bit controls one

microoperation
5 Bits
¢« o |Field a Field B e @
| 2 bits 3 bits
|
\‘W——/¥
|
1 of 4 & | Decoding Decoding > 1 of 8

net A net B
Decode
. select
5 Bits field

N Fielda Field B Field C . e
2 bits 3 bits 2 bits
;._v A e ~ VRN ,
Decoding
net C
1 of le€— Decoding
net A
y
1 of 32€ Decoding
net B

Fig. 3.6 MICROINSTRUCTION ENCODINGS:

a,
b,
Cy

NO ENCODING
SINGLE LEVEL ENCODING
BIT STEERING

76

predetermined control storage transfers or any other equivalent prede-
termined (built in) activity. Thus the microprogrammer has the flexi-
bility in handlingbthem according to his needs or to be more accurate,

according to the needs of his emulated target.

3.3 m-COMPUTER PRIMITIVES

We can arrive at some interesting and more specific conclusions
about common characteristics of m-computers, now that we have identified
their various architectural features. These characteristics form or
identify the primitives of the host for which we seek to generate efficient

VMPL code. We will make use of them when we identify primitives to
manipulate the hardware. Essentially, this latter design is a syntac-
tical and semantic description of a language. Hence, the design of
microprogramming language primitives is achieved by associating or map-
ping the code generation primitives that we derived in chapter 2 onto
the 'hardware'primitives that exist for a class of m-machines. The
basic characteristics of m-computers belonging to the class that VMPL
is portable over are:

1) Word-oriented, Von-Neuman type fixed data width m-machines

(however, there are large and small data width machines).

2) Local storage limited to a few (8-16) general purpose

registers.

3) Input-Output and interrupt structure mostly hard and very

much integrated into the machine architecture.
4) Microinstruction format (horizontal, diagonal or vertical)
not limited to one type.

5) Microinstructions belong to four classes: 1) data
modifications, 2) data transfer, 3) transfer of control
and 4) machine control.

6) Subroutining and functional calls may not be present at

the host level.

7) The most general ALU structure which completely covers

all ALU structures is shown in Fig. 3.7. Most m—computer

ALU's are a subset of this structure.

SHIFTER

| MASKER

77

SHIFTER

MASKER

Fig. 3.7 A GENERAL ALU STRUCTURE

ALU

78

8) An n~-way branching instruction may be included in the micro-~

instruction repertoire.

9) 1Iterative, shifting and masking capabilities, which might

be present would make the effective data widths variable
in nature.

10} Generally, only one set of status flags is present. Further-~
more, flag generation for variable length operations is not
available (implementation can be obtained because of 8 above).

The first characteristic means that the m-machines are not stack
or parallel in nature. In general the machines are word oriented in
that the operations on the data, and the data widths available on the
machines are equal to the word size of the machine. As such, byte (or
any other word size multiple) operations have to be explicitly executed
by the microprogrammer by masking and shifting. What this characteristic
actually indicates is that the experience gained from the design and
implementation of compilers for higher level languages for conventional
computers applies to the design of a compiler for VMPL too.

Data widths»of m-computers reflect on the class of computers which
can be considered as targets for the purpose of emulation. As an example,
if all m-computers were eight bits wide with no capability of repetitive
(or pseudo iterative obtained via masking and shifting) control then the
only computers which could be emulated (serve as targets) would be eight
bit computers.

Since local storage is generally limited to a few registers, emula-
tion of computers with a large number of registers becomes difficult.
However, there are exceptions to this case. MATHILDA (35), a dynamically
microprogrammable m-computer, has largé amounts of local storage organized
as a hierarchy of registers. Speciai purpose registers are very limited
in nature, like the stack control registers on the MICRODATA 3200, the
floating point registers on the INTERDATA 8/32, the extract registers on
the Burroughs 1700.

The problem with I/0 is its particular machine dependent structure
at the micro-level. A few m-computers (HP 21-MX, VARIAN 73, PDP.11/40E,
INTERDATA 8/32, etc.) do their I/0 via a set of busses (command, data,
address, status, etc.) a few others (MICRODATA 3200, CAL DATA PROCESSOR,

79

AMP,.etc.) use 'memory mapped I/O, and yet another group (QM-1, META 4,
INTERDATA 85, PRIME 300, MATHILDA, etc.) do their I/O via special pur-
pose registers. All these variations suggest a lack of a primitive I/0
structure associated with m-computers. In fact, the memory mapped case
is very restrictive as far as emulation of general target machines is
concerned,

Interrupt structures also vary a lot between different machines.
Interrupts can be soft (MICRODATA 3200, MATHILDA, QM-1) in that they are
under the control of the microprogrammer, partially soft (VARIAN 73,
HP21MX) wherein software or hardware logic can be provided to mask out
or conditionally jump on interrupts, or hard (PRIME 300, PDP 11/40-E)
wherein hardware logic determines a fixed set of trap address in case
of an interrupt. This last case is obviously the most restrictive for
general purpose emulation.

With respect to the fourth characteristic, microinstruction format,
we can assume that all m-computers have horizontal microinstructions,
since this structure essentially covers the other two cases. That is,
diagonal microinstructions are a degenerate case of horizontal micro-
instructions and vertical microinstructions are a degenerate case of
diagonal microinstructions. Thus we can limit our treatment to m—-computers
with horizontal microinstructions.

The fifth characteristic, classes of microinstructions, indicates
that the same type of microinstructions are found in most m—-computers.
Thus the task of designing a high levél language processor is simplified
if an intermediate language compatible with these microinstructions is
designed. For example, the branch-~on-decode opcode process of emulation
can be efficiently realize via an appropriate intermediate language
construct because of the presence of the n-way branch microinstruction
found in most m-computers.

Iteration, shifting énd masking help achieve emulation of a target
machine on a host whose data widths do not match the target. This feature
is a requirement for the so-called universal emulator. {39) Conversely, the
sixth characteristic, subroutining, points to those features that are not

available to the microprogrammer. A high level language creates a virtual

80

machine with language constructs such as subroutine, function calls.
Furthermore, most m-computers do not have all operations associated
with programming languages, e.g., multiply and divide.

At what level should high level language constructs not present
in the host machine be handled? Should the programmer (in the high
level language) be concerned about these things or should the compiler
handle these deficiencies? In order to keep the programmer away from
the machine the compiler should handle all those situations which can
be recognized and solved effectively and in an efficient manner.

Although a variety of ALU structures are present, we can basically
recognize the presence of an ALU, shifter and masking units. The shifts
generally are single bit and can be achieved separately from the ALU.
The masking unit is usually associated with the output of the ALU but
in general is implicitly provided via the AND microinstruction of the
ALU.

Status flags create a problem for general purpose emulation. Not
only are the ways in which the status flags get activated non-uniform
across the different m-machines but no machine other than the MICRODATA
3200 actually provides two sets of flags which can be used separately by
the host and the target machine. Furthermore, even if iterative control
is available, status flag generation is limited to fixed length data.
Thus variable precision operations--because of host target data width
mismatches--at the microlevel are difficult to achieve.

All these statements illustrate the need for sophisticated software
which can minimize the differences, supplement the deficiencies and

recognize the variations inherent in m-computers.

3.4 m-COMPUTER CLASSES

We can classify m-computers by their architectural features
according to the following overlapping classes:

1) CLASS 1 Computers that are microprogrammed.

2) CrAass 2 Computers that are virtual machine dependent.

3) CLass 3 User microprogrammable machines.

81

4) CLASS 4 General purpose emulation computers.
5) CLASS 5 High level language support computers.

6) " CLASS 6 Bit slice architecture based machines.

3.4.1 Ciass 1

Class 1 m-computers cannot be microprogrammed by their users.
Computers belonging to this class have a control store made up of
read-only-memory. The IBM 2050 ‘host' for the System 360 Model 50, and
the PDP 11/40 are two computers that belong to this class.

3.4.2 CIASSs 2

The next class of m-computers to be considered are those that have
been designed with the piimary purpose of implementing a particular tar-
get machine architecture. These machines often support limited user
microprogramming. Thus this is the class of virtual machine dependent
hosts.

Most of the features like data widths, word and byte operations, bus
structure, input & output, interrupt structure, in these computers are
reflections or direct mappings of the architecture of the target machine.
In general these machines have more to offer than the original machine
they emulate. They may have more hardware functional units and software,
to implement extra user level machine instructions. Furthermore, addi-
tional read write control is provided for the user to implement his own
instructions. These enhancements are the primary reason why such mach-..
ines are available in the market and are in general a cost effective buy
over the original machine. Although these machines are called ‘'general
purpose' emulators by their manufacturers, they are not so because of
their 'machine dependent' nature.

INTERDATA 8/32 and CALDATA 1/35 are two machines belonging to this
class. INTERDATA 8/32 has the same basic system level architecture as
the system 360 series. Data width, ALU operations, input & output and

interrupt handling is the same as in the 360's. Special hardware features

82

are provided for machine language instruction decoding and are tailored
for the 360 instruction set. Provisions for more than a single set of
registers useful in a multiprogramming environment and hardware multiply
& divide are enhancements over the earlier models of the 360. The
standard emulator for the 360 instruction set uses only part of the
total available control store, so the rest is available for user micro-
programming.
CALDATA 1/35 emulates a PDP 11/35 which is a low end version of the

PDP 11/40. Keeping in line with = Digital Equipment Corporation (manufac-
turers of PDP computers}, all devices on the CALDATA are addressed via
the MACROBUS (equivalent to DEC's UNIBUS). The word size, number of
registers, etc., are the same. "Input-output and interrupt handling is-
hardwired according to PDP 11/35 specifications. Of course, a writable

control store is provided which makes the.computer user microprogrammable.

3.4.3 CLASS 3

This is the class of user microprogrammable computers. There are
two categories of these machines. To one category belong those computers
which are general purpose machines. They are provided with a variety of
microinstructions (horizontal or diagonal in nature), some general pro-
cessing facilities, 8 to 16 general purpose registers, etc. Interrupt
and I/0 handling is partially soft. Usually an emulator for a machine
language and other software development aids are provided for user micro-
programming. It is important to note that the emulator is designed
'after' the machine has been constructed, i.e., the micro-architecture
is quite general and not restricted to the requirements of the machine
language.

The other category is of special purpose machines which are simple
in structure (usually vertical microinstructions) and are used as peri-
pheral processors, signal processors, etc. They offer the flexibility
which a hardwired machine doesn't have and are cost effective alterna-

tives to the general burpose m-computers discussed above.

83

HP 21-MX and CASH 8 belong to this class. HP 21-MX is a general
purpose 16 bit computer with diagonal microinstructions. It does pro-
vide some facilities to handle machine language instructions. However,
these facilities are very general and can be used effectively by a
microprogrammer. Interrupt handling is partially soft and input & out-
put is done via a main I/O bus.

CASH 8 is an inexpensive microprogrammable computer. It is used
most frequently as a substitute for hardwired process controllers. It
is extremely simple in architecture (doesn't have a main memory) with

very few restrictive facilities.

3.4.4 CLass 4

This is the class of computers which can be used as general purpose
emulation machines. There are essentially two categories of architec-
tures which fit this class.

In the first category, we have m-computers with a large and flexi-
ble local storage and enough processing facilities to efficiently emulate
various user level architectures with ease and efficiency. Emulation of
various word widths can be doneeasily by providing residually controlled
masking and shifting capabilities. The input & output and the interrupt
structure is soft to be tailored according to requirements.

In the m-machines of the second class the microarchitecture can be
designed by the user. This is done by providing an architectural level
below the micro level known as the nano level and correspondingly nano-
architecture. Data widths, input & output and interrupt handling are det-
ermined by nano-instructions which make . the machine at the micro-
architecture look very soft. This two level structure permits flexi-
bility in the design of upper level microinstructions which in turn make
the design of machine language instructions simpler.

MATHILDA and QM-1 are two computers belonging to this class.

MATHILDA is a general purpose dynamically user microprogrammable computer
with an abundance of local storage and provision for masking and iterative

control that make this computer suitable for general purpose emulation.

84

Input-output registers are provided for general purpose I/0 transfers
and a soft interrupt structure is available.

OM-1 is also a general purpose m-machine employing two levels of
control. The microlevel architecture is defined by nanoprograms residing
at the nano level. Data widths are fixed but iteration is available via
automatic repeated execution of the nano instructions. I/0 and interrupt

handling are soft.

3.4.5 CIass 5

This class of machines is the class of so-called high level language
(h1l) support machines. These machines have features built into them
which support a particular style of language. Essentially, the various data
types of a language require some kind of iterative or residual control
for 'varying' the data width dynamically. A block structure language
is easily implemented on a stack-like architecture, i.e., the hardware
support of a stack at the microarchitecture level.

BURROUGHS 1700 and MICRODATA 3200 are high level support machines.
The BURROUGHS 1700 was designed to support a variety of intermediate
languages known as s-languages (34). Various high level lanaguages are
compiled to different s-languages which are then executed on the compu-
ter. Main memory is bit addressable and the processing facilities can
be used iteratively, providing any required effective data width. Resi-
dual control is provided to configure the machine into a structure which
is most efficient for a particular s-language. All I/O and interrupts
are soft.

MICRODATA 3200 is provided with an emulator for a stack oriented
machine. The emulator is known as the 32/S. The architecture of the
32/S was designed in conjunction with MPL-Microdata Programming Language,
a machine independent high level programming language. Since MPL is a
block structured language, the stack on the 3200 is used extensively.

This is an example of direct hardware support for a high level language.

85

3.6.6 CILASS 6

This class of machines is a set of families of integrated circuit 'chips’
available in the market and microprogrammable by their nature. They
are known as bit slice processors. The ALVs are essentially parts of reg-
isters, functional processing units, etc., 2 to 4 bits wide. Any number
of these can be cascaded together to produce the desired word width.
Also any support circuitry comprising extra registers, input & output
and interrupt handling can be attached to the machine to form a variety
of architectures. Thus tailoring is achieved using other support chips.
Many architectures can be emulated as long as the chips are connected
togetﬂer as required. INTEL 3000 and AMD 2900 series of IC's belong to

this class of machines.

3.5 CONCLUSIONS

In this chapter we have recognized some of the hardware primitives
and constraints we are going to work with. These can be summarized as
follows:

1) Word oriented, Von Neuman type machine architecture.

2) Fixed data widths.

3) Limited local storage.

4) Hard Input & Output and interrupt structure.

5) Conventional microinstructions.

6) No subroutining facilities.

7) Limited number of functional units.

8) N-way branching.

9) Iteration, shifting & masking capabilities available.

10) Only host status flags available.

We also categorized m-computers into 6 classes. In the rest of this
thesis all references to m-computers will mean computers belonging to
classes 2 to 6, i.e., those m-computers which are user microprogrammable

in nature.

86

4. PORTABILITY

4.1 INTRODUCTION

This chapter is concerned with solving the third problem which is

identified in Chapter 1. The statement of the problem is:

A general tool (for microprogramming) has not been
provided. Specifically, the problem of portability
has not been addressed or solved effectively (in
earlier attempts for high level microprogramming

languagesj.

Portability has been defined in several ways. According to Waite
(57), the portability of a program is a measure of the ease with which
it can be implemented on a new machine. Another definition is that
portability is the property of a system which permits it to be mapped
from one environment to a different environment (58). Although these
| qualitative definitions sufficiently describe the problem, Brown (59)

established a more quantitative measure:

A program or programming system is called portable
if the effort required to move it into a new environment
is much less than the effort that would be required

to reprogram it for the new environment.

4.2 CLASSIFICATION OF TECHNIQUES

Techniques for transferring software from one environment to another
can be divided into two general categories. These two categories are:
1) Conversicn techniques

2) 1Inherently portable techniques

4.2.1 CONVERSION TECHNIQUES

Within this category come all techniques which accept programs which

87

were written for a particular system without any forethought of porta-
bility. This means that the requirement to transfer the programming
system is not considered at system development time so as to provide
inherent portability properties. Consequently, such systems are trans-
ferred by various conversion techniques. Some of these techniques
produce an equivalent program for the new machine via decompilers, while
others simply attempt to execute the original program (program written
for machine A) via emulation or simulation (for machine B).

Although these techniques have been used for some programming
systems, it seems obvious that inherently portable systems provide a

more general and desirable solution to the portability problem.

4.2.2 TINHERENTLY PORTABLE TECHNIQUES

From the discussion on conversion techniques, one comes to the
conclusion that those techniques are not the real solutions to the prob-
lem of portability simply because the problem is not an initial design
constraint. As indicated by Halstead (58), a procedure which avoids a
problem instead of solving it is often the best solution after all.
Inherently portable techniques as such attempt to facilitate the trans-
fer problem by writing the original code in such a way that it will
‘inherently' (by its very nature) be easy to transfer.

This is very much the way that 'machine independent high level'
languages attempt to solve the portability problem. However, because
of the various and varied implementations of these languages on different
computer systems, the portability problem is only partially solved (60).
Lack of universal standards, provisions of extensions by vendors which
are usually machine dependent and efficiency considerations have made
simple recompilation of software to facilitate the transfer from one
system to another impractical. Thus, programs written in these languages
cause invalid results when run on one system even though they ran cor-
rectly on the original system.

The problem of providing compilers for many high level languages on
many machines is the basic goal behind the UNCOL (Universal Computer

Oriented Language) concept (42). UNCOL was a language proposal intended

88

to provide a common path between many high level languages and many
machine languages. Each high level language could be translated into
UNCOL once and in turn one UNCOL translator could be written for each
machine. Thus, in order to implement M high level languages on N
distinct machines, we would regquire M + N compilers. This implementation
effort would be considerably less than that of conventional compilation
techniques which would require M * N compilers (42) Fig. 4.1.

Although several attempts have been made in this direction, the
need for UNCOL to be 'universal' is the main reason for its lack of
success. The only viable example of this approach is the implementation
of one high level language on various machines. PASCAL (56) is easily,
i.e. with little effort, implemented on different systems. A compiler
for PASCAL written in PASCAL is available in an abstract intermediate
language called p-code. 1In order to implement PASCAL on a system, the
implementor has to write a simulator for p-code. He can then transfer
the available p-code program (actually the PASCAL compiler) to his
system. At this point, he has a working PASCAL compiler on his system.
The effort involved in writing the simulator (for p-code) is quite
small as compared to writing a compiler for PASCAL.

In bootstrapping the compiler for a language, L is realized in a
subset of that language. Then the compiler for this subset is realized
in a low level language for the machine on which it is desired to imple-
ment the language L. The language is portable because the only effort
required to implement L on any machine is the realization of the trans-
lator for the subset. The main drawback of this technique is that most
high level languages (least of all subsets of high level languages) are
not well suited for writing compilers for themselves. As such, a variety
of modifications to the pure bootstrapping techniques have evolved (61).

One variation is the development of several special languages which
are well suited for the first stage in the bootstrapping technique.
Another variation makes use of several languages in a hierarchical struc-
ture. Only the lowest language need be mapped into a new machine in

order to initiate the bootstrapping sequence.

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

(b)

89
3 3 COMPUTER 1

NG

* COMPUTER 2 3+3=6 COMPILERS

« COMPUTER 3

(a) UNCOL USED AS INTERMEDIATE LANGUAGE

COMPUTER 1

COMPUTER 2

COMPUTER 3

WOV

3+3+3=9 COMPILERS

DIRECT IMPLEMENTATION OF LANGUAGES

Fig. 4.1 HIGH LEVEL LANGUAGES AND COMPILATION

90

'Abstract machine modelling' is described by Newey (62) as a pro-
cedure based on the concept that the fundamental data types and opera-
tions required to solve a particular problem define a special purpose
computer (the abstract model) which is ideally suited to that problem.
The algorithm for obtaining the solution can be encoded as a program
for this 'abstract machine model.' 1In order to obtain a running version,
the abstract machine model is realized on an existing computer by imple-
menting its basic data types and operations. The term 'descriptive
language' instead of 'abstract machine' has been used by others (59).

We will refer to these models as the Intermediate Language Models and
the language describing the model as the intermediate language.

In some cases only one level of intermediate language is reguired
to implement the compiler. This results in a very simple variation of
the bootstrap technique described previously. However, an attractive
alternative exists in the development of an entire hierarchy of inter-
mediate languages to provide convenient steps from the high level
language for describing the compiler to the lowest level to be boot-
strapped.

The objective of the hierarchy is to ease the implementation of
each intermediate language and to obtain a 'base' intermediate language
which is easy to implement on the target computer. It is important
that this base language be easy to implement because it is at this level
that true portability is determined. This is so because after the hier-
archy has been completed once, the only requirement for transferring the
system to a new machine is the realization of the base intermediate

language on the new machine (63).

