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AN ALGORITHM FOR THE NUMERICAL CALCULATION
OF THE DEGREE OF A MAPPING

I. INTRODUCTION

1. Summary

The topological degree of a function f Rn Rn is an integer

which when non-zero guarantees the existence of solutions x to

equations of the type f(x) = p. The concept was first introduced by

Konecker [9] in 1869. Since then it has found many applications, most

notably in the fields of differential and integral equations (cf. [2,3,8]).

However these applications generally make some assumption regard-

ing the value of the degree because, as J. Cronin observes [2, p. 37]:

"the problem of computing the degree is, to a considerable extent,

unsolved except in the plane. " Thus F. Stenger's paper [11], which

gave an algorithm for computing the degree in Rn, represents a

significant advance.

In Chapter III of this thesis a new proof is given of the basic

formula used to compute the degree in that paper. It is remarkable

that this formula, first given in [11], was anticipated in a simpler

context as long ago as 1904 by J. Hadamard [5, pp. 452-460]. The

algorithm of [11] has at least one serious drawback: it generates a

sequence of numbers which eventually equal the degree, but it is in

general impossible to decide when this equality has occurred. Our
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main result, proven in Chapters IV and V, shows that in many cases

an alternative procedure is available which unambiguously computes

the degree. The calculations needed to compute the degree using the

basic formula of [11] are very time-consuming, involving the evalua-

tion of many n x n determinants. In Chapter VI of this thesis a

simplification is given which replaces the determinant evaluations by

a "scanning" of the matrices associated with the determinants, i. e.

a search for certain entries in those matrices.

It would be of considerable interest to extend the foregoing

results to the infinite dimensional situation (cf. [2,3]).

Z. Definitions of Topological Degree

We begin with an intuitive "definition" of topological degree,

after which the two principal properties of the degree are listed.

Let D be a bounded region (open connected set) in Rn with

its closure. Denote the boundary of D (i. e. D \D) by

b(D). Let F D Rn be continuous. Choose p E R.11 with

P Fn(b(D)).

If x traces out b(D) once "ccu.nterclockwise" then the
(2;10 ical de

nof is an

integer measuring how many times Fn(x) surrounds p in a

"counterclockwise" manner. In the case n 2 the degree is the

familiar "winding number" of complex analysis.



There are basically two important properties of d(Fn, D, P):

Homotopy property: if H(t, x) [0, lj x --'Rn is continuous with

H(t,x) p VtE [0, it V x b(D)

H(0,x) Fn(x) VxED

H(1,x) G(x) VxED

then d(Fn, D, p) = d(Gn, D, p).

Existence of solutions roperty: if d(Fn, D p) i 0 then 3

X E D such that Fn (x)p.

Next we give several strict definitions of the degree which can

be shown to be equivalent. In this section we will take p in Rn

to be the origin On, since any other point q may be dealt with

Fn(x)

d(Fn, D, p) = +1

G(x)

d(Gn, D, p) = -2

3



by translating Fn, i. e. , by defining d(Fn, D, q) to be

d( Fn-q, D, en).

Let D be a bounded region in R. Let Fn U Rn be

continuous with F (x) On V x E b(D).

The case n = 1 is treated separately: suppose D (a, b),

where -co < a < b < +00. Set

d(F1 ,D, U1)

For the rest of the section take n > 1.

,Notation.If Bi Oo
i 1, bi2, . b. ) = 1,2, . q are

iq

vectors, then

A (B B ) =
1

{sgn Fl(b) sgn Fl(a)},

1 b12 blq
b b b

21 22 2q

b bql q2 qq

In this array B. is the ith row, for 1 < i < q.

4

where

sgn t =

+1

0

-1

if

if

if

t >

t =

t <

0,

0,

0.



1st Definition (Kronecker). (cf. [1, pp. 465-467]).

.7'11 a Fn
d(Fn, D, On) = Ln(Fn, '57 )

n-1 n n-1 11F11 n 1
X (U ) b(D)

X dul... dun

n/2
where F is the Euclidean norm in Rn, n-1 F(ni2)'

n-1
U = (ul'u ,un-1) is a parametrization of b(D) oriented

in a certain way.

Here we assume that Fn is of class C
1

on b(D). If Fn

is merely continuous on b(D) we can approximate it by CI func-

tions and show that the value of the degree is the same for all such

functions close enough to Fn; finally define d(Fn, D, On) to be

this common value.

Note that the integral is a direct generalization of the winding

number formula of complex analysis. In general it is very difficult to

evaluate.

2nd Definition (E. Heinz . (cf. [6]).

Here we assume that Fn E CI (D) and that the Jacobian

d(Fn, D, On
54

co (11Fnli )j(F')dx . .

5

and



eFnn aFnj(F) =,ax 1 '
axn

is non-zero at every point x E D such that Fn(x) = On. The func-

tion co is continuous with support of co C [r1,r2] where

0 < r1 < r < 00, and r1 and r are small, depending on

and Fn, with

o)dx1 n...

dx = 1.

If Fn is merely continuous we can again define d(Fn, D, On)

by approximation, using Sardis theorem.

Note that the integral is again difficult to evaluate.

3rd Definition. (cf. [10]). Suppose Fn E C1 (D). Assume that

V x Fn(x) on
D such that we have j(F)(x) 0.

-Let N+ (N) denote the number of solutions x in D of

Fri(x) on such that j(F)(x) is positive (negative). Both N+ and

N- are finite since these solutions must be isolated points.

Then d(Fn, D, On) =N+ - N

If Fn is only continuous on D approximate once more to

define d(Fn, D, On).

Once again this is a difficult definition to use for calculating the

degree, and in practice is not very helpful because to use it we need

6



to know the solutions of Fn(x) -= en; unfortunately we usually want

to use the topological degree to guarantee the existence of such

solutions.

Our 4th and final definition is the one which will be used for the

remainder of this thesis. It might be called the "simplicial homology"

definition (although no reference is ever made to homology theory!).

The next chapter is a careful development of the definition.

7
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II. BACKGROUND MATERIAL

Almost all of the material presented in this chapter has been

condensed from [2, Chapter 11,

Notation. In general for the remainder of this thesis super -

scripts will indicate dimension while subscripts are used as indices.

A set of points {a0, a1, a} in Rn is linearly
q

independent if the points are not contained in any subspace of dimen-

sion < q-l.
qA ci -simplex S is the closed convex hull of q+1 linearly

independent points a0, al, ... , a in Rn, and is denoted by

Sq = (a ). The points a, a , . . , a are called the vertices01 q
l:) l

of Sq.

0 - simplex 1 - simplex

a0 a0 al

2 - simplex 3 - simplex

An r -dimensional face of Sq (0 < r < q) is the closed

convex hull of any r+1 of the points a0,a1, , a .

8



Observation 2.1. If p E Rn and pk is the kth coordinate

of p in Rn,a .jk
the kth coordinate of a. in Rn,

J

1 < k < n, then p E Sq iff

k
= X

ja jk
with all X. > 0

J

and X>i = 1.P

j=1 j=1

Given a q-simplex we say that two orderings on its vertices

are equivalent if one can be obtained from the other by an even permu-

tation of symbols. This gives rise to two equivalence classes of

orderings on a given q-simplex, if q > 0: one we call "positive",

the other "negative". For q 0 call the only possible ordering the

positive one.

We adopt the following convention: if x. Rn, 0 < i < n,_

with x. = (xi , X . for each i (Cartesian coordinates),
12

then

orientation (xoxi.. .x) sgn zsn+1((1, xo), (1, xi), (1, xn))

x 0 1 x02 *** x On

1 xll x12 xlnsgn

1 xnl x
n2

x
nn



been made (i. e. , if cq

b(Sq) =

i=0

This is not zero if the x, are linearly independent and does not

change value under an even permutation of vertices.

Note: Here, given a Cartesian basis for Rn, we are

essentially ordering Rn itself this is what an "oriented Rn" will

mean in the sequel. It can be shown that given a basis and orientation

on Rn, the orientation with respect to another basis is the same iff

the determinant of the affine mapping taking one basis to the other is

positive. Consequently we see that an orientation on Rn induce s

an orientation on all its subspaces and their translations in a natural

way.

Notation: <x0x1... xn> is an oriented n-simplex (i. e. , a

simplex with associated orientation). We write

<x1x0x2... xn> = -<x0x1x2... xn> etc.

A q -chain is a finite algebraic sum of oriented q-sirnplexes with

integer coefficients, e.g. , 2<z0a1a2> 3<a3a1a4> is a 2-chain.

In any given q-chain we assume that all possible cancellations have

10

u.S. is a q-chain then sc.' ± sq. for
3 3 31 32

(-1)i<a a ...a... a >01 i

any iZ' and all the u. are non-zero).

IfSq = <a0 a1 ...a q>, define its 12.1anc to be



qwhere A denotes omission. Thus b(S ) is a (q-1)-chain, if

q > 0 (we take b(S0) = 0).

For example, if S2 = <a a a >

then

2
S

b(S2):

Given a q-chain

define b(oq) =

(q-1)-chain if q>

denotes orientation

b(S2 = <a1a2> - <a0a2> + <a0a1>

= <a1a2> + <a2a0> + <a0a1> .

where the u. are integers,

so the boundary of a q-chain is a

Remark 2.2. It is easy to prove that b(b(Sq)) 0 for any

Sq, hence b(b(cq)) 0 for any chain cq.

Notation: Let S. be a collection of (possibly oriented)

q-simplexes indexed by j. Then

11



{p: p E S.( for some
3

q _
{(mS. - p: p E for all

If cq u.Sq is a 4-chain and u, 4' 0 V j, then p E cq

means p E Se:1 for some

If A C Rn, then A \ cq {x E A:

Intersection Numbers. Let Sn be an oriented n-simplex in

n; let p E Rn b(Sn). We say that SnR and <p> are in gen-

eral position.

