
The Design of an Object Oriented Command Interpreter Timothy A. Budd Department of Computer Science Oregon

State University Corvallis, Oregon 97331 Object oriented programming languages are noted for their ability to allow

users to quickly construct large software systems. They achieve this ability by allowing the programmer to concen-

trate on what it is they want to do, ignoring details of how that functionality is achieved. Such characteristics should

make the object oriented style of programming attractive to casual or novice computer users, indeed one of the best

known object oriented programming languages, Smalltalk, was initially designed with just such novice users in

mind. The Unix operating system is widely regarded as a good environment for doing software development. Nev-

ertheless, its large number of often terse and cryptic commands make it difficult for novice or casual users to use. In

this paper we argue that one solution is to create an object oriented command interpreter, or shell, between the user

and the underlying system. This paper reports on the construction of one such prototype shell, and the lessons we

have learned from the use of this system.keywords:Object oriented, command interpreters, C, Unix Shell.

Introduction In the area of programming languages the object oriented paradigm is recognized as an important

aid in the construction of large and complex software systems. This recognition is due to the support that the tech-

nique provides for data abstraction, generic operations, software reusability and inheritance [.budd little smalltalk.].

By delegating responsibility for behavior to individual objects, users can often ignore unnecessary details of imple-

mentation and concentrate on design decisions at a very high level. It has been recognized that these characteristics

should make object oriented programming languages attractive to novice or casual users. Indeed, the most widely

known object oriented programming language, Smalltalk, was explicitly designed with novice users, even children,

as an intended user community [.kay scientific american.]. It is our contention that similar benefits will accrue from

the use of the object oriented method at the system command level. By binding data and operations together, rather

than treating them as separate entities, the object oriented technique permits the user to concentrate on the type of

task to be performed, rather than the individual steps required to perform a task. The Unix* operating sys-

tem[.bourne.] has proven, over almost two decades, to be a flexible and robust software development environment. *

Unix is a trademark of AT&T Bell Laboratories Nevertheless, the Unix system is frequently criticized for being terse

and unfriendly to novice users. It is therefore an interesting question to consider whether object oriented techniques

might be usefully applied to develop a command interpreter for Unix that retains the power of the original system

while presenting a more user friendly visage. In this paper we first describe some of the features that we would like

an object oriented command interpreter to possess, most important that of a graphical interface. We comment on

some of the difficulties inherent in reconciling the object oriented philosophy with the imperative and functional pro-

gramming techniques conventionally found in Unix. We then describe a prototype system that we have dev eloped to

investigate some of the implications of object oriented command invocation at the shell level, and outline lessons we

have learned from experience with this prototype. We conclude by describing the various directions this research is

now taking.

Our Idealized Command Language

A Graphical Shell

The graphical, iconic, object oriented shell that we are striving to produce will look in many ways like other icon-

based systems. To many readers, the most familiar such system is the Macintosh [.inside macintosh.], although it

was certainly not the first to utilize this style of interface. More recently, the Sun workstationOrganizerhas also al-

lowed Unix directories to be displayed in iconic fashion. On the viewers screen there will be a series of overlapping

windows, some containing small pictorial images, calledicons, each icon representing an object in the users control.

With the aid of a pointing device, such as a mouse, the user can select certain objects for further processing. There

are one or more buttons on the mouse; the user points to an icon representing an object to be processed and presses a

button to select the object. The icon for the selected object is then displayed in a different form, such as reversing

the bits in the graphical image of the icon. The mouse is also used to issue commands. There are two types of com-

mands. Some commands, so calledsystemcommands, can be issued at any time. Other commands,object specific

commands, can only be issued once an object has been selected. Unlike systems such as theSun Organizer, the

range of object specific commands is determined by the type (theclass) of the selected object, and will vary from

object to object. To issue a command the user pushes a button on the mouse. A menu (either a pull down menu in

the Macintosh style, or a pop up menu in the Smalltalk style) appears; by moving the mouse to the appropriate entry

in the menu the command is selected. One important difference between the Macintosh interface and our proposed

model concerns the handling of menus. On current systems the set of items to be found on the menu is usually fixed

