
AN ABSTRACT OF THE THESIS OF

KAMRAN MALIK for the degree of DOCTOR OF PHILOSOPHY

in E1F.CTRICAL AND COMPUTER ENGINEERING presented on 4 JUNE 1979

Title: DESIGNING A HIGH LEVEL MICROPROGRAMMING LANGUAGE

Abstract approved:

Redacted for privacy

TED LT3WIS

The purpose of this research is to design a high level language

(HLL) suitable for microprogramming. A top down design technique has

been adopted which makes the language design process simple and

accurate.

The primitive operations of a high level language for producing

emulators is shown to include special purpose features specific to

virtual machine implementations. A hierarchy of data types, short

reliable language constructs, and control structures that minimize

emulator complexity are suggested by a goal-directed, structural design

methodology. In addition, structural clues generated by the language

compiler assist in producing portable yet efficient horizontal micro-

code for partially encoded host architectures.

Furthermore, software tools in the form of a simulator-compiler

combination are presented which provide features for design, develop-

ment, test and eventual certification of microprograms.

Copyright by Kamran Malik

4 June 1979
All Rights Reserved

DESIGNING A HIGH LEVEL
MICROPROGRAMMING

LANGUAGE

by

KAMRAN MALIK

A THESIS

submitted to

Oregon State University

in partial fulfullment of

the requirements for the

degree of

Doctor of Philosophy

Completed 4 June 1979

Commencement June 1980

APPROVED:

Redacted for privacy

Associate Professor of Computer Science
in charge of major

Redacted for privacy_,

Head of Dep r ent - Electrical and Computer Engineering

Redacted for privacy

Dean of Graduate School

Date thesis is presented 4 June 1979

Typed by Cheryl DeHart for KAMRAN MALIK

ACKNOWLPDGEMENT

I would like first of all, to thank my supervisor, Dr. Ted Lewis,

for his help, guidance and constant encouragement during the preparation

of this dissertation. The innumerable conversations, which I have had

with him over the years, have so vastly influenced my philosophical

views on computers and computation, that it is an intellectual debt I

shall always carry with me.

I also thank the members of my committee and, in particular,

Dr. V. M. Powers for his careful reading and critical comments on this

dissertation.

I cannot express the thanks I owe my parents through whom I have

received everything.

The computer programs were made possible by the facilities and

staff of the O.S.U. Computing Center. In addition, the work reported

in this dissertation was supported by N.S.F. grant MCS 76-20710.

Last but not least, I would like to thank Cheryl DeHart for her

relentless typing of this thesis.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

PAGE

ii

vii

1. INTRODUCTION 1

1.1 EVOLUTION OF MICROPROGRAMMING 1

1.1.1 ECONOMIC ADVANTAGE 2

1.1.2 ARCHITECTURAL COMPATIBILITY 2

1.1.3 DELAYED BINDING 2

1.2 MOTIVATION 4

1.2.1 HARDWARE DESCRIPTION LANGUAGES 6

1.2.2 TAILORED LANGUAGES 6

1.2.3 MACHINE INDEPENDENT LANGUAGES 7

1.3 OBJECTIVES 12

2 A LANGUAGE FOR MICROPROGRAMMING 13

2.1 INTRODUCTION 13

2.2 BASIS OF LANGUAGE 14

2.3 LANGUAGE DESIGN 15

2.4 DEFINITION OF VMPL 34

2.4.1 DECLARATIONS 34

2.4.1.1 VARIABLE DECLARATIONS 34

2.4.1.2 INFORMATION DECLARATIONS 37

2.4.2 ASSIGNMENT STATEMENTS, OPERATORS &

EXPRESSIONS 47

2.4.3 CONTROL CONSTRUCTS 54

2.4.4 MISCELLANEOUS STATEMENTS 58

2.4.5 PROGRAM STRUCTURE 58

2.5 CONCLUSIONS 60

3. MACHINE CONSIDERATIONS

3.1 INTRODUCTION

3.2 m-COMPUTER ARCHITECTURAL FEATURES

iii

62

62

64

3.2.1 STORAGE FACILITIES 64

3.2.2 FUNCTIONAL UNITS 68

3.2.3 DATA WIDTHS 70

3.2.4 BUSSES 72

3.2.5 MICROINSTRUCTIONS 72

3.2.6 INPUT, OUTPUT & INTERRUPT STRUCTURE 73

3.3 m-COMPUTER PRIMITIVES 76

3.4 m-COMPUTER CLASSES 80

3.4.1 CLASS 1. 81

3.4.2 CLASS 2. 81

3.4.3 CLASS 3. 82

3.4.4 CLASS 4. 83

3.4.5 CLASS 5. 84

3.4.6 CLASS 6. 85

3.5 CONCLUSIONS 85

4. PORTABILITY 86

4.1 INTRODUCTION 86

4.2 CLASSIFICATION OF TECHNIQUES 86

4.2.1 CONVERSION TECHNIQUES 86

4.2.2 INHERENTLY PORTABLP TECHNIQUES 87

4.3 APPLICATION TO MICROPROGRAM PORTABILITY 90

4.3.1 THE MALLETT-LEWIS MODEL 91

4.4 CONCLUSIONS 91

5. INTERMEDIATE MACHINE LANGUAGE 94

5.1 INTRODUCTION 94

5.2 IML FORMATS & ATTRIBUTES 94

5.3 INTERMEDIATE LANGUAGE 107

5.3.1 IISG 108

iv

5.3.2 IESG 110

5.3.1.1 IESG FORMATS 110

5.3.1.2 IESG STATEMENTS 116

5.4 CONCLUSIONS 118

6. RESULTS 123

6.1 SIMULATOR 123

6.2 VMPL COMPILER 125

6.3 VMPL-IML ANALYSIS 126

6.3.1 COUNTING EXPERIMENTS 127

6.3.2 VARIABLE ASSIGNMENT EXPERIMENTS 132

6.4 VMPL EXTENSIONS 136

6.5 CONCLUSIONS & FUTURE WORK 138

REFERENCES 139

APPENDIX A 144

APPENDIX B 147

APPENDIX C 150

GLOSSARY 172

V

LIST OF FIGURES

1.1 COST OF MICROPROGRAMMED CONTROL VS. CONVENTIONAL
CONTROL. 3

1.2 AN EXAYPT,F, PROGRAM WRITTEN IN MPL. 8

1.3 AN EXAMPLE DATA TYPE WRITTEN IN EMPL. 10

2.1 CARRY FLAG SETUP SCHEME. 19

2.1a CARRY FLAG SETUP AS A SUBROUTINE 20

2.2 OVERFLOW FLAG SETUP SCHEME. 21

2.3 DEFINITION OF D'STRUCTURES 27/28

2.4 VARIABLE ALLOCATION PROBLEM. 32

2.5 VMPL GLOBAL AND LOCAL VARIABLE DECLARATIONS. 38

2.6 VMPL GLOBAL INFORMATION DECLARATIONS. 40

2.7 WORDSIZE DECLARATION EQUIVALENTS. 41

2.8 VMPL LOCAL INFORMATION DECLARATIONS. 43

2.9 EXPECT & RETURN DECLARATION EXAMPLES. 45/46

2.10 EXAMPTPS OF VMPL FIELD FACILITY. 51

2.11 PRECEDENCE RULES FOR VMPL OPERATORS. 53

2.12 ENABLING VMPL FLAGS. 55

2.13 VMPL CONTROL CONSTRUCTS. 57

2.14 MISCELLANEOUS VMPL STATEMENTS. 59

3.1 MICROPROGRAMMED IMPLEMENTATION OF HIGH LEVEL
LANGUAGES. 65

3.2 OVERVIEW OF m-COMPUTER ARCHITECTURAL FEATURES. 66

3.3 HIERARCHY OF INSTRUCTIONS. 69

3.4 SOME ALU STRUCTURES. 71

3.5 NO ENCODING (a) vs. SINGLE LEVEL ENCODING (b). 74

3.6 MICROINSTRUCTION ENCODINGS. 75

3.7 A GENERAL ALU STRUCTURE. 77

4.1 HIGH LEVEL LANGUAGES AND COMPLICATION. 89

4.2 THE MALLETT-LEWIS MODEL OF A TRANSLATION SYSTEM
FOR PRODUCING INHERENTLY PORTABLE
MICROCODE. 92

5.1a

5.1b

A SMALL PART OF A VMPL PROGRAM.

THREE ADDRESS CODE FOR SOURCE PROGRAM OF
Fig. 5.1a.

vi

100

101

5.1c SINGLE; ADDRESS CODE FOR SOURCE PROGRAM
OF Fig. 5.1a. 102

5.2 OTHERINFORMATION VALUES FOR IISG. 111

5.3 VMPL-IML EQUIVALENTS. 112

5.4 CLASS 6 IESG STATEMENTS. 120

5.5 CLASS 7 IESG OPERATIONS. 121

6.1 MICROCODE COR2ECTNESS MODEL. 124

6.2 RESULTS OF COUNTING EXPERIMENT CE(2). 129

6.3a RESULTS OF VARIABLE; ASSIGNMENT EXPERIMENT ON VM1. 133

6.3b RESULTS OF VARIABLE ASSIGNMENT EXPERIMENT ON VM2. 134

6.3c RESULTS OF VARIABLE ASSIGNMENT EXPERIMENT ON VM3. 135

Vii

LIST OF TABLES

2.1

2.2

2.3

VMPL STANDARD FLAGS

ELSHOFF'S ANALYSIS OF 120 COMMERCIAL PL/I
PROGRAMS.

STACK OPERATIONS AND THEIR VMPL DESCRIPTOR

22

24

REPRESENTATIONS. 36

2.4 VMPL DIADIC OPERATORS. 48

2.5 VMPL SHIFT OPERATORS. 48

2.6 VMPL ROTATE OPERATORS. 50

5.1 INSTRUCTION STREAM COMPARISON FOR THE ASSIGNMENT
STATEMENT. 96

5.2 BASIC QUANTITIES TO BE MEASURED FOR DEVELOPING
SOFTWARE SCIENCE CRITERIA FOR PROGRAMS. 103

5.3 BASIC QUANTITIES FOR THE PROGRAMS OF Fig. 5.1. 104

5.4a CALCULATED MEASURES FOR PROGRAMS OF Fig. 5.1. 105

5.4b CALCULATED MEASURES FOR VMPL PROGRAM AND ITS EQUIVATRNT
OF APPENDIX C(a). 105

5.5 DECLARATIONTAG VALUES FOR IISG. 109

5.6 IML COLUMN DESIGNATIONS. 114

5.7 OPERAND MODIFIERS. 115

5.8 CLASS 1 IESG OPERATIONS. 117

5.9 CLASS 2 IESG OPERATIONS. 117

5.10 CLASS 3 IESG OPERATIONS. 119

5.11 CLASS 4 IESG OPERATIONS. 119

5.12 CLASS 5 IESG OPERATIONS. 119

6.1 RESULTS OF COUNTING EXPERIMENT CE(1). 128

6.2 RESULTS OF COUNTING EXPERIMENT CE(3). 131

DESIGNING A HIGH LEVEL MICROPROGRAMMING LANGUAGE

1. INTRODUCTION

1.1 EVOLUTION OF MICROPROGRAMMING

Microprogramming was introduced by Wilkes (1) in 1951. His paper

(1) introduces the fundamental ideas which lie behind the concept of

microprogramming and can be summarized in his words as:

....consider the control proper, that is, the part of
the machine which supplies the pulses for operating the
gates associated with the arithmetical and control reg-
isters. The designer of this part of a machine usually
proceeds in an ad hoc manner, drawing block diagrams
until he sees an arrangement which satisfies his require-
ments and appears to be reasonably economical. I would
like to suggest a way in which the control can be made
systematic, and therefore less complex.

Each operation called for by an order code of the machine
involves a sequence of steps which may include transfers
from the store to control or arithmetical registers, or
vice versa, and transfers from one register to another.
Each of these steps is achieved by pulsing certain of the
wires associated with the control and arithmetical registers
and I will refer to it as a 'micro-operation'. Each true
machine operation is thus made up of a sequence or 'micro-
program' or micro-operations."

In a microprogrammed control unit a memory is used to hold a program

comprised of microinstructions. The execution of this program performs

the function of the control unit--fetching and interpreting machine

language instructions and then activating the appropriate control lines

to execute the instructions. Each instruction in this program is termed

a microinstruction since the level of control exercised by each is at the

gate level.

Although microprogramming received some attention during the 1950's

(2), (3), it wasn't until the early 1960's that technological development

made it economically feasible to be used in computer design. IBM in the

mid 1960's employed microprogrammed processors in most of the models of

the system 360. The reason for microprogrammed processors given by IBM

(4) was:

"....it has been used to help design a fixed instruction

set capable of reaching across a compatible line of machines

in a wide range of performances in the cheapest way possible."

Some general reasons for building microprogrammed processors are

1.1.1 ECONOMIC ADVANTAGE

There is a clear economic superiority of microprogrammed control

over conventional logic. One of the most widely used graphs (3) to

illustrate this fact is reproduced in Fig. 1.1. Here by complexity

we mean the richness of the instruction repertoire. From this curve

we see that after a heavy initial investment incurred for microprogram

control, the cost of implementation by microprogram control increase

slowly as compared to conventional logic. This curve and the obvious

cost advantage which it indicates is the leading force behind the

implementation of microprogrammed control units for commercially

produced computers.

1.1.2 ARCHITECTURAL COMPATIBILITY

Looking at economic advantages from a software point of view, we

see that by providing a basic set of machine instructions in a whole

line of new computers we can run the same software with little modifi-

cations on all the 'different' computers. As a result we get architec-

tural compatibility achieved through the use of microprogrammed control

units. The IBM 360 series, as mentioned earlier, is a good example of

this concept. Furthermore, because of the changing trend of software

being costly or 'hard' and hardware being cheap or 'soft', we would

rather duplicate computers with different performance levels, etc. but

having the same machine instructions--this being achieved via micro-

programming, so that we can execute the same software on all of them.

1.1.3 DELAYED BINDING

Architectural extensions and modifications are possible when we

use microprogrammed control units. This results in what is known as

the 'delayed binding' of the computer to its hardware. The hardware

COST
CONVENTIONAL

CONTROL

MICROPROGRAMMING
CONTROL

COMPLEXITY OF COMPUTER

Fig. 1.1 COST OF MICROPROGRAMMED CONTROL

VS CONVENTIONAL CONTROL

design primitives are known and are used to build the machine. The

processing primitives may be defined at any later time and even changed

or modified. This aspect of microprogramming also introduces the

concept of 'amorphous' machines.

Continued technological improvements have facilitated the develop-

ment of user microprogrammable computers. In these computers the con-

trol memory is of the read/write type. As such, new microprograms can

be readily introduced into this memory by the user and thus user-

microprogramming is possible. A large number of user-microprogrammable

computers are available in the market today, with a variety of architec-

tures (5).

1.2 MOTIVATION

The rapidly increasing acceptance of user-microprogramming because

of the availability of a large number of user-microprogrammable computers,

has focused increasing attention on the problems associated with writing

microprograms. Traditionally, a user was provided a high level language

translating system for programming. Some reasons which have been offered

(6) for using high level languages are:

1) They do not require the user to be aware of such specific

machine features as registers, internal representation of

data, etc.

2) They offer the possibility of transferring programs from

one machine to another. This means that they provide a

degree of independence from a particular machine or system.

3) They allow programs to be written more easily than is

possible in machine language. Furthermore, the whole soft-

ware development cycle involves less time and effort and

hence is efficient and cheap.

4) They allow programs to be written in problem-oriented terms

Examples of this include the ability to give symbolic names

to data and the inclusion of mathematical operators and

expressions in programming languages.

From the reasons enumerated above we see that a high level language

translating system should also be provided for microprogramming. A

microprogrammer would thus be free from machine register allocations,

primitive I/O referencing, concurrency recognition, etc. In short,

the microprogrammer would be able to concentrate more on the programming

tasks of implementing his algorithm rather than the intricate features

of the particular computer being used.

The earliest reference to a high level microprogramming language

is made by Husson (3). The basic language is procedural in nature and

is an adaption of the FORTRAN and PL/I languages with additional state-

ments and declarations. The language is implemented via a multipass

translator system. In the first pass the high level language statements

are converted into a sequence of intermediate language statements. This

intermediate language is a macro language. In the second pass the com-

piler 'expands' the macros to produce machine dependent microcode. Thus

the compiler must have access to a library of macros which contain the

microcode equivalent for each macro statement.

Several other efforts have been carried out in the direction of

high level microprogramming languages since Husson's proposal. These

languages can be classified into three basic groups (7) which are:

1) Hardware description.

2) Tailored.

3) Machine independent.

We review this classification scheme for two reasons:

1) This review will assist the reader in getting a better

perspective of the various microprogramming languages which

have been designed in the past. Thus he will see what

can be done and what has been done to solve the problem

of user microprogramming support and he will become

aware of the richness of the attempts in several competing

directions.

2) Furthermore, this review will indicate that no current

microprogramming language is truly high level and machine

independent. This will in part justify this research.

6

1.2.1 HARDWARE DESCRIPTION LANGUAGES

Hardware description languages are basically used in the design of

computers but have been proposed as high level microprogramming lang-

uages (8). APL, CDL and ISP belong' to this class of languages (8).

Specific resource assignments are done by the microprogrammer who is

also responsible for taking care of all machine details. The micro-

programmer must have a complete knowledge of the host computer in

order to program in these languages. Therefore, these languages are

not high level.

1.2.2 TAILORED LANGUAGES

Most of the high level microprogramming languages belong to the

tailored language group. The language lets the microprogrammer interact

with the machine at the register transfer level. The syntax of these

languages resembles the syntax of traditional high level languages like

ALGOL or PL/I. Control constructs and a limited use of symbolic

variables are allowed. This level of abstraction shields the micro-

programmer from the trivial details of the computer's environment, but

constraints him to the functions which are available on the computer

since they are the only ones available in the language.

SIMPL is a tailored language proposed by Ramamoorthy (9). It is an

ALGOL-like language with the conventional ALGOL reserved words. All

variables are predefined and explicitly name all host machine resources.

Lloyd (10) describes a high level microprogramming language which

was designed for the microprogrammed control unit (MCU) of the AN/UK:Y-17

Signal Processing Element. The syntax of the language resembles LSD (11)

with several added built-in functions which correspond directly to

testable conditions available on the MCU.

Tailored languages are designed to fit a particular machine. As such

they are successful in producing microprograms for a spacific machine.

This means a different high level language for each different machine.

Besides being impractical, this approach also goes against the basic

objectives underlying machine independent high level languages.

1.2.3 MACHINE INDEPENDENT LANGUAGES

Theoretically, any existing high level language like ALGOL, PL/I,

etc. could be included in this group. However, these languages are

often complex and require a large runtime support system which is

difficult to maintain on most microprogrammed computers. This diffi-

culty primarily arises from the high cost of control memory, resulting

in the restriction of the amount of microcode which can be stored in it.

A high level microprogramming language should be simple and not incor

porate complex data structures or operations found in languages for

general purpose use.

MPL, a microprogramming language designed by Eckhouse (12), was the

first true attempt to define a machine independent microprogramming

language. MPL is a procedure oriented language and is essentially a

dialect of PL/I. There are basically six types of data items:

1) Machine registers and their parts--both real and virtual.

2) Memory--main and control.

3) Local and auxiliary storage.

4) Events which correspond to testable machine conditions.

5) Constants.

6) Variables which take on constant values.

There are three types of statements in MPL:

a) DECLARATIVE STATEMENTS: These statements are used to declare

various data items along with their various attributes.

b) ASSIGNMENT STATEMENTS: These are very simple in nature,

allowing at most two operands on the right hand side of

the assignment operator. A provision has been made in the

syntax of the language to allow concatenated registers

as single operands.

c) CONTROL STATEMENTS: An IF and DO statement is provided.

The IF statement permits branching on the value of some

testable event which is previously declared.

An example of part of a program written in MPL and taken from (13) is

given in Fig. 1.2. The following comments can be made about MPL.

1) Although Eckhouse claims that his language is machine

8

INTERDATA3: PROCEDURE OPTIONS(MAIN):

DECLARE (RO,R1,R2,R3,R4,R5,R6,Ar,DFR,MDR) BIT (8)

MS (0:32767) BIT (16)

MAR BIT (16)

MAH BIT (8) DEFINED MAR POSITION (1)
MAL BIT (8) DEFINED MAR POSITION (9)

"LOCCNT" BIT (16)

(CARRY, SINGL,CATN,TRUE,FALSE) EVENT:

FETCH: PROCEDURE

/*INSTRUCTION FETCH, LOC CNTR UPDATE & OP CODE DECODE*/
MAR = RO//R1; /*INSTRUCTION ADDRESS*/
MDR =MS(MAR);
RO//R1 = RO//R14-2 /*INCREMENT LOCATION COUNTER*/
R4//R3 = MDR /*GET OP CODE*/
R5 = R3.RSH.3; /*RIGHT JUSTIFY R1 /X1*/
AR = (R3.LSH.1)/1; /*LEFT SHIFT REGISTERS R2/X2*/

/*OF THE EMULATED 360 MACHINE*/
R2,DFR = R4.RSH.4 /*INTO AR WITH LSB SET*/
IF CARRY THEN GO TO RXFORM:

RRFORM: R6 = AR&1; /*REG-REG FORMAT*/
R4 = 0;

DECODE: IF SNGL/CATN THEN GO TO SUPORT:
SUPRET: R3 = R4&OFX: /*MASK OP CODE*/

AR = R3 +(R3.LSH.1); /*MULTIPLY BY 3*/
DFR = R2;
IF TRUE THEN GO TO ILLEG:

ELSE IF FALSE/CARRY THEN GO TO TROUBL:

END/FETCH:

END INTERDATA3:

Fig. 1.2 AN EXAMPLE PROGRAM WRITTEN IN MPL. (INCOMPLETE PROGRAM
FRAGMENT)

9

independent, it is so in only a very limited sense.

Since real machine registers show up as predefined

variables, programs written in MPL are not trans-

portable from machine to machine.

2) Semantic interpretation of some of the basic opera-

tions is drawn from the particular implementation.

For example, shifts may or may not be circular. In

other words, the actual interpretation is implementa-

tion dependent. This makes the language machine

dependent.

3) MPL programs are compiled down into a simple machine

language (SML). This language resembles the code of

a single address computer. Arguments needed for

operations must first be loaded into argument or A-

registers. Results of operations are left in result

or R-registers, and may be stored in other registers

or memory locations. Temporary or T-registers are

available for intermediate results. This process

generates redundant loads and stores which produce

more microcode than is necessary.

A recent addition to the family of machine independent languages

is EMPL (14). This language is based on the core approach to language

design (15) which allows the language to include only very basic fea-

tures. Thus the user is permitted to extend the set of data structures

and operations included in the core to customize the language.

Syntactically, EMPL is very much like MPL with the added state-

ments which help define user data types. These statements are known

as EXTENSION statements. An extension statement includes the new data

structure, the operations on that data structure and the microperations

which correspond to these operations. An example of a data type named

STACK taken from (14) is shown in Fig. 1.3. Analyzing both these

machine independent languages, we see that:

1) MPL specifically is machine dependent since real machine

registers show up as predefined variables in the language.

EMPL on the other hand becomes machine dependent because

10

TYPE STACK

DECLARE STK (16) FIXED;

DECLARE STKPTR FIXED;

DECLARE VALUE FIXED;

INITIALLY DO;

STKPTR=0;

END;

PUSH: OPERATION ACCEPTS (VALUE)

MICROOP: PUSH 3 0;

IF STKPTR=16 THEN ERROR;/*OVERFLOW*/

ELSE DO; /* PUSH VALUE */

STKPTR=STKPTR+1;

STK(STKPTR)=VALUE;

END;

END,

POP: OPERATION RETURNS(VALUE)

MICROOP: POP 3 0;

IF STKPTR=0 THEN ERROR; /*underflow*/

ELSE DO; /* POP VALUE */

VALUE=STK(STKPTR);

STKPTR=STKPTR-1;

END;

END,

ENDTYPE:

Fig. 1.3 AN EXAMPLE DATA TYPE WRITTEN IN EMPL.

11

of the customizing feature which is primarily just a

variation of the real resource associations found in

MPL.

2) Furthermore, the languages are machine dependent due

to the early binding to their host machine architecture.

3) The languages are designed without any consideration

of the fact that code will eventually be produced for

microprogrammable computers, i.e., no primitives were

identified for writing code on microprogrammable

computers. We believe that certain features of a

special-purpose high level language for microprogramming

must reflect the fact that efficient microcode is a

design and implementation goal.

Because of these reasons the compilers for these languages fail to

produce efficient code. In general the earlier tailored and machine

independent languages can be viewed as just another set of languages.

Some of them are tailored to certain machines and produce efficient

code, while others are partially portable but incapable of being trans-

lated into efficient microcode for a variety of target machines. Further-

more, in both these cases we see that a general microprogramming support

system has not been provided. A microprogramming support system consists

of utilities that support the construction, debugging and testing of

microprograms. When a microprogram has been produced from a program

written in a high level language, then it should be tested for correct-

ness. This can be achieved by providing a simulator for the micro-

programmable machine. This would require a simulator for each micro-

programmable machine for which microcode is to be produced. An alter-

nate way is to compile the high level language program into an inter-

mediate code and provide a simulator for this code. An even better

situation would be to provide an interpretive system for the high level

language so that the user could debug his programs in an interactive

mode.

12

1.3 OBJECTIVES

The problem we have identified in the previous sections are:

PROBLFM 1: In order to produce low cost microprograms, a machine

independent high level microprogramming language is needed, yet

according to the analysis above, no such language exists.

PROBLEM 2: The languages which have been designed have not solved

PROBMEM 1 effectively. This is because of two reasons:

1) The language designers have not identified the primitives

for writing code on microprogrammable computers.

2) No design principles for designing high level micro-

programming languages have been fabricated or adhered

to. As such earlier language design is not justified

in any manner.

PROBLEM 3: A general tool has not been provided. Specifically, the

problem of portability has not been addressed or solved effectively.

PROBLEM 4: No testing mechanism has been provided; e.g. a topdown

design cycle for firmware engineering which includes testing of

microprograms etc. before implementation.

In Chapter 2 we present the formal definition of a new high level

language for microprogramming. The design of this special purpose

language includes constructs specifically suited for emulation,

and simultaneously, the constructs that foster production of 'correct'

emulators.

Chapter 3 considers the characteristics of current m-computers.

The architectural features of m-computers are studied in detail and a

formal classification scheme for m-computers is presented.

Chapter 4 discusses the various problems associated with producing

Portable software. Since our goal is to produce microcode for a

variety of m-computers, we discuss the portability model which we have

adopted to attain this goal.

12-a

In Chapter 5 we present a variety of intermediate language

formats and their attributes. A number of experiments are done to

find out the best possible format. We select the quadruple format

and formally present all the intermediate language constructs.

In Chapter 6 we discuss the language translator and the inter-

mediate language simulator. Based on well known software engineering

techniques we present the results of a number of experiments which

were done on the high level language and the intermediate language.

A summary of the overall significance and contribution of this research

is presented, along with suggestions for further study. Finally, there

are several appendices which give in-depth presentations of the

material discussed in Chapters 2 through 6.

A list of references and a glossary of terms follows the

appendices.

13

2. A LANGUAGE FOR MICROPROGRAMMING

2.1 INTRODUCTION

Before we study the various m-computer (we abbreviate: m-computers

for microprogrammable computers) hardware features that have such an

influence on microprogramming, we have to ask ourselves:

What is the language going

to be used for

i.e., what kinds of programs are we going to write in the language. By

knowing the kind of problems we are going to program in the language, we

can put constructs in the language which will make this task, i.e., of

programming these problems in the language, simpler. If the problems

are numerical in nature, then maybe the language should be similar to

FORTRAN (40). If it is business programming we have to do, then a COBOL

(41) like syntax is more appropriate. Then again, maybe we want to do

all these things, i.e., make a universal language more on the lines of

UNCOL (42) or PL/I (43). But is all of this really practical? The

answer is no, and there are two reasons for this.

1) All the languages pointed to above require a large run

time support system. This requires a lot of memory.

Control store in m-computers is very limited (2-8 K

words) and as such not enough to support a large

runtime support system.

2) Scientific, business programming, etc., are not the

most common applications of microprogramming.

Historically, microprogramming has been viewed as an emulation tool

or a means of extending hardware instruction sets (44). According to

(5) the most common application of microprogramming is emulation. This

leads us to conclude that the most frequent program written in our

language for microprogrammable computers will be an emulator, i.e. a program

which realizes the functional characteristices of a computer. The usual

term for such a system is a virtual machine. The computer, i.e., the

14

m-computer on which the virtual machine is realized, is known as the

host and the virtual machine itself is known as the target machine. We

have thus constrained the problem to writing emulators.

Problems 1 and 2 (chapter 1) can now be restated in terms of the

following six objectives and constraints referred to as the basis on

which the language is to be designed.

2.2 BASIS OF LANGUAGE

PREMISE 1: The language should be 'high level' and facilitate the

writing of programs which realize virtual machines.

PREMISE 2: The language should have simple, reliable constructs.

PREMISE 3: The language should be compilable into compact microcode for

a variety of microprogrammable computers.

PREMISE 4: The microprogrammable computers taken into consideration are

those with horizontal microinstructions.

PREMISE 5: The class of target machines emulated are register oriented,

word addressable machines.

The first premise is a general statement of the problem as outlined

in PROBLEM 1 Chapter 1. Premise 2 is an objective of any good high level

language design experiment. The reliability data available about syntac-

tical entities of computer languages should be used in designing the

language. Simplicity, of course, is a key to good design. Premise 3 is

motivated by the need for fast execution of target machine emulators.

Efficient microcode is defined as horizontal (parallel) microcode that

takes maximal advantage of host machine concurrency. Efficiency is

contradictory to generality, however, and the goal poses a problem for

portability (PROBTFM 3 Chapter 1). Premise 4 is used to make the problem

more general. The problem of producing code for m-computers with vertical

microinstructions is a degenerate case of the more general problem of

producing code for m-computers with horizontal microinstructions. Prem-

ise 5 is included to solve the following problem:

Although we have narrowed the scope of problem 1, by constraining

the universality of the language, we are still covering a very wide range

of targets, i.e., the sub problem is still nearly universal. Should the

15

language have the capability of writing emulators of targets as distinct

and far apart as the IBM 360/50 and the INTEL 8080 (45)? No. IBM 360/50

is a very complex machine and a very difficult one to emulate. Further-

more, things like the I/O channels and interrupt structure of IBM 360

like machines (28) will be very difficult to emulate. INTEL 8080 on

the other hand is a simple machine to emulate. This leads us to modify

our constraint of virtual machine realization to one of word addressable,

register oriented second generation machines as the targets which we will

use in writing emulators. The qualifiers 'Word addressable, register

oriented' have been included only to define what we mean by second

generation machines.

In the rest of this chapter we refer to the language and programs

written in the language interchangeably. The language is called VMPL

which is an acronym for Virtual MicroProgramming Language. A reference

to machine instructions of a target machine refer to the instruction

set processor (46) representation of the target machine. The premises

are reference by numbers P1 (Premise 1), P2 (Premise 2), etc.

2.3 LANGUAGE DESIGN

We are now at the stage where the problem has been completely

defined and are ready to proceed with the design of the language.

In the previous section we have specified a set of premises which

form the basis of the language. Next, we specify eight implications

or design features of the language. Each feature is justified by

reference to the premises and what is known about programming language

in general. In following this approach we 'derive' the language.

IMPLICATION 1: VMPL must have facilities for declaring variables,

performing basic operations on the declared variables, and executing

a basic set of control structures.

16

JUSTIFICATION 1: Since VMPL is going to be used for writing virtual

machines (P1), it should be able to describe and represent storage and

transformation/control entities which comprise a virtual machine.