4.3 APPLICATION TO MICROPROGRAM PORTABILITY

We have reviewed some of the techniques used to transfer computer
software from one machine to another. These include methods of conversion
and the production of inherently portable software. Unfortunately, none
of these techniques provide a complete and general solution to the micro-
program portability problem. Perhaps a combination of techniques will
provide a reasonable solution to transfer programs; namely, a machine

independent language using a multiphase compilation system. In such a

91

combination, the compiler works downwards through a series of inter-
mediate microprogramming languages for abstract machines. In the last
phase, the compiler generates target machine dependent code. This last
phase would have to be created for each target m-computer. This proce-
dure is adopted by Mallett and Lewis (7) and is the one we use for pro-
ducing inherently portable microprograms. In the next section we briefly

describe their model for the compilation system.

4.3.1 THE MALLETT-LEWIS MODEL

This compilation system has three phases as shown in Fig. 4.2. The
first phase is the machine independent part. This consists of a compiler
that does the syntax and semantic analysis, translating the high level
language through various levels of intermediate languages, as needed, to
produce a sequential string of micro-operations for an abstract m-
computer called the intermediate microprogramming language machine (IMLM).

Next, a machine (IMIM) dependent concurrency recognition and opti-
mization algorithm composes the sequential micro-operations in the IMILM
horizontal format. The last phase is the code generation part of the
system and is machine dependent. For each host m-computer a machine
dependent interface is needed. The interface programs will decompose
(1f necessary) the optimized IMLM microinstructions and translate them
into host microinstructions. A final code optimization pass produces
horizontal microcode.

The most important component of this system is the intermediate
microprogramming language (IML). In the next chapter we describe the

pParticular IMI, which we have used for our compilation system.

4.4 CONCLUSIONS

In this chapter we have discussed the portability problem in general
and looked at the various solutions available. We have adopted the model
of multiphase compilation proposed by Mallett and Lewis (7). Thus, the

third problem in this chapter (and Chapter 1) as stated is solved via

Machine Independent Part

High-Level Source
Tables,
Syntax and Semantic €T>| List, and
Analysis Stacks
Levels of Inter-
mediate Languages
Sequential String
of IMLM
Microoperations
Composition
Microoperation Host
Concurrency Recog- &> Dependent
nition and Residency
Composition and Timing

Optimized Host/IMLM
Microinstructions

Machine
Dependent Part

\

Host/IMLM MIs to

Host MIs

Optimized Host
Microinstructions

Fig. 4.2 THE MALLETT-LEWIS MODEL OF A
TRANSILATICON SYSTEM FOR PRODUCING
INHERENTLY PORTABLE MICROCODE

93

the following implication:

IMPLICATION 9: Machine independency (portability) is obtained by

compiling the language into an abstract intermediate machine language

(IML). The intermediate language is then compiled into microcode.

94

5. INTERMEDIATE MACHINE LANGUAGE

5.1 INTRODUCTION

The use of an intermediate machine language (IML) in this research
has greatly facilitated the translation process from a higher-level
machine independent language into the final machine-dependent microcode.
The Mallett-Lewis model (chapter 4) requires an intermediate language.
The question now is what kind of intermediate language format should be
used? 1In the next section we present a brief summary of the various
intermediate language formats which are available and results obtained

by various people as to their usage.

5.2 IML FORMATS & ATTRIBUTES

In (66) Lawson discusses the pragmatics of various intermediate
language text representations (formats), along with their hardware
implications. The five types of IML representations which he describes
are:

a) QUADRUPLE OR THREE OPERAND FORMAT: A quadruple is composed of an

operation code, and one to three operands. The basic structure for
the quadruple intermediate text is:
op-code lst operand 2nd operand 3rd operand
The first two operands are essentially the sources and the third
operand is the destination of the result.

b) TRIPLE OR TWO OPERAND FORMAT: A triple is composed of an operation

code and one or two operands. The basic structure for a triple is:
op—-code 1st operand 2nd operand
In the case of the operation specified for the triple requires more
than two operands, the third operand is on the top of the stack. Thus,
this representation assumes the presence of a stack.

c) DUO OR ONE OPERAND FORMAT: A duo is composed of an operation code

followed by one operand. Its basic structure is:
op~-code operand

When the specified operation requires more than one operand, the

95

other operands are assumed on top of the stack.

d) POLISH NOTATION: There is no rigid structure that determines a fixed

relationship between operation codes and operands. Each position of the
IML stream is examined to determine whether it is an operation or an
operand. - However, the representation does require the presence of an
operand stack.

e) PROGRAM TREE: The elements of the IML stream (the IML instructions

comprising the program) are not necessarily located in contiguous loca-
tions. Each node in the instruction stream must be examined to deter-
mine whether it is an operation or an operand. In this respect, it is
similar to the polish notation. This notation also requires an operand
stack.

Four measurement units are used to indicate the differences between
the five IML text representation. These are:

1) Number of instruction elements: This is simply the number of

unigue units of information in the IML stream, i.e., an operation
code, operand, etc.

2) Instruction increment size: This measurement indicates the

number of units that must be skipped by the instruction fetch-
decode unit of a computer to access the next element of the
instruction stream.

3) Number of units directly examined: This measurement indicates

the number of units that must be examined by the instruction
fetch-decode unit of a computer to determine the composition
of the instruction.

4) Sstack requirements: This measurement indicates what stacks

are required for each of the IML format and the type of stack
usage.
Lawson's (66) results for the five IML formats are given in Table
5.1. These results are based on the IML representation of one assignment
statement which is similar to those used in several high-level program-—
ming languages:
X = A * B/(C+D)
With these measurements in mind, we may now evaluate and contrast

the attributes of the various IMI formats.

TABLE 5.1

INSTRUCTION-STREAM COMPARISON FOR
THE ASSIGNMENT STATEMENT

96

INSTRUCTION- NUMBER OF INSTRUCTION NUMBER OF STACK
STREAM INSTRUCTION INCREMENT UNITS REQUIREMENTS
FORM ELEMENTS SIZE DIRECTLY
EXAMINED
THREE ADDRESS le 4 4 NCNE
TWO ADDRESS 12 3 12 1
{(For Temporaries)
ONE ADDRESS 12 2 12 1
(For a Push-
Down Accumu-
lator)
POLISH 9 1 9 1
(Operand
Stack)
PROGRAM-TREE 27 VARIABLE 9 2
(Operand &
Operator

Stack)

97

1) CONCISENESS
Conciseness is a measure of the number of IML elements required
to represent the decomposed form of the high level language state-
ment. The order of conciseness is as follows:
Polish; one address; two addresses, three addresses,
program tree.

2) COMPLEXITY IN INTERPRETATION

This complexity deals with the work which the instruction fetch-
decode unit of a computer has to perform in decoding the instruc-—
tion and preparing the operands for the execution of the instruc-
tion. The three address format is the least complex since the
instruction fetch-decode unit does not have to examine each unit
(operation code, operand) to determine its class. The polish and
program tree notation on the other hand, are the most complex
since each unit of the IML stream has to be examined to determine
the class of the element (i.e., operation-code or operand). The
complexity ratings for the five formats are:

three addresses; one address,two address;
Polish; program tree.
In another paper by Merwin (67) three IML formats are compared for
execution speeds. The three formats selected are quadruples, triples
and duos. Four programs written in FORTRAN were used to evaluate the
performance of the three IML representations. It was found that the
quadruple format is the most 'compact' when compactness is related to
the execution time of the IML instruction stream of the four programs.
From the data which is collected in these two papers, we come to
the following conclusions:
1) The gquadruple (three address) IML format takes the least
amount of execution time.
2) The polish IML format is the most concise. This means that

when compiling a high level language statement into the IML

statement, the polish notation produces the least number of

IML units. 1In other words, the resulting polish statements

are nearest to the original high level language statement.

We will show later how this 'nearest' criteria is an

98

important requirement for the IML which we select.
3) Other than the quadruple format, all IML formats require a

stack.

Eckhouse (12) was the first to use the concept of an IML for the
compilation of a high level microprogramming language to microcode. He
uses SML (13) as an intermediate language for the conversion of MPL into
microcode. SML resembles the code of a single-address computer. There
are only two types of instructions in SML--register loads and stores, and
execute operations. Arguments needed for operations must first be loaded
in argument or A-registers. Results of operations are left in result or
R-registers, and may be stored in other registers or memory locations.
Temporary or T-registers are available for intermediate results.

SML fails in solving the register allocation-deallocation problem.
The compiler can use any number of A & T registers and no information is
kept of the variables and the corresponding A & T registers in which
they reside. This produces a lot of redundant load and store instruc-
tions at the SML level. These redundant load and store instructions
then migrate to the microcode level producing non-optimum microcode.
Furthermore, the SML code produced is not highly suited for two or three
address m-computers.

From the initial discussion, it is obvious that we should not use the
two address, one address, polish & program tree IML formats. The main
reason for this decision is the requirement of a stack for their execu-
tion. Thus, the microcode which would be produced on further compila-
tion of these formats would be well suited (efficient) for m-computers
with stacks available at the microlevel. The availability of a stack
at that level is not a primary characteristic of m-computer architecture
(Chapter 3). MPL (18) provides us with a case where a one address IML
format is used as the intermediate language. The intermediate language
is executed on the MICRODATA 3200 by a set of microprograms. Central
to execution of this one address IML (as indicated earlier) is the
stack capability which is a hardware feature of the 3200 at the micro-
architecture level. Thus, the hardware feature (stack) is used by the

micro-programs in executing the IML instructions.

99

We did some tests on the two formats to further justify the usage
of the three address IML format over the one used by Eckhouse.

A high level VMPL program (VMl-Appendix C) was taken and broken
into three equal parts. These three parts were then coded or compiled
down to a three address IML and a single address SML like language.
Fig. 5.1 shows a piece of the VMPL codes and its corresponding three
address and single address equivalents. The three address IML constructs
shown are the actual three address IML constructs designed in the next
section.

Analysis of the resulting code is based on the software science
criteria developed by Halstead (68). The basic quantities which have
to be measured are given in Table 5.2. Table 5.3 indicates these
guantities for the programs shown in Fib. 5.1. The three measuring
units are:

a) PROGRAM VOLUME (V): Whenever a given algorithm is translated from one

language to another, its size changes. This size change is reflected by
the volume that the algorithm occupies in the various languages. Volume
V can be defined as:

V = Nlogyn
b) PROGRAM LEVEL (L): The level of a program is a measure of the

relative 'goodness' of a certain representation of a program as compared
to another representation. The ‘'higher-level' language concept can be

measured by this criteria through the equivalent program representation.
L = (2+n%) Log, (2+n7)/v
n, 95 n,

c) INTELLIGENCE CONTENT (I): It seems fundamental to measure how much

is said in a program in terms of its information content. This measure

is called the intelligence content and is defined as:
I=LxYV

The results are tabulated in Table 5.4. Comparing the two IML format
results, we come to the following conclusions:
1) Based on the volume criteria V, the three operand format has
a lower volume than the single address format. This means that

when VMPL is translated to the three address IML format, we

100

IFTRUE (IR,7) THEN ;
BEGIN;
PCTEMP=PC-1;
PCTEMP=CRNTPG (PCTEMP) ;
MAR=PCTEMP :OR.ADR;
MDR=MEM[MAR] ;
END;
ELSE;
BEGIN;
MAR=ADR;
END;
ENDIF;
IFTRUE (IR,S8) THEN;
BEGIN;
MART=MEM [MAR] ;
IFTRUE (MAR.GT.7) THEN;
BEGIN;
IFTRUE (MAR.LT.16) THEN;
BEGIN;
INC MEMIMAR];
END;
ENDIF;
END;
ENDIF;
"MAR=MART;
END;
ENDIF;

Fig. 5.1(a) A SMALL PART OF A VMPL PROGRAM

101

CONDF .IR.7 TL.001
SUB PC c1 PCTEMP
EXTR CRNTPG PCTEMP PCTEMP
OR PCTEMP ADR MAR
RMOVE MEM MAR MDR
BRCH E L.002
L.001
MOVE MAR ADR
L.002
CONDF .IR.8 T L.003
RMOVE MEM MAR MART
coMmp MAR c7
CONDT N T L.004
CoMp MAR C 16
CONDF N T L.0Q04
RMOVE MEM MAR +T.001
INC +T.001
WMOVE MEM MAR -T.001
L.004 MOVE MART MAR
L.003

Fig. 5.1(b) THREE ADDRESS CODE FOR SOURCE
PROGRAM OF Fig. 5.1(a)

L.001

LOAD
LOAD

BNZ
LOAD
LOAD

STORE
LOAD
LOAD
AND
STORE
LOAD
LOAD
OR
STORE
LOAD
READ
STORE
BRH
LOAD
STORE

102

R1,IR L-002 LOAD R1,IR

RY, *64 LOAD R2,%*128
AND

L~-001 BNZ L.003

P1,PC LOAD R1,MAR

R9,*1 READ MEM

STORE R1,MART

RO, PCTEMP LOAD R1,MAR
Rl ,CRNTPG LOAD R9,*7
R2,PCTEMP SUB

BIN L.004
R®?,PCTEMP LOAD R1,MAR
R1,ADR LOAD R2,%*16
R2,PCTEMP SUB

BNN L.004
RO,MAR LOAD R1,MAR
R1,MAR READ MEM
MEM LOAD R1,R9
R9,MDR LOAD R2,*1
L.002 ADD
R1,MAR LOAD R1,MAR
R1,ADR WRITE MEM

L.004 LOAD R1,MAR

STORE R1,MART
L.003

Fig. 5.1(c) SINGLE ADDRESS CODE FOR SOURCE
PROGRAM OF Fig. 5.2(a)

o]
et
I

3
()
I

2
Il

2
)
I

o]
Il

103

TABLE 5.2 BASIC QUANTITIES TO BE MEASURED
FOR DEVELOPING SOFTWARE SCIENCE
CRITERIA FOR PROGRAMS

= NUMBER OF UNIQUE OR DISTINCT OPERATORS

NUMBER OF UNIQUE OR DISTINCT OPERANDS
TOTAL USAGE OF ALL OF THE OPERATORS

TOTAL USAGE OF ALL OF THE OPERANDS

NUMBER OF UNIQUE OR DISTANCE I/O PARAMETERS

nl+n2

N; + N, '

TABLE 5.3 BASIC QUANTITIES FOR THE
PROGRAMS OF Fig. 5.1

INSTRUCTION- n n, N; N, ng* n N

STREAM

FORM

VMPL 14 10 59 26 7 24 85
THREE ADDRESS 11 12 17 31 7 23 48
SINGLE ADDRESS 12 13 46 31 7 25 77

104

TABLE 5.4 (a)

105

CALCULATED MEASURES FOR PROGRAMS

OF Fig. 5.1
INSTRUCTION- v L I
STREAM (VOLUME) (LEVEL) (INTELLIGENCE
FORM CONTENT)
VMPL 389.72 .0732 28.53
THREE ADDRESS 217.13 .1314 28.53
SINGLE ADDRESS 357.5 .0797 28.49

TABLE 5.4 (b)
PROGRAM AND ITS EQUIVALENT

CALCULATED MEASURES FOR VMPL

OF APPENDIX C

INSTRUCTION- v L I
STREAM (VOLUME) (LEVEL) (INTELLIGENCE
FORM CONTENT)
VMPL 3039.82 .0741 225.25
THREE ADDRESS 1737.04 .1331 231.20
SINGLE ADDRESS 2806.38 .0811 227.60

106

produce the least number of statements. Thus, on a per
statement basis, each three address IML statement is 'nearer'’
to the original VMPL statement than a single address IML
statement.

2) The level criterionl indicated that the three address IML
format is at a higher level than the single address IML format.
This further reinforces the claim of the 'nearness' of the
three operand IML format to VMPL. By keeping the same power
in the instruction set of the three & single address IML's

and changing only the addressability of the underlying machine,

the level of the language changes, i.e., 'reducing addressability

of a language reduces the level of the program written in the
language.'

3) The intelligence content of the two formats indicates that
this criteria holds invariant to within 10% under the trans-—
lation process. This indicates an equivalence in the algo-
rithmic power of the two IML formats. A third observation
is based on the level figures of VMPL program segments
compared to the corresponding IML figures. The VMPL level
is found to be less than the three address IML notation! This
is a strange result and can be explained in the following way.

Halstead's level calculations are based on the information-

theoretic point of view of a program, i.e., essentially its alphabet.
VMPL has a lot of redundancy for reliability which inflates the alphabet
count. Thus, the level of the representative programs in VMPL is less
than the level of the corresponding three address IML format. However,
in spite of this redundancy, the VMPL representation has a higher lsvel
than the equivalent single address IML format. Thus, we reach an

important result that:

'Redundancy in a language reduces the level

of the programs written in the language.'

This result is also confirmed by Elshoff (69).

The general result from all this analysis is that the three operand
IML format is 'nearer' to VMPL, than the single address VMPL format. By
keeping 'nearer' to VMPL, IML statements reflect as much as possible

the semantic content of VMPL statements. Thus, each IML statement, on a

107

per statement basis, has a lot of information about the original VMPL
statement for which it was produced. The three address IML statements
bind the translated code to a high level register oriented machine.
Keeping the IML code high level helps in the later stages of
compilation. The compilation model selected in Chapter 4, based on
portability considerations, requires a high level IML which can easily
be decomposed into a variety of low level microinstruction formats
corresponding to various m~computers. Since most m-computers are reg-
ister oriented, (Chapter 2) having an IML which is register oriented
further helps us in achieving the goal of portability and efficiency.
By selecting the three address format, the IML achieves the fol-
lowing things:
1) pProvides the most opportunities for subsequent economization
of micro-code.
2) Resembles the code of a general class of register oriented
m-machines.
3) Because of 1 & 2 tight micro-code can be produced for a
variety of m-machines.

All this can be summarized by the following implication.

IMPLICATION 10: The IML format selected for the compilation model is

the three address format or quadruples. Furthermore, the IML statements
are high level in that they resemble VMPL statements as much as possible.
Known characteristics of m-computer architecture and instruction reper-

toire can be used in designing various facets of IML statements.

5.3 INTERMEDIATE LANGUAGE

A program written in VMPL gets translated into an abstract gquadruple
like intermediate language. The various statements of the IML are dis-
cussed here. In discussing the IML, reference to VMPL statements has
been made, since, IML is highly dependent on VMPL (I-10).

Basically there are two kinds of statements in IML. One group is
associated with the various declaration statements of VMPL and is known

as the Intermediate Information Statement Group (IISG). The other group

108

is associated with the actual executable statements of VMPI and is known

| as the Intermediate Executable Statement Group (IESG).

5.3.1 1IISG

An IISG statement is made up of five objects. The basic format of
! the statement is:
‘ DECLARATIONTAG, IDENTIFIER, DIMENSION, LENGTH, OTHERINFORMATION

where
DECLARATIONTAG -~ is a unique number of the form NMA. N and M are
numeric and A is an alphanumeric digit. This number
uniquely identifies the corresponding VMPL declara-
‘ ' tion statement to which the IDENTIFIER belongs, i.e.,
identifies the type of the IDENTIFIER. A list is

shown in Table 5.5.

‘ IDENTIFIER ~ = 1s the identifier (as defined in VMPL syntax) which is
associated with the VMPIL declaration.

| DIMENSION - 1s an integer which gives the number of unique elements
associated with the identifier. 1Its absence, a zero

{0) or a one (1) all mean that the IDENTIFIER is

dimensionless. Essentially, the only time this

object is used is with the VMPL, MEMORY and STACK

type variables.

LENGTH - 1s the length of the identifier, i.e., the number of
bits. This object is used with most of the declara-
tive statements of VMPL.

OTHERINFORMATION - is only associated with a few DECLARATIONTAG'S.

Its meaning and format varies with the tag and all the

cases are discussed individually below:

1) When this object is associated with the tag belong-
ing to the FIELD declaration statement of VMPL, it
consists of three integers. These three integers
are the three integers associated with the FIELD

| declaration which identify the bit positions and

the shift amount (Fig. 5.2).

109

TABLE 5.5 DECLARATIONTAG VALUES FOR IISG

DECLARATIONTAG NMA

N MEANING M MEANING
) NAME OF THE OTHERS 0 NONE OF THE OTHERS
1 LOCAL 1 TEMPORARY
2 GLOBAL 2 PERMANENT
4 SPROC

A MEANING A MEANING

0 SIMPLE ' A EMULATOR NAME

1 MEMORY B PROGRAM START

2 STACK C PROGRAM END

3 PSTACK D WORDSIZE

4 FLAG E ARITHMETIC

5 FIELD F PROC NAME

6 USE G SPROC NAME

7 EXPECT H BLOCK CODE START

8 RETURN I BLOCK CODE END

9 EXTERNAL J BEGIN BLOCK

K END BLOCK

110

2) The other information object which gets asso-
ciated with the stack pointer (PSTACK) VMPL
declaration, indicates the push-pop sequence
associated with the stack. It consists of
four distinct symbols which were shown in
Chapter 2 Table 2.3.

