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The forest alpine tundra ecotone (FTE, also knosvalgine treeline or subalpine
parkland), is a conspicuous feature of mountaiddaapes throughout the world. Climate
change-driven increases in temperature are beli@veabsult in FTE movement and tree
invasion of subalpine meadows, which have beenmeated throughout the Northern
Hemisphere across a wide range of geographic egtclimatic regimes, forest types, land
use histories, and disturbance regimes. Climadtew=TE movement may have humerous
ecological effects such as: positive temperatuedifacks, increased net primary productivity
and carbon storage, and declines of plant populatmd species. The magnitude of these
ecological effects is highly uncertain, but will laegely determined by the rates and spatial
extent of FTE movement and meadow invasion. FTEement and meadow invasion are
often considered at global or regional spatialescat relation to climate, yet they are
fundamentally driven by tree regeneration procetggsare influenced by a variety of
climatic and biophysical factors at micro site,dacape, and regional scales. Much of the
research on the FTE has not taken a landscapeambypirccorporating multi-scale processes.
For example, species distribution models usedagept climate change effects on future
species distributions and plant biodiversity in m@ainous landscapes rely on species
distribution data that is often sparse and incoiepeross FTE landscapes.

This dissertation attempts to overcome many ofithigations in FTE research by
taking a landscape approach to develop a greatirstanding of past spatiotemporal patterns
of tree invasion, current spatial patterns of vatjeh composition and structure, and potential
future patterns of climate-driven tree invasionthia FTE. The setting for this research is
Jefferson Park, a 260 ha subalpine parkland lapésicethe Oregon High Cascades, USA.



This study uses field plots, remotely sensed imggarborne Light Detection and Ranging
(LiDAR), and simulation modeling to: 1) predictiyahap current fine-scale species
distributions, vegetation structure, and tree aggseconstruct patterns of tree invasion over
the last fifty years in subalpine meadows in relatio climatic conditions, landforms,
microtopography, and seed dispersal limitationsd; 2ndevelop a statistical model that
projects future patterns of tree invasion into §pibe meadows under different climate
scenarios in Jefferson Park.

In chapter two, | generated fine-scale spatiallgtex predictions of current
vegetation composition, structure, and tree agésadefferson Park study area. Objectives
of this chapter were threefold: 1) to charactespatial patterns of tree ages, vegetation
composition, and vegetation structure in a FTE daage in the Oregon Cascades using
predictive mapping; 2) determine how vegetation position and structure were associated
with gradients of environmental factors derivedrrmultispectral satellite imagery and Light
Detection and Ranging (LIDAR) data; and 3) detemmfrpredictive mapping
characterizations of tree age, vegetation compositind vegetation structure were improved
by the inclusion of LIDAR data. Predictive mappiofgvegetation attributes was
accomplished using gradient analysis with neareigihtbor imputation; integrating field plots,
multispectral SPOT 5 satellite imagery, and LiDA®Ral Vegetation composition was best
described by SPOT 5 imagery and LiDAR-derived toppgy, while vegetation structure was
best described by LiDAR-derived vegetation heigitsedictions of species occurrence were
most accurate for tree species, moderate for d$pabies and vegetation groups, and highly
variable for graminoid species. Tree age, which tha most accurately predicted vegetation
structure variable, indicates the study area wagha un-forested in 1600, gradually invaded
by trees from 1600 to the 1920’s, and rapidly irechffom the 1920’s to 1980. Predictive
mapping of vegetation structure variables suchaasllarea and stand density were subject to
large amounts of error, possibly resulting fromeaacompatibilities between vegetation
patterns and plot size, and/or heterogeneous Fids¢apes where forest structure does not
develop along consistent trajectories with starel athis study suggests integrating
multispectral satellite imagery, LIDAR data, aneldi plots can accurately predict fine-scale
spatial characterizations of species distributimd tree invasion in the FTE. This study also
indicates that sample design can influence spaaitiérns of model uncertainty, which needs
to be considered if predictive mapping of vegetatiad sensitive ecosystems is a component

of inventory and monitoring programs.



In chapter three, | focused on quantifying spatigteral patterns of subalpine
parkland tree invasion in Jefferson Park over @m five decades in relation multi-scale
climatic and biophysical controls. LiDAR data piaed previously unavailable fine-scale
spatial characterizations of microtopography angetation structure. | utilized LiDAR, geo-
referenced field plots, and tree establishmentnstroctions to quantify spatiotemporal
patterns of tree invasion in relation to late seastww persistence, landform types, fine-scale
topographic variability, distances from potentieéd sources, and climate variation within
130 ha of the subalpine parkland landscape of i3effiePark. Tree occurrence (i.e. tree
presence in 2 m plots and grid cells) occurred 1% of study area meadows in 1950 and
increased to 34.7% in 2007. Landform types aner{fstale patterns of topography and
vegetation structure influenced summer snow depitich influenced temporal and spatial
patterns of tree establishment. Tree invasiorsnagre higher on debris flow landforms,
which had lower summer snow depth than glacialflaimas, suggesting potentially rapid
treeline responses to disturbance events. Tresiow rates were strongly associated with
reduced annual snow fall on glacial landforms,rmtton debris flows. Tree establishment
was spatially constrained to micro sites with higpographic positions and close proximity to
overstory canopy, site conditions associated waith summer snow depth. Seed source
limitations placed an additional species-specifiat@l constraint on where trees invaded
meadows. Climate and topography had an interaeffeet, with trees establishing on higher
topographic positions during both high snow/low pemature and low snow/high temperature
periods, but had greater than expected establighondower topographic positions during
low snow/high temperature periods. Within the eahbf larger landform types, topography
and proximity to overstory trees constrained whieges established in the meadows, even
during climate periods with higher temperatures lamger snowfall. Results of this study
suggest large scale climate-driven models of véigetahange may overestimate treeline
movement and meadow invasion, because they dacoouat for biophysical controls
limiting tree establishment at multiple spatiallssa

In chapter four, | used field data and analysesfcbapter 3 to parameterize a
spatially and temporally explicit statistical moadélfine-scale tree invasion within 130 ha of
the Jefferson Park study area. The model incotpdtaoth the climatic and biophysical
controls found in chapter 3 to influence tree invas The model was used in two ways: (1) to
spatially project patterns of tree invasion frons@%o 2007 in response to historical climate;

and (2) to project future tree invasion of the gtatea from 2007 to 2064 under six different



annual snowfall scenarios. Modeling addressedaileving questions: (1) Can fine-scale (2
m pixel size) patterns of historical tree invasi@naccurately predicted? (2) How sensitive is
future tree invasion (and therefore meadow persigfeto different future snowfall scenarios?
(3) Are non-climatic factors such as landforms hiatic interactions associated with different
spatial patterns of tree invasion? From 1950 @/28imulated historical meadow area
declined from 82% to 65% of the study area. Madgputs of historical area, spatial
distributions, and spatial clustering of tree ineaggenerally agreed with independent
validation, and suggest biotic interactions dugdong tree establishment facilitation are
important on glacial landforms but not debris flov&&imulations of future scenarios indicated
meadow declined to 36 to 43% of the study areali2 Projected meadow area declined
with reduced annual snow fall, but not under prgkxhhigh and low snow fall periods.
Meadows persisted under all future scenarios i 20tis model suggests subalpine
meadows may significantly decline under climatemiag, but will still persist in 2064.

Micro sites and recruitment limitation may be edyal more important factors than climate
change in influencing subalpine landscape changgesting local high-elevation persistence

of subalpine meadows under future climate warming.



©Copyright by Harold S. J. Zald
March 9, 2010

All Rights Reserved



Patterns of Tree Establishment and Vegetation Csitipn in Relation to Climate and

Topography of a Subalpine Meadow Landscape, JefidPairk, Oregon, USA

by

Harold S. J. Zald

A DISSERTATION
submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented March 9, 2010

Commencement June 2010



Doctor of Philosophylissertation of Harold S. J. Zghlesented on March 9, 2010

APPROVED:

Major Professor, representing Forest Science

Head of the Department of Forest Ecosystems anigt$oc

Dean of the Graduate School

I understand that my dissertation will become péthe permanent collection of Oregon State
University libraries. My signature below authogzelease of my dissertation to any reader

upon request.

Harold S. J. Zald, Author



ACKNOWLEDGEMENTS

Primary funding for this research was providedhsy WSDA Forest Service, Pacific
Northwest Research Station, Forest Inventory aralysis Program. Additional funding
came from the USDA Forest Service, Pacific NorthviRessearch Station; the Leighton Ho
Memorial Field Botany Award from the Oregon NatRiant Society; the Dorothy D. Hoener
Memorial Fellowship from the College of Forestrgdahe Richard and Doris Waring Forest
Science Student Travel Award. Tuition support wavided by the Department of Forest
Ecosystems and Society, Oregon State Universigcess to the Jefferson Park study area
was provided by the Willamette National Forest,rbielRanger District.

Many people made this research possible. Tom Spigsnajor professor, provided
positive criticism, enthusiasm, and support whichlded this project to succeed. | also thank
Tom for providing a long enough rope for me to explnew research avenues and ideas, but
not long enough to hang myself with. | thank mynoaittee members, Andy Gray, Bruce
McCune, Michael Wing, and Arthur Sleight. Andy dess special thanks, in many ways
serving as an unofficial co-major professor, aniddpéenstrumental in obtaining the primary
funding support for this project. Andy and DenmdrGatziolis of the USDA Forest Service
procured and provided access to LIDAR data forJgféerson Park study area, which
improved my research immeasurably. Field work \@awdt have been possible without Dan
Irvine and Alex Gonsiewski, whose hard work and bumere greatly appreciated. Keith
Olsen, Matt Gregory, Jonathan Thompson, and Rétesrhedy provided excellent advice
regarding GIS and remote sensing. Emile GrossmdriNeck Som deserve thanks for my
indoctrination into the R computing language. MelauHuso provided invaluable statistical
advice, and Rob Pabst was always willing to beumdimg board for concepts and analytical
approaches. Barb Lachenbruch, John Bailey, FrehSen, and Julia Jones graciously
provided lab space and funding for tree-ring analgguipment. For their advice, support,
and friendship | am grateful to: Alan Tepley, CéaRhilips, Steve Voelker, Matt Hurteau,
Garrett Meigs, Chris Dunn, Rebecca Kennedy, Jahetddn, Lisa Ganio, and Barb Bond. |
also wish to thank the College of Forestry Commutielpdesk, and the excellent faculty,
staff, and students of the College of ForestrythedDepartment of Forest Ecosystems and

Society.