If p Sn set i(Sn,p) = 0.

If p E Sn set i(Sn,p) = orientation of S.

We call i the intersection number.

Let Hn-I be a hyperplane in an oriented Rn; let G1 be

n-1 1a line in the same Rn. Suppose H G {p}. Choose

<pa1...an-1> and <pb> positively oriented in Hn-1 and G1

respectively.
n-1 1Then set i(H ,G ) = orientation <pa1 .. a b>. It can be

2 n-1

checked that <pa1a2... an_ib> is an n-simplex and that i is

independent of the choice of points a1,a2, . .

Suppose Sn
-1 and T1 are oriented simplexes in Rn. We

n-1say that they are in general position if S T1 is a single point

12



or the null set. Suppose they are in general position.

S1If S T set i(Sn T 1) =- U.

Sn-1 and T1If Sn-1 T1 then4' 4) determine a hyper-

Hn-1plane and line GI respectively with Hn-1 G1 a single
-n

point. Suppose Rn oriented so that b1 and T1 have positive

orientations. Then set

with each X.. > 0 and

i(sn-1, T1) _(Hnl,C1)

-1Observation 2.3. If Sn = <a a.... an> and
1 2

n-1 n-1p E S \ b(S), then orientation <a1a2...an> = orientation

<pa2... an>. It is elementary to check this from the definition of

orientation, since by Observation 2. 1 we can write Pk j jk

Given two chains cP u.X13 dq
3

3'1
= 1, and a multiple of one row of a

j=1
determinant can be subtracted from another row without altering the

value of the determinant. Consequently if in Rn Sn-1 rm T1 is a
1point p with p b(S1) b(T ), where T1 = <cb>, then

n -1
i(S T1) = orientation <pa2...anb>

vkYkq where u.,

.k
vk

are integers and the simplexes X. , Y
k

lie in an o:i°iented Rn,

with either p = n-1 and q = 1 or p n and q 0 we say

that the chains are in genera/ position if X Yq are in gen-

eral position for every pair (j, k). In this case we define

13



j,

Theorem 2.4 [2, Theorem 2. 2]. If the chains cn, b(d1 ), also

b(cn), d1 are in general position then

i(cn,b(d1)) = (-1)ni(b(cn 1

Proof. This is elementary but tedious; one considers various

cases.

-Order of a Point Relative to a Boundary. Suppose zn1

P qu.v iCK,,Y )jkjk

nsome chain (we say that zn-1c

cn and p are in general position. Then we define the order of p

n - 1
zrelative to to be

, n-1vtz =ic pi .

It is not difficult to check that v is well-defined, i. e. , independent

of the particular cn satisfying b(cn) = zn-1

Remark 2.5.

If v(zn-1, p) 3/ 0 with b(c) = zn--1, then p E on

n-1 n-1 n-1 n-1v(azi +bz2 ,p) av(zi , p) + bv(z2 , for all integers

a, b (provided the right-hand side is defined),

is an (n-1)-boundary). Suppose

14



We now extend this definition by replacing by a con-

tinuous image of itself.

Definition. An n-dimensional polyhedron Kn is a union of a

finite number of oriented n-simplexes S', i= 1, 2, ... ,m, such

Sri, Sn Sr.1that for every pair of t \hesesimplexes either Sn r-
j

is the empty set of S. (Th Sn is a common face, i. e. , an r-simplex

(0 < r < n) whose vertices are vertices of both Sn and S. We

write Kn
S Kn = depending on context.

i=1
i=1

Example.

The shaded area is a 2-dimensional polyhedron.

Definition. An n-region is a connected n-dimensional poly-

hedron.

Definition. Let Kn be an n-region, Kn

2 Kn Rn be continuous, and let p Rn \ Vi(lb(le7,:. Then if

z
-n 1 n-is an (n-1)-boundary such that z1 can be deformed con-

tinuously into e(b(Kn))

eldefine the degree of on K relative to p to be

d(e, Kn, p) = v(zn 1 p).

Let

15

without passing through the point 1D, we



It is shown in [2] that d(e,Kn,p) is well-defined, i. e. , that

for all zn-1 satisfying the conditions of the definition v(zn-1, p)

has the same value. The existence of such z
-n 1 is proven by

breaking up each S' a finite sum of n-simplexes, i e.,

expressing each S' an n-region, then proving existence of a

function 'I'n Kn Rn which maps n-chains formed by sums of these

smaller simplexes into n-chains in Rn in such a way that

l'7,(b(Kn)) is an (n-1)-boundary n-1 just as in the definition.

This decomposition of Kn is called a licia1 subdivision, and

the function 'T'n is called a chain approximation to on Kn

with respect to p. It is shown that

is arbitrarily close to on Kn, and

'T':,(b(Kn)) b(t'1:41,(Kn)).

Note that there exist arbitrarily small perturbations of

which will not destroy any of the properties attributed above to

Observation 2. 6. For n = 1, suppose b(K1) ---- <x > <x0 >.

0 1 1Then from the definition we can take z (x )> <.Ht' (x0) so

0
z = b(<1(x01(x )>). By examining the various cases we see that

16



1 1 1

,K1 ,p) = {sgn('T.1(xm)-p)-sgn('t' (x0 )-p))

Thus, since the computation of d('T'll,Kn,p) is trivial for n 1,

this case is mentioned in the sequel only to illustrate definitions and

concepts and to supply the first step in inductive definitions and

proofs.

Remark 2.7.

If p del(Kn), then d(e,Kn,p) = 0 from the definition

and Remark 2. 5(i);

From the definition d( Kn, p) is always an integer;

Clearly d(,Kn,p) has the homotopy property described

in Section I. 2.

17



III. SUFFICIENT REFINEMENTS AND COMPUTATION
OF THE DEGREE

In this chapter we will use the definition of topological degree

given in Chapter II to reprove the basic computational formula of [11].

This formula was originally proven using the 3rd definition of Section

1.2.

Let Pn be an n-region. We shall always assume that Pn

is written as a sum of oriented n-simplexes in such a way that b(Pn)

coincides with the topological boundary of Pn when Pn is

regarded as lying in Rn. It is also assumed that all decompositions

of b(Pn) pre serve or ientations

Example for Case n = 1.

SO

I-x°
x2 x4

x5

4
1

<xixi+1>
i=0

b(P1 ) b(<x x >)
i+1

(<x >-<x.>) = x - x
i+1 5 0

In the future we shall often assume that for n > 1 b(Pn) is

18

i=0 i=0
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written in such a way that the coefficient of each (n-1)-simplex is +1;

this can be achieved by changing the order of the vertices in an

oriented simplex where necessary.

Let = (col, (P 'n Pn R be continuous with

e(p) ,L V p E b(Pn).

Inductive Definition. If n 1, b(P1) = <x > - <xo> (say) is

1sufficiently refined relative to sgn sgn (pi if

p1 (x0) q1(x)
0.

If n > 1, b(Pn) is sufficiently refined relative

to sgn el if b(P) has been subdivided so that it may be written
n-1 n-1 n-1as a union of a finite number of (n-1)-regions

p1
p p

in such a way that
n-1the (n-1)-dimensional interiors of the p1 pairwise

disjoint;

at least one of the functions 2°.°9CP D say cp is non-

zero on each region

(iii) if (pr on

relative to

°signifies

n-1
Pi

n- o1 n-1
Pi then b( p') sufficiently refined

n-1
sgnr
omission).

where

j 0

-1

Example 3. 1. In the case n = 2, suppose

-

b(P < xjx j+1>



where xx . This is sufficiently refined relative to sgn
0

if at least one of
cp1, y92

is non-zero on each line segment (x.x., ),
j

and neither is zero at any x.. Here we are taking

n-1
J.

=
<xxi+1>,

0 < j < m-1.

There are some apparent differences between this definition and

that given in [11]. We shall explain and justify them before proceed-

ing further.

Let n > 1. Fix i E {1,2, ,n} and fix A = n. or -1.

Then a Qn-set is a connected set of points q lying in b(Pn) such

that ) = A . If

two Q'-sets are associated with different is and/or different A's

in this definition, they are said to be of different types

Note: (a) From part (iii) of our definition of a sufficient
n-Irefinement, if p E b(13 i theni ) for some yo,(p) / 0 for some

n-1
j r.. Of course p E b(Pi_ ) also implies that yo (p) / 0. Thus

p cannot lie in any Q'-set. Since the Q'-sets are connected, this

shows that each of them must lie in the interior of some 131,1-1

20

(b) Because
cpr

/ 0 on n-1
Pi and pn-1i

n-I
P.sgn is constant and non-zero on

an-1 can contain points from Qn-sets of different types.

Our conditions for a sufficient refinement are repeated in the

definition given in [11] together with the requirements that (A) each

is connected,

and it follows that no



Then
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Qn-set must lie in the interior of some pri. -1 and (B) each pni -1

must contain at most one Q -set. We have show in (a) above that (A)

follows from the other hypotheses, and it is evident that (B) can be

weakened to the conclusion of (b) in the proof given in [11] of the

computational formula for the degree. Since sufficient refinements

are introduced for the purpose of deriving this formula, our definition

would have sufficed in [11].

We shall prove a theorem which gives an inductive degree

relation between d(e, p n on) and the d(e-1 Rn-1 n-1)
r

i 1,2, ... , m. For the proof we need two lemmas.

Lemma 3. 2. Let n > 1. Suppose a/ On lies on one of the

coordinate axes in Rn with its rth coordinate non-zero. Let

sn-1 be an (n-1)-simplex with a function Fn Sn-1 Rn,

Fn = (f1, f2, , fn), such that Fn(Sn-1) is an (n-1)-simplex.