(such as is true on most Macintosh applications) or there may be only a small set of choices (such as separate menus

for directories, executable files and textual files). In our system the menu items are very dynamic, depending entire-

ly on the type of object selected as the receiver for the command. Suppose, for example, that the user has an object

representing a C program on the screen. To compile the object the user would point to it, then select the command

compile from a menu. The object would then compile itself. The user would not need to know the name of the

compiler that was being used, or any flags that might be necessary, only the fact that C objects possess the ability to

be compiled. In addition to specifying commands and receivers, traditional command interpreters also permit users

to specify flags which alter the interpretations of commands and arguments which may accompany a command. The

graphical equivalent of command line flags would be a Macintosh style dialog box. As we will argue in a subse-

quent section, where we present an object oriented approach to the troff typesetting system, such dialogs should be

issued infrequently, preferably once; thereafter the receiving object should remember the particular options selected,

and reuse them whenever necessary. Arguments can be easily provided for by allowing the user to select any num-

ber of objects, by pointing to successive icons in turn. The selected objects are remembered, and if an object-

specific command is issued the set of commands is determined by the first selected object (the so-calledreceiverof

the command). The remaining selected objects, after the receiver, are treated as the arguments to the command.

These arguments will be made available to the executable object chosen to implement the selected command (next

section).

Integrating Procedural and Object Oriented Techniques

Command invocation in a conventional Unix system can be viewed as issuing statements in a language possessing

characteristics of both a procedural and functional nature. Files are like variables, and commands are the operations

used to change variables. Functions (that is, programs) are called upon to create or modify the values of variables

(that is, files). In addition, by using the pipe facility, functions can be composed in order to generate new functions.

We wish to retain, as far as possible, both these imperative and functional features in the new command interpreter,

but in addition add to them the ability to specify actions in an object oriented manner. The first step in doing so is to

introduce a new type of object, called anexecutableobject. An executable object performs a single, specific task;

this corresponds to a binary executable or a shell script in the conventional Unix world. To cause the program to

perform this task, the user selects the executable, selects any arguments to accompany it, then chooses the system

messageexecuteto pass to the selected object. The execute message causes the invocation of the shell script or bina-

ry file, just as under a conventional system. The functionality provided by object specific commands is ultimately

achieved by means of executable objects. As we have noted, the range of object specific commands an object will

respond to is determined by the class (or type) of the object. For example, objects of class C, representing C pro-

grams, respond to commands to edit, compile, link, print, and so on. When such a command is issued, theclass de-

scription for the class is examined. Part of the class description is a collection of executable objects, one for each

command that the object responds to. If an executable object is found whose name matches that of the command,

the executable is started,† with the object on which it is acting upon being passed as the first argument. (Any further

arguments the user specified will follow this first argument). † We hav e rather carefully noted that theexecutemes-

sage is a system command, and thus subject to special handling. To handle theexecutemessage as a normal mes-

sage leads to an infinite regress; the system would search for a method to handle theexecutemessage, then passexe-

cuteto this method, which would cause a search for a method to handle theexecutemessage, and so on. Notice that

this scheme differs from that of the Smalltalk-80 programming language, wheremethods(the sequence of actions to

be performed in response to a command) cannot exist outside of class descriptions. By making methods be merely

executable objects, we permit a more flexible style of command invocation. Commands can be given in either an

object oriented postfix style (by selecting an object and issuing an object-specific command), or in an imperative

prefix style (by selecting an executable and providing it with arguments).

The Advantages of Object Oriented Command InvocationA major advantage of the object oriented

style of programming is that it permits users to concentrate onwhat it is they want to accomplish, and nothow it is

that this task is to be performed. Individual objects themselves are responsible for knowing the how, leaving the user

to work at a much higher level. This characteristic should make an object oriented command interpreter particularly

attractive to novice or casual users. One aspect of the fact that conventional Unix command interpreters require the

user to remember far too many details is the large number of names the user must be familiar with to make effective

use of the system. The next section will describe how the object oriented shell deals with this problem.