At one point in my life going to college, let alooempleting a doctorate, would have
invoked a good laugh or open jawed stare of dighelithank my parents Joan and Mayer
Zald for their many years of support to make thisgible, even when their support was
unwarranted. Last but not least | thank Erin Theomp During the last four years Erin has
provided constant support, encouragement, andateder Most importantly, Erin has always

reminded me of the excellent a life | have outsifi&lissertation world”.



CONTRIBUTION OF AUTHORS

Harold Zald was primarily responsible for all asjseuf this dissertation. Tom Spies
assisted with the study design and writing of chep2-4. Demetrios Gatziolis and Andrew
Gray provided airborne Light Detection and Randin@AR) data used in chapters 2-4.
Emily Grossman provided computer code used in aaddysis of chapter 2. Manuela Huso

assisted with the study design and data analysibayter 3.



TABLE OF CONTENTS

CHAPTER 1: INTRODUGCTION ....ccctttiiieeteeesesmmmmmr e eeeeeeeeeeeeeseeessessssssssssssssnnssnsnnneeesseeeeeeees 1

CHAPTER 2: INTEGRATING LIDAR, SATELLITE IMAGERY, AND FOREST
INVENTORY DATA TO SPATIALLY CHARACTERIZE TREE INVASON,
VEGETATION COMPOSITION, AND VEGETATION STRUCTURE IM SUBALPINE

MEADOW LANDSCAPE, OREGON CASCADES, USA. ... ..o 7
AB S T R A T i 7
INTRODUCTION .ottt immmm e e e 8
METHODS ...ttt e e nnes 11
RE SU LT S e 20
DISCUSSION ...ttt e s s e s e e e e e e e e aaes 22
LITERATURE CITIED .....coiiiiiiiiieiii et e e e 31

CHAPTER 3: SEEDLING ESTABLISHMENT IN A SUBALPINE PRKLAND
LANDSCAPE CONTROLLED BY INTERACTIONS OF TOPOGRAPHSBEED SOURCE,

DISTURBANCE AND CLIMATE, OREGON CASCADES, USA. it 59
AB S T R A T 59
LA I 0L L I ] N R 60
METHODS ... e 62
RE SU LT S .. e e 73
DISCUSSION .ottt e e e e e e e e e e e 77
LITERATURE CITIED .....coiiiiiiiiie s mmm et e e 87

CHAPTER 4: MODELING TREE INVASION OF A SUBALPINE MEDOW

LANDSCAPE, OREGON CASCADES, USA. ..., 109
AB ST ACT e e 109
INTRODUCTION .ottt emmmm e nr e e e 110
METHODS ... e rn e 112
RE SU LT S . e s 122
DISCUSSION ...ttt e e e s e e e e 125
LITERATURE CITED ...eiiiiiiiiiiiiiiiiiiii s 132

CHAPTER 5: CONCLUSION ... en e 151

BIBLIOGRAPHY ...ttt 157

APPENDIX A. VEGETATION GROUP CLASSIFICATION ....ccciiiiiiiiiiiiiiiceeeees 177



LIST OF FIGURES

Figure Page
2.1. The study area location within the Stat©EgoN.........cccooeiiiiiiiiii e, 48
2.2. Biplots and ordinations showing associatioetsveen vegetation and explanatory
variables from canonical correspondence analySBAJC ..........coovvvvveveeeieenvrnniinnnnnnnd 94
2.3. Predicted versus observed proportions ostidy by overstory species, understory
species, and vegetation grOUPS. . ....... eeuurerremueueeiiieei e aae e e e eeeeneennnennnes 50
2.4. Predicted occurrence of selected speci@sléshin green). ........ccoocoeeeeiiiiieisimeene. 51
2.5. GNN predictions of vegetation groups (topd atand initiation age (bottom). ........... 52
2.6. The predicted versus observed proportion of theystwmea occupied by (a) oldest tree
age, and (b) mean tree age in relation to long téonthern Hemisphere temperature
Proxy reconstruction anOMAlIES (C)..... ... ummmmmreeeerererrreerrerrrrssresnrrsrrrnrrerrerenreereee. 53
2.7. Nearest-neighbor distances for the (a) caitipa model and (b) structure model. ...... 54
2.8. Comparison of predictions to plot observadiof vegetation structure variables on
LI o =1 o I o] (o) 55
2.9. Comparison of (a) tree height, (b) starmubsdg, (c) basal area, and (d) quadratic mean
diameter (QMD) in relation to years since stantation...............ccoccceeeiiiiiiieene 56
2.10. Photo within the Jefferson Park study areavstg fine-scale patterns of vegetation
[0 | (011 | o T PRSP 57
2.11. Species-area curve (solid black line) usexbsess sample adequacy based of repeated
subsampling of 98 plots and 57 SPECIES. ....uuiiiiiiiiieee s 58
3.1, Study area loCation ..............ooi e 102
3.2. Regional snow fall and temperature fromdebkclimate stations during the 1951 to
2008 tIME PEIIOM. ....eeeiiieeeiieiiittee et e e e e e e r e e e e e e s s smnnee e e e e e e nnneees 103
3.3. Constrained stratified random sampling design steps............ccccccvvvvvvvvieeveeenenen. 104
3.4. Count of trees less than 8 m tall on gla@nbnd debris flow (b) landforms. .......... 051
3.5. Pearson correlation coefficients between rateg@bscupancy and climate
VaNADIES ... 106
3.6. Modeled relationships between snow depthratopographic variables, and distance to
overstory canopy by [andform type ...... ..o 107
3.7. Conceptual model of interactions betweemate and biophysicalcontrols of recent tree

establishment in the meadows at Jefferson Park.........cooovvieiieiiieiiiieeeieeeeves 108



LIST OF FIGURES (CONTINUED)

Figure Page
4.1. Model concCeptual diagram. . ........... o e e eeeeisinrieeeeeee e e e s eeessssreereeeeeee s e 143
4.2. Spatial probability of tree invasion (Pgabderived from nonparameteric multiplicative
regression (NPMR). ...t 144
4.3. Linear regressions of the probability obéishment (Prokyy in relation to maximum
annual snowfall for glacial and debris flow lanaf. ... 145
4.4. Median (solid lines) and 95 percent confadeanvelopes (dotted lines) for the six snow
1] 0= 10 L P PPRUTT PP 146
4.5. Error maps of study area predicted treesiovafrom 1950 — 1983............ccccuneee. 147
4.6. Spatial point patterns of LIDAR observed deld (without young tree facilitation), and
model2 (with young tree facilitation) tree invasioplandform. ...........ccccccovveevveee. 148
4.7. Notched box plots for the percent of thelgtarea remaining as meadow separated by
landform (panels left to right) at three times dgrthe model (panels top to bottom) in
relation to SNOWFall SCENANIOS. .......uuiiiiiiiiiiiiieeee e 149
4.8. Maps of the'sand 9%' percentile iterations of simulated meadow invagiom 1950 to

2064 e ———————— s 150



LIST OF TABLES

Table Page
2.1. Tree, shrub, forb, and graminoid speciesrtiad on plots, their species codes, and
L1CET0 [V T= o3 PP 42
2.2. Mapped explanatory variables used in thdigrd nearest neighbor method. ............... 43
2.3. Explanatory variable subsets used in cambon@respondence analysis of species
composition and vegetation StrUCTUIE. ..........oovuviiiiiiieee e sneneee e 44
2.4. Amount of variation in response data desctifproportion of total inertia), and number
of explanatory variables selected, by subsets plaeatory variables in stepwise
canonical correspondence analysis of species catigmoand vegetation structure. ... 45
2.5. Descriptive statistics comparing observed @8 plots) and predicted vegetation
SITUCTIUNE AttrDULES ... .ot 46
2.6. Plot-level overall classification accurakgppa statistic (K) and assympotic errors of
kappa for GNN mapped species prediCtionsS. ....ccccceeeeeeeeeieeeie, 47
3.1. Biophysical characteristics of landformsdzhen field plots and LiDAR
NIEASUIEIMIEIIES. L.ttt bbbt bbb 97
3.2. Selected, supported, and null models ofdleedance by species and landform type in
relationship to biophysical explanatory variables..............ccccccoeeeeee. 98
3.3. Fixed effects of explanatory variables i@ tiest empirically supported modets € 0)
of tree abundance by species and landform typ@..................cc.ccce, 99
3.4. Mean (with 95% confidence intervals) of tgmphic position (TOPO) and elevation
(ELEV) on micro sites where mountain hemlock trestablished during periods of high
snowfall with low temperature (HSLT), and low sna/fvith high temperatures
(ST o I I TN (=0 L0 LT TP 100
3.5. Observed versus expected tree establighdantain hemlock by landform and

establishment type, on micro sites with high awdtopographic positions and
elevations during high snow low temperature (HSamgl low snow high temperature
(LSHT) Climate PeriOAS. ... ..o 101



Table
4.1.

4.2.

4.3.