Suppose that

(i)f 0 on
sn - 1 with sgn fr sn- I sgn (rth coordinate of

a)

(ii) i(Fri(sn-1), <ona>) and
i(rn-1(sn-1), 0n-1 are defined

(here i is the intersection number of Chapter II and
n-1 A

Fr= (f1' fn) )



i(Fn(Sn-1), <Ono>) (-1)r+ni(Fn-1(Sn-1), On-1) s-n f .r

Proof. If (Fn(sn-1), <ena
>) 0 then

n-1 n-1 n-1Fn(Sn-1) <Ono> = 0, so Fr (5 ) r <0 > = also by (i)

n-1 n-1 n-1
and i(Fr (S ), 0 ) = 0; the conclusion is verified. We may

therefore assume that pn(sn-1)
(m <Ana> = {P} say, where

P (0, 0, . . . , p, . . . , 0) in Rn, p t 0 lying in the rth position by

choice of a. Note that (i) sgn p sgn fr --.(ii) pn(sn-1) \ b(Fn(Sn-1)) because i(Fn1(sn-1), en1) is

defined.

Set P ° = (0, 0, , 2p, , 0). Suppose Fn(Sn-1) = <
yn>

Then

n n-1i(F (S ), <0 a>) = orientation <Py y
n

(follows from observation 2.3)

22

An+
1

( 1 (1,P '))( , P), (1, y, (1, yn),

0 0 ... 2p ... 0

where ym (yml yma, ymn) in R for 1 < m < n.

sgn

1 0 0 0

1 y21 Y2n
sgn

1
Ynl yn2 * Ynr Ynn



Subtract the first row from the last one and expand in terms of last

row;

23

(by an argument like that of observation 2.3)

(_on+r ui(pn-1(sn-1), on-1)
r r

n -1n-1by definition; we know that On-1 Fr (S ) from our initialE

assumption.

n nLemma 3.3. Let Pn be an n-region with ; P R

continuous and .t,n, on
on b(Pn). Suppose that b(P) has been

-1subdivided into a finite number of (n-1) regions f3n , j E J, so that

it is sufficiently refined relative to sgn Let .T.n be a chain

approximation to VI on pn with respect to On, with
-1

{Sn :k E K} the associated simplicial subdivision of

1 0 0

A

0

i(Fn(Sn-1), <0na> n+r sgn p sgn 1 Y21 Y22

A

1 Ynl YnZ

1 yll Y12 in

= (-1)n+r sgn p sgn 1 Y21 Y22 Y2n

1 ynl Yn2 nn



with yor, / 0 on p.

also;

(ti) 114 > max 11 '1'11(x)II

n-1

X E Pn

(iii) for every S' both i(e..,(Skn 1), <0na>) and

i(In-1(5n-1),0n-1)
*r k

Proof. (i) We know that we may take l arbitrarily close to

on Pn; the proof is then easy using induction on n and the

n Pfact that t., a chain approximation to 'T'n on
n with respect to

n n-1 .i-,_]. pi:)._ 1o a chain approximation to onimplies .I, with
*r 4 r, J

n-1 i 3

respect to 0

Since n may be chosen arbitrarily close to on

Pn, we may assume that (ii) holds.

If i((S:-1), <011a>) is not defined then

n n-1
) rm (B a)is a (non-trivial) line segment, implying that

k

n-ln-1 n-1
(S ) is an (n-2)-simplex and 0 lies in this (n-2)-simplex.

*r k

if on-1(sn-1), on-1
) is not defined then en-1 E b(e1-1(Sn-1)),

*r k *r k

are defined.

24

n-1b(Pn) = Let the point a lie on one of the coordinate axes
E J

in Rn with its rth coordinate non-zero and > max 11 '1'11(x) 11

x E Pn
(usual Euclidean norm). Then we may assume that

(i) the sufficient refinement of b(Pn) relative to sgn is

also a sufficient refinement of b(Pn) relative to sgn

n-1
implying that on Pi



n-1i.e. , 0 lies in an (n-2)-chain.
n n-1Thus to ensure that both i(t.,(Sk ), <0n>) and

n-1 n- n-1(S1 0 ) are defined for the given finite set {Sn-1: k E 10,
k

it is sufficient that On-1 does not lie in a certain finite collection

of (n-2)-simplexes which are in (n-1)-dimensional space. Therefore

if necessary we can perturb <Ona> arbitrarily slightly in a direc-

tion perpendicular to itself so that the above intersection numbers are

defined for all k. This is equivalent to leaving <0na> as it was

originally, then perturbing slightly in the opposite direction.

This perturbation can be chosen so small that all the properties of

as a chain approximation are preserved.

Theorem 3. 4. Let Pn, n > 1, be an n-region and let

Rn
On on b(Pn) so thatbe continuous with

d(e, p n on) is defined. Suppose that b(Pn) has been subdivided

into (n-1)-regions p. , j E J, so that it is sufficiently refinedn -1

relative to sgn 'T'n. Then if 'T.n (yo. . . ) with ccr / 02' n
n-1

on R. for each j E

n on) 21

E J

r,+1
1 n-1 1

) d(e- n-
0. , 0 sgnr j r. n-1.

J
PJ

25



b(p1.1-1)

n-1 - n-Proof. Each d( pn.1 9 e
1

) is defined since by definitionr.
n-1is sufficiently refined relative to sgn , which implies

n-1 nthat V
n-1

on b(p-1. ). Note that the sum above is well-r.
3

defined insofar as if for some j E J both
cos

and
cpt

are non-

. then d(
_n-1zero on 1

-1 n-1 n-1 n-1 n-1
, 0 ) = d(.t't , p. , e ) = o

because el-1 V en-1 n-1- n-1 n-1
and 'T't I 0 onand so it is

133

immaterial whether we associate

Choose a point a lying on one of the coordinate axes in Rn

(with say rth coordinate non-zero) such that 114 > max e(x)11.
X E Pn

Let el,1/4 be a chain approximation to on Pn with

respect to On; by Lemma 3.3 we may assume that satisfies

certain conditions. Now

d(e, pn, en)
= y(b(Pn)), n) (by definition)

Oh( e,(Pn)), 011)

(property of chain approximation)
(pn

( 1 )

(by definition of v)

iie(pn), i(e(pn), a)

(by Lemma. 3.3 we assume

n(n) )

i(,In(pn), -On

(Ps
or

(Pt
with

26



-ie(Pn),b(<011a>))
n+1 n n n= (-1) ), <0 a>)

(_on+1e,pn, <ona>)

1)n+1, <ona>)
*F;

jE J

where by Lemma 3.3 we assume each term in the sum is defined.

Then using the definition of intersection number

where

Ja={jEJ: '1'7.(13r.1-1) (Ona) I ci)}
J

Fix jE j. Then r. r with sgn co*r.1 sgn (rthn-1
P.

coordinate of a).

Let n-1 sn-1
k in the simplicial subdivision of Pn.

k E K.
J

Then

d(e, pn, en) L1)n+1

n n-1i((), <0na>)
J

j EJa

(Theorem 2.4)

n n-1 ), <0na>)
J

<Ona,>)

kEK.

(2)

27

(the sum is defined by Lemma 3.3)



dee, _n en)

2n d(e, Pn, On)

E Ja

-1)n+I

E

k E K.

r .+n(-1)3
*ri(e-1(sn-1\

on-1
k

) sgn 9,, n-1
.

by Lemma 3.2 and (iii) of Lemma 3.3.

Thus from (2) above

j E ja

r.+1

r.+n(-1)3 i(e,-1(sn-1) on-1)

E K.

X sgn cp n_i

PJ

n-I n-I n-1-1) 3 (p. ),e ) sgn cp
. 3 '1'1-.1 n-1

3 J 133°

Now there are 2n sets Ja, depending on the half of the

coordinate axis on which a lies, and we get (3) for each
.1a.

Adding these 2n equations gives

r.+1
)3 nr,-1(pn.-1 en-1)

s n-1
3 P.

(3)

(4)

using (i) of Lemma 3.3 to replace sgn by sgn co . Here the
3

summation over all j E J is justified as follows: if some j E

does not lie in any Ja, this means that .t,n(p.7-1) (Ona)
cp for

all possible a. -. ,, n-1
1 0 on (31.1-1, giving

3

28



n-1 n-1 n-1
(p. ) = 0; therefore j can be included in the sum*r,

without altering its value. On the other hand it is impossible for

some j E J to lie in two different sets Ja a'
would imply that no cp, 1 < r < n, was non-zero on

(i) of Lemma 3.3 this is not so.
n _ri .._,.n.Finally since
:.'

a chain approximation to W on I-' with

-1 .4-1respect to On implies ,t.r1 a chain approximation to
Tr on*r .n-1J J

P. with respect to en-1 j E J, we can use (1) to rewrite (4)
J

to get the required result.

We are almost ready to prove our computational formula for
d(e, p n on,

) using the inductive degree relation of the theorem.

Recall that if xi
= (x. x., , xi) in Rn, 0 < i < n,

11'
2

then

x11 x12 xln

and

n( 1,x 2, ,xn)

n+1
A ((IL, x0), (1,x1), , (1,x ))

x21 x22 x2n

x xnl n2 nn

x01 x02 xOn

because this

pi
n-1

lx11 x12

1
xn1 n2 nn
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with b(Kn)

Then

Lemma 3.5. Let Kn

b(Kn)

b(Kn)

j=1 i=0

by definition; also

j=1

by hypothesis, where the y's are just a relabelling of certain x's.

Consequently from (1) we see that

j=1
(j) (j)tj <y1 ... y >, t + 1. Suppose

1'
3=1

n+1'((1, G(x(j)),...,(1,G(x(j))))
0

j=1
Proof.

(j)t.<y
1

(j)... yn >
J

(j) (j) (j)
x °

> be an n-region,01 ° xn

An(( 1, G(4)),.. . (1, G(xn(j))))

j=1

) A

21)iLn(G(xo(j)),

G(x. , G(x(0))

by expanding ,6n+1 along its first column. Now

( AO) (j)(-1) <xj) ...x. `...xn >

G:

t..6.n(G(y(j)),...,G(0))).
1j

j=1

(1)
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n (i) (i)(G(yi ),... , G(yn )) .

