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AN ALGORITHM FOR THE NUMERICAL CALCULATION
OF THE DEGREE OF A MAPPING

I. INTRODUCTION

1. Summary

The topological degree of a function £ : R = R" is an integer

which when non-zero guarantees the existence of solutions x to

equations of the type f(x) = p. The concept was first introduced by

Konecker [9] in 1869. Since then it has found many applications, most
notably in the fields of differential and integral equations (cf. [2,3,8]).
However these applications generally make some assumption regard -

ing the value of the degree because, as J. Cronin observes [2, p. 37

"the problem of computing the degree is, to a considerable extent,

1t

unsolved except in the plane. Thus F. Stenger's paper [11], which
gave an algorithm for computing the degree in R", represents a
significant advance.

In Chapter IIl of this thesis a new proof is given of the basic
formula used to compute the degree in that paper. It is remarkable
that this formula, first given in [ll]g was anticipated in a simpler
context as long ago as 1904 by J. Hadamard [5, pp. 452-460]. The
algorithm of [11] has at least one serious drawback: it generates a

sequence of numbers which eventually equai the degree, but it is in

general impossible to decide when this equality has occurred. Our



main result, proven in Chapters IV and V, shows that in many cases
an alternative procedure is available which unambiguously computes
the degree. The calculations needed to compute the degree using the
basic formula of [11] are very time -consuming, invelving the evalua -
tion of many n x n determinants. In Chapter VI of this thesis a
simplification is given which replaces the determinant evaluations by
a ""'scanning'’ of the matrices associated with the determinants, i.e.,
a search for certain entries in thcse matrices.

It would be of considerable interest to extend the foregoing

results to the infinite dimensional situation (cf. [2,3]).

2. Definitions of Topological Degree

We begin with an intuitive ''definition' of topological degree,
after which the two principal properties of the degree are listed.

ILet D Dbe a bounded regicn {open connected set) in Rr:l with

D its closure. Denote the boundary of D (i.e., DA\D) by
n - n . . n .
b{D). Let ¥ :D—R be continuvous. Choose pe¢ R with
n, .
pd F (b(D)).

P!

If x traces out b(D) once couxxtl‘tercfh:»ckwise:'F then the

topological degree d(Rn;Dgp) of Fn on D relativeto p 1is an

. . . n .
integer measuring how many times F (x) surrounds p ina

"counterclockwise' manner. In the case n = 2 the degree is the

i

familiar "winding number'' of complex analysis.



a(G",D.p) = -2

There are basically two important properties of d(Fn, D, p):

(i) Homotopy property: if Ht,x):[0,1]x D —R" is continuous with

H{t,x) #p WVtel0,1], V xe¢ b(D)

Fix) VxeD

1

H(0,x)

wll

H(l,x) = Gn(x) V x ¢

then d(F,D,p) = d(G", D,p).

(ii) Existence of solutions property: if d(Fn,D,p) # 0 then 3

x ¢ D suchthat F (x)=p.
Next we give several strict definitions of the degree which can
n

be shown to be equivalent. In this sectiion we will take p in R

to be the origin 0", since any other pcint q may be dealt with



by translating FU,oie., by defining d(an D,q) to be
d(F-q.D,0").
Iet D Dbe a bounded region in R". Let F':D—~ R be

n

continuous with Fn(x) 0 Y x e B{D).
The case n =1 is treated separately: suppose D = (a,b),

where -9 < a < b < 4%, Set

d(F ,D,087) = %{sgn Fl(b) - sgn Fl(a)},
where

+1 if t >0,

|
<
—-
=h
-+

H
(o]

sgnt =

For the rest of the section take n > 1.

Notation. If B,1 = (bil’b12"° .. ’bivq)’ i=1,2,...,9 are g
vectors, then

bll blZ' blq

b b b

1 2
2 4B.,...,B =] b ¢ 2q
1 q

b b ... b

ql q2 aq

In this array B.1 is the ith row, for 1 < i< q.



1st Definition (Kronecker). (cf. [1, pp. 465-467]).

n n
1 1 8 0
d(Fn,D,Gn)=Q S An(Fna"’E“'y ,'—E")
n-1%_n,_n-1 “Fn”n alll 8U’n
X (U }eb(D) "
X du du
1 n
n/2
where || FnH is the Euclidean norm in R, = ‘2“11‘——, and
n-1 T(n/2)
-1
Uttt = (ul,uz, c.. ,un_l) is a parametrization of b(D) oriented

in a certain way.
n 1 n
Here we assume that F is of class C on b(D). If F
1

is merely continuous on b(D) we can approximate it by C func-
tions and show that the value of the degree is the same for all such

. n . . n n
functions close enough to F'; finally define d(F ,D,0 ) to be
this common value.

Note that the integral is a direct generalization of the winding

number formula of complex analysis. In general it is very difficult to

evaluate.

2nd Definition (E. Heinz}. (cf. [6]).




is non-zero at every point x € D such that Fn(x) = 0". The func-
tion ¢ 1is continuous with support of ¢ C [rl,rz] where
0< ry < r, < ©, and ry and r, are small, depending on D

and Fn, with

(ol .ax, =1
R 1 n

If FO ois merely continuous we can again define d(Fn, D, Gn)
by approximation, using Sard's theorem.

Note that the integral is again difficult to evaluate.

3rd Definition. (cf. [10]). Suppose FlecC (D). Assume that

YV xe¢ D such that Fn(x) = 0" we have j(F)(x) # 0.
+ -
ILet N (N ) denote the number of solutions x in D of
+.
F(x) = 0"  such that j(F)(x) 1is positive (negative). Both N and
N are finite since these solutions must be isolated points.
n n + -

Then d(F ’D’e ) :N "N .

If F s only continuous on D approximate once more to
define d(F",D,0"%).

Once again this is a difficult definition to use for calculating the

degree, and in practice is not very helpful because to use it we need



to know the solutions of Fn(x) =0 unfortunately we usually want
to use the topological degree to guarantee the existence of such

solutions.

Our 4th and final definition is the one which will be used for the
remainder of this thesis. It might be called the "simplicial homology"
definition (although no reference is ever made to homology theory!).

The next chapter is a careful development of the definition.



II. BACKGROUND MATERIAL

Almost all of thhe material presented in this chapter has been
condensed from [2, Chapter 1].

Notation. In general for the remainder of this thesis super -
scripts will indicate dimension while subscripts are used as indices.

A set of points {ao,al, C. ,aq} in Rr:l is linearly
independent if the points are not contained in any subspace of dimen-

sion < q-1.

A g-simplex s? is the closed convex hull of qtl linearly

independent points S ,aq in R, and is denoted by
q _ : .
S (aoal. - aq). The points agrayr- .- ,aq are called the vertices
of s

0 - simplex 1 - simplex

%0 A
2 - simplex 3 - simplex
22
20 2y

An r-dimensional face of 89 (0 < r < q) is the closed

convex hull of any r+l of the points agraps - ,aq.




Observation 2. 1. If pe R" and Py is the kth coordinate

of p in R, a. the kth coordinate of aj in RY,
J

1< k<n, then peST iff

9

= A.a. withall AN, > 0 and Z)\_ = 1.
Pr Z j ik i~ j

j=1 j=1

Given a g-simplex we say that two crderings on its vertices
are equivalent if one can be obtained from the other by an even permu-
tation of symbols. This gives rise to two equivalence classes of
orderings on a given q-simplex, if q > 0. one we call "positive",
the other "negative'. For q =0 call the only possible ordering the
positive one.

We adopt the following convention: if X, € R%, 0 < i< n,

with x. = (x..,%..,...:x, ) for each i ({(Cartesian coordinates),
i il 7i2 in
then
ientation ( ) = ot 1 (1,x ))
orientation (x,xy...x )= sgn A ( ’XO)’( ’xl)""’ ,xn)
1 x X ... X
01 02 On
1 x11 x12 Ce xln
= sgn
1
xnl an xnn
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This is not zero if the x, are linearly independent and does not
change value under an even permutation of vertices.
Note: Here, given a Cartesian basis for R"”, we are

essentially ordering R itself; this is what an "oriented R will

mean in the sequel. It can be shown that given a basis and orientation
on R", the orientation with respect to another basis is the same iff
the determinant of the affine mapping taking one basis to the other is

. . . n .
positive. Consequently we see that an orientation on R induces

an orientation on all its subspaces and their translations in a natural

way.
Notation: <Xy .xn> is an oriented n-simplex (i.e., a
simplex with associated orientation). We write
<x1x0x2. . .xn> = —<x0x1x2. .. xn> etc.
A g-chain is a finite algebraic sum of oriented q-simplexes with
integer coefficients, e.g., 2<zoa1a2> - 3<a3a1a4> is a 2-chain.

In any given gq-chain we assume that all possible cancellations have

been made (i.e., if = Z uJ,S;l is a g-chain then s #+s%  for

h T2
J
any jl ¢ jz, and all the uj are non-zero).
1f si-= <a0a1. . aq>, define its boundary toc be
q
b(Sq) = Z (—1)1<a, a,...a...a >
01 i q

i=0
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where * denotes omission. Thus b(Sq) is a (g-1)-chain, if
0
q>0 (wetake b(S") = 0).

2
For example, if S = <a aja,>

0 2
az
.~ denotes orientation
SZ:
20
a
1
then
b(sz) = < > .- < >+ < >
= <aja,> - aoaz aoal
= < > >+ >,
aja,>* <aza >t <aga
a2
2
b(S )3 aO
a
1

Given a g-chain cd= Zujx? » where the uj are integers,

j
define b(cq) = z ujb(x?), so the boundary of a q-chain is a

: N
(g-1)-chain if q > 0.

Remark 2.2. It is easy to prove that b(b{Sq)) = 0 for any

Sq, hence b(b(cq)):O for any chain cqv

Notation: Let sfl be a collection of (possibly oriented)
J

q-simplexes indexed by j. Then
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q_ . .9 .
qu ={p: pe Sj for some j},
j
~ Sg = {p: p € Sg for all J}
) J
J
1f cq = ZU.J,SJ(,1 is a q-chain and uj 40 V j» then pe cq

j
means p ¢ S;l for some j.

If ACRY, then A\c¥l={xea: xdc%.

Intersection Numbers. Let S” be an oriented n-simplex in

R"  let p e R™ \ b(Sn). We say that s and <p> are in gen-
eral pesition.