3) When this object gets associated with the VMPL,
EXTERNAL variables it consists of a single
alphabet. The single alphabet indicates
whether the external IDENTIFIER is a simple
variable, a flag variable or a procedure(Fig. 5.2.).

4) In the case of the global FILAG declaration
statement of VMPL, this object (an integer)
indicates which of the predefined four flags
does the IDENTIFIER represent. In case the
IDENTIFIER is a general flag, the value of this
integer is 0O(Fig. 5.2.).

Examples of VMPL declaration statements and the corresponding IISG

statements are shown in Fig. 5.3.

5.3.2 TIESG

The IESG statements are based on quadruples with an operation and
three operands. All three operands are optional in that some statements
have none, some cne, some two and some all three operands. First, the
overall format is discussed and then the individual statements are

discussed.

5.3.2.1 TIESG FORMATS

The IESG statements are fixed formats with labels starting in the
first column and existing by themselves in a line. A star (*) in the
first column indicates a continuation of the previous statement. If the

line with the star is empty, it indicates the end of the continuation.

111

005 OPCODE, , 11,9,8

(/7 R\]
DECLARATIONTAG FIRST LAST SHIFT
IDENTIFYING FIELD BIT BIT AMOUNT

POSITION POSITION

OTHER INFORMATION

CARY, , 1, F €——— FILAG

2(1/2)9 IOREG,, 8,S <€——— SIMPLEVAR
OTHER INFORMATION
IOPROC ,, ;, P <———— PROCEDURE
DECLARATIONTAG

IDENTIFYING
EXTERNAL
2(1/2)4 FLGL ,, 1,X ~&— OTHER INFORMATION
X MEANING
O |NONE OF THE OTHER
1 CARRY FLAG
2 OVERFLOW FLAG
DECLARATIONTAG 3 | NEGATIVE FLAG
IDENTIFYING FLAG 4 ZERO FIAG |

Fig. 5.2 OTHERINFORMATION VALUES FOR IISG

DCL GLOBAL PERMANENT MEMORY MEM: [4096]:8;
221 MEM, 4096,8
DCL GLOBAL TEMPORARY REG1:8, REG2:3;

210 REGL, ,8
210 REG2, ,3

DCL LOCAL PERMANENT REG3:8;
120 REG3, .8
DCL FIELD OPCODE (11,9,8);

005 opcoDpE, , ,11,9,8

Fig. 5.3 VMPL ~ IML EQUIVALENTS

112

(VMPL)
(IML)
(VMPL)

(IML)

(VMPL)
{IML)
(VMPL)

(IML)

113

All other statements start in column seven or eight. The various
column designation are shown in Table 5.6. The general format of
an IESG statement is:

OPERATION OPERAND1 OPERAND2 OPERAND3 FLAGS
The OPERATION object recognizes the action which the IESG statement has
to take using the three operands which follow, i.e., OPERAND1, OPERAND2
and OPERAND3. The FLAGS object indicate the predefined VMPL flags
which have to be enabled during this operation.

Another aspect of these IESG statements is the presence of modifiers
with the OPERATION and OPERAND objects. This is done to retain the infor-
mation contained in VMPL statements that will be useful in the produc-—
tion of compact, machine dependent microcode. A simple example of this
are the compiler generated temporary variables. All such variables are
tagged with modifiers (+) or (-). This helps the register allocation/
deallocation phase of compilation know if the temporary is used later
on in a sequence of IML statements (+), or not used (-). Since the
compiler generates the temporaries, it knows their 'life-time' and
can easily generate these modifiers.

Another group of tags are associated with the various labels asso-
ciated with the GO TO, FOR, LEAVE & IF-THEN-ELSE statements. These
along with some of the IISG statements recognize each sequential block
of IML statements. The later phases of compilation uses these tags for
microcode compaction by noting the beginning and end of every straight-
line code segment. The heuristic underlying this approach is that there
cannot be more parallelism at the microcode level than is available in
the HLL (VMPL) program structure. The compiler is able to reveal the
inherent concurrency of the high level algorithm by tagging the
intermediate code with 'clues'. These 'clues' are subsequently used
by the compiler. We believe that maximal code concurrency can be detec-
ted and used in producing a minimal number of horizontal microinstructions
over straight line code segments. This aspect of code compaction is

given in (72). The various modifiers are listed in Table 5.7.

114

TABLE 5.6 IML COLUMN DESIGNATIONS

COLUMNS VALUES

8-14 OPERATION

17-23 OPERAND 1

20-32 OPERAND 2

35-41 OPERAND 3

43-46 FLAG SETTINGS

7 OPERATION MODIFIER

16,25,35 OPERAND MODIFIER

115

TABLE 5.7 OPERAND MODIFIERS

SYMBOL MEANING
BIT OPERAND
/ CONCATENATED OPERAND
+ TEMPORARY NEEDED
- TEMPORARY NOT NEEDED
o CONSTANT
P PARAMETER IDENTIFIER
T LABEL FOR FIRST IF-THEN-ELSE BRANCH
E LABEL FOR SECOND IF-THEN-ELSE BRANCH
G LABEL FOR A GOTO
F LABEL FOR A FOR
L LABEL FOR A LEAVE
S LABEL FOR A SELECT
A ARGUMENT IDENTIFIER

116

5.3.2.2 IESG STATEMENTS

There are seven classes of IESG statements. Each class is treated

separately.

CLASS 1 IESG STATEMENTS

The general format of statements belonging to €Class 1 is:
OPERATION SRC1 SRC2 DEST
The OPERATION is either an arithmetic or a logical operation (one to one
correspondence with VMPL arithmetic and logical operators Table 2.4)
which require two sources, SRC1 & SRC2 and produce a result which is
stored in DEST. The NOT logical operation only requires one source.
As such, it does not have the SRC2 object. The various OPERATION's

are listed in Table 5.8.

CLASS 2 IESG STATEMENTS

The shift and rotate instructions belong to Class 2 corresponding
to the shift and rotate instructions of VMPL Table 2.5. The format is:
OPERATION SRC1 COUNT, VALUE DEST
In case the operation is one of the shift instructions, SRC1l is shifted
by COUNT places filling the empty places by VALUE and storing the result
in DEST. 1If the operation is a rotate instruction, the VALUE part from

the above format is missing Table 5.9.

CLASS 3 IESG STATEMENTS

Class 3 operations are for reading and writing into the MEMORY class
variable of VMPL. The two operations are associated with reading from
and writing into memory Table 5.10. The format is:

OPERATION MEMVAR INDEX VALUE
The object INDEX is used as an index into the memory array MEMVAR to
point to a location. VALUE either receives the value or sends the value

to this location.

TABLE 5.8 CLASS 1 IESG OPERATIONS

OPERATION MEANING

ADD ADDITION
SUB SUBTRACTION
MPY MULTIPLY
DVD DIVIDE

AND LOGICAL AND
OR LOGICAL OR
XOR LOGICAL XOCR

TABLE 5.9 CLASS 2 IESG OPERATIONS

OPERATION MEANING
SHIL SHIFT LEFT
SHTR SHIFT RIGHT
ROTL ROTATE LEFT
ROTR ROTATE RIGHT

117

118

CLASS 4 IESG STATEMENTS

| Class 4 deals with the various branch operations. It can have
one or two operands with the second (if two) or first (if one) always

being a label. A list of operations is given in Table 5.11.

CLASS 5 IESG STATEMENTS

‘ The seven statements which belong to Class 5 are there for the
translation of some of the miscellaneous statements of VMPL (INC, DEC,
POP, etc.). 1In all cases there is a one-~to-one relation with the cor-
| responding VMPL statement Table 5.12. They are one, two or implicit

operand statements.

CLASS 6 IESG STATEMENTS

Class & contains two statements which are translated from the
FOR and SELECT, VMPL statements. Their format is shown in Fig. 5.4.
Note that for the SLCT statement we use the continuation aspect of

IML statement format.

CLASS 7 IESG STATEMENTS

The three statements in Class 7 have again a one-to-one relation
with corresponding VMPL statements and deal with the control aspect of
program execution. They are shown in Fig. 5.5.

This finishes the design of the IML constructs.

5.4 CONCLUSIONS

Comparing the designed IML constructs and the various constraints
and requirements on the IML from in Chapter 5 and the earlier sections
of this chapter (Il0), we come to the following conclusions:

1) The IML constructs are high level in that most of them have a

one-to-one correspondence with VMPL statements.

2) The IML constructs are register oriented, i.e., they can be

thought of as the machine language of an abstract register

oriented machine.

TABLE 5.10 CLASS 3 IESG OPERATIONS

OPERATION MEANING
RMOVE READ MEMORY
WMOVE WRITE MEMORY

TABLE 5.11 CLASS

4 TESG OPERATIONS

OPERATION MEANING

COoMP COMPARE

BRCH BRANCH

CONDF CONDITION FALSE
CONDT CONDITION TRUE

TABLE 5.12 CLASS

5 IESG OPERATIONS

OPERATION

MEANING

INC

DEC

CLR

SET

MOVE

PUSH

POP

INCREMENT (ADD 1)
DECREMENT (SUB 1)
SET TO ALL ZEROES
SET TO ALL ONES

MOVE SRC1l TO SRC2
PUSH SRC1 INTO STACK

POP STACK INTO DEST

11s

FOR

Loop

OPERATION

SRC1 = SRC2 TO SRC3 ;
SRC1 SRC2 SRC3
OPERANDS

SELECT (SRC1,SRC2) FROM

(SRC3, LABELl);:

(SRC4, IABEL2);

ENDSELECT
SLCT SRC1 SRC2
SRC3 LABEL1
SRC4 LABEL2

Fig.

5.4 CLASS 6 IESG STATEMENTS

(VMPL)

(IML)

(VMPL)

(IML)

120

OPERATION
HALT

RET

EXECUTE

XEQ

MEANING
HALT

RETURN

SRC1 (PAR1l, PAR2) ;

SRC1 PAR1

PAR2

Fig. 5.5 CLASS 7 IESG OPERATIONS

(VMPL)

(IML)

121

122

3) Furthermore, the IML code contains tags or 'clues' which
recognize its various properties. These tags are used for the
production of compact microcode.

From 1, 2 and 3 we see that the designed IML meets the requirements which

were placed on it due to I9 and I10.

123

6. RESULTS

6.1 SIMULATOR

In Chapter 1 the objectives of this research were identified in
terms of four problems. Problems 1, 2 and 3 were solved in the earlier
chapters. According to the statement of problem 4, a testing methodo-
logy for microprogram correctness should be designed. We achieve this
aspect of microprogram development via the provision of a simulator for
the intermediate language, and testing as diagramed in Figure 6.1.

A program (P1l) (emulator) written in VMPL is translated into the
intermediate language (IML1). Say the program Pl emulates a machine
Ml (target). Next we give the IMLl code to the simulator. We also
provide the simulator with code which correspond to machine code»programs
for the machine Ml1. These programs (DP1) essentially correspond to a
set of diagnostics written for the target machine and get stored in the
MEMORY variable of the emulator. The simulator then executes (simulates)
the IML1 code. This corresponds to executing the diagnostic programs
DP1 on the machine Ml1. 1If the 'diagnostics' produce correct results, we
suspect the correctness of the emulator (Pl or IML1). Now if this same
IML1 code is translated into microcode of a host machine (H1), we suspect
the correctness of this microcode.

Since we would like the simulator to run in an interactive fashion,
simulator commands are added (embedded) to the original VMPL programn,
i.e. P1. This requires the addition of a simulator command statement to
the VMPL and IML instruction repertoire. The format for a simulator
command statement in VMPL is:

? COMMAND PARAMETERS
where the COMMAND object is a three letter mnemonic identifying a unique
simulator command and the PARAMETERS object is a set of parameters which
the COMMAND object requires. The simulator along with the commands, etc.
is described in Appendix B. The IML representation of a command follows
the general IML format, with the command mnemonic as the op-code and the
parameters acting as the operands.

Thus, by the provision of a simulator for the IML, we have achieved

124

p1 M1

(VMPL) MACHINE
A

IML1

(IML)

1 DP1
MICROCODE -
(HOST H1) (ML's

MACHINE
LANG)
/
IMI, SIMULATOR
(PASCAL)
Y
HOST
(1)
Y (
RESULTS3 RESULTS2

RESULTS1

Fig. 6.1 MICROCODE CORRECTNESS MODEL

125

a solution to problem 4. This solution is an indirect approach in that
we do not prove the correctness of the microcode directly. We try to
prove the correctness of the code which is one level above the micro-
code; namely, the IML code which will ultimately be converted into
microcode. Proving correctness at this level is found to be a simple
task via simulation. To make the final assertion that the microcode

is correct, we have to prove two things. The correctness of the
simulator and the compiler which converts the IML code into microcode.

This is a one time task and can be done by the compiler implementor.

6.2 VMPL COMPILER

A compiler for VMPL has been written using the 0OSU META system (71)
(APPENDIX B) available on the OSU CYBER 73. The META system is based
on Schorre's META II (70) and consists of three main components:

1) The META language

2) The META compiler

3) A package of support routines called METASURS.

The META language is designed specifically for compiler-writing.
Basically, the notation is BNF with slight modifications. To write a
compiler, the user expresses the syntax of the language and the code
to be produced in a series of META statements called rules. Each rule
consists of items called 'recognizers' to be searched for in the input
source language. The recognizers are the names of other rules, specific
characters to be looked for, or basic recognizers suppled by META, i.e.,
.ID recognizes an identifier; .STRING, a string of characters enclosed
by apostrophies; 'BEGIN', the word BEGIN, etc.

In addition to items to be recognized, each rule may also contain
actions to be taken if the items are found. These actions may look up
an item in the symbol table, put a string of characters on a stack main-
tained by META, or put something on the output buffer. Once a rule or
set of rules has recognized a statement, these actions output the low

level language equivalent for that statement.

126

Once the set of rules comprising the user's compiler is written in
META language, the META compiler produces a seguence of calls to the
METASUBS package. The sequence of calls which comprise the user's
compiler can then be loaded into the machine (CYBER 73) along with
METASUBS to process the user's language. METASUBS scans the source
code in a top down, recursive-descent manner according to the user’s
rules and produces code for the associated actions. In addition,
the package handles input and output, syntax error messages, a symbol
table facility, listing control, etc.

The symbol table facility of META was found to be too primitive
for successful compilation of VMPL programs. Thus, a symbol-table
program (STP) was written using PASCAL (56). A program written in
VMPL is translated into IML statements by a META-VMPL compiler. This
output is then fed into STP which does all the symbol table cross
checking of the IML code or indirectly the VMPL code. In doing this
checking STP generates a series of symbol tables which can later on
be used by the simulator described in the previous section.

According to the compilation model selected in Chapter 4, there
is still another phase of compilation. This phase deals with the
conversion of the IML code into microcode. This part of the compiler
was written by P.Y. Ma and is discussed in (72).

In the next section, we discuss some of the results obtained on

the compilation of various VMPL programs into IML programs.

6.3 VMPL-IML ANALYSIS

Three emulators were written using VMPL as source language. The
three emulators are:

1) VMl - PDP-8 minicomputer

2) VM2 - INTEL 8080 microprocessor

3) VM3 - An abstract register oriented machine.

These three emulator programs were translated into IML code. Two

groups of experiments were then conducted on this resulting code.

127

6.3.1 COUNTING EXPERIMENTS (CE)

Several different counting experiments were performed. These
experiments essentially consist of counting various objects of the

IML code.

CE(1)

The first counting experiment consisted of counting the number
of occurrences of the various variables used in the program. There are
three types of variables:

1) Global variables

2) Local variables

3) Temporary variables

Temporary variables are the variables generated by the compiler.
The results are shown in Table 6.1. We find that the percentage of
usage of local plus temporary variables is about the same as the
percentage of usage of global variables.

This locality of usage reflects on the block structured nature of
emulator programs and can be used as an indicator of the locality of

variable usage at the block level, i.e.:

'Local variables on a percentage basis are used

as much (if not more) as global variables'

CE(2)

The next experiment we did was to measure the distance between
successive references to a particular variable. IML statements were
numbered in a sequential manner, say 1 to N. Then for each variable of
all the threeemulators we did the following: We counted the number of
times the variable was used twice in the same IML statement (distance
between usage of variable is 0), the number of times the variable was
used in two consecutive IML statements (distance between usage of variable
is 1), the number of times the variable was used in two IML statements,
separated by one IML statement which did not use it (distance between
usage of variable is 2) etc. This count was then averaged for all the
variables of all three emulators to come up with a common characteristic

of variable usage. This characteristic is plotted as a curve in Fig. 6.2.

128

TABLE 6.1 RESULTS OF COUNTING EXPERIMENT CE (1)

EMULATOR GLOBAL LOCAL TEMPORARY LOCAL plus
VARIABLES VARIABLES VARIABLES TEMPORARY
VARIABLES
TOTAL % TOTAL % TOTAL % TOTAL %
VM1l 121 52.4% 54 23.4% 56 24.2%{ 110 47.6%
VM2 183 49.6% 97 26.3% 89 24.1%| 186 50.4%
VM3 159 55.4% 68 23.7% 60 20.9%] 128 44.6%

NUMBER OF VARIABLES

COUNT ~—>

129

p
—4
-

DISTANCE BETWEEN USAGE 3>

Fig. 6.2 RESULTS OF COUNTING EXPERIMENT CE (2)

130

Taking a point on this curve (for example) we see that on the average
there is only 1 variable which is used every 18 IML statements. From
the shape of this curve we see that the average distance between the
usage of variables is between three and five. This curve does not
include the figures for the temporary variables. The distance of
usage for temporary variables was consistent and equal to 1, i.e.,

a temporary is always used immediately in the IML statement following
the IML statement which generated it (a property of the way in which
the compiler generates temporary variables). Thus, in general, we
can conciude that:

'The average distance of usage for all

variables is small'

This statement can then be interpreted as a locality of variable

usage at the statement level.

CE(3)

Next, we did some counting experiments similar to the ones done
by Elshoff (50) and Gannon (52) on the IML programs. It may be recalled
that their data was used in the first place to design VMPL. Our results,
Table 6.2, are more or less similar to their results. Some differences
can be explained as follows:

1) The large number of branch statements is explained by the
block nature of VMPL programs, the structured VMPL constructs
and the overall structure of an emulator program. If we count
CONDF, CONDT and BRCH as the only kind of branch statements,
our figures match the Elshoff, Gannon data. This condition
¢orresponds to a SELECT-less, non blocked program.

2) We get a low value for 'memory reference instructions.' This
is primarily because the emulator (programs) are of register
oriented machines. We suspect they will be higher for memory
oriented target machines.

Thus, we see that programs written in VMPL produce the same kind of

results for instruction usage as programs written in Fortran and PL/I.

130a

In general, we can come to the following conclusion from this
experiment:

'The usage of the Elshoff-Gannon data

for the design of VMPL is valid’

131

TABLE 6.2 RESULTS OF COUNTING EXPERIMENT CE(3)

INSTRUCTION VM1 VM2 VM3
TYPE

3 OPERAND

(ARITHMETIC 8 29.41% 31.2% 30.1%

LOGICAL OPER.)

2 OPERAND 21% 20.8% 19.8%
(MOVE etc.)

1 OPERAND 6% 8.7% 7.83%
(VMPL MISC)

BRANCH 37.6% 35% 39.9%
MEMORY

REFERENCE 5.99% 4.3% 2.4

o

132

6.3.2 VARIABLE ASSIGNMENT EXPERIMENT

In Chapter 3 we made the assertion that by having global-local
variable declaration (variable priority) and a block structure for
VMPL programs, we will produce tighter microcode. This was to happen
because of a smaller number of load and store operation. The variable
assignment experiment was conducted at the IML level, we believe that

fewer IML statements produce fewer microinstruction statements (microcode).