Theorem 3. 6 (com utational formula for the deree Let Pn

into (n-1)-regions

refined relative to sgn el; let b(Pn)

Then

w1-1
vk

111.

(j) (j)t.<y ...y
j 1 n

j=1

1 < k < m, so that it is sufficiently

/
(j) n (j)d(el,Pn, On) 1 n

n L...) J

V nt.,6 (sgn 1. (y1 ), ... , sgn t. (yn )) ,

2 n!
j--,--1

where sgn el(y) = (sgn cai(y), , sgn (pn(y)).

Proof. This is the same proof as that in Section 4.3 of [li],

We use induction on n.

For n = 1 this clearly reduces to the formula given in

observation 2.6 for del.1, Pl, 01).

Fix n > 1 and assume that the theorem holds in the n-1

case. We have

-1)rk+ld(.T.n-1, pn-1,0n-1) sgndee, pn, on) zln
o (1)

rk k rk Pn-1k=1

t. = + L

be an n-region. Suppose e (col, ,c9n) pn Rn is continuous

with e On on b(Pn). Suppose that b(Pn) has been subdivided

,6n((1,G(x0(i))),...,(1,G(x(i))))=
j=1 j=1



from Theorem 3.4.

Let b(p1)

1

2n-1 (11_1)1
1E

1
't.Ln((1, sgn ei(i))), ..., (1, sgn e1-1(yn(j))))2n-1 (11_01 rk 1

E

by Lemma 3.5, where

(1) becomes

rk+1
(-1)

1

2n n!
k=1 j E Jk

X pn((1, sgn
rk

X sgn (Pr
-k

t..6n(sgn sgn '1'n(y(i)))
1

2n n! J
k=1 jE jk

Z(i) > 1 < k < m T,= + 1. By
i 1 n-1

t.

, sgn_1(zo.)1))n-1 n-1 i)
(T..6 sgn

rk n1

pn-1
tk,Y(j)

(j)) 1

sgnn-1(j))))
rk

Thus

32

1E1k
definition this is sufficiently refined relative to

rk
so by the

induction hypothesis we have

n-1 n-1 n-1
Pk.

,O1)
rk -

d(e,Pn on)



(moving first column of rk1 columns to the right then multiply-
-

ing it by sgn

1n n (j) n (j)t.Ls(sgn (yi ), , sgn (yn )).
2n n1

j=1

Example. P = unit square in R with counterclockwise

orientation. Let (x, y) = (x, x -2y) = x', y) say.

2

We take b(P2) = <y1y2> + <y2y3> + <y3y4> + <y4 y1> . By

Example 3. 1 this gives a sufficient refinement of b(P2) relative to

sgn2.

Then by Theorem 3. 6

d('T.2, P2, 02)1 1 -1 1 -I -1 1

= -II + I -1 II + 1 11

1
= -8-{-2 -Z -2 -2}

-1.

33



Historical note. It is a remarkable fact that 3. Hadamard in

[5, pp. 452-460] essentially verified Equation (3) of Theorem 3.4 for

the special case r. 1. He used the Kronecker integral definition of

Chapter I, simplifying the integral by ingenious manipulation. It is

easy to see how to extend his work to the general case where

fr.E 1, 2, . . , n}. Since Equation (3) is the crucial step needed to
J

prove the computational formula, we can say with some truth that

Theorem 3. 6 might well have been proven 60 years before it was.
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IV. IMPARTIAL REFINEMENTS

1. Motivation

Let Pn be an n-region with e (co ,n) Pn Rn

continuous and satisfying / On on b(Pn). It is shown in [11]

that if we keep refining the simplexes in the original representation of

b(Pn) in such a way that their mesh (i.e. , their largest diameter)

tends to zero, then after a finite number of steps we will obtain a

sufficient refinement provided that the zeroes of the co. satisfy cer-

taion conditions (these conditions involve the Qn-sets defined near the

beginning of Chapter III and are similar to insisting that no 'p. can

have an infinite number of isolated zeroes on b(Pn) ). The proof of

this statement relies on a contradiction argument and consequently

gives no estimate regarding the number of steps needed to reach a

sufficient refinement in a given situation. Moreover, as the next

example illustrates, it is in general impossible to tell from the com-

putations involved in this algorithm when a sufficient refinement has

been reached. However once we have a sufficient refinement it is

clear from the definition that any further refinement will not 'lose'

this property, so there is no question of over-refining.

Example. P2 = unit square in R2 with counterclockwise
2orientation. Let (x,y) = ((y---x)(y-4x-1), y-1) = (x',y') say.

9 9 3



(-1, 1/3)

Y6

, -2/9)

2 2 2 I 1 1 11
d( P )= 8{1_11 ,1 1

1

-1
11 + 1

1 -1 1 -1
1 -1 1 -11 Ii 11}

y = (1,1)
1

36

which is impossible since the degree is always an integer. Therefore

we do not have a sufficient refinement and must refine further.

= 0

xt = 0
I = 0 I - 0Y -

xt = 0

I = 0

3 Y7 y4

Suppose that we initially have subdivision points Yr Y2' Y3' y4

so that b(P2) = <y1y2> + <y2y3> + <y3y4> <y4y1> . If this is a

sufficient refinement then by Theorem 3.6



Introduce four more subdivision points y5, y6, Y7' Y8 as

indicated on the diagram so that

b(P2 ) = <y1y5>
+

<y5y2>
+ +

<y8y1>. If this is a sufficient refine-

ment then

sgn co1(y1) sgn
c2(y1)d(2,P2,02)=1{1

8 sgn
1

(y
,5

) sgn
2(y5)

sgn. yo1(y8 5gn2(y8)
+ +

sgn (pi(y1) sgn q'2(y1)

= 1.

Since we know the positions of the zeroes of x° and y° on

b(P2) we see that this is not a sufficient refinement because neither

x' nor y° is non-zero on the 1-simplex <y8y1>. If we introduce

further subdivision points and use Theorem 3. 6 to compute a possible

value for d('1.2, P2 02) each time, we will still get the value 1

until we introduce a point such as
y9

or y10 on the diagram.

If b(P2) = <Y1Y5> <Y5Y2> <Y8Y9> <Y9Y10> <non>
we now have a sufficient refinement by Example 3. 1 and consequently

29 P2, 02) 0 using Theorem 3.6.

The point here is that if the zeroes of
(P1

and co, 2 on b(P2)

were unknown, the procedure of subdividing, computing the possible

degree from Theorem 3. 6, further subdividing etc. might yield a

sequence of possible degree values in which the term 1 occurs
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many successive times. We might thus be misled into believing that
2 2 2,P 0 ) 1. In this case the calculations contained in the pro-

cedure would not indicate that we do not have a sufficient refinement

because it is easy to find a function qi2 P2 R2 for which

2sgn 4)2 = sgn 'T. at all previously sampled points and yet b(P2) is

2sufficiently refined relative to sgn . For example take
, 2, 11 1

kx, y) (-9x-y+1, y3 Thensgn )4)2 sgn on

b(P2) \ {(x, y) x = 1, y< _4(5._ with d(4)2, P2, 02) = 1, and the

subdivision points Yi, Y2, yield a sufficient refinement of

b(P2) relative to sgn 4)2.

2
<

For n > 2 it is in general a complicated matter to check that

a decomposition of b(Pn) yields a sufficient refinement, because of

condition (iii) of the definition. We will define what we call an

impartial refinement U; this is a stronger property than that of

"sufficient refinement" but its conditions are simpler to verify. Con-

sider the following motivating example: P3 = <a0a1a2a3> (a tetra-

hedron) and T.3 P3 R3 with sgn cpi as indicated in the

diagram.



a1

Then

sgn .T.3(a2) = sgn 'T'3(a4) = (1,1,1).

Let

sgn 3(a0) = (1, 1, -1), sgn1) = (-1, 1, 1), sgn(a3) = (1, -1, 1).

Assume that

sgn yo.(a.) sgn yo.(ak ) = A / 0 => sgn co, = on <ajak>, all i, j, k.
j

Now

b(P3) = <a0a1a4> + <a0a4a3> + <a1a2a3> -F <a0a2 > + <a3a2a0> .

If this decomposition into 5 2-regions yields a sufficient refinement of

b(P3) relative to sgn (13, then

39



1

12

which is of course impossible. Thus we do not have a sufficient

refinement. The problem is that the boundary of the region

<a1a2a3> is not sufficiently refined relative to sgn(cpi, yoz). For

b(<a1a2a3>) = <a1a2> + <a2a3> + <a3a1>

and both
yol

and
cp2

have zeroes on <a3a1> since

sgn (a3) -sgn yoi(a1), i= 1, 2. Thus <a1a3> cannot be used as

a 1-region in a sufficient refinement of b(<a1a2a3>).

If <a1a2a3> is divided into <a1a2a4> + <a4a2a3> this

problem is removed because now

b(<a1a2a3> + <a4a2a3>) = <a1a2> + <a2a3> + <a3a4>

+ <a4a1>

40

which is sufficiently refined by Example 3. 1 . We can now apply

3 3 3
0

1

1

-1

11

1

1

-1

1

1

+

1

1

-1

-1

1

-1

1

1

1

-.1

11

1

1

-
23 3!

+

1

11

11

1

1

1

1

1

1

-1

1

1

1

1

-1



Theorem 3. 6 to get d(1.3, P3, 03) = 0.

Here we obtain a sufficient refinement by making the decompo-

sition of b(P3) more impartial insofar as <a1a3> is no longer

regarded as a single 1-simplex in the region <a1a2a3> while being

regarded as <a1a4> + <a4a2> (a sum of two 1-simplexes) in the

region (<a0a1a4> + <a0a4a3>).