If pd s" set i(Sn,p) = 0.

If pe " set i(Sn,p) = orientation of S'.

We call i the intersection number.

-1 1
Let H" be a hyperplane in an oriented R", let G be

-1 1
a line in the same R". Suppose H' A G = {p}. Choose

-1 1
<pa,...a_ > and <pb> positively criented in H' and G

n-1
respectively.
U B R | . ) .

Then set i(H » G ) = crientation <pa1a2,, .. an_1b>. It can be
checked that <pa1a2. .. an_1b> is an n-simplex and that i is
independent of the choice of points ajra,, .- 3an-1,b.

- 1
Suppose S and T are oriented simplexes in R™. we

-1 1
say that they are in general position if s AT is a single point
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or the null set. Suppose they are in general position.

-1 1 _
f "l Arhee set is®h Tl =0

-1 1 -1 1
1f " AT # ¢ then s” and T determine a hyper-

-1 1 _ -1 1
plane H' and line G respectively with H' W A G a single
- 1
point. Suppose R"” oriented so that S and T have positive

orientations. Then set i{S

-1
Observation 2.3. If Sn = <ala2. .. an> and
n-1 n-1 ) ) . .
pe S \ b{S ), then orientation <ala2. . ,an> = orientation
<pa2. .. an>. It is elementary to check this from the definition of
n

orientation, since by Observation 2.1 we can write Py = z}\jajk
n

=1
with each A, > 0 and Z U and a multiple of one row of a
J J

j=1
determinant can be subtracted from another row without altering the
. . ce n n-1 |
value of the determinant. Consequently if in R S ~ T is a

-1, 1 1 .
point p with prz/b(Srl jw b(T ), where T = <¢h> then

-1 1
'L(Sr:l , T ) = orientation <pa2. ,.anb/ .

Given two chains cp = Zu,X,p, dq = ZV Yq where u.,
J ] k k J
j k

Vk are integers and the simplexes Xj 5 YE lie in an oriented Rng

with either p =n-1 and gq=1 or p=n and g = U, we say

that the chains are in general positicn if Xf and YE are in gen-

eral position for every pair (j,k). In this case we define
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.. P L4y _ P o4
ilc™,d™) = Z ujvkl(Xj’Yk)'

Ik

1
Theorem 2.4 [2, Theorem 2.2]. If the chains cny bid ), also

1
b(c"), d are in general position then

Proof. This is elementary but tedicus; one considers various

cases.

Order of a Point Relative to a Boundary. Suppose 277" = b(c™),

~1
some chain ¢ (we say that 2" is an (n-1)-boundary). Suppose

¢" and p are in general position. Then we define the order of p

. n
relative to =z to be

- n-1 | L.ono
viz ,pl = ile L, p) .

It is not difficult to check that v is well-defined, i.e., independent

h-1
of the particular " satisfying ble) =20 .

Remark 2.5.
. n-1 . . n n-1 n
(i) If viz > P) 70 with bic) ==z , then pec
.. n-1 n-1 n~1 n-1 .
(i) V(a.zl -I-bz2 ,p) = a.v(z;l . P) T bv(z2 . p! for all integers

a,b (provided the right-hand side is defined).



-
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. C . n-1
We now extend this definition by replacing =z by a con-

tinuous image of itself.

Definition. An n-dimensional polyhedron K" is a union of a

finite number of oriented n-simplexes S?, i=1,2,...,m, such
. n .n . . n n
that for every pair Si’ Sj of these simplexes either S,1 S Sj

) n n . “ .
is the empty set of S,1 ~ S, is a common face, i.e., an r-simplex
J

, n _
(0 < r < n) whose vertices are vertices of both S? and S7. We
m J

write K = U S or K = zSn depending on context.
. 1

The shaded area is a 2-dimensiocnal polyhedron.

Definition. An n-region is a connected n-dimensional poly-

hedron.

m

Definition. Let Kn be an n-region, Kn = an . Let

i
i=1
3" . K"~ R" be continucus, and let p e R™ §n(b(Kn] 7. Then if

-1 n-1
z" is an {n-1)-boundary such that 2" can be deformed con-

tinuously into 8" (b(K™)) without passing through the point p, we

define the degree of 8" on K" relative to p to be

-1
(8", K%, p) = v(z" ", p).



—

It is shown in [2] that d(@n,Kn,p) is well-defined, i.e., that

-1 -1
for all z satisfying the conditions of the definition V(Zn > P)
-1
has the same value. The existence of such z is proven by
breaking up each s into a finite sum of n-simplexes, i.e.,

i
n . .
expressing each S.l as an n-region, then proving existence of a
. n n n . .
function ¢ : K — R which maps n-chains formed by sums of these
smaller simplexes into n-chains in R" in such a way that

-1
§>,<(b(K )) is an (n-1)-boundary 2" just as in the definition.

This decomposition of K" is called a simplicial subdivision, and

the function Qn is called a chain approximation to " on K

with respect to p. It is shown that

(1) @n is arbitrarily close to 8" on K, and

n n

(ii) ¢, (b(K")) = b(2 (K)).

sl
3 3%

Note that there exist arbitrarily small perturbations of Qn

which will not destroy any of the properties attributed above to & .

1
Observation 2. 6. For n =1, suppose b(K' ]} = <xm>- <xO>.
C el 0 1 .1
Then from the definition we can take z = <@ (xm)> ~ <@ (x0)> so
0 1 1 . .
z =Db(<® (x,.)® (x )>). By examining the varicus cases we see that

‘ 0 m
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11 1 1 1
d(2,K.p) =3 {sgn(® (x_)-p}-sgn(® (x )-p)} -

0

n

Thus, since the computation of d(® 9Kngp) is trivial for n = 1,
this case is mentioned in the sequel only to illustrate definitions and
concepts and to supply the first step in inductive definitions and

proois.

Remark 2.7.

(i) If p¢d 3(K"), then d(3,K",p) =0 from the definition
and Remark 2.5(i);
(ii) From the definition d(in, Kn, p) is always an integer;
(ii1) Clearly ae”, k", p) has the homotopy property described

in Section 1. 2.
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III. SUFFICIENT REFINEMENTS AND COMPUTATION
OF THE DEGREE
In this chapter we will use the definition of topcological degree
given in Chapter II to reprove the basic computational formula of [11].
This formula was originally proven using the 3rd definition of Section
I.2.
Let P" bean n-region. We shall always assume that p"
is written as a sum of oriented n-simplexes in such a way that b(Pn)
coincides with the topological boundary of P" when P" is

regarded as lying in R™. Tt is also assumed that all decompositions

of b(P") preserve orientations.

Example for Case n = 1.

x1 X3
XO " ;\%" X
XZ 4 5
4
1
= <
P z XiX1+1
i=0
SO
4 4
1
= < >y = < >.<x. >) = - )
b{P ) zb( xile ) z( x_l+1 X_1 ) Xg XO
i=0 1=0

In the future we shall often assume that for n > 1 b{(P") is
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written in such a way that the coefficient of each {n-1)-simplex is +1;
this can be achieved by changing the order of the vertices in an

oriented simplex where necessary.

n

ILet & = (gol,goz, A ,gon) : P" = R" be continuocus with

'(p)£ 6" YV pe b(P").

1
Inductive Definition. If n =1, B{P ) = <xm> - <x0> (say) is

sufficiently refined relative to sgn §1 = sgn 9y if

o (x)e. (x )Z0. If n > 1, b(Pn) is sufficiently refined relative
170 1" m

to _sgn & if b(Pn) has been subdivided sc that it may be written

n-1 n-1

-1
as a union of a finite number of (n-1)-regions Brll i’ BZ s e e s Bm

in such a way that
. . . . . n-1 L
(i) the (n-1)-dimensional interiors of the Bi are pairwise
disjoint;

(i1) at least one of the functions TR ,gong say <pr , is non-~

i
-1
zero on each region B? )
-1 _
(ii1) if ¢ _#0 on sfl‘ , then B(B ) is sufficiently refined
i «
- n-1
relative to sgn ', where & = (@re s @ enr®)
T, T, i T, n
i i i
(" signifies omission).

Example 3.1. In the case n = 2, suppose

-1

m
b(PZ) = < >
XJXJ+1 5

J::O
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where X" %o This is sufficiently refined relative to sgn @

if at least one of ¢,, 0 is non-zero on each line segment (x.x.,.),
1 2 & j J+1

and neither is zero at any x,. Here we are taking
J

n-1 .
Bj = <xjxj+1>, 0 <_ ] i m-1.

There are some apparent differences between this definition and
that given in [11]. We shall explain and justify them before proceed-
ing further.

Let n>1. Fix 1€ {1,2,...,n} and fix A =+1 or -1.
Then a Qn—set is a connected set of points g lying in b(Pn) such
that cpl(q) = ... = (pi(q) = ... = cpn(q) =0, and sgn cpi(q) =aA. If

two Qn—sets are associated with different i's and/or different A's

in this definition, they are said to be of different types.

Note: (a) From part (iii) of our definition of a sufficient

-1
refinement, if pe b(ﬁ;1 ) for some 1 then cpj(p),f/O for some

-1
j# r. Of course p ¢ b(ﬁli1 ) also implies that Q. (p) # 0. Thus
) i
p cannot lie in any Q" -set. Since the Qn—sets are connected, this

-1
shows that each of them must lie in the interior of some B? .

n-1 n-1

(b) Because ¢ #£0 on B. and B, is connected,
r, i L i
sgn @ is constant and non-zero on Bi . and it follows that no
1t
B.n can contain points from Qn—sets of different types.

1

Our conditions for a sufficient refinement are repeated in the

definition given in [11] together with the requirements that (A) each
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n g . . n-1 n-1
Q -set must lie in the interior of some Bi and (B) each Bi
must contain at most one Qn—set. We have show in (a) above that (A)
follows from the other hypotheses, and it is evident that (B) can be
weakened to the conclusion of (b) in the prcoof given in [11] of the
computational formula for the degree. Since sufficient refinements

are introduced for the purpose of deriving this fcrmula, our definition

would have sufficed in [11].

We shall prove a theorem which gives an inductive degree

-1 -1 -1
relation between d(Qn,Pn,Gn) and the d(ii1 ,B? ,en ),

i
i=1,2,...,m. For the proof we need two lemmas.