What this means is that:

1) VMPL must be able to describe all the storage resources

of the target machine like registers, memory, etc.

2) VMPL should be able to describe (perform) the various

functional processes of a computer (target), e.g.,

instruction fetch, instruction decode, operations on

storage resources, etc.

This can be achieved in VMPL in the following way:

1) Declare variable types in the language which can be

associated with the various storage resources of

the target.

2) Provide a set of operators which can operate on the

variables and a set of control structures which can

be used to control the flow of the program.

IMPLICATION 2: The variables declared in VMPL should have various

attributes associated with them.

JUSTIFICATION 2: Although some programming languages allow the pro-

grammer to associate sizes with the declared variables, these sizes are

a multiple of a fixed size, e.g., FORTRAN's (40) single and double

precision words. Furthermore, this size is implicit and dependent

upon the computer on which FORTRAN is being executed, i.e., the size

of a double precision FORTRAN variable on the CDC 6600 (47) is 120 bits

whereas on a PDP 11/40 (48) it is only 32 bits.

In VMPL since the variables declared are used to represent reg-

isters, etc., they should have an explicit SIZE attribute associated

with them. This attribute indicates the width of a register or in

other words the precision of a variable explicity. This is required

because of P1 and P2 which require high level machine independence.

Since the language is used to write emulators for different targets (PS),

17

each with (possibly) different word widths, we cannot have an implicit

(built in) precision associated with all variables of a given program.

Therefore, each individual declaration of a variable should carry the

information about its size. But in case it doesn't, for programmer

convenience, a default size for a variable is taken from a globally

defined parameter.

To declare storage entities like memory, stack, etc., a DIMENSION

attribute has to be associated with some variables. The dimension

attribute then gives the number of elements contained in the array.

Target machine registers often serve both general and special

purposes. As an example, a stack pointer register is incremented or

decremented automatically before or after a push or a pull operation.

Thus, a variable which represents the stack pointer register should have

this information associated with it as a DESCRIPTOR attribute.

Finally, we describe the CLASS attribute through the following

illustration. Suppose a particular host machine and target machine

both have a stack. Further, suppose the target machine stack can be

mapped down exactly into the host's stack. P1 and P2 forbid us to make

this association, directly. In fact, as far as P2 is concerned, we are

not even be aware that the host has a stack. How can the 'virtual'

stack be mapped into the real stack? The only sensible or efficient

way to do this is to retain the identity of the storage resource which

a particular variable is representing. This is achieved by the CLASS

attribute of a variable. Thus, the compiler retains the identity of the

target resources and may (if possible) associate a certain variable

with a certain resource on the host. The target memory is an obvious

and trivial example of this attribute. Target memory should be (has to

be) mapped into the host memory for a successful emulation of the target.

IMPLICATION 3: The language should have a provision to declare a stan-

dard set of condition code flags. Furthermore, there should be a

mechanism to indicate directly which flags are to be affected in a

particular operation. For example, an action like an assignment state-

ment in the language must be able to affect the condition codes.

18

JUSTIFICATION 3: Condition code flags are an important part of a

computer. The setting/clearing of these flags is a function of the

various machine instructions of a computer. A number of approaches can

be adopted to represent the target flags in the emulator program.

The flags can be declared as variables. Each time a flag is used,

i.e., set or cleared, emulation code has to be written corresponding

to the usage of the flag. Consider the example of a carry flag used

during the emulation of an addition instruction Fig. 2.1. The addition

operation is followed by code which emulates carry generation. A result

of zero or one is placed in the carry flag. Adapting this approach for

a flag like overflow becomes even more complex Fig. 2.2. This approach

is thus complex and costly, producing a lot of microcode contradictory

to P3.

An alternate procedure is to implement flag processing code as a

sub-procedure which is called when needed Fig. 2.1a. This approach has

the cost of subroutine linkage and parameter passing associated with it.

Host machines usually lack subroutining facilities and as such trying

to create this environment is costly and impractical. Parameter passing

is specially costly because of the allocation/deallocation scheme used

for assigning VMPL variables to host machine registers discussed later

on.

Both approaches neglect the fact that the host may provide a set of

target flags that can be enabled directly. All that is required then,

is to declare the flags using some standard (reserved) names. Then when

an operation happens, a way should be provided to indicate which flag

is to be affected by the operation. The exact way in which the desired

results (on the flags) are obtained, is left to the compiler until the

point when the compiler knows the machine for which microcode is being

produced.

Four standard flags have been provided for in VMPL Table 2.1.

Lunde (49) suggests that a limited number of conditions are sufficient

for an instruction set processor. Therefore, the four standard flags

used in VMPL appear to be adequate.

19

ADDITION OF : SRC1, SRC2

RESULT TO BE STORED : DEST.

CARRY FLAG

CODE PRODUCED

: CARRY.

BEGIN

DEST = SRC1 + SRC2 ;

IF DEST < SRC1* THEN CARRY = 1

ELSE CARRY = 0;

END

*NOTE: IN CASE DEST IS DISTINCT FROM BOTH SRC1 AND SRC2

THEN DEST CAN BE COMPARED AGAINST EITHER ONE,

OTHERWISE DEST HAS TO BE COMPARED AGAINST THE

'SOURCE' WHICH IS DISTINCT FROM IT.

Fig. 2.1 CARRY FLAG SET-UP SCHEME

PROCEDURE CARRY (SRC, DEST);

BEGIN

IF DEST < SRC1 THEN CARRY = 1

ELSE CARRY = 0;

END:

PROCEDURE MAIN;

BEGIN

WM.

DEST = SRC1 SRC2;

CARRY (SRC1, DEST);

END

20

/*THIS INVOKES THE CARRY

PROCEDURE*/

Fig. 2.1a CARRY FLAG SET-UP AS A SUBROUTINE

21

ADDITION OF SRC1, SRC2

RESULT TO BE STORED : DEST.

OVERFLOW FLAG OVFLAG

FUNCTION AVAILABLE MSB-GETS THE MOST SIGNIFICANT

BIT OF ITS PARAMETER, i.e., THE SIGN BIT

CODE PRODUCED

BEGIN

SIGN1 = MSB(SRC1),

SIGN2 = MST(SRC2);

DEST = SRC1 + SRC2;

IF ((SIGN1=SIGN2) n (SIGN1=MSB(DEST)))

THEN OVFLAG = 1

ELSE OVFLAG = 0;

END

Fig. 2.2 OVERFLOW FLAG SET-UP SCHEME

22

TABLE 2.1 VMPL STANDARD FLAGS

FLAG VMPL NAME

C

0

N

Z

CARRY

OVERFLOW

NEGATIVE

ZERO

(SIGN)

23

IMPLICATION 4: The language should support very simple assignment

statements using infix notation. It should allow only one variable

on the left hand side and at most two operands and a diadic operator

on the right hand side. However, the operands on the right hand side

can have one of a number of monadic operators associated with each

of them.

JUSTIFICATION 4: A study carried out by Elshoff (50) on 120 commercial

PL/I programs found that assignment statements account for 41.2% of

all program statements Table 2.2. In this same study it is revealed

that 98% of all expressions (right hand side of assignment statements)

have zero or one operator (excluding the assignment operator). Another

study of 440 Fortran programs (51) produced similar results: 60% of all

assignment statements contained no operator other than the assignment

(=) operator.

Based on this data, VMPL is designed to support very simple assign-

ment statements. VMPL allows only one variable on the left hand side,

and at most two operands and one diadic operator on the right hand side

of the assignment operator.

There can be two objections to using the above mentioned data as

the basis of our justification. The first one is that the data was

gathered from the pre-structured program era and as such the sample

programs are 'bad'. Secondly, some of the data comes from business

programs rather than emulators.

The first objection is overruled simply because no other data exists.

Until data is collected for emulators, we are obliged to use what is

known. The second objection is overruled on the basis that data collected

for business and scientific applications seems to agree, even for diverse

applications and languages such as PL/I and FORTRAN. This indicates

that there is something consistent about the use of assignment statements

in at least two samples. We assume that our results will be the same.

The next question deals with the number and type of operators that

should go into an emulator-writing language. An instruction set proces-

sor has a large number of operators. Allowing a large number of operators

24

TABLE 2.2 ELSHOFF'S ANALYSIS OF 120

COMMERCIAL PL/I PROGRAMS

STATEMENT PERCENTAGE

ASSIGNMENT 41.2

IF 17.8

GOTO 11.7

END 7.5

DO 7.2

DECLARE 6.3

WRITE 2.6

CALL 2.0

READ 0.5

PUT 0.4

NULL 0.5

PROCEDURE 0.2

PREPROCESSOR 0.1

OTHER 2.0

25

in the language will increase its complexity and affect reliability (P2).

An alternate is to include a primitive set of operators only. There are

two different considerations for selecting these operators. One is to

use the data available on frequency of usage of various operators in

programs and the effect they have on the reliability of the language.

The other consideration is to determine which operators are best for

the language based on their similarity with the instruction set processor

of target machines to be emulated. The 'rotate' and 'shift' instruc-

tions, for example, are common target machine instructions.

Although relational operators are present in VMPL they are not used

in assignment statement expressions but instead limited to boolean

expressions. Gannon (52) shows that this makes expressions more reliable

and reduces errors in assignment statements by 20%. Similarly, limiting

the assignment operator to assignment statements and not allowing it in

expressions reduces errors by 20% (52). It is also found (52) that the

'traditional' infix precedence expression evaluation technique is 5%

more reliable than 'APL' (52) like expression evaluation technique and

much more readable.

The model of an assignment statement based on Elshoff's and Gannon's

data-single variable on the left and two operands and a diadic operator

on the right of the assignment operator-is an extremely simple and

reliable one and as indicated in the implication above is the basic

one adopted by VMPL assignment statements. However, we augment this model

based on the characteristics of host ALU's.

Since masking and shifting capabilities are available on host

computers, VMPL expressions are modified to reflect these resources. We

handle these 'side-effect' operators by a number of 'monadic' operators.

These operators are 'shift', 'rotate', 'mask', 'field extraction',

'indirection' and 'register concatenate'. Each of the two operands on

the right hand side can be modified or operated upon by one of these six

operators. 'Shift' and 'rotate' make use of the shifter associated with

the ALU. 'Mask' uses the masker and 'field extraction' uses both the

shifter and the masker. 'Indirection' and 'register concatenate' makes

use of the iterative capabilities of the host machine. 'Indirection' is

the fetching of data from (host) memory via an indirect address and

26

'register-concatenate' operates on two more registers or data words as

if they were a cascaded pair, i.e., a single long data word.

IMPLICATION 5: The control constructs of the language should be simple

in nature and tailored to the needs of emulator writing.

JUSTIFICATION 5: The control constructs of the language should be of the

D' type according to Kosaraju's hierarchy of control structures (53).

The reason for choosing these structures is that they are found to be

reliable, structured, simple (P2) and as pointed out by Ledgard (54) -

'the need for higher level (above D') control structures remains

unproven'. The D' structures include the sequence, conditional, loop

and case statements Fig. 2.3. However, in VMPL these structures have

been modified for emulator writing.

For specifying loop operations two constructs are provided. One

allows the execution of the loop, a fixed number of times and can take

advantage of the iterative mechanism available on the host. The other

is a conditional looping mechanism.

Before any computer (target) executes any instruction, it has to

decode it. This process is done by making a decision based on the

opcode of the instruction (macro) and then executing it by enabling the

appropriate circuit. The equivalent of this in VMPL is a special form

of the case control structure. A jump to a multiple statement case

statement is made based on the value of a variable. The statement to

which the jump is made is another jump statement which mades a jump to

a procedure (part of the program) which executes the instruction. This

form of the case statement fits nicely into the N-way branch instruction

available on hosts.

At times an equivalent operation is done wherein a number of condi-

tions are checked one after the other and if any of them are true, to

execute the code associated with them and then check the next condition.

The case statement won't do this as it executes code corresponding to

only one branch, i.e., one true condition. This is provided by an alter-

nate version of the case statement.

a, ACTIONS

c, IF-THEN-ELSE

e, WHILE-DO

S2

b, COMPOSITIONS

27

F

d, IF-THEN

f, REPEAT-UNTIL

S,S1 Sn STATEMENTS

P - PREDICATE

T - TRUE

F - FALSE

Fig. 2.3 DEFINITION OF D'STRUCTURE

g, CASE

Fig. 2.3 DEFINITION OF DISTRUCTURES

28

29

In VMPL boolean exnressions only the three relational onerators

which are found to be used 85% of the time by Elshoff (50) are used:

Because of target machines capabilities of doing bit testing, which can

be achieved on hosts by masking and shifting, we have explicitly pro-

vided for a way of directly indicating a certain bit of a variable as

the one under test in a boolean expression (explicit feature). This can

be considered as programmer convenience since the same effect can be

obtained by using the 'shift' and 'mask' monadic operators discussed

earlier (implicit feature). However, since some hosts do provide direct

bit test capability, it is better (efficient) to keep this feature in

the language explicitly and let the compiler decide on what to do.

IMPLICATION 6: The language should have the provision of declaring

external procedures, variables, flags, etc. These are 'implemented' in

runtime support microcode and linked to the rest of the emulator

program.

JUSTIFICATION 6: There are two aspects of emulation which have not been

discussed until now. These are Input/Output and interrupts. It is

extremely difficult to match host I/O and interrupt structure to target

machine I/O and interrupt structure without knowing the target machine

in advance.

The true solution to this problem lies in the design of host

machines. Host machines should provide a 'soft' (38) I/O and interrupt

structure that can be mapped into primitive functions (in VMPL) which can

in turn be used to describe the I/O and interrupt structures of various

targets. Without soft I/O and interrupt structures, m-computers do not

share a common set of properties that can be characterized for a class

of machines. This aspect of emulation is further complicated by the

wide variation of I/O and interrupt structures in various target machines.

Although this wide variation is somewhat narrowed down because of P5, by

limiting ourselves to targets which do not have I/O channels, I/O proces-

sors, direct memory access and other sophisticated I/O and interrupt

structures (125), we still have not found enough common primitives in

30

hosts and target machines to have some kind of primitive language con-

structs which can be used to specify target I/O and interrupts.

This problem is temporarily 'solved' in VMPL by the use of externals.

Each external name has associated with it the descriptor attribute which

indicates whether the name is a procedure, a flag or a simple variable.

Any peculiarity of the target which cannot be described in VMPL can thus

be described in this way.

IMPLICATION 7: The overall program is broken into arbitrary sized

blocks called procedures or subprocedures. All variables used within

the block are declared at the start of the block. A priority status is

associated with the variables used in a block by the programmer. The

code is executed sequentially from one block to the next. There are

two cases where control is nonsequential: 1) when a subprocedure is

called, or 2) a 'case' statement is executed which jumps to another

block.

JUSTIFICATION 7: Register allocation/deallocation is a major problem in

producing compact microcode (P3) for m-computers. Briefly, the problem

is as follows. Suppose either the number, the size, or both of the

target registers defined as variables in the VMPL program are greater

than the local storage registers available on the host. Because of this

disparity, the compiler is unable to permanently store these variables in

local storage. The variables will have a copy somewhere in the main

memory as the need arises. Now, when the compiler is binding (allo-

cating) a variable to a register in the local storage, it may have to

produce microcode to store the register (deallocate) in main memory.

This may be necessary because the register may be associated with

another variable and its copy in main memory is not fresh (active vari-

able). Suppose at this point the compiler has the option of allocating/

deallocating more than one register. Which one should the compiler

choose? Similarly, the compiler has a very limited amount of look ahead

and doesn't know what requirements for variables will be in the next

statements. As such it might generate a large number of load-store

instructions and hence a lot of microcode which goes against P3. This

31

situation is depicted in Fig. 2.4 and illustrated by the following

example.

A four register (RO, R1, R2, R3) local storage host is assumed to

have variables Al, A2, A3, A4, respectively, at some point within the

compilation process. The compiler needs to put variable AO in one of

the four registers. However, if it stores the variable in any of the

registers, it has to store the variable already present there back in

main memory. Which register should the compiler choose? For example,

if the compiler knew that variable A2 is not going to be used in the

next statements, then it will store it back in main memory and allocate

register R2 to variable AO. How is the compiler supposed to know this?

Sophisticated schemes have been developed to minimize register-

variable swapping (14). One thing overlooked in these schemes is the

fact that the programmer knows what variables are used in a certain

'block' of code. Why not take advantage of programmer 'look-ahead' with

a compiler that uses this information when allocating/deallocating

registers? This is achieved by making the program modular. All vari-

ables used throughout the program are declared at the start of the pro-

gram. These are the global variables. At the start of each block the

programmer specifies which of the globals are going to be used in a

block of code and declares them as such. He also declares variables

which are local to the particular block and will only be needed as long

as the block is executing. The compiler uses this declarative infor-

mation when allocating/deallocating variables. Since the variables

which have not been declared will not be used in a block, they need not

be kept in local storage.

An implicit priority associated with the local-global classification

of variables. Globals are given a higher priority than locals. By this,

we mean that if the compiler has to allocate both a global and a local

variable, it will first allocate the global variable. Similarly, if it

has the similar options of deallocating variables, it will deallocate

the local variable first. Further levels of priorities can be associated

as tags with various variables. This provides the compiler with a hier-

archy of look ahead. The compiler thus has finer control over which

RO

Rl

R2

R3

RO

R1

R2

R3

RO

R1

R2

R3

Al

A3

A2

A4

(a)

Al

A3

A2

A4

(b)

Al

A3

AO

A4

(c)

INITIALLY

32

AO AO HAS TO BE
ALLOCATED TO A
REGISTER

FINALLY - A2 DEALLOCATED
AO ALLOCATED TO RO.

Fig. 2.4 VARIABLE ALLOCATION PROBLEM

33

variables to allocate/deallocate based on the information provided by

the programmer. Furthermore, the reliability of emulators is improved

by introducing the redundant declarative information. The compiler can

use the redundant declarative information to check for program consis-

tency by seeing that only those variables which have been declared at

the head of a block are used within the block.

Since the VMPL program is broken up into arbitrary sized blocks,

program execution proceeds from one block to the next in a sequential

manner. However, some blocks can be declared as subprocedures. These

are the same as FORTRAN's subroutine (40). The sequential execution of

a VMPL program is thus broken when a call to a subprocedure is made.

Subprocedures return control to the place of their invocation. Another

situation of non-sequential execution is the execution of a 'case' like

statement. This will be discussed later on.

IMPLICATION 8: A subprocedure should be declared before it is used.

JUSTIFICATION 8: The reason for this is that the state of the machine

(host), in terms of what is contained in its local storage at the entry

and exit to a subprocedure, has to be known before a call is made to it

from any other place in the program. Thus, the subprocedure is declared

before it is used so that it gets compiled first. Then information

about the state in which subprocedures expects and leaves the machine

is known. The global variables that are expected by a subprocedure and

those that are returned by it must be explicitly declared as such. The

only variables that are passed as parameters are the local variables of

the block making the call to the subprocedure. This is because the only

variables not 'accessible' to the subprocedure are the locals of the

calling block, since the globals are global to all the blocks.

The idea presented here is not in any way associated with the prob-

lems which arise with one pass compilers (55). As we will see later on,

ours is not a one pass compiler. The only point of importance is that

the subprocedure has to be compiled before it is used. 'Declaring' it

before it is used also helps the programmer in structuring his whole

program.

34

2.4 DEFINITION OF VMPL

In this section we specify the syntax of VMPL. The complete BNF

representation of VMPL is given in Appendix A. The various syntactic

entities of the language have been grouped together according to the

implications presented in the previous section. Any syntactic feature

of VMPL which is not covered by the implications of the previous section

is justified as being in the language for programmer convenience.

All implications discussed in the previous section are referred to

as Il, 12, 13, 14, 15, 16, 17 and 18.

2.4.1 DECLARATIONS

Declarations for the various data items provide the attributes of

the items. Declarations can be grouped into the following four types:

1) Global variable declarations.

2) Global information declarations.

3) Local variable declarations.

4) Local information declarations.

2.4.1.1 VARIABLE DECLARATIONS

The syntactic description of VMPL variable declarations is:

DCL TYPE PRIORITY CLASS NAME

DIMENSION : DESCRIPTOR : SIZE

The TYPE of the variable is either LOCAL or GLOBAL. Variables which are

used throughout the program are declared at the start of the program and

are of the GLOBAL type. Variables used in any particular block (dis-

cussed later on) are of type LOCAL. Globals have a higher priority than

locals (I7). In VMPL a further level of PRIORITY is associated with

variables. The PRIORITY of a variable can be either PERMANENT or TEMP-

ORARY. Permanents have a higher priority than temporaries. We will see

in Chapter 6 how this hierarchy of priorities helps the compiler in

producing efficient code.

35

There are six classes of data items or variables (12 & 16). This

is given by the CLASS entity of the variable declaration. The six

classes are:

1) MEMORY

2) STACK

3) PSTACK

4) FLAG

5) SIMPLE

6) EXTERNAL

The MEMORY variable is used to define the target memory. It has asso-

ciated with it the dimension attribute which is an integer defining the

number of words (elements) which the memory has. In case the target has

a stack, it can be described by the STACK variable. The stack pointer

is described by the PSTACK class. In VMPL, we can only declare one stack

and one stack pointer (target machines with one stack at most). The

stack declaration requires the stack pointer declaration. However, the

stack pointer declaration does not necessarily require the stack declar

ation. This covers those targets which have stack pointers but no explicit

stack. In this case, the variable declared as MEMORY will be the default

stack. In these machines the stack resides in the main memory. The ques-

tion is why we need the PSTACK class, i.e., why treat the stack pointer as

a special register. It could be covered by the same declaration which

covers the other registers of the target. The reason is that the most

frequent operations done on a stack are the PUSH & POP operations via

the stack pointer. The PUSH & POP operations along with the knowledge

about whether the stack grows upwards (from higher address towards low

addresses) or downwards (from lower address towards higher addresses)

completely determine the actions of the stack pointer. These actions

are grouped together and shown in Table 2.3. The notation given in the

last two columns of Table 2.3 is used in the DESCRIPTOR part of the

PSTACK variable. Thus, by declaring the PSTACK variable, the compiler

knows what code to generate to emulate the PUSH & POP operations which

are a part of VMPL syntax. It may also match the stack pointer of the

host (if one is present) to that of the target since it has all relevant

information.

36

TABLE 2.3 STACK OPERATIONS AND THEIR VMPL

DESCRIPTOR REPRESENTATION

FOR PUSHING

DATA INTO

FOR POPPING DATA

FROM THE STACK

CORRESPONDING VMPL

PUSHING

i

NOTATION

POPPING

STACK

(PUSH, INC) (DEC, POP) (I ' , +) (- , 1)

(INC, PUSH) (POP, DEC) (+, 4') (1* , -)

(PUSH, DEC) (INC, POP) (4/ , -) (+, 1\)

(DEC, PUSH) (POP, INC) (-, 4') (f ,+)

(a) (b)

37

Single bit flags are described in VMPL via the FLAG class. One of

four descriptors may be associated with a flag variable. These descrip-

tors are C, 0, N, Z. The C descriptor makes the flag equivalent to the

CARRY flag. For example, flag variable 'LINK' has associated with it

the descriptor C. 'LINK' can now be used in conjunction with an assign-

ment statement. Suppose the operation in the assignment statements is

the add operation. Any carry generated would be stored in the flag vari-

able 'LINK'. All the programmer has to do is to specify whether he

wants LINK to be effected or not by a certain operation. The compiler

then generates the code (13) which actually affects the flag. The 0,

N and Z descriptors are associated with the overflow, negative and zero

flags, respectively.

Target registers are described in VMPL via the SIMPLE class. The

use of the reserved word SIMPLE is optional however. LOCAL variables

can only be of the SIMPLE class or FLAG class.

The external problem as outlined in (I6) is covered by the EXTERNAL

attribute in VMPL. The external data element can be a flag, a subpro-

cedure or a simple variable. This qualification is done via the des-

criptors F, P or S, respectively.

The DIMENSION and SIZE entities of variable declaration are given

by positive integers. The DIMENSION entity is enclosed in rectangular

([]) brackets. Examples of VMPL declarations which illustrate the

various aspects discussed above are shown in Fig. 2.5.

2.4.1.2 INFORMATION DECLARATIONS

There are three global information declaration statements in VMPL

and four local information declaration statements.

2.4.1.2.1 GLOBAL INFORMATION DECLARATIONS

Since the size attribute is associated with data items of different

types and since it usually is the same for most of them in one program

(the width of target stack registers memory words, etc. is usually the

same), it seems better and convenient to make a global declaration of

EQUIVALENT

38

DCL GLOBAL PERMANENT MEMORY MEM:[4096]:12 ;

DCL GLOBAL PERMANENT STACK STK4-[32] :12 ;

DCL GLOBAL PERMANENT PSTACK PSTK:- (,i' ,+) : 5 ;

DCL GLOBAL TEMPORARY FLAG LINK:C, OV:O ;

DCL GLOBAL PERMANENT SIMPLE ACC: 8,T1:12 ;

DCL GLOBAL PERMANENT B1:8, B2:12 ;

DCL EXTERNAL PERMANENT REG1:S:4,IOHAND:P;

DCL LOCAL PERMANENT SIMPLE REG2:8 ;

DCL LOCAL TEMPORARY FLAG FLG ;

Fig. 2.5 VMPL GLOBAL AND LOCAL VARIABLE

DECLARATIONS

39

this fact. This is done via the WORDSIZE, declaration as shown in Fig.

2.6a.

Each individual declaration of a data item may carry the informa-

tion about its size, but in case it doesn't, and the information is

required for that type, then the default value of the size is taken from

the globally provided information. Fig. 2.7 illustrates this wherein

both (a) and (b) are equivalent declarations for an 8-bit register Rl.

The two, basic ALU arithmetic modes for computers (targets & hosts)

are one's-complement and two's complement arithmetic. The host ALU may

perform arithmetic differently than the target ALU. In order to keep

VMPL machine independent, possible conflicts must be handled at compile

time. The VMPL programmer declares the mode of arithmetic to execute

under, (the mode of arithmetic done on the target) and the compiler

then handles any mismatches which may occur. The declarations are

shown in Fig. 2.6b and c.

In VMPL bits of a n bit data item are numbered from 0 to n-1 start-

ing at the right or the least significant bit. The 'field extract'

operation is frequently done in the instruction decode part of a virtual

machine. A field is meant to be the result of the logical AND operation

between a data item and a mask followed by a shift operation. The shift

may be left or right. Fields are declared and given a name in VMPL.

They have two or three integer parameters associated with them. The

first two (equivalent to the mask) indicate the range in bit position

which has to be masked out. The third optional integer indicates the

shift amount. Its absence indicates no shift. A left shift is indicated

by a negative number and a right shift by a positive number. The field

OPCODE in Fig. 2.6d refers to bits 9, 10 & 11 to be extracted and shifted

right by 9 positions. ADDRES on the other hand is a reference to the

extracted bits 0 to 8 but doesn't shift them. The way fields are used

is discussed later on.

2.4.1.2.2 LOCAL INFORMATION DECLARATIONS

As discussed in 17, we expect to improve the efficiency of the

microcode produced by indicating to the compiler the global variables

40

DCL WORDSIZE

(a)

DCL ARITHMETIC

(b)

DCL ARITHMETIC

(c)

DCL FIELD

(d)

12 ;

1 ;

2 ;

OPCODE (9,11,9) ;

ADDRES (0,8)

Fig. 2.6 VMPL GLOBAL INFORMATION DECLARATIONS

41

DCL GLOBAL PERMANENT R1:8;

(a)

DCL WORDSIZE 8;

DCL GLOBAL PERMANENT R1;

(b)

Fig. 2.7 WORDSIZE DECLARATION EQUIVALENTS

42

which will be used in a certain block. This information is provided

by importing the global variables used in a certain block, see Fig. 2.8a

(global USE variables).

The next two information declarations are associated only with sub-

procedure blocks. The only variables passed as parameters to a sub-

procedure are the variables which will be local to the block from which

the subprocedure is called. Global variables (like FORTRAN's (40)

COMMON) needn't be passed as parameters since they can be declared as

global USE variables as discussed above. Thus, within the subprocedure

we have three kinds of variaties being used; the subprocedure parameters,

the global variables imported with the USE statement, and any variables

LOCAL to the subprocedure block. We have already discussed the reasons

why a subprocedure has to be compiled before a call to it is made (I8).

The non-local variables (i.e., variables not declared by the LOCAL state-

ment) can be used in three ways within the subprocedure.

a) Their value is used somewhere within the subprocedure
block, i.e., the subprocedure expects their value when
a call is made to it or it doesn't modify the variables
value.

b) They are assigned a value somewhere within the subpro-
cedure block, i.e., the subprocedure returns their value
when a call is made to it or it modifies the variables
value.

c) Both a & b happen.

We will discuss these three cases by the VMPL code shown in Fig. 2.9.

The subprocedure block is named SUB. It has one parameter PAR. The

procedure block which 'calls' SUB is block MAIN. It has a local vari-

able LOCL which it passes to SUB, i.e., PAR is the formal parameter and

LOCL is the actual argument. We assume that SUB doesn't use any global

variables. The m-machine for which code is being produced has two reg-

isters R1 & R2 in its local storage.

CASE a

MAIN.

SUB expects the value of PAR, i.e., LOCL when it is called from

Since SUB is compiled before MAIN, we associate a certain register,

43

DCL GLOBAL USE MEM, ACC, Ti;

(a)

DCL GLOBAL EXPECT REG2;

DCL LOCAL EXPECT TMPl;

DCL LOCAL RETURN TMPl;

DCL LOCAL PERMANENT VAL1, VAL2:3;

(b)

DCL SPROC USE SUB;

(c)

Fig. 2.8 VMPL LOCAL INFORMATION DECLARATIONS

44

say R1, with the parameter PAR. This means that when we compile

SUB and we want the value of PAR (statement 9), we assume it to

be in R1 and pick it up from there. Thus, when we call SUB from

MAIN, we first store the value of LOCL in R1 and then do the call

operation. It also means that when we compile SUB, we do not use

R1 for any other variable being used in SUB until statement 9,

i.e., until the time when we first use. PAR (R1), we want to pre-

serve it since it has the value which was passed from MAIN to SUB.

From there onwards all registers are handled by the compiler in

the same manner.

All this can be done if within SUB we make a declaration of

the fact that the value of the variable PAR is EXPECTED from the

block which makes the call. Thus, all global variables and para-

meters which are expected by a subprocedure are declared as having

this property.

CASE b

SUB returns the value of PAR, i.e., LOCL when it is called

from MAIN.

After having compiled SUB, we know that PAR is in register

R2. Within MAIN after producing the code for making the call

to SUB (statement 24), we have to produce code for statement 25.

For this statement and the following statements, we know LOCL

is in R2 since that is where SUB leaves it or returns it. This

information is available if we declare PAR within SUB to have the

RETURN attribute. Now when the compiler compiles SUB, it will

preserve R2 from the point where it last stores the value of PAR

in it to the point where it leaves and returns to MAIN.

SUBPROCEDURE (SPROC)
DECLARATION

PROC;MAIN;
DCL LOCAL PERMANENT LOCL:8;

EXECUTE SUB(LOCL);

SPROC:SUB(PAR:8);

DCL LOCAL EXPECT PAR;
DCL LOCAL PERMANENT T1,T2;

T1 = PAR; [*STMT.No. 9 *]

CASE a

(a)

45

[*STATEMENT NO. 24*]

SPROC:SUB(PAR:8);

DCL LOCAL RETURN PAR;
DCL LOCAL PERMANENT T1,T2;

PAR = Tl; [*STMT. No.
24 *]

CASE b

Fig. 2.9 EXPECT & RETURN DECLARATION EXAMPMES

46

SPROC: SUB(PAR:8);

DCL LOCAL EXPECT PAR;

DCL LOCAL RETURN PAR;

DCL LOCAL PERMANENT T1,T2;

PAR = T1;

T2 = PAR;

CASE c

Fig. 2.9

EXPECT & RETURN DECLARATION EXAMPLES

47

CASE c

This is just a combination of cases a and b. For this case

a variable has to be declared both as an EXPECT & RETURN variable.