Relieving Name Space Congestion

The typical Unix system provides the user with an exceedingly rich set of commands. On many systems there may

be over 400 separate commands that the user can issue. Corresponding to each of these commands there must exist

a separate file that will be processed if the command is invoked. This is accomplished either by loading and running

the file if it is a binary executable or by interpreting it if it is a shell script. The user invokes a command by naming

the file in which the command information resides. Note that these files are system files, and are in addition to what-

ev er files the user may have containing data, documents or programs. Since these system files are shared between

many users, it makes little sense for them to appear in the personal directory of any individual user. Even if they

weren’t shared, there are far too many files to appear in one directory. Thus they are spread about in a number of

designated areas, or libraries. In theory the user could execute any command by prefixing the name of the directory

in which the command resides with a path specification which exactly determines the file. To do this, however, the

user would have to remember which files (commands) reside in which libraries. In order to eliminate the tedium of

having the user explicitly name the library, the Unix command interpreter provides something called asearch path; a

list of libraries that will be searched when a command is invoked. Thus the user need only type the command name,

and the system will automatically search all specified libraries until a command is found that matches the command.

The object oriented approach relieves the problem of name space congestion in an entirely different manner. To start

with, there are far fewer commands for the user to remember. Objects of different classes will respond to the same

command in different ways; for example both Pascal objects (Pascal programs) and C objects (C programs) will re-

spond to the messagecompileby compiling their source code. Different compilers will be invoked, different actions

taken, but from the users point of view only one command is necessary. When an action is specified via a message

sent to an object, an executable taken from the class description for the receiving object is initiated. The user need

not, indeed will seldom, have direct access to this method. Thus the methods need not appear on a search path, al-

though the method must, of course, be indirectly accessible through the class description. Finally, the graphical na-

ture of the interface makes it easy for users to remind themselves of the commands objects respond to, by merely

pointing to the object in question and pushing the menu button on the mouse.

Visual Shell Programming

Another technique that can be used to reduce name space congestion is a new method for shell programming. In the

traditional Unix system, executable files can be created in one of two ways; binary executable files are created by

compiling programs, or executables can be constructed by means of shell scripts. The latter facility permits a new

operation, the composition of executables to produce new executables. Under the conventional interpretation by the

Unix shell, however, this composition is performed dynamically at run time. Consider, for example, a simple shell

script named combinedProgram containing a single pipe: programOne | programTwo In order for the command to be

recognized, the file combinedProgram must be accessible to the user, that is, on the current search path. Since the

search for an executable to bind to the identifiers programOne and programTwo is performed at run time, however,

these names must also be on the users search path, even though they may never be directly invoked by the user.

(More recent Unix coding conventions have held that a shell script containing such a pipe should itself set the search

path. This mitigates this problem, although this convention is not universally adhered to, and the remaining prob-

lems to be described below still apply). In place of this, we hope to construct a tool for composing actual executa-

bles to produce new executables. In place of a textual shell file, the user would manipulate icons representing the

executable objects on a two dimensional tablet, explicitly showing the relationships (and types) between output of

one program and input to a second. Instead of manipulating names, the actual executables would be incorporated in-

to the new object, so that the end user need not have any access to the original objects. That is, we will provide an

early binding of the basic building blocks, at composition time, instead of the late run time binding currently em-

ployed in Unix shell scripts. By providing a two dimensional framework, much more flexible interconnections be-

come possible. In fact, we hope the resulting system will be flexible enough to permit programming of simple appli-

cations directly, in a manner similar to that of the Visual Interactive Programming system on the Macintosh [.vip.].

At the topmost, graphical level the notion of path does not make much sense; objects can only be selected if they can

be seen and pointed to. In a truly object oriented system all entities, including folders (directories) should be ob-

jects, and be eligible for sharing, copying, or moving. Thus, to make a new class or a new executable available to

users, the new object (the class description or the executable object) must be placed in a location from which users

can copy it into their own desktop. This might be provided by a special ‘‘systems’’ folder that can be opened by a

system command. Since by combining actual executables to form new executables, instead of combining names,

methods can be made entirely self contained, there is little reason to retain the Unix notion of path in the new sys-

tem.