Lemma 3.2. Let n > 1. Suppose a £ 6" ‘lies on one of the
coordinate axes in R with its rth coordinate non-zero. Let
S be an (n-1)-simplex with a function F': s —- R,
n n n—l)

F =(f,,f.,...,f ), suchthat F (S

s N is an (n-1)-simplex.

Suppose that

-1
(i)f #0 on s" with sgn f ] = sgn (rth coordinate of
r r' n-1
S
a)
, -1 -1 -1 -1
(i) i(FTs™ ), <6™a>) and W(FT(S" T, 0%} are defined

(here 1 is the intersection number of Chapter II and

Then
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Proof. If i(F (S ),<6na>) = 0 then
-1

-1 -1 -1
FNS™ 7)) A <0%a> =0, so F? (s"77) A <" >=¢ also by (i)
,.n-1,_n-1 n-1 . . ‘e
and ].(Fr (S ), 8 ) = 0; the conclusion is verified. We may
n,.n-1

therefore assume that F (S N <pa> = {P} say, where

P=(0,0,...,p,...,0) in R", p#Z0 1lying inthe rth position by
p p ying

choice of a. Note that (i) sgn p = sgn fr

1 n-1 _n-1 n-1

-1 -
(ii) Pe FST )\ B(FS")) because (F (ST, 80 ) s
defined.
Set P'=(0,0,...,2p,...,0). Suppose F (8" )=<y ...y >
Then
(F(s" ), <6"a>) = orientation <Py,...y P>
(follows from observation 2.3)
n+l . . .
=sgna  ((L,P), (1, yz), Cees (l’yn)’ (L.PY)
I 0 0 p 0
LYoy Yoo Yap o Yan
= sgn , ,
1 .
Ynl YnZ ynr Yrm
1 0 G 2p 0
n
h = R s e ey i 1 < m< n.
where 'y (le Y2 ann) in R for <m<n
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Subtract the first row from the last one and expand in terms of last

row:
1 0 0 p 0
1 vy y c. . ;7 oy
-1 + 2
i(Fn(Sn ),<Gna>) - (_l)n T sgn p sgn 21 2 2r 2n
1 A
Yn1 Yn2 - Ynr Yan
1 Ly
Y11 Y12 7 Yy Y1n
1 A
_ ntr Y21 Y22 Yor Y2n
= (-1) sgn p sgn
1 A
Yol Yn2 " Yar 7 Yan
(by an argument like that of observation 2.3)
+ -1 n-1 -1
= (-1 sgnf 1(FT (ST, 0%
T T
-1 -1 -1
by definition; we know that " ¢ Frr1 (Sr:l ) from our initial
assumption.
Lemma 3.3. Let P" be an n-region with g" . p" — R"

continuous and Qn;f 6" on b(Pn). Suppose that b(Pn) has been

subdivided into a finite number of (n-1) regions B;l , jeJ, so that

it is sufficiently refined relative to sgn 8", Let @n be a chain

. . n . .
approximation to & on P with respect to Gn, with

-1
"7 ke K} the associated simplicial subdivision of
Kk P
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-1
b(Pn) = Z B? . Let the point a 1lie on one of the coordinate axes
jeJ

in R"™ withits rth coordinate non-zero and |la| > max | Qn(x)H
x e P1

(usual Euclidean norm). Then we may assume that
(i) the sufficient refinement of b(Pn) relative to sgn 8 s

also a sufficient refinement of b(Pn) relative to sgn Qn ,

-1
with Q. #0 on B;l implying that e £0 on B?

J J

also;

(i) fall > max |26l

x e PN
-1 -1
(iii) for every SE both '1(@{1(5;1 ), <0%2>) and
-1 -1 -1
i@r::tr (SE ),0" ") are defined.

Proof. (i) We know that we may take @n arbitrarily close to

n n . .
® on P; the proof is then easy using induction on n and the

fact that @n a chain approximaticon to " on P" with re spect to
n . . n-1 . » , n-1 n-1 :

6 implies Q*r a chain approximation to Qr on Bj with

n-1 j j

respect to ©

(ii) Since Qn may be chosen arbitrarily close to 3" on

Pn, we may assume that (ii) holds.

-1 .
(iii) If '1(@{1(8;1 ), <9na>) is not defined then

-1
(s 77y ~ (07a) is a (non-trivial) line segment, implying that

-1 -1
) is an (n-2)-simplex and 0" lies in this (n-2)-simplex.

-1 1. n-1
. 1) is not defined then 6" « b(@? (Sr:l )
xr k *r k
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lies in an (n-2)-chain.

-1
Thus to ensure that both i(@i(Si ¥, <9na>) and

-1 n-1. n-1 -1
i(@ir (s;1 1,6%77)  are defined for the given finite set {sE ke K},

it is sufficient that 6 does not lie in a certain finite collection
of (n-2)-simplexes which are in (n-1)-dimensional space. Therefore
if necessary we can perturb <6"a> arbitrarily slightly in a direc-
tion perpendicular to itself so that the above intersection numbers are
defined for all k. This is equivalent to leaving <6"a> as it was
originally, then perturbing @n slightly in the opposite direction.
This perturbation can be chosen so small that all the properties of

n . . .
®  as a chain approximation are preserved.

Theorem 3.4. Let Pny n >1, Dbe an n-region and let

8" . P" - R" be continuous with & # 6" on b(Pn) so that

d(in,Pn, en) is defined. Suppose that b(Pn) has been subdivided

into (n-1)-regions Br__l_ , je J, so that it is sufficiently refined
J
relative to sgn 3", Then if " = (golggoz, e ,gon) with ¢ 7! 0
j
-1
on B;l for each je J,
1 r.tl 1 ] i
(", P, 6") = - Z(—MJ a(a® ! g 0" egn o |
2n T. rj Bn—l
. ] .
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) -1 -1 -1
Proof. Each d(@: , B;l . Gn ) is defined since by definition
n-1 J n-1
b(ﬁSj ) is sufficiently refined relative to sgn Qr »  which implies
-1 -1 -1 J
that @: 7 o" on b(ﬁ;1 ). Note that the sum above is well-
j
defined insofar as if for some je¢ J both 9 and ¢, are non-
-1 -1 -1 -1 -1 -1 -1
Zero on B;l , then d(@rs1 ,6} , en ) = d(@i1 , B;l , en ) =0
-1 -1 -1 -1 -1
because @rsl 7 0" and @? 0" on B;l . and so it is

. . . . n-1
immaterial whether we associate ¢ or g, with B, .
5 J

. . . . n
Choose a point a lying on one of the coordinate axes in R

(with say rth coordinate non-zero) such that HaH > max H Qn(x)”.
x ¢ PO

n n
Let &  be a chain approximationtec & on P? with

respect to Gn; by Lemma 3.3 we may assume that Qn satisfies

certain conditions. Now

ace”, p", e

I
<
A

g
g
@

(by definition)

(property of chain approximaticn)

= (3 (P ),8) (1)

(by Lemma 3.3 we assume

ad o (P"))
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= -i(8(P™), b(<6"a>))

3K

+1
= (-1)7 i(b@ (P™), <6 "a>)  (Theorem 2.4)

= (-1)" T U(Eb(PT), <67a>)

= (-1)n*t Z i(@i(s?‘l), <6"a>)
jedJ

where by Lemma 3.3 we assume each term in the sum is defined.

Then using the definition of intersection number

where

Fix je Ja Then rj—r with sgn<p*r‘1 n-1 _ sen (rth
i B
coordinate of a).
n-1 -1 : . o n
Let BJ = Z Sk in the simplicial subdivision of P
keK,
J
Then
- -1
1(@2(6? ), <6"a>) = z (e85 ), <0%a>) =
keK,
J

(the sum is defined by Lemma 3.3)
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by Lemma 3.2 and (iii) of Lemma 3. 3.

Thus from (2) above

r.tn
a@”, P, 0" = (-1 z > end e s h et

r. k
jed  keK, J
a j
X sgn @y .Iﬁn-l
7 H
r.+1
_ 1y _Qn—l n-1 9n—l
Z (-1 iE, B, )Sgn<p*r'|ﬁn_1 (3)
jeJa J J J

Now there are 2n sets Ja’ depending on the half of the
coordinate axis on which a lies, and we get (3) for each Ja.

Adding these 2n equations gives

n vl 1 n-1 1

n n FPI ¢ B il N n-

2nd(®,P,07) = z(—l)J 1(§*r (BJ 1, 0 ) sgn (pr |
jeJ j j B.

using (i) of Lemma 3.3 to replace sgn 20 by sgn ¢ Here the
] ]
summation over all je J 1is justified as follows: if sorne je J

does not lie in any Ja, this means that QZ(B? ) (ena) = ¢ for

-1 -1 -1
all possible a. Consequently éi'l‘r 70" on 6{1 , giving

j J



29

-1, n-1_n-1
(87877 48" 77) = 0; therefore j canbe included in the sum

Xy . J
J

without altering its value. On the other hand it is impossible for
some je J tolie in two different sets Ja, Ja' because this
-1
would imply that no qJ"‘r’ ! <r <n, wasnon-zeroon B? and by
(i) of Lemma 3.3 this is not so.
. . n . . . n n )
Finally since @, a chain approximationto % on P~ with
n . n-1 . . . 51-1
respect to © implies §>'<r a chain approximation to r on
n-1 n-17 ]

B. with respect to © je J, we canuse (l)to rewrite (4)

to get the required result.

We are almost ready to prove our computational formula for

ae", p", Gn) using the inductive degree relation of the theorem.

Recall that if %, =(x..,%. _,....x. ) in R, 0< i< n,
i il” 12 in - -
then
*11 *12 7 *In
n, %21 %22 0 Fon
A xl’XZ"”’xn)—
and
1 x X ... X
01 ~02 On
+1 1
A" (L), (Lx))s oo (Lx ) = 11 *12 *1n
1 .
xnl an xnn
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2
Lemma 3.5. Let K = Z <x(J)x(J). . .x;j)> be an n-region,

0 71
2! j=1
with b(K") = Zt <y(j). y(J)>, t. =+ 1. Suppose G K'— Rr"
9 J:1J 1 n It
then ) %1 atx§ o < ) £amcr oy
j=1 j=1
Proof
{
ZA“((I,G(X(J))), (1, Gy
i=1
1 q
=) ) eniateedh L aeh e (1)
=1 i=0
by expanding An+1 along its first column. Now

zl
b(K") = Etj<yl(j). . .yrij)>
j=1

by hypothesis, where the y's are just a relabelling of certain x's.