Examples for these declarations are shown in Fig. 2.9b.

Using the same arguments, we can say that upon entry to a

block if the compiler knows which, if any, subprocedure will be

called from within that block, then it can produce more efficient

code. This is because while producing code for the block, the

compiler knows at entry which variables are going to be expected

and returned by the subprocedure which is going to be called from

within the block. It knows the registers which will hold those

values when the call is made to the subprocedure since the sub-

procedure has been compiled first. Thus, for the statements

before the call statement in the block, it tries to utilize the

machines registers in a way which will make the change to the sub-

prcedure's environment efficient. As in our previous example,

case a, if the compiler knows that SUB is going to be called from

within MAIN, then while producing code for statements 1 through

23, it will try to keep LOCL in R1 so that when the call is made

to SUB, the value of LOCL needn't be loaded into R1 (extra code).

2.4.2 ASSIGNMENT STATEMENTS, OPERATORS & EXPRESSIONS

A very simple model for the assignment statement is discussed

in 14. Expressions in assignment statements are limited to diadic

arithmetic operators and special monadic operators. Logical and

relational operators are limited to boolean expressions. The basic

arithmetic, logical and relational operators available in VMPL are

shown in Table 2.4. Each operand of an assignment statement can

have a number of monadic operators associated with it. These mona-

dic operators are:

48

TABLP 2.4 VMPL DIADIC OPERATORS

ARITHMETIC LOGICAL RELATIONAL

+ .AND. .GT.

.OR. .LT.

* .XOR. .EQ.

/

TABLE 2.5 VMPL SHIFT OPERATORS

SHIFT DIRECTION FILL UP BIT VMPL NOTATION

RIGHT 0 .SHTRO.

RIGHT 1 .SHTR1.

LEFT 0 .SHTLO.

LEFT 1 .SHTL1.

(a)

A = B.SHTR0.6

X = Y.SHTL1.2 + 3

(b)

49

a) SHIFT AND ROTATE: There are four monadic shift operators available

in VMPL. A data item can be shifted left or right and the bit positions

which become available can be filled by either a one (1) or a zero (0)

Table 2.5a. In reality, a shift operator is diadic because it requires

another operand which specifies the shift amount. In VMPL this operand

has to be an integer, i.e., the shift amount is fixed at compile time.

Table 2.5b illustrates the use of the 'monadic' shift operator. In the

first example, variable B is right shifted and zero filled by six posi-

tions and the result stored in A. In the second example Y is shifted as

indicated by the shift operator and the shifted result is added to 3.

The result is then stored in X.

Similarly, two other operators which correspond to rotation are

available. These are used for left and right rotation of data items.

ROTL is used for left rotation and ROTR is used for right rotation.

Like shift, the rotate operator also requires an integer specifying

the amount of rotation Table 2.6.

b) FIELD EXTRACTION: As mentioned in the section on global information

declarations, in VMPL a programmer can define field operators, which

effectively mask and shift various bits out of a data item, i.e., per-

form the extract operation. The statements in Fig. 2.10b use the fields

defined in Fig. 2.10a. The first statement extracts the OPCODE field,

i.e., (bits 9, 10 and 11 shifted 9 places to the right) from the vari-

able IR and stores the result in OPCD. The second statement extracts

the ADDRES field from IR, adds the result to 20 and stores this result

in PAGE.

c) INDIRECTION: One of the most common addressing modes found on var-

ious target machines is the indirect memory mode. In VMPL we define an

indirection operator by the @ sign. It can only be used on the MEMORY

class of data item. If M is a memory variable and ADDR & IR are simple

variables, then

IR = @M [ADDR]

is equivalent to

IR = M [M[ADDR]]

which by itself is not allowed in VMPL. The square brackets ([]) are

50

TABLE 2.6 VMPL ROTATE OPERATORS

ROTATE DIRECTION VMPL NOTATION

LEFT

RIGHT

.ROTL.

.ROTR.

A = B.ROTL.7

R1 = REG1.ROTR.3;

(c)

51

DCL FIELD OPCODE (9,11,9)

ADDRES (0,2) ;

(a)

OPCD = OPCODE (IR) ;

PAGE = 20+ ADDRES (IR) ;

(b)

Fig. 2.10 EXAMPTFS OF VMPL FIELD FACILITY

52

themselves a monadic operator which are used to index into dimensioned

variables, i.e., variables which have the DIMENSION attribute. In the

example above, once the data at the ADDR index of M is obtained, it is

used to index again (indirection) into M to fetch new data which is then

assigned to IR.

d) CONCATENATION: The concatenation operator allows concatenated items

to appear on either side of an assignment. Two SIMPLE variables A and

B, can be concatenated together and then logically used as if they

existed as a single entity, i.e.,

A//B = A//B+2

The integer 2 is added to the logically formed variable A//B and the

result stored back in A//B.

e) BIT SETRCTION: Last of all an operator is available which can test

a selected bit of a data item. This operator is limited to boolean

expression only. It returns a value of true if the bit in question is

a 1, otherwise it returns a false value:

(IR, 6)

This means that the sixth bit of IR is to be tested to see if it is true

or false.

Since we have defined a number of diadic and monadic operators,

Precedence rules have to be established for expression evaluation. The

primary rule for expression evaluation is:

All monadic operators are executed

before the diadic operator is executed

We present these rules in the form of a chart as shown in Fig. 2.11. The

blank entries mean that the corresponding entries cannot occur simultan-

eously in an assignment statement or a boolean expression.

There is only one predefined variable in VMPL. This is the reserved

name POP. Its value is the value of whatever gets popped off the stack,

i.e., it is a way of getting data off the stack via the pop function.

POP is treated as a simple variable and it can be used anywhere a simple

53

--11 () @ // + - *
zoxzu,;

i.,4 0
E4
0

,_., E:,

,4
61
c.4

x
EI
u)

8
p4

= > > > »> >i>>> j > >

[] < < < Z..< <.<<<<< < < <
0 < 4. < i < 4, < < <<
@ < 4, 4 < < < < 4, < < < < <
// (< < < < L. . <, < <
+

*

/ > >

. AND . > >

.0R.) >

.X0R. >

.NOT. < < >

.GT. 3 >

.LT. > >

.EQ. >

.SHTXX.*

.ROTY.**

*XX=LO ** Y=L
Ll
RO

R1

603 MEANS 6- IS DONE
(EXECUTED) BEFORE J3.

Fig. 2.11 PRECEDENCE RULES FOR VMPL OPERATORS

54

variable is used, i.e., an operand in an expression, index to the vari-

able of class MEMORY, etc. However, it should be remembered that using

this variable has a side effect on the PSTACK variable. The PSTACK vari-

able gets incremented or decremented as defined by its descriptor.

In 13 and 15, we mentioned that the setting/clearing of VMPL's pre-

defined flags can be directly indicated in an assignment statement. This

is shown in Fig. 2.12. For this example we assume CARY and ZRO are user

defined flags associated with VMPL defined carry and zero flags (via the

descriptors C and Z). Variable B is added to C and the result is stored

in A. The carry and zero conditions generated by this operation is

reflected by the setting/clearing of the CARY and ZRO flags. The code

to achieve this is generated by the compiler.

2.4.3 CONTROL CONSTRUCTS

In 15 we indicated the need for a simple and complete set of control

constructs modified to the needs of emulator writing.

Conditional statements, which according to Elshoff's (50) study

make up 17.8% of a program, are provided for in VMPL by the IF....THEN...

ELSE....construct with certain modifications. Two IF statements are pro-

vided in VMPL; IFTRUE which causes the THEN portion to be executed if

the boolean expression is true, and the IFFALSE, which avoids confusion

over negative predicates by executing the THEN clause when a predicate

is false. This will hopefully remove the semantic difficulty for a

programmer, when deciding between:

IF NOT (Boolean expression)

or

IF (Boolean expression)

The FOR statement allows the repetition of a loop a fixed number of

times. As such the FOR statement only allows integers to be used as it

indexes--so it may be easily mapped into loop counter mechanisms avail-

able on some host machines. The WHIT;P. statement provides a way for con-

ditional looping, executing the loop as long as the condition is true.

As mentioned in 15, the case statement of Pascal (56) has been

modified so that it can be directly mapped into a N-way branch

55

A = B + C <CARY , ZRO >

REG1 = REG2 + REG8 < ZRO >

Fig. 2.12 ENABLING VMPL FLAGS ;

56

instruction found on many host machines. VMPL's case statement is the

SELECT statement. An example is shown in Fig. 2.12. The selection in

the example is done based on the value of OPCD (first operand). If its

value is 1 (target operand), a jump is made to the procedure block LAB1

(target label 1); if its value is 2, a jump is made to LAB2, etc. The

digit 4 (second operand) following the identifier OPCD is a count of

the number of labels available to the SELFCT statement. This provides

two pieces of information to the compiler. One, it indicates to the

compiler how many bits of the first operand (in our example OPCD) will

be used for-the jump selection. This quantity (the number of bits of

the first operand used for jump selection) is Log2 of the second operand

(in the example Log24=2). It is used by the compiler to mask any extra

bits from the second operand (OPCD) if it is wider than it (in the

example if OPCD is wider than 2 bits, it's significant bits are masked

to make it only 2 bits wide). Secondly, it indicates to the compiler the

number of jumps involved in the select operation. The host may have a

larger or smaller n-way branch instruction and as such has to handle

these cases appropriately. Again, a multipass compiler can handle this

situation by counting the number of labels a jump has to be made to, and

as such the presence of the second operand indicates redundancy. As

mentioned earlier redundancy leads to reliability, one of the require-

ments put on VMPL by P2.

The CONDition statement is equivalent to the SELECT statement in some

respects. Each boolean expression is evaluated and if true, the corres-

ponding block of code is executed Fig. 2.12. However, unlike the SELECT

statement, the CONDition statement after executing the block of code

tests the next condition to see if it is true, and so on, until the end

of the statement. Also, unlike the SELECT statement the CONDition state-

ment requires each block of code to follow the statement rather than as

a separate procedure block.

Two things are obvious from Fig. 2.12. One is the consistent use of

'BEGIN - END' brackets for all five control constructs. Since the 'END'

recognizes the statement to which it belongs (ENDIF, ENDFOR, ENDWHILE,

ENDSETFCT, ENDCOND), it solves the dangling END problem which reduces

errors by atleast 5-9% (52) and makes VMPL more reliable. The other is

57

IFTRUE (A .EQ. B) THEN ; BEGIN ; END ; ELSE ;

BEGIN ; END ; ENDIF ;

WHILE (A .LT. B) ; BEGIN ; ---- END ; ENDWHITF

FOR A = 3 TO 6 ; BEGIN ; END ; ENDFOR;

SET:PICT (OPCD,4) FROM; COND ;

(O,LAB1) ;

(1,LAB2)

(2,LAB3) ;

(3,LAB4) ;

ENDSELECT

(A.EQ.B) ; BEGIN ; ---- END ;

(P.EQ.Q) ; BEGIN ; ---- END ;

ENDCOND ;

Fig. 2.13 VMPL CONTROL CONSTRUCTS

58

the consistent use of the BEGIN-END bracket within four of the control

constructs. This helps to contain and delimit the statements if more

than one of them is present within the control structure.

2.4.4 MISCELLANEOUS STATEMENTS

There are a few more statements available in VMPL. Elshoff (50)

and Knuth (51) determined that increment and decrement accounts for

many of the operations in assignment statements. As such an INCrement

and DECrement statement is provided. Since register clear (all zeroes)

and set (all ones) is a common instruction found in most target instruc-

tion set processors, VMPL provides the CLEAR & SET instructions.

In order to be able to push data into the stack, the PUSH statement

is available in VMPL. As mentioned earlier, data always pops out of

the stack when POP is referenced.

EXECUTE and RETURN statements are provided to transfer control to

and from a subprocedure.

VMPL does have a GOTO statement. However, we have limited the

scope of the GOTO destination to its block, i.e., the label to which

a GOTO transfer's control has to be in the same block as the GOTO state-

ment. The LEAVE statement is used to leave one block of code and enter

another. The only other statement which can transfer control from

within one block to another is the SELECT statement since its labels

are names of other blocks. Thus, the compiler knows the place within

a block from where control passes from one block to another. The default

place for this transfer is the last statement within the block.

A HALT statement is provided to map the targets halt instruction

into the host's halt instruction.

Examples of these statements are given in Fig. 2.13.

2.4.5 PROGRAM STRUCTURE

12, 17 and 18 indicate that the VMPL program is made up of two parts.

First come the global declarations. These are followed by a set of

59

INC A // B;

DEC A [POP]

SET ADDR

CLEAR IR ;

PUSH DATA ;

LEAVE LABEL1

HALT ;

GOTO IOEND;

Fig. 2.14 MISCELLANEOUS VMPL STATEMENTS

60

blocks each with their own set of declarations and executable code. The

blocks are of two types: PROCedures and SubPROCedures, and each has a

unique name. Each block declares all the variables it is going to use

from the global variable set, all the subprocedures it is going to call

and any LOCAL variables it requires. Local variables exist only for the

execution life time of the block.

All identifier and labels in VMPL can have any number of charac-

ters. The first character has to be alphabet and the first seven

should be a unique combination. A colon (:) must follow a label to indi-

cate the termination of the label.

Comments can be placed anywhere in a VMPL program. They have to be

enclosed by ((*) and (*)) brackets. The only restriction is that they

should not split a basic token in the language, e.g., an identifier, a

reserved word or an integer.

2.6 CONCLUSIONS

In this section we have presented the design and syntax of VMPL.

The language design is based on a set of 'bases' which are used to

derive a set of implications, each of which have been rigorously exam-

ined and justified. By providing a basis for the language and a set of

implications, we provide a uniform way for making modifications and

extensions to the language. This may be required for two reasons.

1) Once a sufficient number of programs have been written in

VMPL, we should have enough information about its strong

and weak points. We can then go back to our original

bases and see which are the ones which require modifi-

cation. Having done that we can go through the whole

process of redesigning the language in the way we did

originally. The point is that, since we tried to justify

the constructs of the language when we designed them, it

will be easier to change them based on the data we obtain

about the language at a later time.

61

2) We may want to make extensions to the language by removing

some of the constraints which we put on the problems we

are trying to solve, e.g., we may want to include third

generation computers with I/O processors in the list of

target machines we can emulate using VMPL. This can be

done by making the appropriate extensions to the original

set of 'bases' and then design the constructs needed to

fit this new requirement. Since we have the complete

'design plan' of the language in the form of an impli-

cation-justification 'chart', we can see which parts of

the language are affected by the new extensions and which

are not. Thus, the language can grow easily or be extended

according to new demands without requiring the language

designer to start from ground zero every time he has to

make some changes in the language.

The only bias of the author which becomes obvious in this language

design experiment is the usage of the instruction use and reliability data

available about other programming languages. We feel that it is neces-

sary to use this data to design programming languages. This helps the

language designer in producing a language each of whose syntactical

constructs have justified their inclusion. It also tells him all the

constructs which should not be included. Already we see that this

approach is being used in designing a major universal programming

language (65) which may revolutionize the whole software industry.

3. MACHINE CONSIDERATIONS

3.1 INTRODUCTION

62

As indicated in chapter 1 problem 2, one of the reasons why earlier

efforts have not effectively solved the high level microprogramming

language problem is the lack of identification of primitives for writing

code on m-computers. What are the characteristics of the host machine?

Can we develop sufficient generalizations about the host? Can these

generalizations be used to transport a higher-level language emulator

which in turn effectively manipulates the host? Are there any common

characteristics among the various machines which defines a class of host

machines for which a portable VMPL system is suitable?

If we want to design an efficient compiler for a

high-level machine-independent language for a m-machines,

we must classify the host machines before generating code

Eckhouse (13) was the first one to make an attempt in this direction. He

took sixty-five architectural features and seven m-computers and made a

table of features appearing in the various computers. However, his

investigation has the following problems:

1) Four out of the seven m-computers investigated were micro

programmed computers (INTERDATA 3 & 4, IBM 2025, and the

SPIRAS 65). Another one of the computers was Rosin's (16)

hypothetical MPP. Another was the IBM 2050, host for the

IBM System 360 Model 50 and as such not truly user micro-

programmable. His analysis thus included only one

computer, the Standard MLP -900, which is user micropro-

grammable. Although this m-computer was designed for

general purpose emulation, it is not widely used. In fact,

the only know MLP-900 is the PRIM project machine at the

University of Southern California (17).

The results which Eckhouse obtained were truly based

on one machine, which is not widely used.

63

2) A closer look at the features which Eckhouse selected

indicate that they are tailored for the seven machines

chosen for the tabulation. As such some of the results

which he obtained in terms of the specific categorizations

or the general features of m-computer architecture, are

biased and not general enough.

A valuable result obtained by Eckhouse related to Input/Output

states:

"I /O is generally integrated into the basic machine
(m-machine) architecture. Therefore, I/O programming
is a task which requires specific knowledge of timing
constraints, device idiosyncracies, etc."

However, while designing MPL (his language) Eckhouse doesn't specifically

deal with the problem of I/O and gets around it by saying:

...problem with I/O is the particular device-dependent
structure of I/O at the microprogram level which tends
to prevent a generalized, higher level language approach
to the problem. However, if we consider the simpler
machines such as MPP and the INTERDATA 3, we can easily
discover several ways to treat I/O."

This further reinforces our earlier claim of the machine dependent nature

of MPL. Furthermore, it indicates that the results about m-computer

architecture which Eckhouse derives were subsequently not used in design-

ing the language, or modified and narrowed down to specific cases. In

order to recognize the architectural features of m-computers, we studied

approximately 30 m-computers (18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36, 37).

In the next section we will describe and analyze briefly the

architectural features of m-machines with particular emphasis on those

features that impact on generality. The notion of "generality" is in-

cluded to make conclusions about m-machine architecture general enough

to be machine-independent. This will then lead to a classification of

machines acceptable to WMPL's compiler.

64

3.2 m-COMPUTER ARCHITECTURAL FEATURES

The features of m-computer architecture which we will discuss are:

1) Storage facilities.

2) Functional units.

3) Data widths.

4) Bus structure.

5) Microinstructions.

6) Input, Output & Interrupt Structure.

Although we discuss these features in general, we make specific refer-

ences to emulation. Emulation is not only the most common application

of microprogramming (5), The execution of a program in some language is

sometimes performed as an emulation of a virtual machine (target machine)

that interprets some high level language. Microprograms are used to

implement high level language programs in a variety of ways as shown

in Fig. 3.1.

All facilities where 'data' (program + data) can reside are known

as storage facilities. In m-computers, we find a hierarchy of storage

units quite different from other computers. The functional units are

usually combinational circuits which operate on data in various ways.

The data width along with the bus structure determines the computer's

real usefulness in emulation. Microinstructions are the mechanism

through which the programmer exercises control over the various facili-

ties available on the machine. Input, Output & Interrupts are sources

through which the m-computer communicates with the external world.

An overview of the various features of m-computers taken into

account is shown in Fig. 3.2.

3.2.1 STORAGE FACILITIES

The storage facilities of an m-computer can be classified into the

following four categories.

a) LOCAL STORAGE: Local storage consists of host machine registers

usually used by the target machine as working registers. Efficient

emulation requires atleast as many dedicated and general purpose regis-

ters as the target machine being emulated. A number of single bit

HLL

TRANSLATED

65

HLL TRANSLATED
>INTERMEDIATE

LANGUAGE

INTERPRETS

INTERPRETS

Fig. 3.1 MICROPROGRAMMED IMPLEMENTATION OF

HIGH LEVEL LANGUAGES (HLL)

66

1- STORAGE

LOCAL STORAGE
MAIN MEMORY
CONTROL STORE
NANO STORE

2- FUNCTIONAL UNITS

ALU
SHIFTERS
MASKERS
EXTRACTERS
OTHER FUNCTIONAL UNITS

3- DATA WIDTH

FIXED
ITERATIVE CAPABILITY
FLOATING

4- BUSSES

FIXED
FLOATING

5- MICROINSTRUCTIONS

VERTICAL
DIAGONAL
HORIZONTAL
ENCODING
RESIDUAL CONTROL
SEQUENCING

6- INPUT, OUTPUT AND INTERRUPTS

FIXED
FLEXIBLE
SOFT

Fig. 3.2 OVERVIEW OF ill-COMPUTER ARCHITECTURAL FEATURES.

67

registers usable for storing condition codes and other status bits can

also be of great utility. Special purpose registers or storage hardware

frequently improve the efficiency of a machine. For example, the presence

of a hardware stack has two advantages. First, it can be used to facili-

tate the emulation of target machines that have stacks. Second, it

can be used for subroutine linkage at the microprogram level. Another

type of local storage, present in the market these days, is the availa-

bility of intergrated circuits which form a 2, 4 or more bit wide local

storage register. However, the physical units (IC's) containing this

local storage can be concatenated together to form a local storage

registers of any width.

b) MAIN MEMORY: Arbitrary target machine instructions (macro instruc-

tions) reside in main memory. Thus, word width, total number of words

available and the addressing modes are important factors for general

purpose emulation.

c) CONTROL STORE: Control store refers to the memory containing micro-

instructions of the m-computer. The structure, size and volatility of

the control store is a large contributing factor in determining different

classes of m-computers. Depending on volatility this memory can be read

only (ROM) or read/write (RAM). In order to have concurrent fetch &

execution of microinstructions, the control store support registers (e.g.

the address register, data register, etc.) should be separate from other

local storage registers. Further support units may be provided to

address this memory in different ways, i.e., a separate ALU may be pro-

vided to do address calculations, etc.

d) NANO STORAGE: This is a read/write memory, one level below the

control store. In the nano storage are stored nano-instructions which

make up the nano program. Each microinstruction is associated with a

nano-program. A microinstruction is thus executed by executing its

corresponding nano program. The nano program is thus the micro-

architecture emulator. This is equivalent to a macro-instruction being

executed by its corresponding microprogram which is made up of a set

68

of microinstructions. This level or hierarchy of instructions is shown

in Fig. 3.3. The reason why some machines (38) are provided with a

nano-storage is that the user can have a much more 'finer' control over

the machine. With microinstructions he can define his own macro-instruc-

tions. With nano-instructions the user can define his own micro- instruc-

tions. This helps him in designing the microinstructions which are most

suitable for designing the macro-instructions.

3.3.3 FUNCTIONAL UNITS

The most common and dominant of the functional units is the arith-

metic logic unit (ALU). One or more ALU's provide the basic functional

operations (ADD, SUBTRACT, AND, OR, etc.) done by the m-machine on data.

Generality of ALU's requires them to process data in different

arithmetic conventions (one's and two's complement), process data of

different arithmetic modes (binary, decimal, etc.) and process data of

varying length (word, byte, etc.). The availability and generality of

various kinds of status flags (CARRY, ZERO, etc.) associated with the

ALU are also important characteristics of the machine. The presence of

a separate set of flags for the target-virtual flags, is a definite help

for target flag emulation.

At times secondary ALU's are provided for a fixed set of tasks like

evaluating the effective address, operating in a certain mode, etc.

Typically, a fixed size of ALU is available, i.e., it can operate on

operands of a certain length. However, one or more of the ALU's can be

physically cascaded to form an ALU of larger width, if it is required to

operate on operands of a larger width. This effect can also be achieved

in some m-computers which have an iterative or/and residual control

mechanism for the ALU (20).

A shifter unit (or units may be associated with either the inputs

or the outputs of the ALU (implicit shifting) or it may be a separate

unit in the machine (explicit shifting). Shifters may be single or

multiple bit shifters, arithmetic, logical or circular shifters and may

shift single or double words.

69

EXECUTED

GROUP OF MACHINE
OR MACRO INSTRUCTIONS

GROUP OF MICRO-
INSTRUCTIONS

EXECUTED

GROUP OF NANO
INSTRUCTIONS

Fig. 3.3 HIERARCHY OF INSTRUCTIONS

70

Masking of data before sending it to the ALU or after receiving it

from the ALU is achieved by units known as maskers. They can also be

implicit or explicit units. As mentioned earlier, this facility of the

machine improves the generality of the ALU functions. It can also,

along with the shifter, be used to extract a field of arbitrary length

and position from a word or a register. This 'extract' feature can

also be provided in a variety of different ways including a special

register designed to provide extract capabilities or have hardware

assisted features which decode target machine instructions by extracting

various fields. In the case of implicit shifters, the capability of pre

or post shifting, along with pre or post masking of data to and from the

ALU is useful for calculations involving variable bit arithmetic, bit

testing, etc.

Fig. 3.4 illustrates some common ALU structures found in current

m-computers (5).

Other types of functional units are also available on m-computers.

A common set of units found on some machines is the multiply and divide

unit. This may also be present implicitly in a machine by providing a

microperation which does the basic multiply-step/divide-step used in a

repeated addition/subtraction algorithm for multiplication/division.

3.2.3 DATA WIDTHS

Data widths characterize the machine according to the width of the

previous two features and the busses connecting them. The target data

width can be smaller, equal to or greater than the data width available

on the host. This poses a problem in emulation which can be solved in

various ways, e.g., by masking, shifting, iteration, etc. Alternately,

physical concatenation of modular units can be used to achieve wider

data widths. However, once configured, the host data width is permanent

since it is hardwired, but the emulated target machine data width may

be multiples of the host machine.

SHIFTER

MASKER

ALU

ALU

SHIFTER

SHIFTER

71

-->

Fig. 3.4 SOME ALU STRUCTURES

MASKER

72

3.2.4 BUSSES

Often, all the functional units and storage units are connected to

each other by a number of data paths called busses. The bus structures, in

terms of the number of busses and their width, affects the flexibility

and ease of microprogramming the machine. By generality we mean that

this aspect of host machines can ease the process of emulating targets

with a wide variety of (macro) instruction formats and addressing modes.

These two aspects of the bus structure also affect the addressing and

microinstruction format which in turn leads to generality of the machine.

At times, the bus structure is alterable in that connections can be set

up and altered under microprogram control through special purpose local

storage registers called residual control registers.

3.2.5 MICROINSTRUCTIONS

The mechanism through which the microprogrammer exercises control

of the various facilities available on the machine, mentioned in the

previous features, is obtained through microinstructions. Each facility

in an m-computer is either directly or indirectly controlled by micro-

operations which in turn are combined together in different ways to

produce microinstructions. We can classify microinstructions depending

on the fixed number of micro-operations per microinstruction.

1) Vertical microinstruction format represents at most one

or two micro-operations and resembles classical machine

language instructions.

2) Horizontal microinstruction format represents several

micro-operations. Thus a single horizontal micro-

instruction controls a number of hardware facilities

at the same time.

3) Diagonal microinstruction format lies between the two

extremes. it has a limited capability to perform

a few micro-operations in parallel.

Micro-operations within microinstructions are represented either by

single bits or multiple bits known as fields. The latter approach is

73

known as encoding of micro-operations. In the simplest design, remini-

scent of Wilkes' original proposal (1), there is no encoding at all and

each bit represents one micro-operation (direct control), i.e., controls

one resource or operation in the machine. Typically, single level or

direct encoding of micro-operations is represented as a field within the

microinstruction. Bits that control mutually exclusive resources, such

as operations that an ALU can perform, are combined into fields as shown

in Fig. 3.5.

The next step is to have two level or indirect encoding wherein

mutually exclusive micro-operations may be combined to form fields. The

meaning of a field depends on the value of another field. This scheme

is known as bit steering. The various forms of microinstruction

encoding are shown in Fig. 3.6.

The most common technique for microinstruction sequencing is to

include the address of the next microinstruction within the current

microinstruction. A second technique is to provide an incrementing

capability for the microinstruction address register. Conditional and

unconditional branches are implemented in both sequencing techniques. By

storing the next address in the microinstruction, multiple or n-way

branch capability is obtained. This is a useful feature to have in

m-machines used for general purpose emulation.

3.2.6 INPUT, OUTPUT & INTERRUPT STRUCTURE

Requirements for input/output facilities and an interrupt structure

depends on the environment in which the machine is to be used. For

general purpose microprogramming any 'reasonable' I/O and interrupt

structure provides the required support. However, if the machine is to

be used for general purpose emulation the requirements for I/O and inter-

rupt structure are very demanding. Mapping of target I/O facilities to

host I/O facilities must be complete. This means that the host should

allow the emulation of all target I/O facilities and I/O activities.

Interrupts should be soft (38) for the sake of generality. This

means that interrupts set up bits for examination rather than forcing

74

NO ENCODING ENCODED ALU OPERATION

00000001 000 1- ADD

00000010 001 2- SUBTRACT

00000100 010 3- ADD WITH CARRY

00001000 011 4- SUBTRACT WITH BORROW

00010000 100 5- AND

00100000 101 6- OR

01000000 110 7- COMPLEMENT

10000000 111 8- COMPLEMENT + 1

MICROINSTRUCTION MICROINSTRUCTION

Decoding
Net

(a) (b)

> 1 of 8

Fig. 3.5 NO ENCODING (a) VS SINGTR LEVEL ENCODING

1

t

5 Bits

Each bit controls one
microoperation

5 Bits

iField A Field B
2 bits 3 bits

of 4

1 of

<

Bits

of 8Decoding
net A

Decoding
net B

16*--

1

field

0

5

Decode
select

0 FieldA
2 bits

Field B
3 bits

Field C
2 bits

r

Decoding
net C

Decoding
net A

1 of 32<--
Decoding

net B

Fig. 3.6 MICROINSTRUCTION ENCODINGS:
a, NO ENCODING
b, SINGLE LEVEL ENCODING
c, BIT STEERING

75

76

predetermined control storage transfers or any other equivalent prede-

termined (built in) activity. Thus the microprogrammer has the flexi-

bility in handling them according to his needs or to be more accurate,

according to the needs of his emulated target.

3.3 m-COMPUTER PRIMITIVES

We can arrive at some interesting and more specific conclusions

about common characteristics of m-computers, now that we have identified

their various architectural features. These characteristics form or

identify the primitives of the host for which we seek to generate efficient

VMPL code. We will make use of them when we identify primitives to

manipulate the hardware. Essentially, this latter design is a syntac-

tical and semantic description of a language. Hence, the design of

microprogramming language primitives is achieved by associating or map-

ping the code generation primitives that we derived in chapter 2 onto

the 'hardware'primitives that exist for a class of m-machines. The

basic characteristics of m-computers belonging to the class that VMPL

is portable over are:

1) Word-oriented, Von-Neuman type fixed data width m-machines

(however, there are large and small data width machines).

2) Local storage limited to a few (8-16) general purpose

registers.

3) Input-Output and interrupt structure mostly hard and very

much integrated into the machine architecture.

4) Microinstruction format (horizontal, diagonal or vertical)

not limited to one type.

5) Microinstructions belong to four classes: 1) data

modifications, 2) data transfer, 3) transfer of control

and 4) machine control.

6) Subroutining and functional calls may not be present at

the host level.

7) The most general ALU structure which completely covers

all ALU structures is shown in Fig. 3.7. Most m-computer

ALU's are a subset of this structure.

SHIFTER

77

SHIFTER

MASKER

MASKER

ALU

Fig. 3.7 A GENERAL ALU STRUCTURE

78

8) An n-way branching instruction may be included in the micro-

instruction repertoire.

9) Iterative, shifting and masking capabilities, which might

be present would make the effective data widths variable

in nature.

10) Generally, only one set of status flags is present. Further-

more, flag generation for variable length operations is not

available (implementation can be obtained because of 8 above).