4.4,

4.5,

LIST OF TABLES (CONTINUED)

Page

Codes and descriptions of biophysical vdembelected in nonparametric multiplicative
regression (NPMR) models used to generate probabfltree occupancy (Prgh)
[0 10 PP PP PPPPPRPP 138

Monte carlo test p value, Log likelihoodadt.ogB), and sensitivity analysis results for
nonparametric multiplicative regressions (NPMRJrafuntain hemlock presence in
relation to mapping explanatory variables. ... 139

Snowfall scenarios used in models, and tiespective annual means, percent
differences from historical means, and standardatiens. ...........cccccoevvvveveivneennnn. 401

Percentages of the study area occupieceby (vegetation greater than 8 m tall
excluded), by data type, and Year. ... 141

Omission and commission error, overall aacyiand kappa statistics for model 1
(without young tree facilitation) and model 2(witbung tree facilitation) by landform.
Model predictions were compared to field plots aber 1950 — 2007 time period..... 142



Patter ns of Tree Establishment and Vegetation Composition in Relation to
Climate and Topography of a Subalpine Meadow L andscape, Jeffer son Park,
Oregon, USA

CHAPTER 1. INTRODUCTION

The boundary between forests and alpine/arctictatige (referred to as treeline,
subalpine parklands, or the forest-tundra ecotBl&), is a conspicuous feature of mountain
and high latitude landscapes throughout the woflde FTEs and alpine areas above them are
globally popular areas for outdoor recreation. Bhandary between forests and tundra is
also of ecological significance; alpine areas atad at almost all latitudes and have high
overall species diversity, yet alpine vegetatioly @omprises about three percent of global
terrestrial surface area (Troll 1961, Kérner 1998iner and Spehn 2002). FTE positions are
associated with thermal deficiencies limiting plgmwth (Kérner 1998, Jobbagy and Jackson
2000), and FTE movement may be a sensitive ecosystgponse to climate change (Neilson
1993, Grace et al. 2002). Varying degrees of diatltiven FTE movement have been
documented across a wide range of climatic regifoesst types, and land use histories
(Harsch et al. 2009). In the future, climate chaisgprojected to be most pronounced in
mountain and high latitude regions (Beniston e1887, Liu and Chen 2000, Christensen, et
al. 2007), suggesting increased FTE movement arasion of alpine vegetation in the future.
Climate-driven FTE movement may have numerous gicdbeffects including: temperature
feedbacks resulting from altered surface energgrizals (Bonan et al. 1992, Beringer et al.
2005), changes in ecosystem carbon storage (Pdiehal. 2000, Wilmking et al. 2006), and
the loss of alpine biodiversity (Dirnbock et al02) Halloy and Mark 2003). The magnitude
of ecological effects resulting from FTE movemeiit largely be determined by the spatial
extent and temporal rates of FTE movement.

FTE research has a long history in North Amerioay$ing on detecting evidence of
FTE movement in response to climate, and describlizugt communities in relation to
environmental gradients (Griggs 1934, Brink 195@nklin et al. 1971, Douglas 1972, Lloyd
and Graumlich 1997). However, our understandingjiofate-driven FTE movement across
landscapes is surprisingly limited. FTE reseam$ focused on pattern detection, but has
tended to not estimate populations (in this conitexi loosely defining population estimation

to include land cover extent and land cover changék choice of pattern detection versus



population estimates is important, because it gtyoinfluences sampling design, statistical
analysis, and scope of inference (Kenkel et al9198ecause of well recognized global
relationships between FTE position and climate fier 1955, Kérner 1998, Jobbagy and
Jackson 2000, Harsch et al. 2009) pattern detebtisrbeen the norm in FTE research. The
lack of focus on population estimates in FTE resedias resulted in a poor understanding of
how FTE movement, and vegetation composition anattire are distributed across
landscapes, both currently, and over time. Thetiue of pattern detection versus population
or landscape level estimates is ubiquitous in epolbut may be especially problematic in
FTE research. FTE positions may have global expians, but FTE positions and sensitivity
to climate can be dependent on numerous non-ctirbaiphysical factors (i.e. topography,
seed sources, disturbance, etc.) important at pleibpatial scales, making it difficult to
generalize and downscale FTE movement and asst@atdogical effects in response to
climate change (Miller and Halpern 1998, Danield ¥eblen 2004, Holtmeier and Broll
2005).

Another significant limitation to understanding pairrent, and potential future
changes in FTE vegetation composition and strudsuttee lack of field data. Vegetation data
in the FTE is often sparse and incomplete duertdeusampling of the small FTE land area;
sampling that does not address fine-scale pattdrR$E vegetation in relation to steep
environment gradients; subjective sampling in fefato a limited number of environmental
gradients perceived as most important; and thearabtogistic difficulties in sampling often
remote FTE landscapes. The scarcity and incommeteof vegetation composition and
structure data is important because historical gbain plant biodiversity and species
distributions in the FTE and alpine tundra aredgly quantified using long-term time series
of field plots (Cannone et al. 2007, Pauli et 802), while potential future changes are
typically based on species distribution models tht on bioclimatic envelope approaches
(Thuiller et al. 2005). Without a more completetpre of species composition and structure
across landscapes, documented changes over tibeited to climate change may not be
representative of larger areas and regions, basedference conditions for inventory and
monitoring may not be representative landscapese \pbtential future changes in species
distributions may be based on inaccurate or oveigfied characterizations of current species
habitat.



This dissertation attempts to overcome many obthe/e mentioned limitations in
FTE research by taking a landscape approach tdageseyreater understanding of past
spatiotemporal patterns of tree invasion, currpatial patterns of vegetation composition and
structure, and potential future patterns of clindiigen tree invasion. The setting for this
research is Jefferson Park, an approximately 2&ubalpine parkland landscape in the
Oregon High Cascades, USA. This dissertation fesas three different temporal
components of FTE movement: (1) quantifying longriécenturies) and short-term (decades)
histories of tree establishment; (2) spatially eleggrizing current tree and non-tree species
distributions; (3) and spatially projecting potahfuture tree invasion over the next five
decades, which also serves as a proxy for potdntizle non-tree meadow habitat. Within
these three time periods of investigation, theectlaree general themes in this dissertation
which emerge in different but interconnected way€hapters 2-4. The first theme is to
integrate pattern detection and landscape estimapproaches of ecological inquiry, to
determine if tree invasion is occurring within gealpine meadows of Jefferson Park, while
also quantifying temporal rates and spatial exbéttee invasion across the Jefferson Park
Landscape. The second theme is how climatic anechimatic factors have interacted to
shape patterns of tree invasion over time (e.g. have climate and biophysical features in
the landscape influenced FTE movement, do theserfaoperate at different spatial scales
and in are they a function of landscape context,faow they may interactively control tree
invasion). The third theme is the incorporatiorad¥anced remote sensing tools to improve
our understanding of past, current, and future Byitamics. Historically, FTE research has
been based exclusively on field data collectiorreanote sensing data such as aerial
photographs or satellite imagery. New technologiggh as Light Detection and Ranging
(LIDAR) can generate synoptic characterizationtopbgraphy and vegetation structure at
unprecedented data resolutions (Lefsky et al. 208@)wever, | do not just use a new
technology such as LIiDAR to view the FTE from ahovealso use LiDAR to formulate
research questions and sampling methodologiesnibioe pattern detection and population
estimate driven avenues of scientific inquiry, whalso integrating LIDAR with field data
collection and other remote sensing data typegteigte more detail landscape based

characterizations of past, current, and potenti@iré FTE dynamics.



Chapter 2 had three objectives: (1) characteriabapatterns of tree ages,
vegetation composition, and vegetation structuig HTE landscape in the Oregon Cascades;
(2) determine how vegetation composition and stmactvere associated with gradients of
environmental factors derived from multispectrakiie imagery and LIDAR data; and (3)
determine if predictive mapping characterizatiohsBee age, vegetation composition, and
vegetation structure were improved by the inclugibhiDAR data. If successful, this
approach would make it possible to characterizetzampn composition and retrospective tree
invasion at fine scales; create new monitoringguols, and establish reference conditions
distributions in patchy FTE landscapes. Curregetaion composition, structure, and tree
ages were spatially characterized (predictively peal) by integrating vegetation
composition, structure, and tree age data colléat@@06 and 2007 on 98 circular plots (7.32
m radius) located in a randomized clustered designtopographic and vegetation indices
derived from Light Detection and Ranging (LIDARhAASPOT 5 HRG multispectral satellite
imagery. Predictive mapping of vegetation compasijtstructure, and tree ages was
accomplished using the gradient nearest neighktbrimiputation approach (Ohmann and
Gregory 2002); field vegetation data was relatesh&pped explanatory variables using
gradient analysis (i.e. canonical correspondenatysis); and field vegetation attributes were
then projected onto the landscape by calculatiagignt analysis axes scores for mapped
explanatory variables, determining nearest neigphais in gradient space, and imputing
nearest neighbor plot data into mapped space.

In chapter 2 | used predictive mapping to estincatreent area and spatial
distributions of species composition, structure] tiae ages. Chapter 2 does not directly
address how tree invasion is related to climatelitimms, or non-climate factors such as
topography or seed sources. In chapter 3, | datedrhow climate and biophysical
(topography and vegetation structure) variablehateractively controlled temporal and
spatial patterns of tree invasion in the meadowketierson Park over the 1950 to 2007 time
period. In addition, | estimated landscape-levehbextent of tree establishment in subalpine
meadows of the study area over time. The spenfiiectives of chapter 3 were to: (1)
determine how climate and biophysical variablesranttively control the temporal and spatial
patterns of tree establishment in the subalpinklg@d landscape of Jefferson Park; and (2)

estimate landscape-level areal extent of tree ksttaient in subalpine meadows of the study



area over time. FTE research has traditionallynbeesed on transect sampling methods.
However, transect sampling in the FTE can resudpitial autocorrelation between
explanatory variables, confounding attempts to ngitathe relative influences of different
controls on FTE dynamics. Transects are alsoyaepresentative or explicitly linked to
landscape patterns as a whole, prohibiting accesttmation of the extent and rates of FTE
movement across landscapes. To overcome theskemsld used LIiDAR data collected in
September of 2007 to map micro site (1 m pixel)si@gpography and vegetation structure
(distance from overstory canopy) throughout théededn Park basin. Maps of LIiDAR-
derived microtopography and distance to overstanopy were entered into a Geographic
Information System (GIS) to select plot locationsispatially constrained stratified random
sampling design. By stratifying in relation to mutopography and distance from overstory
canopy, the individual and interactive variablesef§ could be assessed, while also allowing
for landscape-level estimates of tree establishnsamte the proportional distribution of each
strata within the study area was known. Five hedds|S-selected sites were located within
132 ha of Jefferson Park with a sub-meter globaitjpming system (GPS). One circular plot
(1 m radius) was established at each site, andsihalyw depth, tree abundance and size, tree
ages (via. increment coring), non-tree vegetatigghts, and substrate cover were measured
on each plot. Chapter 3 reports on the rates sedhteof tree invasion over time in relation to
annual climate (particularly annual snowfall), hianger landform types alter variation in the
biophysical controls nested within them, and howdfarm types and nested biophysical
controls influence summer snow depth which spatiadhstrains where tree invade meadows.
Chapter 3 also reports on how seed source limitstimay place additional species-specific
constraints of tree invasion of meadows, and h@egoaphic conditions may interact with
climate to produce complex spatiotemporal pattefrisee invasion over time.