Consequently from (1) we see that

|
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£ Ik
ZAD((I,G&S))), (G = thA“(wa”L oy
j=1 j=1

Theorem 3. 6 (computational formula for the degree). Let Pr1

n
be an n-region. Suppose g = ((pl, c. ,cpn) - P" = R" is continuous

with @“;ée“ on b(Pn). Suppose that b(Pn) has been subdivided

-1
into (n-1)-regions BE » 1 <k <m, sothatitis sufficiently
yi
refined relative to sgn 8", let b(P") = z tj<y(lJ). . 'Yl(qJ)>’ t, =11
J
j=1
Then
2
1 T . .
a(e", P", 0") = e a%sgn 2 U)), L sgn )
Sy L] 1 n
n L
j=1
n
where sgn ¢ (y) = (sgn cpl(y), ...,sgn cpn(y)).

Proof. This is the same proof as that in Section 4.3 of [11].
We use induction on n.
For n =1 this clearly reduces to the formula given in
. 1 1 1
observation 2.6 for d(® ,P ,07).

Fix n > 1 and assume that the theorem holds in the n-1

case. We have
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from Theorem 3.4.

1 . .
Let b(ﬁrl y = ZT,<Z(11)”.Z(1) > 1< k<m, 7, =+1. By

k i n-1 i
iel
iel N
definition this is sufficiently refined relative to sgn Qr , so by the
k
induction hypothesis we have
TCIN
k
1 - -1 -1, (i
= — ZT_An (sgn @? (z(ll)), , sgn @? 1(zr(ll_)l))
2 (n-1)! T k k
F
1 n n-1 i n-1 (j
- Zt.a (1,580 2 ), L (1 sgn 327 ()
2" m-nt A J K k
7%
n-1 (j) (i
. = = 4 1.
by Lemma 3.5, where Bk th(yl , 'Y )y tj + 1. Thus
J&Jk
(1) becomes
m
r +1
a(a",p", ") = — Z Z(~1>k t.
2 n! k=1 ic7T ]
TE9%
1 , RUNE
X aP((1,sgn o Ny L sga 22N
T T n
k
X sgn cpr ] n-l
k E&k
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(moving first column of A" L columns to the right then multiply-

ing it by sgn ¢ ] n-1
k |3k

2 2 . .
Example. P = unit square in R with counterclockwise

2 2
orientation. Let &7 (x,y) = (x,x -2y) =x',y') say.

Ay
(0,1)
Y2 Y1
(1,0)
X
Y3 Y4

2
= < >+ < > < - >+ <y >, Y
We take b(P ) V1Y, YoY3 + Y3Yy Y4Y1 By

Example 3.1 this gives a sufficient refinement of b(P ) relative to

2
sgn &,

Then by Theorem 3.6

2 2 .2 1, 1-1 o1 -1 11,1
d(é:P ’e)_S{‘—l _l]+|_l l! ‘ll\+|1—ll}
-Lli22.2:2)
3 -2 -2~
= -1.
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Historical note. It is a remarkable fact that J. Hadamard in

[5, pp. 452-460] essentially verified Equation (3) of Theorem 3.4 for

the special case rj = 1. He used the Kronecker integral definition of
Chapter I, simplifying the integral by ingenious manipulation. It is
easy to see how to extend his work to the general case where

rj e {1,2,...,n}. Since Equation (3) is the crucial step needed to

prove the computational formula, we can say with some truth that

Theorem 3. 6 might well have been proven 60 years before it was.
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IV. IMPARTIAL REFINEMENTS

1. Motivation

Let Pr:l be an n-region with & = ((p], .. ,(pn) . Pt — Rr:l
continuous and satisfying 3" ;‘ o™ on b(Pn). It is shown in [11]
that if we keep refining the simplexes in the original representation of
b(Pn) in such a way that their mesh (i.e., their largest diameter)
tends to zero, then after a finite number of steps we will obtain a
sufficient refinement provided that the zeroes of the ?; satisfy cer-
talon conditions (these conditions involve the Qn—sets defined near the
beginning of Chapter IIl and are similar to insisting that no ¢, can
have an infinite number of isolated zeroes on b(Pn) ). The proof of
this statement relies on a contradiction argument and consequently
gives no estimate regarding the number of steps needed to reach a
sufficient refinement in a given situation. Moreover, as the next
example illustrates, it is in general impossible to teil from the com-
putations involved in this algorithm when a sufficient refinement has
been reached. However once we have a sufficient refinement it is

clear from the definition that any further refinement will not "lose™

this property, so there is nc question of cver-refining.

2 2 .
Example. P = unit square in R with counterclockwise

1
orientation. Let Qz(x,y) = ((y-%x)(y**%x-l),y—g‘) = (x',y') say.
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Y
V5 -
Y2 x' = 0 vy = )
g AL 4/9)
(-1,1/3)Fy' =0 v :0“\5%1,1/3)
| J—
== 01, 2/9)
Y6
ol .
(-1,-2/9) + x'=0
Y3 Vg 74

Suppose that we initially have subdivision points Y2 Ypr V30 Yy
2
P =< >+ < >+ <y >+ < >, is i
so that b{(P") V1Y, Y,Y3 Y3V4 YaY1 If this is a

sufficient refinement then by Theorem 3.6

2 2,2 1,11 101 1 -1 1 -1
ae®, 28,07 =t e 1T L e D
_ 1
)

which is impossible since the degree is always an integer. Therefore

we do not have a sufficient refinement and must refine further.

-
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Introduce four more subdivision points Vg: Vg Vq:Yg 28
indicated on the diagram so that
b(P?) = <y,v.>* <ygy,>*t ... + <ygy,> If this is a sufficient refine-
ment then

sgn ¢ (y.) sgne,(y,)
d(§2,P2, 62) 1 171 271

8 “'sgn (pl(YS) sgn ¢2(Y5)|

Isgn cpl(yg) sgn <p2(y8)
+ ...+
'sgn o ly,) sgn o,y )

1}

Since we know the positions of the zeroes of x' and y' on

b(P ) we see that this is not a sufficient refinement because neither

x' nor y' is non-zero on the l-simplex <ygy,> 1lf we introduce

further subdivision points and use Theorem 3. 6 to compute a possible

2 .2
value for d(§2, P ,07) each time, we will still get the value 1

until we introduce a point such as yg oOF on the diagram.

Y10
2

= < >+ < >+...+ < >+ < >+ < >

bR = <yyys> T <ysy, Yg¥9” T <Yo¥10” T %

we now have a sufficient refinement by Example 3.1 and consequently

d(QZ,PZ, 07) =0 wusing Theorem 3. 6.

2

The point here is that if the zeroes of ¢, and on bhi{P")

?2
were unknown, the procedure of subdividing, computing the possible

degree from Theorem 3.6, further subdividing etc. might yield a

sequence of possible degree values in which the term 1 occurs
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many successive times. We might thus be misled into believing that

2 _2 2
d(2 ,P ,0 ) = 1. In this case the czalculations contained in the pro-

cedure would not indicate that we do not have a sufficient refinement
2

2 .
because it is easy to find a function ¢ P — R2 for which

2 2 2
sgn{y = sgn ® at all previously sampled points and yet b(P ) is

sufficiently refined relative to sgn qJZ. For example take

Lpz(x,y) = (%x—erl,y_ %‘). Then sgn L‘pz = sgn §2 on

P\ {(x,y) ix = 1, %< g < g‘-} with d?, P2 6% =1, and the
subdivision points Y12V Vg yield a sufficient refinement of

b(PZ) relative to sgn L|JZ.

For n > 2 it is in general a complicated matter to check that
a decomposition of b(Pn) yields a sufficient refinement, because of
condition (iii) of the definition. We will define what we call an
"impartial refinement”; this is a stronger property than that of
"sufficient refinement” but its conditions are simpler tc verify. Con-

~

)
sider the following motivating example: P = <a0a1a2a3> (a tetra-

3 3 3
hedron) and ¢ : P —R with sgn ¢, as indicated in the

diagram.
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Ny > < >
25 C on a3a2a0

&2
%0
> 0 on <a0a2al>
a1
Then
= 5] = .
sgn & (az) sgn (a4) (1,1,1)
Let
@3 = @3 = @3 =
sgn (ao)_ (l:l:“l): sgn (a-l)" (-l,l,l), sgn (a-3)_ (ls‘l:l)-

Assume that

):A%o:>sgn<pi:A on <a.a, > all ij,k.

sgn cpi(aj) = sgn cpi(ak ik
Now
3
= < >+ <3 >+ < >+ < a.>t+t < >,
b(P ) aoala4 cLOa4a3 a,a,a, aoaz 1 a3a2a0

1f this decemposition into 5 2-regions yields a sufficient refinement of

3 3
b(P") relative to sgn @, then



1 1 -1 1 1 -1 -1 11
as,p,0%) = 31 5 T S | AN 5 R SR | RS I N |
27 31 ‘
11 1 1 -1 1 1 -1 1
1 1 -1 1 -1 1
+ 11 1 + 1 1 1
-1 1 1 i1 1 -1
N
S 12
which is of course impossible. Thus we do not have a sufficient
refinement. The problem is that the boundary of the region
<a1a2a3> is not sufficiently refined relative to sgn(gal,cpz). For
= >+ >
b(<alaza3 >) <ala2 <a2a3> + <a3a1
and both ?y and ¢, have zeroes on <a3a1> since
sgn ¢, (a3) = -sgn gai(al), i=1,2. Thus <a1a3> cannot be used as
a l-region in a sufficient refinement of b(<alaza3 >).
< > i ivi i < >+ > i
If ajasa, is divided into a,a,a, <a4a2‘a3 this

problem is removed because now

b(

17273 47273

which is sufficiently refined by Example 3. 1.

<a,a,a,>*+ <a a_a,>) =

> > >
<aja,>t <aja >+ <aza,

+ < >
343

We can now apply
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Theorem 3. 6 to get d(§3,P3, 93) = 0.