2. Impartial Refinements: Definition and Properties

Let Pn be an n-region. Let 'T.11 = ((pi, (p2, ,(pn): P Rnn

be continuous with el(p) / On V p E b(Pn).

Definition. If n = 1, b(P1 ) is impartially refined relative to

sgn 1'1 if it is sufficiently refined relative to sgn If n > 1,

b(Pn) is impartially refined relative to sgri 'In if b(Pn) has been

subdivided so that it may be written as a union of a finite number of

(n-1) -regions - 1 fan - 1

P1
in such a way that

,n-1the (n-1)-dimensional interiors of the Pi

disjoint;

at least one of the functions c913 ° 9
say cor is

non-zero on each region
n-1(iii) each region 13.

e _1

n- 1r,

is maximal insofar as if

with j 7 i, then r, r,;

are pairwise

41



(iv) if Sn-1.

in some

is an (n-1)-simplex in

has a face of dimension n-2 lying on

n4face is also a face of at least one (n-1)-simplex S-1 lying

where j 1.

n-1
Pit such that S.1 -1

n-1
b(pi, ), then this

Before proving the fundamental theorem which states that all

impartial refinements are sufficient refinements we obtain two pre-

liminary results.

Lemma 4.1. The boundary of an n-dimensional polyhedron is an

(n-1)-dimensional polyhedron.

n-1Proof. Let Kn be an n-dimensional polyhedron. Let S

-n 1
and T be (n-1)-simplexes in the (n-1)-chain b(Kn). We must

Tn-1show that Sn-1 is either the empty set or a common face

of the simplexes.

Suppose Sn-1 Tn-1 fi ep. Now Sn-1 is part of the

boundary of an n-simplex Sn (say) in Kn; likewise Tn-1

comes from a Tn in Kn. Let Sn <s
0

s 1. . . sn>,

Tn = <t0t1... tn> . Without loss of generality take

n-1 n-1
5 = <s s

sn>,
T = <tot1...tn_i> .12

If Sn Tr it is easy to finish the proof, so assume not. Then

because Kn is a polyhedron

42

is a common r-dimensional



face, with 0 < r < n. Without loss of generality take

r-

as r < n-1.

S n T P P

= q : q =

T'T n (S n Tn)

X.s., X. > 0, 2 X. = 1Li

Sn-1 n (Snn Tn) = p : p = X. s , X. > 0,

: q = > 0, 1

/ Tn-1 sn -1 (sn-lr Tn. -1) c sn-1 (snr.\ Tn)

=> r > 1).

Likewise

43

i=0 i=0

i=0 i=0

using observation 2.1. By linear independence and the uniqueness of

the extreme points in Sn n Tn we must have

{ Os.: < i < r} = ft. : 0 < i < r}. We may assume in fact that

s. = t. for 0< i< r.
Thus



Recall that s. = t. for 0 < i < r° thus
1 1

sn-1 Tn-1 (sn rmTn-1) sn nT)

(snrm Tn)] (snrm Tri)]

.,.= x : x = X.isi, X.i >

and Tn-1and this is a common face of Sn-1 as required.

Theorem 4. 2. Let n > 1 and suppose that b(Pn) is

impartially refined relative to sgnn with notation as in the defi-
n-1nition. Then for any E 1 , 2, . , n}, b(11) is impartially

refined relative to sgnn-1

Proof. Without loss of generality take r7= 1, it = 1, and

-1m > 1 (if m 1 then b(Pn ) satisfies the "impartially refined"
1

definition vacuously).

Let {S1.1-1}.I be the (finite) set of (n-1)-simplexes in p
LE

b(
p1

). Let - 1 )having an (n -2)-dimensional face lying on

be the corresponding simplexes given by part (iv) of the definition

(i.---' j(i) is not in general a function). For each j E J we take

sn - 1 n-1as lying in say (j --' j' is a many-one map). Write
i 133

n-1S.. for the (n-2)-simplex S. (Th Sn-1ij 1 j(i) .

Consider

44



S2 = {S11-2 : i E I, j E J, Sn -1 C 13n 1 r = 2}.
ij j."

By Lemma 4.1 the intersection of any two distinct (n-2)-

nsim S-2plexes is either a common face or the empty set sinceij
n-1all Sn..-2 lie in b(131 ). We can therefore write S2 as a dis-

joint union of (n-2)-regions in a unique way (by taking connected com-

ponents).

Continue thus: consider, for 3 < k < n,

-1
S {Sn -2 : i E I, j E 3, r. k},k

and write Sk \ (S S ... ) as a disjoint union of (n-2)-k-1

regions.

Taking all these (n-2)-regions

n-1
/ 1)

PJ

case n = 2).

which intersect

n-2Recall that for any i S..
13

n-2
Pi (say) gives us

n-1a decomposition of
13(31

) since by part (iv) of the definition all

n-1that in fact this gives us an impartial refinement of
b(131

) rela-

tive to sgn

Clearly (i) and (iii) of the definition are satisfied.
-1 n-1

Sj(i)
and consequently

q) / 0 on sn-2. By maximality of 13 , r., / 1, and so ar ij
n-1
1 Jji n., -1component of T is non-zero on each 1P-2, i.e. , (ii) of the

1

definition is satisfied (this argument also takes care of the exceptional

45
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,n-2
'31

simplex in I6fl-2 r1-2.1 I such that an (n-3) rri-diensional face of S lies
n-2 n-1 n-1

in b(13 ). Now 131 is a region and b(b(131 )) = 0 (Remark
_n-2.2) so any (n-3)-simplex in b(2) must, since

also be an (n-3)-simplex in
b(f3nt°

-2
), some t' 1. It is con-

snsequently a face of an (n-2)-simplex -2 in

The principal result is the following.

Theorem 4.3. If b(Pn) is impartially refined relative to

sgn then it is also sufficiently refined relative to sgnn.

Proof. Use induction on n.

For n 1 the assertion is trivial. Fix n > 1 and assume

that the theorem holds for any pn-1
and

Suppose that b(Pn) is impartially refined relative to sgn

n -1 n-1using the regions p1 , . Pin . We only have to show that (iii) of

the "sufficiently refined" definition holds, the rest being automatically

satisfied.

n-1For any i E {1, 2, . ,
cpr.

/ 0 on . and by Theorem

b(1311 1) is impartially refined relative to sgn 1in-4. 2 n-1)

n 1-is sufficiently refined relative to sgn by the inductive

hypothesis, and we are done.

For condition (iv) (when n > 2) let be any (n-2)-

n-2 n-1
C b(131 ),
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have

5.> 0 such that Q.(5.) <
1 1

1 coi(x)1 denote the Euclidean

norm in Rn. Then for any y E b(P) such that ll x-ylj < , we_
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V. ALGORITHM FOR COMPUTATION OF THE DEGREE
USING IMPARTIAL REFINEMENTS

1. Introduction and Description of Algorithm

Let Pn be an n-region. Let (ion) Pn Rn

with .T,n on on b(Pn). We now describe an algorithm for corn-

puting d(e, P,,,n,
), assuming that we can major ize the modulus

of continuity of ell by a known function Q(5) which is
b(Pn)

0(5). This happens for example if we know that ell satisfies
b(Pn)

a Lipschitz condition of order a > O.

The algorithm constructs an impartial refinement of b(Pn)

then terminates. By Theorem 4.3 this impartial refinement is also
p ,a sufficient refinement. We can thus compute d('1,n on) with

assurance using the formula of Theorem 3. 6.

Take n > 1 as the computation of d(t.1, Pl, 01) is trivial.

Let w(. ) be the modulus of continuity of
C°i

1

b(Pni

i = 1, 2, . ,n. Suppose that LOS) < S2.(5) for 1 <,i < n where
1

the are known functions and 2.(6) is 0(6) for each i.i 1

For any i and any x E b(Pn) with cp. (X) 0, choose
L

Let 1.11



(x) I co,(x).(y)1

x>( )1 6.
1 1

ca.(x)1

> 0.

Let p E b(Pn). Choose 5(p) = max 6., where the 6.
1<i<n I

are chosen as large as possible such that S-2.(5.) < cP.(p)I (if
1 1 1

pyo.( ) = 0 take 6. = 0). For at least one

IC9i(P)I m mme(x)1 >
xEb(P--)

so 6(p) > min 6: where each 6! > 0 is chosen as large as
< i < n

possible such that 0.(6!) < m. Thus (5(p) say, where c is

positive and independent of p.

From the preceding paragraph we see that if y E b(Pn)

satisfies II 13-0 < 6(P), then co.(y)i > 0 for some i inde-

pendent of y.

Thus:, given any point p b(Pn), we can surround it by a

ball B of radius at least c (a fixed positive constant)

such that some component of VI is non-zero on B rm b(Pn).

icoi(y)I

Definition. A simplex is acceptable if at least one component of

is known to be non-zero thereon.
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Remark 5.1. Any subdivision of an acceptable simplex yields

acceptable simplexes.

Where necessary our algorithm will subdivide simplexes in

b(Pr) until all simplexes in b(Pn) are acceptable. Also, the

original representation of b(Pn) is a polyhedron by Lemma 4. 1 and

the algorithm will preserve this property.

Definition. An edge of a simplex is a one-dimensional face of

that simplex.

- n-Let Sn1 . ,S1
1

b(Pn) with b(Pn) =

be a list of the (oriented) simplexes in

At first all these simplexes are unac-
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j=1

ceptable. Let PI' '13
be a list of the vertices of the S.

Algorithm.

Set i = 1 and go to step 3.

If i m, terminate. Otherwise replace i by i+1 and

continue.

Compute O(p.) as described above.

Set j 1 and go to step 6.

If j = / go to step 2. Otherwise replace j by j+1 and

continue.



n-16. If S. is acceptable or if pi is not a vertex of SiS

to to step 5. Otherwise continue.