There are two sets of variables in the experiment,, *he number of
available 'host' registers and the register allocation scheme which is
adopted. Four ragister allocation schemes were selected:

1) All program variables are treated as global variables. 1In
case a register is needed for allocation, the first available
register (registers are numbered in an arbitrary sequential
form) is deallocated. (Type a)

2) The same as above except a count on the frequency of usage of
a variable is kept. In case of deallocation, the variable
with the smallest frequency count is deallocated. (Type b)

3) The VMPL designed priority structure is adopted. If two
variables having the same priority have to be deallocated,
the first one (based on an arbitrary number sequence) is
deallocated. (Type c)

4) Same as above except a count on the frequency of usage of a
variable is kept. In case of deallocation of two variables
having the same priority, the variable with the smallest
frequency count is deallocated. (Type d)

TYPE a allocation scheme is one adopted by most present day compilers.
TYPE b is a step forward in variable allocation where some information
about variable usage is used. TYPE ¢ is the priority scheme outlined

by us in the design of VMPL. TYPE d is a further enhancement of this

technique.

The results for the three emulators are plotted in Fig. 6.3. The

dependent variable is the number of load/store instructions required

133

TYPE a
TYPE b
TYPE c
TYPE 4

OpBo <o

120 1

110 A

100 1

u o)) ~ 00} O
(@) (@] (@} (@) (@)
IR 1 A . [}

LOAD / STORE INSTRUCTIONS -—3
S
i

20

107

REGISTERS ————=3

Fig. 6.3(a) RESULTS OF VARIABLE ASSIGNMENT
EXPERIMENT ON VM3

1204

1101

1001

907

801

70 7

60 A

LOAD / STORE INSTRUCTIONS —>

501

40

307

20 A

10 1

134

Fig.

{ TYPE a
1 TYPE b
/A TYPE ¢
Q TYPE d
i 1 13 i i i
4 5 6 7 8 9

REGISTERS —>

6.3(b) RESULTS OF VARIABLE ASSIGNMENT
EXPERIMENT ON VM2

120

1101

H

'—l
o
(@]

O
Q

801

707

60"

LOAD / STORE INSTRUCTIONS ———3

407

301

201

10+

135

¢ TYPE a
O rveE b
A 1ypE
O rveE a

p
-
-

REGISTERS —>

Fig. 6.3(c) RESULTS OF VARIABLE ASSIGNMENT
EXPERIMENT ON VM1

136

for each emulator. For all three cases we can rate the register allo-
cation schemes as follows:
TYPE 4, TYPE ¢, TYPE b, TYPE a

with TYPE d producing the least number of locad/store instructions and
TYPE a producing the greatest number of load/store instructions. The
difference between TYPE d and TYPE c is not large but both are signifi-
cantly better than TYPE b or TYPE a.

Thus, we have proved (for the cases under consideration) that:

'Using a VMPL variable priority scheme produces fewer

load/store instructions than other schemes'

From the Counting Experiments and the Variable Assignment Experiments
done on the three emulator programs, we come to the general conclusion
that VMPL has successfully met its design goals of producing tight

microcode.

6.4 VMPL EXTENSIONS

While designing VMPL, we also pointed out the‘modular top down
design approach we had followed. To test this aspect of VMPL, we do
the following three experiments on VMPL definition and syntax. These
experiments are done by changing PREMISE 5 (Chapter 3) to include
target machine which have a) both word and byte operations, b) multiple

stacks, and c¢) multiple memories.

BYTE OPERATIONS

The effects of including byte operations as a basic design goal on
VMPL and IML would be:
1) similar to the global size declaration, we have a global byte
declaration which gives the size of a byte in terms of the
number of bits. The number of bytes in a word would then be:

size of word]

number of bytes = -
. gize of bytel

The least significant byte would be byte zero.

137

2) In order to recognize a byte of a certain variable (word), a
digit would have to be appended to the variable identifier in
VMPL statements. The exact format may be similar to a FORTRAN
index, a PASCAL structured element, etc., i.e.,

ACC (0)

ACC.O
referring to the first byte of the variable ACC. The second
format would be preferred because we already use square
brackets to refer to memory variables and a set of two brackets
may be less reliable.

3) The modification of variables as pointed out in statement b
above would have to be migrated down the the IML level. Thus,
the integer identifying the byte could be used as one of the

operand modifiers in the IML statement.

MULTIPLE STACKS

The effect of ircluding multiple stacks on VMPL and IML syntax would
be:
1) The STACKX and PSTACK global declaraticn statements would have
to be modified. This would have to be done to recognize which
stack pointer is associated with which stack.
2) The PUSH and POP statements, both in VMPL and IML, would similarly
have to be modified to recognize the stack associated with the

operation.

MULTIPLE MEMORIES

To include this aspect of target machines, the only change required
of VMPL is the modification of the global MEMORY declaration. More than
one memory variable would be allowed in the declaration. The RMOVE &
WMOVE IML statements already include the name of the memory variable as
part of their syntax.

From these three experiments,we infer that making extensions to VMPL,
via the redefinition of the original premises on which the language was

designed, does not effect the parts of VMPL and IML already designed.

138
In fact, the designed parts make it easy to modify and extend VMPL and
consequently IML. Thus, because the additions were done easily, we

consider this another aspect of a successful language design experiment.

6.5 CONCLUSIONS AND FUTURE WORK

The original objectives in developing a high level machine inde-
pendent microprogramming language have been met as described in the body
and appendices of this thesis.

All through this language design experiment we have followed a top
down structured approach using all the data available on language
syntax and statements. The language must be used to produce a number
of large-scale emulators before the practical benefits of this design
approach can be used as feedback to improve upon some of the language
implications and maybe even modify some of the constraints.

Questions which remain to be considered in further research in
this area include:

1) How does one produce even more efficient and reliable micro—

code from a high level microprogramming language?

2) How can high level languages be used for m-machines with two

or more levels of microinstruction interpretation? Should
the nano programs directly interpret the IML statements
or not?

3} The study of universal emulators or hosts which are suitable

for the emulation of a variety of targets if needed.

4) Finally, a more detailed study of I/O is needed for making the

whole emulation process successful and accurate.

139

REFERENCES

1) M. V. Wilkes, 'The Best Way to Design an Automatic Calculating
Machine', Report of the Manchester University Computer Inaugral
Conference, Manchester, England, July 1951.

2) M. V. Wilkes, 'The Growth of Interest in Microprogramming: A
Literature Survey'. Computing Surveys, September 1969.

3) S. S. Husson, Microprogramming Principles and Practices, Prentice
Hall, Englewood Cliffs, New Jersey, 1970.

4) S. G. Tucker, 'Microprogram Control for System 1360', IBM Systems
Journal, October 1967.

5) A. XK. Agrawala, T. G. Rausher, Foundations of Microprogramming:
Architecture, Software and Applications, Academic Press, New
York 1976.

6) J. E. Nicholls, The Structure and Design of Programming Languages,

Addison-Wesley, Menlo Park, California, 1975.

7) P. W. Mallett, T. G. Lewis, 'Considerations for Implementing a
High Level Microprogramming Language Translation System', Computer
Magazine, August 1975.

8) Y. Chu, Computer Organization and Microprogramming, Prentice Hall,
Englewood Cliffs, New Jersey 1972.

9) C.V. Ramamoorthy, T. Masahiro, 'A High Level Language for Horizontal
Microprogramming', IEEE Transactions on Computers, August 1974.

10} G. R. Lloyd, 'PUMPKIN - (Another) Microprogramming Language',
SIGMICRO Newsletter, April 1974.

11) G. R. Lloyd, A. Van Dam, 'Design Considerations for Microprogramming
Languages', SIGMICRO Newsletter, April 1974.

12) R. Eckhouse, 'A High Level Microprogramming Language', Sprin Joint
Computer Conference, AFIPS Press, Montvale, New Jersey, 1971.

13) R. Eckhouse, 'A High Level Microprogramming Language (MPL)', Ph.D.
Thesis, State University of New York at Buffalo, June 1971.

14) D. J. DewWwitt, 'A Machine Independent Approach to the Production of
Horizontal Microcode', Ph.D. Thesis, University of Michigan, June
1976.

15) J. E. Cheatem, et. all., 'On the Basis of ELF--an Extensive Language
Facility', Spring Joint Computer Conference, AFIPS Press, Montvale,
New Jersey, 1969.

140

16) R. F. Rosen, 'MPP--A Tool for Teaching and Research in Micro-
programming', Technical Report PN-3R, SUNY at Buffalo, 1970.

17) L. C. Richardson, 'PRIM--Overview', ISI/RR-76-19, University
of Southern California, February 1974.

18) MICRODATA 3200 COMPUTER, MICRO 32/S COMPUTER REFERENCE MANUAL,
Microdata Corporation, May 1974.

19) MODEL 8/32 MICRO-PROGRAM DESCRIPTION, no. 05~058Al5, Interdata
Incorporated, December 1974.

20) BURROUGHS B1700 SYSTEMS REFERENCE MANUAL, Burroughs Corporation
1972. ’

21) OM-1-HARDWARE LEVEL USER's MANUAL, Nano-data Corporation, March
1974. :

22) CASH-8 REFERENCE MANUAL, Standard Logic Incorporated, June, 1973.

23) 21MX COMPUTER SERIES REFERENCE MANUAL, Manual Part No. 02108-90002,
Interdata Incorporation.

26) H. W. Lawson, B. Magnhagen, "Advantages of Structured Hardware",
Second Annual Symposium on Computer Architecture, IEE, January
1975, (DATASAAB FCPU).

27) D. R. Oestreicher, J. Goldberg, "MLP-900 Reference Manual",

Information Sciences Institute, University of Southern California,
March 1974.

28) CONTROL DATA 5000 SERIES OF MICROPROGRAMMABLE PROCESSORS REFERENCE
MANUAL, Publication No. 14232000, Control Data Corporation, August
1972. .

29) "Data General Corporation Introduces New Eclipse Line of Small
Computers", SIGMICRO Newsletter, October 1974.

30) CAL DATA 1 COMPUTER FAMILY, California Data Products, June 1974.
31) PRIME 300 COMPUTER, Prime Computer Incorporated.
32) VARIAN 73 SYSTEM HANDBOOK, Varian Data Machines, June 1972.

33) R. G. Barr, et. all,. "A Research-Oriented Dynamic Microprocessor",
IEEE Transactions on Computers, November 1973.

34) D-MACHINE USERS MANUAL, Burroughs Corporation, April 1971, (BURROUGHS
INTERPRETER) .

35) B.D. Shriver, P. Kornerup, "An Overview of the MATHILDA System",
Department of Computer Science, University of Aarhus, Aarhus,
Denmark, 1975.

141

36) WRITABLE CONTROL STORE FOR PDP-11/40, 3 Rivers Corporation, June
1977.

37) SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET: 3001 MICROPROGRAM CONTROL
UNIT AND 3002 CENTRAL PROCESSING ELEMENT, Intel Corporation, 1975.

38) A. B. Salisbury, Microprogrammable Computer Architectures, Elsevier
Computer Science Library, New York, 1976.

39) R. F. Rosin, 'Contemporary Concepts of Microprogramming and
Emulation', Computing Surveys, December 1969.

40) J. T. Golden, FORTRAN IV Programming and Computing, Prentice Hall,
Englewood Cliffs, New Jersey, 1965.

41) A. Lysegard, Introduction to COBOL, Studentlitteratur, Lund,
Sweden, 1908.

42) M. E. Conway, 'Proposal for an UNCOL', Communications of the ACM,
October 1958. ‘

43) F. Bates and M. L. Douglas, Programming Language/One, Prentice
Hall, Englewood Cliffs, New Jersey, 1970.

44) E. G. Mallach, 'Emulation: A survey', Honewell Computer Journal,
Volume 6 Number 4, 1972.

45) Intel 8080 Reference Manual, Intel Corporation, Santa Clara,
California, 1976.

46) C. G. BEll and A. Newall, Computer Structures, Readings and Examples,
McGraw Hill, New York, 1971.

47) CDC 6600 REFERENCE MANUAL, Control Data Corporation, June 1976.

48) PDP 11/40 REFERENCE MANUAL, Digital Equipment Corporation,
Maynard, Massachusetts, 1972.

49) A. Lunde, 'Empirical Evaluation of Some Features of Instruction
Set Processor Architecture', Communications of the ACM, March 1977.

50) J. L. Elshoff, 'An Analysis of Some Commercial PL/I Programs;,
IEEE Transactions on Software Engineering, June 1976.

51) D. E. Rnuth, 'An Empirical Study of FORTRAN Programs', Software
Practice and Experience, 1971.

52) J. D. Gannon, and J. J. Horning, 'The Impact of Language Design on
the Production of Reliable Software', Proceedings International
Conference on Reliable Software, ACM SIGPLAN Notices, June 1975.

142

53) R. Kosaraju, 'An Analysis of Structured Programs', Journal of
Computing and Systems Science, December 1974.

54) H. F. Ledgard, and M. Marcotty, 'A Genealogy of Control Structures',
Communications of the ACM, November 1975.

55) R. M. Lewis, D. J. Rosenkrantz, R. E. Stearns, Compiler Design
Theory, Addison-Wesley, Menlo Park, California, 1976.

56) X. Jensen, N. Wirth, PASCAL Users Manual and Report, Springer-
Verlag, New York, 1974.

57) W. M. Waite, R. J. Orgas, 'A Base for a Mobile Programming System',
Communications of the ACM, September 1969.

58) M. H. Halstead, 'Using the Computer for Computer Conversion',
Datamation, May 1970.

59) P. J. Brown, 'Levels of lLanguages for Portable Software',
Communications of the ACM, December 1972.

60) F. L. Alt, 'The Standardization of Programming Languages',
Proceedings of the ACM 19th National Conference, 1964.

6l) R. C. Smeder, 'An Investigation of the Bootstrapping Process as
Applied to Compiler Generation', A.U.S. Government Research Report,
AD-727673, 1971.

62) M. C. Newey, P. D. Poole and W. M. Waite, 'Abstract Machine Modelling
to Produce Portable Software', Software-Practice and Experience,
Vol. 2, April 1972.

63) P. C. Poole, ‘Hierarchical Abstract Machines;, Proceedings of the
Software Engineering Conference, Culham, England 1971.

64) P. C. Poole, W. M. Waite, 'Machine Independent Software', Proceedings
of the ACM, 2nd Symposium on Operating System Principles, 1969.

65) A. D. Fisher, 'A Common Programming Language for the DOD-Technical
Requirements;, DOD Report No. AD-A028 297/0wc.

66) H. W. Lawson, 'Programming-Language-Oriented Instruction Streams',
IEEE Transactions on Computers, May 1963.

67) R. E. Merwin et. all., 'Direct-Micorprogrammed Execution of the
Intermediate Text From a High-Level Language Compiler’'.

68) M. H. Halstead, Elements of Software Science, Elsevier North-
Holland, 1977.

69) J. L. Elshoff, 'An Investigation into the Effect of the Counting
Methods used on Software Science Measurements', SIGPLAN Notices,
February 1978.

70)

71)

72)

73)

143

Schorre, 'META-II. A Syntax Oriented Compiler Writing System',
Proceedings ACM 19th National Conference 1964.

G. A. Bachelor, 'META/CYBER 73 Reference Manual, Department of
Computer Science, Oregon State University, 1975.

P. Y. Ma, "Optimizing Microcode Produced from a High Level
Language", Ph.D. Thesis, Oregon State University, August 1978.

K. Malik, IML Simulator Reference Manual, Oregon State University,
1979.

APPENDICES

144

APPENDIX A

VMPL SYNTAX
This appendix defines the syntax of Virtual Microprogramming
Language (VMPL) in a slightly modified BNF form. The differences from
the standard BNF are:
1) In order to save space and repetition, the following
statement is used

By ,{By, LCp ::=(E)

which means

KBy 1i= (B
<§> 1= <E>
Ly = (B

2) In case one of the meta symbols has to be used as part of the
syntax of VMPL, it is enclosed in apostrophes, i.e.
|< !
meaning that the angle bracket ({) is used as a VMPL symbol

and not a meta symbol.

PROGRAM: : = {PROGRAM HEADING) { {GLOBAL DECL) } <{BLOCKS)
PROGRAM ENDING
(PROGRAM HEADING, ::=EMULATOR: <ID) ;

{PROGRAM ENDING> ::=ENDEMULATOR;

<GLOBAL DECL> ::=DCL {GLOBAL INFO DECL) ;/DCL {GLOBAL VAR DECL) ;
(GLOBAL INFO DECLY ::= (WORDSIZE DECL)> /<ARITHMETIC DECL) / (FIELD DCL)
(WORDSIZE DECL} ::=WORDSIZE (INTEGER)

QRITHMETIC DECL) ::=ARITHMETIC (ARITHMETIC TYPE)

(FIELD DCL) ::=FIELD (FIELD)>" {,FIELD}

&IELD> ::= D) (FBP) , (BP) , (SHIFT COUNT))/ <ID» ({FBP} , {LBE>)
FBP D , (IBP) ::= {(INTEGER)

{SHIFT COUNT) ::= <INTEGER> / <{NEG INTEGER>

(GLOBAL VAR DECL) ::=PERMANENT (GLOBAL TYPE DECL /TEMPORARY
{GLOBAL TYPE DECL)

<GLOBAL TYPE DECL}> ::= {MEMORY DECL)> / {STACK DECL} / {PSTACK DECL) /
{EXTERNAL DECL) / <FLAG DECL) / {SIMPLE DECL)>

{MEMORY DECL} ::=MEMORY (MEMORY} (SIZE DECL}

(MEMORY,> ::= {ID} : { <INTEGER)> }

(STACK DECL) ::=STACK {STACK,) (SIZE DECL)

145

(STACK) ::= {ID> :[{INTEGERy]/ {ID> ‘

(PSTACK DECL) ::=PSTACK {PSTACK> (SIZE DECL) {STACK OPS)>
{PSTACK) ::= (IDp _ T
<EXTERNAL DECL} ::=EXTERNAL (EXTERNALy {,QEXTERNAL? 3

{EXTERNAL) ::= (IDp <EXT TYPE)

(FLAG DECL)::=FLAG <(FLAG, {,(FLAG)}

(FLAG) ::= (ID) (LG TYPE) N
{SIMPLE DECL) ::={ID) (SIZE DECL> {, {D SIZE DECL) }
(SIZE DECLY ::=: (INTEGER) / (EMPTY

{STACK OPS) ::= T&OPLy / {EOPLy / +{SOP2/-{30P2)>
SOPL> ::= +/-

{80P2> ::= T/¥

(EXT TYPE) ::= :P/:F/L {INTEGER} / (EMPTY)>

@LG TYPE) ::=:C/:0/:N/:2/ {(EMPTY>

{BLOCKS) ::= (BLOCK) {{BLOCK) }

{BLOCK> ::=PROC: {ID)» : {PROC BLOCK)/ SPROC: (ID) {SPROC ARG); {(SPROC BLOCK >
{PROC BLOCK) ::={(PROC DECLD}; # (CODE) %
{SPROC BLOCK) ::= {{SPROC DECL} ;| # (CODE) #
{SPROC ARG ::= (EMPTY) /((ARG {+ (ARG})
(ARG ::= {ID) <{SIZE DECL)
<PROC DECIY ::=DCL (GLB USE DECL) / DCL (LOCAL DECL) / DCL<{SPR USE DECL}
<GLB USE DECL) ::=GLOBAL USE {ID) { , <ID)}
{LOCAL DECL) ::=PERMANENT {SIMPLE DECL) / TEMPORARY
{SIMPLE DECL
{SPR USE DECL) ::=SPROC USE <ID) {, <D}
{SPROC DECL) ::=DCL GLOBAL (ER DECL) / DCL LOCAL {ER DECL> /
DCL (SPR USE DECL)/ {GLB USE DECL)
{ER DECL) ;;=EXPECT (ID} {, &by /RETURN (ID) [, o)}
{CODE}> ::= (STATEMENT, ; { (STATEMENT ;>}
{STATEMENT,> ::= (UNLABELLED STMT) / {(IABEL) : (UNLABELLED STMT)
{UNLABELLED STMT) ::=(SIMPLE STMT) / <STRUCTURED STMT,
{(SIMPLE STMT) ::= (ASSIGNMENT STMT, {SET FLAGS) / {SET STMT)
‘ {SET FLAGS) / (CLR STMT. <SET FLAGS.” / <INC STMT,
{SET FLAGS) / (DEC STMT) <{SET FLAGS> / {INC STMT>
(LEAVE STMT)> / <{GO TO STMT> / KEQ STMT /
{PUSH STMT> / {RETURN STMT> /
COMMENT STMT

(ASSIGNMENT STMT) ::= {CONCAT ASSIGN, / <{SIMPLE ASSIGN}
{CONCAT ASSIGN)p ::= (CONCAT VAR> <(ASSIGNMENT OPERATOR}
{CONCAT EXPR>»
{CONCAT EXPR) ::= <{CONCAT FACTOR> / <CONCAT FACTOR) <PM OPERATOR>
{INTEGER)
{CONCAT FACTOR) ::= (VARD> / {CONCAT VAR>
{CONCAT VAR) ::= {ID> //'{D) A
(SIMPLE ASSIGNy ::= (VAR) <ASSIGNMENT OPERATOR) <RIGHT HAND SIDE > /