Problems in Implementing Objects under Unix

The Problem With Pipes

If any feature can be said to characterize the Unix system it is the structure (or, more correctly, the lack of structure)

of files and the concept of pipes and filters. These ideas go hand in hand. Since any file can be viewed as merely a

stream of bytes, any program that can take a file as input can potentially accept any arbitrary file. Since a file pro-

duced as output by one program has the same structure as the file expected as input by another program, it makes

sense, from both a conceptual and efficiency standpoint, to connect the two programs together directly; thus, both

programs can run in parallel, one consuming bytes as the other is producing them. Pipes themselves are not at odds

with the object oriented philosophy. Indeed, the pipe bar can be interpreted as a message passed to an executable

object, which results in the creation of a new executable (as we described in the earlier section on visual program-

ming). Although there are some diffi culties in actually implementing pipes in this manner (a topic we will r eturn to

shortly), in theory there is no problem mapping pipes onto object oriented concepts. Instead, the difficulty with

pipes and redirection occurs because of the essential typelessness of Unix files. The notion of types is very weakly

defined under Unix. Clearly, we can differentiate directories from files, and we can largely differentiate executable

from readable files, although some files (shell scripts) are both readable and executable. When we try to impose any

further type information, such as a class, on a file we see that there simply is no mechanism to do so. To see this,

consider how files are created in Unix. One way would be to use a create statement in a C program, such as the fol-

lowing: fileDescriptor = creat("filename","w"); The arguments to the create statement convey no information about

the type of information to be written to the file. We could add an additional argument to the function to indicate the

class of the newly created file, but this would necessarily invalidate all existing programs that use the original form,

and force us to edit (and recompile) a large body of existing software. A second way to create a file is by redirec-

tion, as in cat >filename Again, the three symbols written here do not convey any information on the class of the re-

sulting object. This is not to say that a new syntax could not be defined that would indicate this information, but that

the existing syntax is inadequate. In short we are left with a dilemma. If we want to preserve the notions of pipes

and redirection, then we must develop mechanisms for conveying class information in programs and shell scripts.

The alternative is to disallow redirection and pipes at the command level. We chose the latter†. †. The problem of

creating files with no class information remains. We are working on various solutions to this problem, however, we

are hampered at the moment by the representation we have selected for objects. We will address this in a later sec-

tion. In a certain sense there is a virtue to be made of this necessity. The graphical, mouse-based interface we have

outlined is simple and largely intuitive. It is difficult to conceive of a protocol that could be used to supply the nec-

essary information to support standard input, standard output, and redirection that would not involve a clumsy inter-

play between mouse and keyboard. By eliminating these ideas, we retain a simple interface.

A Philosophical Difference between Unix and the Object Shell

There is an even more fundamental problem that lies at the heart of the philosophical difference between the object

oriented way of doing things and the functional approach of Unix. Classes and objects embody a very pure notion

of abstract data types; one never modifies the actual data (the local state, or memory, of an object) directly. In the

object oriented technique each object is master of its own internal state. One does notdo something to an object,

rather oneasksthe object (via messages) to do something to itself. In Dan Ingalls memorable quote [.ingalls rape.]:

‘‘Instead of a bit-grinding processor raping and plundering data structures, we have a universe of well-behaved ob-

jects that courteously ask each other to carry out their various desires.’’ The Unix technique, on the other hand, is

the antithesis of this approach. The normal Unix solution to a problem proceeds by keelhauling a file through a sea

of filters, subjecting it to the actions of a number of different, individual, separate programs in the process of produc-

ing the final result. Each of these programs wants to modify the data (the internal state of the object), directly, while

the poor object, if it can be said to exist at all, is left on the sideline, no longer in control of its destiny. Thetroff

typesetting system and its related programs are a classic example of this situation. To produce a document written in

troff form, some subset of the following programs may be required[.bourne.]: Them4 macro processor, for general

purpose macro replacement. Therefer bibliographic formatting system, or its alternativebib. Thepic picture draw-

ing program, or its alternativeideal. Thegraphgraphics drawing program. Thetbl table formatting program. The

eqn figure formatting program, or one of its variants (neqn). Finally the troff typesetting system. To obtain this

functionality in an object oriented framework there are several options that could be used. One would be for an ob-

ject of class Troff (containing, as part of its local memory, the text of the document) to, in response to a message

such ascompile, run all programs on the input text. This option is unworkable since not only are auxiliary files re-

quired for some of the tools (a bibliographic database forrefer andbib, a macro definition file form4), but some of

the tools are mutually incompatible (refer and bib, pic and ideal). Furthermore the particular programs required may

depend upon the output device on which the final result will appear (the selection ofeqnversusneqn, for example).