The first characteristic means that the m-machines are not stack

or parallel in nature. In general the machines are word oriented in

that the operations on the data, and the data widths available on the

machines are equal to the word size of the machine. As such, byte (or

any other word size multiple) operations have to be explicitly executed

by the microprogrammer by masking and shifting. What this characteristic

actually indicates is that the experience gained from the design and

implementation of compilers for higher level languages for conventional

computers applies to the design of a compiler for VMPL too.

Data widths of m-computers reflect on the class of computers which

can be considered as targets for the purpose of emulation. As an example,

if all m-computers were eight bits wide with no capability of repetitive

(or pseudo iterative obtained via masking and shifting) control then the

only computers which could be emulated (serve as targets) would be eight

bit computers.

Since local storage is generally limited to a few registers, emula-

tion of computers with a large number of registers becomes difficult.

However, there are exceptions to this case. MATHILDA (35), a dynamically

microprogrammable m-computer, has large amounts of local storage organized

as a hierarchy of registers. Special purpose registers are very limited

in nature, like the stack control registers on the MICRODATA 3200, the

floating point registers on the INTERDATA 8/32, the extract registers on

the Burroughs 1700.

The problem with I/O is its particular machine dependent structure

at the micro-level. A few m-computers (HP 21-MX, VARIAN 73, PDP11/40E,

INTERDATA 8/32, etc.) do their I/O via a set of busses (command, data,

address, status, etc.) a few others (MICRODATA 3200, CAL DATA PROCESSOR,

79

AMP,etc,) use memory mapped I/O, and yet another group (QM-1,,META 4,

INTERDATA 85, PRIME 300, MATHILDA, etc.) do their I/O via special pur-

pose registers. All these variations suggest a lack of a primitive I/O

structure associated with m-coluputers. In fact, the memory mapped case

is very restrictive as far as emulation of general target machines is

concerned.

Interrupt structures also vary a lot between different machines.

Interrupts can be soft (MICRODATA 3200, MATHILDA, QM-1) in that they are

under the control of the microprogrammer, partially soft (VARIAN 73,

HP21MX) wherein software or hardware logic can be provided to mask out

or conditionally jump on interrupts, or hard (PRIME 300, PDP 11/40-E)

wherein hardware logic determines a fixed set of trap address in case

of an interrupt. This last case is obviously the most restrictive for

general purpose emulation.

With respect to the fourth characteristic, microinstruction format,

we can assume that all m-computers have horizontal microinstructions,

since this structure essentially covers the other two cases. That is,

diagonal microinstructions are a degenerate case of horizontal micro-

instructions and vertical microinstructions are a degenerate case of

diagonal microinstructions. Thus we can limit our treatment to m-computers

with horizontal microinstructions.

The fifth characteristic, classes of microinstructions, indicates

that the same type of microinstructions are found in most m-computers.

Thus the task of designing a high level language processor is simplified

if an intermediate language compatible with these microinstructions is

designed. For example, the branch-on-decode opcode process of emulation

can be efficiently realize via an appropriate intermediate language

construct because of the presence of the n-way branch microinstruction

found in most m-computers.

Iteration, shifting and masking help achieve emulation of a target

machine on a host whose data widths do not match the target. This feature

is a requirement for the so-called universal emulator. (39) Conversely, the

sixth characteristic, subroutining, points to those features that are not

available to the microprogrammer. A high level language creates a virtual

80

machine with language constructs such as subroutine, function calls.

Furthermore, most m-computers do not have all operations associated

with programming languages, e.g., multiply and divide.

At what level should high level language constructs not present

in the host machine be handled? Should the programmer (in the high

level language) be concerned about these things or should the compiler

handle these deficiencies? In order to keep the programmer away from

the machine the compiler should handle all those situations which can

be recognized and solved effectively and in an efficient manner.

Although a variety of ALU structures are present, we can basically

recognize the presence of an ALU, shifter and masking units. The shifts

generally are single bit and can be achieved separately from the ALU.

The masking unit is usually associated with the output of the ALU but

in general is implicitly provided via the AND microinstruction of the

ALU.

Status flags create a problem for general purpose emulation. Not

only are the ways in which the status flags get activated non-uniform

across the different m-machines but no machine other than the MICRODATA

3200 actuallyprovidestwo sets of flags which can be used separately by

the host and the target machine. Furthermore, even if iterative control

is available, status flag generation is limited to fixed length data.

Thus variable precision operations--because of host target data width

mismatches--at the microlevel are difficult to achieve.

All these statements illustrate the need for sophisticated software

which can minimize the differences, supplement the deficiencies and

recognize the variations inherent in m-computers.

3.4 m-COMPUTER CLASSES

We can classify m-computers by their architectural features

according to the following overlapping classes:

1) CLASS 1 Computers that are microprogrammed.

2) CLASS 2 Computers that are virtual machine dependent.

3) CLASS 3 User microprogrammable machines.

81

4) CLASS 4 General purpose emulation computers.

5) CLASS 5 High level language support computers.

6) CLASS 6 Bit slice architecture based machines.

3.4.1 CLASS 1

Class 1 m-computers cannot be microprogrammed by their users.

Computers belonging to this class have a control store made up of

read-only-memory. The IBM 2050 'host' for the System 360 Model 50, and

the PDP 11/40 are two computers that belong to this class.

3.4.2 CLASS 2

The next class of m-computers to be considered are those that have

been designed with the primary purpose of implementing a particular tar-

get machine architecture. These machines often support limited user

microprogramming. Thus this is the class of virtual machine dependent

hosts.

Most of the features like data widths, word and byte operations, bus

structure, input & output, interrupt structure, in these computers are

reflections or direct mappings of the architecture of the target machine.

In general these machines have more to offer than the original machine

they emulate. They may have more hardware functional units and software,

to implement extra user level machine instructions. Furthermore, addi-

tional read write control is provided for the user to implement his own

instructions. These enhancements are the primary reason why such mach-

ines are available in the market and are in general a cost effective buy

over the original machine. Although these machines are called 'general

purpose' emulators by their manufacturers, they are not so because of

their 'machine dependent' nature.

INTERDATA 8/32 and CALDATA 1/35 are two machines belonging to this

class. INTERDATA 8/32 has the same basic system level architecture as

the system 360 series. Data width, ALU operations, input & output and

interrupt handling is the same as in the 360's. Special hardware features

82

are provided for machine language instruction decoding and are tailored

for the 360 instruction set. Provisions for more than a single set of

registers useful in a multiprogramming environment and hardware multiply

& divide are enhancements over the earlier models of the 360. The

standard emulator for the 360 instruction set uses only part of the

total available control store, so the rest is available for user micro-

programming.

CALDATA 1/35 emulates a PDP 11/35 which is a low end version of the

PDP 11/40. Keeping in line with Digital Equipment Corporation (manufac-

turers of PDP computers), all devices on the CALDATA are addressed via

the MACROBUS (equivalent to DEC's UNIBUS). The word size, number of

registers, etc,, are the same. 'Input-output and interrupt handling is

hardwired according to PDP 11/35 specifications. Of course, a writable

control store is provided which makes the. computer user microprogrammable.

3.4.3 CLASS 3

This is the class of user microprogrammable computers. There are

two categories of these machines. To one category belong those computers

which are general purpose machines. They are provided with a variety of

microinstructions (horizontal or diagonal in nature), some general pro-

cessing facilities, 8 to 16 general purpose registers, etc. Interrupt

and I/O handling is partially soft. Usually an emulator for a machine

language and other software development aids are provided for user micro-

programming. It is important to note that the emulator is designed

'after' the machine has been constructed, i.e., the micro-architecture

is quite general and not restricted to the requirements of the machine

language.

The other category is of special purpose machines which are simple

in structure (usually vertical microinstructions) and are used as peri-

pheral processors, signal processors, etc. They offer the flexibility

which a hardwired machine doesn't have and are cost effective alterna-

tives to the general purpose m.- computers discussed above.

83

HP 21-MX and CASH 8 belong to this class. HP 21-MX is a general

purpose 16 bit computer with diagonal microinstructions. It does pro-

vide some facilities to handle machine language instructions. However,

these facilities are very general and can be used effectively by a

microprogrammer. Interrupt handling is partially soft and input & out-

put is done via a main I/O bus.

CASH 8 is an inexpensive microprogrammable computer. It is used

most frequently as a substitute for hardwired process controllers. It

is extremely simple in architecture (doesn't have a main memory) with

very few restrictive facilities.

3.4.4 CLASS 4

This is the class of computers which can be used as general purpose

emulation machines. There are essentially two categories of architec-

tures which fit this class.

In the first category, we have m-computers with a large and flexi-

ble local storage and enough processing facilities to efficiently emulate

various user level architectures with ease and efficiency. Emulation of

various word widths can be done easily by providing residually controlled

masking and shifting capabilities. The input & output and the interrupt

structure is soft to be tailored according to requirements.

In the m-machines of the second class the microarchitecture can be

designed by the user. This is done by providing an architectural level

below the micro level known as the nano level and correspondingly nano-

architecture. Data widths, input & output and interrupt handling are det-

ermined by nano-instructions which make the machine at the micro-

architecture look very soft. This two level structure permits flexi-

bility in the design of upper level microinstructions which in turn make

the design of machine language instructions simpler.

MATHILDA and 0M-1 are two computers belonging to this class.

MATHILDA is a general purpose dynamically user microprogrammable computer

with an abundance of local storage and provision for masking and iterative

control that make this computer suitable for general purpose emulation.

84

Input-output registers are provided for general purpose I/O transfers

and a soft interrupt structure is available.

QM-1 is also a general purpose m-machine employing two levels of

control. The microlevel architecture is defined by nanoprograms residing

at the nano level. Data widths are fixed but iteration is available via

automatic repeated execution of the nano instructions. I/O and interrupt

handling are soft.

3.4.5 CLASS 5

This class of machines is the class of so-called high level language

(h11) support machines. These machines have features built into them

which support a particular style of language. Essentially, the various data

types of a language require some kind of iterative or residual control

for 'varying' the data width dynamically. A block structure language

is easily implemented on a stack-like architecture, i.e., the hardware

support of a stack at the microarchitecture level.

BURROUGHS 1700 and MICRODATA 3200 are high level support machines.

The BURROUGHS 1700 was designed to support a variety of intermediate

languages known as s-languages (34). Various high level lanaguages are

compiled to different s-languages which are then executed on the compu-

ter. Main memory is bit addressable and the processing facilities can

be used iteratively, providing any required effective data width. Resi-

dual control is provided to configure the machine into a structure which

is most efficient for a particular s-language. All I/O and interrupts

are soft.

MICRODATA 3200 is provided with an emulator for a stack oriented

machine. The emulator is known as the 32/S. The architecture of the

32/S was designed in conjunction with MPL-Microdata Programming Language,

a machine independent high level programming language. Since MPL is a

block structured language, the stack on the 3200 is used extensively.

This is an example of direct hardware support for a high level language.

85

3.6.6 CLASS 6

This class of machines is a Set of families of integrated circuit 'chips'

available in the market and microprogrammable by their nature. They

are known as bit slice processors. The ALVs are essentially parts of reg-

isters, functional processing units, etc., 2 to 4 bits wide. Any number

of these can be cascaded together to produce the desired word width.

Also any support circuitry comprising extra registers, input & output

and interrupt handling can be attached to the machine to form a variety

of architectures. Thus tailoring is achieved using other support chips.

Many architectures can be emulated as long as the chips are connected

together as required. INTEL 3000 and AND 2900 series of IC's belong to

this class of machines.

3.5 CONCLUSIONS

In this chapter we have recognized some of the hardware primitives

and constraints we are going to work with. These can be summarized as

follows:

1) Word oriented, Von Neuman type machine architecture.

2) Fixed data widths.

3) Limited local storage.

4) Hard Input & Output and interrupt structure.

5) Conventional microinstructions.

6) No subroutining facilities.

7) Limited number of functional units.

8) N-way branching.

9) Iteration, shifting & masking capabilities available.

10) Only host status flags available.

We also categorized m-computers into 6 classes. In the rest of this

thesis all references to m-computers will mean computers belonging to

classes 2 to 6, i.e., those m-computers which are user microprogrammable

in nature.

4. PORTABILITY

4.1 INTRODUCTION

86

This chapter is concerned with solving the third problem which is

identified in Chapter 1. The statement of the problem is:

A general tool (for microprogramming) has not been

provided. Specifically, the problem of portability

has not been addressed or solved effectively (in

earlier attempts for high level microprogramming

languages).

Portability has been defined in several ways. According to Waite

(57), the portability of a program is a measure of the ease with which

it can be implemented on a new machine. Another definition is that

portability is the property of a system which permits it to be mapped

from one environment to a different environment (58). Although these

qualitative definitions sufficiently describe the problem, Brown (59)

established a more quantitative measure:

A program or programming system is called portable

if the effort required to move it into a new environment

is much less than the effort that would be required

to reprogram it for the new environment.

4.2 CLASSIFICATION OF TECHNIQUES

Techniques for transferring software from one environment to another

can be divided into two general categories. These two categories are:

1) Conversion techniques

2) Inherently portable techniques

4.2.1 CONVERSION TECHNIQUES

Within this category come all techniques which accept programs which

87

were written for a particular system without any forethought of porta-

bility. This means that the requirement to transfer the programming

system is not considered at system development time so as to provide

inherent portability properties. Consequently, such systems are trans-

ferred by various conversion techniques. Some of these techniques

produce an equivalent program for the new machine via decompilers, while

others simply attempt to execute the original program (program written

for machine A) via emulation or simulation (for machine B).

Although these techniques have been used for some programming

systems, it seems obvious that inherently portable systems provide a

more general and desirable solution to the portability problem.

4.2.2 INHERENTLY PORTABLE TECHNIQUES

From the discussion on conversion techniques, one comes to the

conclusion that those techniques are not the real solutions to the prob-

lem of portability simply because the problem is not an initial design

constraint. As indicated by Halstead (58), a procedure which avoids a

problem instead of solving it is often the best solution after all.

Inherently portable techniques as such attempt to facilitate the trans-

fer problem by writing the original code in such a way that it will

'inherently' (by its very nature) be easy to transfer.

This is very much the way that 'machine independent high level'

languages attempt to solve the portability problem. However, because

of the various and varied implementations of these languages on different

computer systems, the portability problem is only partially solved (60).

Lack of universal standards, provisions of extensions by vendors which

are usually machine dependent and efficiency considerations have made

simple recompilation of software to facilitate the transfer from one

system to another impractical. Thus, programs written in these languages

cause invalid results when run on one system even though they ran cor-

rectly on the original system.

The problem of providing compilers for many high level languages on

many machines is the basic goal behind the UNCOL (Universal Computer

Oriented Language) concept (42). UNCOL was a language proposal intended

88

to provide a common path between many high level languages and many

machine languages. Each high level language could be translated into

UNCOL once and in turn one UNCOL translator could be written for each

machine. Thus, in order to implement M high level languages on N

distinct machines, we would require M ± N compilers. This implementation

effort would be considerably less than that of conventional compilation

techniques which would require M * N compilers (42) Fig. 4.1.

Although several attempts have been made in this direction, the

need for UNCOL to be 'universal' is the main reason for its lack of

success. The only viable example of this approach is the implementation

of one high level language on various machines. PASCAL (56) is easily,

i.e. with little effort, implemented on different systems. A compiler

for PASCAL written in PASCAL is available in an abstract intermediate

language called p-code. In order to implement PASCAL on a system, the

implementor has to write a simulator for p-code. He can then transfer

the available p-code program (actually the PASCAL compiler) to his

system. At this point, he has a working PASCAL compiler on his system.

The effort involved in writing the simulator (for p-code) is quite

small as compared to writing a compiler for PASCAL.

In bootstrapping the compiler for a language, L is realized in a

subset of that language. Then the compiler for this subset is realized

in a low level language for the machine on which it is desired to imple-

ment the language L. The language is portable because the only effort

required to implement L on any machine is the realization of the trans-

lator for the subset. The main drawback of this technique is that most

high level languages (least of all subsets of high level languages) are

not well suited for writing compilers for themselves. As such, a variety

of modifications to the pure bootstrapping techniques have evolved (61).

One variation is the development of several special languages which

are well suited for the first stage in the bootstrapping technique.

Another variation makes use of several languages in a hierarchical struc-

ture. Only the lowest language need be mapped into a new machine in

order to initiate the bootstrapping sequence.

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

LANGUAGE 1

LANGUAGE 2

LANGUAGE 3

UNCOL

COMPUTER 1

COMPUTER 3

COMPUTER 2

89

3+3=6 COMPILERS

(a) UNCOL USED AS INTERMEDIATE LANGUAGE

COMPUTER 1

COMPUTER 2

COMPUTER 3

3+3+3=9 COMPILERS

(b) DIRECT IMPLEMENTATION OF LANGUAGES

Fig. 4.1 HIGH LEVEL LANGUAGES AND COMPILATION

90

'Abstract machine modelling' is described by Newey (62) as a pro-

cedure based on the concept that the fundamental data types and opera-

tions required to solve a particular problem define a special purpose

computer (the abstract model) which is ideally suited to that problem.

The algorithm for obtaining the solution can be encoded as a program

for this 'abstract machine model.' In order to obtain a running version,

the abstract machine model is realized on an existing computer by imple-

menting its basic data types and operations. The term 'descriptive

language' instead of 'abstract machine' has been used by others (59).

We will refer to these models as the Intermediate Language Models and

the language describing the model as the intermediate language.

In some cases only one level of intermediate language is required

to implement the comniler. This results in a very simple variation of

the bootstrap technique described previously. However, an attractive

alternative exists in the development of an entire hierarchy of inter-

mediate languages to provide convenient steps from the high level

language for describing the compiler to the lowest level to be boot-

strapped.

The objective of the hierarchy is to ease the implementation of

each intermediate language and to obtain a 'base' intermediate language

which is easy to implement on the target computer. It is important

that this base language be easy to implement because it is at this level

that true portability is determined. This is so because after the hier-

archy has been completed once, the only requirement for transferring the

system to a new machine is the realization of the base intermediate

language on the new machine (63).

4.3 APPLICATION TO MICROPROGRAM PORTABILITY

We have reviewed some of the techniques used to transfer computer

software from one machine to another. These include methods of conversion

and the production of inherently portable software. Unfortunately, none

of these techniques provide a complete and general solution to the micro-

program portability problem. Perhaps a combination of techniques will

provide a reasonable solution to transfer programs; namely, a machine

independent language using a multiphase compilation system. In such a

91

combination, the compiler works downwards through a series of inter-

mediate microprogramming languages for abstract machines. In the last

phase, the compiler generates target machine dependent code. This last

phase would have to be created for each target m-computer. This proce-

dure is adopted by Mallett and Lewis (7) and is the one we use for pro-

ducing inherently portable microprograms. In the next section we briefly

describe their model for the compilation system.

4.3.1 THE MALLETT-LEWIS MODEL

This compilation system has three phases as shown in Fig. 4.2. The

first phase is the machine independent part. This consists of a compiler

that does the syntax and semantic analysis, translating the high level

language through various levels of intermediate languages, as needed, to

produce a sequential string of micro-operations for an abstract m-

computer called the intermediate microprogramming language machine (IMLM).

Next, a machine (IMLM) dependent concurrency recognition and opti-

mization algorithm composes the sequential micro-operations in the IMLM

horizontal format. The last phase is the code generation part of the

system and is machine dependent. For each host m-computer a machine

dependent interface is needed. The interface programs will decompose

(if necessary) the optimized IMLM microinstructions and translate them

into host microinstructions. A final code optimization pass produces

horizontal microcode.

The most important component of this system is the intermediate

microprogramming language (IML). In the next chapter we describe the

particular IML which we have used for our compilation system.

4.4 CONCLUSIONS

In this chapter we have discussed the portability problem in general

and looked at the various solutions available. We have adopted the model

of multiphase compilation proposed byMallettand Lewis (7). Thus, the

third problem in this chapter (and Chapter 1) as stated is solved via

92

Machine Independent Part

High-Level Source

Syntax and Semantic
Analysis

Levels of Inter-
mediate Languages

Sequential String
of IMLM

Microoperations

Composition

Microoperation
Concurrency Recog-
nition and
Composition

Optimized Host/IMLM
Microinstructions

Machine
Dependent Part

Host/IMLM MIs to

Host MIs

Optimized Host
Microinstructions

Tables,
List, and

Stacks

Host
Dependent
Residency
and Timing
Deto

Fig. 4.2 THE MALLETT-LEWIS MODEL OF A
TRANSLATION SYSTEM FOR PRODUCING
INHERENTLY PORTABLE MICROCODE

93

the following implication:

IMPLICATION 9: Machine independency (portability) is obtained by

compiling the language into an abstract intermediate machine language

(IML). The intermediate language is then compiled into microcode.

94

5. INTERMEDIATE MACHINE LANGUAGE

5.1 INTRODUCTION

The use of an intermediate machine language (IML) in this research

has greatly facilitated the translation process from a higher-level

machine independent language into the final machine-dependent microcode.

The Mallett-Lewis model (chapter 4) requires an intermediate language.

The question now is what kind of intermediate language format should be

used? In the next section we present a brief summary of the various

intermediate language formats which are available and results obtained

by various people as to their usage.

5.2 IML FORMATS & ATTRIBUTES

In (66) Lawson discusses the pragmatics of various intermediate

language text representations (formats), along with their hardware

implications. The five types of IML representations which he describes

are:

a) QUADRUPLE OR THREE OPERAND FORMAT: A quadruple is composed of an

operation code, and one to three operands. The basic structure for

the quadruple intermediate text is:

op-code 1st operand 2nd operand 3rd operand

The first two operands are essentially the sources and the third

operand is the destination of the result.

b) TRIPLE OR TWO OPERAND FORMAT: A triple is composed of an operation

code and one or two operands. The basic structure for a triple is:

op-code 1st operand 2nd operand

In the case of the operation specified for the triple requires more

than two operands, the third operand is on the top of the stack. Thus,

this representation assumes the presence of a stack.

c) DUO OR ONE OPERAND FORMAT: A duo is composed of an operation code

followed by one operand. Its basic structure is:

op-code operand

When the specified operation requires more than one operand, the

95

other operands are assumed on top of the stack.

d) POLISH NOTATION: There is no rigid structure that determines a fixed

relationship between operation codes and operands. Each position of the

IML stream is examined to determine whether it is an operation or an

operand. However, the representation does require the presence of an

operand stack.

e) PROGRAM TREE: The elements of the IML stream (the IML instructions

comprising the program) are not necessarily located in contiguous loca-

tions. Each node in the instruction stream must be examined to deter-

mine whether it is an operation or an operand. In this respect, it is

similar to the polish notation. This notation also requires an operand

stack.

Four measurement units are used to indicate the differences between

the five IML text representation. These are:

1) Number of instruction elements: This is simply the number of

unique units of information in the IML stream, i.e., an operation

code, operand, etc.

2) Instruction increment size: This measurement indicates the

number of units that must be skipped by the instruction fetch-

decode unit of a computer to access the next element of the

instruction stream.

3) Number of units directly examined: This measurement indicates

the number of units that must be examined by the instruction

fetch-decode unit of a computer to determine the composition

of the instruction.

4) Stack requirements: This measurement indicates what stacks

are required for each of the IML format and the type of stack

usage.

Lawson's (66) results for the five IML formats are given in Table

5.1. These results are based on the IML representation of one assignment

statement which is similar to those used in several high-level program-

ming languages:

X = A * B/(C+D)

With these measurements in mind, we may now evaluate and contrast

the attributes of the various IML formats.

96

TABLF 5.1 INSTRUCTION-STREAM COMPARISON FOR
THE ASSIGNMENT STATEMENT

INSTRUCTION-
STREAM
FORM

NUMBER OF
INSTRUCTION
ELFMENTS

INSTRUCTION
INCREMENT

SIZE

NUMBER OF
UNITS

DIRECTLY
EXAMINED

STACK
REQUIREMENTS

THREE ADDRESS 16 4 4 NONE

TWO ADDRESS 12 3 12 1

(For Temporaries)

ONE ADDRESS 12 2 12 1

(For a Push-
Down Accumu-

lator)

POLISH 9 1 9 1

(Operand
Stack)

PROGRAM-TREE 27 VARIABT,F 9 2

(Operand &
Operator

Stack)

97

1) CONCISENESS

Conciseness is a measure of the number of IML elements required

to represent the decomposed form of the high level language state-

ment. The order of conciseness is as follows:

Polish; one address, two addresses, three addresses,

program tree.

2) COMPLEXITY IN INTERPRETATION

This complexity deals with the work which the instruction fetch-

decode unit of a computer has to perform in decoding the instruc-

tion and preparing the operands for the execution of the instruc-

tion. The three address format is the least complex since the

instruction fetch-decode unit does not have to examine each unit

(operation code, operand) to determine its class. The polish and

program tree notation on the other hand, are the most complex

since each unit of the IML stream has to be examined to determine

the class of the element (i.e., operation-code or operand). The

complexity ratings for the five formats are:

three addresses; one address,two address;

Polish; program tree.

In another paper by Merwin (67) three IML formats are compared for

execution speeds. The three formats selected are quadruples, triples

and duos. Four programs written in FORTRAN were used to evaluate the

performance of the three IML representations. It was found that the

quadruple format is the most 'compact' when compactness is related to

the execution time of the IML instruction stream of the four programs.

From the data which is collected in these two papers, we come to

the following conclusions:

1) The quadruple (three address) IML format takes the least

amount of execution time.

2) The polish IML format is the most concise. This means that

when compiling a high level language statement into the IML

statement, the polish notation produces the least number of

IML units. In other words, the resulting polish statements

are nearest to the original high level language statement.

We will show later how this 'nearest' criteria is an

98

important requirement for the IML which we select.

3) Other than the quadruple format, all IML formats require a

stack.

Eckhouse (12) was the first to use the concept of an IML for the

compilation of a high level microprogramming language to microcode. He

uses SML (13) as an intermediate language for the conversion of MPL into

microcode. SML resembles the code of a single-address computer. There

are only two types of instructions in SML--register loads and stores, and

execute operations. Arguments needed for operations must first be loaded

in argument or A-registers. Results of operations are left in result-or

R- registers, and may be stored in other registers or memory locations.

Temporary or T-registers are available for intermediate results.

SML fails in solving the register allocation-deallocation problem.

The compiler can use any number of A & T registers and no information is

kept of the variables and the corresponding A & T registers in which

they reside. This produces a lot of redundant load and store instruc-

tions at the SML level. These redundant load and store instructions

then migrate to the microcode level producing non-optimum microcode.

Furthermore, the SML code produced is not highly suited for two or three

address m-computers.

From the initial discussion, it is obvious that we should not use the

two address, one address, polish & program tree IML formats. The main

reason for this decision is the requirement of a stack for their execu-

tion. Thus, the microcode which would be produced on further compila-

tion of these formats would be well suited (efficient) for m-computers

with stacks available at the microlevel. The availability of a stack

at that level is not a primary characteristic of m-computer architecture

(Chapter 3). MPL (18) provides us with a case where a one address IML

format is used as the intermediate language. The intermediate language

is executed on the MICRODATA 3200 by a set of microprograms. Central

to execution of this one address IML (as indicated earlier) is the

stack capability which is a hardware feature of the 3200 at the micro-

architecture level. Thus, the hardware feature (stack) is used by the

micro-programs in executing the IML instructions.

99

We did some tests on the two formats to further justify the usage

of the three, address IML format over the one used by Eckhouse.

A high level VMPL program (VM1-Appendix C) was taken and broken

into three equal parts. These three parts were then coded or compiled

down to a three address IML and a single address SML like language.

Fig. 5.1 shows a piece of the VMPL codes and its corresponding three

address and single address equivalents. The three address IML constructs

shown are the actual three address IML constructs designed in the next

section.

Analysis of the resulting code is based on the software science

criteria developed by Halstead (68). The basic quantities which have

to be measured are given in Table 5.2. Table 5.3 indicates these

quantities for the programs shown in Fib. 5.1. The three measuring

units are:

a) PROGRAM VOLUME (V): Whenever a given algorithm is translated from one

language to another, its size changes. This size change is reflected by

the volume that the algorithm occupies in the various languages. Volume

V can be defined as:

V = Nlog2n

b) PROGRAM LEVEL (L): The level of a program is a measure of the

relative 'goodness' of a certain representation of a program as compared

to another representation. The 'higher-level' language concept can be

measured by this criteria through the equivalent program representation.

L = (2+n2) Log2 (2+n2)/V

c) INTELLIGENCE CONTENT (I): It seems fundamental to measure how much

is said in a program in terms of its information content. This measure

is called the intelligence content and is defined as:

I=LxV

The results are tabulated in Table 5.4. Comparing the two IML format

results, we come to the following conclusions:

1) Based on the volume criteria V, the three operand format has

a lower volume than the single address format. This means that

when VMPL is translated to the three address IML format, we

100

IFTRUE (IR,7) THEN ;

BEGIN;

PCTEMP=PC-1;

PCTEMP=CRNTPG(PCTEMP);

MAR=PCTEMP.OR.ADR;

MDR=MEM[MAR];

END;

ELSE;

BEGIN;

MAR=ADR;

END;

ENDIF;

IFTRUE (IR,8) THEN;

BEGIN;

MART=MFM[MAR];

IFTRUE (MAR.GT.7) THEN;

BEGIN;

IFTRUE(MAR.LT.16)THEN;

BEGIN;

INC MEM[MAR];

END;

ENDIF;

END;

ENDIF;

MAR=MART;

END;

ENDIF;

Fig. 5.1(a) A SMALL PART OF A VMPL PROGRAM

101

CONDF

SUB

EXTR

OR

RMOVE

BRCH

.IR.7

PC

CRNTPG

PCTEMP

MEM

E L.002

TL.001

C 1

PCTEMP

ADR

MAR

PCTEMP

PCTEMP

MAR

MDR

L. 001

MOVE MAR ADR

L.002

CONDF .IR.8 T L.003

RMOVE MEM MAR MART

COMP MAR C 7

CONDT N T L.004

COMP MAR C 16

CONDF N T L.004

RMOVE MEM MAR +T.001

INC +T.001

WMOVE MEM MAR -T.001

L.004 MOVE MART MAR

L.003

Fig. 5.1(b) THREE ADDRESS CODE FOR SOURCE
PROGRAM OF Fig. 5.1(a)

102

LOAD R1,IR L-002 LOAD R1,IR

LOAD R9,*64 LOAD R2,*128

AND AND

BNZ L-001 BNZ L.003

LOAD P1,PC LOAD R1,MAR

LOAD R9,*1 READ MEM

SUB STORE R1,MART

STORE RO,PCTEMP LOAD R1,MAR

LOAD R1,CRNTPG LOAD R9,*7

LOAD R2,PCTEMP SUB

AND BIN L.004

STORE RO,PCTEMP LOAD R1,MAR

LOAD R1,ADR LOAD R2,*16

LOAD R2,PCTEMP SUB

OR BNN L.004

STORE RO,MAR LOAD R1,MAR

LOAD R1,MAR READ MEM

READ MEM LOAD R1,R0

STORE RO,MDR LOAD R2,*1

BRH L.002 ADD

L.001 LOAD R1,MAR LOAD R1,MAR

STORE R1,ADR WRITE MEM

L.004 LOAD R1,MAR

STORE R1,MART

L.003

Fig. 5.1(c) SINGER ADDRESS CODE FOR SOURCE

PROGRAM OF Fig. 5.2(a)

103

TABLE 5.2 BASIC QUANTITIES TO BE MEASURED
FOR DEVELOPING SOFTWARE SCIENCE
CRITERIA FOR PROGRAMS

ni = NUMBER OF UNIQUE OR DISTINCT OPERATORS

n2 = NUMBER OF UNIQUE OR DISTINCT OPERANDS

N1 = TOTAL USAGE OF ALL OF THE OPERATORS

N2 = TOTAL USAGE OF ALL OF THE OPERANDS

n
2
*= NUMBER OF UNIQUE OR DISTANCE I/O PARAMETERS

n = n1 + n2

N = N1 + N2

104

TABLE 5.3 BASIC QUANTITIES FOR THE

PROGRAMS OF Fig. 5.1

INSTRUCTION-
STREAM
FORM

n1 n2 N1 N2 n2* n N

VMPL 14 10 59 26 7 24 85

THREE ADDRESS 11 12 17 31 7 23 48

SINGLE ADDRESS 12 13 46 31 7 25 77

105

TABLE 5.4(a) CALCULATED MEASURES FOR PROGRAMS
OF Fig. 5.1

INSTRUCTION-
STREAM
FORM

V
(VOLUME)

L
(LEVEL)

I

(INTELLIGENCE
CONTENT)

VMPL 389.72 .0732 28.53

THREE ADDRESS 217.13 .1314 28.53

SINGLE ADDRESS 357.5 .0797 28.49

TABLE 5.4(b) CALCULATED MEASURES FOR VMPL
PROGRAM AND ITS EQUIVALENT

OF APPENDIX C

INSTRUCTION-
STREAM
FORM

V
(VOLUME)

L
(LEVEL)

I

(INTELLIGENCE
CONTENT)

VMPL 3039.82 .0741 225.25

THREE ADDRESS 1737.04 .1331 231.20

SINGLE ADDRESS 2806.38 .0811 227.60

106

produce the least number of statements. Thus, on a per

statement basis, each three address IML statement is 'nearer'

to the original VMPL statement than a single address IML

statement.