In chapter 4 | asked the how might tree invasiczuom the future in response to
climate change? My primary objective was to spigtiaoject historical and near-term future
(1950 to 2064) tree invasion within 132 ha of meeslon Jefferson Park. Specifically, this
chapter addressed three questions: (1) can filegatterns of historical tree invasion be
accurately predicted? (2) how sensitive is futoee tnvasion (and therefore meadow
persistence) to different future snowfall scendtiand (3) how important are non-climatic

factors such as landforms and biotic interactionsfluencing the extent and spatial patterns



of tree invasion? To answer these questions lldped an empirically-derived statistical
model to quantify tree invasion in relation to detimistic spatial patterns of tree invasion
controlled by biophysical factors (microtopograpbged sources, overstory and young tree
interactions, larger-scale landform types), andabilistic temporal patterns of tree
establishment in relation to climate (specificahowfall). Spatial and temporal patterns of
tree invasion were quantified based on the refualis chapter 3. Modeling focused on two
time periods, historical (1950 to 2007) and neamtiiture (2007 to 2064). During the
historical time period, the model drives tree inoasising regional climate data. For the
near-term future time period, six different climatenarios were developed crossing three
levels of change from historical mean annual sraiho change, 25%, and 50% reductions
in snowfall) with two levels of persistent extresmow fall (same as historical record, and
extreme high or low snow fall persistently for thi@nsecutive years).

Chapter 5 synthesizes the results of chapterg@ating results of each chapter to the
three emergent themes of: pattern dectection vesoslation/landscape estimation, the
importance of climatic and non-climate controld=31E dynamics at multiple spatial scales,
and how integration of field data with remotely set data can greatly improve our
understanding of FTE dynamics, current conditiamsl| potential future changes across

landscapes.



CHAPTER 2: INTEGRATING LIDAR, SATELLITE IMAGERY, AND FOREST
INVENTORY DATA TO SPATIALLY CHARACTERIZE TREE INVASION,
VEGETATION COMPOSITION, AND VEGETATION STRUCTURE IN A
SUBALPINE MEADOW LANDSCAPE, OREGON CASCADES, USA.

ABSTRACT

The forest tundra ecotone (FTE) is the transiti@mah between forest and tundra
ecosystems. FTE positions are sensitive to cliraémge, and FTE movement may have
numerous ecological impacts at multiple spatial temaporal scales. Spatial patterns of
vegetation composition and structure can affectréiecosystem dynamics, and characterizing
the spatial of vegetation composition, structurel @iee invasion are needed to assess
landscape level change. Study objectives wer@jaharacterize spatial patterns of tree
invasion via tree ages, vegetation composition\aggtation structure in a FTE landscape
using predictive mapping, (2) determine how vegatatomposition and structure were
associated with gradients of environmental factiersved from multispectral satellite imagery
and LIiDAR, and (3) determine if predictive mappuitaracterizations of tree ages, vegetation
composition, and vegetation structure were imprdwethe inclusion of LIDAR data. A
gradient analysis with nearest neighbor imputatias used to generate spatial predictions;
integrating forest inventory field plots, SPOT 3edite imagery, and LiDAR data.

Vegetation composition was best described by SP®Ta§ery and LIiDAR-derived
topography, while vegetation structure was bestrile=d by LIiDAR-derived vegetation
heights. Species occurrence predictions were auustrate for tree species, moderate for
shrub species and vegetation groups, and highlghlarfor graminoid species. Tree age was
the most accurately predicted vegetation structarible, and indicates the study area was
largely un-forested in 1600, gradually invadediegs$ from 1600 to the 1920’s, and then
rapidly invaded until 1980. Many vegetation sturetvariables (e.g. stand and regeneration
density) had large prediction errors, possiblyraction of scale incompatibilities between data
sources, and heterogeneous FTE landscapes whese $oucture does not develop along
consistent trajectories as stands age. Vegetedimposition and structure predictions had
greater uncertainty with increased geographic degtdrom field plots, suggesting spatial
distribution of field plots needs to be consideifgutedictive mapping of vegetation is a goal

of inventory and monitoring programs.



INTRODUCTION

Subalpine parklands and alpine treeline commun(ties® referred to as the alpine
forest-tundra ecotone, or FTE) are transitionahsiteetween forested and alpine ecosystems.
FTE positions are often associated with thermataefcies limiting plant growth, implying
that increased temperatures will result in FTE moaet (Grace 1989, Kdrner 1998, Jobbagy
and Jackson 2000). Contemporary movement of atpéeéine and declines in subalpine and
alpine meadow extent vary, but have been documerttex$s a diverse range of geographic
locations, climatic zones, and tree species, stigges global ecological response to climate
change (Harsch et al. 2009). Besides being hidédjrable areas for outdoor recreation
(Dearden and Sewell 1983, Price 1985, Tolvanen RBUE movement may have numerous
ecological effects at multiple spatial scales,udahg: positive temperature feedbacks due to
decreased surface albedo (Bonan et al. 1992, Ebkdly 2000), increased NPP and carbon
storage (Solomon et al. 1997, Prichard et al. 2D@fleur et al. 2001), and declines of plant
and animal populations and species (Halloy and N2afk3, Dirnbdck et al. 2003, Cannone et
al. 2007, Roland and Matter 2007).

The magnitude of these ecological effects willdrgely driven by the rates and
spatial extent of FTE movement. Current FTE vegaiacomposition and structure are
important drivers of future FTE movement via mazhfion of: snow persistence, available
soil moisture, soil development, nutrient avail@ilinter-specific competition, and seed
qguantity (Tranquillini 1979, Holtmeier 2003, Didi2001, Germino et al. 2002, Bekker 2005,
Maher and Germino 2006). Although the FTE is ofeflerred to as a “line”, it is typically a
transitional area of variable width whose spattahplexity increases from global to local
scales, where it forms complex mosaics of foredtraon-forest components (Holtmeier and
Broll 2005). In the FTE (and spatially heterogameecosystems in general), spatial patterns
of existing trees and vegetation may affect curegwt future dynamics of the entire landscape
(Hardt and Foreman 1989, Turner et al. 1998, BeRRO5, Malanson et al 2007).
Consequently, understanding current FTE dynamidshaw these systems may respond in
the future to climate change requires an undersigraf the current spatial patterns of FTE
vegetation composition and structure. This woulgigest developing spatially explicit
characterizations (i.e. maps) of vegetation contigmsand structure would be an important

component in monitoring change in the FTE.



Spatially-explicit characterizations of current F¥&getation composition and
structure have rarely been generated, and haviaciotled tree age structure (Brown 1994,
Wallentin et al. 2008). This is likely due to thigjectives typical of FTE research. Field-
based FTE research typically attempts to detetenpest of change, quantifying temporal
changes in FTE position in relation to climatecbaracterizing vegetation composition and
structure in relation to a limited number of ungient) environmental gradients (Kuramoto and
Bliss 1970, Woodward et al. 1995, Rochefort an&iRen 1996, Lloyd and Graumlich 1997,
Miller and Halpern 1998). However, spatial patteoh vegetation composition and structure
are often shaped by multiple drivers and theirraxtBons at varying spatial and temporal
scales (Turner et al 1998, Urban et al. 2002, Dsauaied Veblen 2004). FTE field research
collected along a low number of environmental geath is also unlikely to characterize the
full range of environmental gradients that occucamplex landscapes, and consequently this
research cannot be simply “scaled-up” to accuratleéracterize spatial patterns or make
landscape-level estimates of vegetation composisivacture, and age distributions.

Unlike field research, FTE research based on rdgpnsémsed data is well suited to
spatially characterizing and estimating FTE landec@and land cover change at multiple
spatial scales (Masek 2001, Mihai et al. 2007, 28108). However, for numerous reasons,
FTE research based on remote sensing alone hachiogical resolution. Typical land
cover derived from remote sensing data is largke snapping projects with relatively large
minimum mapped units of 30 to 100 m, and are nthoped to accurately characterize the
proportionately small and heterogeneous FTE (CE®I190gelmann et al. 2001, Homer et
al. 2004). Pixels in remote sensing based lanércdassifications can typically be occupied
by only one land cover type (i.e. hard classifmali Mixed within-pixel land cover
composition is common in ecotones, but hard classibn approaches inadequately
characterize ecotones as either pixel boundariegelea vegetation classes or finely
delineated vegetation types found only within tbetene (Johnston and Bonde 1989, Allen
and Walsh 1996, but see Hill et al. 2007). Laneecalassifications based solely on remotely
sensed data do not contain vegetation compositidrsaucture information, so they lack the
ecological resolution to characterize importanilaites of FTE vegetation conditions.