{SIMPLE CONCAT ASSIGN)
{VARy ::= D% / <ARRAY VAR)
ARRAY VAR} ::= ARRAY ID) <ARRAY SUBSCRIPT)
ARRAY IDp ::=@ {ID) / IOy
<ARRAY SUBSCRIPT> ::= {IDy / (INTEGER) / {POB>
<RIGHT HAND SIDE) ::= {TERM) <OPERATOR) <TERM, / {TERM) \
@ERM) ::= {VAR} / {INTEGER) / {UNARY) / {SHIFT VAR} / {FIELD VAR /
POP? / <ROTVAR>

146

(UNARY?> ::= .NOT. VAR)
(SHIFT VAR ::= (VAR) {SHIFT OPERATOR, <{INTEGER)
&FIELD VAR» ::= D) (YARD)
(ROT VAR ::= {VAR) {ROT OPERATOR) (INTEGER>
{SET STMT> ::= SET <VAR}
¢CLR STMT) ::= CLAR {VAR)
{gNC STMT > ::= INC (VAR>
QEC STMT) ::= DEC {VAR>
<HLT STMT, ::= HALT
«LEAVE STMT) ::= LEAVE {IABEL)
{GOTO STMT)> ::= GOTO (LABELD> .
(XEQ STMT) ::= EXECUTE 4D} / EXECUTE {ID) ({ID? {_, ID>})
(PUSH STMT} ::= PUSH /(ID)
¢{RETURN STMT, ::= RETURN) .
(COMMENT STMTp ::= [* {(ALPHABET}} {16117 {<5YMBOL)} *]
(SET FLAGS) ::= EMPTY /'(' 1ID {, &4D> ') '} _ |
{STRUCTURED STMT} ::= {IFTRUE STMS} / <IFFALSE STMT” / {SELECT STMT, /
{COND STMT} / (FOR STMT) / {WHILE STMT,

{IFTRUE STMT) ::= IFTRUE (IFSTMT>
(IFFALSE STMIp ::= IFFALSE (IF STMT>
(IF STMT/ ::= ((BOOLEAN EXPRESSION>) THEN; (COMPOUND STMT>
‘ ELSE (STMT> ENDIF
{SELECT STMT, ::= SELECT ((ID» , {INTEGER)) FROM;

(SLCT ITEM) ; | {SLCT ITEM» ;} ENDSELECT
<COND STMTp ::= COND; (COND ITEM p ; {<COND ITEM) ;} END COND
(FOR STMT) ::= FOR {ID) = {INTEGER)» TO {INTEGER> ;

(COMPOUND STMT > ‘

(WHILE STMT> ::= WHILE ({BOOLEAN EXPRESSION»); <COMPOUND STMT>

ENDWHILE
{COMPOUND STMT, ::= BEGIN; <CODE> END;
{ELSE STMT) ::= EMPTY / ELSE; {COMPOUND STMT)
<{BOOLEAN EXPRESSION) ::= <BOOL FACTOR) / {BOOL FACTOR)> .EQ. {BOOL FACTORy/

(BOOL FACTOR> .LT. (BOOL FACTOR)» /(BOOL FACTOR> .GT.
{BOOL FACTOR) / (BIT VAR

{BOOL FACTOR) ERM

= <?
(SLCT ITEM) ::= ({INTEGER)> , (LABEL))
{COND ITEM> ::= ((BOOLEAN EXPRESSION)); (COMPOUND>
{ABEL} ::= (D)
¢PM OPERATOR) ::= +/-
{ARITHMETIC TYPE) ::= 1/2
{NEGATIVE INTEGER; ::= - (INTEGER)>
{OPERATOR} ::= +/-/*/ // .AND./.OR./.XOR.
{SHIFT OPERATOR} ::= .SHTLO./.SHTLI./.SHTRO./.SHTRI.
<{ROT OPERATOR) ::= .ROTL./.ROTR.
(ASSIGNMENT OPERATORY ::= '='
<INTEGER) ::= {(DIGIT <DIGIT)
{ID} ::= (ALPHABET) &@LPHABET) / (DIGIT)}
(EMPTY; :=

{ALPHABET) :=A/B/C/D/E/F/G/H/I1/3/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z
{DIGIT? :=0/1/2/3/4/5/6/7/8/9
§MBOLD ::= ./// (/) JU/I/A/ W/} +/=/%/./2/ /&/

147

APPENDIX B

SIMULATOR DESCRIPTION

The simulator for the IML is written in PASCAL. It is logically
broken up into two parts. The first part sets up the symbol table,
checks to see if all the variables have been used according to the
requirements of VMPL, and sets up a binary equivalent of the IML.

The second part then executes the binary code set up by the first
part. As indicated in Chapter 6, VMPL is enhanced by the COMMAND
statement. The modification which this statement makes to VMPL BNF
is shown in Fig. B.1.

All commands are given by three unique alphabets. While transla-
ting commands to IML, the IML operation is the command itself. However,
in column 1, we have a down arrow (¥) symbol which indicates to the
later part of compilation (which produces microcode) that this IML
statement is essentially a comment.

The simulator commands can be broken down into types:

1) DISPLAY

2) INSERT

3) CONTROL

The DISPLAY commands display the value of the wvarious variables
declared in the VMPL program. The INSERT command inserts (sets) values
into the various variables declared in the VMPL program.

The CONTROL command covers a number of commands. These are:

a) Set and clear break points. The VMPL variables can be tagged

such that whenever they are used, control returns to the
simulator user.

b) Single step. This is for single step control of the IML
program.

c) Symbol table. Display symbol tables set up in part 1 of

simulator.

d) Error history. Display error history. When error occurs,

this command gives information about the original VMPL state-

ment which generated the IML statement which generated the error.

148

SIMPLE STMT ::= ALL AS IN APPENDIX A / COMMAND STMT

COMMAND STMT ::= DELETE CMDS PARAMETERS /
INSERT CMDS PARAMETERS /
CONTROL CMDS PARAMETERS /

DELETE CMDS ::= SEE (73)
INSERT CMDS ::= SEE (73)
CONTROL CMDS ::= SEE (73)
PARAMETERS = SEE (73)

Fig. B.1l MODIFICATION TO VMPL BNF

149

e) Option control. A number of options associated with error

control can be enabled or disabled.
f) Load. Activate the loader to load data into the emulator
memory.

g) Execution Control. This starts and stops monitor and starts

and stops the simulation.

A detailed description of these commands, their parameters is given in

(73).

150

APPENDIX C

This Appendix contains the VMPL-META compiler and the source
of the emulator programs written in VMPL and referenced in Chapter 6
as VMl, VM2 and VM3. The programs are in the following order:

1) VMPL-META compiler.

2) VvMl.

3) vM2.

4) VM3.

151

4ETA V3.12 METASLINGUISTICAL TRANSLATIR WRITING SYSTIM 78/70L/83. 23

SSYNTAX VMPL $META COWPILIR FCR ¥ M 5 L .2

WWARS SIZTEN3TKLLSTKZ ,

JVARS TMP,GL,PT,CUM,CLMY .

«VARS CGPL,CP2,NL N2 WyNT .,

WWARS CM, M NM,0M .y

JFLAGS ART,01,02,034)NCOPR,PCOFL. CaTL,CAT2 .,

¥ (R SOV AV S e Vs SRV RS NS LSRN | B oV AN I g

YMEBL = JLENIC & LCCOMFLAG 2(* z
1 AEMULATORZ £tz ,I2 ,CUT(L3 2094 2 * ,COL T2) .ONERROR RECYRL 2tz
1 S(GLCBALIECL) LOUT(LS 2038 FRJGRAMSTART2z .COL 72)
1 5(£PREC2 PR3T / zsp=ov= SPR35 /2INTIMULATOS2 JOUT(4L8
1 2G0C PROGRAMEND2 ,COL 72) 232 ,TRITURN) .,
1
1 ACCYRL = LEARRCW JMSSSAGE 2SYNTAX Z2203.° SCANNING RESUMES AT MEXT <i»z
186 +SCAN 212 .y
17
13 {* 5L084aL CICLARATIONS *)
13
29
21 GLOSALISCL = =20CL2 LSELECT
22 {2WCRDSIZER wo=a€F 212 /
23 . 24RITHMETICZ ARTCEF 282 /
24 IGLNBALZ GL=ne= 21z /
25 2IP30C® IFRDEF tiz /
2% #F15L02 FLODEF 2tz)
27 .s
23
23 WORCEF = (INTIGER (CSUTLLLE 2007 4,42 * JCOL 721 SET(SIZE, *) .
23
31 ARTQDEF = LFUT(,L2 233%2) (212 LOUTI(2ONE: ,CGL 72) /
32 222 JOQUT(2TWG: LCOL 72) / 2CNE2 .CUT(20MZ2 ,COL 72) /
37 2TWAZ LGLT(2TWOZ LCOL 72)) .,
3
23 IPRQEF = IFRTL 3(2,2 IFRIL) .,
15
37 IPRCL = LPUT (.3 2336 2) LSELECT
23 (2C2 ,QUT{(202 0L 727 7
29 202 JOUT(202 CoL 72y /
43 ZNZ JQUT(2NZ CoL 72 7/
41 272 JOUT(2Z2 JCOL T2 1 s

"

FLICUT $(2+2 FLIOQUTY .,

r
(o]
(o]
m
mn
"

¥ 2,2) 2,2 o INTEGE
EGEIR JPUT 2=z *)

m
-
(]
(8]
<
-1
\

eI JPUT(.LE 2005 2 ¥ 2,,,2) (2 JINTEGIRP L,PUT(
JFPUTE* 2,2 (2, 2(INTEGER L,2UT(®) z)z / t=% JINT
Y o/ 2y ,PUT(202)) LCUT(L,C3L 72) .y

2

3

4

5

?

3

3 CLIECEF = LSE7(GL.222) RTIEF GLESL .

B!

i STNSF = (2PSSMANEINTZ SET(PT,.222) / 2TIMEQRARYz LSETIFT,212)) .,

2

2 SLE0L = (2MIMCRYZ2 (3IT(THP, 2L 2) vEMIREF /
4 2STACKZ J3ET(TM5,22 #£) STKIIF /
B $PITACK= .SET(;MP,23 2)PSTLGEF /
) FIATIAMNALE (SET{TMO,29 2) IXTIIF 3(z,z ZxTIER) /
? 2ELAG2 L3127 \THO 26 2) FLAGDSF (#,2 FLAGQOEIF) /
3 2SITMALIR LIET(™™MP, 20 2} SIMCSEF 3(2,2 SIMIZF) /
3 WIMETY (SEITUTHP, 20 2) SIMIEF (2,2 SIMIER) b

(30NN VTV IS G TR (RN SRV BEV RNV VT I o it S ol SR it S Sl A

©

MEMDEF = T

7 TAG
ouT

LCUT (* 2,2)
72) .y

212 2(2

o

FON

PUT
coL

STKEEF = ,I0 TAGRPUT .FUTI(*2,2) 212 2{2z JINTEGER .FUT(*z,2) 2]z SIZEDECL
JOUTLL.CCL 72 .
SSTXOEF = oI7 TAGPUT L BUT(* 2,,2) 212 (JINTEGER L PUT(® 2,2) #tz 2(z /
2{z PUTISIZZ 2,2)) STAGKOPS z)z ,CUT{.COL 72) .,
STACKOFPS = JSELECT
(2e2 PUT(2r,2) LSET(STKL,2¥2) STOFL /
242 LPUT(2+,2) JSET(STKL,2t2) STOFY /
2¢2 ,PUT(2442) ,SETISTKL,y2=-2) 3T0OP2 /
2-2 ,PUT({2=,2) LSET(STKi,2+2) STOP2) .oy
FLAGDEF = TAGFUT 412 SETIOUM,*) JPUT(* 2,,1,7)
{ztz (28z ,SET(CM,CUM) ,PUT(z212) /
202 JSET(OM, CUMY RUT(222) /
ZNZ L SET(NM, CUM) BUT(232) /
272 ,SET(Z4,TUM) PUT(2L2) Yy /7
LEMPTY (JIFEQUAL IGUM,20#) «SZTICM,2C2) L,PUT{212) /
JIFEQUAL(DUM,202) J3ET(SM,202) LPUT(=22%2) /
CIFEQUAL(OUM »2N2) L SET{NM,2N2) ,PUT(232) /
CJIFEQUALIOUM y2Z2) J3ET(ZM,2722) ,PUT (a2} /
CJEMPTY PUT(202))}y LOUTL.COL 72))
EXTOEF = . I7 TAGPUT LPUTH(® #4,2) (212 (£P2 ,PUT(2,F2)/ 2F2 PUT{21.7F72])
CINTEGER JPUTI®)) / LEMPTY LPUT{STIZE}) LOUTL.COL 720 oy
SIMCEF = 17 TAGPUT PLTI(® #,,2}SIZEJECL LQUT(.CIL 72} .,
TAGPUT = LFUT LB GL FPT THA) .y
STOPL = (2+2 ,PUT(2+2) (SET(STK2 ,2-2) /
2= ,PUT(2-2) ,3ETISTYZ,2+2)) PUT(#,2 STXK2 2,2 STX1) .
STCPZ = (2+2 ,PUT(222) SST{STK2,2+2) /
242 PUT(242) (SET(STK2,2+2)) OUT(2,2 STKZ 2,2 STX1} .
SIZESHECL = {2tz ,INTEGER ,PUT(*) / JIM2TY ,PUT(SIZDN} .,

{* MAIN 3LCOKS *)

212 L ID JLoL 72

«QUT (LL3 200F 2*

212 1D LBUT(.L8 200G #%) RS #

222,001 7

) (2,2
LTRETUR

T RZ
=XEG

C 2{z2 ARGCD ,JUT(.SOL 1
3(.I0 JPLT(.OCL 25 2Az
/ Y2 JOUTLLCOL 72)
(292 ,PUT(.CQL L 2%2)/2)2
CONE = #3¢ JCUTI(.LE 200H2z ,COL 72)
«SELECT
(#GLOFALZ #UScz GLUDESF
2LOCALZ LCLZEF =zi#
2SPRQC2 2YSZz SPRCEF

FROCITCL =

212
232

CLUCEF = GLUTL §(z,2 CLUTL) .

WIS JCUTLLL3 #2205 = * L,COL 72)

SLUdL =

152

CINTEIGER JPUTI* 2,2)

) =3z F(2OCL2 PROCDECL)} CO3E
$2 3(£CCLz SFPROCDECL) COBE .,
2) / JEMPTY LOUT(.COL 72)) X
LI0 LOUT(,.COL 34 Az * ,COL 72)
N) .
TURN) .
0RE #£32 L,JUT(.L3 2381z .COL 72)
/
/

144

142
143
144
145
148
167
148
163
129
151
152
153
154

155

157
153
159

1el
182
1863
1o4
185
165
187
163
183
173

175
175
177
173
179
189
131
132
183
134
155
135

153

LCLECER = JSITIGL,212) BTTEF (#SIMPLEZ/.EMPTY) LSEZT(TMP,20 2} SIMIEF
Tlry2z SIMICF) .y
SPROEF = SEXICL $(2z,2 SDPRIL) .

SPROL = I JOUTL.L3 2408 2 * QL 72) .,

SPROGOECL = (23P20C2* 2YSEz SPROEF 213 /
$GLOBALZ GLIRD 2%z /
2L0CAL2 LCLSERD #1312 Y e,
GLZRO = SET(HL,222) ,SET(ST,20%) (LEXPELTZ JSET(TMR, 27 2) /
/ 2RETURNZ ,SETI(TMP,28 #)) GLEIBL 3(z,2 GLERDL) .,

GLERDL = I3 TAGPUT LCUTH(* ,CCL 72} 4,

SSET(TME, 27 2) LCLER /

LOCLSERD = (SET(GL.212) (SETIPT,202) (2EXPICT2 ,SZ
EMETY FTREF (2SIMPLEZ /

TRETURNE JSET(T¥P,#8 2) LILER / o
CJEMPTY) LSET(TMR,20 2) LCLSE)} 4,

LCLE® = GLERCL $(2,2 GLERWL))

LCLS = SIMLCEF 2,2 SIMDZIF) .,

EXECODT = JONEPQQR FSCURYL H(.I0 + 2tz 0UT(.OCL 1 * .CCL 72)
/ STMT) o

STMT = (MOTASSIAN 212z / ASSIGN #:2) .,

MOTASSIGN = ,SEZLECT

(2SET? SETSTMT 7
2CLEARZ CLRST4T 7
2INCZ INCSTMT 7
20ECE DECSTMT
sHAL "2 HALTSTMT
£RETUIN RITSTHT 7/
$LEAVEL LEAVSTMT 7/
zIFTRUE2 IFT3ST™T 7/
2IFFALSE2 IFFLSTMT 7
2COND2 CONDSTMT 7/
23EGINE COMPOUND /
#SELECT? SILTSTMT 7
260701 GATOSTMT
2EXSCUTE2 EXECSTHT 7
2PUSH* PUSHSTMT 7/
2FQ2z2 FORSTHMT /7
2z CHOSTHT 7
2WHILE? A ILESTMT)

.3
COMPOUNT = #t2 ,0UT(.LOL 1 20042 LCOL 72} (ONERRQR RECYRL 3J{zEnN0z LEXIT

/ JID%Zrz LOUT(L.CCL 1 * ,COL 72) / STMT) LOUT(.COL 1
209Kz LC3L 72) X

SETSTMT = .SET(IPL,232T2) SCOUTL .,
CLRSTMT = ,SETIOPL,2CL&2) SCOUT!L

.
SCCUT2 = (#PCP*2 T+ ,QUT(L.COL 3 220P22 COL 16 #¢z *T QOL 72) SETINZ.*T)

/ JID JZET(NZ,*) / JINTEGER JSEZTIN2.*) +SSTFLAG CL)} .

SCOUTI = T+ ,SUT(.CCL 3 OF1 LCOL 16 2+2 *T ,CCL 72) SATFLAGS .PUT(
2WMOVEZ ,COL L7 N1 JG3L 28 N2 LCOL 34 22 *T) {
LIFTEME N2 LBUT(,CCL 25 2-2) /7 ,IFFLAG C1 .PUT{.CoL 25
2C2) 7 JEMETY)

WTL = (ILRFLAG O (. I0+#202 SET{NL,*) SCOUT2 2]z SCJUT3 /

in
[¢]
D

147
133
183
1949
151
132
193
194
135
198
137
133
199
2010
2401
202
203
274

154

2¢2 JID+20? . SET{NL1,*) SCOUT2 212 SCOUT& 3C2UT3 / «IC SETrFLAGS
LPUT(L,COL 8 3PL COL L7 *)) J2UTL.COL 72) .