A second option would be to create a large set of classes, corresponding to reasonable subsets of commands. Thus

we would have the class BibEqnTblTroff, as well as the class ReferPicEqnTroff. While this reduces the number of

commands the user must recognize (each class need only implement the commandsedit, compileandprint), the user

would be forced to decide before creating a document what tools would ultimately be required to process that docu-

ment; this goes against the way users ofttimes work. Instead of creating a large number of classes, a large number of

objects (instances of class Executable) could be created, one for each tool. The user could then process a file by

passing it through each object in turn, in the same manner as is done now (but without the benefit of pipes). In fact,

the argument against this approach is that it is exactly mimicing the current way Unix works, and buys us none of

the advantages of abstraction, information hiding and data structuring provided by the object oriented technique. Yet

another option would be to create a generic Troff class, but provide it with a large number of different messages,

such asrefer, tbl, and so on. This solution, however, eliminates for us one of the main advantages of the object ori-

ented approach, namely that the user would need to remember only a small number of commands, with each object

knowing how it will respond to those commands in different ways. The best solution would seem to achieve both

flexibility and ease of use. The first time a document is compiled, a dialog box would be displayed permitting the

user to select which of the various tools are to be used and supplying any arguments which may be necessary (such

as the bibliographic database used byrefer or bib). This information would be stored as part of the state for the doc-

ument object. Thereafter, the messagecompilewould implicitly invoke the desired filters. Thus we achieve flexibil-

ity without the use of pipes and filters which, we have argued, seem difficult to integrate into the object oriented

framework.

A Prototype Object Oriented ShellIn order to gain some initial hands-on experience with the object orient-

ed paradigm and Unix, we decided to prototype a simple version of the Object Shell. At this stage our primary goals

were flexibility and rapid development. Accordingly, the initial program was written in the Bourne Shell language

[.bourne.], and was textually, rather than graphically oriented. Instead of a graphically displayed desktop, where in-

dividual objects were represented by icons, a textual description of the current objects (obtained by a simplels on a

directory) was presented to the user prior to each command. Instead of the user pointing to and selecting an object

with a mouse, the intended receiver of a message would be named in Smalltalk fashion [.Smalltalk blue.] at the be-

ginning of each message. Instead of a pop-up or pull-down menu, each command would be written following the

name of the receiver. Finally, instead of a graphically oriented dialog for entering arguments, optional arguments

would be named following the message. Thus commands to the object shell all have the following form: receiver

message [arguments] The code for this initial version of the object shell is given in the appendix. In order to show

the differences between programming using an object shell and programming using a conventional shell, we present

a small sample session using the object shell. The object shell is entered by typingoshwith no arguments. As the

shell begins, and prior to each user command, a listing of the objects in the current Folder (directory) is presented.

In this session there is initially only one object, namedclasses. % osh

classes

osh% We can determine what sort of objectclassesis by passing it the messageclass. (In the final graphical system,

of course, the class of an object would be indicated by its icon). osh% classes class Folder The objectclassesis an

instance of classFolder, a collection of other objects. We can determine the messages that instances of this class

will respond to by using the messagecommands. osh% Folder commands add contents open

We open the folder using the messageopen, and note that we now hav e a new desktop; that is, a new set of objects

we are discussing. osh% classes open

C Latex Textual

Class Folder Object ShScript

osh% Thus we see that the folderclassescontains seven objects. These represent seven classes that the system un-

derstands. (We are following the Smalltalk convention of using names beginning with uppercase letters for classes,

and names beginning with lowercase letters for other objects. This is, however, merely convention and is not en-

forced by the system). These seven classes can be described as follows: A super class of all classes, the class Object

provides simple basic functionality common to all objects. A subclass of Object, the class Textual provides the abil-

ity to deal with textual objects; that is, objects that can be edited. A subclass of Textual, the class C provides the

ability to create, compile, and link C programs. A subclass of Textual, the class Latex provides the ability to create,

compile and print documents using the Latex macros [.lamport latex.] and the Tex text formatter [.texbook.]. A sub-

class of Object, the class Class provides the ability to create and edit new class descriptions. A subclass of Object,

the class Folder provides functionality for dealing with collections of objects. A subclass of Textual, the class

ShScript provides the means to create and edit Bourne Shell scripts [.bourne.]. We can create a new object by pass-

ing the messagenewto a class. The system will prompt for the name to be used to denote the newly created object.