Finally, changes in image quality, short time péesiof existing imagery, and limited sample
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dates (typically two dates) over time restrict tlmporal extent, resolution, and quality of
remote sensing based estimates of FTE conditiothslaange.

Fine-scale maps of the FTE are needed to answstigue of ecological effects of
climate change on ecosystems and feedbacks betgesystem patterns, processes, and
climate change. Characterizing spatial patterrisTd age structure would provide accurate
estimates of landscape-level tree invasion. Aduily, quantifying species occurrences and
distributions across landscapes could improve spatistribution models used to project plant
migration and biodiversity in response to climatammge, since performance of these models
is often influenced by incomplete biological data@mon et al. 2003, Martinez-Meyer 2005,
Araujo and Guisan 2006). One approach to gengratioh information (referred to as
predictive mapping), combines field data, remosggsed imagery, and additional spatially
explicit datasets (i.e. digital elevation modetgdgraphic moisture indices, solar radiation
indices, etc.), utilizing the strengths of botHdiand remotely sensed data types to generate
spatially explicit predictions of vegetation comjia® and structure across landscapes
(Gottfried et al. 1998, Ohmann and Gregory 2002jakuet al. 2008, Tomppo et al 2008).
Predictive mapping can represent the full rangeaofbility in field data, mapping multiple
attributes that vary continuously. This is espcittractive for the FTE, since it could
provide landscape-level estimates of tree agetstreioot possible with field data alone, while
reducing problems associated with mixed composjtigels that can confound traditional
“hard” classification in remote sensing of ecotonBsiblished attempts to predictively map
vegetation composition and structure in the FTEBaoiocurrently exist, but it has the potential
to dramatically improve spatial characterizatio-dE vegetation composition and structure.

Predictive mapping generally utilizes multi-specsatellite imagery and digital
elevation models, but relatively few studies hatikzed airborne Light Detection and
Ranging (LIDAR) (although see Hudak et al 2008)DAR generates high resolution three
dimensional characterizations of terrain and vegetatructure, enabling examination of
landscape patterns not previously possible (Leédlal. 2002, Vierling et al. 2008). LiDAR
data can improve vegetation classification accyrany both characterize and predict forest
vegetation structural attributes (Lefsky et al. 2.98imble et al. 2003, Chust et al. 2008).
Applications of LIDAR to mapping the FTE are curréacking, but LIDAR may be especially

useful in providing fine scale topographic datapsé patterns can influence microclimate,
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vegetation composition, and tree establishmerteaETE (Barry 1981, Kérner 2003,
Holtmeier 2003). Vegetation structure derived floiMAR may also provide landscape-level
estimates and spatial characterization of tredksianent patterns (via tree height age
relationships), over long time periods not possilding field data or time series remote
sensing imagery. LiDAR has only recently becomailable for ecological and FTE research,
so it is unclear to what degree LIiDAR data may iowerpredictions of vegetation
composition and structure, and what explanatorialstes derived from LiDAR will be most
important.

The study has three objectives: (1) characteriaéapatterns of tree invasion via
tree ages, vegetation composition, and vegetatrantare in a FTE landscape in the Oregon
Cascades using predictive mapping, (2) determimevemetation composition and structure
were associated with gradients of environmentabfaalerived from multispectral satellite
imagery and LiDAR, and (3) determine if predictimapping characterizations of tree ages,
vegetation composition, and vegetation structuneewaproved by the inclusion of LIDAR

data.

METHODS
Sudy Area Description

The study was conducted in Jefferson Park (44°422°48’ W, 1693 — 1814 m asl),
an approximately 260 ha subalpine basin in the Ndafferson Wilderness, Willamette
National Forest, within the Oregon High Cascadeseggion (Figure 2.1). The climate is
intermediate between Mediterranean and maritimeésate with dry warm summers and
significant winter precipitation (Csh/Cfb) undeetkdppen Climate Classification System
(Peel et al. 2007). The nearest weather statidmmihe region at an elevation similar to
Jefferson Park (Government Camp Station, Nationehther Service Cooperative Network
#353402, 45°18’' N 121°145’ W, 1213 m asl), repodedual average maximum and
minimum temperatures of 10.2° C and 1.1° C. Anmuectipitation averaged 217 cm, snow
fall occurred predominantly between December andl Aand annual snow fall averaged 682
cm during the 1951 to 2008 time period.
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Jefferson Park geomorphology has been stronglyeshiap volcanism and glaciation.
Mount Jefferson is a Pleistocene stratovolcandgdblitic/basaltic origin above a broad
plateau of older shield volcanoes (Walder et a@9)}9 During the most recent glacial maxima
of the Holocene Epoch, the Jefferson Park glacieghace and retreat deposited outwash,
basal till and ablation till within the study arg&cott 1977). Since the mid-1@entury,
Cascade Range alpine glacier extent has subshankgireased (O’'Connor and Costa 1993,
McDonald 1995, Dyurgerov and Meier 2000). Glaositeat, combined with steep slopes and
loose parent materials, result in the Cascade Rlaagjag the highest concentration of
neoglacial lakes in the conterminous United Sté@Sonnor et al. 2001). On August21
1934, a small (~4,0002r)1moraine dammed neoglacial lake breached on Maefiftrson,
covering 320,000 frof eastern Jefferson Park with debris 0.3 to 2dieep (The Oregonian
Daily Journal, October 91934). Field reconnaissance during 2006 disemvarsmaller
undocumented debris flow in north Jefferson Par&ldér but indeterminate age. Soils of the
study area are poorly documented, consisting béeiubble derived from ice, colluvium and
residuum weathered from sedimentary rock with grfices of volcanic ash; or Typic
Vitricryands formed in residuum and colluvium frgyroclastic ash flows, andesite, and
volcanic ash (MacDonald 1998).

Jefferson Park is within the lower FTE, the transizone between the upper limit of
closed montane forest (i.e. timberline) and thdrbegg of the alpine zone (sensu Kdérner
2003). Jefferson Park is within the mountain hexkl@@suga mertensiana) vegetation zone
(Franklin and Dyrness 1988). Mountain hemlock Badific silver fir @bies amabilis) are
the dominant tree species, found in both singleispeand mixed-species stands. Most of
these stands are “islands” of variable size angeskarrounded by meadow vegetation. The
oldest trees in these forest islands are at |€&fsy@ars old, and can exceed 400 years of age.
Subalpine fir Abies lasiocarpa), whitebark pineRinus albicaulis), lodgepole pineRinus
contorta), and Alaska yellow-cedatCéllitropsis nootkatensis) are also present, but in greatly
reduced amounts and more restricted spatial digiibs. Six vegetation groups were
identified within the study area (see Appendix Adetails regarding development of
vegetation groups). Vegetation groups are geryetalisistent with prior studies of subalpine
parklands in the Oregon Cascades (Campbell 197B¢ekeet al. 1984). A dry forb group on

well-drained sites (Group 1) was characterized\mnaria capillaris, Lupinus arcticus,
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Eriogonum umbellatum, andPolygonum newberyi. Important species in the pink mountain-
heather type (Group 2) includ@yllodoce empetriformis, Luetkia pectinata, and

Lycopodium sitchensis. The wet sedge meadow type (Group 3) was chaizedebyCarex
nigricans andJuncus drummondi. The wet low forb type (Group 4) includédter alpiginus,
Castelija parviflora, Festuca sp., Gentian calycosa, andKalmia microphylla. The white
mountain-heather type (Group 5) was characteriggddssi ope mertensiana andMicroseris
alpestris. The mountain-ash tall shrub type (Group 6) ideldSorbus sitchensis, Rubus
lasiococcus, Vaccinium deliciosum, Ligustrum gracilis, Epibolium al pinum, Dodecatheon
jeffreyi, andVeratrumviride.

In addition to debris flows, Jefferson Park mayéhaxperienced other disturbance
events such as livestock grazing. Sheep graziogroed in what became the Willamette
National Forest beginning in the 1890’s, and laygelased by the 1940’s (Coville 1898,
Kuhns 1917, Rakestraw & Rakestraw 1991). Histbrieeords are scarce, so it is unclear if
sustained heavy grazing occurred in meadows ofidefh Park, although overgrazing at
similar elevations and meadow vegetation typedtexsin soil erosion and reduced plant
cover (Kuhns 1917). Grazing was often more susthand intense in close proximity to
driveways (areas designated for sheep movement)oram of these driveways (the Skyline
Trail) provided direct access to Jefferson Parle¢@n Tourist and Information Bureau 1921,
Rakestraw & Rakestraw 1991). The long travel dists associated with its remote location
and conflicts with recreational use discourageédiack grazing in the study area, and
livestock access to Jefferson Park via the Skylireél was closed in 1937 (Rakestraw &
Rakestraw 1991). Low intensity pack animal graziag continued within the study area to
the present. Heavy livestock grazing of subalpiegetation may either facilitate tree
establishment via reduced vegetation competitiahexposure of mineral soil, or inhibit tree
establishment via direct browsing and tramplingexdlings. Direct experiments are lacking,
but prior research has inferred grazing supprassesstablishment at treeline and subalpine
meadows, and a pulse of increased tree establiglofien follows grazing cessation (Miller
and Halpern 1998, Didier 2001, Gehring-Fasel e2@0.7). Fires are infrequent in the
subalpine ecosystems of the region, with fire retatervals in the mountain hemlock zone
ranging from centuries to several millennia (Lermand Krebs 1991, Hallett et al 2003).

Intensive surveys of the study area for past fivese not conducted, but qualitative
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observations during field plot establishment fomodevidence of charred tree boles or
biological legacies indicative of past wildfireSome whitebark pines displayed needle spots
and cankers indicative of white pine blister ri@&tdnartiumribicola), but observations
suggest there has not been recent significanticetality due to blister rust or other pests and

pathogens within the study area.