SCOUTL = T+ JPUT(.Z7L 8 2RMOVE? .COL 17 N1 .COL 28 N2 .COL 34 zez *7
}
{,IFTEMD N2 .FUT(.COL 25 #-2Y/ .EMPTY)(IFFLAG C1l .PUT(.COL 25
2C23/ JEMFTY) LQUTI(.0OL 723 GSETUIN2,*T)Y

INCSTHT

SET(OPL,2400C2) J3TITLOP2,2INS#) IZOUTL .
NECSTMT = 3ET(0PL,23URC2) LSET(ZP2,205C2) IQCUTL .,

IOCUTL = LCLSFLAG C1l (.ID+#202 .3ST(N1,*) SCQUTZ 21z I0QUTZ /
2<2 JID®R(2 JSET(ML, =) 3C0UT2 #£12 SCOUT4 IJ0uT2 /
LID*2//72 (SETH{NL»*) 10 .OUT(.COL 7 22 QP2 ,COL 17 *
LCNL 43 202 LCOL 72) SSETFLAGS (CUTH(.JCL 8 CFPL LCOL 17 N1 .COL 23
2002 JCGOL 35 NI LCCL 72) / +I2 SETFLAGS .PUT(.COL 2 CP2
LCCL 17 *)) LOUT(.COL 72) o
IDCUT2 = T+ PUT(.CCL 8 2zRMCVE2 ,COL 17 N1 .CCL 28 N2 «COL 34 2#¢
*TY (LIFTEM® N2 FUT(CCL 25 ##2) / LIFFLAG C!
LPUT(.COL 25 £C2) /7 JEMPTY) ,HUTL.CCL 72) SETFLAGS ,OUT(.COL 8 OF2
LCOL 16 242 *T CCL 72) PUTL.O3L 3
TWMOYE2 LCOL 17 N1 LCOL 28 N2 COL 3Ju z=-2 *T)
(LIFTEMP N2 ,PUT(.COL 25 2=2) / JIFFLAG C1 .PLT(.COL 2%
202) / JEMETY) oy
HALTSTMT = (CUT(.COL 3 2HALT2 COL 72 1 4>

PETSTMT = LOUT(.COL 3 2RET2 CCL 72 } o
LEAVSTHT = I3 LOUT(,.COL 8 #3RCH=z .COL 18 232 * JC3L 72) .,
IFTASTMT = ,CLIFLEG G2 #2(2IFTRz) 2 IFOUT .,

IFTR = TE®ML ,STACK N2 (JIFFLAG C2 SETFLAG C3 (CLRF
/ JEMPTY) ({Z,2 AUT{.CCL 12 zF2) 3ITOUT .73E
/ 2.2 JSELECT .
(2EQ#.SET(QOPL,227) #.2 TERML CPR2 .PUT(.CCL L2 2F2) [FQUTL
ZLT2.SETI(CEL,2N2) 2.7 TEIMYL OFR2 ,SUT(,.,CCL L2 2F2) IFQUTL /
2GE% JSET(OPL1,2Z,N2) 2,2 TESML JUNSTAGK JUM .STACK N2
LSETIN2.QUMY CHFLAG OF22 ,2UT(,.COL 12 2F2z) IFOUTL /
2LE2 JSET{OPL,27Z,N2) 2.2 TERIML JPR2 ,PUT(.COL 12 2Fz) IFQUTL /
INEZ SETINFL1,222) 2.2 TERML OFR2 ,PUT(.COL 12 #T2) IFCUTL /
2GT2.SET(OPL,2N2) 2.2 TERML Q0FR2 ,FuT(.CCL 12 2T2) IFCUTL)

) .

~

IFFLSTYT = LCLRFLAG C2 #{# IFFL 21t IFOLT .,

CHFLAG = JCLRFLAG Ct (,IFFLAG C2 .SETFLAG J1 / EMPTY)
(o IFFLAG C3 LSETFLAG C2 /.CLRFLAG C2)
(LIFFLAG €1 LSSTFLAG C3 /.CLRFLAG 31 .o

TFFL = TE®ML STACK N2 (LIFFLAG C2 LSETFLAG $3 JCLRFLAG C2
/ JEMPTY) (2,2 LSUT(.COL 12 2zF2) 3ITOUT TSETURN /
22 LSELEZCT
T (2EG2 JSET(OFL,27Z%) 2.% TIRML 0FR2 L,AUT(.CCL 12 2T2) IFGUTL /
$LT2 JSET{O21,2N2) 2.2 TTRML CFR2 ,PUTL.OCL 12 T2y IFCUTL /
INEZ JSET(CFL,2Z2) 2,2 TERML 0S22 ,PUT(.CIL 12 #F2) IFQUTL /
2LEZ JSETICEL.27,N2) 2,72 TIRML 0PR2 .PUT(L.COL 12 2T2) IFQUTL /
2GE2 JSETICFL,2Z,N2) 2,2 TZRM1 (UNSTACK UM (STACK N2
CSETIN2,CUM) CHFLAG OP32 J2UT(.CoL 12 2T2) IFQUTL /
2572 JSET(ORY,2N2) 2.2 TERML QFR2 ,PUT(.ICL 12 =F%) IFCUTL)

))

264
285
2686

273
27%
276
277
273

g

44
&

155

IFCUT = LOUT(.COL 25 #Tz *1 .CCOL 72) 2THINz 212
(.ID4+2t2 (QUT(LCOL 1 * COL 72) / JEMPTY) NCTASTIGN 232 (#2SLSE¢#
212 JOUT(.CGL 3 23RCH2
«COL 15 =222 00U 17 *2 .20L 72) LOUT(.CCOL 1 *1 .COL 72
{.IC+2%2 ,JUT(LCCL 1 * COL 72) / JEMPTY) NOTASSIGN 232 ,OUT(
+COL L *2 COL 72) /
JEMPTY LQUT(.COL 1 *1 .COL 72)) zENCIFZz .,

TPR2 = JUNSTACK N1 PUT(,COL 7 2+CNMP2 (0L 17 N1 .COL 28 N2
.COL 43 0oP1)
(e IFTEMP N1 JPUT{.COL 16 2z-2) / JEMPTY 1}
(o IFTEMP N2 ,PUT(.C0L 25 2z=-2) / JEMPTY)
(IFFLAG C3 LPLT{.COL 16 2C2) CLRFLAG C3 / .EMPTY)
(JIFFLAG CZ JPUT(.COL 25 252) JCLRFLAG C2 /7 LE4PTY)
LOUT.CoL 72y .,

2ITOUT = (INTEGER .SUT(.COL & zCONDZ .COL 18 2.
CJIFTEMP NZ LPUTLLCOL 15 2=-2) / JEMPTY

CONCSTMT 232 $(z{2 CONDITZM / 2ENICONDZ JTRETURN) .

"

CONPITEM = IFTR QUTI(.COL 25 2Lz *1 ,CCL 72))% 2!z
(,ID+#t2 LQUTL.CCL L * COL 72) /7 LEMPTY) NCTASSIGN 232 .CUT(
«£0L 1 *1 ,CCL T72) "

SELTSTMT =,PUT(,COL @ 2SLCT2) 2(2 I3 .2UT(.COL 17 *) 2,2 (INTEGER 2)2
2OUT(.COL 25 202 * ,CCL 72) 2F3ICM2 £ 3(2(# SLITEM 2)# 21z /
ZENISELICT2 LOUT(.COL 1 2*2 ,COL 72) JTRETURN) o,

SLITEM = LINTEGER LRUT(.C0L 1 z®2% COL 7 202 *) 2,2 ,IT OUT(.COL 16 252
* LCCL 723 oy

GCTOSTMT = .10 QUT(.COL 8 23xCH2 COL 1R 2G2 * .CoL 72y o,

TXECSTMT = ,ID JPUT(.COL 6 2XEG2 CAL 17 *) (2(2 EXECPAR OUT(.CGOL 1
22 LCOL 72) / LEMPTY LCUTL(.COL 72)) o

SXECPAR =T (,ID LPUT{.COL 25 2Pz *){(2s2 1D OUT{.CCL 34 =Pz * (0L 72)
/ #YE JOUT{.CCOL 72) JTRETURNY (2,2 L2UT(.COL L 2*2) /7 2)2
CTFETURN }) .y

PUSHETMT = LCLRFLAG €2 (WJINTSGER (STTU(N2, *) JSETFLAG C3 /7 LE4FTY TERM2)
«PUTLL.C2L 3 2PSHz L,COL 17 N2)
(LIFFLAG $2 JPUTI(.CCL 19 2C2) / EM °TV)
(JIFTEYF N2 PUT(.COL 156 2-2) / EM
SETFLAGS CQUT(.CCL 72) 4,

STMT = ,JUTL.COL t *1 .COL 72) .12 PUT(.COL 3 #2L00P2 ,COL17 *) z=2

«INTEGER JFUTI(.CQOL 25 2C#2 *) 2702 (INTEGZR LOUT(.COL 34 2z * ,COL 72
) 272 (LI0*#22 CUT(.COL 1 * .COL 72) / JEMFETY) NOTASSIGN z:i:2
2ENJFQR= LCLT{.COL 8 28RCHz ,0CL 16 zFz *1 COL 72) .,

FOR

AILESTMT = 2(2 OUTL(.C0L L *1 ,COL 72) IFTS JCUT(.COL 25 2Lz *2 .GOL 72
) £yz 23
«IDHRTZ LAUT(LCCL 1 * JCOUL 72) / LZMPTY) NOTASSIGN 232
JCUT(L.CZ2L 3 2BRCH2 OOL L& 2L2 *1 C3L 72 7/ .,CCL 1 *2
SOL 72) 2INOWHILEZ2 .,
CMRSTMT = JI5 JOUT(.CCL 1 24 2% ,OCL 72) 2z,
ASSIGN = JILRFLAG €2 CLSFLAG (3 JCL=FLAG POPL JCLFFLAG NCOER
WOLEFLAG 33T GOLRFLAG C1 JCLFFLAG 7aT1 JCLEFLAG CaT2

313

327
323

354
35S
35e
357
3513
353
360
381
3162
162
384
365
168
367
163
369
379
371

(JICe2//2 O

SIYASSG =(.I342{z2 374
+JEMPTY) ExP
«ID «STACK
{«IFFLAG NC
<z JI0+2{2
+TMFTY) ZXF

SBVARL = (#PQF+2 ,3ETF

«SETFLAG C1

EXPRY = (JIFFLAG NOFR
«CCL 17 N3 .

(. IFFLAG C3
«IFFLAG 32
{IFTEME N3
(e IFTT4P N2
{.IFFLAG CATL .
(JIFFLAG CATZ
SETFLAGS (I

EXCR2 = TESML JSTACK N2 (JIFFLAG C2 JSETFLAG C3 LCLRFLAG C2 / JEMFTY)
(JIFFLAG SATL L SETFLAG SAT2 JCLIFLAG CATL / ,EMPTY)
(z+2 TERML .3ETIOF1,2A0C2) /

2=t TERML L,SET(OF1,2SUB?) /

#%2 TERML ,SET{CPL,2MFY 2} 7

2/t TERML L3ET(2PL,20V0%) /

2,ANG.#2 TESML SET(AFL, 24ND2) /

2,0%,2 TERYy JSET(OPL,20R%) /

2.XCR,2 TEG¥L (SET(OP1, £XJR2) /

JEMPTY ,SSTFLAG NGOP? Y ey

TESM{ = {2.,NCTe2 TI3IM2 T+ PUTL.O0L 8 2NOT2 JCOL 17 N2 JCCL 25 z+z *7

{.IFTEME N2 LPUT(L,COL 17 2=2) / LEMSTY) OUT(.COL 72}

CSETINZV*T) JTRETURN /

JINTEGER SSTINZ,*) SETFLAG £2 JTRETURN / JEMPTY TERM2)

{ £.SHTLO.#% JINTEGER JSETI(QPL1,2L%) JIET(CF2,202) SHOUT /
2,SHT®3,.2 JINTEGE?2 .STT(021,2R2) LSETI(CF2,20%) SHCUT /
2.SHTLL.* JIMTEGER .SST(091,#L2) JSET(CF2,21%2} SHCUT ’
2,SHTRL .2 (INTEGER L.SETI(091,2R%) ,SETI(CFZ,212) SHCUT 7
2.ROTR.2 .INTEGE® .SET(0OPL,232) R0UT /
£.90TL.2 JINTEGER JSETLOPL,#L2) ROUT /

«EMPTY) .y
RUT = T+ LFUTL.OO0L 3 #3062 OF1 LCOL 17 N2 COL 28 *
WOCL 36 2+2 *T) (,IFTEMP N2 PUTI(,COL 1& z-2) / LEMPTY)
{ IFFLAG CATL PUTH(.COL 16 #/2) / JEMPTY)
JOUT(.COL 72) oSSTINZ,*T) .y
SHOUT = oT+ JPUT(.CAL 3 2SH2OP1 ,COL 17 N2 .COL 28 * 2,2 OP2 .COL 34 2+7

*T) (LIFTEME N2 L,PUT(L.COL 1€ Zz=2} / JIMPTY)

(JIFFLLSG CATL JPUT(.COL L& 2/2) / JEMOTY) ,CUTHL.COL 72)

JSETHNZLXTY o,

TEIM2 = (L IN+20 2 SBVASI3 LSETINZ,*T) /

JIDH+R02 FLOVAR JSET(N2,*T) /

CINE2/ /2 JSITICUME, %) o130 SETIN2,NUML 2,2 *) JSETFLAG CATL /

2EOF M2 PCP2 (SETINZH*T) /

«I7 JSET(NZ,*) /

2<2 ,IN+z{2 13VARZ 3BVAIS ,SITINZ,*T)) ey

156

ATASSG / JEMPTY SIMASSG) o

SSETFLAS ART/2=2
JEMPTY / JEMSTY EXPAL)
ART / #=2 JEIMFTY) EXPRZ
EXPs1) AS32 /

21z (#z=*2 ,SETFLAG 4RT / 2=2
JEMPTY / JEMPTY E£XPR1} ASS3) s

CK * S3VARL 212 (=»=%2
R2 (JIFFLAG NOPR
¥ (g=%2 SITFLAG
PR EXMY / JEMPTY

«STACK * SBVAR1
R2 {JIFFLAG NOPR

ASStL /

LAG PCPL «STACK * / LINTEGER .STACK *

})

/.13

JEMPTY / JEMPTY JUNSTACK N3 FUT(.COL & CPL
CoL 286 N2)
SPUTLLNCL 15 2C2) /
SPLTL.COL 25 202} /
PYTC.COL 18 2-2) /
PLT{LCOL 25 t=2) /
PUTL.CCL 25 z2/2) /
JPUTLL,COL 1B 272) /
FFLAG ART .PUT(.CCL 7

JEMETY)
LEMETY)
JEMPTY)
JEMFTY)
JEMPTY)
JEMETY)

2%2) 7/ JEMPTY)) o

75

377
374
373
383
381
292
233
384
A5
38%

157

FLOVAR = ST2CK ¥ ({,I2+2({z S3VARI L1 /
tPQPt2 POP2 (SETIN2,*T) FLO1 /
+IC SET(NZ2,*) FLO: /

2<¢2 JID+202 S3VARI SBVARS FLO1) 232 .,
FLOL = T+ LFPUT(,CCL 8/ #3IXTRZ) LUNSTACK JUML PUT(.COL 17 TZUML
JCOL 36 2+¢2 *T) ((IFTEMO N2 LPUT(.COL 25 z=-2) / JEMPTY) .CUT(
+LCL 26 N2Z LCCL 72) .y
POP2 = JT# LOUT(.COL 8 #P0P2 LCOL 16 #2%2 *T.COL 72) o
SBYARZ = ,SZT(M1,*) S3VAR4 212 .y

SBYARL =,T+ (200P+~2,CUT(,CCL A 2P0P2z ,COL 16 z+2 *T ,COL 72) .PUT(.COL 8
TRMOVTZ COL 17 N1 .COL 25 2=~z *T ,CCOL 34 #+2) T+ ,0OUTU*T .COL 72}
/ +10 JOUT(.CCL 8 29¥QVEZ ,COL 17 Nt ,CQOL 26 * ,CCL 34 2z+zx *T ,COL 72)
/ JINTESER LQUT{.COL 8 2RMCYEz .20 17 NL COL 235 252 * ,COL 3¢
242 T LCOL 72 0) R

SSVARS = LFUT(.L0L 8 23IMCVEz COL 17 N1 CCL 25 #=-2 *T} .T*
AUTELCOL 34 22 *7 C0L 72) .+,

EXMY = UNSTACK NUM (UNSTACK JUM PUT(.COL 3 2MOVE2.,COL 17 N2 .COL 28
CUM)Y (JIFFLAG G3 +PUTI(.C0L 18 202) / JIMPTY) SETFLAGS
(JIFTEMP N2 JPUT{.COL 16 2=2) / EMPTY)
(JIFFLAG ART JPUT(.COL 7 2%z)
(JIFFLAG CATL PUTL.CCL 15 2/72) / JEMPTY)
[CJEMPTY) .
ASSL = (L IFFLAG NOPFSR LUNSTACK N1 / T+ CUT(.COL 34 #+2 *T Q0L 72)
«SEFTINLL*TY) (JIFFLAG ©S0PL T+ OUTI(.CCL 3 2POPZ ,COL 16 2+2
LCOL 72 *T) JSETNZ2,*T) / EMFTY JUNSTACK N2) JUNSTACK N3 LPUT(
JLOL 8 2WMOVEZ ,COL 17 N3 L,COL 25 NZ .COL 33 N1)
CJIFTEMS NL JPUTL.COL 34 2=2) / JIMPTY)
(JIFFLAG NO=3 SETFLAGS (LIFFLAG C3 «PUT(.22L 34 2C23 /
JEMETY) (JIFFLAG CAT2 JSUT(.COL 36 2/2) / EMPTY) / LEHFTY)
(JIFTEMF N2 PUT(.COL 25 2=2}) / IMPTY)
(JIFFLAG C1 LPUT(.CAL 28 202) / JEMPTY) JCUTLL.COL 72) o
ASS2 = (LIFFLAG NOPR (EZMFTY / JUNSTACK DUM FUT(.CCL 35 3UM))
JOUT(COL 720 .y
={ IFFLAG NOPR UNSTACK N1 / T+ 3UT(.COL 34 z+2 *T CCL 72)
JSETINLL*T))
{.IFFLAG POFL T+ LOUT(.COL & 2PCP2 ,CCL 15 &2
FT JOCL 72) JSET(N2,%T) / JEMFTY LUNSTACK N2Z2) JUNSTACK N3 T+
«2UT (L CCL 8 2RMCQVE?R
+COL 17 N3 COL 25 N2 .COL 34 2+t *T) (LIFTEMP N2 3UT(,COL 25 =-2)
/ JEMETY) (JIFFLAG C1 JPUT(.CCL 25 #£7=z)/ EMPTY) ,OQUT(.COL 72
LFUT(LCOL 3 #WMOUEZ COL 17 N3 .COL 25 #z=-2 *T .CCL 35 N1)
{JIFTEMP N1 ,oUT(.CCL 34 2=2) / EMPTY) (JIFFLAG NCPS SETFLAGS
(+IFFLAG C3 .PUT(.COL 3% 2C2) / .Z4PTY)
(LIFFLAG CAT2 LBUT(WCCL 34 2/2) / <EMPTY) / LEMETY
) JOUT(.COL 72) vy

=
w
[
(]

CATASSG = JSETI(3TXL,*) JID LSET(STKZ,*)
(gz*+2 ,SITFLAG ART / 2z=2 ,EMPTY) EXFRZ
(JIFFLAG NOPR JSET(QPL,240VEZ) LJSET(NZ.? z) /
JEMPTY) (UNSTACK DUML PUTL.CCL 3 0P
«COL 17 NUML LCOL 26 N2)
{LIFSLAG NOPR FUTI(,C0L 25 2/2 STK1 #,# STX2) / EMPTY
LFUTELCOL 33 272 ST 2,2 STX2))
(JIFFLAG CATZ JPUT(.C0L 1€ 2/2) / JEMFTY)
(JIFFLAG €3 PUT(.COL 15 2C2) / JEMPTY)
(JIFFLAG CATL JFUTI(L.COL 25 2/2) / LEMFTY)
(JIFFLAG 72 PUTH.COL 25 #£C2) 7/ LEMPTY)
(JITTEME 2UML LPUT(LCAL 15 2=%2) / EM2TY)
(JIFTEHD N2 JPUTLLCCL LA 2=2) / JEMFTY) SETFLAGS

158

.33 «IFELAG ART LPUTILLCOL T 2%z} / LEMFTY) LCOUT(.COL 72) .o
340

bt SETFLAGS = +PUT(.OCL 43) (IF 232 ,TRETUIN / <2 LEMPTY) (.10
Lu?2 SYMTEST 72>2 ,TRETURN /7 #4,2 J2MPTY) .o

443

4ol SYMTEST = (JIFEQUALI(CNs*) JRUTI(27T2) UPARW /

345 JIFEQUALLZM,*) (PUT(2Z2) UPARMW /

Lud «AFEQUAL(NM,*) ,PUT(ENZ) JPARW /

+47 JIFEQUAL(G¥,%) ,,5UT(20%) UPARW))

443 UPARW = LPUT(,COL 7 z+2)]

449

L4280 «END

[RS IS I AVIN AN B e S S Sl o S S S
T NP O W e N UL & W) U W e U N e N

AV RS IV AV]
= S I VIR N LY I S

.