2) The level criterionL indicated that the three address IML

format is at a higher level than the single address IML format.

This further reinforces the claim of the 'nearness' of the

three operand IML format to VMPL. By keeping the same power

in the instruction set of the three & single address IML's

and changing only the addressability of the underlying machine,

the level of the language changes, i.e., 'reducing addressability

of a language reduces the level of the program written in the

language.'

3) The intelligence content of the two formats indicates that

this criteria holds invariant to within 10% under the trans-

lation process. This indicates an equivalence in the algo-

rithmic power of the two IML formats. A third observation

is based on the level figures of VMPL program segments

compared to the corresponding IML figures. The VMPL level

is found to be less than the three address IML notation! This

is a strange result and can be explained in the following way.

Halstead's level calculations are based on the information-

theoretic point of view of a program, i.e., essentially its alphabet.

VMPL has a lot of redundancy for reliability which inflates the alphabet

count. Thus, the level of the representative programs in VMPL is less

than the level of the corresponding three address IML format. However,

in spite of this redundancy, the VMPL representation has a higher level

than the equivalent single address IML format. Thus, we reach an

important result that:

'Redundancy in a language reduces the level

of the programs written in the language.'

This result is also confirmed by Elshoff (69).

The general result from all this analysis is that the three operand

IML format is 'nearer' to VMPL, than the single address VMPL format. By

keeping 'nearer' to VMPL, IML statements reflect as much as possible

the semantic content of VMPL statements. Thus, each IML statement, on a

107

per statement basis, has a lot of information about the original VMPL

statement for which it was produced. The three address IML statements

bind the translated code to a high level register oriented machine.

Keeping the IML code high level helps in the later stages of

compilation. The compilation model selected in Chapter 4, based on

portability considerations, requires a high level IML which can easily

be decomposed into a variety of low level microinstruction formats

corresponding to various m-computers. Since most m-computers are reg-

ister oriented, (Chapter 2) having an IML which is register oriented

further helps us in achieving the goal of portability and efficiency.

By selecting the three address format, the IML achieves the fol-

lowing things:

1) Provides the most opportunities for subsequent economization

of micro-code.

2) Resembles the code of a general class of register oriented

m-machines.

3) Because of 1 & 2 tight micro-code can be produced for a

variety of m-machines.

All this can be summarized by the following implication.

IMPLICATION 10: The IML format selected for the compilation model is

the three address format or quadruples. Furthermore, the IML statements

are high level in that they resemble VMPL statements as much as possible.

Known characteristics of m-computer architecture and instruction reper-

toire can be used in designing various facets of IML statements.

5.3 INTERMEDIATE LANGUAGE

A program written in VMPL gets translated into an abstract quadruple

like intermediate language. The various statements of the IML are dis-

cussed here. In discussing the IML, reference to VMPL statements has

been made, since, IML is highly dependent on VMPL (I-10).

Basically there are two kinds of statements in IML. One group is

associated with the various declaration statements of VMPL and is known

as the Intermediate Information Statement Group (IISG). The other group

108

is associated with the actual executable statements of VMPL and is known

as the Intermediate Executable Statement Group (IESG).

5.3.1 IISG

An IISG statement is made up of five objects. The basic format of

the statement is:

DECLARATIONTAG, IDENTIFIER, DIMENSION, LENGTH, OTHERINFORMATION

where

DECLARATIONTAG - is a unique number of the form NMA. N and M are

numeric and A is an alphanumeric digit. This number

uniquely identifies the corresponding VMPL declara-

tion statement to which the IDENTIFIER belongs, i.e.,

identifies the type of the IDENTIFIER. A list is

shown in Table 5.5.

IDENTIFIER - is the identifier (as defined in VMPL syntax) which is

associated with the VMPL declaration.

DIMENSION - is an integer which gives the number of unique elements

associated with the identifier. Its absence, a zero

(0) or a one (1) all mean that the IDENTIFIER is

dimensionless. Essentially, the only time this

object is used is with the VMPL, MEMORY and STACK

type variables.

LENGTH - is the length of the identifier, i.e., the number of

bits. This object is used with most of the declara-

tive statements of VMPL.

OTHERINFORMATION- is only associated with a few DECLARATIONTAG's.

Its meaning and format varies with the tag and all the

cases are discussed individually below:

1) When this object is associated with the tag belong-

ing to the FIELD declaration statement of VMPL, it

consists of three integers. These three integers

are the three integers associated with the FIELD

declaration which identify the bit positions and

the shift amount (Fig. 5.2).

TABLE 5.5 DECLARATIONTAG VALUES FOR IISG

DECLARATIONTAG NMA

N MEANING

0 NAME OF THE OTHERS

1 LOCAL

2 GLOBAL

4 SPROC

A MEANING

0 SIMPLE

1 MEMORY

2 STACK

3 PSTACK

4 FLAG

5 FIELD

6 USE

7 EXPECT

8 RETURN

9 EXTERNAL

109

M MEANING

0 NONE OF THE OTHERS

1 TEMPORARY

2 PERMANENT

J

A MEANING

A EMULATOR NAME

B PROGRAM START

C PROGRAM END

D WORDSIZE

E ARITHMETIC

F PROC NAME

G SPROC NAME

H BLOCK CODE START

I BLOCK CODE END

J BEGIN BLOCK
K END BLOCK

110

2) The other information object which gets asso-

ciated with the stack pointer (PSTACK) VMPL

declaration, indicates the push-pop sequence

associated with the stack. It consists of

four distinct symbols which were shown in

Chapter 2 Table 2.3.

3) When this object gets associated with the VMPL,

EXTERNAL variables it consists of a single

alphabet. The single alphabet indicates

whether the external IDENTIFIER is a simple

variable, a flag variable or a procedure(Fig. 5.2.).

4) In the case of the global FLAG declaration

statement of VMPL, this object (an integer)

indicates which of the predefined four flags

does the IDENTIFIER represent. In case the

IDENTIFIER is a general flag, the value of this

integer is 0(Fig. 5.2.).

Examples of VMPL declaration statements and the corresponding IISG

statements are shown in Fig. 5.3.

5.3.2 IESG

The IESG statements are based on quadruples with an operation and

three operands. All three operands are optional in that some statements

have none, some one, some two and some all three operands. First, the

overall format is discussed and then the individual statements are

discussed.

5.3.2.1 IESG FORMATS

The IESG statements are fixed formats with labels starting in the

first column and existing by themselves in a line. A star (*) in the

first column indicates a continuation of the previous statement. If the

line with the star is empty, it indicates the end of the continuation.

005

DECLARATIONTAG
IDENTIFYING FIELD

OPCODE, 11,9,

FIRST LAST
BIT BIT

POSITION POSITION

SHIFT
AMOUNT

OTHER INFORMATION

111

CARY, 1/F < FLAG

2(1/2)9 IOREG0 8/S t SIMPLEVAR
OTHER INFORMATION

IOPROCJ P PROCEDURE
DECLARATIONTAG
IDENTIFYING
EXTERNAL

2(1/2)4

DECLARATIONTAG
IDENTIFYING FLAG

FLG1 1/X < OTHER INFORMATION
X MEANING
0 NONE OF THE OTHER
1 CARRY FLAG
2 OVERFLOW FLAG
3 NEGATIVE FLAG
4 ZERO FLAG

Fig. 5.2 OTHERINFORMATION VALUES FOR IISG

DCL GLOBAL PERMANENT MEMORY MEM:[4096]:8;

221 MEM,4096,8

DCL GLOBAL TEMPORARY REG1:8, REG2:3;

210 REG1, ,8
210 REG2, ,3

DCL LOCAL PERMANENT REG3:8;

120 REG3, ,8

DCL FIELD OPCODE (11,9,8);

005 OPCODE, ,11,9,8

Fig. 5.3 VMPL - IML EQUIVALENTS

112

(VMPL)

(IML)

(VMPL)

(IML)

(VMPL)

(IML)

(VMPL)

(IML)

113

All other statements start in column seven or eight. The various

column designation are shown in Table 5.6. The general format of

an IESG statement is:

OPERATION OPERAND1 OPERAND2 OPERAND3 FLAGS

The OPERATION object recognizes the action which the IESG statement has

to take using the three operands which follow, i.e., OPERAND1, OPERAND2

and OPERAND3. The FLAGS object indicate the predefined VMPL flags

which have to be enabled during this operation.

Another aspect of these IESG statements is the presence of modifiers

with the OPERATION and OPERAND objects. This is done to retain the infor

mation contained in VMPL statements that will be useful in the produc-

tion of compact, machine dependent microcode. A simple example of this

are the compiler generated temporary variables. All such variables are

tagged with modifiers (+) or (-). This helps the register allocation/

deallocation phase of compilation know if the temporary is used later

on in a sequence of IML statements (+), or not used (-). Since the

compiler generates the temporaries, it knows their 'life-time' and

can easily generate these modifiers.

Another group of tags are associated with the various labels asso-

ciated with the GO TO, FOR, LEAVE & IF-THEN-ELSE statements. These

along with some of the IISG statements recognize each sequential block

of IML statements. The later phases of compilation uses these tags for

microcode compaction by noting the beginning and end of every straight-

line code segment. The heuristic underlying this approach is that there

cannot be more parallelism at the microcode level than is available in

the HLL (VMPL) program structure. The compiler is able to reveal the

inherent concurrency of the high level algorithm by tagging the

intermediate code with 'clues'. These 'clues' are subsequently used

by the compiler. We believe that maximal code concurrency can be detec-

ted and used in producing a minimal number of horizontal microinstructions

over straight line code segments. This aspect of code compaction is

given in (72). The various modifiers are listed in Table 5.7.

114

TABLE 5.6 IML COLUMN DESIGNATIONS

COLUMNS VALUES

8-14 OPERATION

17-23 OPERAND 1

20-32 OPERAND 2

35-41 OPERAND 3

43-46 FLAG SETTINGS

7 OPERATION MODIFIER

16,25,35 OPERAND MODIFIER

115

TABLE 5.7 OPERAND MODIFIERS

SYMBOL MEANING

BIT OPERAND

/

/ CONCATENATED OPERAND

+ TEMPORARY NEEDED

TEMPORARY NOT NEEDED

C CONSTANT

P PARAMETER IDENTIFIER

T LABEL FOR FIRST IF-THEN-ELSE BRANCH

E LABEL FOR SECOND IF-THEN-ELSE BRANCH

G LABEL FOR A GOTO

F LABEL FOR A FOR

L LABEL FOR A LFAVE

S LABEL FOR A SELECT

A ARGUMENT IDENTIFIER

116

5.3.2.2 IESG STATEMENTS

There are seven classes of IESG statements. Each class is treated

separately.

CLASS 1 IESG STATEMENTS

The general format of statements belonging to Class 1 is:

OPERATION SRC1 SRC2 DEST

The OPERATION is either an arithmetic or a logical operation (one to one

correspondence with VMPL arithmetic and logical operators Table 2.4)

which require two sources, SRC1 & SRC2 and produce a result which is

stored in DEST. The NOT logical operation only requires one source.

As such, it does not have the SRC2 object. The various OPERATION's

are listed in Table 5.8.

CLASS 2 IESG STATEMENTS

The shift and rotate instructions belong to Class 2 corresponding

to the shift and rotate instructions of VMPL Table 2.5. The format is:

OPERATION SRC1 COUNT,VALUE DEST

In case the operation is one of the shift instructions, SRC1 is shifted

by COUNT placeS filling the empty places by VALUE and storing the result

in DEST. If the operation is a rotate instruction, the VALUE part from

the above format is missing Table 5.9.

CLASS 3 IESG STATEMENTS

Class 3 operations are for reading and writing into the MEMORY class

variable of VMPL. The two operations are associated with reading from

and writing into memory Table 5.10. The format is:

OPERATION MEMVAR INDEX VALUE

The object INDEX is used as an index into the memory array MEMVAR to

point to a location. VALUE either receives the value or sends the value

to this location.

117

TABLE 5.8 CLASS 1 IESG OPERATIONS

OPERATION MEANING

ADD ADDITION

SUB SUBTRACTION

MPY MULTIPLY

DVD DIVIDE

AND LOGICAL AND

OR LOGICAL OR

XOR LOGICAL XOR

TABLE 5.9 CLASS 2 IESG OPERATIONS

OPERATION MEANING

SHIL

SHTR

ROTL

ROTR

SHIFT LRFT

SHIFT RIGHT

ROTATE LEFT

ROTATE RIGHT

118

CLASS 4 IESG STATEMENTS

Class 4 deals with the various branch operations. It can have

one or two operands with the second (if two) or first (if one) always

being a label. A list of operations is given in Table 5.11.

CLASS 5 IESG STATEMENTS

The seven statements which belong to Class 5 are there for the

translation of some of the miscellaneous statements of VMPL (INC, DEC,

POP, etc.). In all cases there is a one-to-one relation with the cor-

responding VMPL statement Table 5.12. They are one, two or implicit

operand statements.

CLASS 6 IESG STATEMENTS

Class 6 contains two statements which are translated from the

FOR and SELFCT, VMPL statements. Their format is shown in Fig. 5.4.

Note that for the SLCT statement we use the continuation aspect of

IML statement format.

CLASS 7 IESG STATEMENTS

The three statements in Class 7 have again a one-to-one relation

with corresponding VMPL statements and deal with the control aspect of

program execution. They are shown in Fig. 5.5.

This finishes the design of the IML constructs.

5.4 CONCLUSIONS

Comparing the designed IML constructs and the various constraints

and requirements on the IML from in Chapter 5 and the earlier sections

of this chapter (I10), we come to the following conclusions:

1) The IML constructs are high level in that most of them have a

one-to-one correspondence with VMPL statements.

2) The IML constructs are register oriented, i.e., they can be

thought of as the machine language of an abstract register

oriented machine.

119

TABLE 5.10 CLASS 3 IESG OPERATIONS

OPERATION MEANING

RMOVE

WMOVE

READ MEMORY

WRITE MEMORY

TABLE 5.11 CLASS 4 IESG OPERATIONS

OPERATION MEANING

COMP

BRCH

CONDF

CONDT

COMPARE

BRANCH

CONDITION FALSE

CONDITION TRUE

TABLE 5.12 CLASS 5 IESG OPERATIONS

OPERATION MEANING

INC INCREMENT (ADD 1)

DEC DECREMENT (SUB 1)

CLR SET TO ALL ZEROES

SET SET TO ALL ONES

MOVE MOVE SRC1 TO SRC2

PUSH PUSH SRC1 INTO STACK

POP POP STACK INTO DEST

120

FOR SRC1 = SRC2 TO SRC3 ; (VMPL)

LOOP SRC1 SRC2 SRC3 (IML)

(11
OPERATION OPERANDS

SELECT (SRC1,SRC2) FROM

(SRC3, LABEL1);

(SRC4, LABEL2);

ENDSELECT

SLCT SRC1 SRC2

SRC3 LABEL1

SRC4 LABEL2

Fig. 5.4 CLASS 6 IESG STATEMENTS

(VMPL)

(IML)

OPERATION MEANING

HALT HALT

RET RETURN

EXECUTE SRCI (PAR1, PAR2) ; (VMPL)

XEQ SRCI PAR1

PAR2

Fig. 5.5 CLASS 7 IESG OPERATIONS

(IML)

121

122

3) Furthermore, the IML code contains tags or 'clues' which

recognize its various properties. These tags are used for the

production of compact microcode.

From 1, 2 and 3 we see that the designed IML meets the requirements which

were placed on it due to 19 and I10.

6. RESULTS

6.1 SIMULATOR

123

In Chapter 1 the objectives of this research were identified in

terms of four problems. Problems 1, 2 and 3 were solved in the earlier

chapters. According to the statement of problem 4, a testing methodo-

logy for microprogram correctness should be designed. We achieve this

aspect of microprogram development via the provision of a simulator for

the intermediate language, and testing as diagramed in Figure 6.1.

A program (P1) (emulator) written in VMPL is translated into the

intermediate language (IML1). Say the program P1 emulates a machine

Mi (target). Next we give the IML1 code to the simulator. We also

provide the simulator with code which correspond to machine code programs

for the machine Ml. These programs (DP1) essentially correspond to a

set of diagnostics written for the target machine and get stored in the

MEMORY variable of the emulator. The simulator then executes (simulates)

the IML1 code. This corresponds to executing the diagnostic programs

DP1 on the machine Ml. If the 'diagnostics' produce correct results, we

suspect the correctness of the emulator (P1 or IML1). Now if this same

IML1 code is translated into microcode of a host machine (H1), we suspect

the correctness of this microcode.

Since we would like the simulator to run in an interactive fashion,

simulator commands are added (embedded) to the original VMPL program,

i.e. Pl. This requires the addition of a simulator command statement to

the VMPL and IML instruction repertoire. The format for a simulator

command statement in VMPL is:

? COMMAND PARAMETERS

where the COMMAND object is a three letter mnemonic identifying a unique

simulator command and the PARAMETERS object is a set of parameters which

the COMMAND object requires. The simulator along with the commands, etc.

is described in Appendix B. The IML representation of a command follows

the general IML format, with the command mnemonic as the op-code and the

parameters acting as the operands.

Thus, by the provision of a simulator for the IML, we have achieved

P1
(VMPL)

Y

MICROCODE
(HOST H1)

HOST

IML1

(IML)

IML SIMULATOR
(PASCAL)

M1
MACHINE

DP1

(M1's

MACHINE
LANG)

RESULTS3 RESULTS2

Fig. 6.1 MICROCODE CORRECTNESS MODEL

124

RESULTS1

125

a solution to problem 4. This solution is an indirect approach in that

we do not prove the correctness of the microcode directly. We try to

prove the correctness of the code which is one level above the micro-

code; namely, the IML code which will ultimately be converted into

microcode. Proving correctness at this level is found to be a simple

task via simulation. To make the final assertion that the microcode

is correct, we have to prove two things. The correctness of the

simulator and the compiler which converts the IML code into microcode.

This is a one time task and can be done by the compiler implementor.

6.2 VMPL COMPILER

A compiler for VMPL has been written using the OSU META system (71)

(APPENDIX B) available on the OSU CYBER 73. The META system is based

on Schorre's META II (70) and consists of three main components:

1) The META language

2) The META compiler

3) A package of support routines called METASUBS.

The META language is designed specifically for compiler-writing.

Basically, the notation is BNF with slight modifications. To write a

compiler, the user expresses the syntax of the language and the code

to be produced in a series of META statements called rules. Each rule

consists of items called 'recognizers' to be searched for in the input

source language. The recognizers are the names of other rules, specific

characters to be looked for, or basic recognizers suppled by META, i.e.,

.ID recognizes an identifier; .STRING, a string of characters enclosed

by apostrophies; 'BEGIN', the word BEGIN, etc.

In addition to items to be recognized, each rule may also contain

actions to be taken if the items are found. These actions may look up

an item in the symbol table, put a string of characters on a stack main-

tained by META, or put something on the output buffer. Once a rule or

set of rules has recognized a statement, these actions output the low

level language equivalent for that statement.

126

Once the set of rules comprising the user's compiler is written in

META language, the META compiler produces a sequence of calls to the

METASUBS package. The sequence of calls which comprise the user's

compiler can then be loaded into the machine (CYBER 73) along with

METASUBS to process the user's language. METASUBS scans the source

code in a top down, recursive-descent manner according to the user's

rules and produces code for the associated actions. In addition,

the package handles input and output, syntax error messages, a symbol

table facility, listing control, etc.

The symbol table facility of META was found to be too primitive

for successful compilation of VMPL programs. Thus, a symbol-table

program (STP) was written using PASCAL (56). A program written in

VMPL is translated into IML statements by a META-VMPL compiler. This

output is then fed into STP which does all the symbol table cross

checking of the IML code or indirectly the VMPL code. In doing this

checking STP generates a series of symbol tables which can later on

be used by the simulator described in the previous section.

According to the compilation model selected in Chapter 4, there

is still another phase of compilation. This phase deals with the

conversion of the IML code into microcode. This part of the compiler

was written by P.Y. Ma and is discussed in (72).

In the next section, we discuss some of the results obtained on

the compilation of various VMPL programs into IML programs.

6.3 VMPL-IML ANALYSIS

Three emulators were written using VMPL as source language. The

three emulators are:

1) VM1 - PDP-8 minicomputer

2) VM2 INTEL 8080 microprocessor

3) VM3 An abstract register oriented machine.

These three emulator programs were translated into IML code. Two

groups of experiments were then conducted on this resulting code.

127

6.3.1 COUNTING EXPERIMENTS (CE)

Several different counting experiments were performed. These

experiments essentially consist of counting various objects of the

IML code.

CE (1)

The first counting experiment consisted of counting the number

of occurrences of the various variables used in the program. There are

three types of variables:

1) Global variables

2) Local variables

3) Temporary variables

Temporary variables are the variables generated by the compiler.

The results are shown in Table 6.1. We find that the percentage of

usage of local plus temporary variables is about the same as the

percentage of usage of global variables.

This locality of usage reflects on the block structured nature of

emulator programs and can be used as an indicator of the locality of

variable usage at the block level, i.e.:

'Local variables on a percentage basis are used

as much (if not more) as global variables'

CE (2)

The next experiment we did was to measure the distance between

successive references to a particular variable. IML statements were

numbered in a sequential manner, say 1 to N. Then for each variable of

all the three emulators we did the following: We counted the number of

times the variable was used twice in the same IML statement (distance

between usage of variable is 0), the number of times the variable was

used in two consecutive IML statements (distance between usage of variable

is 1), the number of times the variable was used in two IML statements,

separated by one IML statement which did not use it (distance between

usage of variable is 2) etc. This count was then averaged for all the

variables of all three emulators to come up with a common characteristic

of variable usage. This characteristic is plotted as a curve in Fig. 6.2.

128

TABLE 6.1 RESULTS OF COUNTING EXPERIMENT CE(1)

EMULATOR GLOBAL
VARIABLES

LOCAL
VARIABLES

TEMPORARY
VARIABLES

LOCAL plus
TEMPORARY
VARIABLES

TOTAL % TOTAL % TOTAL % TOTAL %

VM1 121 52.4% 54 23.4% 56 24.2% 110 47.6%

VM2 183 49.6% 97 26.3% 89 24.1% 186 50.4%

VM3 159 55.4% 68 23.7% 60 20.9% 128 44.6%

129

0

0 2 4 6 8 10 12 14 16 18

DISTANCE BETWEEN USAGE -->

Fig. 6.2 RESULTS OF COUNTING EXPERIMENT CE(2)

130

Taking a point on this curve (for example) we see that on the average

there is only 1 variable which is used every 18 IML statements. From

the shape of this curve we see that the average distance between the

usage of variables is between three and five. This curve does not

include the figures for the temporary variables. The distance of

usage for temporary variables was consistent and equal to 1, i.e.,

a temporary is always used immediately in the IML statement following

the IML statement which generated it (a property of the way in which

the compiler generates temporary variables). Thus, in general, we

can conclude that:

'The average distance of usage for all

variables is small'

This statement can then be interpreted as a locality of variable

usage at the statement level.

CE (3)

Next, we did some counting experiments similar to the ones done

by Elshoff (50) and Gannon (52) on the IML programs. It may be recalled

that their data was used in the first place to design VMPL. Our results,

Table 6.2, are more or less similar to their results. Some differences

can be explained as follows:

1) The large number of branch statements is explained by the

block nature of VMPL programs, the structured VMPL constructs

and the overall structure of an emulator program. If we count

CONDF, CONDT and BRCH as the only kind of branch statements,

our figures match the Elshoff, Gannon data. This condition

corresponds to a SELECT-less, non blocked program.

2) We get a low value for 'memory reference instructions.' This

is primarily because the emulator (programs) are of register

oriented machines. We suspect they will be higher for memory

oriented target machines.

Thus, we see that programs written in VMPL produce the same kind of

results for instruction usage as programs written in Fortran and PL/I.

130a

In general, we can come to the following conclusion from this

experiment:

'The usage of the Elshoff-Gannon data

for the design of VMPL is valid'

131

TABLE 6.2 RESULTS OF COUNTING EXPERIMENT CE(3)

INSTRUCTION
TYPE

VMI VM2 VM3

3 OPERAND
(ARITHMETIC 8 29.41% 31.2% 30.1%
LOGICAL OPER.)

2 OPERAND 21% 20.8% 19.8%
(MOVE etc.)

1 OPERAND 6% 8.7% 7.8%
(VMPL MISC)

BRANCH 37.6% 35% 39.9%

MEMORY
REFERENCE 5.99% 4.3% 2.4%

132

6.3.2 VARIABLE ASSIGNMENT EXPERIMENT

In Chapter 3 we made the assertion that by having global-local

variable declaration (variable priority) and a block structure for

VMPL programs, we will produce tighter microcode. This was to happen

because of a smaller number of load and store operation. The variable

assignment experiment was conducted at the IML level, we believe that

fewer IML statements produce fewer microinstruction statements (microcode).

There are two sets of variables in the experiment, the number of

available 'host' registers and the register allocation scheme which is

adopted. Four register allocation schemes were selected:

1) All program variables are treated as global variables. In

case a register is needed for allocation, the first available

register (registers are numbered in an arbitrary sequential

form) is deallocated. (Type a)

2) The same as above except a count on the frequency of usage of

a variable is kept. In case of deallocation, the variable

with the smallest frequency count is deallocated. (Type b)

3) The VMPL designed priority structure is adopted. If two

variables having the same priority have to be deallocated,

the first one (based on an arbitrary number sequence) is

deallocated. (Type c)

4) Same as above except a count on the frequency of usage of a

variable is kept. In case of deallocation of two variables

having the same priority, the variable with the smallest

frequency count is deallocated. (Type d)

TYPE a allocation scheme is one adopted by most present day compilers.

TYPE b is a step forward in variable allocation where some information

about variable usage is used. TYPE c is the priority scheme outlined

by us in the design of VMPL. TYPE d is a further enhancement of this

technique.

The results for the three emulators are plotted in Fig. 6.3. The

dependent variable is the number of load/store instructions required

120

110

100

90

80

EH 70
U

cn
z 60
1-1

Lr
0

0
f:c 40

30

20

10

0 1 2

133

TYPE a

TYPE b

O TYPE c

() TYPE d

3 4 5 7

REGISTERS

8 9

Fig. 6.3(a) RESULTS OF VARIABLE ASSIGNMENT
EXPERIMENT ON VM3

10

120

110

100

0

0 90

H 80

0
70

N,

O 60a

50

40

30

20

10

0 2

TYPE a

TYPE b

A TYPE c

O TYPE d

134

3 4 5 6 7

REGISTERS

9

Fig. 6.3(b) RESULTS OF VARIABLP ASSIGNMENT
EXPERIMENT ON VM2

10

135

TYPE a

TYPE b

TYPE c

TYPE d

0 3 4 5 6 7 8 9

REGISTERS ----4.

Fig. 6.3(c) RESULTS OF VARIABLE ASSIGNMENT
EXPERIMENT ON VM1

10

136

for each emulator. For all three cases we can rate the register allo-

cation schemes as follows:

TYPE d, TYPE c, TYPE b, TYPE a

with TYPE d producing the least number of load/store instructions and

TYPE a producing the greatest number of load/store instructions. The

difference between TYPE d and TYPE c is not large but both are signifi-

cantly better than TYPE b or TYPE a.

Thus, we have proved (for the cases under consideration) that:

'Using a VMPL variable priority scheme produces fewer

load/store instructions than other schemes'

From the Counting Experiments and the Variable Assignment Experiments

done on the three emulator programs, we come to the general conclusion

that VMPL has successfully met its design goals of producing tight

microcode.

6.4 VMPL EXTENSIONS

While designing VMPL, we also pointed out the modular top down

design approach we had followed. To test this aspect of VMPL, we do

the following three experiments on VMPL definition and syntax. These

experiments are done by changing PREMISE 5 (Chapter 3) to include

target machine which have a) both word and byte operations, b) multiple

stacks, and c) multiple memories.

BYTE OPERATIONS

The effects of including byte operations as a basic design goal on

VMPL and 'MI, would be:

1) Similar to the global size declaration, we have a global byte

declaration which gives the size of a byte in terms of the

number of bits. The number of bytes in a word would then be:

number of bytes lsize of word
size of byte

The least significant byte would be byte zero.

137

2) In order to recognize a byte of a certain variable (word), a

digit would have to be appended to the variable identifier in

VMPL statements. The exact format may be similar to a FORTRAN

index, a PASCAL structured element, etc., i.e.,

ACC (0)

ACC.0

referring to the first byte of the variable ACC. The second

format would be preferred because we already use square

brackets to refer to memory variables and a set of two brackets

may be less reliable.

3) The modification of variables as pointed out in statement b

above would have to be migrated down the the IML level. Thus,

the integer identifying the byte could be used as one of the

operand modifiers in the IML statement.

MULTIPLF STACKS

The effect cf including multirle stacks on VMPL and IML syntax would

be:

1) The STACK and PSTACK global declaration statements would have

to be modified. This would have to be done to recognize which

stack -pointer is associated with which stack.

2) The PUSH and POP statements, both in VMPL and IML, would similarly

have to be modified to recognize the stack associated with the

operation.

MULTIPLE MEMORIES

To include this aspect of target machines, the only change required

of VMPL is the modification of the global MEMORY declaration. More than

one memory variable would be allowed in the declaration. The RMOVE &

WMOVE IML statements already include the name of the memory variable as

part of their syntax.

From these three experiments,we infer that making extensions to VMPL,

via the redefinition of the original premises on which the language was

designed, does not effect the parts of VMPL and IML already designed.

138

In fact, the designed parts make it easy to modify and extend VMPL and

consequently IML. Thus, because the additions were done easily, we

consider this another aspect of a successful language design experiment.

6.5 CONCLUSIONS AND FUTURE WORK

The original objectives in developing a high level machine inde-

pendent microprogramming language have been met as described in the body

and appendices of this thesis.

All through this language design experiment we have followed a top

down structured approach using all the data available on language

syntax and statements. The language must be used to produce a number

of large-scale emulators before the practical benefits of this design

approach can be used as feedback to improve upon some of the language

implications and maybe even modify some of the constraints.

Questions which remain to be considered in further research in

this area include:

1) How does one produce even more efficient and reliable micro-

code from a high level microprogramming language?

2) How can high level languages be used for m-machines with two

or more levels of microinstruction interpretation? Should

the nano programs directly interpret the IML statements

or not?

3) The study of universal emulators or hosts which are suitable

for the emulation of a variety of targets if needed.