7. Without loss of generality assume that

<PiY >Lk

n-

at a distance min{6(pi), 12 id from

step 2 replace m by m+1. Replace the oriented
-simplex Sn 1 by the two oriented simplexes

J

°Y >S. "iY2' Yk - 1Pm± lYk+ 1

and

n-1
4.1

=
<prn+1 Y2

>n

In step 5 replace f by 1 +1 . In exactly the same way

replace every other oriented simplex having
<PiYk> as

an edge by two new oriented simplexes whose sum" is the

original oriented simplex, increasing i in step 5 to f+1

each time a new simplex is created. Got to step 8.

<PiY2*.' Y >n

50

Set k -= 2 and go to step 9.

If k = n list sn-1 as acceptable and to to step 5. Other-

wise replace k by k+1 and continue.

Compute 1
k,

the length of the edge <PiYk>

If 5(P.), go to step 8.

If lk > 8(p.), let pm+1 be the point lying on

In
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Summary of Algorithm. Cons ider the vertices pi , p2,

turn. For each p. consider in turn those unacceptable simplexes

having pi as a vertex. For each such simplex Sn-1 consider the

edges emanating from Subdivide those edges whose length

S'1exceeds Ei(pi) so that the new length of each edge of S having

S'p. as an endpoint is at most .5(p.). Then S. must be acceptable.

Here we also subdivide all other simplexes sharing the above edges
n-1with S. in order to preserve the polyhedral property of b(Pn).

2. Proof of Convergence of Algorithm

Observation 5. 2. By virtue of step 6, it is sufficient to prove

that after a finite number of iterations all simplexes are acceptable.

For this proof we use the following two lemmas.

Lemma 5.3.

Let c and k be positive constants. Write 'AB for 'length of

AB' etc. Given a triangle ABC as shown with diameter less than

or equal to k, AB > c, and D lying on AB subject to the

constraints:

1(a) if AB < 2c, then AD = AB;



1
(b) if AB > 2c, then c < AD < AB.

Then

c2CD2 < k2 - ---4

Proof. We break up the proof into three cases:

AB < 2c and AB > BC

AB < 2c and AB < BC

AB > 2c.

Case (i). Now BC2 = AC2 + AB2 - ZAC AB cos a so

2 2BC - AB = AC2 - 2AC AB cos a and

BC < AB <=>AC2 - ZAC AB cos a < 0

- 2 AB cos a < 0
AC<=> cos a >
AB

Since AB < 2c, we have by hypothesis AD = -1-2 AB. Thus

22, 7
CD AC+ AD - 2AC AD cos a

2 1 2= AC + AB AC AB cos a

ACFrom above AB > BC--=> cos a > 2 AB so from (1)

(1)
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1
CD2 < AC2 + AB2 AC AB AC

2 AB

= AC2 + 1AB2
2 4

Ca____Aeiiil. If AB > AC, then by symmetry we can obtain

the same result as in Case (i). Therefore take AB < AC. By

symmetry we can without loss of generality take BC > AC. Then

BC2 = AC2 + AB2 - 2AC AB cos a (2)

BC2 - AC2 = AB2 - 2AC AB cos a

SO

AB2 - 2AC AB cos a > 0

AB - 2AC cos a >

cos a <
AC

AB
(3)

Combining (2) with (1) gives

3
CD ' BC2 - 4AB2 + AC AB cos a

< BC2 - + AC AB
4 AC

1
= BC2 - AB2

c
< k2 -
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-1Case (iii). Now c < AC < AB.

CD2 = AC2 f- AD - 2AC AD cos a

For the given triangle CD depends only on AD. Differentiating,

d(CD - 2 AD - 2 AC cos ad(AD)

AD= 0 for cos a i, e. , CD J AB;AC

this gives a minimum value for CD. Thus CD achieves its
1absolute maximum value wither at AD = c or at AD = AB. If

1this maximum is at AD = AB we are done by Cases (i) and (ii)
2

(note that in these cases the fact that AB < 2c was used only to

deduce that

=>

1
AD = AB). We therefore suppose that the absolute

maximum occurs when AD = c, i. e. (from (4)) that

1AC2 + c2 - 2 AC c cos a > AC2 -4- AB2 - AC AB cos a

1(AD = c on left-hand side, AD = AB on right-hand side) so
2

21 2
- ABc > (AC cos a)(2c-AB)4

1 1 1(c+ AB)(c- AB) > ("LAC cos a)(c- AB)
2 2 2

1 1c + AB < 2AC cos a, since c AB < 0
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Example.

1c + 7AB
< cos a.2 AC

Now with AD = c

CD2 = AC2 2+ c - 2AC c cos a
1

c AB
2

< AC2 +c 2 - 2AC c 2 AC

2 1=AC - 2c AB

2 1< k - c2

Finally, combining the results of the three cases yields the

conclusion of the lemma (use the fact that k > AB > c).

Definition. When dealing with a vertex p. in the algorithm

(i.e. running through steps 3 -9), a new edge is an edge formed by

subdivision which is not part of any edge previously present.

NNN.

Suppose that when dealing with A we divide the edge AB at

D, then join D to C. Now CD is a new edge; AD and DB

are not.
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(P. P ,P )j i i°
then the new edges resulting from this division are of

56

Observation 5.4. When dealing with a fixed pi the algorithm

does not increase the number of simplexes having P. as a vertex.

n-1
SiConsequen-ly,

after considering all of which pi is a vertex,

step 6 will always return us to step 5 and so we eventually get

returned to step 2. We have now "surrounded" pi by acceptable

simplexes, i.e. , every simplex of which pi is a vertex is now

acceptable, by virtue of steps 7, 8, and 9. This property will be

retained for the remainder of the algorithm (recall Remark 5. 1).

Notation. Let S denote the largest diameter of the original
0

-1 -1
simplexes Sin , ,7 . Let Sr, r 1, denote the largest

diameter of the unacceptable simplexes present after we have sur-

rounded pi, p2, '1r by acceptable simplexes (we take Sr = 0

iff all simplexes are acceptable).

Lemma 5.5. When dealing with any vertex pi in the

algorithm, any new edge constructed in an unacceptable simplex lies

in a triangle such that the edge and triangle satisfy the properties

ascribed to CD and ABC respectively in Lemma 5.3, with

k = S1. and c that given in Section V. L
1-

Proof. If (p.p.,) is an edge which we divide at.
PJ

the form kj) where k (see step 9(b)). Any such edge



will lie in the triangle (pipi,pk) which is a face of an unacceptable

simplex by hypothesis. Here we have a correspondence P. A,

P., ---4" B, -) ' C, p. to Lemma 5.3.
i k 3

We must have length (PiPi0 > c as otherwise this edge would

not have been divided (see Section V. 1 and step 9 of the algorithm).

The diameter of the triangle (pipi ,pk) is at most S.1 by definition
1-

of S1. Finally, the restrictions on the length of (p.p.) followi-
from step 9(b) of the algorithm and the fact that 6,(pi) > c.

Theorem 5. 6. After a finite number of iterations of the

algorithm all simplexes are acceptable.

Proof. Clearly 0 < S < S for r 0, 1, 2, . . . . We
r+1 r

show that for some R,
SR

< c; from this point onwards step 9(a)

of the algorithm will always return us to step 8. As a result all

simplexes will eventually be acceptable (recall Observation 5.4).

Consider the original vertices Pi, P2, pm. After we have

dealt with these vertices, any part of an original edge which now lies

in an unacceptable simplex has either resulted from a bisection or

from a subdivision which removed a length of at least c. Thus its

length is at most max{ ,
S0

-c}. Regarding other edges of unac-
2 0

ceptable simplexes (i. e. , those new edges constructed in the

algorithm), by Lemma 5. 5 such edges arise precisely as CD does

in Lemma 5.3, and it follows that the length of any such edge is at
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2 1 2 1 2most (S - c
0 4

2 1

S2 < max{ S2
(S0

-c)2 , SO -
C2}

.

m 4 0

We now have a list 1)1, , Pm, Pm+1, Pmf

Apply the same argument to pm+i, , pm, to get

12 2 2 1 2
S2 , < max{ T m m ms, ,(S -c),s } .

m

Continue thus. It is clear that the sequence S ,S ,S ,
'

must eventually be less than or equal to c. By the opening remarks

the proof is complete.

Corollary 5. 7. After a finite number of iterations the algorithm

terminates.

Proof. Use Observation 5. 2.

Observation 5. 8. Since b(b(Pn)) = 0 for the original repre-

sentation of b(Pn), every (n-2)-s implex lying in b(Sni 1) for

some Sn-1 in b(Pn) must also lie in b(Sn2 1) for at least one
1

other (n-1)-simplex in b(Pn). If in the algorithm this
2

(n-2)-simplex is subdivided, it is subdivided in all (n-1)-simplexes

containing it and from step 9(b) we see that new (n-2)-simplexes

appear in exactly as many boundaries of (n-1)-simplexes as their

Combining these results gives
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ancestors did, and with exactly the same orientation. Thus

b(b1(Pn)) = 0, where b (13n)1'

obtained 13\ means of the algorithm.

Computation of the Degree. Since Pn is an n-region, by

Lemma 4.1 the original representation of b(Pn) is a polyhedron.

The subdivisions of the algorithm are such that it preserves this

property of b(Pn). We will thus obtain a polyhedral decomposition

of b(Pn) into acceptable simplexes. This gives an impartial

refinement of b(Pn) relative to sgnn: take maximal connected

collections of simplexes to be (n-1)-regions, avoiding overlapping,

and use the fact that b(bi(Pn)) = 0 (Observation 5. 8) to check part

(iv) of the definition. The degree d( Pn, On) can then be corn-

puted using the formula of Theorem 3. 6.

is the new representation of b(P)
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VI. SIMPLIFICATION OF THE COMPUTATIONS

In this chapter a proceduro is g:ven which replaces the compu-

tation of the n x n determinan_s in Theorem 3. 6 by a "scanning?'

of the matrices associated with these determinants, that is a counting

of + in certain positions within the matrices.