AV)

[P ¥
¢

£

W
F

[
AV)

$F N
=) IV R Y |

-
A

Sl S S AN
w AN b

3
)

[N YAV I T)

PO LIS IRV IENT IRV IRV IRR TIRN (3R) IRVY RS 1)

o W Mg

159

IMULATCRIFCSE Y

s+
THI3 IS AN SMULATC? T0R THYI B2D0e3 41NITOMSUTER
*1
C$
MAIN JECLAFATIONS
*]

0L W0RDSIZI 12 ¢

SOL ARITHMEITIC 2 1t

L GLC3AL SMANMENT MIMARY MEMI(LI3R] ¢
J

Fe
JCL GLOBAL PoIMAMENT SIMSLI ACCH,PT,H4a= ¢
0L GLOSAL TEMPQRARY IR, M=R,JIPCD13 ¢
TCL GLOSAL TIMOQSARY FLAG LINK:iC ¢
SCL GLOBAL PERMAN NT IATIRMEL IJINST!Z,33735WrRi12 !
oL FITLD CPCOTZIS,114-9),2RU7753(3.11),
SGART(d.80) $BCTFLI(Ls3e=1))
ST (3,8,-3) .053(3.2) s
L IBROC C Ot
{;
START OF FIRST PSLCIIUSE = INSTRUCTION FITOH
*]
PEJCIINF ¢
(1-
BRQCSISURE TECLARATICONS
*3
ONL GLOZAL USE “EM,.[7,20 ¢
»

R
INSTRUCTIANM 22C02%
*]
ER0CIINSTOCT ¢
'CL GLO3SAL WST IX,CRCT ¢

~ i

{24MRI)
(3,3Ca)
(g JMS)
(5,J42)
(&6, 10}

(7,0RT)

TNSsSLEnT

LIv)

e s6 24 ea aw

.o 2o

™

o
+

P]

v I

£

[W W)

(S

[OWIR0S W B § R
O oA

e G
(@]

™ O Gy =
O ran

i

115

123
121
122
123

»

~ i)

.
I

*1
=

I

a1}

s
3
%

I

[

*)

oRC
3G
30

SCL SPRCC U

Ryl
SV}
]

it

S TURRENT PLGE. PAGE

CR=PGEACR(IR)
FTRUE (IR,7) THEN
BEGIN ¢

OCTEMF= Fl=1 4
OCTEMR=CRNTPG(RTT
MAR=PCTIMP,QR,A3R
END
LSE
BEGI
»a2
NG
NOIF 3

e se

=

.
:
0% ¢

e N

IRECT=INJIRECT ADJCRES

FTRUE (IR,8) THEM ¢
BEGIN ¢
MARTaMEM([MAR]) @
IFTRUE (MAR.GT.7)
BEGIN 3
IFTRUZ (HAF,LT.1L
SEGIN ¢

s

ING

THEIN

5

TrHEN

MEMIMART= MIM{4a37+1

END ¢
ENDIF ¢
INO §

X
A
z
(@)
I
(@)
[
pig
-4
X
r4
o
[7¢]

[}
X
it

EMORY RETIPINCT INITRUCTIONS

1

CiMmI 2 .

L GLOZAL U

Bl
o
[}

.
b

<)
(W)
(A1}
/)

%)

160

lel

124 AC0M= ACTHM+MOR <L In<> !
125 LIAVE INF ¢

PegCIsZ ¢

123 DCL GLCoAL USZ ACTH.MIRWMAR,TT ¢

[
ISR
30

123 H
133 MEM{MAT YT MEA[MAIZ]4L 8
131 IFTRYT (ME4(MARTLIT.0) THEN
132 3EGIN ¢
INC 2C ¢

o pa ps by
LSV I CTAR VR VI

OV At Wt

oy
[’
-

ROCI0CA ¢
133 CCL GLC3AL USZ. MIM,30C4 ¢
149 z
1al CXEQUTE £7820R ¢
142 MEMIMAR]I=ACCH @
143 CLEA2 ACCM ¢
Lk LIAvE INF @
145 =
144 SROCHIJMS
147 SCL GLC3AL USE 4IZu,Masx,~C !
143 =
{43 SXECUTE E°TADR @
MIMIMAR) =R
INC Ma2 ¢
Eo=MaAR !
LEAVE INF
Fegltyvs !
COL GLOSAL 1ST POy 4iR ¢

Lolionll Sl i ol il el ol e Ll
(S AN+ ARFO NN LIN* LR ANV IRN LIEN LIV JRVIRRVITRV R VA BRI 1)
VA4 NP PO W NGB UELE LN D

c=CcCtIo 0
O7L GLO3AL USE IR ¢
2CL SOROC JSE IQInST ¢
OCL LOCAL PES4ANENT 2S:153,023:13 @
185 =
187 T3=0SC(I=)
1613 C3=08S3¢(I&s ¢ -
1863 SXECUTE I2INST{25,33) @

17]RUE (I3,8) THEY ?

175 GIN ¢

175 ZAVE CPRL !

177 9 %

173 ol

L7 GIN 1

132 LTAayE np=e2 o

181 INT ¢

132 INIZIF ¢

133 =

134 SIRCTIQPREL

135 JOL GLCR4AL USE IR, a0y, LINK
135 TTL LOCAL PIEMAM M7 FQTAZTI

15~
188

201

221

224
225
225

3

231
232
233
234
235
238
237
233
239
263
241
242
243
244
245
244
2467
243
2%3

t

COND

(12,7}
3ZGIN
CLEAR ACCHM
END ¢

(IR,8) °
3EGIN ¢
CLEAR LINK
END ¢

{I2,35) 3
8EGIN 7
ACCHM= HOT.ACCH ¢
END ¥

T

..

ey

1IR2,4)
82GIN ¢
LINK= JNUTLLINK ¢
END Ot
{1%,0) ¢
Q:” N ¢
ACCM= ACCHu+1L ¢
END 2
EMNOCCND ¢
RCTACT=RCTFLO(IR) ¢
SELECT(RUTACT,7) FRapr ¢
(0, INF)
{1, INF)
(24R4L)
(3,RTL)
(L4y RAR)
(5,272)
EyINFI)
(74 INF)
INCSEL

w8 e sb 4w e s

.

-~ .
T .

U i

I0CteAL ¢
DCL GLO3AL USE LINK,A5CH !
LINK//ZACTM=LINK/Z/7ACo e 30TLLL

FRacIRTL ¢

J3L GLOBAL UST LINK,ACCH ¢

C LINK//ACCAZLINK//ATGY . 30TL.2

PEACIRAR ¢

DOL GLOSAL USI AGGMLLINK §
LINK//ZGCra=LINK/ /7 A00 . 30 TR 1

PROCISTR ¢

GCL GLOSAL USS LINK,ACCH 3

mn

LINK//ACTH=LINK/ /ACCM.R0TR,.2

t

PECLIOFRZ ¢

SAL GLO3AL UST I2,4CC»,3C,LINX, 247453

TCL LOCAL PERMAN NT COUNT1240H

CLTAR SOUNY 2
CLIL® ChREDK ¢
COND ¢

{IR.,6) ¢

a.

-.

a0

2

5<12

WH
H

.
H

162

313

HE O
ped

in

=

n
m
(2]
-4
z
o ae

TCAUNTESOUNT 41
IFTRUE (ACCM.E

Saels

25G 1IN

CHELK=ChHECK+ L

INT O

ENOIF ¢
ZND ¢
(IR, 4y 2
GEGIN ¢

COUNT=C0UNT+L
(LINX.Z23,1)

IR
SEGIN

CHICK=CHECK+ L

END 2

Mo
e

O Z ok (M~
Zm
PY e,

Co gy &
. s

n

)

n
P

ai
B
=N W Zm
Mmoo m
]
Oy e &
Z (N e
o
[\ BRI

3L N
o b4 LI Z LY U Z s se 22U

=

B
«
.

Oy ih
-~ Zm

-
U3 e Wr Z O
o~
— e T X

. oo

kN
s e 4L
1]
.o oo

-
Ul =10

COLAILMVZ M o0Z20MUOi+O "

~ et
iy
1o ce ve

.t

&
Py

M Z O e DO Oe O3 O) e

1 Oy Ny

[N

s
-
pid
"

[
N
£
&
Pt
T
-4
©
1

.

.

R ACCM

»
.

THEN

THEN

LCCMIOR,DATASHHA 2

163

) =+ s s s o o s e o
VIR A 1]

TN

an
Wi

a?
a7
[y
"ne
o
“7?
R
na
)
(SR

=2
a3
S
LR
]&

Famil avORr:Inenan 3
F+ TRYS IS &N Futibar

{*

nel
ne
nei
NCt
nal
nel
ney

nes
nel

I

0B st nF
WwARNSI»e 2
Ao I THMESTC 2 &
Gi OX&L oFpMaNENT
G ORAL cFoMaMNENT
Gi ORAL «FupRaARARY
Gt OHAL pFnMaMENT
FIFLI) «TYBF (AT,
tARYTY (700
Gi GRAL sFuPARApy
Gt ORAL oYTFoNA}

BROCIINE
HCE GLOBAr 11QF MF
ACL SPROr 1IGF Koy
3 FYXEAUTF nrdy

e«

r=ic EvrFonat po
TF 1Te IS 10Kavy

TosvoMmi CTY
TaC

a1

sC s

PROCLINSHCH
NCL GLOBay iy o
neL LoCAr TRMpORan
2 OPCANFIMYVRE{TR)
NTINERT(rm) 3
QRIcUINCE Iy 3
SFLECT(OprONF.u) F

(NeTveFr)
(1eIne)
(2 Ine)
(2o Inec)

“a es =

FrNerl FCy ¢z
SPRNCADNYF T aPND &)
NCL G GRyy FYeFCTY
NCL GLOBay oFTiRN
NCL LNCAL 9FTHRN &
NCL LaCA TeMeORae

a

[l

Eme el §o1H

HMRYTEZMEwr B0 5 TN
ADDeSknYrc / /) AYTE
SPRNCISTORC I RAKTR)
Necl. GLOBAa FYDRFCT
NCL G OBAa:r RFETHRN
NeL LrCAr FypellY o
NCL LnCAr TEMaORAY
= TE¥oZiH/ /i 3 venlre
2ROCITYREL
NCL G uBRay nisg o
n QFLECTISn . &) ZROMm

{nelnicy 3

{(1rTvuFity
{(2eTve=Fe12y 3
(22 TvmF1 3y

164

Ao mOR vHF fNTEL 2Na0 SICROPROCTISUD * 1

C LA T 1T O01WHS =)

MEGORY MFMLBHR3AT]
STulRlLF A R, CoUob skl st 1ADTI XSRS
TR
CA«Cr72,.N
-} y m1TS2u{3st,=2) ; MTTQUB (LS, =iy
y WIRY=*(18)8san) H
DSTACK SPIeknilA?T+)
O Aw? H

MeFrsIn

.
'

ACFrIIRF TFS+5 FOR IMTEuETe FTC .9 Tn Serv
¥ TA FEelH vHE MEXT INSTRUCTION *]

PEAR BN =
¥ CoClrici2

anM 3

.
H

MEM PC

EC

nne 3§

Y teYTe ,mRY > i
C Pr
C R~

-

i
i

el
MEM
GeTe
TFuP 12 3
MO JaRBa Yy o

SR 3

4 m ah en b b ek ca e ko

165

w7 (4o TvrFrIny 3

3} (SoTveFtsy 3

=g (AR TvrF14aY 1}

~a (7oTvrmF17, 3

&1 FrMReFt FCr 3

“2 PRAOCITYRR Y

a2 nct 61 CRar gy TOsRereDscrke, $SFCA

P neL LOCAI TrMeCRARY OnCOreios LDRILR

AR NCL SPROC 1gF sDNRFT

“R sz NPCANFZRrY»Sus(I1RY

w7 TEFToURF(In,3) YHFEM

-] REGTN @

“n a0

70 ; (Qorone FRLA) 3

71 QEGTN

72 /2 SHZ/ 4R /C 0 KCAS 3 LERAUE TuF

7 ey g

7a (QorONF ,FR 1)

78 HEGTN 3

74 Ws/LoH/ /LN /s CCaD> b LFayr [ME g

~7 Al

78 LAPCONRF o FNn,.") 3

7q ~EGTN 3

Ehl riz/izms/an/ 2 LA 7 LFAVFE (MF

at [STR I

=2 FARCONF «Fn.3) 3

=% HEGTIN

Hud R/LSH/ /08P LUAD> 3 LFAVFE TMNE

“= Far i

e LSRR a1 ol YW o B

a7 Frdd s

- 7t S

“G AsGTn

an FAFCrivE APNRET{ANNAR)

Gy onnd

uo (CeranfF FA,.n) 3 RBEarT 3 B//CZADNR 5 1 FauF ToF 7 eMn 3
[P] (QorONF FQR.1) 3 REATN in~//EZADNO 1) FAUF Tne 3 £ND
wu (QorOnRfF FA,2) § REcTN ju//L SADPR 5 L TavF TuF 3y ENm
aws (QOFONRF FR,.2) 3nFGTy $QoSACRR 5 1 Eauvf THF & FNU G

A FriCand)

<7 Fril b enid)ITRE 3 =

an oQNC ITYRF 12

©a ncL Gl OBar nke TEReriDsc e 1SP 3

0nn NCL LnCAI TRMegORaARY JolOnNsio

n - 2 NRPCANFZRreCus(TRy ¢

- TFTHUR ({1 e 3)YTHEN

o3 REGTN 1

ik [UFa TV 5 Y

ne (QorFONF FO Y 3 HFRIN 3 B//CER//C=t ¢ 1 FAYF INFE 5 enn
fA (0erFONF FO 1) 3 RFGIN 3 U//FEN//F=1 ¢ LFAVF INF § onD
n7 (QorONE FA.5) 3 REGEN ¢ H//LSH/ /1 =1 3 1 FAYE IMF oD
rR (CorONF FR.2) 3 HER*n ¢ OEC SP P I FAVE INF G srn)
v =NNCONE

tn Fodioe

v 1 S8 I

12 RTGaTN 3

13 cunhD

a4 e we

166

.

via (QorOnF FQ.n) 3 REATN 3 B//CER//C+1 5 | FAVF INF 5 oaD
118 (0crONF ,FO,1) 3 REGTN ¢ U//FSN//F+1 3 (FAYF INF & &nD
114 (QorONF FR,2) # REGIN § HW//LSH//1+1 5 JFAVF IMF & £ND
117 (OorOnF ,FQ,2) 3 REarYn ¢ INC PC PO FAYE INF G ooaD
112 FrNNCanD 2

110 Froith 3 exNTF 3 &

120 PVRACIYYRFIn

t21 NCL GLOBar 11QF R CoNFobi Lo,

1292 MFwsmTerA 7N

123 NCL LOCAT TFMDORARY ToMP ALPR16

120 2 CONM G

128 (NT.FO_ A) 3 REGIN & INC b <raeZslh D> 3 (1 COUF TNE 5 Emi) 1
124 (NTWEO . 1) 3 REATN & INe G <rAWZoN D> §t L SAYF INg i EMD
127 (NTEQ.»3 ¢ REGTN 3+ TNC G <rarZoN D> 3 LFAUF INE 3 EMO 1
LR (T FQ,.2) 3 BERTN § TN B raoZolN 2 3 LEAVF INE 3 EN0 8
123 (NTLEQ w) ¢ REGTN 3 INC b KrhaoZyM > 3 LFAWF INF 3 EMU
t3n (NTJER =1 3 REGTN 3 INC L CrarZolN > 3 LFAUF INF 5 oMU @
173 (ATFQ . 2) 3 KEaTN 3

130 aNDr=H//1 3 uENMEARCRISMEMI AURNR T4+4 CCan 7082 1
123 1t FAYE TNe + ot

t 30 (NTFA =) 3 REGIN 7 INe A <rAsZ N > LCAyF INg 3 €80
138 MAQMNEY s 8

1 2A eRACIrYREla 3

127 NCL GHGBAr & RWCHDNWFar, Lea,

138 HEa D CArPaN

1323 NeL LOaCAT TFMEORARY TeMP,aALNRL1A

1un 2 CONN B

ti (NTEQ.) & REARTN 53 NEr B KmiarZsN > ¢ LmAvF TMNE 3 M0
tus (NTFQ 1) 3 BEaTIN 3 NEC G KraeZeM D 3 LEAVUF TNE 3 ZMid 1
1tni (NTFQ.~) ¢ BEGTN 3 NEC U <rarZoN > 3 LFAUF IME 3 oMU
tiu (NT,FQ =) 3 BEATM ¢ NEC E KrasZolN D> 5 LFAUF TME 3 om0
108 (NTFQ 1) 3 HEGRTN 3 NEr M <,rArZelN > 31 LFAUF TMNF 3 ENMU
1A (NTeFR.=) 3 REGTIN ¢ NEC L <rasZeN > 3 | FAYF INFE 3 &ND
1u7 (NTFR_2) 3 REaATN™ 3

1R ANBR=H//1 3 EME AUDRISMEMT AUNR Tat Cr o7 oM ¢
1uc | FAyF TNEZ 3 o

181 (NT.eQ.7) 3 REGTIN 3 NEer A <raeZsli > 8 LFAUFR INg 3 20 2
181 ENDAOR) 1w

162 BRACITYEFA1S 3

183 NCL GlL ORAar nige TR MEM R, r Moo Hel 08

164 NCL LOCAI PRRUANMFMT DA12,ALNK 16 3

16K NCL SBROr- LieF 2aDnpET

184 1 OC = R{Texul(io) ;

127 TRTotR({(rvpyR) THEN 3

1e9 HEGTIN 2

1eq FYFCuieF annNRFT(ANNR) o

=N COan 3

141 (OCFraant) 2 RFATN ;3 MFMrADNPe dzL + INC APND 3 Wz=MEMP ANNRT 3
162 t Fave Ine § =nD 3

163 (OCFad1) 3 kEaen 3 L =MeMlanUe] 3 INC APOR 3 uzuEVTANND
1en t Fave Ine 3 enD o

1R ({OC Frad) 1+ REGeN 3 MFEMrADRA I=A 3 LFAVFE INF 3 FMD

1 AA (O .FAG3) ¢ AEGTN 3 asMerlana] 3 LEAVF TMF & FND

Va7 [iaVote] Ma i

[Py} Pl

160G w1 SEg

170 Re T

. ws we we

167

171 LN .

172 (ﬂf.anﬂ)D:rFaTm sAarhRz=a//c IMEWLAUDRIZA jicavkE TNF: Fin §
177 (OC . FAa.l) 1PFATN SANNRIR//C i AZHEMLALDR YiLeAvFr TwF: FMD
174 (ACFAaell :0FATN sanne=n//F iNMEWLADNKRIZA SLFAVF INMF: Fun 3
178 (NC FA.1) :eFATN sarNBIn//F: AZWEMUADPR Y SLFavFe INF: FNN 3
17/ FanCant) 3

127 Frafy 3 exDITE 3 g

1758 BOACITiA

17Q NMCL &1 OBar 111G R, eMscoHey +DT MEM 4

yan NCL LOCAT TFMENRAY APRNDF«3,DATA

1t NCL SExrOr 11&F STnofF :

(RS- g NATAZYEMr ~CY 3 Tue oG 3

183 conn

tag (NT.FB.n) 3 HEGTN ¢ AZNATA « LEAVFE TNF ¢ oMy 8

taR {(NT.FEG.¢) ¢ AEaTn 3 C=naATA ¢ LEAVF TINF ; oNm 3

124 (NTLEQ . ») ¢ REGTN ¢ NENATA » LEAVFE TMF ¢ Fun 8

1R7 (NT.FO.~) 3 RBEGTN 3 FInNaTA 3 LEAVFE TNF 3 oap 3

180 (FT.FQ.nY i AEGTN ¢ HINATA » LEAVF TNF @ =np 8

1aG (NnT.FQ.=) ; REaATN § 1 =naTa 3 LEAVFE TNF ; &N 7

1an (AT FQ_ &) 3 REGTIN § FXFAUTE STURE(DATAY ; | FAUF TNF & emD 3
101 (NT.FQ.=) i REGRTN 3 AZNATA « LEAVF TNF ¢ FNN

160 FanCAn) 3

1u3 SRACIYYOF 1

1aL NCL GLOBam 1€ aWChsnT ¢

1ax NCL LoCAr prpuvaNFuT ToMmP

1A a CONR

1ey (NT.EQ a) 3 HEGINITOMP=a.7 1 ASASWTI T,y ! CAZTEMD
tac AZ-FMO _Co,a ¢ L EAVF TnuF ¢ FND 3