Here we obtain a sufficient refinement by making the decompo-

3 .
sition of b(P") more impartial insofar as <ala3> is no longer

regarded as a single 1-simplex in the region <ala2a3> while being

regarded as <ala4> + <a4a2> (a sum of two l-simplexes) in the

| ' { >+ < >).
‘ region (<agaa,>+ a,a,2s>)

2. Impartial Refinements: Definition and Properties

Let P" be an n-region. Let §n:(cpl,cp2,...,cpn):Pn—’Rn

be continuous with §n(p) # " ¥ 1 b(Pn).

1
Definition. If n =1, b(P ) 1is impartially refined relative to

1 1
sgn & if it is sufficiently refined relative to sgn ® . If n > 1,

b(Pn) is impartially refined relative to sgn " if b(Pn) has been

subdivided so that it may be written as a union of a finite number of

-1 -1
(n-1)-regions Brll s ey Bnm in such a way that

-1
(i) the (n-1)-dimensional interiors of the B? are pairwise

disjoint;
(ii) at least one of the functions Qrrcc0@ s SBY @, is
n .
i
. n-1
non-zero on each region Bi ;
. n-1 : . .
(iii) each region B,l is maximal insofar as if

[3;1—1 ~ B?nl # o with j;‘ i, then rj # T
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-1 -1 -
(iv) if S? is an (n-1)-simplex in B?, such that S?
has a face of dimension n-2 lying on b(ﬁ?,— ), then this
: : n-1_ .
face is also a face of at least one (n-1)-simplex Sj lying

-1
in some B;l, , where j’fi'.

Before proving the fundamental theorem which states that all
impartial refinements are sufficient refinements we obtain two pre-

liminary results.

Lemma 4.1. The boundary of an n-dimensional polyhedron is an

(n-1)-dimensional polyhedron.

-1
Proof. Let K be an n-dimensional polyhedron. Let s”

and Tr:l be (n-1)-simplexes in the (n-1)-chain b(Kn). We must

-1 -1
show that S =~ ~ T is either the empty set or a common face

of the simplexes.

-1 -1 -1
Suppose s A T" 7! ¢. Now s" is part of the
-1
boundary of an n-simplex s” (say) in K", likewise T
comes froma T~ in K. Let S"= <sosl. .. sn>,
T" = <t0tl. . .tn> . Without loss of generality take
n-1 n-1
=< e > =< Ce . .
S 5185 s > T totl tn—l>
1f s =71% itis easy to finish the proof, soc assume not. Then

n . n n . .
because K is a polyhedron S ~ T is a common r-dimensional
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face, with 0 < r < n. Without loss of generality take

r T

st~ T = o) p~Z)\isl,)\_>_O,Z)\l=l
i=0 i=0
r t

SR q-zuiti, b2 0 Zufl
i=0 i=0

using observation 2.1. By linear independence and the uniqueness of

. n
the extreme points in s AT we must have

{s.:0< i< r}= {’c,1 0 < i< r}. We may assume in fact that

s. =t. for 0< i< r.

(0£S AT =
=r > 1).
Likewise
T T
n-1 n n
T A~ (ST >={q'qzzvity w2 0 ZHL:I ’
i=0 i=0
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Recall that s.l = ’c.l for 0 < i< r; thus

and this is a common face of S and T as required.

Theorem 4. 2. Let n > 1 and suppose that b(Pn) is

impartially refined relative to sgn &' with notation as in the defi-

~1
nition. Then for any i'e¢ {1,2,...,n}, b(ﬁ?, ) is impartially

-1

refined relative to sgn 3"
T,

i

Proof. Without loss of generality take T, T 1, i'=1, and

n-1

m>1 (if m=1 then b(ﬁ1

) satisfies the "impartially refined"

definition vacuously).

n—l}'

-1
Let {S.l be the (finite) set of (n-1)-simplexes in Brll

el

-1 -1
having an (n-2)-dimensional face lying on b(ﬁrl1 ). Let {Sr;(.l) )j <]
be the corresponding simplexes given by part (iv) of the definition
(i ™ j(i) 1is not in general a function). For each je¢ J we take

-1 -1
S:.l as lying in B;l, , say (j— j' 1is a many-one map). Write

S.. for the (n-2)-simplex S, ~ S

n-2 n-1 n-1
ij i iy

Consider
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-2
s. = {s"

. ) -1 n-1 _
> ¥ .leI,JeJ,Sr; Cﬁj,,rj,-Z}.

By Lemma 4.1 the intersection cf any two distinct (n-2)-

simplexes S,lr;_ is either a common face or the empty set since
n-2 . . n-1 : .
all Sij lie in b(ﬁ1 ). We can therefore write S2 as a dis~

joint union of (n-2)-regions in a unique way (by taking connected com-
ponents).
Continue thus: consider, for 3 < k < n,

. -1 -1
S :{S,n.zziel,jeJ,S? Cﬁ?, yrj,=k},

and write Sk AN (Szu S3u - uSk_l) as a disjoint union of (n-2)-
regions.
. . n-2 n-2 )
Taking all these (n-2)-regions Bl e Bm' (say) gives us

a decomposition of b(ﬁrll_ ) since by part (iv) of the definition all

-1 -1
[3;1, (' #1) which intersect Brll satisfy rj“ #1. We claim

-1
that in fact this gives us an impartial refinement of b(ﬁrl1 ) rela-
. n-1
tive to sgn §1

Clearly (i) and (iii) of the definition are satisfied.

-2 -1 -1
Recall that for any i S,r:,l = Sn ~ Sr_l.) and consequently

1] 1 J(l ’

-2 -1
¢ #0 on Sf} . By maximality of Brll ) rj, #1, and soa
-1
n- ) n-2 ..
component of §l is non-zero on each P , i.e., (ii) of the

definition is satisfied (this argument alsc takes care of the exceptional

case n = 2).
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-2
For condition (iv) (when n > 2) let Sr:l be any (n-2)-

1
. . n-2 . : n-2 .
simplex in Bﬁ ' such that an (n-3}-dimensicnal face of Sz lies

- -1 -1
in b(Bn,z). Now Brll is a region and b(b(ﬁrl1 )) =0 (Remark

-2 - -1
2.2) so any (n-3)-simplex in b([f;, ) must, since B?,Z C b(ﬁrl1 ),

-2
?n ), some t'£12' Itis con-

also be an (n-3)-simplex in b(p
. -2, -2
sequently a face of an (n-2)-simplex Srz in {52, .
The principal result is the following.

Theorem 4.3. If b(Pn) is impartially refined relative to

sgn 8, then it is also sufficiently refined relative to sgn 8",

Proof. Use induction on n.

For n =1 the assertion is trivial. Fix n > 1 and assume

-1 -1
that the theorem holds for any p" and @ .

Suppose that b(Pn) is impartially refined relative to sgn g"

-1 -1
using the regions Brll sy Brr; . We only have to show that (iii) of

the "sufficiently refined” definition hclds, the rest being automatically
satisfied.
-1
For any ie {1,2,...,m} 7 £ 0 on B? and by Theorem
i

)

-1 -1 -1
4.2 b(ﬁr,l1 ) is impartially refined relative to sgn §; => b(ﬁ;1
i
-1
is sufficiently refined relative to sgn QJ: by the inductive
i

hypothesis, and we are done.
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V. ALGORITHM FOR COMPUTATION OF THE DEGREE
USING IMPARTIAL REFINEMENTS

1. Introduction and Description of Algorithm

Let P" be an n-region. Let & = (cpl, e ,cpn) . p? — Rr"

with @ #0607 on b(P"). We now describe an algorithm for com-

puting d(§n, Pn, Gn), assuming that we can majorize the modulus
of continuity of in i by a known function $£2(8) which is
b(P ) i
O(6). This happens for example if we know that & ‘ N satisfies
b(P™)

a Lipschitz condition of order a > 0.
n

The algorithm constructs an impartial refinement of b(P )
then terminates. By Theorem 4.3 this impartial refinement is also

_ . n _n .n .
a sufficient refinement. We can thus compute d(® ,P7,07) with
assurance using the formula of Theorem 3. 6.

I 1

Take n > 1 as the computation of d4(® ,P , Gl) is trivial.

Let wi(~ ) be the modulus of continuity of ga.l] 0’

L{(P7)
i=1,2,...,n. Suppose that wi(é) < Qi(f)) for 1 < i< n, where

the Qi are known functions and Qi(é}) is Q{(6}) for each i.

For any i and any x ¢ b(Pn) with ¢i(x) # 0, choose
6.1> 0 such that Qi(f)i) < |<pi(x)!. Let | || denote the Euclidean
norm in R". Then for any vy ¢ b(Pn) such that H x-y[i < 61, we

have
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[, 0] 2 Lo, (x)] = [o,(x)-0,(y)]
z icpl(x')\ wiﬂoll
> o (x| - 2(6)
> 0.

Let pe b(Pn), Choose &(p) = max &, where the 6i
1<i<n '

are chosen as large as possible such that Qi(éi) < |<pi(p)% (if

<P.1(p) =0 take 6_1 = 0). For at least one i

lop) 2m = min 2] >0
xeh(P)

so 6(p) > min 6; where each &' > 0 is chosen as large as
i .

possible such that Qi(6i') < m. Thus ©6(p)> ¢ say, where c¢ is
positive and independent of p.

From the preceding paragraph we see that if 1y e b(Pn)
satisfies | p-y| < 8(p), then ’cpi{y)l > 0 for some i inde-
pendent of .

Thus, given any point p e b{Pn)g we can surround it by a
ball B of radius at least ¢ {a fixed positive constant)

such that some component of 3" is non-zerc cn B —~ b(Pn).

Definition. A simplex is acceptable if at least cne component of

n .
¢ is known to be non-zero thereon.
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Remark 5. 1. Any subdivision of an acceptable simplex yields

acceptable simplexes.

Where necessary our algorithm will subdivide simplexes in

b(P™) until all simplexes in b(P")

are acceptable.

Also, the

original representation of b(Pn) is a polyhedron by Lemma 4.1 and

the algorithm will preserve this property.

Definition. An edge cf a simplex is a one-dimensional face of

that simplex.

Let s™1 . ,s;'l

be a list of the (oriented) simplexes in

]
-1
b(Pn) with b(Pn) = ZS? . At first all these simplexes are unac-

j=1

ceptable. Let Pyo--aP be a list of the vertices of the

Algorithm.

l. Set i=1 and go to step 3.