Let us try creating a new Latex program. osh% Latex new name of new object: doc

C Latex Textual doc

Class Folder Object ShScript Notice that a new object

nameddoc has appeared. As withclasses, we can discover the class of doc by means of the messageclass. osh%

doc class Latex Instances of class Latex are editable (by virtue of being subclasses of Textual). Passing the message

edit to doc places us in a text editor, using which we can enter a simple document: \documentstyle{article} \be-

gin{document}

This is a very simple document. \end{document} Next, we pass the messagecompileto the objectdoc. The mes-

sagecompileis interpreted by documents of this class as a directive to run the text through the Latex formatting sys-

tem [.lamport latex.]. A certain amount of output is produced by the text formatter, giving status messages and error

output and the like. Once formatted, the messageprint is used to write the formatted output to an appropriate de-

vice. Note that the receive for theprint message is the same as the receiver for thecompilemessage. Although in-

ternally there may be two forms of the document, the ‘‘source’’ form and the ‘‘compiled’’ form, from the users point

of view there is just one object. osh% doc compile [latex output]...

osh% doc print [printer status information]... Now let us try creating a C program. Once more, we use the message

newpassed to the object representing the class C. This time, instead of having the system prompt for the name of

the new object, we give it as an argument with the command. osh% C new hello As with instances of class Latex,

instances of class C can be edited (by virtue of being subclasses of class Textual). Passing the messageedit to object

helloplaces the user into a text editor, from which we can enter the classic example C program. main(){printf("hello

world !\n");} Exiting the editor, we compile the program by passing it the messagecompile. As the compilation is

successful (no errors were reported), we then pass the messagelink to object hello. As thelink step was successful,

we then have an executable program. Execution is obtained by passing the messageexecuteto the object. osh% hel-

lo compile

osh% hello link

osh% hello execute hello world !

osh% Note that some commands to the object ‘‘hello’’ may not make sense unless they hav e been preceded by other

commands. For example, theexecutemessage makes no sense unless it has been preceded by an error freecompile

andlink. There are at least three approaches that could be taken to solve this. One would be for messages which are

not appropriate to produce some type of informative error output. A second approach would be to disable such mes-

sages, such as is done on the Macintosh where currently disabled commands are displayed in gray on a menu. A

third approach would be for messages such asexecuteto automatically determine which prior messages need to be

performed first, and implicitly send them. Notice also that very general message selectors, such ascompileandedit,

are interpreted by both C programs and Latex documents, although they produce vastly different results. This is un-

like the Unix world, where the user is required to remember very different commands to produce these results. Thus

it is easier for the user to remember how to use the system, since he or she must only recognize the task to be per-

formed, not how the computer should go about doing that task. And even if the programmer should forget the com-

mands that a particular object will respond to, every object will describe itself. The programmer can use messages

such asclassandcommandsto find out more about an object. Any object that responds to the messageexecutecan

be made into a method; that is, the code that will be executed in response to a message. We can add a new command

hello to classLatex merely by giving the class access to the executable object of the command name. Thereafter, in-

stances of classLatex will respond to the messagehello. osh% Latex addMethod hello

osh% doc hello hello world ! By using different commands new classes, new commands for existing classes, new

collections (folders) can all be created within the object shell framework.

The Implementation of the Prototype Shell

The code for the prototype object oriented shell is shown in the Appendix. The program is a large, recursive bourne

shell script. As might be expected, as a consequence of the interpreted nature of shell scripts, the program is not

noted for its speed. Internally, each object is represented by a Unix directory. The current state of the object is

maintained by files in this directory. In addition, every object contains a special file, called .class, which has as con-

tents the name of the class to which the object belongs. All objects of a given class link together one copy of the

same file, thus there is little overhead associated with maintaining this information. As we will discuss in more de-

tail in the next section, a consequence of the fact that under Unix only files, and not directories, can be shared is that

objects (which are represented as directories) cannot appear in more than one place. (In theory, symbolic links are