104 (AT.FO_ 1) ¢ REATAMITEMPzAN ¢+ ATALCHTQ, | ! CAZTFuL |
2na AZTFMP LD, 4 i LEAVF TaF @ FHO 8

ani {NT.FD.2) 3 REGTNITEMP=rr i CA//RSCA// A ,SHTE L1 8

200 Aza,Co TFMA 3 1 CAVF TnF 1 FND

201 ANTFO.2) : RERINITevPz=r.n @+ CA//BSCA//A,CHTRGY

200 CA=TENe ; EAVF TnF 3 onnog

ang (NTWFGeny ¢ aFGTIMIFAVE thF END 5

ana (NYeFdesy 3 AFGING A= MNOv.Ad ¢ LEAVF TaFE @ NP

207 (DT.F3ec) 1 GFGINMS CasennaT Ca 7 VEAYF InE ¢ FuD t

1Y (NTFYe7Y 5 SFGINMT SeT (4 3 onb 3

s0Q FaDCAMY 3w

210 ENPFEMLLATOD ¢

168

-

FMiILArvORIXrv BT

> i *

2 THTS IS aN FutilLavTap £OR 2 HYROTHFTTICAM 1» QlT » a PEAISTFR

o CONPHTER EarH TNSTRIICTIAN (eXCERT A FFw) Hac eAcTICAILY THPFE

= FIFI e

A 1e 0oCANE CTFLA: 4 bITe €BIT 11 Ta RTT RS

7 2- F1RcT &naeCe FreolN: 8 BITS «RIT 7 Tn A1T U2

= 3. SFCAND qonReF 7 UFSTINATION FIgrDer o 877S

Q {BIT 3 TO =1* nd>

10 THe 4 Bre QOnRCF/NESTINarIon FIELD IS ALTHIAI LY MADF 1P AF

11 TWA FrFI NS, TeF Mogr SlamIerCANT BIT nF THic C1FLD T8 &

(-] NIRFCT/INDTeFCT RIT » WuTLF THE 3 LFAQT QIGHTIFTCANT RTTQ

12 BATMT TH OneE AF THE FTGUT MaCHIVE RFOGISTFS. IF ThRE nIRECT/

140 IMATReCT BT+ T A 111 TuFN vHFE APERAND (QOLBCF/NESTINATTION,

18 IS TN #Fu0ov aNA THE ANAREce 1S IN THF eFGleTEm , 75 7T iS5

1 WotNt THF neFoann 1€ TN THF RFEGTSTER.

17 The SOLI mwThie TNGTHCTTONMe HAVE THE AROVE MFNTTIONFD FARMaT

18 Ae 4ADNN? AR SAnKCEY TO SAURCEZ AMD STOARF RFSWI T TN aOioCEns
1 B. talin? linTACY Lsesec,

20 Cea *ANNCRY AN WTrh CARRY cesee,
PR O~ 'SaCRY SUnTRArT wrTH CAPRY ...4.0

3] E-. tANA? ANA cens e
o7 Fe 'AR? fal*] et essaa
= ' G- 'MOT! COMPLFOENT SOURCF1 aNu PHT IT IN UFSTTHMATTAN
2R o PR RS TR MOUF CAlRCeL TO NESTINATTON

S4 THoFF IaeTRHATIANG HAVE +rf cOLLOWTNG FOpmaT @
7 1~ OPCANE ¢RTT 11 v6 BrT &>
DR P anNoFSc <RT+y 7 +u BT 0>

20 THe FFFe~TTuF ADARFSc 12 CALAULATEDR PY anlsG THF anudetSc

N SIFL TN Tue 9pardu COUMTER | TWA'S CUMPLFMENT QTAM cYTEMIEN

3 ANNTTTION Ic Nang. THE InSToolTIANS ARF &
25 A tray t 20 TO rHF cURROUTIMF AT THE EecfCTTVE anneRecs,
23 THe Pr iq clUSHFU 1M ThE cTaCK.,

3 Ho tvp? JHnR TA THe AUDRFGS,

15 Co 'Th FYECUTe AN 10 OPFRATIUM AQ QFFAIFIFD ay THF AnerEc-
A Flel.D., THIe FIFLN HASNT 9FFN NEFTRNFD ©NR THTIS DROGrA,
27 THOFF ITrneTOUATTONS AsF Tul wnRDS LONA Anp TRE FIFI NS APc:

0 GORN 1 1. GPONANDFE #RIT 1T v BIT 8D

zQ 2= N1 ¢CRTT = Tn bIT 4>
an 2m NFCT FTeiD #0JT 3 TO RIT 9,
i1 WP A 1 NDATA 7/ anDeeSS =ISLD <CRTTY 11 To RIT 0D
ud THE THRes TNCTRIIFTTONS aorC
u? Al TMOGFMY MAYE thF ~OMTFMTS OF THE oFMapY LnCAyTOM
nh PAINTEU By THE SFCONG warn INTO THE aFSTTHATTAN
s rOeRFECRUMNTG TO THFE DECT FTIFLD
i Ro twoul? MAVE +HE cECOMD wooD tNTH THF DFST FrIFln
n7 Ca 00 JuP An COMUITTION, THE RFGTISTERS PnINsEN RY THe
uR OFe1STER FYELD ABF COWBADFR Ann THFE Twa NIRFCT
v G InNIesCT clELN SPFCIFY ANF AF Fouo CAdNTTTONS | THe
&0 CatiNtrione ARF 1) | E3€ THAN 21GREATED THan 3) EQits
R TA Anm) NOT Eatiri Te. THF 1MP ARDbFQS 1. Tul
ES] SeC0mnm wmQol .

e T | uST Two INeTRIICTIONG ART

na Aw 'DFT? wHYCH NOFS # RFTURM FrAM A QURDOHTHE aYy 2ORTMG
43 TuF cynCK INTO THF P,

=4 BFa 'anDo ! MO OPFoRTIAN

o e b ek ah ek s o e A A A e -

=7
[
e
&«

A~

o
i
as
13
a7
aR
e
Tn
21
el
73
AN
78
7 A
7
TR
74
“N
[2]
a2
[
856
RN
Qe
=7
s R
£
wn
(<R |
(O8>
[el }
[FEIN
GR
Ga
[ehy]
an
(o1}
N
iy
n2e
n
Nt
[k
N
n?
(a9}
na
19
11
12
13

THE STAry Te GFQTNFNT In THE MAIN MFuARy AMn REGTSTER 7
SFUVFE AS TuF <STalxk PNInTED »
=
61 O R & NFCL AT I ONS
«
NCL wARDSTIye 12
CT AplTHMe<Te vw(@
NC1 MEMORY wFMiTance 3
NG 61 ORAL cFpMANFAT 00 ,R1.pErRTIRHIRKERAN IO ¢
NCE &1 ORal «FoBnARARY 20
NCT G GRAL oFPMANFNT FlaG Co 707 i
NG &1 ORAL mFRMANENT PSYACK «R71ras+) 3
NCI FyYTFRNM TOEROC'D
CE FrTEL D Cnc‘(70’-‘--1’.&’uPQCQ{}J()\lOC(lF\uQ--H)l
ANPRES{7,M} s RTTO0a(Grar=R)11SRC1N(Asnrwl) s
CREIAI2eAY e RYTS 71797 e=7) 9y BTTS (3430w}
aTren2(2,nY
BROCIVFEFAT
f* THTS PRAAFALIOF FETOHES Tuk nexT TRETRUCTTOM AND
NAES SnaF ppiManY NeCONe x]
NEY 2L0RAL 1IQF VEMLRC YR 3
NC1 1 QAL ~FupnaRAgy AR~nNF 4
w TRzwFMIPAY ¢ INC C
TETaUF (Toerty THENM 3 REGeN LeAVE TYRPFEY 5 #0003
FI1 S ¢ REalM 3 LFAVF «YPF+s 3 on0s ENDTF & &
CRROCFFTCm caNeel Nin Ay LIEY §
NCl ALORAT HGF MEV.PNin1 1047RI. rBPQH,RART
Ne 3 OCAL exXRFeT ANRRI AN
NGl 2ETURN VAL iF 3
NCE 1 0CAL oFpMarENT RITRIY 0T Th212
M HTTAZSH[Tex(ANCFLDY 3
RITA2zZlvyen2 (ADRFI MY
Conn

(21TN2 . ca,ny ¢ 9Falsm 5 wAllUe = RU & G0 TO THNRCY 3 £nD
(2ITa2 e, 1y ¢ aFaly 3 uMl e = R1 & &0 TO TMNRCT 3 FH:0D
(=172 0,2y 3 BEAIa 3 ual e = P2 ¢ A0 TO TaNRcT & FRD
(2ITH2.2Q,3y ¢ BFALy 3 ustliz = 93 ;5 GO 7O TMNRCT 3 enD
(0TTN2.ra.u) § RFAT. § yAllle = Q4 1 R0 v0 1w0OCT 3 &0
(2ITu2._F0,.8) 3 oFaly 3 ualle = 8BS & GO TO TaNRcT 3 FROD
(~ITH2 ., eQ.a) 3 BFAT. 3 sl lie T RE 3 A0 TO INDRCT enD
(21702 . =@.7) 3 BFATNn 3 yAl U = RT Fry

FanCnni) 3
INNRCT ! IorRiE (QTT3,1y THen 3 REGTN
Var IFzuFMEyA) tie] @
FaiD 3 FNNDTYF ¢ o=
SERNC+STURcrarnet Deouov iy HIEY 3
CE ALORAL HGE MEMRAIn120A1RI KBRS RAWPT
NEL 1 0Cal eXYPFAT ARRELN suaALVE
NCE 1 0CAL aFeMaNFNT ATy3i1 , RITA212,TFMDVm 1IFT 3
net ePPOC &F eFTOH
4 AITAZR{ Tz {aAnNoFLNY ¢
RITA2ZHlredn (aDRPFI DY o
IFTHF (RT3 FaN)THEN 3
nE~ler 3
gy
(Alvn2 FA.0)
(hrIra2.Fa.l)

LFAVE MFEYT § ENU
Loavwr MFYT 5 ENO

MeGIn 3 RaZVALUF
ReGIn 3 mRe=VALUF

169

ws e ve me we e ue

170

194 trlre2 . Fa.2) & REGIM 3 RaSVALUF 5 LEAWE MFYT 5 ENU 3
118 (=ITr2.Fm.3) & HeGIN 3 RaISVALUF ¢ LEAWF MFYT & END ¢
114 (1 ITh2.Fa.8) 3 AeGInm 3 RSVALUF ¢ LeEAve NFYT 5 EMU @
117 (RITA2.FA.5) 1 AeGIN 3 ReIVALUF 3 LEAVS NFYT & ENMOD
118 (1ITh2 Fr.f) 1 ReGIn & He=VALUF 3 LEAWE NMFXT & EMD e
117G (R1TA2.FA.7) 3 REGIN § ROSVALUF 3 LEAVF MEYT & EMU
190 FNACOHD

121 Fhriy e

122 El QF

1272 REGTr 3

120 FYeCiiTEF EFyfw{ANnFI N, VAL &1) 3

106 wEal Vala ey 1zualir ¢ D g FRIF @ #

194 PDRACITYRFEL .

127 NCY ~LnHAr neF TR

194 NG 1 OCAL mFoMaNENT ANeFD1 4. ArRFUD L, nBRImT,

126G CGRIRNrasORe2e0N 3 ¢

120 Nl ePROC 1SF EFTCHISTARE

1 a2 aPREDI=SAr1(To)

112 ANREiIPZSer2(Te) 3

113 arzAC IRy

LI 7% FYFAUITE CcoTerriANRENT « APRMAL)

118 TFTolF (0N _FA,7) THFN ;3 RFAalM ¢

134 Te NaT %] Opanilz NOT_OPoaUY ¢CeZ> 1 FnD e

127 ERNFE

112 TFTolUF (0N GT.x) THFN @ AFRIN

110 Le @OV . NnOT %7

tan QTARF (AnrnFn2.0Parnn1)

101 FNn 8

1073 S

tuy wuEaT

LIRS rx aDn SR, ADNCR, S ARCE ,AND LGR * d

1ns eXFCUTE FRTCHIANRFEAD s nakNDA)

1 & Il SRR B I

[T (CGD.ca . Ny IREGTIN

10 APAND2=APR N2 +arBNrL KL12> 1 A TH STRcLT Erarm ot
10 (ON e, 1y ¢+ BFEIa @

Y &N ARoNDN2=ORRMN2+APENAL 4

1et APSND2=NBRAN2+~ <C.2> 3 A0 TO eTnQI T & Fh
122 fuD . e .2y ¢ nFaTa 3

123 APONN2=ABRAN2 a~bRNAL CCo?> § A Ta STRcLT ; Enn
194 (oD, c@, Yy & eFalsa i

Tes APohN2=BRIN2 aAPP~ Tl

1= APon12=0DR2,{12ar <C.2D> 1 GO TO YU T 3 Fhi i
167 (0D, ~@,uy 7 aFnrTy 3§

1]8 APONN2=ABRIN2 . AN APRNNL <2 Z> & GA Ta STHELT ¢ FN~
\ea (D . c .8y 3 BFATH §

1an ABBND2=0DR N2 . ARk JODRNGT <Ce7> + a0 TO aTRSIT + A 3
151 Faolic QN 8

19 QTRel T § r* STORPF eSS T . J

1 EveCitTe STARF (ANRERZ»0orND2)

14l Fonyor FLDYe 3w

18 RPRNCITYEFD

[P NCL ALOHAT 11€F 0 TR P FMynT i

127 NCl 1 QCal ~FoMaNENT ACe2sanlRIA i

158 net o «PRGEC 1 QF TOPRAC 3

1-0Q a TEFALSE (ros1ny THREN

170 —E(s TN

171
1772

17%
R £33
17&
174
177
174

iy
B8

[
57
sS4
2R

a7
£y}
[sLel
Gt
iy

[58-]
a3
[SEY
an
1GA

o

T a7
1Q2
LR
200
e e |
D102
2R
- XRY 43
20K
SOA
207
2N
2089
210N
211
212
21732
214
21K
2tA
217
212
214
22n
221
a2
2723
224
22R
22A

Tx CH L. INE,TOIMND &

nC~-R1
coan
(O o F

Tlnr{TR) ¢ ANNR-ADNSES(eR)

Jeny : &FGIN 3

PHSKBeY 3 BCTOCLADNS 5 EAVE NMEYT 5 Fun

(Or.F
[~
{OFF

QFet) 1 aFGTM 3
ZPrLanDn ¢ L FAVe MEVT 3 END G
Remy § aFGTNn 2

sYXFClUre TORROCIANNE) ¢ LFAGE NFXT 5 Fan 3
(ONrFRe2y 3 &FGTM ¢ FAue MEVT 7 EMD 3
FNNCOHEN

ern 3 EMRTE 3 om

SRCCITYDEDA
NC at nAr jeF MEM,pC,eR

NCY 1 0CAll ~FoMaNENT RYSF2.aLRFNITUH ANRFN2 I ACLI2»
HITR3e4,077781,TFMr, TFWHY LADKFS

Ne1r ePRUC LQF BFTCH STARE

a Cs:-ITSRrrR)Y 3

IF(nC.EQ.~) TWFN BFAIN

T RFT o1 DC2POR 3 1eAVE NFYXT § FND
L SF
BFaln 3
rx a0urh , MOut o 0C o3
AYTE2=vFulpoC] ¢ TNe PO
~ONET e
(0C.cQ.1) i AFALIn § +EvWP-MEMTbYTF2]

ARRENAZSEE2(In) 3 EXEAUTE STORF (WNREN2, TRUR)
t CAYF NFYT 8 eND

(0C . =Q.21 ¢ QFATx 3 ALRFRZISBCO(TO)

(

Forly

CEvFCtrF QTNeF (ADoel2,aYTED2) 3 1 EXvF NFXT 1 Flin
GC.rR.%) 3 2FAT. 3 AURE«ZPC+EYTF2
AnmFR1=QRCINTInY
ANcFNo2=QREAN(TR)
EveECHTE FETCH{ANPREAL, TemP) i
EveClTe FETrW(ANRERZy TeMPL) 3
Ree7=k1TS701P) 3 RITRZe[TSI(TIRY
Or=rATTg7//01T<S2
Crs i g
1aC.Fn.N) 3 Regln ¢ IETRUF(TFMD.GT. . TEMPLY THEM
~AFGT. 3 oCIZAPRFS ¢ FaD 3 FNOYF
. cAVF LEX= ¢ FND
[~AC Fmel) ¢ RepIn & ISTRUF(TRYD LT TFuPT) THEM
AaFGTy 3 PUIANMKFS esD 3 FMATFE
| cAVF NFYT 3 FMNM 2
tnC.Fn.2) 1 ReGIn i IETRUF(TFMD er TFnP1) Then
AFGTy ¢ OCSADNKRFS 3 pa § FNNTFE
LeAVFE NFXT & FiD o

4

tAC.Fa. 31 3 oFGTn 3 TFFALSFITFMP Fa TFMD1) TurhN

cEGTh ¢ DUSANKFS § ExD 3 FMNATF
e AYF NEYX -+ 3y FND 2
EnmCanim 3

ennCand

(SR
[2ENTR B K <l
FMOFMed &

I~
TOo

171

172

GLOSSARY

ARCHITECTURE: Those facilities of a computer that are visible to a
programmer.

COMPILER: A program that converts a high level representation
of a program into a low level representation.

CONTROL STORE: The memory of a m—-computer which holds the micro-
instructions.

DYNAMICALLY MICROPROGRAMMABLE COMPUTER: A microprogrammable machine
with the capability of swapping microprograms in and out of a writable
control store at a speed which matches the basic processor clock
speed. This capability can be loocked upon as the dynamic redesign

of the architecture of the machine to meet the needs of the immediate
job to be done.

EMULATOR: A collection of microprograms which when stored in control
store, define a computer, i.e., its machine instruction set, is known
as an emulator. The machine doing (supporting) the emulation is
known as the HOST and the machine which is emulated is known as the
TARGET or the VIRTUAL machine.

FIRMWARE: Firmware i1s described as microprograms which are resident
in the control memory of a computer.

ITERATIVE CONTROL: Some machines have the capability of repeatedly
doing an operation (corresponding to some microoperation) until some
condition (loop count termination,. flag generation etc.) makes them
stop. This is a useful feature for multiple precision operations.

INTERPRETER: A program that performs the instructions of another
program. It differs from a compiler in that it produces the results
directly while a compiler produces a representation of a program that
must be interpreted by a program or directly executed by a machine .to
produce results.

m—-COMPUTER: A microprogrammed or a microprogrammable computer.

MACRO-INSTRUCTIONS: These are the instructions which reside in main
memory i.e., the conventional machine instructions. The highest level
of control over the CPU is exercised by these instructions. Thus they
are one level above microinstructions just as nancinstructions are one
level below microinstructions.

MICRO ARCHITECTURE: Those facilities of a microprogrammable computer
that are visible to a microprogrammer.

173

MICRO CONTROL PROCESSOR: A microprocessor with a control store as part
of its control unit.

MICROINSTRUCTION: A word contained in the control store of a micro-
programmed control unit. It consists of a number of fields; some of
which are microoperations and some are literal data like a constant,
an address, etc.

MICROOPERATIONS: The most primitive or elementary operations which a
machine can execute. According to Wilke's original model, these are
the signals which go over a single wire to a well defined destination.

MICROPROCESSOR: A large scale integrated (LSI) circuit processor on a
single chip or a couple of chips. The term 'micro' in microprocessor
refers to the physical size of the unit involved.

MICROPROGRAMMABLE COMPUTER: When the control store is made up of
read-write memory and facilities are provided for changing the contents
of the control store, the computer is said to be microprogrammable.

The extent of these facilities con a computer (both hardware and soft-
ware) determines Microprogrammability of the computer.

MICROPROGRAMMED COMPUTER: A computer is microprogrammed if the micro-
instructions which the computer executes are stored in a read only
memoxry.

MICROPROGRAMMING: A technique for designing and implementing the control
function of a computer, as a sequence of control signals to interpret
fixed or dynamically changeable instruction set of the computer. In more
general terms it is the activity of programming using microinstructions.

NANO ARCHITECTURE: A level below microarchitecture. The nanoprograms
residing in NANO STORE define the microarchitecture of a computer.
This means a sequence of NANOINSTRUCTIONS are executed to emulate a
microinstruction. This is similar to the execution of a sequence of
microinstructions to emulate a machine (macro) instruction.

NANOPROGRAMMED COMPUTER: A computer is nanoprogrammed if the nanoinstruc-
tions which the computer executes are stored in a read only memory.

NANOPROGRAMMING: The activity of programming using nanoinstructions.

NANO STORE: The memory where the nanoinstructions reside.

174

RESIDUAL CONTROL: In m-computers the microoperations are converted
into control signals which directly and immediately control machine
resources. This is known as IMMEDIATE CONTROL. An alternative is
the residual control scheme where microoperations do not control
resources directly, but rather use several SETUP REGISTERS to control
hardware resources. The value of a setup register may indicate the
microoperation a functional unit has to perform or the address of

a register etc. Microinstructions are used to control the values

in these setup registers.

SIMULATOR: An interpreter in which the interpreted instructions are
machine language instructions for some machine (real or abstract).

UNIVERSAL HOST: A computer that can be microprogrammed to emulate any
desired target machine.

WRITABLE CONTROL STORE: The control store of a microprogrammable computer.