2. 1f i=m, terminate. Otherwise replace

continue.

3. Compute 6(p_1) as described above.

4. Set j =1 and go to step 6.

5.1f j=12 goto step 2. Otherwise replace

continue.

i+l

and

and
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-1 -1
. If g; is acceptable or if P is not a vertex of S?
to to step 5. Otherwise continue.
. Without loss of generality assume that S?M = <piy2' . yn> .

Set k =2 and go to step 9.

- If k=n list S;l—l as acceptable and to to step 5. Other-
wise replace k by k+l1 and continue.

. Compute ﬁk, the length of the edge <piyk> .

(a) 1If ﬁk < 6(pi), go to step 8.

(b) If 2. > 8(p.), let

K : Potl be the point lying on

1
< > i ; — )
piyk at a distance m1n{6(pi), zlk} from p.1 In
step 2 replace m by m+l. Replace the oriented

-1
simplex Sr.1 by the two oriented simplexes
J

Sn~1 _ < N
j PiVa Y 1Pm+1Yk+1 Vn
and

st o« >

2+1 Pm+1Y2 " Yp

In step 5 replace £ by [£+1. In exactly the same way
replace every other oriented simplex having <piYk> as
an edge by two new oriented simplexes whose "sum" is the
original oriented simplex, increasing { in step 5to £+1

each time a new simplex is created. Got to step 8.
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Summary of Algorithm. Consider the vertices PysPys- -

in turn. For each p. consider in turn those unacceptable simplexes
i

having p, asa vertex. For each such simplex S? consider the
edges emanating from P, Subdivide those edges whose length
exceeds 6(pi) so that the new length of each edge of S;l-l having
p; asan endpoint is at most 6(pi). Then S?—l must be acceptable.
Here we also subdivide all other simplexes sharing the above edges

-1
with S;l in order to preserve the polyhedral property of b(Pn).

2. Proof of Convergence of Algorithm

Observation 5. 2. By virtue of step 6, it is sufficient to prove

that after a finite number of iterations all simplexes are acceptable.

For this proof we use the following two lemmas.

C
Lemma 5. 3.

A"(1 B
D

Let ¢ and k be positive constants. Write 'AB' for 'length of
AB' etc. Given a triangle ABC as shown with diameter less than
or equal to k, AB >c¢, and D lyingon AB subject to the
constraints:

1
(a) if AB < 2¢c, then AD :;’AB;
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(b) if AB > 2¢, then ¢ < AD

A

Then

Proof. We break up the proof into three cases:

(i) AB < 2¢c and AB > BC

(i) AB < 2c¢ and AB < BC

(1ii) AB > 2c.

2
Case (i). Now BC2 = ACZ + AB - 2AC ABcos a so

BCZ - ABZ = ACZ - 2AC AB cos a and

BC < AB <=>AC2 -2AC ABcosa < 0

<>AC -2 ABcos a <0

AC
2 AB°

<=>cos a >

1
Since AB < 2¢, we have by hypothesis AD = “ZAB. Thus

2 2 2 .
AC + AD - 2AC ADcos a

1 2
ACZ+ZAB ~AC AB cos a (1)

CD

t

From above AB > BC =>cos a > 2‘%&% so from (1)
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2 2 1 .2 AC
< + = - —
CD” < AC” + 1 AB” - AC AB ;%
1, 2,1 ,.2
= ZACT + A
2 AC Ty AB
3.2
< = ,

Case (ii). If AB > AC, then by symmetry we can obtain

the same result as in Case (i). Therefore take AB < AC. By

symmetry we can without loss of generality take BC > AC. Then

BC2 = AC2 + AB2 - 2AC AB cos a (2)
BC2 - AC2 = ABZ - 2AC ABcos a

SO

AB2 - 2AC ABcosa >0

AB - 2AC cosa >0

AB
cos a < 2 AC (3)

Combining (2) with (1) gives

cp? = B - %ABZ + AC AB cos a
2 3 2 B
< 2 + s
<BC® - 7AB" +AC ABS T
2 12
o M - — A
BC” - 7 AB
2
< k% .S
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1
Case (iii)- Now ¢ < AC < EABG

CD2 = AC’2 + AD2 - 2AC AD cos a (4)

For the given triangle CD depends only on AD. Differentiating,

2
d(CD7)
——" = 2 AD -2 A
d(AD) D C cos a
A ‘
=0 for COSO':X%’ i,e., CD .1l AB;

this gives a minimum value for CD. Thus CD achieves its

1
absolute maximum value wither at AD = ¢ or at AD = '2“AB. If

1
this maximum is at AD = EAB we are done by Cases (i) and (ii)

(note that in these cases the fact that AB < 2c¢c was used only to

1
deduce that AD = 5 AB). We therefore suppose that the absolute

2
maximum cccurs when AD = ¢, 1i.e., (from (4)) that
AC2+CZ -2ACccos a ZAC2 ﬁ-i‘ABZ - AC ABcos a

1
(AD = ¢ on left-hand side, AD = TZAB on right-hand side) so

AB~ > (AC cos aj{2c-ARBj

1 1 1
(ct T AB){c- = AB) > (2AC cos a)(c- = AB)
2 2 - 2

1 1
=> C +5‘AB < 2AC cos a, since «c «E“AB < 0
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ct—AB
Z

< c0pSs a.
2 .[z»c -

Now with AD = ¢

2 2 2
CD =AC +c¢ -2AC c cos a
c+=]~AB
2 2 2
< + - e ————
< AC c 2AC ¢ > AC
=AC2 -lc AB
2
2 1 2
< - = .
< k 2c

Finally, combining the results of the three cases yields the

conclusion of the lemma (use the fact that k > AB > c¢).

Definition. When dealing with a vertex p. in the algorithm
i
(i.e. running through steps 3-9), a new edge is an edge formed by

subdivision which is not part of any edge previously present.

VAN

Suppose that when dealing with A we divide the edge AB at

Example.

D, then join D to C. Now CD is a new edge; AD and DB

are not.
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Observation 5.4. When dealing with a fixed P, the algorithm
does not increase the number of simplexes having p, asa vertex.
Consequen-ly, after considering all S;l_l of which P, is a vertex,
step 6 will always return us to step 5 and so we eventually get
returned to step 2. We have now "surrounded" P, by acceptable
simplexes, i.e., every simplex of which P, is a vertex is now
acceptable, by virtue of steps 7, 8, and 9. This property will be

retained for the remainder of the algorithm (recall Remark 5.1).

Notation. Let S denote the largest diameter of the original

-1
simplexes s- s S

-1
1 .

Let Sr' r > 1, denote the largest

> b O

diameter of the unacceptable simplexes present after we have sur-
rounded P1:Pys 2P by acceptable simplexes (we take Sr =0

iff all simplexes are acceptable).

Lemma 5.5. When dealing with any vertex p; In the
algorithm, any new edge constructed in an unacceptable simplex lies
in a triangle such that the edge and triangle satisfy the properties
ascribed to CD and ABC respectively in Lemma 5.3, with

k = Si-l and c¢ that given in Section V. 1.

Proof. 1If (pipi') is an edge which we divide at pj
(pJ. 7 Py p.l,) then the new edges resulting from this division are of

the form (pkpj) where k #1i, i' (see step 9(b)). Any such edge
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will lie in the triangle (pipi,pk) which is a face of an unacceptable
simplex by hypothesis. Here we have a correspondence p; A,
P B, p T C, P; — D to LLemma 5.3.

We must have length (pip,l,) > ¢ as otherwise this edge would
not have been divided (see Section V.1 and step 9 of the algorithm).
The diameter of the triangle (p.lp,l,pk) is at most Si—l by definition
of Si—l' Finally, the restrictions on the length of (pipj) follow
from step 9(b) of the algorithm and the fact that 6(p.l) > c.

Theorem 5. 6. After a finite number of iterations of the

algorithm all simplexes are acceptable.

Proof. Clearly 0 <S8 < S for r=0,1,2,... . We
I — r+l — r
show that for some R, SR < ¢; from this point onwards step 9(a)

of the algorithm will always return us to step 8. As a result all
simplexes will eventually be acceptable (recall Observation 5.4).
Consider the original vertices Py»Pysc P - After we have
dealt with these vertices, any part of an original edge which now lies
in an unacceptable simplex has either resulted from a bisection or
from a subdivision which removed a length of at least c¢. Thus its
length is at most max{ %SO, SO—c}. Regarding other edges of unac-
ceptable simplexes (i. e., those new edges constructed in the

algorithm), by Lemma 5.5 such edges arise precisely as CD does

in Lemma 5.3, and it follows that the length of any such edge is at
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2 1 21
mo st (SO - Zc ) /2. Combining these results gives
2 1.2 2 2 1 2
< -~ s, - - = .
Sm _max{4SO, (SO c) ,SO 7 ¢ }
We now have a list Pysc- P P yye 2Pt say of vertices.
Apply the same argument to pm+l, ce ,pm, to get
2 1 2 2 2 1 2
S” , < max{ =S ,(S -¢),S -=c}.
m 4 m m m 4

Continue thus. It is clear that the sequence S_,S ,S |, ...
0" m m
must eventually be less than or equal to c¢. By the opening remarks

the proof is complete.

Corollary 5. 7. After a finite number of iterations the algorithm

terminates.

Proof. Use Observation 5. 2.

Observation 5. 8. Since b(b(Pn)) = 0 for the original repre-

sentation of b(Pn), every (n-2)-simplex lying in b(Srll_l) for

-1 -1
some s” in b(Pn) must alse lie in b(SfZ1

) } for atleast one

other (n-1)-simplex S;_l in b(P"). If in the algorithm this

(n-2)-simplex is subdivided, it is subdivided in all (n-1)-simplexes

containing it and from step 9(b) we see that new (n-2)-simplexes

appear in exactly as many boundaries of {(n-1)-simplexes as their



59

ancestors did, and with exactly the same orientation. Thus

b(bl(Pn)) = 0, where bl(Pn) 1s the new representation of b(Pn)

obtained bv means of the algorithm.

n .
Computation of the Degree. Since P is an n-region, by

Lema 4.1 the original representation of b(Pn) is a polyhedron.
The subdivisions of the algorithm are such that it preserves this
property of b(Pn). We will thus obtain a pclyhedral decomposition
of b(Pn) into acceptable simplexes. This gives an impartial
refinement of b(Pn) relative to sgn 3" : take maximal connected
collections of simplexes to be (n-1)-regions, avoiding overlapping,
and use the fact that b(bl(Pn)) =0 (Observation 5. 8) to check part

(iv) of the definition. The degree d(§n9 p" ) Gn) can then be com:-

puted using the formula of Theorem 3. 6.
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VI. SIMPLIFICATION OF THE COMPUTATIONS

In this chapter a procedure is g.ven which replaces the compu-
tation of the n x n determinan.s in Thesrem 3.6 by a "scanning"
of the matrices associated with these determinants, that is a counting
of * 1's in certain positions within the matrices.