Overall Sampling Design

The study area was delineated by topography anetatgn, bounded on the east and
west by steep declines in elevation coinciding wittreased closed canopy forest and plant
species typical of lower elevation montane foremtsl bounded on the north and south by the
steep slopes of Mount Jefferson, Park Butte, amkl R@ge (Figure 2.1). Vegetation
composition and structure data was collected oge@8referenced forest inventory subplots
located in a randomized clustered design. Summagsures of vegetation species
occurrence, tree age, basal area, diameter, starsityl and regeneration density were
calculated for each plot. Values for landform tygkacial or debris flow), SPOT5 multi-
spectral satellite imagery, LIDAR-derived topogrgpand LIDAR-derived vegetation
structure explanatory variables were assigneddb gao-referenced plot in a Geographic

Information System (GIS).

Field Plot Data

In the summers of 2007 and 2008, vegetation cortipnsind structure data were
collected on 98 circular plots (7.32 m radius) tedain a randomized clustered design within
Jefferson Park. Plot footprints were similar tosh used by the U.S. Forest Service Forest
Inventory and Analysis Program (FIA), consistingaafentral 7.32 m radius subplot, and
three equally sized subplots 36.6 m distance fiwgrcentral subplot at 120°, 240°, and 360°
degrees (Bechtold and Patterson 2005). Each dbtliesubplots within a cluster is a sample
unit, and is referred to as a plot hereafter. kénliocations for 30 central plots were
determined using the random point generator in Haltools version 3.24 (Beyer 2004).
From each central plot, the centers of three amiditiplots in each cluster were calculated,
resulting in a total of 120 plot coordinates ireadom clustered design. This was believed to
be the maximum number of plots which could be ledatnd measured in the time permitted,

while providing adequate sample numbers for ansiffater confirmed by species
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accumulation curves). Plots were located usingd&irmined coordinates with a sub-meter
accuracy GPS unit (Leica GS20 with an external patenna, Leica Geosystems AG, St.
Gallen, Switzerland). At least ten GPS coordinatigls positional errors less than 2 m were
averaged for each plot center to improve positiacaliracy (Wing and Karsky 2006). GPS
subplot coordinates were post-processed using @t8HDo software (Leica Geosystems AG,
St. Gallen, Switzerland) and plot horizontal pasitil accuracy averaged 0.71 m (0.27 — 1.17
m 95% CI). Plots in lakes or high-use recreati@aa (such as campsites or trails) were
excluded, as was a single plot located within gikeaspring/seepage vegetation community
that would have been excessively damaged by sagnatitivity. The early onset of winter
snow storms in 2008 resulted in measurement of @8ilglots, with reduced plot density on
the east and west sides of the study area (Figlije 2

Within each plot, all trees taller than breast he{d.3 m) were identified by species,
and measured for diameter at breast height (DBH)ti@® height. Stand density, basal area,
and quadratic mean diameter were summarized byapbbspecies. On each plot, a
subsample of trees was cored proportional to phetllspecies and height distributions. Trees
were cored at the root collar, or at the minimunghieat which the increment borer could be
used (5 — 40 cm depending on increment borer Igndtree cores were aged to generate
maximum (stand initiation) and mean plot ages. Hiedgye regressions were used to estimate
the number of missing rings on cores collected alibe root collar. Tree regeneration (i.e.
trees shorter than breast height) was tallied legisg and size class (5 - 50 cm, 50 - 130 cm
tall) on two 2.07 m radius micro plots establislBe86 m from plot center at 90° and 270°.
Regeneration density by plot, species, and sizsdalculated. The percent cover of
overstory, understory, and ground cover vascukamntplwas recorded by species (Table 2.1).
One of six vegetation groups was assigned to eattap shown by the dendrogram in

Appendix A.

SPOT 5 Imagery

Eight data layers were developed from bands 18R®T 5 HRG imagery (Table
2.2). The study area fell within a single SPOTéne taken on July 20, 2005 (ID
55262600507201912152J). Data layers were pan-ahedao a 5 m pixel resolution. Plot

sizes in this study are small (four 10 m pixel$nodgery overlay a plot), although the number
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of pixels overlaying a plot can vary depending tot o image alignment. SPOT 5 imagery
has a global horizontal standard deviation of 5@ith level 2a processing for geometric
distortions (SPOT Image Corp 2008), inadequateftracting subplot-level spectral
attributes. To address this, SPOT 5 imagery waggistered to LiDAR data collected for the
study area, which had extremely high positionaleacy. The panchromatic band of SPOT 5
imagery was co-registered to a LiDAR-derived veti@taheight model using the program
ITPFind, an automated, area-based technique fatifgieg image tie points used in image
co-registration (Kennedy and Cohen 2003). ITPRvadg run using a 100 * 100 pixel window
and a 0.35 threshold minimum steepness value. Matioally designated tie points between
SPOT 5 and LIDAR images were visually assessed1aidvere retained to geo-rectify the
SPOT 5 image using ERDAS Image version 9.2 (Leieaggstems Geospatial Imaging,
LLC). Geo-rectification used &'brder polynomial model, which resulted in a congoimoot
mean squared error (RMSE) of 3.45 m. SPOT 5 bameds resampled using nearest neighbor

interpolation during geo-rectification.

LiDAR Data

Discrete return airborne LIDAR data was collectedSeptember 3-4, 2007 by
Watershed Sciences, Inc (Corvallis, Oregon USMA)aisi Leica ALS50 Phase Il laser system
flown on a fixed-wing aircraft approximately 2000above ground level. LiDAR data was
collected with a 59 kHz pulse rate, capturing smagle of £11°, and scan swatlb50%. Point
density exceeded 10 pointg/mithin the study area. Based on known real-tiineatic
ground survey points collected 8 km west of thelgtrea, LIDAR data had a combined
horizontal and vertical accuracy of 0.04 m. ThBAR point cloud was converted into three
grids with 1m pixel resolution: a digital elevatiorodel (DEM) of bare earth ground
elevation, a vegetation elevation model (VEM), ancegetation height model (VHM)
calculated by subtracting the DEM from the VEM. eTthree above mentioned grids were
then resampled to 5 m pixel size. VHM grid wasdugseco-register the SPOT 5 imagery,
eight topographic variables were derived from tieMX(Table 2.2), and fourteen vegetation
structure variables were derived from the raw LiDgdint cloud first returns using the Grid
Metrics function in FUSION version 2.61 (McGaugt&s07).
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Additional Mapped Data and Plot-Level Data Extraction

Mapped data delineating landform types (glacial @eloris flow landforms) was
created by manually interpreting aerial photograpfi3AR data, and field notes. The debris
flow from 1934 was easily discernable in historigatial photographs from 1949, where the
lack of vegetation made it stand out from the moider surrounding glacial landforms. The
older debris flow along the northern boundary ef $kudy area was easily discernable using
surface roughness maps derived from the LIiDAR dBtath debris flows were confirmed by
gualitative field examination of deposited surfataterial. Glacial landforms dominated the
rest of the study area (Hodge 1925, Scott 197Rap&files of the two landform types were
manually traced as polygons, and then convertgdids in ArcGIS. To assign values from
mapped environmental variable grids to plots, gdohwas represented as a template of 0.5
m pixels approximating the plot's ground footpricgntered on its X and Y coordinates. Plot
templates were overlain on each environmental blerigrid using a GIS macro, and mean

values of explanatory variables associated witln gdat were extracted.

Predictive Mapping Method

Predictive mapping closely followed the gradierdnest neighbor (GNN) method
described by Ohmann and Gregory (2002), and wadumbed in four steps:

(1) A stepwise canonical correspondence analystAjGvas run to develop a model
quantifying relationships between field (respordagp and mapped (explanatory) data
(ter Braak 1986, ter Braak and Prentice 1988).

(2) For each mapped 5 m pixel, scores were pratifotethe first eight CCA axes by
applying model coefficients from step 1 to the negbpalues for explanatory
variables.

(3) For each mapped pixel, the single and secoarkseplots in eight-dimensional
gradient space were identified. The distance me&trftuclidean, and axis scores were
weighed by their respective eigenvalues.

4) The field attributes of the nearest plot weredted into the mapped pixel. Maps

were then constructed for vegetation attributessuesl in the plots.
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CCA is an ordination technique where the ordinatibnomposition or structural data
is constrained by a multiple linear regressionxgfi@natory data. CCA can suffer from
multicollinearity, poor retention of community stture in response to noisy environment
data, and is best suited to data with unimodalaesgs to underlying environmental gradients
(Neter et al. 1996, McCune 1997, McCune and Gr@62R CCA also relies on the chi-
square distance measure, which can give high weagldta with low total values or
abundance, and deemphasize data with high totaésar abundance (Minchin 1987).
However there are few viable alternatives to CCAmwhssociating community structure to
environmental gradient data. Generalized Linead®®(GLMs), General Additive Models
(GAMSs), and Non-parametric Multiplicative RegressdNPMR) can model complex
surfaces of single dependent variables in relabaxplanatory variables (Wimberly and
Spies 2001, Guisan et al. 2002, McCune 2006). Wew&AMs are constrained by the
additive nature of model terms and limited funcéibiorms, while requiring modeling of
single response variables individually (McCune 2006ingle species models ignore
important information found in species co-occuregrand compiling many single species
models can result in unrealistic predicted comlimat of species co-occurrence (Mouer and
Stage 1995). For these reasons, it was felt itk its potential limitations, CCA was the
best approach for realistic multi-species mapping.

Species compaosition and vegetation structure (thictutree ages) were modeled
separately in relation to mapped explanatory véegmbResponse variables in the species
composition matrix included species presence/alestmall species listed in Table 2.1. Tree
species presence/absence was divided into ovetst@y and understory trees (which were
defined as either occurring directly underneathrsteey trees, or being open grown and under
8 mtall). Vegetation groups were included in$pecies composition models, coded as
mutually exclusive binary indicator variables. Pa&sse variables in the vegetation structure
matrix included: maximum and mean plot-level trge,astand density (trees/ha), basal area
(mf/ha), quadratic mean diameter (cm), and regenerdegasity (trees less 1.3 m tall/ha) both
separately by species and summed across spea@agetdrmine if LiDAR-derived data (both
topographic and vegetation structure) improved Ghiddlel predictions, nine different CCA

models were developed with different subsets ofpadpexplanatory data (Table 2.3).
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Composition and structure data were each modefgtaely in relation to these nine
combinations of mapped explanatory variables u€i6é.