4) Finally, a more detailed study of I/O is needed for making the

whole emulation process successful and accurate.

139

REFERENCES

1) M. V. Wilkes, 'The Best Way to Design an Automatic Calculating
Machine', Report of the Manchester University Computer Inaugral
Conference, Manchester, England, July 1951.

2) M. V. Wilkes, 'The Growth of Interest in Microprogramming: A
Literature Survey'. Computing Surveys, September 1969.

3) S. S. Husson, Microprogramming Principles and Practices, Prentice
Hall, Englewood Cliffs, New Jersey, 1970.

4) S. G. Tucker, 'Microprogram Control for System 1360', IBM Systems
Journal, October 1967.

5) A. K. Agrawala, T. G. Rausher, Foundations of Microprogramming:
Architecture, Software and Applications, Academic Press, New
York 1976.

6) J. E. Nicholls, The Structure and Design of Programming Languages,
Addison-Wesley, Menlo Park, California, 1975.

7) P. W. Mallett, T. G. Lewis, 'Considerations for Implementing a
High Level Microprogramming Language Translation System', Computer
Magazine, August 1975.

8) Y. Chu, Computer Organization and Microprogramming, Prentice Hall,
Englewood Cliffs, New Jersey 1972.

9) C.V. Ramamoorthy, T. Masahiro, 'A High Level Language for Horizontal
Microprogramming', IEEE Transactions on Computers, August 1974.

10) G. R. Lloyd, 'PUMPKIN (Another) Microprogramming Language',
SIGMICRO Newsletter, April 1974.

11) G. R. Lloyd, A. Van Dam, 'Design Considerations for Microprogramming
Languages', SIGMICRO Newsletter, April 1974.

12) R. Eckhouse, 'A High Level Microprogramming Language', Sprin Joint
Computer Conference, AFIPS Press, Montvale, New Jersey, 1971.

13) R. Eckhouse, 'A High Level Microprogramming Language (MPL)', Ph.D.
Thesis, State University of New York at Buffalo, June 1971.

14) D. J. DeWitt, 'A Machine Independent Approach to the Production of
Horizontal Microcode', Ph.D. Thesis, University of Michigan, June
1976.

15) J. E. Cheatem, et. all., 'On the Basis of ELF--an Extensive Language
Facility', Spring Joint Computer Conference, AFIPS Press, Montvale,
New Jersey, 1969.

140

16) R. F. Rosen, 'MPP--A Tool for Teaching and Research in Micro-
programming', Technical Report PN-3R, SUNY at Buffalo, 1970.

17) L. C. Richardson, 'PRIM--Overview', ISI/RR-76-19, University
of Southern California, February 1974.

18) MICRODATA 3200 COMPUTER, MICRO 32/S COMPUTER REFERENCE MANUAL,
Microdata Corporation, May 1974.

19) MODEL 8/32 MICRO-PROGRAM DESCRIPTION, no. 05-058A15, Interdata
Incorporated, December 1974.

20) BURROUGHS B1700 SYSTEMS REFERENCE MANUAL, Burroughs Corporation
1972.

21) QM -1 HARDWARE LEVEL USER's MANUAL, Nano-data Corporation, March
1974.

22) CASH-8 REFERENCE MANUAL, Standard Logic Incorporated, June, 1973.

23) 21MX COMPUTER SERIES REFERENCE MANUAL, Manual Part No. 02108-90002,
Interdata Incorporation.

26) H. W. Lawson, B. Magnhagen, "Advantages of Structured Hardware",
Second Annual Symposium on Computer Architecture, IEE, January
1975, (DATASAAB FCPU).

27) D. R. Oestreicher, J. Goldberg, "MLP-900 Reference Manual",
Information Sciences Institute, University of Southern California,
March 1974.

28) CONTROL DATA 5000 SERIES OF MICROPROGRAMMABLP, PROCESSORS REFERENCE
MANUAL, Publication No. 14232000, Control Data Corporation, August
1972.

29) "Data General Corporation Introduces New Eclipse Line of Small
Computers", SIGMICRO Newsletter, October 1974.

30) CAL DATA 1 COMPUTER FAMILY, California Data Products, June 1974.

31) PRIME 300 COMPUTER, Prime Computer Incorporated.

32) VARIAN 73 SYSTEM HANDBOOK, Varian Data Machines, June 1972.

33) R. G. Barr, et. all,. "A Research-Oriented Dynamic Microprocessor",
IEEE Transactions on Computers, November 1973.

34) D-MACHINE USERS MANUAL, Burroughs Corporation, April 1971, (BURROUGHS
INTERPRETER).

35) B.D. Shriver, P. Kornerup, "An Overview of the MATHILDA System",
Department of Computer Science, University of Aarhus, Aarhus,
Denmark, 1975.

141

36) WRITABTP CONTROL STORE FOR PDP-11/40, 3 Rivers Corporation, June
1977.

37) SCHOTTKY BIPOLAR LSI MICROCOMPUTER SET: 3001 MICROPROGRAM CONTROL
UNIT AND 3002 CENTRAL PROCESSING ELEMENT, Intel Corporation, 1975.

38) A. B. Salisbury, Microprogrammable Computer Architectures, Elsevier
Computer Science Library, New York, 1976.

39) R. F. Rosin, 'Contemporary Concepts of Microprogramming and
Emulation', Computing Surveys, December 1969.

40) J. T. Golden, FORTRAN IV Programming and Computing, Prentice Hall,
Englewood Cliffs, New Jersey, 1965.

41) A. Lysegard, Introduction to COBOL, Studentlitteratur, Lund,
Sweden, 1908.

42) M. E. Conway, 'Proposal for an UNCOL', Communications of the ACM,
October 1958.

43) F. Bates and M. L. Douglas, Programming Language/One, Prentice
Hall, Englewood Cliffs, New Jersey, 1970.

44) E. G. Mallach, 'Emulation: A survey', Honewell Computer Journal,
Volume 6 Number 4, 1972.

45) Intel 8080 Reference Manual, Intel Corporation, Santa Clara,
California, 1976.

46) C. G. BEll and A. Newall, Computer Structures, Readings and Examples,
McGraw Hill, New York, 1971.

47) CDC 6600 REFERENCE MANUAL, Control Data Corporation, June 1976.

48) PDP 11/40 REFERENCE MANUAL, Digital Equipment Corporation,
Maynard, Massachusetts, 1972.

49) A. Lunde, 'Empirical Evaluation of Some Features of Instruction
Set Processor Architecture', Communications of the ACM, March 1977.

50) J. L. Elshoff, 'An Analysis of Some Commercial PL/I Programs;,
IEEE Transactions on Software Engineering, June 1976.

51) D. E. Knuth, 'An Empirical Study of FORTRAN Programs', Software
Practice and Experience, 1971.

52) J. D. Gannon, and J. J. Horning, 'The Impact of Language Design on
the Production of Reliable Software', Proceedings International
Conference on Reliable Software, ACM SIGPLAN Notices, June 1975.

142

53) R. Kosaraju, 'An Analysis of Structured Programs', Journal of
Computing and Systems Science, December 1974.

54) H. F. Ledgard, and M. Marcotty, 'A Genealogy of Control Structures',
Communications of the ACM, November 1975.

55) R. M. Lewis, D. J. Rosenkrantz, R. E. Stearns, Compiler Design
Theory, Addison-Wesley, Menlo Park, California, 1976.

56) K. Jensen, N. Wirth, PASCAL Users Manual and Report, Springer-
Verlag, New York, 1974.

57) W. M. Waite, R. J. Orgas, 'A Base for a Mobile Programming System',
Communications of the ACM, September 1969.

58) M. H. Halstead, 'Using the Computer for Computer Conversion',
Datamation, May 1970.

59) P. J. Brown, 'Levels of Languages for Portable Software',
Communications of the ACM, December 1972.

60) F. L. Alt, 'The Standardization of Programming Languages',
Proceedings of the ACM 19th National Conference, 1964.

61) R. C. Smeder, 'An Investigation of the Bootstrapping Process as
Applied to Compiler Generation', A.U.S. Government Research Report,
AD-727673, 1971.

62) M. C. Newey, P. D. Poole and W. M. Waite, 'Abstract Machine Modelling
to Produce Portable Software', Software-Practice and Experience,
Vol. 2, April 1972.

63) P. C. Poole, 'Hierarchical Abstract Machines;, Proceedings of the
Software Engineering Conference, Culham, England 1971.

64) P. C. Poole, W. M. Waite, 'Machine Independent Software', Proceedings
of the ACM, 2nd Symposium on Operating System Principles, 1969.

65) A. D. Fisher, 'A Common Programming Language for the DOD-Technical
Requirements;, DOD Report No. AD-A028 297/Owc.

66) H. W. Lawson, 'Programming-Language-Oriented Instruction Streams',
IEEE Transactions on Computers, May 1963.

67) R. E. Merwin et. all., 'Direct-Micorprogrammed Execution of the
Intermediate Text From a High-Level Language Compiler'.

68) M. H. Halstead, Elements of Software Science, Elsevier North-
Holland, 1977.

69) J. L. Elshoff, 'An Investigation into the Effect of the Counting
Methods used on Software Science Measurements', SIGPLAN Notices,
February 1978.

143

70) Schorre, 'META-II. A Syntax Oriented Compiler Writing System',
Proceedings ACM 19th National Conference 1964.

71) G. A. Bachelor, 'META/CYBER 73 Reference Manual, Department of
Computer Science, Oregon State University, 1975.

72) P. Y. Ma, "Optimizing Microcode Produced from a High Level
Language", Ph.D. Thesis, Oregon State University, August 1978.

73) K. Malik, 'MI, Simulator Reference Manual, Oregon State University,
1979.

APPENDICES

144

APPENDIX A

VMPL SYNTAX

This appendix defines the syntax of Virtual Microprogramming

Language (VMPL) in a slightly modified BNF form. The differences from

the standard BNF are:

1) In order to save space and repetition, the following

statement is used

<A) , , <C> ::= <E>

which means

<A> ::= <E>

 ::= <E>

<C> ::= <E>

2) In case one of the meta symbols has to be used as part of the

syntax of VMPL, it is enclosed in apostrophes, i.e.

<
meaning that the angle bracket (<) is used as a VMPL symbol

and not a meta symbol.

B.N.F.

PROGRAM::_ <PROGRAM HEADING> .({GLOBAL DECL> } {pLocKs>
PROGRAM ENDING

<PROGRAM HEADING> ::=EMULATOR: KID> ;

<PROGRAM ENDING> ::=ENDEMULATOR;
<GLOBAL DECL> ::=DCL <GLOBAL INFO DECO ;/DCL <GLOBAL VAR DECL> ;
<GLOBAL INFO DECL> ::= <WORDSIZE DECL> /<ARITHMETIC DECL> / <FIELD DCL>
<NORDSIZE DECL> ::=WORDSIZE <INTEGER>
qs.RITHMETIC DECL> ::=ARITHMETIC <ARITHMETIC TYPE>
<FIELD DCL> ::=FIELD <FIELDX i,FIELD1
4UELD> ::= <;D> (cBP> , <T,BP> , {SHIFT COUNT>)/ <ID> (<FBP) <LBF,>)
(FBP> , <LBp> ::= 4NTEGER>
{SHIFT COUNT> ::= <INTEGER> / <NEG INTEGER>
(GLOBAL VAR DECL> ::=PERMANENT (GLOBAL TYPE DECL>/TEMPORARY

{GLOBAL TYPE DECO
<GLOBAL TYPE DECL> ::= QiIEMORY DECL> / <STACK DECL> / <PSTACK DECL> /

<EXTERNAL DECL> / `FLAG DECL> / {SIMPLE DECL>
{MEMORY DECL> ::=MEMORY <MEMORY> <SIZE DECL>
<MEMORY) ::= KID> : { <INTEGER> }
{STACK DEC ::=STACX <STACK> `SIZE DECL

<21VAIOU
> / <aod

/ / /21VA / Ni\22IVNII1> / 4apaImi.> / <uvA) =::
<wamt) / 0,r2ial,> <uoivasad, OquaS-/ =:: <acIS GNTA IHDrei>

<acki> / <uasaiNi> / ;di> =:: <Iarupsans Akeu.aki>

/ <cai 1ci Ali r1>

4Lai2IDsans Avuu.v5 =:: <HVA AVg21)
PaidV> / C[3> =:: <UVA>

<NDISSV LVDNOD 3-1c1WI
/<(adIS CINVH =D1> <110IVIISd0 INERINDISSV> <UVA.> =:: &,DISSV

<bi>t//, .1f> =:: <2fl LVDN0fl'i

IVON0j> / <UNO =:: (dOLDVJ IVDNOC
<uapai,Nt>

<kivaaao KIMIDVa IVONO / <UOLOVZ Ivaqop> =:: <Haxa Lvo.Noj>

<ddX2
<uoamaaao INaNNOISS'd> cdVA IVONOD> =:: <NDISSV IVDNO?
<NDISSV =KIS> / <'NSISSV IVONO} =:: aWIS INaNNSISSV>

IWIS INEWOO
<IwIs manIali> / <IwIs HSOd>

/ <IwIs Oa> / <IwIs os oo> / anNea..

DNI> / <SOVUJ Las> <JwLs pac> / <sevaa Ias)

elWIS DNIn / < spkraa Las> <Iwas 2iIO> / <sDvaa las>
<-agIS LISS> / <sevaa Ias'> <IwIs Imawmpiss> =:: 4WIS HrldIna>

<LWIS craunionuIS> / <axis aaawiS>=:: (Iwis caaaasvand>
4pus carriaavamii? : <aaavri> / <IwIs ciaaaaavanci) =::

f<! INaw1LvIs?:1 {ImawaimIg) =:: <aaof>
f<ci>

')
<cli) NanisE/ <cif> Loaaxa=!! <r/Dsc 1T

<aDau asn sad> /aDad asn uas> qal
/ <load avooa 'ma / <rime avaoaD 7DO=:: <roaa D011(3

-VG3) 11 <di> asn <apact asn uas>
eldWIO

DIVH0c1WHI / <am: aaawis'>. INENVWUSa=:: .r1DaO UVD0r-2>

kaf> <di> asn UVEYID=:: Opal asn
<apaci

asn liaSapc / <Uoal avooa> aad / <aoaci asn aa6> qD(1=:: <tDal paid>
<apact azis'> <Q =:: <ouv>

(<DTv) <DU17) aL&QE> =: DOUdg>
#;acio5> # ! <apact Douag?1 =:: Omoae pouas

<acioo> # !i<a3aa N-.Doas pouci
60072 DOE4>!<5UV Douai> <cii :Douas /<xpoaa Dald> <CI> :Dadd=:: xDoad>

10Doaa)-1 <Yipoaa =:: <sxpoas)
<ALawg> /z:/N:/o:/D:=:: <2cua, DTP

<'AId[42> / <112sami) a/a:/a: =:: <adas ma)
1/4 =:: <ZdOS.>

=:: C[aoS>
<zdOS> -/< dOS> + / <TdOS> / <TdO 4, =: <SdO >DIU S>

<,KIdINTP /<umaImi :=:: <rip= azis>
-1-`1DECI axis c>1.1 <apaa azi> (aoaa arldNI

<adAi Da4> <di) =:: <ovaa>
f<plea2>;). Oval> ovaa=::<loaa ovaa,
<'aciAL ma> <ci) <avNuama>

f<aviquamail tivNuama) avmaama=:: <apaa avNaama>
<Cli> =:: <xousd>

<sao ?DILLS> < 'boad Ezi> <xO "ssa> xpvisa=:: <'boad xousd>
<di> It <UHDaINI> 1: <di> =:: <xaus)

StiT

/V /z/ /*/-/+ /0/4/f/l/ ///' =::a0ErIAT§)
6/8/L/9/5/-t/E/E/[/0=:

z/Vx/m/A/n/I/s/u/6/a/o/N/w/a/x/r/i/e/o/a/a/c/D/e/v=: <taevildaV>

=: ZAIdlia>
t4IDI0 /

.1.aeveda'ci>1 <Iaaveda0 =::
.c/cif.)

<LIDIO7 =:: <uapamf>

.=, =:: <edarniado INaWN5ISSV>
aioll/-aLou- <uoLvaaao IO23'7

'IUJES'POUIHS'/*IUIHS'POULHS' =:: sN0LV2iad0 =HS>
'210X'/*E0*/*CINW // /*/-/+ =:: KuoLIalacid'>

<daoaa,m±1
- =:: <liaDaLmi 3AIII/Da0
z/i =:: <acIAL

-/+ =:: E0LV62d0 Wcf.)

< G17 = <aava'
<cmnoario3,> e(4oissauaxa Nvaaood>)

=:: <Wald CNOO>
(<aaeva> 61EDZINf}) =:: <waaa soak

<Iamb =: <230.13V3rlooEf
<uvA Lie> / <uoLova 'mod>

'ID* <210,10V3 ZOOS?/ <UOIDVd aooe> *La' <aoiova aooe>
filozov,a aooa> 'Oa- <"110,10V3 U0ab / <230ZOFi3 aooe) =:: 6loissaaaxa Nyaaooe>

<Liras ciNnoaloo> !asaa / .R.Lawa =:: .61,1ATIs asaa
kaNa <awn fNIDSE =:: <"IWIS caNnociwoo

'ellen:ma

,ITATLS aNnodwoc !(<Noissauaxa Nvaaoos)) arlim =:: <ails 3IIHM)
<Dins aNnoapiop)

= <uasazid> OL <uaDailat = (C1f> 1:103 = ONIS 1103)

C(NO3 aNa <Wan aN00 >1 ! <WaSI CIMOD') (MOD = :: 41,14,13 CNC*
IaTiasaNa ft <Wall = <waLI IpaS>

!Pima (<aaDaImi> <ai)) Loaaas =:: <IWIS IoaaaS>
aiaNa <agugl asaa

c'zwas amodwoDY QqaHL (<Noissauaxa Nvarloos)) =:: '1141,1,s Lai>

LWLS ai) ES7V33I =:: <IWIS asavaaI)
<114Iszf.> anuahn =:: awIs arraIai

4WIS EiIHM> / <LWLS 1103") / <IWIS (IMOD>

/ widias> / awls asavJai> / <spas anua,,n'y <IWIS laaanImas)
f, <, <co> 11

GI .) ./ Alawa =:: <sovaa ,Las

I* f<aoewAS'ii 1:(I2aVHd:10 .] =:: ,I,NaviwoS>

adrual =:: 1ZWLS manIall>
<cli7 esna =:: <IWIS HS06

(f(Cf% 11 a2>) <:ci*
ainoaxa / <U ampaxa =:: <LwIs 6ax>

<aaevl> 0,100 =:: <JNIS
<aaal rI> aAva awls aAvaT,

SZKfI =:: <IWIS 1/114

oaa =:: <IwLs pad>
<UW DNI =:: <IRIS Diqi>

(uvA) uvrip =:: <aus uai>
<TdA> Las =:: <IWIS LaS>

41aoaLmi> <UOLVESd0 ,LOU} <UNIP =:: <11VA MI)
(61VA) <cif?

=:: <Tail
SDHLNI> OlOrdelad0 ILEIHS <TO =:: <2iKn IJIHS)

4IVA") =:: <ZTAiii>

9r7T

APPENDIX B

SIMULATOR DESCRIPTION

147

The simulator for the IML is written in PASCAL. It is logically

broken up into two parts. The first part sets up the symbol table,

checks to see if all the variables have been used according to the

requirements of VMPL, and sets up a binary equivalent of the IML.

The second part then executes the binary code set up by the first

part. As indicated in Chapter 6, VMPL is enhanced by the COMMAND

statement. The modification which this statement makes to VMPL BNF

is shown in Fig. B.1.

All commands are given by three unique alphabets. While transla-

ting commands to IML, the IML operation is the command itself. However,

in column 1, we have a down arrow () symbol which indicates to the

later part of compilation (which produces microcode) that this IML

statement is essentially a comment.

The simulator commands can be broken down into types:

1) DISPLAY

2) INSERT

3) CONTROL

The DISPLAY commands display the value of the various variables

declared in the VMPL program. The INSERT command inserts (sets) values

into the various variables declared in the VMPL program.

The CONTROL command covers a number of commands. These are:

a) Set and clear break points. The VMPL variables can be tagged

such that whenever they are used, control returns to the

simulator user.

b) Single step. This is for single step control of the IML

program.

c) Symbol table. Display symbol tables set up in part 1 of

simulator.

d) Error history. Display error history. When error occurs,

this command gives information about the original VMPL state-

ment which generated the IML statement which generated the error.

148

SIMPLE STMT ::= ALL AS IN APPENDIX A / COMMAND STMT

COMMAND STMT ::= DELETE CMDS PARAMETERS /

INSERT CMDS PARAMETERS /

CONTROL CMDS PARAMETERS /

DELETE CMDS ::= SEE (73)

INSERT CMDS ::= SEE (73)

CONTROL CMDS ::= SEE (73)

PARAMETERS ::= SEE (73)

Fig. B.1 MODIFICATION TO VMPL BNF

149

e) Option control. A number of options associated with error

control can be enabled or disabled.

f) Load. Activate the loader to load data into the emulator

memory.

g) Execution Control. This starts and stops monitor and starts

and stops the simulation.

A detailed description of these commands, their parameters is given in

(73) .

150

APPENDIX C

This Appendix contains the VMPL-META compiler and the source

of the emulator programs written in VMPL and referenced in Chapter 6

as VM1, VM2 and VM3. The programs are in the following order:

1) VMPL-META compiler.

2) VM1.

3) VM2.

4) VM3.

151

'ZETA V3.12 '"?TA-LINGUISTICAL TR;1NSLIT3R '91;iTING SY$.7"4 76/04/12. 23

1 .SYNTAX V*Ri. 2META 0.0!4PILFR FCR J M = L .t
2

3 NABS IZEISTK.1,STK2 .,

.VARS T).P,CL,PT,OU4,CL`11 .,

5 .VAPS C911CP2.N1.N29N3
.v=1;:s cm,zm.Nm,om

7 .FLAGS ART,01,02,03,NoR,POp1, C1T1,CAT2 .9

3

9 VMPL = .LENI: 6 .CCFLAG 2C*
10 2EMULATOR2 212 .I0 .CUT(.L3 200A 2 * .COL 72) .0N5RROR RECV;1 2:2
11 S(GLCEALOECL) .OUT(.LS 2013 PRUGRAMSTART2 .00L 72)
12 3(2;RCO2 R;00 / 25;FOCt SzROC /2ENICE4ULATC;2 .OUT(.LE
13 2000 RROGRAmFNO2 .COL 72) t;t .TRETURN)
14
15 RECVI791 = .EARRV4 .4FSAGE tSY4TAY =RRCRSCAmNING 9=SUMES AT NEXT <:>t
16 .SCAN 2:2
17
13 f* GLOSAL CSOLARATIONS *1
19
21
21 GLCSALOECL = 20CL2 .SELECT
22 (2WCROSIZE2 woRO'EF 212 /

23 . tARITHMETIC2 ARICEF 2:2 /
74 20LOBAL2 GLEOEF 2:2 /
25 tIPROC2 I;ROEF 2:2 /
76 2FIEL02 FLOOEF 212)

27
23
79 wORCEF = *INTEGER .OUT(. LE 200C ,,,2 * 400L 72) .SET(SIZE, *) .

30

3i aRTOEF = .FU7(.1.3 21152) (212 .OUT(20NE2 .CCL 72) /

32 222 .OUT(2TwO4 .COL 72) / 2CNE2 .0.4.1(20NE2 .COL 72) /

33 2Twr:12 .CLT(2TW02 .COL 72)) .,

34
35 IPROFF = IPRC1 3(2,2 I' -R01)
16

37 IFRC1 = .PUT(.L3 2306 t) .SELECT
33 (202 .OUT(2C2 .COL 72) /

39 202 .OUT(202 .COL 72) /

40 ±Nx .01Sr(1)42 .201. 72) /

yi 2Z2 .OUT(tZt .COL 72)) ,
42
47 FLOCEF = FLOCUT $(2,2 FLOOU7)
44
45 FLCCuT = .13 .PUT(.1.3 2005 t * 2,,,2) 2(2 .INTECEP .PUT(* 2.2) 2,2 .INTEL'

.PUT(' 2,2) (2,2(.INTEGER .RUT(*) 2)2 / 2-2 *INTEGER .RUT(2-2 4)
47) / 212 .;UT(202)) .CUT(.COL 72) .,

43
49 GLS2EF = .FET(GL,2721 RTC;F GLE01 .

50
51 0TCEF = (2Fi=m4N=NT2 .2F-1(93,222.) / 2TEs190-?ARY2 .SET(PT,212)) ,

52
53 GL5C1 = (V.I5i1.ORYt .3rT(TP.A1 1),,OFF /
54 2ST,10K2 .SET(TMR,22 2) STKOEF
55 29.:TaC'r<2 S5T(TMP,23 2)PST<OEF
56 2EXTERNaLt .3ET(TM2,29 2) 2:(T3EF 3(2,2 E2TCE9)
57 A;LAGt .3ET1419,24 2) =LAGOEF 1(2,2 FLAGS -=)
53 tS:MRLE2 .SFT(''1.91-20 21 SI'4CEF 3(2,2 Sit,C=F)
59 .SET(TMP,-AG SI1)EF 3(2.2 SIMOEF)) .,

152

51 4Em0EF = TAGPUT .PUT(* 2,2) 2:2 2E2 .INTEGER .PUT(* 2,2) 212 SIZEOECL
52 .OUT(.COL 72) ,
63
64 STKCEP = .10 TAGPuT .PUT(*2,2) 212 tEt .INTEGER .PUT("2,2) 212 SIZEDECL

,65 .OUT(.CCL 72) .
66
67 PSTxCEF = .I1 'AGPUT .PUT(} 2,,2) 2:2 (.INTEGER .PUT(* 2,2) 212 2(2 /
63 2(2 .PUT(SIZE 2,2)) STACKOPS 2)2 .CUT(.O01. 72) .,

69
70 STACKOPS = .SELECT
71 (2*2 .PUT(2+,2) .SPT(STK1,2.,2) sToPi /
72 2+2 PUT(2+,2) .SET(STK1,2*21 STCP1 /
73 242 .2UT(2+,2) .SPT(S7,<1,2-2) 5TCP2 /
74 t-t .puT(2-,2) .SET(STK1,2*2) STOP2)

75

75 PLAGCEP = TAGPuT .SET(C(M,*) .PUT(* 2,,1,2)
77 (212 (2C2 .SET(Cm.CUm) .PUT(tit) /

73 202 .SET(Cm,CUm) .PuT(222) /

79 2N2 .SET(Nm,CUm) .PUT(232) /

80 2Z2 .SET(7.m,0um) .PUT(242))

11 .EMPTY (.1FEOUAL(CUm.2C2) .SET(C4,2C2) .PUT(212) /

19 .IFEIUAL(OLm,202) .3ET(1m,20t) .PUT(222) /

3 IFEWAL(Oum,2N2) 02T(NM,2N2) .PUT(232) /

8. .IPEOUAL(001,222) .SET(Zm,222) .PUT(242) /

85 .EMPTY .PUT(202))) .OUT(.COL 72) .
86
87 EXTOEF = .10 T4GPui 4pt:T(. 2,,t)(212 (2P2 .2u7(2,pt)/ 2F2 RtJT(21.272) /
81 .PUT(*)) / EmPTY .PUT(SIZE)) .OUT(.001. 72) .,

89
90 SImOrc = .11 TISPUT .PLT(* 21,2)SI2E0E0L .OuT(*cst. 72) 1

91
92 TAGuT = .PUT(.LB GL PT TMP)
93
94 5T001 = (2+2 .PUT(2.2) .SPT(STK2 ,2-2) /

95 2-2 .PUT(2-2) .SET(STK2,2+2)) .PuT(2,2 ETK2 2,± STx1)
96
97 STOP2 = (2*2 .PUT(2*2) .S2T(5TK2,2+2) /

98 242 .PuT(2+2) .SET(STK2,2*2)) .0UT(2,2 STK.? 2,2 STKi) ,
99

101 EIZEOSCL = (2:2 .INTEGER .PUT(*) / .EMPTY .PUT(SIZE)) .

101
102
103 f* MAIN 3LCCKS *1
104
105
106 =ROC = 2:2 .10 .OuT(.L9 200F 2* .COL 72) 2:2 i(20C12 PP0C0E0L) CCOE .,

107
103 SPROC = 2:2 .10 .0U1(.L9 200G 2*) ARS 2:2 3(20CL2 SPPOCOECL) COGE .,

109
110 ARG = (2(2 APGCO .IUT(.COL 1 2*2.COL 72) / .EmPT), .OUT(.COL 72))
111 ARGO = 3(.10 PUT(.CCL 25 2A: *) (2,2 .10 .OUT(.COL 34 2A2 * .COL 72)

112 / 2)2 .3uT(.COL 72) .TPETuPN)
113 (2,2 .puT(.001 1 24,2)/2)2 .7PETUR4))
114 CCIE = 222 .CUT(.LE 20042 .COL 72) EXECOOE 294 .OUT(.LE 2001,2 .COL 72)
115
116 PRCCCPCL = .SELECT
117 (2GLOPAL2 2uSE2 SLu0E2 212
111 2LOCAL2 LCL0EF 2:2
119 2G9PoC2 2uSE2 SPROPP 2:2)

121 GLuOEP = GLU11 S(2,2 GLU01)
122
123 GLuoi = .1C cuT(.L3 2216 2 ' .00L 72)

153

124
125 LCLCEF = .S;ErtGL,t1t) PTOEF (tSImPLEt/.EmPTY) 4SET(TmP,t0 t) SImOEF
125 S(tit SIm1FF) ,
127
121 SPROEF = SPRC1 i(t,t SPRO1)
129
131 SPRC1 = .IC .0uT(.L3 1405 t * .COL 72) .