As ucual let P be an n-region with

n
% = (wl, ey (pn) : Pr:l g Rr:l continucus. The next lemma and its

two corollaries will be used later when we need to choose simplexes

. . 1 . .
on which certain components of @ have certain signs.

Lemma 6.1. Suppose that b(P") s impartially refined
relative to sgn " in sucha way that it is a polyhedron. Then if

any coordinate function ¢, has the same sign A (A =1 1) atall

. . -1
vertices of any simplex Srl in b(Pn)3 we may assume that

J

-1
sgn¢. =4 on all of S;l without altering the value of

48", p", o™,

Proof. Suppose that we do not have sgn ¢, = A on all of

-1 -1
Now S;l lies in some region Bflg and so P 70 on
J x
J
, where of course r , 7 i.
By continuity ?. 7 0 on some open neighborhcod M of
1

1
Sj . Take M so small that it dces not contain any vertex (of any

simplex in the impartial refinement of b(Pn)) at which sgn ¢ = 0
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or -A (this can be done because of the assumed polyhedral property
of the impartial refinement). Choose ancther open set N such that
S?—l CnNC N (C M. Now homotopically deform ¢ where neces -
nary so that inside N it has constant sign A, while outside M
it is unchanged.

Since (pr,, 70 on M, & #6" during the homotopy and by
[2, Theorem 6. 4, p. 31} d(@n, Png Gn) is unaffected. Note that the

same impartial refinement can be retained since the sign of ¢, is
i

unchanged at all points considered in the definition.

Corollary 6.2. Under the same hypotheses as those of Lemma

- -1
6.1, we may assume that S;l ! lies in a region B?, of the

impartial refinement such that rj, = 1.

Proof. Since the refinement bl(Pn) of b(Pn) is polyhedral
and refinements are always assumed to preserve crientations,

b(bl(Pn)) =0 (see Observation 5. 8).

Form B?, !

as the maximal connected union containing S?-
of those (n-1)-simplexes in bl(Pn) on which sgn ?; = A. Then

after redefining some other (n-lj-regions to eliminate overlapping if
necessary, b (Pn) is still an impartial refinement because it is a

1
polyhedron and because b(b (P ")) = 0.

Notation. If B, = (b, ..b, 3, 1=1,2,...,q are gq
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vectors, then

iy iz blq\‘
b b b
Mq(B B = 21 22 2q
1 q
b b ... b
ql "q2 qq
(g x g matrix).
Of course det(Mq(Bl, c e, Bq)) = Aq(Bl, c e Bq) in the notation of
Section 1. 2.
' 1
Let b(Pn) = Z tk<y(1k). . .yilk)> be a sufficient refinement
k=1
relative to sgn &, where ’ck =+ 1. Its associated matrices are
t M (sgn 2 L egn ™)), ks L2 (1)

-1 -1
Let {B;l 1 joe JA }  be the set of regions B? in the
n
given sufficient refinement for which the associated coordinate func -

tion is cpr with sgn ¢ ‘ n-1 = An ;  here rrl e {1,2,...,n}
n n B,
and A € {-1,1}. )
n
Take Br.lml = z <y(k). . .yk‘K)> for each je J so
J 1 n An
keK,.
J
n
n-1 itl (k) (k) (k)
= - >
b(ﬁj ) Z Z( 1) ) : Y
keK., i=1
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with associated matrices

. itl. n-1 n-1 (k) ~ _a-1, (k) n-1, (k)

- @ PR » ’ @

(-1) "M~ “(sgn®_ “{y, ") gn® “(y; ) sgn & “(y "))
n n n
i=1,2,...,n, ke Kj,jeJA (2)

n

Corollary 6. 3. Suppose that the above sufficient refinement is

actually a polyhedral impartial refinement. Then the matrices

-1
1\/1rl of (2) can be obtained as follows: choose from (1) those M"

whose rnth column consists entirely of An's, then delete the

ith row and r th column from these matrices, where 1 ranges
n

over the values 1,2,...,n.

Proof. Consider the matrices

n n, (k) n, (k) (k) (k) n-1
tkM (Sgn $ (yl | PP sgn d (yn ), <y1 .. ayn > C [SJ ,
j e JA (3)
n

Fach matrix in (3) is a matrix in (1) whose rnth column
consists entirely of An's; by Corcllary 6.2 we may assume that
all such matrices in (1) are actually matrices in (3). Thus choosing
from (1) those matrices whose rnth column consists entirely of
A 's is a means of listing the matrices in (3). Now each matrix in

n

(2) is obtained by deleting the ith row and rnth column from a
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matrix in (3). This completes the proof.

Using the above notation, consicer the matrices

n n, (k) n
@ 3
tkM (sgn (y1 )5 » 8gn (Yn

Recall that their associated determinants A" were used to compute
n .n .n. . .
d(®,P ,67) in Theorem 3.6. In the procedure below a signature is

assigned to certain of these matrices, then the signatures are added;

n

it is shown later that this yields d(§n, Pn, 67).

Procedure. Let {r,l: 1 <i< n}(_:_ {1,2,...,n} with T < i
V i. Let {A.l 1< i< npC{-1,1}

Choose from (1) all t I\/Ir:l whose rnth column consists

k r +1
n

entirely of An's. Assign a temporary signature tkAn(—l) to

each such matrix; assign the signature zero to every other M
Delete the rnth column from each chosen matrix to form an
nx (n-1) array. In the r 1’ch column of this array pick all

combinations of n-1 rows having n-1 A 's as entries, if any

n-1
such combination exists (if not, discard the matrix, i.e., assign it the
signature zero) (if the matrix is not discarded there will be either
1 or n such combinations).

1f there is one such combination, suppose that the qn_l’th row

is the unique row with entry 0 or AR Delete this row to give
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an (n-1) x (n-1) matrix and assign a temporary signature

rn+l+r l+q

n- -1
t, A A (-1) 1 to the matrix.
k" n n-1
If there are n such combinations (i.e., rn_lth column con-
tains n A l's) then deleting each row in turn gives n-1 A l's
- n—
in the rn_lth column. Do this, obtaining n (n-1) x (n-1)
matrices with associated temporary signatures
r t1l4r +a
n n-1 *n-1
t. A A (-1) , where the ¢ th row was the one
k n n-1 n-1

deleted (so g runs through the values 1,2,...,n).

n-1
Now deal with each (n-1) x (n-1) matrix just as each original
n x n matrix was dealt with after assigning the first temporary
signature, replacing n by n-1 throughout. Continue reducing
until left with 1 x 1 matrices. At this stage the sum of the tem-
porary signatures of those 1 x 1 matrices whose ancestor was a

particular M is taken as the signature of that M. Finally add

all the signatures of the M.

~We now recall some equations which will be used to prove that

the procedure computes d(® ,P,0).

Again suppose that b(Pn) = z tk<y(lk), .. yilk)> is sufficiently
k=1

refined relative to sgn Qn, where tk =+ 1. Recall Equation (3)

of Theorem 3.4:
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a1k 1 n-1 ,n-1
d(@“,P“,e“):z 070 Dsgne |
- ] j B
jed, ]
Changing the notation a little we have
n _n n I‘n+l n-1 n-1 _n-1
d(§ :P s ): z ('1) d(§ 96; se )A
r j n
JEJA
n
r +1 -1
-1 B
= (-7 & Z ael e L0 (1)
n T j
RN
n
. . . n-1 n
where the summation is over all regions Bj in b(P) whose
associated ccordinate function is ¢ with sgn ¢ | =A
by by n-1 n
n n B.
J
here r € {1,2,...,n} and An e {-1,1} are arbitrary but fixed.
For each je JA take
n
n-1 _ . (k) (k)
Bj = Z A ATREEED S
keK
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S0

n
] N 1 (k) A
bl =) Z(-l)“ky‘lk’..,y(.k)...y‘k%.

keK, izl
J

Consider the associated matrices

i+l n-1 n-1, (k) A n-1, (k) n-1, (k)
(-1) M (sgn @r (y1 ), .. .,8gn @r (yi ). ..,8gn @r (yn 1,
n n n
i:l,Z,...,n,keKjgjeJA (2)

n

Observation 6.4. Consider the special case n = 1. Let

m-1
1 1 . .
P = <x.x,,.> sothat b(P )= <x >- <x,>  with associated
i itl m 0
i=0
. 1 1
1 x1 matrices @ (x ), -® (x.).
m 0
1
Of necessity r, = 1. As usual Al e {-1,1}. 1f @ (xm) = Al
r1+1
it is assigned the signature Ay (-1) Ay if not, it is assigned
the signature zero. If Ql(xo) - it is assigned the signature
r. +1
(-l)A1 (-1) = —Al ; if not, it is assigned the signature zero.
Finally the signatures are added.
n n n n

Theorem 6.5. Let P be ann-regionwith @ :P —R

continuous. Suppose b(Pn) has a polyhedral impartial refinement
pp pely

relative to sgn 8"  so that it is sufficiently refined with notation as

above. Then the procedure computes a(s", ", Gn).
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Proof. Use induction on n. By inspection the theorem holds
for the case n =1 (see Observations 6.4 and 2. 6). Now fix n > 1
and assume that the theorem is true for the n-1 case. Then the

procedure deals with the matrices

tkhdn(sgn @n(yék)%. ..3sgn.§n(yi&)ﬂ, k=1,2,...,¢ (3)

By Theorem 4. 2 and Lemma 4.1 we are justified in applying

-1 -1 -1
the inductive hypothesis to calculate z d(§rl R Br,l ,Gn ). Thus,
jeJ rn :
J A
n
letting j vary over JA ,  choose from (2) all those matrices
. n
]_+1 n—l R . t
(-1) M whose r 1th column consists entirely of An-l s

and assign a temporary signature

to each. Apply the procedure from this psint to compute the signature

i+1. n-~1
of each (-1)1 I\/ln , then add these signatures.