supposed to be permitted between directories under Berkeley 4.3 Unix. We hav e, howev er, found a surprisingly

large number of implementations which fail to allow this, or do it incorrectly). Thus, each object in the system can

only name its class; it can not itself maintain a pointer to its class. Thus to discover the object representing the class

of another object the object shell must not only print out the value of .class, but must search (using the utilityfind)

for the class object so named. In response to a message, an object can do one of two things. It can either: Print a

string value, usually via ‘‘Echo’’. For example, every class description will produce the class name in response to

the messageclassin this manner. Perform some sequence of actions, including recursively calling the object shell.

For reasons that we have just noted, an object cannot return another object; although it can return the name of anoth-

er object. An analysis of how the messageedit is handled by instances of class C will ill ustrate the interaction be-

tween these two types of commands. The commandedit is not handled by the C class, but is instead inherited from

the class Textual. When the object shell attempts to pass the messageedit to an instance of class C, the test to see if

the message is understood (produced by examining the directory associated with the class object, to see if there is

any entry with the message name) fails. A test is then made to see if the class has a superclass, indicated by the

presence of a file .superClass in the class directory. In the case of C it does, and thus we next examine the object as-

sociated with the class Textual. This time the method is found in class Textual. In object shell terms this is indicat-

ed by the presence of an object callededit in the data associated with the class object Textual. Since data associated

with objects is maintained in Unix directories, we can use the Unix subdirectory notation to denote the object associ-

ated with this method. If we were to examine this object we could discover that it is an instance of class ShScript, a

shell script. osh% Textual/edit class ShScript In Unix terms what this means is that there is a subdirectory ofTe xtual

callededit, and in the subdirectory edit there is a shell script, found in a file calledexecutable. The shell script looks

as follows: : edit the current object, but first find the right name vi ‘osh $* editName‘ In order to execute this code

the object shell is recursively called, passing the messageeditNameto the receiver of the original message. The

search for a method matching this message starts once more with the class of the object, namely C. A method is

found there, which looks as follows: : return the file in which the text is found echo $*/text.c Following bourne shell

conventions [.bourne unix.] the file name will be captured by the command given between quote marks in the shell

script foredit, shown above. The editor ‘‘vi’’ will then be invoked on this file. Since different classes can override

the methodeditNamein different fashions, in this manner the various subclasses of Textual can have independent

conventions for naming their files (they must, since different processes have different conventions) but still use the

same code in response to the messageedit. For example the class Latex returns a name ending in the suffix ‘‘.tex’’

in response to the messageeditName. The class Textual itself provides a method for this message, echoing the string

‘‘text’’. Thus unless overridden by a subclass, this will be the name of the text file. Objects can be moved. For ex-

ample, to become a method in a class an object is merely moved into the directory for the class. Similarly objects

can be moved into and out of folders. However, as we hav e already noted, the fact that links cannot be made to di-

rectories means that objects cannot be shared.

Problems with the Object Shell ApproachEven using the simple object oriented shell provided by our

initial prototype, there are certain problems that can be identified in integrating the object oriented approach and

Unix. As these problems would even apply to our envisioned graphical shell, they are worth noting. The most sig-

nificant problem is caused by the necessity to impose the object oriented method on top of the existing Unix system.

The notion of object is not part of the Unix basic vocabulary, and thus we must structure objects in terms of more

primitive datatypes. In our case, we chose to represent an object by a directory containing a method file. While this

permitted us to use the rich set of existing Unix tools in implementing the Object Shell, it prevented us from making

objects into true first class entities. Since it is not possible to create or move unnamed directories under Unix, it is

not possible for a method to return an object as the result of a message request. It can create a new object and return

its name as a string, but that is not the same thing. Until we have devised some method for allowing objects to re-

turn other objects, progress on implementing the visual shell programming idea is effectively stymied. Finally, we

note that the method bodies are interpreted in the raw Unix world, and not (unless the object shell is specifically in-

voked) in the Object Shell world. Thus creation of method bodies requires a mastery of both paradigms. We view

this state of affairs as not entirely and necessarily bad. Unix has proved itself to be a superior software development

environment; as evidenced by the prototype object shell itself, it possesses a powerful and flexible set of tools that

permit new software to be easily and quickly constructed. The Unix system has not, however, been noted as an es-

pecially user friendly system, particularly to novice users. The object shell, on the other hand, provides a simple to

use and easy to understand gloss over the bare Unix system, and thus permits novice users to more easily use the

computer to solve their particular problems. We envision the development of a multilevel system. Casual or novice

users could solve their problems entirely in the Object Shell world, never needing know the subtle intricacies of the