As usual let Pn be an n-region with

(col, cot.) pn Rn continuous. The next lemma and its

two corollaries will be used later when we need to choose simplexes

on which certain components of el have certain signs.

Lemma 6. 1. Suppose that b(Pn) is impartially refined

relative to sgnn in such a way that it is a polyhedron. Then if

any coordinate function (p' has the same sign A (A = + 1) at all
i

_nvertices of any simplex S
-1

in b(Pn), we may assume that
i

sgn (p. = A on all of Sn-1 without altering the value of

d( Pn, On

Proof. Suppose that we do not have sgn (pi = A on all of

n-1
S. Now

l_n- -1 in -
. ,; and so (pr., 0 onlies in some region 6

i
S.

i
i

S7-1'
where of course .r i.

J 3

By continuity p 0 on some open neighborhood M of

S1. M so small that it does not contain any vertex (of any

simplex in the impartial refinement of b(Pn)) at which sgn (pi = 0



Or -A (this can be done because of the assumed polyhedral property

of the impartial refinement). Choose another open set N such that

S'S. CNCNCM. Now homotopically deform

nary so that inside N it has constant sign A , while outside M

it is unchanged.

Since yo 0 on M,
on the homotopy and byr.,

Theorem 6. 4, p. 31] d( io ,0n
) is unaffected. Note that thenn,

same impartial refinement can be retained since the sign of cp. is

unchanged at all points considered in the definition.

Corollary 6. 2. Under the same hypotheses as those of Lemma

[z,

n-16. 1, we may assume that S.

impartial refinement such that r., =i.

Proof. Since the refinement bl(Pn) of b(Pn) is polyhedral

and refinements are always assumed to preserve orientations,

b(bi(Pn)) = 0 (see Observation 5.8).
-Form p.

n 1
, as the maximal connected anion containing Sn-1

of those (n1)s implexes in bl(Pn) on which sgn cp. A. Then

after redefining some other (n-1)-regions to eliminate overlapping if

necessary, b
1
(Pn) is still an impartial refinement because it is a

polyhedron and because b(b (Pn)) = 0.

lies in a region n-1 of the

Notation. If B. = (bi 1, biz, . b. = 1, 2, , q are

(Pi
where neces-



vectors, then

Take pn -I. =

(q x q matrix).

Of course det(Mq(B1' )) = Acl(B ,B ) in the notation of

Section 1. 2.

(k) (k)Let b(Pn) = tk<yi ...yn > be a sufficient refinement
k= 1

relative to sgn 'T.11, where tk = + 1. Its associated matrices are

n,y(k),, ,n, (k)
k" f`Icjvi ( 1 ) gn )) k 1 2 '.." (1)

n-1 n-1Let {p. :JE
n}

be the set of regions13 . in the
J

given sufficient refinement for which the associated coordinate func-

tion is
(Fir

with sgn = A ; here r E {1, 2, ...r n-1n 13.

andAn E {-1, 1}.

(k) (k),
/1 <Y1 for each

b(p1) (-1) i+1<Y1
(k) ^(k) (k)

>
kEIK, i=1
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with associated matrices

i+1 n-1 n-1 (k) a- 1 (k) n-1 (k)(-1)M
1(sgn

(y, ), , sgn (yi ), , sgn (yn ))rn

= 1,2,...,n, K., jE
JAn

Corollary 6. 3. Suppose that the above sufficient refinement is

actually a polyhedral impartial refinement. Then the matrices

Mn-1 of (2) can be obtained as follows: choose from (1) those Mn

whose rnth column consists entirely of An's, then delete the

ith row and rnth column from these matrices, where i ranges

over the values 1, 2, ,n.

Proof. Consider the matrices

mn(sgn (k) (k).. (k) (k) pn-1
(y1 )' " sgn (yn yn

JAn
(3)

Each matrix in (3) is a matrix in (1) whose rnth column

consists entirely of An s ; by Corollary 6. 2 we may assume that

all such matrices in (1) are actually matrices in (3). Thus choosing

from (1) those matrices whose rnth column consists entirely of

An's is a means of listing the matrices in (3). Now each matrix in

(2) is obtained by deleting the ith row and rnth column from a
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matrix in (3). This completes the proof.

Using the above notation, consider the matrices

tkMn(sgn 11((k)) . , sgn 'Tn(y(k))), k = 1, 2, , (1)

Recall that their associated determinants An were used to compute

d(e, p n on,
) in Theorem 3. 6. In the procedure below a signature is

assigned to certain of these matrices, then the signatures are added;

it is shown later that this yields dce,Pn, On).

Procedure. Let {r. I < i < C {1, 2, . with r, < i

V i. Let {6, : 1 < i < n} C {-1,1}.

Choose from (1) all tkMn
whose rnth column consists

r +1
entirely of

6n
Ts. Assign a temporary signature tkAn (-1) n to

each such matrix; assign the signature zero to every other Mn.

Delete the r th column from each chosen matrix to form an

n x (n-1) array. In the rn-1th column of this array pick all

combinations of n-1 rows having n-1 6 s as entries, if anyn-1

such combination exists (if not, discard the matrix, i. e. , assign it the

signature zero) (if the matrix is not discarded there will be either

1 or n such combinations).

If there is one such combination, suppose that the q th rown-1

is the unique row with entry 0 or -6 . Delete this row to given-1
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an (n-1) x (n-1) matrix and assign a temporary signature

r+1+rn-1+qn n-1
t (-1) to the matrix.k n n-1

If there are n such combinations (i. e. , rn- 1th column con-

tains nn-l's) then deleting each row in turn gives n-1 Ln-l's
in the rn-lth column. Do this, obtaining n (n-1) x (n -1)

matrices with associated temporary signatures

rn+1+r ,+43n- 'n -1
tk nA n- 1

(-1) where the qn-1th row was the one

deleted (so qn -1
runs through the values 1, 2, ... ,n).

Now deal with each (n-1) x (n-1) matrix just as each original

n x n matrix was dealt with after assigning the first temporary

signature, replacing n by n-1 throughout. Continue reducing

until left with 1 x 1 matrices. At this stage the sum of the tem-

porary signatures of those 1 x 1 matrices whose ancestor was a

particular Mn is taken as the signature of that Mn. Finally add

all the signatures of the Mn.

We now recall some equations which will be used to prove that

the procedure computes d( pn, en).

Again suppose that b(Pn

k=1

refined relative to sgn .T.n, where
tk

+ 1. Recall Equation (3)

of Theorem 3.4:

<1(). (k)y1 .. yn > is sufficiently
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d(el, On) =

Using (1) of that theorem and Lemma 3.3 this can be written as

d(e, Pn, On) =

rj+1ite-1(Rn-1,i,on-1,) sgn*r. n-1
E Ja

J J P.

E Ja

Changing the notation a little we have

r +1
n) =

(-on d(e-1, tn-1, en-1)

rnjEJ
An

r +1
= (-1) n

An

rj(-1)
r. j ) sgn co r n-1

PJ

k E K.

E J,6

_n-1

r )
n

(1)
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where the summation is over all regions -1
in b(Pn) whose

associated coordinate function is(pr with sgn
(pr 1 n-1 n

n n .

PJ

here rn E {1, 2, . .. , n} and Ln E {-1, 1} are arbitrary but fixed.

For each j E Jzs take

1 (k)
1 -



SO

b(pni

=kEK.i

Consider the associated matrices

n-1 (k) A n-1 (k) _n-1, (k)(-1)i+1Mn-1(sgn (y' ), sgn y. '),...,sgn T
n

(yn
)),

rn n
1 r

i= 1, 2, n, kE K.,An (2)

Observation 6.4. Consider the special case n 1. Let

m-1
pl <x.x. > so that b(P1) = <x > - <x > with associated

1 1+1 m 0

i=0

1 x 1 matrices1(x),1(x ).m 0

Of necessity r1 = 1. As usual Ai E {-I, 1}. If '1(x) = A

,r1+1it is assigned the signature 6 (-1) = ; if not, it is assigned
1

the signature zero. If.11(x ) = 6 it is assigned the signature
0 1

(-1).61 (-1)

r141
-6 ; if not, it is assigned the signature zero.

1

Finally the signatures are added.

P RnTheorem 6.5. Let Pn be an n- region with

continuous. Suppose b(Pn) has a polyhedral impartial refinement

relative to sgn so that it is sufficiently refined with notation as

(k) A(k) (k)
<yl ° ° yi ° yn

>.

above. Then the procedure computes d(el,Pn
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Proof. Use induction on n. By inspection the theorem holds

for the case n = 1 (see Observations 6. 4 and 2. 6). Now fix n > 1

and assume that the theorem is true for the n-1 case. Then the

procedure deals with the matrices

(k)
tkMn(sgn ei( y(k)1), , sgn yn )), k 1, 2, . . . ,1

By Theorem 4. 2 and Lemma 4.1 we are justified in applying

the inductive hypothesis to calculate
r ) Thus,

E

letting j vary over
J.6n,

choose from (2) all those matrices
i+ln-1(-1)

whose rn-1th column consists entirely of

and assign a temporary signature

(_1)i+1,6 i-nrn_1+1
irn-1+

n-1' ' (-1)
n -1

to each. Apply the procedure from this point to compute the signature

of each (-1)i+1Mn-1, then add these signatures.

To now calculate d(, Pn, On), use (1): multiply the signa-

(3)

ture of each (-1)i+1Mn-1
r +.1

by (-1)n
n and then add these values.

By inspection, using Corollary 6.3, this method for computing
d(e,pn,

on) is seen to coincide with the procedural method applied

to the matrices in (3).
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Corollary 6. 6. Any n x n matrix (n > 1) having two

columns each of which consists entirely of +1's or of -1's will

be assigned the signature zero.