To now calculate d(én, Pny Gn), use (1): multiply the signa-

o ditl on-1 oroTi
ture of each (-1) M by (-1) An and then add these values.

By inspection, using Corollary 6.3, this method for computing
n n \n . . . . .
d(®,P7,0) is seen to coincide with the procedural method applied

to the matrices in (3).
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Corollary 6.6. Any nxn matrix (n > 1) having two

columns each of which consists entirely of +1's or of -1's will

be assigned the signature zero.

Proof. Suppose that the rth column consists of Ar’s, the
sth column of As's, where {Ar’As}g‘ {—i, 1} and r ¥ s.

Take P% tobea n-simplex with a continuous function
n
8" . p" = R such that

_ n
sgn ¢ = AS on ali of P

and

. n
A on n vertices of P
r

sgn gor =
-A on the remaining vertex.
r g

Then b(Pn) is a polyhedron and is impartially refined relative to

sgn §n, taking all of b(Pn) as an (n-1)-region on which ¢ £ 0.

We may therefore apply Theorem 6.5 with r =T and A T A

In the procedure only one matrix will be chosen because for only

one simplex in b(Pn) does sgn ¢ A at all vertices. This

matrix has an rth column of Ar's and an sth column of As's;

the other entries (if any) are arbitrary. Its signature must be
n _n .n o
+d(®,P ,6") by Theorem 6.5; however this is zero by Remark

2. 7(i) because ¢ £0 on P => §n}'£ 0 on P
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Theorem 6.7. Let P bean n-region with " . p? — R"

continuous. Suppose b(Pn) is sufficiently refined relative to

sgn @' . Then the procedure computes a(e", P",e").

Proof. The proof is almost identical to that of Thecrem 6.5.

No alteration is needed for the n=1 case. For n > 1 the
same basic argument holds, but some changes are needed in the
results quoted from elsewhere.

Instead of quoting Theorem 4.2 and Lemma 4.1 we appeal to
part (iii) of the definition of a sufficient refinement.

We cannot prove a version of Corollary 6.3 for arbitrary
sufficient refinements. It guaranteed that any matrix M"  whose
rnth column consisted of An's corresponded to a simplex in some

-1
5{1 > jeJ (notation of Theorem 6.5), and so should be chosen

) n
at the beginning of the procedure. However any such matrix corres-

-1
ponding to a simplex in a Blr: where k¢ JA will then have two
n
columns each consisting of +1's or of -1's because of the suf-

ficient refinement, and by Corollary 6. 6 may be included among the
chosen matrices because it will be assigned the signature zero in any
case. This observation should be used in place of Corollary 6.3 in

the proof.

Corollary 6. 6 indicates that there is superflucus computation

involved in the original procedure. We now give a modified
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procedure designed to circumvent this. This modified procedure will
also explicitly discard matrices having a column consisting entirely

of zeroes since such matrices are clearly discarded at some stage.

Modified Procedure. Suppose b(Pn) is sufficiently refined

Ji
i n . n (k) (k)
i3 = < C . >, =+ 1.
relative to sgn with b(P ) Ztk Y1 Y tk +1
k=1
Consider the associated matrices
t M (sgn §r1(Y(lk)), ..., sgn én(Yflk)m k=1,2,...,1 (1)

A signature is assigned to certain of these matrices, then the signa-
tures are added; by what has gone before this will give us
a(e", P", 0").

Let {rizliif_n}g{lp?;,,“gn} with riii ¥ i. Let

Choose from (1) all matrices t M"  whose rnth column

consists entirely of A 's. Assign a temporary signature
n ,

r +1
t An(—l) to each such matrix.

k

If any other column of the matrix is constant (i.e., all its
entries have the same value) assign the signature zero to the matrix,
i.e., discard Mn. Otherwise delete the rnth column to form an
nx (n-1) array. In the rnmlth column cof this array pick the

combination of n-1 rows having n-1 A s as entries, if such a

n-1
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combination exists (if not, discard Mn) (there will be at most one
such combination otherwise M" would have been discarded already).

Suppose the th row is the unique row with entr 0 or
PP qn—l q y

ALy Delete this row to give an (n-1) x (n-1) matrix and assign
t ignat t, A (pr s Tansl e
a temporary signature t A A o t M.

Deal with this (n-1) x (n-1) matrix just as we dealt with the
n x n situation after choosing the matrices M"  and assigning the
first temporary signature, replacing n by n-1 thoughout. Con-
tinue reducing until left witha 1 x 1 matrix. The temporary signa-

. . . n .
ture at this stage is the signature of tkM s l.e.,

+
rn+1+rn-l qn-l
A, (-1)

+... '
+r1+q1
a1 2 .

signature (t Mn)' = A

K Y 2

Finally add the signatures of the chosen M™'s.

3 3
Example. We recompute d(@3, P7,07) for the tetrahedron

example of Section IV .1. This is done for two different sets

{(rl, A (x,,8,), (rg, A3)}-

In the notation of Section IV. 1, a sufficient refinement of

b(P") 1is given by

= < >
b(P) = <ajaja >+ <ajgaaz>+ <ajaza >+ <ajazag

+ < >+ < > .
aoaza1 a3a2a0
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‘ The associated matrices are

Case (i). T, =1, AS = -1, rz,rl,AZ,Al arbitrary. Begin
by choosing those matrices whose first column consists entirely of
-1's. Since there are none, all matrices are discarded and

3 .3 3
d(¢,P ,06 ) =0.
ii). = = = 1 = = = 1.

Case (ii ry, Tr, =T, 1; A A 1, Al Choose all
matrices whose first column consists entirely of +1's; assign a

1+1

temporary signature (+1)(-1) = +1 to each, writing it in front of

the matrix:

Discard the second matrix because its third column is also constant.

Delete the first column from the remaining two matrices:
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1 -1 /—1 1

-1 1/ 1 -1

Choose the arrays whose first column contains two +1's; assign
. 1+i .

the temporary signature (+1)(+1)(-1) to each where the ith
row is the one containing the -1; delete the ith row:

1 -1 1 1

(+1) , (+1)
1 1 1 -1

Delete the first column from each matrix:

Choose the arrays whose first column contains one -1; assign the

. X 1+i .
temporary signature (+1)(-1)(-1) to each where the ith row
is the one containing the +1; delete the ith row. Since this gives
l x 1 matrices the temporary signature becomes the signature.
Thus the signatures here are +1, -1.

Finally d(§3, P3= 93)

sum of signatures

1 -1
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Remark 6. 8. In the modified procedure it is clear that the

signature of any matrix is -1, 0, or +1I.

Corollary 6.9 (to Theorem 6. 7). Let P® bz an n-region,

n>1, with & :P"—=R" continuous. Suppose that b(P") is

sufficiently refined relative to sgn 8°. Let m * la(e”, P”, 0] .

-1
Then b(P") is subdivided into at least mn 2 simplexes.

Proof. By Theorem 6.7 the modified procedure gives
4(&",P", 0") for any choice of fr,:1<i<aC {1,2,...,n}
satisfying r < i Vi, and {Ai :1 < i< nyC {11}

There are 2n possibilities for the (ordered) pair (rngAn).
Mow any matrix chosen for two distinct pairs will hrve signature zero
by the modified procedure (two columns will be constant). Conse-
quently we can assume that there is no overlap in choice; count the
minimum number of matrices needed to give ’d(Qng P, en)l = m
for a fixed pair (rn, An) then multiply this number by 2n.

Fix (rn, An). Consider the matrices M’ chosen for this
pair. Delete the rnth column from each M° to leave an
nxn-1 array. Choose T satisfying 1 < r < n-1l. Then

the matrices chosen at this stage for the pair (rn 1} must not

overlap with those chosen for the pair (r , -1} if n > 2 Dbecause

n-1
overlapping implies the existence of an n x {(n-1) array with a

column containing (n-1) +1's and (n-1) -1's. Thus the minimum
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number of matrices needed for the pair (rn,An) is at least twice

the minimum number needed for the pair 1j.

(rn“‘l’

We can apply the last argument repeatedly going from the ith
to (i-1)th stage for 1 = n,n-1,....,4,3. Each stage yields a factor

of two, so with the original factor of 2n this gives a factor

n-2 _ n-1

(2n)(2) n2

When 1 =2 is reached all that can be said is that by Remark
6.8 at least m matrices are needed. This gives the final lower

bound of mn 2n_1.

Corollary 6.10. Let P" be an n-region, n > 1, with

3" . Prl aad Rrl continuous. Suppose that b(Pn) is sufficiently

refined relative to sgn @2. If d(@n, Pn, Gn) # 0, then b(Pn) is

subdivided into at least n Zn—l simplexes.
Proof. Immediate from Corollary 6. 9.

Example. Consider once more the tetrahedron example of
-1
SectionIV.1. Here n=3 so n2 = =12. However we have a
3
sufficient refinement of b(P ) consisting of 6 2-simplexes. By

3
Corollary 6. 10 d(® ,P3,93) = 0.

Remark. The result of Corollary 6.9 can be improved for

n >6 using the Theocrem 3.6 formula
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n _n .n 1 tAn(
n k

sgn @n(y(lk)), ..., sgn @r‘(yflk))).

Hadamard's determinant theorem [4] tells us that for any determinant

n~ n/2

n
A in this sum, lA <n . Consequently under the hypotheses

of Corollary 6. 9 the above sum must contain at least m 2% nt /nn/2
terms, and for n > 6 it is easy to check that this is greater than

m n Zn_l. We conjecture that in fact the lower bound can be increased
to 2mn!. Then Corollary 6.10 would have the lower bound 2 n!.

If so, this is certainly the best possible estimate: let P" be the
cube of side 2 in R" with vertices all of whose coordinates are

+ 1. Wegive P" the standard "counterclockwise" orientation. If

@n(x) =x forall x in Pn, then it is easy to show that

d(@n,Pn, Gn) = 1. Now [7] gives a simplicial decomposition of p"
which, as can be checked, readily yields a sufficient refinement of

n n ) ) .
b(P") relativeto sgn @, and this sufficient refinement contains

2n! (n-1)-simplexes.
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