Unix system. Application developers, on the other hand, would live with one foot in both worlds; using the raw

Unix system to create new applications, which would then be incorporated into new or existing object methods. Be-

tween these two extremes would be those individuals designing object classes; they would have to know how to use

Unix applications and processes, but not necessarily how to construct them.

The Next StepThere are three obvious directions for continuing in the development of a true object oriented

shell, and we are progressing on all three fronts. Recoding the prototype object shell in C, instead of Bourne shell,

could result in a considerable speed improvement. This improvement in speed would be due not only to the differ-

ences between a compiled and an interpreted language, but because a C program would probably implement more

features (such as method lookup) directly instead of using existing tools. The graphical presentation of the contents

of folders, and the selection of messages using the mouse, is largely just a practical shorthand for transmitting the in-

formation to the object shell. Nevertheless, from the user’s point of view it is an important shorthand. The difficulty

here is that bitmapped graphics and mice are not standardized under Unix, and thus the resulting program will be

very device dependent. However, we will only be able to evaluate how well users like a graphical interface for Unix

when we have an actual working system. We need to extend the range of applications that can be used under the ob-

ject shell to include such commonplace Unix tools as the mail system, electronic bulletin boards, database systems,

and other computer languages. Finally, there is clearly a limit to how far we can go in making a completely object

oriented system if we are constrained to working on top of the existing Unix framework. This is most easily seen by

considering the difficulty we have in implementing sharing or copying of objects, given our implementation tech-

nique of implementing objects by means of directories. A longer range project envisions the development of a com-

pletely new operating system, in which objects are the basic building blocks of all operations. The development of

such a system would be a massive project, both in size and resources. Before undertaking such a task, there are im-

portant lessons that can and should be learned from much more limited experiments, such as the one described in

this paper.

ConclusionsWe hav e described what we think an object oriented shell for Unix should look like. As a first small

step in the development of that tool, we have dev eloped a prototype simple object shell, using the Bourne shell lan-

guage. Experience with this prototype has convinced us of the usefulness of the approach, but has also pointed out

some fundamental conflicts between the object oriented approach and the Unix philosophy. It is clear that a true ob-

ject oriented shell can be constructed, and we are continuing work in that direction. What is less clear is how similar

to Unix users will perceive the resulting system to be. Acknowledgements Paula Hannan suggested the dialog box

solution to the troff dilemma. Several useful and important changes to an earlier draft of this paper were suggested

by the referees.

References

Appendix

Source code for the Object Shell

: prototype object shell

: written by tim budd 12/86

:

export receiver

osprompt="%osh"

: examine the command

if test 0 -eq $#

then

: no arguments, go into loop accepting commands

ls

echo -n ${osprompt} ""

while read cmd

do

if test -n "${cmd}"

then

: if there is a command, recursively do it

osh ${cmd}

fi

echo

ls

echo -n ${osprompt} ""

done

: finish off last line

echo

else

: grab receiver for message

receiver=$1

shift

: grab message, give error if not there

if test 0 -eq $#

then

echo missing message 1>&2

exit 0

fi

msg=$1

shift

: method is taken from class of receiver

if test ! -r "${receiver}/.class"

then

echo ${receiver} is not an object

exit 0

fi

className=‘cat ${receiver}/.class‘

while test -n "${className}"

do

class=‘find . -name ${className} -print‘

if test -d ${class}/${msg}

then

: we found it, see if it is executable

if test -r ${class}/${msg}/execute

then

: do it

${class}/${msg}/execute ${receiver} $*

else

echo method for ${msg} is not an executable

fi

exit 0

elif test -r ${class}/.superClass

then

className=‘cat ${class}/.superClass‘

else

: exit loop

className=

fi

done

echo ${receiver} does not respond to ${msg}

exit 0

fi