CCA models were developed using the package vegaR With a Euclidean distance
metric (Oksanen et al. 2008, R Development Coranl2@08). A forward stepwise
procedure was used to retain variables describi@grtost variation in the vegetation data.
Mapped explanatory variables were added in ordgredtest additional variance described,
and added only if they were significant (P < 0.@8)determined by Monte Carlo tests with 99
permutations. X and Y coordinates were excludenhfstepwise CCA model development,
but included in all final models to include geodraplocation in selection of nearest-neighbor
plots. After CCA model development, first and setoearest plot neighbors (k=2) were
imputed using the program yalmput in R version2(&rookston et al. 2007, R Core
Development Team 2009). Following imputation (Whassigns plot identifications to
pixels), plot-level field attributes were joineddesociated pixels, and maps constructed for

vegetation attributes.

Model Evaluation and Accuracy Assessment

GNN predictions of vegetation composition and gtrceswere evaluated at the study
area and plot levels in a manner similar to thatdbed by Ohmann and Gregory (2002). At
the study area level, relative proportions of vagieh composition predicted by GNN were
compared to relative proportions from the fieldtploMeans and variability of GNN
vegetation structure predictions were compareddans and variability from field plots.
Plot-level accuracy was assessed by comparing Gidligtions to observed (field plot)
values for the 98 plot locations. This was accashgld by a leave-one-plot-out cross-
validation approach. A 10-fold cross-validationsngdso generated, which produced similar
results (not presented). Accuracy of vegetationmuasition predictions was assessed by
calculating overall classification accuracy andpgapoefficients of agreement (Cohen 1960).
Accuracy of vegetation structure predictions iratiein to observed values were assessed with
root mean square differences (RMSD). RMSD is caatmnally similar to root mean
squared error (RSME), but divided by the standandation of the observed data. The spatial
distribution of prediction accuracy was assesseh@yping nearest-neighbor distances.

Nearest neighbor distances indicate potential alpdistribution of error in model predictions,
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with shorter distances indicating greater confideincresults (Ohmann and Gregory 2002).
This approach to spatial uncertainty of model ptalis allows for visualization of
uncertainty across the landscape, as opposed tpimggprediction residuals versus

observations only at plot locations as done by Gtmand Spies (1998).

RESULTS
Gradients in Species Composition and Vegetation Sructure

Species composition was most strongly associatddgmadients of SPOT 5 and
LiDAR-derived topography variables, with LIDAR-deed vegetation structure and landform
variables describing much less variation in comimsidata (Table 2.4). The highest
proportion of variance described in the compositiata occurred for the model containing all
types of mapped variables (i.e. SPOT 5, landfoomogiraphy, and vegetation structure). The
primary gradient (diagonal across CCA axes 1 and 2¢getation composition was
associated with reduced reflectance of the SPOTd3Rnand green bands, topographic
position, slope, elevation, and vegetation heigigure 2.2a-b). Along this primary gradient,
trees, tall shrubs, and species associated widstfoinderstory were found on drier sites and
higher elevations on the right, while shorter s@@and wet site species were found on the left.
A weaker perpendicular gradient with red and nBapands of SPOT5 imagery and landform
type had species on well-drained and rocky sitekariower left portion of the ordination.
Gradients of vegetation structure were stronglpeissed with LIDAR-derived vegetation
structure variables (Table 2.4). Adding topogra@ROTS5, and landform variables during
model development did little to improve the propmrtof variance described in the vegetation
structure data. The primary gradient (CCA axisflyegetation structure was associated with
percentiles of vegetation height, although poténgifative radiation (RAD) was also strongly

associated with variance in the vegetation strectudination (Figure 2.2c).

Overall Prediction Accuracy

Predicted proportions of the study area occupieditbgrent tree species and
vegetation types generally matched field plot obstions (Figure 2.3). The GNN model
over-predicted overall overstory cover, as wellhesoverstory cover of Pacific silver fir and

yellow-cedar, while closely matching overstory coseémountain hemlock and subalpine fir.
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GNN predictions for understory tree cover closebteched observations, over-predicted the
proportion of the landscape in the tall shrub arnydfdrb vegetation groups, while
underestimating the other four vegetation groupedicted means and standard deviations of
vegetation structural attributes closely matcheskoled values, although prediction means
tended to be greater than observed values (Tdbje Based on field observations, the overall
geographic patterns of GNN predictions for indiatispecies appear reasonable (Figure 2.4).
Predictions appear excessive for the dry forb \sget group (which should be more
constrained to debris flows), and this over preoiicappears to come largely at the expense of
the mountain heather and tall shrub groups, edpealang the heavily forested eastern edge
of the study area (Figure 2.5). Spatial pattefregand age appear reasonable, predicting no
trees in large meadows, young trees in the delorssfwhere extensive tree regeneration has
occurred, and recent tree establishment on glesidforms clustered around older trees
(Figure 2.5). Predicted initial tree establishmege over time was slightly higher overall than
observed (Figure 2.6). Tree establishment occuatedfairly low and constant rate from

1600 to 1925, increased beginning around 1925hagir rates of establishment continued
until around 1990. Spatial patterns of neareghimr distances for composition and
structure models (Figure 2.7) suggest greateshpateincertainty on the eastern edge of the
study area, which also has the lowest plot dendityarest neighbor distances in gradient
space were positively correlated to geographi@diss of pixels from field plots (Pearson

product moment correlation coefficient = 0.282).

Plot-Level Predictive Accuracy

Classification accuracy was not calculated fosp#cies at once at the plot level,
since species occurrence was not mutually excludiemother species. Instead overall
classification accuracy and improvement from chagreement (Kappa statistic,Cohen
1960) were calculated for each species. Overalliracy of predicted species presences
ranged from 53% — 99%, were -12 — 79% better tlk@eaed by chance for individual
species, and 19 — 38% better than chance for wegetspes (Table 2.6). Species with very
low Kappa values either had low sample sizes, as€allitropsis nootkatensis andVeratrum
viride (both had n = 1), or were consistently presentlagtlow or variable percent cover

values within plots (e.gCarex nigricans, andLuetkea pectinata). Based on kappa statistics
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and discounting extremely rare species, GNN prietistwere highest for overstory trees,
intermediate for tree regeneration, shrubs, andtatign types, intermediate but variable for
forbs, and lowest for graminoids. Overall meanetation structure values tended to be over
predicted by 13 to 42 percent, but variation aroomeén values was comparable between
predictions and observed data (Table 2.5). PiaH&NN predictions were most accurate for
mean and maximum stand age, but generally podrasal area, stand density, regeneration

density, and quadratic mean diameter (Figure 2.8).

DISCUSSION

The GNN model based on field plots, multi-specsegkllite imagery, and LIDAR,
produced high-resolution maps rich in predictedagioal data such as tree invasion ages,
vegetation composition, and vegetation struct@®IN map accuracy was highest for tree
ages and species composition, providing both aterny retrospective record of tree invasion
across the FTE, and fine-scale projections of ggetistributions. Both vegetation
composition and vegetation structure were stroagBociated with gradients of topography
and vegetation heights derived from LiDAR, but ifiedent ways. Vegetation composition
was strongly associated with LIDAR-derived topodmapnd multi-spectral imagery, while
vegetation structure was most strongly associatddlWDAR-derived vegetation height
metrics. Inclusion of LIDAR data clearly improvpdedictions of vegetation composition and
tree ages, but vegetation structural attributes ¢tand density, basal area, and quadratic mean
diameter) had very low prediction accuracy. Resoiithis study suggest potential limitations
of LIDAR data and predictive mapping methods foarettterizing vegetation structure and
specific species and vegetation communities irFiNEé and other heterogeneous landscapes.
Model patterns, the value of LIDAR data in predietmapping, and limitations of predictive
mapping are discussed below with respect to pliedicf tree invasion, vegetation
composition, and vegetation structure. In addjtgpatial patterns of prediction uncertainty
are discussed in relation to the spatial arrangewofdield plots, which as implications for
using existing and future plot networks to devdiap-scale predictive maps across

landscapes for monitoring and inventory purposes.

Retrospective Predictions and Prediction Limitations of Tree Invasion Over Time
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An objective of this study was to determine if potisle mapping could quantify
spatiotemporal patterns of tree invasion in the FIM&aximum and mean tree age were the
only structural variables with high prediction ay, providing landscape-level estimates
and spatial distributions of tree invasion in tAeeFover time. Models of maximum tree age
are inferred to represent initial dates of estahtisnt, which are consistent with plot-level tree
invasion. Jefferson Park basin was largely dewbidees four hundred years ago, and tree
establishment was gradual for approximately 300sya®ith the landscape still dominated by
non-tree vegetation until the early 1900’s. Tineetiperiod dominated by non-forest
vegetation and low levels of tree invasion corres{sao cooler reconstructed temperatures in
the Northern Hemisphere (Figure 2.6, Jansen @08l7), and regional glacial advances during
the late Little Ice Age interval (Luckman 2000, beque and Smith 2003, Lewis and Smith
2004). Predicted and observed tree ages indicatedased tree establishment beginning in the
1920’s, roughly corresponding to Northern Hemisphgarming. Increased tree
establishment at the FTE in Jefferson Park waseeahian previous observations of subalpine
meadow invasion in the Oregon Cascades, but sitildrat found in the Olympic Mountains
and Mount Rainer in Washington (Franklin et al. 1.9%oodward et al. 1995, Rochefort and
Peterson 1996, Miller and Halpern 1998). Highsatktree establishment continued until
approximately 1990 (17 years ago). Model predigiprovide a landscape area estimate of
current meadow extent, suggesting trees are afssembnly 20 percent of the pixels in the
study area, down from over 60 percent in 1900.