Proof. Suppose that the rth column consists of .6. r °s, the

sth column of G
s

Is, where, } {-1, 1} and r s.r S

Take Pn to be a n-simplex with a continuous function

such that

sgncos = As on all of P

on n vertices of P
sgn cor =

-Ar on the remaining vertex.

Then b(Pn) is a polyhedron and is impartially refined relative to

sgn taking all of b(P1) as an (n-1)-region on which
cos

/ 0.

We may therefore apply Theorem 6. 5 with rn r and An = Ar.

In the procedure only one matrix will be chosen because for only

one simplex in b(Pn) does sgn cor at all vertices. This

matrix has an rth column ofAr 's and an sth column of
As

the other entries (if any) are arbitrary. Its signature must be
+ d(ea, pn, 0n) by Theorem 6.5; however this is zero by Remark

2. 7(i) because q / 0 on
pn fl/ 0

on
pn.
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Theorem 6. 7. Let Pn be an n-regio.n with .t.n : Pn Rn

continuous. Suppose b(Pn) is sufficiently refined relative to

sgn Then the procedure computes d(e, p n en).

Proof. The proof is almost identical to that of Theorem 6. 5.

No alteration is needed for the n = 1 case. For n > 1 the

same basic argument holds, but some changes are needed in the

results quoted from elsewhere.

Instead of quoting Theorem 4. 2 and Lemma 4.1 we appeal to

part (iii) of the definition of a sufficient refinement.

We cannot prove a version of Corollary 6. 3 for arbitrary

sufficient refinements. It guaranteed that any matrix Mn whose

rnth column consisted of An s corresponded to a simplex in some
n-1

13. , j E

JAn
(notation of Theorem 6.5), and so should be chosen

at the beginning of the procedure. However any such matrix corres
-pond ing to a simplex in a Rn 1 where k J will then have two

columns each consisting of +1's or of -1's because of the suf-

ficient refinement, and by Corollary 6. 6 may be included among the

chosen matrices because it will be assigned the signature zero in any

case. This observation should be used in place of Corollary 6,3 in

the proof.

Corollary 6. 6 indicates that there is superfluous computation

involved in the original procedure. We now give a modified
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procedure designed to circumvent this. This modified procedure will

also explicitly discard matrices having a column consisting entirely

of zeroes since such matrices are clearly discarded at some stage.

Modified Procedure. Suppose b(P) is sufficiently refined

relative to sgn with b(P) t <y (k)(ik)... yn >, tk + 1.

Consider the associated matrices

mn(sgn ,,n(_(k),
)) k = 1, 2, ..."1 ) Yn

A signature is assigned to certain of these matrices, then the signa-

tures are added; by what has gone before this will give us
d(e, pn, on).

Let {ri 1 < i < } C {1, 2, with r, < i V i. Let

{A. 1 < i < n} C. {-1,1}.

Choose from (1) all matrices tk Mn whose rnth column

consists entirely of An's. Assign a temporary signature
rn+1

tk An
(-1) to each such matrix.

If any other column of the matrix is constant (i.e. , all its

entries have the same value) assign the signature zero to the matrix,

i.e. , discard Mn. Otherwise delete the rnth column to form an

n x (n-1) array. In the rn- 1th column of this array pick the

(1)

combination of n-1 rows having n-1
An - 1

's as entries, if such a



combination exists (if not, discard Mn) (there will be at most one

such combination otherwise Mn would have been discarded already).

Suppose the qth row is the unique row with entry 0 or

-An-1 . Delete this row to give an (n-1) x (n-1) matrix and assign
+rn l+rn - 1+qn - 1a temporary signature tk znAn-1 (-1) to tk Mn.

Deal with this (n-1) x (n-1) matrix just as we dealt with the

n x n situation after choosing the matrices Mn and assigning the

first temporary signature, replacing n by n-1 thoughout. Con-

tinue reducing until left with a 1 x 1 matrix. The temporary signa-

ture at this stage is the signature of tkMn,i.e.

rn+1+rn-1+cin-1+.°.+TYcli
signature (tkMn) tkLxn,An-1.. . A1 (-1)

Finally add the signatures of the chosen Mn 's.

Example. We recompute d(3, P3, 03) for the tetrahedron

example of Section IV .1. This is done for two different sets

{(ri, Ai), (r2,A2), (r3,G3)}.

In the notation of Section IV. 1, a sufficient refinement of

b(P3) is given by

b(P3 ) <a0a1a4> + <a0a4a3> + <a1a2a4> + <a4 a 2a 3>

+ <a0a2a1 > + <a3a2a0> .
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Case (i). r3 = 1,
A3

= -1, r2,r1' A2' Al arbitrary. Begin

by choosing those matrices whose first column consists entirely of

-1's. Since there are none, all matrices are discarded and

3, P3, 03) = 0.

Case (ii) r3 = r2 = r1 = 1° A =
A2

=
1,

= -1. Choose all3

matrices whose first column consists entirely of +1's; assign a

temporary signature (+1)( -1)1+1 = 1 to each, writing it in front of

the matrix:

1 -1 1 1\ 1 -1 1

(+1) (1 1 (+1

1 -1

1 1 , (+1) 1 1 1

1 1 1 \1 1

Discard the second matrix because its third column is also constant.

Delete the first column from the remaining two matrices:
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The associated matrices are

1 1 -1 \ /1 1 -1 (-1 1

-1( 1 1 (1 1 1

1 1 1/ \1 1 1

1 1 1 /1 1 -1 /1 -1 1

(1

1 1 1 1 1 ci 1 1

1 -1 1 \-1 1 1 1 -1



(1 -1\
(+1)

1 1)

1/

\k 1/

= 0.

, (+1)

1 -1

Delete the first column from each matrix:

iN

(+1) , (+1)

Choose the arrays whose first column contains one -1; assign the

temporary signature (+1)(-1)(-1)1+i to each where the ith row

is the one containing the +1; delete the ith row. Since this gives

1 x 1 matrices the temporary signature becomes the signature.

Thus the signatures here are +1, -1.

Finally d( 3, P3, 03) = sum of signatures

= 1 - 1

1
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Choose the arrays whose first column contains two +1's; assign

the temporary signature (+1)(+1)(-1)1+i to each where the ith

row is the one containing the -1; delete the ith row:



Remark 6. 8. In the modified procedure it is clear that the

signature of any matrix is -1, 0, or +1.

Corollary 6. 9 (to Theorem 6. 7). Let Pn ba an n-region,

n > 1, with .1'n : Pn Rn continuous. Suppose that b(Pn) is

sufficiently refined relative to sgn Let m

Then b(Pn) is subdivided into at least m n 2n-1 simplexes.

Proof. By Theorem 6. 7 the modified procedure gives
d(e, pn, on,

) for any choice of {r. 1 < i < n} C {1, 2, , n}
1

satisfying ri < i V i, and {A 1 < i < n} {-1, 1}.

There are 2n possibilities for the (ordered) pair (rn, An).

Now any matrix chosen for two distinct pairs will hrve signature zero

by the modified procedure (two columns will be constant). Conse-

quently we can assume that there is no overlap in choice; count the

minimum number of matrices needed to give Id(el,Pn,°11)1

for a fixed pair (rn, An
) then multiply this number by 2n.

Fix (rn, An). Consider the matrices Mn chosen for this

pair. Delete the rnth column from each Mn to leave an

n x n-1 array. Choose rn--1 satisfying 1 < r1 < n-1. Thenn-

the matrices chosen at this stage for the pair (rn-1, 1) must not

overlap with those chosen for the pair (rn-1, -1) if n > 2 because

overlapping implies the existence of an n x (n-1) array with a
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column containing (n-1) +lis and 1 -1 Is. Thus the minimum
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number of matrices needed for the pair (rn,L,n) is at least twice

the minimum number needed for the pair (r 1).n-1

We can apply the laEt argument repeatedly going from the ith

to (i-1)th stage for i n, n-1, . :4,3. Each stage yields a factor

of two, so with the original factor of 2n this gives a factor

(2n)(2)11-2 = n 2n l.

When i 2 is reached all that can be said is that by Remark

6. 8 at least m matrices are needed. This gives the final lower

bound of m n 2n-1

Corollary 6. 10. Let Pn be an n-region, n > 1, with

pn Rn continuous. Suppose that b(P) is sufficiently

refined relative to sgn2. If d(e, Pn, On) 0, then b(P) is

subdivided into at least n 212-1 simplexes.

Proof. Immediate from Corollary 6. 9.

Example. Consider once more the tetrahedron example of

Section IV. 1. Here n 3 so n 2n-1 = 12. However we have a

sufficient refinement of b(P3) consisting of 6 2-simplexes. By

Corollary 6.103, P3,03) = 0.

Remark. The result of Corollary 6. 9 can be improved for

n >6 using the Theorem 3.6 formula



d(e, pn, en) 1

tk An(sgn e(y1(k)), sgn
2n n!

(Yn(k
)

k=1

Hadamard's determinant theorem [4] tells us that for any determinant

A in this sum, < nn/2. Consequently under the hypotheses

of Corollary 6. 9 the above sum must contain at least m 2n n! /nn12

terms, and for n > 6 it is easy to check that this is greater than

m n 2n-1 We conjecture that in fact the lower bound can be increased

2m n!. Then Corollary 6. 10 would have the lower bound 2 n!.

If so, this is certainly the best possible estimate: let Pn be the

cube of side 2 in Rn with vertices all of whose coordinates are

+ 1. We give PR the standard "counterclockwise" orientation. If

ei(x) = x for all x in Pn, then it is easy to show that

d(el, Pn, On) = 1. Now [7] gives a simplicial decomposition of pn

which, as can be checked, readily yields a sufficient refinement of

b(Pn) relative to sgn el, and this sufficient refinement contains

2 n! (n-1) -simplexes.
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