131
132 SPPOCOECL = (tSgg0Ct tUSFt SPRCEP tlt
131 tGLOSALS GL:=R0 t:t
134 tLOCALt LCLSEPC t:t
135
135 CLF:7R0 = .S.FT(GL,t2t) .SETtPT,t0t) ttExPECTt .SET(TmP,t7 x) /

137 / tPETugNt .SET(Tmp,x8 t)) CLET.W1 i(t,t GLEg01)
133
139 GLER01 = .I0 TAGPUT .CUT(* .CCL 72) ft

140
141 LCLSERO = .SETtGL.I1x) .S=TtPT,t1t) (tEXPECTt .F=T(rm;.t7 t) LCU7P. /
142 tpETuRNt .SETtImP,t1 t) LCLER / .EMPTY FTCFF (XSImPLEt /
143 .EmPTy) .SET(ImP,t0 t) LCLS) I
144
145 LCLE9 = GLERC1 3(t,± ILER01) ,

146
147 LCLS = SImCFF ?_tt,t SIMOEF)
143
149 EXECOOS = .LONFPROR qEC4g1 .T.0 + ttt .OUT(.CCL 1 * .001 72)
153 / STMT)
151 STMT = (NOTASSIGN t:t / ASSIGN t:1)
152
151 NoTASSIGN = .SELECT
154 (tSETt SETITIT /

155 ICLEAFt CLRSTmT /

155 xiNct INCST4r
157 t1EC* OECSTmT /

153 =H4L't HALTSTmr /

159 tgFTuFosit R=rSrmT /

161 tLEAvEt LEAVSTmr /

161 t/FTRUFt IFTgSTmT
162 t/FFALSEt IFFLSTmT /

163 tCON11 CONOSTmT /

164 tlEGINt COMPIUMO /

165 tSELECTt SELTSTMT
166 tGOTOt GOTOSImi /

157 tgXrCurEt EXECSTmT /

161 tPUSmt PUSHSTmT
161 tFOtt FCRSTMT /

171 t4t C?OSTMT /

171 twmILEt mILESTmi)

172 C0mt:OUNO = t:t .oUT(.COL 1 tOOJt .COL 72) .ONERROP REC4R1 SitENOt .EXIT
173 / ..T.O4-ttt .OUT(.COL 1 * .001. 72) / STMT) .OUT(.COL I
174 to()Kt .C1t. 72) .,
175
176 SETSTmT = SET(OP1,«SETt) SCOU71 .,

177 CLRSTMI = .SET(OP1,tcL;t) SCOUT1
173 SCCuT2 = txPcFtt .T+ .OuT(.COL 5 xPOPt .C11. 16 x+x *1 .001. 72) .SE7(N2.*T)
179 / .IC .SE7(N7,*) / .INTEGEF .SET(N2,*) .SETFLAG Cl)

180
181 5COUT3 = .7* .00Tt.00L 3 OF/ .COL 16 t+t *1' .CCI. 72) SETFLAG3 .Ry7(.CCL 3
132 tWMOVEt .CnL 17 Ni *COL 26 N? .COL 34 =-t *7) {

183 ./FrEmP '2 .0uT(.COL 23 t-t) / ./FPLAG C1 .PUT(.COL 25
134 tCt) / .EmRTY)
135
135 CCOUT1 = .CLPFLAG CI (.1.7M-tIt .SFT(.11,*) SCOUT2 tlt SCOUTS /

154

197 t5t .I0+t-Ct .SET(41.*1 SCIUT? tlt SCOUT+. SCOUT3 / .I0 SETrLAGS
183 . PUT(.CCL 3 OFI .COL 17 *)) .OUT(.COL 72)
159
190 ECOUT4 = ,T+ .PUT(.11L 8 zRmnvEx .COL 17 1,11 .COL 26 N2 .COL 34 t+t *T
191
112 (.IFTEMP N2 .PUT(.COL 25 z-t1/ .EMPTY)(.IFFLAG Cl .PUT(.00L 25
193 tCt)/ .E1PTY) .OUT(.COL 72) .SET(N2.*T)
194
195 1NCSTMT = .SET(0P1,1AOCCt) .SET(OP2,1INOt) IOCUT1
196
147 OECSTMT = .SET(OF1,tSUFCt) .SET(CP2,t0Ct) IOCUT/ Of

193
19q IDCUT1 = .CLPFLAG CI (.10+1(t .SET(41,*) SCOUT2 I00(172 /

201 tx ..10+1(t sET(+11,41 300U72 tlt SCOUT4 1001_112 /
?01 .I0+t//t ,SET(N1,*) .I0 .OUT(.COL 7 t*t OP2 .COL 17 *
202 .cnt. 43 tCt .CCL 72) SETFLAGS .CUT(.0CL 8 CP/ .COL 17 NI .COL 25
203 tC0I .COL 35 N1 .CCL 72 1 / .10 SETFLAGS .PU74.001. 8 CP2
214 .CCL 17 ')) .OUT(.COL 72) ..

205 IDCUT2 = .7+ .PUT(.CCL 8 tRMCVEt .00L 17.N1 .CCL 26 N2 .001. 34 t+z
206 *7) (.IFTEMP N2 .PUT(.CCL 25 t+t) / .IFFLAG Ci
20' . PUT(.CCL 25 tCt) / .EMPTY) .OUT(.CCL 72) SETFLAGS .CUT(.CCL 8 OF?
208 .COL 16 tat *T .COL 72) .PUT(.COL 8
209 twmOVEt .COL 17 NI .COL 26 N2 .COL 34 t-t *7)
210 (.IFTEMP N? .PUT(.COL 25 t-t) / .IFFLAG Cl . PUT(.CCL 25

211 tCt) / .EMPTY 1 ,
212 HALTSTMT = .OUT(.COL tHALTt .COL 72)

213
214 RETSTmT = .OUT(.COL 9 tRETt .CCL 72)

215
215 LFAVST17 = .I0 .OUT(.COL 8 $3RCHt .COL 15 :St .COL 72) .,

217
213 IFTRS7mT = .CLRFLAG C2 t(tIFTRt)t IFOUT
219
220 IFTR = TERm1 .STACK N2 (.IFFLAG C2 .SETFLAG 03 .CLRFLAG 02
221 / .EMPTY) (t,t . PUT(.CCL 12 tFt) 3IT0U1 .TRETURN
222 / t.t .SELECT
223 (tECt.SET(OP1,tZt) t.t TFRM1 CPR2 .P1) (.CCL 12 tFt) IFOUTI /

224 tLTt.SET(C=1,tNt) t.t TFR41 OPP2 .FUT(.COL 12 tFt) IFOUTI /

225 tGEt .SET(001,tZ,Nt) t,t TEF11 .U4STACK CUM .STACK N2
776 .SET(42.0U111 CHFLAG OFR2 .0U7(.COL 12 tFt) IFOUT1 /
227 iLFt .SET(021,tZ,Nt) t.t T5R11 0PR2 .PU7(.COL 12 tFt) IFOUTI /
223 TNEt .SET(IF1,t2t) t.t TPR41 OFR2 . PUT(.CCL 12 *TA) IFOUTI /

279 tG7t.SET(Cpi,44t) t.t TERMI OFR2 .FUT(.CCL 12 t7t) IFCUTI)

231)

231
232 IFFLSTMT, = .CLRFLAG C7 4(t IFFL t)t IFOUT
233 CHFLAG = .CLRFLAG CI (.IFFLAG C2 .SETFLAG C1 / .EMPTY)

234 (.IFFLAG 07 .SETFLAG C? /.CLRFLAG C2)
235 (.IFFLAG C1 .SETFLAG Cl /.0LRFLAO C3) .,

236
237 IFFL = TERm1 .STACK 42 (.IFFLAG CZ .SETFLAG C3 .CLRFLAG C2
273 / .EMPTY) ($,t .RUT(.COL 12 tFt) 3ITOUT .TPETURN
239 t.t . SELECT
240 (tECt .SET(OPI,tZt) t.t TFR11 OPR? .0UT(.CCL 12 tit) IFGUTI /
241 tL7t .SET(OR1,t4t) t.t TFR11 CPR' .PUT(.CCL 12 t7t) IFOUTI /
242 tNEt .SFT(CP1,tZt) t.t TFP11 OP27 .'0U7(.COL 12 tFt) IFOUTI /
243 tLEt .SET(CP1,t7,4t) t.t TFRMI OPR2 .PUT(.COL 12 t7t) IFOUTI /
144 tGEt. .SET(CP1,t2,1t) t.t TERMI .U4STACK 0Um *STACK N2
'45 .SET(42,CUm) IHFLA1 CPR2 .RUT(.COL 12 t7t) IFOUTI /
246 tOTt .SFI(OP1,tNt) t.t TER11 OFR2 .PUT(.CCL 12 tFt) :Fcuil)

247)

243
?4? IFOUT1 = . PUT(.CCL / tCONOt .CCL 7 CPI)

155

250
251 :FCUT = .0(4T(.COL 25 *T* *1 *COL 72) *THEN* *:*
252 (.10,41* .OUT(.COL 1 * .COL 72) / .EmPTY) NOTASSIGN *:* (*ELSE*
253 2!* . OUT(.COL 8 *EpcH*
154 *COL 16 =E= .COL 17 *2 *COL 72) . OUT(.COL 1 *1 .COL 72)

255 (,I0+*** .OUT(.G0L 1 * .COL 72) / *EMPTY) NOTASSIGN *:* *CUT(
256 *COL 1 *2 .COL 72) /

257 *EMPTY . OUT(.COL 1 *1 .COL 72)) *ENOIF* ..

253
75; /TR2 = .UNCTACK Ni. .PU7(.COL 7 ti'COmP* .COL 17 N1 .CO1 25 N2
260 .COL 43 OP1)
251 (.IFTEmP NI .PUT(.COL 15 *-*) / .EMPTY)

262 (.IFTEmP N2 .PUT(.COL 25 I-*) / .EMPTY)

263 (*IFFLAG C3 .PLT(.COL 15 *C*) .CLPPLAG C3 / .EMPTY)
264 (.IFFLAG C2 .PUT(.COL 25 *C*) .CLRFLAG C2 / .EMPTY)
255 .OUT(.COL 72)
266
267 RITOUT = *INTEGER .=UT(.COL 3 :CONOt *COL 18 *.* N2 *,* *)
268 (.IFTEMP N? .PUT(.COL 15 *-t) / .EMPTY)
269
270 CONCS7mT = *I* T(t(* CONOITEM t7N000NC* .TRETURN) 1
271
272 CON1ITEM = 'FT; .OUT(.COL 25 IL* *1 .CCL 72) *)* *1*
273 (.ID**:* .OUT(.COL 1 * *COL 72) / .EMPTY) NCTASSIGN *:* *OUT(
774 .COL 1 *1 .CCL 72) .,
275
276 SELTSTMT =.PUT(.COL a *SLC7x) *(t .13 *PUT(.COL 17 *) *,* *INTEGER *)*
277 . OUT(.COL 25 *Ct * .CCL 72) *FRCm* tt* 3(*(* SLITEM *)* *1* /
273 tEN3SELFCT1 . OUT(.COL 1 *** .COL 72) .TRETURN) 09
279
280 SLITEm = *INTEGER .PUT(.COL 1 *** *COL 7 *C* *) *,= .IC . OUT(.COL 16 *C*
731 * .COL 72) .,
232
233 GOTOSTIT = .I0 .OUT(.COL 8 *3:RCM* .COL 15 *G* * .COL 72)
784
235 FYECSTmT = .PUT(.COL 8 *XEO* .COL 17 *) (t(* EXESPAR . OUT(.COL 1
286 *.(-* .COL 77) / . EMPTY .CUTC.COL 72))
217
288
289 PXECIP4R ='),I0 .PUT(.COL 25 tPt *)(*,* .ID . OUT(.COL 34 *92 * .COL 72)
290 / *)* .01.47(.COL 72) .IPP7UveN) (t,* .PUT(.COL 1 **I) / 4)*
791 .TPETURN))
292
793 PuTMT = .CLRPLAG 02 (*INTEGER .SET(N2, *) .SETFLAG 03 / .EMPTY TEFM2)
294 .PUT(.COL 8 *PSm* *COL 17 N2)
295 (.IFFLAG 02 .PUT(.CCL 15 =C±) / .EMPTY)
296 (.IFTE1P N2 .PUT(.COL 18 *-*) / .EMPTY)
297 SFTFLAGE .CUT(.CCL 72)
293
299 FoPSTml = .0U7(.001 1 *1 *COL 72) .11 .PUT(.CCL I *LOOP* .00117 *) t=t
100 *INTEGER .FUT(.CCL 25 =0* *) *TO* .INTEGER .CUT(.COL 34 *C* 4 .COL 72
301) *;* (.I0+*:± .CUT(.00L 1 * .001 72) / .EMPTY) NOTASSIGN =:*
302 *ENOFOR= .CLT(.COL 3 t8RCH* *COL 16 tF *1 .COL 72) .,
303
304 wILEsimi = t(t .CUT(.COL 1 *1 *COL 72) IFTP .CUT(.COL 25 *L* *2 .COL 72
195) *)* I:*
306 (.I0+*:* .. OUT(.COL 1 * .001 72) / .EMPTY) NOTASSIGN *:*
307 .CUT(.COL 3 teRCH* *COL 18 IL= *1 .031 72 / .CCL 1 *2
303 .101 72) tEN1wHiLE*
109
710 Cm1STmT = ,ou7(,cci. 1 *4. t * .CCL 72) =-4.* .,

311 ASSIGN = .,:LRFLAG C2 .CL9FLAG C3 .ci.,;;-LaG P0P1 .CLPil,LAG NOPR
712 .CL=FLOG 01 .01..P1.41G 7071 .CL`^;LAli 0472

156

313 (.I0+2//2 :.:ATASSG / .EMPTY SImASSG) .

314
315 SIMASSG =(.10+222 .STACK * S3VAR1 212 (2=*2 .SETFLAG ART/2=2
316 'EMPTY) EXPR2 (.IFFLAG NoPR .EMPTY / .EMPTY EXPR1) ASST /
317 .10 .STACK * (2=*2 .SETFLAG ART / 2=2 .EMPTY) ExPR2
313 (.IFFLAG NCPR EXmV / .EMPTY EXPR1) ASS2 /
319 252 ./0 +2(2 .STACK * S8vAR1 2)2 (2=*2 .SETFLAG ART / 2=2
320 .EMPTY) EXPR2 (.IFFLAG NOPR *EMPTY / .EMPTY EXPR1) ASS3)
321
322
323 5B4AR1 = (2ROP*2 .SETFLAG POPI /.I0 .STACK * / .INTEGER *STACK *
324 .SETFLAG Cl)

325
325 Exppl = (.IFFLAG NOPR .EmPTY / .EMPTY .UNSTACK N3 .PUT(.001. a GPI

327 .001 17 N3 .001 26 N2)
324 (.IFFLAG 03 .PUT(.r7OL 16 202) / .EMPTY)
329 (.IFPLAG 02 .PLT(.00L 25 202) / .EmPTY)
130 (.IPTEMP N3 .2UT(.001. 15 2-2) / .EMPTY)
331 (.IFTEmP N2 .PLT(.001. 25 2-2) / .EMPTY)
332 (.IFFLAG CAT1 .PUT(.COL 25 2/2) / .EMPTY)
333 (.IFFLAG 0472 .PUT(.COL 26 2/2) / .EMPTY)
334 SETFLAGS (.IFFLAG ART .PUT(.001. 7 27.2) / .EMPTY))
335
336
337
335 EXPR2 = TERM1 .STACK N2 (.IPRLAG 02 .SETFLAG C3 .CLRFLAG C2 / .EmpTY)

119 (.IFFLAG 041'1 .SETFLAG CA12 .0LRRLAG OATi .EMPTY)
340 (2+2 TERM1 .3PT(OP1,240C2)
341 2-2 TERM1 .SET(CP112SU52)
342 2,2 TERM1 .SET(01=1,2mPY2)
143 2/2 T-1Rm1 .3ET(0PIl20v01)
344 2.AN0.2 TERml .3ET(CP1,2AN)2)
345 2.08.2 TER4 1 .SET(OP1,20R2)
346 2.x0R.2 T5Rm1 .SET(OR1,2X042)
147 . EMPTY .SETFLAG NQPR) ,
343
349 TERM1 = (2.NOT.± TERM2 .T+ .PUT(.001 3 2NOT2 .CO1 17 N2 .001. 25 2+2 *7)

350 (.IFTEmP N2 .PuT(.00L 16 2-2) / .Em0TY) .OUT(.00L 72)
351 .SET(N2,*T) T=(TuRN /
352 .INTEGER .S=7(N2,*) . SETFLAG 02 .TRETURN / .EMPTY TERM2)

353 t 2.SHTL0.2 .INTEGER .s;7(c),01,2L2) .LET(cP2,tpt) SHOUT
354 2,sHI40.2 .INTEGER .SRT(001,2R2) .SET(CP2,202) SHOUT
355 2.SHTL1.2 .INTEGER .SE7(01,2L2) .SET(CR2,212) SHOUT
356 x*SmTR1.2 .INTEGER *SRT(021,272) .SET(CP2,212) SHOUT
357 2*R0T=.2 *INTEGER .SE7(0P1,2R2) ROUT /
153 2*PcTL.2 .INTEGER .SET(0)=1,2L2) ROUT /
359 .EMPTY) *
360
361 ROUT = .7+ .PUT(.COL 3 2802 0F1 .001 17 N2 .001 26 *
362 .COL 34 2+2 *T) (.IF7EmP N2 .PUT(.COL 16 2-1) / .EMPTY)
16! (.IFFLAG OAT1 .PUT(.002. 16 2/2) / .EMPTY)
364 .OUT(.001. 72) .SET(N2,4T)
365 SHOUT = *T+ .PUT(*C(71_ 3 2SH20P1 .001. 17 N2 .001 26 * 2,2 0P2 .00t 34 2+2
166 47) (.IFTF?4C N2 =uT(.004 16 2-2) / .imPTY)

367 (.IPFL.A0 011'1 .PUT(.00L 15 2/2) / .EMPTY) .0QT(.001. 72)

161 .SET(m=0,y)
369
370 TE=m2 = (.1,1+222 S.RvA=3 ..sE.T(N2,47)
371 1.0.2(2 PL0VA; SET(421*T)
372 .I1+2//2 iET(CUM1,) .13 .3E7(N2,0Um1 2,2 4) .SETFLAG 0A11 /
373 2P0P+2 PCP2 ..ET(N2,4T)
174 .:0 .SET(N1,*)
375 2 <2 4:10+2(2 lu",V4R3 59VA25 .5ET(N2,*T)) .

157

175
377 FLOVAP = .STACK 4 (.IC+t/t 53VAR3 RL11
379 1PCP*t POP2 .SFT(N2,*T) FLO1 /

379 .10 .SET(N2,*) FLO1
393 tSt .I0+t(t S3VAR3 SEVAR5 FLO1) t)t
381 FLO1 = .T+ .PUT(.COL 9 *EXTRt) .UNSTACK OU41 .PUT(.COL 17 CUM/
31? .COL 34 t*t *7) (.IFTEMP N2 .0(11(.00L 25 t-t.) / *EMPTY) .CUT(
331 .CCL 26 N2 .001 72) .1
334 00P2 = .1+ .OUT(.COL 8 tP0Pt .COL 16 t+t *T.COt 72) 9

315 S9VAR3 = .SET(N1.*) S3VAR4 tlt
386
397 S5VAR4 =47+ (200P*t.OtT(.COL 3 tPOPt .COL 16 ti.t *T .COL 72).PUT(.COL 8
311 tpmovEt .00L 17 NI .COL 25 t-t *T .CCL 34 A+t) .00T(*T .COL 72)
389 / .I0 .OUT(.CCL 8 tgmOVEt .COL 17 NI .COL 26 * .COL 34 t+t *T .CO1 72)

391 / .INTEGER .OUT(.COL 8 tRICVEt .COL 17 Ni .COL 25 tot * .COL 34
391 t+t *T .COL 72))

392
393 S5vAR5 = .PUT(.COL 3 t9MOVEI .COL 17 N1 .001. 25 t-t *T) .1+

394 .OUT(.COL 34 2+2 *7 .COL 72)
795
396 EXmV =.UNSTACK lUm .UNSTACK OUm . PUT(.COL 1 tmOVEt.COL 17 N2 .COL 26
397 GUM) (. IFFLAG C3 .PUT(.COL 15 tCt) I .EMPTY) SETFLAGS
393 (.IFTEMP N2 .PUT(.COL 15 t-t) / .EMPTY)
399 (.IFFLAG APT . PUT(.COL 7 t%t)

400 (._ IFFLAG CAT/ . PUT(.COL 16 t/t) / *EMPTY)
401 .EMPTY)
402 ASS1 = (. IFFLAG NOPR .UNSTACK N1 / .7+ .CUT(.COL 34 t+t *T .001 72)
403 .SFT(N1.4T)) (.IFFLAG ROP1 .1* . OUT(.COL 1 tPoPt .COL 16 z+z
404 .COL 72 '11 .SET(N2,4T) / EMPTY UNSTACK N2) .UNSTACK N3 .PUT(
405 .COL 1 tWMOVFt .COL 17 N3 .001 ZS N2 .CCL 35 N1)
406 (.IFTEMP N1 . PUT(.COL 34 t-t) / .EMPTY)
407 (.IFFLAG NOF4 SETFLAGS (. IFFLAG 03 .PUT(.C.01. 34 tCt) /

403 .EMPTY) (.IFPLAG CAT2 .PUT(.00L 14 t/t) / .EMPTY) / .EMFTY)
409 (.IFTEMP N2 . PUT(.COL 25 t-t) / .ZMPTY)
410 (. IFFLAG C1 .PUT(.C1L 25 tCt) / .EMPTY) .CUTt.COL 72)
411 ASS2 = (.IFFLAG NOPR .EMPTY / .UNSTACK CUM .PUT(.COL 35 OUM))
412 .OUT(.COL 72)
413 ASS3 =(.IFFLAG NOPR .UNSTACK N1 / .T+ .OUT(.CCL 34 t+t *1 .001 72)
414 .7ET(N1.*T))
415 (.IFFLAG POP1 .1+ .OUT(.COL a 1PCPt .COL 15 t+t
415 *T .001 72) .SET(42,41) / .EIRTY .UNSTACK N2) .UNSTACK N3 .T+
41? . PUT(.COL 8 tR4CVEt
413 .COL 17 N3 .CO1 25 N2 .COL 34 t+t *T) (.IFTEMP N2 . PUT(.COL 25 t-t)
419 / .EmFTY) (.IFPLAG Cl .PUT(.CCL 25 tCt)/ .EMPTY) .OUT(.COL 72)
420 .FUT(.COL 8 tW104Et .COL 17 N3 .COL 25 t -t *1 .00L 35 N1)
421 (.IFTFmP N1 .0UT(.CCL 34 t-t) / EMPTY) (.IFFLAG NOPR SETFLAGS
422 (.IFFLAG C3 . PUT(.COL 34 202) / .EMPTY)
423 (.IFFLAG CAT2 .0UT(.CCL 34 t/t) / .EMPTY) / .EMPTY
424) .OUT(.COL 72)
425
426 CATASSG = .SET(STK1,*) .ID .SET(STK?,*)
4?7 (t=4t .SETFLAG ART / t=t .EMPTY) EXPR2
421 (.IFFLAG NOPR .SET(0=1,1MOVEt) .SET(N2.t t) /

429 .EmPTY) . INSTACK OUM1 .PUT(.COL 3 OP1
430 .COL 17 OUM1 .COL 26 N2)
431 (. IFFLAG NOP; .PUT(.COL 25 t/t S7K1 t,t c1K2) / .EMPTY
432 .PUT(.COL 34 t/t 3TK1 t,t STK2))
433 (. IFFLAG CAT2 .PUT(.COL 18 t/t) / .EMPTY)
434 (.IFFLAG C3 .PUT(.COL 16 tCt) / .EMPTY)
435 (.IFFLAG CATI. .FUT(.COL 25 t/t) / .EMPTY)
435 (./PFLAG C2 .PUT(.COL 25 tCt) / .EMPTY)
437 (.IPTEMP OUM1 .PUT(.COL 16 t-t) / .EmPTY)
433 (.IFTEMP N2 .PUT(.CCL 16 t-t) / .EMPTY) SETFLAGS

158

439 (.IFFLAG ART .PUT(.COL 7 t%t) / .E11PTY) .GUT(.COL 72)
440
441 5E1-FLAGS = 43) (.IF ttt .TRETURN / t<t .EmPTY) 3(.M
442 5r1TEST /t)t .7RETURN / tlt .EMPTY)
443
444 SYMTEST = (.IFEQUAL(CM,4) .FUT(tCt) UPACW /
445 .IFEOUAL(Z",4) .PUT(tZt) UPARW /
448 .:FEGUAL(411,4) .PUT(tNI) UPARW /
447 .IFEQUAL(0'1,4) .RUT(t0t) UPARW)

443 UPACW = .PUT(.COL 7 tt)
449
450 ,END

.EOF

159

1 EmULATORIRfoi
(4
TwIS IS .N EmULATCR =OR Ti = '41\:0:4=u7ZR'

'1

3

(4
7 IN DEC...1rATIm1s

wOROSIZE 12 :

11 CCL ARZTAmF'IC 2
11 7:6 GLOSIAL ;,..LRANE47 'MY :

12 :CL GLOSAL RE;MANgNT SIYzLE ACCM.RC,JAR
13 XL OLOSAL T5vPOR' I.2,,ORIORC3:3
1. :CL GLO5AL -1:400RliY FLAG LIN<IO
15 XL GL:;a41. ;ERMAN NT E(T'iRN1L
I XL. FI7LO CRCO-Ef1,11,-q),:q1-;1(0,11),
17 ROACR(0.6) ,RCTFLO(1,3,-1),
11 OSC(301,-3) ,ose(3,2) :

t XL IRROC C
23 (4

21 START OF RIRST ;RCCEZUiE - I%Siij:TICN ,RE7CH
22
23 ;ROC:INF :

2. C*
25 2;11,;;3URE :ECLAA-T.:NS
76

2' CCL GLO2AL USE 1.24.I1,RC I

23 (4

21 EAECUTAZ:LF COO!
31 .1

31
32 IR=1E4CPC1 :

33 INC Pc :

34
35 (4
35 INTRUCT:ON J-/COO
37 .1

33 RROC:INSTOCO
31 GLOSAL USF IR.CRCC 1

'.3
=

.1 CRCC=CPC1:tiR) :

42 ;ELECT (C000.3) :

.3 t0,41I1 :

(1,MI)
(2ORI)

.5 (39CCA) 1

(L.,JMS) :

(5,1401
.1 (6,I0)
51 (7,1PT)
SI

53 (4

THIS 2;L:ULIES
55 4S40iY Rt7ERE'!Ol :NSTe<JOT:-:N.S
55
5' z=iccssC= :
53 CCL GLO5AL =ARE:T 4711,=-C
55 XL GLO5A:. 41; :

53 ::L LCCAL RER"ANENT

160

61
62
63 IS DUR=E'.7 =ASE. =1;z 7E=C
54 .]

65 4DR=PoE4-;(7.=)
66 IFT1UE (IR,7) THEN :

67 BEGIN :

61 0CTEmp= ;.-c-1

69 °C7E4R=C9NT0G(7Tzmp)
70 m4R=PC-Em0.01.47=
71 ENO :

72 ELSE :

73 BEGIN
74 m40=l0=
75 END
76 ENOIF :

77 t*

73 OIREC--I"JI1EC- 47C=ESSI'4G
79 .1

30 IFT9U= (I=,8) 'H=I 1

31 BEGIN :

3' MA=T=mFmCmARI
83 IFTRUE (m4R.G-.') THEN :

14 BEGIN 1

85 IF7RUE (9AP.LT.16) THEN
36 BEGIN :

37 4E1(m411= mz1C1A.';1.1
33 ENO :

39
90 END O :

91 PNOIP :

92 m4==m4;T
93 =NI :

94 END/F
95 PETUPN :

15
97 MAR NOw CONY., INS -9E EPFE47IdE 427"E33
93 *1

19
100 C*

101 mEMO=Y ;SPE=ENCE
102
103 0PCD140/ :

10. GCL GLOBAL LSE 1.1=tmEm,,,0
105 07L SP't0C USE EP-47;
106
107 EXECUTE F=747R :

103 M3;=MEmtm4=1
109 SELECT (7P,'",2.2) F;Dm
213 (0,4N3)
111 (1,747) :

112 (2.157) :

113 ENCSFLE0- 1

11.
115 .T.poc:AND

116 DOL. GLC3AL "5E 4C01,47R,LIN<
11'
113 ACCM=AODm.4N7.m0=
119 LEAVE IN; 1

123 =

121 ;;DC1T47
122 GLOJAL JSE 47,D4,m-,1,611 <
123 =

161

124 1CC'1= ACCm+`10'9 <LIA,<> :

125 LEAVE /NF
126
127 99.CCIISZ
123 DCL GLOOAL USE AC0'1.19,MA,9:
199
133 "5'1C 4A=1- 'E'1[mA:1+1 1

131 IFTgUE C'EI(':A=1.71.C) T.-1P4 I

132 3CO7N
133 INC =C
13, ENO
135 ENOIF I

136 LEA4F INF
137
t33 FFICIOCA
139 CCL GLO3AL USE Em,ACC1 :

141
141 EXECUTE EcT409
142 "'EMCmA;1=ACC'1 I

143 CLEAR AC C1 :

144 LEAVE INF :

1,5
146 =PCC:JmS :

1,7 3CL GLCEAL USE lEm,'A=,=C
1.3
149 EXECUTE EFADR :

150 I:=MCMA=1:90 I

151 INC :

152 9C-4-mA9 :

153 LEAVE INF :

'_Si

155 PFOC:jmo
155 :IL GLO=AL US: PC, It-9 :

/57
158 EXECUTE EFTA-=
159 =C=41P :

160 LEAVF /NF I

151
162 ==CCII0 I

1.6.3 D L GLO3AL USE
16, CCL S=90C 3SE IIIAST
165 DCL LOC L 9E94146.47 OS:6,05 13 :

165
167 IS=OSC(I=)
153 C3-FOSS(IF)
159 EXECUTE IDINSTICS,OS)
171
171 c90C1007 I

172 7_CL GLO3AL USE I=
173 9

17. IFTrtUE (13,P)
175 EEGIN 1

176 LEAVE CPP1
177 END :

173 ELIc
179 EEGIN :

181 L=AV= -==2
131 END
132 ENCIF
133 9

/34 :

135 :IL ILC=AL USE I=,ACC,-C.44 :

135 IIL LOCAL E=mtN -1:0TtL-t3 I

187
181 ,,nNO 1

181
190 B=OIN :

191 OLEA2 ACC"
192 END :

193 (IP,6) :

194 3EGIN :

195 CLEAT LIN< :

115 END !

197 (1°,5)
:

193 8EGIN :

199 ACCA=.NOT.ACOM
2J0 ENn 1

201 {i9,4) !

202 BEGIN
203 LINK=.NuT.LIN< :

204 END :

235 129,0)
/05 !

207 ACCm= ACC1+1
203 ENO 1

209 ENOCON3
710 ROTAOT=PCT7LC(I) :

211 SELECT(RC,TACTI7) '20?* !

212 10,IN1') 1

213 (1,LNF) !

214 (2,RAL) !

215 (3,PTL) 1

215 (4,RAR)
217 (5,2T) t

213 (6,INF)
219 (7,IN) !

220 ENOS,7"-"C'
121

222 .'1ROnOzAL :

723 DCL GL01LL USE LIN1,4OCI !

2/4
225 LINK//AC'T1=L:W<//1CO.--/OTL.1 :

225
22' P,ROCIRL
723 DCL GLOSAL USE LIN<01.:01
223
230 LINKML:C1=LINK//47C.30%.2
231
232 12:;1CiRs',R 1

233 CCU GLIOL ACC4.LIN
234
235 LINK//ACC3=L:`4K//4001.30TR.1 :

236
237 cri.00ITR
231 DCL GLO941 USE LEN,ACCA 1

239
LTNK//ACC4=LIN//4CC".0TP./

241
242
243
244
245
246
247
248
)4..9

=

PPCC:0FR1
On. GLO1AL USE IP/AOC's=C,LINX,747ASW-, I

COL LOCAL 2ERMAN NT OCU1712,CH=O4I2 I

CLFaR COUNT 1

CLEGo. ChECK
CnNO
(1R.6) :

162

163

251 6:G/'
251 COUNT=1 :

252 tFTuE (AC04.LT.1) r,-+Eh

253 BEGIN
754 :HFC<=1 :

255 END
256 ENOIF
?57 ENO :

754 (IRIS) :

259 BEGIN :
260 COUNTUNT+1
261 IFTRUE(ACCm.EO.C) THEN :

262
263 CHELK=CHEC<+1

EN: :

265 ENOIF :

265 END
267
263 BEGIN :

269 COUNT=CL:UNT+1
270 IFT/UE (LINK.E0.1) -H=N :

271 BEGIN :

272 C1-1=',7<=C;4ECK+1

273 ENO :

274 =NCI= :

275 ENO :

275 =NJCONC
277 IFFALS= tI=,3) :

273 BEGIN 1

279 IFTRUE t-)-EC,C.NE.1) THEN
281 BEGIN :

231 ZND P; :

282 ENO :

233 ENOIF :

284 ENO :

295 ELSE 1

286 BEGIN
237 TF-PUE trhE0.E:.COJNI) TEEN :

781 BEGIN :

289 INC PC :

290 ENO :

211 EN-31F
292 END :

/93 ENOIF
204 CONJ :

295 (I2,7) :

296 3EGIN :

297 CLEAR ACCM 1

293 =ND :

293 1:0,2) :

300 BEGIN :

301 ACOm=c,CCm6OR.r,ATASw4
302 END
103 (IR,1) I

104 BEGIN :

305 HALT
306 FN3
317 EN:CONO 1

303 LEAV= INF :

101
313 =`,7:EwJLA73 ;

164

poriAyou:rmongn ;

r* THIS IS tN FAAILAT(10 cnP THE ,NTEt Roan :i.rCatnopnrc-cCUp *1
7 1*

sin8,1 nFOLA;z710 145 *1
nr, wni.inS1.7c

nrt ao THMr1- ;

7 nCt GlOvgt_ cFcmaNENT RAF,ORy NFN.L65F3A1 ;

nCt vPotoaNENT cr,,pLp.
o C1C1 r1 nkAL ,FvReIRARY TR ;

n nrt Gt0c4AL ofomANENT ;

nfl wrYPF(0,7.-A) r 9ITS,4(3.4.-7) ,TTC4c(41,-.44)
19 IrkvT(7,0)
1-* nri o;.1AL 1-FvPrwApse pSTACIe SP:qh;(At+) ;

to nri G10;.AL cYTFDNA1 OkAv:P
lc PPor:TMF ;

(-0..08A1 ItGc mpm.PriTo ;

17 rICL SPI2Or HCF nt<ite ;

R'YFrHTF nvAY
r. rwic Ev7Famal PPOOFnI1PF TFc,S FOR TPATEoc7c FTC Tn Scc

TP TTc Tc Inx3v, Tr FFTLH ThE mtxT TNsTpiteTION *1
91 T7 _plCL1r RCl ;

Tr.]O.
;.)9

pPnr:Tt\tchCr, ;

(iLoBett Hcr To.nT.P
nct. LnUlt TrmpORaor OcCOor:2

97 r,PCnOF=MTvPc'(iP)
nTZnFqT(T7)
GR=c0lIkCg'ffo)

zn RELCT(OprOnF.11) r4MM
11 (rleTvrF1)

(1.INa7)
11 (7.It,C1
-zu (1.1,c) :

-Az; WmOcFIECT ; 4
AA 1:)i4r)C !Ani-eFT SInnO : 1 A

-z7 Git:,341 rycFCT mcm.pC
-10 nrt. (41_08A, oFTIIPN pr
1q nrd, toCAt PFTI;PN ttnn4 ;

1-1CL ulcAl Tcmonpapy
at ; Tmr Pr ;

u9 ; TNIC Pr. ;

a-4 annr.77.1-1.1Y-rc//jay-r;- ;

bit cP4oC!STCRc(ur;c7c;) :

r,t_08n1 g-xoFCT
ItA nct_ GiopAt oFTIIPN mrm ;

o7 FypcOT oGGIc ;

u nCt Lr-ICAt ;

n4 c TWA/^ =H //1 ; McNirTFM0)-R(C.T, tl
en nO:TYPI-1
cl nOL GI t)RAI Hqc Tp.cP ;

c9 n c:FICTtSr1.5-0 .72n :

Gi trt.It.,c1 ;

cu 11.TvoFtIl
(9.Ty-F12)
(1,Tvr,P11)

;

t0

ci

A1
AiL

C..t;

c.7

GA

-7n

71

71
7L:

7,A

7A
77

70

Gz

A7

on
GI

UO
OT
:;11

OS
QA
Q7
0A

Ion

1 n7
1fYi

1h.;

107
Ion
1 nom,

o

1

11i

165

(4rivr,F.114)

(A,Tvr-W1A)
;

FAJMFIFCT t

POnr:TYPI-11
MCI. GI t:PAI CF To.P.TrO.r.H., .SP.LA
MCL LnCA1 TFMCnRAPY enCOrc:7rA6OH:IA 1

flCL SPPOr HcF AOCAPPT !

o npC,AnF=ArTS46(TP) ;

TTFs.
AcGTN :

CmNn .

(OoTC!T.Fn.n)
::rMATAI :

H //1 =H //1 4.T/./C <CA. ; LEAuC TosP :

c,0
(OorOnF.w(A.1) ;

HP'(;rNi

/4//L:wi/L.,n/ic <CA> : LP-AA/P ;

Fait ;

r/PrMF.PT.1) ;

rAF-(4TNI
;

H//L=W//L.I.H//1 <CA> ; LFMVF
:17!..;n

rePronF.PT.1)

pi/L.:pi/1_4.SP /LA> ; LPAwF Trdk
Pmf!

c.,nrop.j) ;

iztd, ;

;71 cc ;

r4c(-itrq t

ErFctiTF arnPRT(ennp)
cnNo

(ooronr.g-n.n) ; PEt,..m ; b//c=AnrIP Ic'ftwF ; t.mr1 ;

4nornilF.FQ.i) ; FiE(:;,N ;T/1E:AMP !FAA'P' Tpn cNO
(OoTrInP.F(J.) ; PFC.:TN ;u //L .7.11nrcp ; IrawF THE ;A ENT ;

(OorniTP.F(J.11 ;TPGTA, ;ScA=ACTIR ; IFAwF TrmF FP01.; ;

F.CrIAT)
F,n ; cA,OTP =

00,1(7:-rYPEll

ncL cooEtAl itcc 'SP ;

net_ LncAl TPue!nParzy ncconcc:2
nacrwF=ATTcac(TR)
rFT:"Itc((rc.-x)THFN

,4g.CATN,

LINO
(OornrAF.PO.n) ; TEr.:TN ; T//C=P1//C-1 ; 17AvP ; cmn ;

(ocr,nnF.Pn.:) ; kFc:rN u1/F=r)//F-1 (_F'AVP r n cmn
tooronc.;.n.,) ; PFayN ; H//L=H//1-1 ; IAVP IMF cm() ;

(nornrlw.co.7) HE(71,N ; DEC SP ; IrAvw c.f'!n

cnincom,
;

CoND !

166

(OorCnF Fn,n) ; REr:TN F://C=P//C+1 ICAVP iNr ; cup
it lOcrOnF,F0.1) REt1;/N ; U//F=n//F,+: ; 1FAVF ; ctqlj

11A (oornnF.F0.2) ; BEATN ; H/iL=H//14.1 ; IrAvP ; cup ;

117 (OornrF.r0.7) REATN ; INC PC Ig'AVF INP ; Cnrl ;

/1A r'11)Cfl*,n

ito FHO ; clT1TF =
ion oPor:TyPElb ;

11 nrl. GI 0BAI i,CG k.r.n.Fw.L,A.
t99 iviFxrnTrrA.7rN

;

nrt, LrICA: TrmoOPAost, ToviD.AUnR.16
1911 t CnNn
lo (nT.F0.e.) ; HEr:Tm ; TNr H <rmfZIN > t.osivF INC ; WU t
/94 (nT.Foi) ; REr.TN : INC L <rArZN > INF ; =HU :

i97 FiEr:!TNI INC U (rA,Z,N > : LFAVF TNP ; ENO !

(nT.F.0.-k) ; ; !Mc > : LCAVP INC tNU
(HT.e0.,,) REr,TN ; INr H <rA,Z,N > ; LCAvF INF : tN0 :

iln HEATH ; INC L <rAZ,N > LcAvF INF ; cNU
111 ; PE6:Tro ;

119 ilnOP=H//t ; !/ENC/.12CR1=tor"(Aur,P7+1 CA.7t9) ;

izl ICAwc TNc ; cr,in

(nT.P0.-7) HEGTN ; INr A <FA,ZN > LcAvF INC : tr,10

17c FThinr0r1r)

11A PArr:/rYPEIA
177 nCt (;l (;8.v itcc

ilA :

17Q l_nCA; TFmcnRapy Trm.P.ALCP.16
;tin inNn
/at (r1T.r(i ,,) : REA:TN, ; nrr H <tM,Z,N > LrAIP T"-'C 'EMU :

tug (nT.F.1) : ;4Fr;Tts! ; nEr L <rAtZ,N > LcAvF INF : wit)
1/kA (r1T.E1').^) REC,11/1 nEr u <rAZrN > LcAwF INC tNU
:Au (HT.F.(J.,) ; itEr,Tm nEr E <rAtL,N > LCArF INF ; cJIU
tua (nT.F0./.) HEaTm ; nEr H <rA:ZN > : INF : tN0 t

ihA (nT.F0,=));;;Er,TN nEr L crAtZ,N > Lc-Aw INC ; tNti t

u7 (nT.F('),t) ; REr:TN
1A AnflocH//1 ; ,itmt,u0k7=k1EmfAui41-1 <C77.At>
luo iCAwC TNc ; c9vr !

: HEATm ; nEr (rArZoN > ; L;*AWF TNP ;

pNCrONII
;

nrj. Gl(1RAI !,Cr To.NAF..a.r.npotHrtrA
LnCAI PrPmAN)7HT Or:2.AUnk!16 ;

cDPOr ktF A0nocT
IA n cC -)-;[To-,44(to)

TFTnHi=t(To.) THom ;

1AP HcGTN
it,o EYFCmTF AnnPFT(Anno)

1A1 (nr.rn.n) ; aPrTN ; mFmrAOnc1t-L ; INL Arno : ;

t A9 1P-Avr Imc ; ,ND ;

(nr.F.!,.1) t HFC;TN1 I=McMCLflUP] ; INC AnnP utmEviAnn] ;

IPftVC Inic ; cr10 ;

(nr.Frs.,) RFG,N ; MrMrAnn,,J=A ; LCAwF TNF prm
14A ((1C.F,9.1) : A=MCVC:InUP] ; LFAVF TNr FINn :

tc.7 ENn,ritn ;

1.A F,d) ;

14.(-; I Cc

17n

171
1/C

17u
1/q
1/A
1/7
17R
170
lAn
IRI
1R2
1141

1Q11

1wR
IAA
1147

ICA

1A0
icn

101

104
icq
1CA
IC7
toe
100

In:

.,f11

at.a

Inc
any
1n7
1nR
.,10

,1n

167

c1NO
IrF(:Tm ;Arno=c4//c ;ImE"LAUnkl=a ;Lcavw TNF: FNn

(OC.Fn.1) :rFgTm :AnOP=0//r :.A=Em[Atingl:LEAvF TNF: FNO
(nr.Pn.1: :cFr:TN ;4nno=n//P ;ME..LAOrlk17.A ;LEAVE TNF: FNn ;

Jnc.gn.1; :PFaTm ;Anno=n//c1 A=EMIADnpl ;LPAvF 1NP: FNn ;

FNoCn,,,11 ;

iz,/n ; ro1TP
;

ncL G1.08AA Hcc' JnT.mEm ;

nrt LnCA1 TpvcnRAN, nvnorlw!3.DATA ;

nr.L co-PH HcF STnoF I

nATA=YEW,C1 : INC PC
CnNn

(nT.F.O.m) kFr;TN H=nATA LEAVF TNF 1 cmn ;

(nT.F(:./) PERTs! C=nATA LEAVF TNF ; cmn ;

(oT.F.O.,5) ; HEGTN 1 n=nATA LEAVF TNF FNn
InT.F(1.,) ; PFr,Tm ; F=nfkTA LEAVF TNF ; cmn
(nT.F_rq.,) AFJ;TNI ; H=nATa LEAVF TNF : :=Nn

(nT.F(J.=) ; PEr:TN 1=nATA : LEAVF TNF ; FNn ;

(nT.FO.c) ; HEC;Tm ; FYFrUTF sTOPE(nATA) ; TNF ; e,in

(nT.F_O.,) ; REGTN ; ac.nAlA , LEAVF TNF vmn ;

FrrCnNn ,

;lanr:TY0F1,
nrt. GIOBAI HFc a.CA.nT :

OCT lnCAt PPPvANPMT TcmP
Crivn

(nT.F0 n) ; HErTN:TcmP=1.7 Ac.A.c.T17.1 : rA=Tcmc ;

IEJI\JF Ir,F : PNI
(nT.F(J 1) HE6:TMITt-MPL:A.n I A=A.CHTc4.1 ; CA=TFP

A=TFmpQo.A ; lEAwF LvF :

(nT.F0.-0 ; kEaTm;TcmP=r)A ; LA//A=CA//...swT: .1. :

A=A.Co.TFmn ItAUF INF : FNn :

.(nT.F0.1) RE(::TN:TcmP=.1.n CA//Ar.rA//A.c1.4Tp.:

rATEud 1FAVP TNF ; r'Nn ;

(111..Fi4.H1 t cF(7,TN:IFAvE TNF :ENO ;

(nT.F0.=1 ; pFC,im; A.T.NnT.A LEAVF INF : cmn
pPGTN: CA-7..NnT.CA ; tEAN,F INF : FNO

(nT.Fi:).71 FGIN: ccT (71 ; cNO ;

FKMCnNO ; "

Fmnp-vmulTor, ;

168

WViliATOP:XrPTu
1*

THTS IS AN EmHLATor cOP A WYnOT).4FTTC1 1") °TT n DEr;ISTEP
nnyPIITFR.EArk TNSTpHeTInN (cXCEnT A FEw) HAC 0/1cICAILV THPrr

1- noCnnE rirLn: u hTTc <tiTT 11 Ti kTT A>
7 2- FIgcT cnHoCr FIcLC: u rITs (PIT 7 Tn T, 47

3- GECoND cnHPrE / LJESTINATION rIT,S

<LiTT 1 TO rzTT n)
in THc 4 PT, SnIIPCE/nESTINATION FIELD Ic AL.THAilY 'AWE itP nE
I I TWn WYFI qS. TWF VnGT cTr.m/rTCAN, BIT OF THic cTFirl Tc A

oT,4ECT/INOT1ECT RIT wuTLE THE 3 LEACT SivmIETCANT RTiq
PnTNT T1 Omr nF THE wTGuT mALHI,E REGIGTFS. Tr THE rlIorT/

iu THOTPrCT BTT Tc A 111 TuFN THE nPERANn (SOLrCE/nFSTTNATTON1
1c TG TN MF.Onv 6mn THE A0nREcc TS IN THE rEGIrTrP TE Tr iS
lh ,n, THE nnEoAmn TS TN THE PEGTSTEP.
17 THc EOLinwImn INcTHCTIOmc HAmE THE AP0VE mrHTTnmrn EnRmAT

A- +Ann' Ann crult,CEI TO Sn1I7CF2 Amn cTnnF RrculT TN crInnCEn
c unTArl-6- ,:II f

,n C_ tnAnCr 6nr. NTTH CARRY
ni 0_ .clipcp cHmTPArT ikTTH CkPPv

E- fANn, ANr.,

F_ 1nP nP
G- 'mnTI COPLEmENT SOUPCF1 ANu PICT IT TN l,ESTTI,IATTnN

n41 4n0PC,1 TO nFcTI..ATTnm
9- THnrE ImrToHrTInmc HAVE THE cOLLOwINT= EvrwIT
97 1- OPnnE (RTT 11 T(, 1.71' el)

2_ .nnoFSs <PTT 7 ,u HTT Os>
9a THc FWFcnITvw Annorsc is LALr(ILATtn °V Anifc, THE AnOrESc

::TPII) To Tor own. Am rnilmTEr IWn'S CUmP1E,AtmT STAN rYTt.mi)En
-41 arnTTION Ic fInNF. THE ImSTL1HLTInNS ARE :

19 A- IrAli 1 mO TC THE cuPHOUTIIE AT THr EEErTIVE ,7OngEcS.
THc or iS rUSHEO TH THE (TACK.

_H 1j/vo'1,1 .111'P Tn THc AonRr;c.
7c C- 17n1 EYrCUTc AN 10 nPEPATIum 1G SPFrIF.IEU ov THE 'HlokEsn

ETr1.0. THIr FIELn HASNT oFCN nc.FTNEo crIP THIS nneRn4-.
THOF;' INIfT0HrTICINX Ar)F 7,0 wnkOS LrINr. THC FTEI nS APc:

1P ,. 1- nFcnnF eHIT 11 TO OTT A)
/- n (ITT T Tn ITT 4>

t. r1 t_ nWcT rTc10 /oTT To ITT
Cl 00PI, 1- OATA / rnOncS: c-IELn <ATT 11 TO FITT n5
t19 THc TriPc-C TNc,TPHrTTOw.0 act:
1 A_ fmnwEmt 41,,VE THE ,.ONTENTC nF THC F9n0Y LnCATTn10

PnINTCU He THE cFr(lNN wnpn imTo THE HFsTIATTnN
rOCRECr.GMnTG To THE DEGT FTELn

P- mnvE Tinr rECONU mr,Q0 TNT() THE nEST FrrLn
C- nm nOmUITTUH. THE prr,Tc,rns pnINTro vv THr

p gEnTsTc1.< FrELO MOE CO,,,cAnwn Amn THE T. ninFCT,
ImnIoptT cIELn SPECIFT nNE (IF wnun CnOITTnNc. THr

.0 CnNOITIONc ARE 1) lEs THAN 1(.,7LATEn THAN 1) E0ii/1

Tr, Amn u) NOT Entin; In. THE HA4iF Aunnr:: IS THE
Gc-00b,r, m0,1U

cz 71.7 'AST T1.ln Imc,PHCTTOmc AF *'
A_ 'owl', WHICH nOFS A RETURN Fknm A cliwnnflTHE cV mnP.PiG

TuE cTnCK INTO THE P4.
fNor1 NH OPEonTInts,

c7
A.41

C.0

An
Q1

440

Q7

Qti

A7

.40

7n
71

7,
7A
7IL

7A
77

70

Q1

A,

Ate

PA

PA

G1

0f
cta

c.c.;

UA
07
UP
00

IP-
1rtA

Inkt

Inc
1nA
in7
1,1A

in0
iln
1 I

11)
1 11

169

THr cTAri, Tc PFcTnFNT IN THE kAIN mFmoRt rwri PEATcTh.p 7
cFt.o/Fc 4S TLF GT4CA PnIt,TFP *1
T*

Gt nR r. 1 nFrL APT IONS
t1
N.I wnPfISI2r 12 :

nCt acITHMrTtr TwO :

nCI McMnt-4Y k;FftA:rulle,4.1 ;

nCt fit 0-;AL nppmaNENT :

n(i ,P.:PnPAPY OC ;

11r1 GI G,11,41_ oFomANFNT Pr,,G r.C.7:7 ;

nCt GIOHAL nFomaNENT PGTACte!k7:1' 4,+)
nCt FvTFPNA1 TopPOC:o
nCi FTFI.H coCir7.4.-al,e,QC9(3.0)*OC(1n.P.-et).

Annppc(7,11).piTon(Prp.-8).CPrIO(A.q.-41).
cUr2f(2.o).A,TS7(7,7.-7).HTTc'x(:).3.-7).
tATcrIP(P.n)

PPnr:,F1T
r* THIS HPnr-FrIN2F PrTrHrc Toe- NeXT TttcTmICTTOPr ANO

rt,-1Ec SoF PuTmAtpv OrCOOr *3
rr; Hcp mEm.pr.,p :

ICI 16CAL -FvpmpAqv nprflnp.4 ;

N ;O:1!4!Fk!CPtn, TNC or ;

7707 (rp.itl TIx-m REArN L+-AVE TYPr1 F41:
F.ACC PPetIN t LFAvc ,YPP2 ; rNO; tNnT= ;

cPPrC!Fr:TCt..(4:noplO:4.vAltiF)
nci r:LnHA; HPP MENI,An.,1,0.,,P3.r?4,05PA.P7 ;

nr; tOrAL ox0FrT AnP=l_n ;

CCi .7,E-rup,
nc; InC4L oFPmaNEwr PIT:1:i.otTm2:2 ;

H PTI7=H;TC11(AOQFT-0)
,=,IrTrIPPITc-OP(AOPPIn)

rrNo :

t,;ITOP,p0.n1 ; PrAts, ; iI Ue = RU AO TO TNnPrT ; PNO
tr-.ITu2,c(3.11 ; P=Ali, r wmt.ur = p1 ; an TO it.nper pN0

; AF,j i ; %/41_11p = p2 .0 TO TMT)OCT FND
(OTTil2,O0.11 ; OP:T. ; = P3 ; GO TO imflorT ; pNn ;

; ; vH1 tir = q4 : (-40 yo T;InqrT c'Nn ;

pP,T, = P5 ; AO TO Trong.rT ; Ft,:0 :

(.-ITh2.co.A) PF,T ; sfmloc = Rig : .0 Yn rmnorr I rND
;IT112.r.-(z.71 ; ; Al Or = P7 ; Ftn

Ph;nOnNO
rrrrIGOT IcTPHF (91.77.1) TwrN ; HECON

VAInF=NAFmrtrAItiol
a,n F-NnTF ; a

cPanc!CT(IPcfAraal_O:u.vAIIIEI ;

0(11 ra_nhAl 1;cw mEm.po.rot0,,q3.040P5.PA.P7
nr; tOr.;=1_ rypPrT ,rtis?=Lrt ,v4LrE ;

nct 10C4L oFoNALNEmT PIT3:1.17TT0,2:2,TFmn.VAIHri
nri cPPGC ,cF pFTru

11 .ATT,E=PITC.A;I,OOPLO1
4ITTP2=HITGa0;an2Pin;
TFT,)71P(PT,3.Wn.11)Ti,PN

;

("ONal

HrrG/N ; PmPVA1UP NFYT ENU
(inITn2.n.1) qi=vALt,:p pseT tN0

170

(r,Iyrp.Fa.P) : ArGIM P-,=VA1Ur ; mFYT EmU
liq : HPGIm ; P-1=VALUF : L AVE NFVT : ENO

(ITA.9.Fo.4) : RcGIm Ph=VALUF LtAVr MFYT : Emu :

117 (HITn2.Fn.5) P==VAIUF LEAVr mFYT ; END 1

114 HCATM Wc=VALUF LEAVE' ,+F"YT EHD

110 (nIII2.F^7) ArtT,Im ; w..z.VAIJJF LEPVc mFYT ENU :

wNrICnmn
P'r.,i)

t a9 CI cF :

121 HFC,f/1 :

tau FyPCHTF cPTru(41)mPln,VAI Li)
mF/4\.iftL,c-11=wALmF ,;° / FNnIF : ft

10A PRnn:TYPF1 !

107 nci :LoriAt ilcP TR :

nci 10cAL :14-0mANENT
lao 04.uNc..1.nP:),nr:1
1 n nri cppoC pPTcw.cT^PE-4

/11 n 4flacu1=Smr1(To) ;

AnRch2=Sor2(To)
177 nr=nC(IPI ;

llu PYFe-t1TE crTr*HtAnocn1,P9Por1) .

1 TqT:2(1F(On.F.n.7) 1.1.4;:m t HRe:Itq

114 r* N-T *J niaQmn)=.NOT.OP0KL1 ec,Z> :

117 FrdOtF ;

110 TPTOilF(On.nT.=) Ii-FN Pc, iN I

17c: . Nny *1
tttn cTni4F(Anr;r1).(1Pw.!n1) ;

tnt FNn :

11,7

141
r ;Or.+.clip.Annrp.c"FiC.Amn.GR 1/.1

14c P1FCUTC PFTCH(ArlpFn2fnmkNIOn)
rfl1 4 4 o'

147 (CD.cn.n) ;AcnTN ;

144 ('PCM00=nPRn24-ni!"0141"1 (r17) n Tn cTDC1T E.

14Q (00.t-n.1)
nPoNn2=0PWwn2-$.^WONni
elPONO2=n0W,,In2+,' <C.Z) ; (40 TO cTnCIT ; Fm! ;

i= (GO.co.91 ; npaT" ;

1=1 nPohlr)97(10P1.,r12-,,PPN-,1 <C,7) t,n Tn cTPcLT ; En.n

1v.41 con.L-(z.1) ; rs-e4T ;

1== nPor,n9=noc4.,n2-1P0N,1 ;

1.14 OPIDN02m(OP,M2.r, <C.2> : no In ; FN ;

147 (00.,n.,4) mPnt, ;

1c1.4 npoh0=oppfln2.,Nn.^PRNI11 <r.Z) 1 oal Tn STHcLT ; PM*.

tcc (n0.r1Z.S1 F(1T!I ;

nPoN0,1.nPR.,n2.e.4..0c7-4NCI <C.7> : rtn TO 1PS(T FmM ;

1

is./ Fr?.,hcONn :

140 CTWCLT : r* c7nPF
1A1 Evc-CHTp. STnQP(ArIRPr.2,0nkNO,)

h

/Lc pPnr.:TYPFP
Dr! 'LANAI HcFo ;

ncr rOCL r.FnevaNEniT nC.),(AnLP:,
nri c).)PtiC t,cF TOPonC ;

tto r TFP!,Lci,Aro.inl
I7n .ter(-TN

171
177
171
174

174

17A
170
1:A4

1.A1

1c-7

1A1
1A4

1 PA

1A7
1.02

1wC1

Acct

101

107
101
104
i a

104
107
10A

.1(in

7r 1

7r 7

9(p-

7n4

,n7
7PA
26a
'in
711

.9

oiu
,1

71c=.

717
71,A

710
',Pr)

771
774
77
774

1* C1LL. NC.TOPMOD 4,1
nCHIT14,(TGA) ; AnflPAnnotc(vk)
rn,4; ;

: ;

PiiS6.(Pr) ; DC:=0C,A0r), ; lEAVF Prn ;

(Or.Fi7:.11 ; FGTm ;

PC=Pr,,Anno ; NF,' : ENO ;

(nr.F13.-11 aFGin
cyFCHTc inaPOC(anno) : LFA,,E NFXT ;

fOr.rn.A) pFGir : 1FAic rEvT : Ern :

PNnCnrn
prn ErrTP :

;

nrt rt rr,Al ncp mEm.or.TP :

nri pW.pmANENT PnITF2./LPPnl:4.AnpPn2:
H1T3...1:117.7:1,TPm,,Tp.,p1 .A0kFS

nri pPQ0C I cF pcTri-1 cTr.PF :

TwFN :

r* uf.rr .1 octpop LrAVP NFXT ; FNn :

RI cr. :

;

r* . NenviI

r:rri..".2-,FvroC1 Inir Pr ;

(-Or,

(OC.pn.1) ; clPr:Tr ; -rtvP-NEyrbYTP71 :

Anapn7..7:Spr7(In) : EYErOTE SIMPF(,,np=n,,TP"ia)
icavp n;Fyy cNn

toC.c(4.21 ; pPr4T, A.L;PFr4=SPC2:TrJ)
PyPrNTF pTroFfA0pU9rpYTE2) ; NFXT Fi,n ;

(c;Cr..-(7:.1) ; ; ALPFr=PC+6y7F-2
AnnFn 1 -.cPc. n In)
ArIngn2=CPC.5n(Tn) :

EvPCMTP FFTCP(ArIPPn) .T=P)
EypCnTp FpTru(AnPPr.2.TpmPl)
I47,77.44TTS7:i0) ; urTI=PITS1(Tp)
Or-HTTp7//piTc, ;

Cr-11 :

(rC.Pri.n) He- ;I; ; IPTRUF(TPP.6T.TpmP1) ;

rF(7:t ; mC=AnFiPp ; Fin Prn,P ;

147x-r ; Ftln 1

1,(:.pr,.1) ; PrGini ; IcTRUF(TFP.LT.TP-mPll TwEH ;

0E-GT.; nC=ArkPc ; Fmr1TF ;

IpAVP NPy'r ; Pnr1

erC.Pn.P) : HpGIr IPTRUF(TFP.Er.TP:PII Tkr.N ;

rFGT. : r:C=AnPqc t!on FNnTF ;

LpAVw NFXT :

fnc.p.n. A) : -FGr ; TFPALSF:TPmP.Fm.Tpoll
pEGTKI DC=AnkF'c F7T-111= ;

L=Avp ; FNI-1 :

FW,C,,Por ;

P-NnCnNO !

gml;

Ptoirc : g

7.-riF4,

171

172

GLOSSARY

ARCHITECTURE: Those facilities of a computer that are visible to a
programmer.

COMPILER: A program that converts a high level representation
of a program into a low level representation.

CONTROL STORE: The memory of a m-computer which holds the micro-
instructions.

DYNAMICALLY MICROPROGRAMMABLE COMPUTER: A microprogrammable machine
with the capability of swapping microprograms in and out of a writable
control store at a speed which matches the basic processor clock
speed. This capability can be looked upon as the dynamic redesign
of the architecture of the machine to meet the needs of the immediate
job to be done.

EMULATOR: A collection of microprograms which when stored in control
store, define a computer, i.e., its machine instruction set, is known
as an emulator. The machine doing (supporting) the emulation is
known as the HOST and the machine which is emulated is known as the
TARGET or the VIRTUAL machine.

FIRMWARE: Firmware is described as microprograms which are resident
in the control memory of a computer.

ITERATIVE CONTROL: Some machines have the capability of repeatedly
doing an operation (corresponding to some microoperation) until some
condition (loop count termination, flag generation etc.) makes them
stop. This is a useful feature for multiple precision operations.

INTERPRETER: A program that performs the instructions of another
program. It differs from a compiler in that it produces the results
directly while a compiler produces a representation of a program that
must be interpreted by a program or directly executed by a machine.to
produce results.

m-COMPUTER: A microprogrammed or a microprogrammable computer.

MACRO-INSTRUCTIONS: These are the instructions which reside in main
memory i.e., the conventional machine instructions. The highest level
of control over the CPU is exercised by these instructions. Thus they
are one level above microinstructions just as nanoinstructions are one
level below microinstructions.

MICRO ARCHITECTURE: Those facilities of a microprogrammable computer
that are visible to a microprogrammer.

173

MICRO CONTROL PROCESSOR: A microprocessor with a control store as part
of its control unit.

MICROINSTRUCTION: A word contained in the control store of a micro-
programmed control unit. It consists of a number of fields; some of
which are microoperations and some are literal data like a constant,
an address, etc.

MICROOPERATIONS: The most primitive or elementary operations which a
machine can execute. According to Wilke's original model, these are
the signals which go over a single wire to a well defined destination.

MICROPROCESSOR: A large scale integrated (LSI) circuit processor on a
single chip or a couple of chips. The term 'micro' in microprocessor
refers to the physical size of the unit involved.

MICROPROGRAMMABLE COMPUTER: When the control store is made up of
read-write memory and facilities are provided for changing the contents
of the control store, the computer is said to be microprogrammable.
The extent of these facilities cn a computer (both hardware and soft-
ware) determines Microprogranmobility of the computer.

MICROPROGRAMMED COMPUTER: A computer is microprogrammed if the micro-
instructions which the computer executes are stored in a read only
memory.

MICROPROGRAMMING: A technique for designing and implementing the control
function of a computer, as a sequence of control signals to interpret
fixed or dynamically changeable instruction set of the computer. In more
general terms it is the activity of programming using microinstructions.

NANO ARCHITECTURE: A level below microarchitecture. The nanoprograms
residing in NANO STORE define the microarchitecture of a computer.
This means a sequence of NANOINSTRUCTIONS are executed to emulate a
microinstruction. This is similar to the execution of a sequence of
microinstructions to emulate a machine (macro) instruction.

NANOPROGRAMMED COMPUTER: A computer is nanoprogrammed if the nanoinstruc-
tions which the computer executes are stored in a read only memory.

NANOPROGRAMMING: The activity of programming using nanoinstructions.

NANO STORE: The memory where the nanoinstructions reside.

174

RESIDUAL CONTROL: In m-cormouters the microoperations are converted
into control signals which directly and immediately control machine
resources. This is known as IMMEDIATE CONTROL. An alternative is
the residual control scheme where microoperations do not control
resources directly, but rather use several SETUP REGISTERS to control
hardware resources. The value of a setup register may indicate the
microoperation a functional unit has to perform or the address of
a register etc. Microinstructions are used to control the values
in these setup registers.

SIMULATOR: An interpreter in which the interpreted instructions are
machine language instructions for some machine (real or abstract).

UNIVERSAL HOST: A computer that can be microprogrammed to emulate any
desired target machine.

WRITABLE CONTROL STORE: The control store of a microprogrammable computer.