The greatest limitation of GNN stand age predicti@nthe lack of tree establishment
since 1990 (Figure 2.6). Zald (2010) found higiesaof tree invasion during the 1990’s,
suggesting the seventeen year period without piertlicee establishment may be an artifact
of sampling and GNN methodology. Plot samplingdusethods similar to the U.S. Forest
Inventory and Analysis program, where trees bel®wi in height were counted but not aged
on micro plots, eliminating young trees ages framdample. The GNN approach retains the
range and variability of plot-level data, so préidics of stand age preserve this aspect of the
plot-level data, highlighting the potential limii@h of using traditional forest inventory data
collection methods (specifically limited collectiand aging of small trees and regeneration
data) in the FTE.
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Predictions of Vegetation Sructure and its Limitations within a Predictive Mapping
Framework

GNN predictions of vegetation structure were sttpagsociated with LiDAR
derived vegetation height variables, while SPOTéctial variables and LiDAR-derived
topography variables added much less to the priopoof variance described in the vegetation
structure matrix. With the exception of maximundanean tree age, the GNN model of
vegetation structure attributes (tree density, s, quadratic mean diameter, etc.) had very
low prediction accuracy. Low prediction accuratyhese structural attributes may occur
because of asynchronous patterns of vegetatioctstal development over time which
manifest as high horizontal and vertical structveaiability.

Trends in stand density, diameter, and volume wariable in relation to stand age
(Figure 2.9). In the absence of secondary dishabgfield and remote sensed metrics of
forest structure (such as basal area, stand detrsigydiameters, canopy vertical distribution,
spectral signatures, canopy volume, etc.) ofteplaysconsistent trends associated with stand
age (Bormann and Likens 1979, Spies and Frank®i 18akubauskas 1996, Oliver and
Larson 1996., Lesfky et al. 1999, Franklin et 802). Developmental trends of forest
structure which are generally synchronous over fisewing stand replacing disturbance are
largely inferred from lower elevation forests witlgh productivity, canopy closure, and
species of varying levels of shade tolerance. Wighexception of stand height (which was
strongly associated with age), stands in the studs do not display synchronous trends for
many structural attributes over time. This mayhefsom low productivity, which may
attenuate stand structural development (Larsoh 2088). Tree islands of variable size and
shape are within a matrix of lower height vegetatihich may result in increased penetration
of photosynthetically active radiation (PAR) conmgxato forests with high canopy closure.
Increased PAR in discontinuous and clustered faasbpy may promote higher densities of
lower strata trees (North et al. 2004). Mountamlock and Pacific silver fir (the dominant
trees in the study area) are very shade tolerahtan persistent as suppressed individuals in
stands for up to 100 years (Kranjina 1969, Mindd@9, Packee et al. 1981). Higher PAR and
species with high sub-canopy persistence may rasrdduced aboveground competition over

time compared to closed canopy forests of the regiere light competition typically exerts
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strong controls on tree mortality, growth, canopgtification which often are strongly
correlated to tree height and canopy position (Rikiliand Chen 2000, Ishi et al. 2000, North
et al. 2004). Since GNN predictions are both aairstd by and preserve the range of
variability in field attributes using nearest-ndigh plots in multi-dimensional gradient space
for imputation, prediction of vegetation structatéributes besides tree age may not be
possible in ecotones or patchy landscapes whet#idrzal trends of structural development
over time are not apparent or obscured by highlpial variability.

Intra-pixel variability and scale incompatibilitgtween vegetation patterns, plot size,
and plot spatial locations may also contributedorgredictions of vegetation structure.
Forest islands vary in size and shape, but gegdralte high edge to area ratios. Many of the
community types and forest age cohorts in the studg can occur in patches and inter-patch
lengths of less than 10 m (Figure 2.10), whilepleere 7.32 m in radius. Edgy forest stands,
combined with random location of plots, can regultverlap of forest and non-forest
vegetation types with plots that would increasecttral variability regardless of stand age,
confounding patterns of structural development owee. This would suggest higher
prediction accuracy could be achieved using ehall plots, or recording intra-plot
variability in vegetation composition and struct(ire. stem and condition class mapping).

Unlike other structural attributes, tree height \waengly related to tree age.
Curiously, maximum and $5percentile height were not selected as explanatigbles in
CCA models of the vegetation structure matrix, etv@ugh they would likely improve
prediction accuracy of plot-level maximum and maga. This may be a consequence of
modeling multiple vegetation attributes at oncengsCCA (rather than modeling tree age in
relation to height independently), since otheiilattes such as basal area or stand density may
not be associated with maximum vegetation heigttstand age. Modeling stand age or
other structural attributes as single variableddtgield superior predictions, yet single
variable models lose information about co-occureasicmultiple variables within samples
(Mouer and Stage 1995, Gottfried et al. 1998). é/thiis loss of information is often in
reference to single versus multiple species,lik&dy that vegetation structural attributes also
lose co-occurrence information when analyzed séggraThis study suggests it may not be
possible to accurately map tree establishmentrigistod other metrics of vegetation structure

within the same modeling framework, and separateping approaches may be needed to
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optimizing prediction accuracy for different varied, questions, and a given variable or

guestion of interest.

Gradients of Vegetation Composition and Prediction Accuracy

GNN predictions of species composition varied bywgh form, with high accuracy
for tree species, moderate accuracy for shrubshtaraccuracy for forbs, and low accuracy
for graminoids. Species gradients were largelp@ased with spectral variables from SPOT5
imagery and LiDAR-derived topographic variables, hiDAR-derived variables of
vegetation structure were important as well. Rreviresearch has demonstrated the value of
LiDAR derived topographic variables in vegetatiow dabitat classification (Gottfried et al.
1998, Chust et al. 2008). This study shows veigetdieight data can be important in
mapping species occurrence in heterogeneous lgraesdaut it is the combination of LIDAR-
derived topography variables describing specieggghic niche, spectral data from satellite
imagery differentiating species by their foliar atpgtion and reflectance, and LiDAR-derived
vegetation height data differentiating species toyvgh form which provides the greatest
predictive accuracy.

GNN predictions of understory and non-forest vetiimtagroups were moderately
successful, but over predicted dry forb communitiesreas likely to be wet sedge, low forb,
mountain-heather, and tall shrub groups. Potectiabes of poor classification include: scale
incompatibilities between vegetation patterns aach dources like those mentioned for
predicting vegetation structure, mapped variableegpistration problems, the use of
presence/absence data, mixed pixel compositionpkmdrrangement in the landscape.
SPOT5 bands 1-3 were pan-sharpened from 10 m @relshe mid IR band 4 was pan-
sharpened from 20 m, so much of the spectral irdition is in fact at 10 and 20 m
resolutions. Vegetation groups in the study aesaarcur in patches and inter-patch lengths
of less than 10 m, resulting in pixels of mixedeg@iry identification, which can confound
ecotone mapping (Hill et al 2007). Predictionspécies used presence-absence data in the
CCA, rather than the percent cover of speciesch piot. Many species suchdaccinium
deliciosum, Carex nigricans, andCassiope mertensiana were ubiquitous across the landscape,
but varied greatly in their abundance. Commongspnt species with highly variable cover

may drive vegetation type misclassification, beeguesence-absence data is less useful for
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detecting more subtle differences between groug#tes (Lesica et al. 1991). Vegetation
type prediction could potentially be improved witla predictive mapping approach by fuzzy
classification (Gopal et al. 1999), or post-hocalepment of vegetation types from joint
occurrences of predicted percent cover for indigidypecies (Martin et al. 2003), since the
GNN method conserves species data at the plot I&espite limitations of vegetation type
classification, the species mapping presentedisnstindy is a great improvement over
traditional landcover classification which woul@ssify the study area vegetation as forest,
shrubs, grassland, and rock land cover. Prediat@pping can therefore provide a more
complete picture of species abundance and disiritsiaicross landscapes such as the FTE,
yet because it relies on field plot data to intib imaps, it still requires field sampling, which

can be costly in remote and mountainous FTE lanesca

Implications for Monitoring and Inventory Methodology of the FTE

Integrating field inventories with remotely sens@@gery is increasingly used to
improve inventories and monitoring of natural reses at multiple spatial scales. Predictive
mapping of vegetation composition and structuregnasen valuable for spatially
extrapolating plot-based inventories across laegégons (Ohmann and Gregory 2002,
Tomppo 2006). This study found predictive mappimethods utilizing LIDAR data can also
be applied with mixed success at fine scales tentory and quantify change in
heterogeneous and potentially sensitive landscaypsesas the FTE. Spatial characterizations
of tree establishment from predictive mapping caanify the rates and extent of treeline
movement and subalpine meadow invasion, poteniialyyoving our understanding of
meadow encroachment and treeline movement in resgorclimate change, disturbance
history, and land use change. Predictions of sgatistributions could improve biological
data used to model how species distributions aodiv®@rsity may change in the future due to
climate change. However, the use of predictivepimapat fine spatial scales is relatively
unproven, so potential limitations of fine-scalegictive mapping products and the field data
used in them need to be understood.

Limitations of fine-scale FTE predictive mappingietnrelies on plot data included a
lack of recent tree establishment, and low accupaeglictions of many metrics of vegetation

structure such as stand density and basal areah kely result from asynchronous
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vegetation development over time and scale incaitripgt between plot data and vegetation
patterns. Predictive mapping accuracy may alsanliguely influenced by sample design
strategies of field data. The GNN method presettvesange of variability in field data used
in imputation, so missing or incomplete data (iis $tudy tree regeneration was recorded but
not aged) can be propagated as errors in predictgd that may not be apparent to the end
user without an understanding of the data thesesrmagpderived from. Predictive mapping
generates landscape-level estimates and also aaseldor pattern detection of FTE change
over time, in contrast to most ecological reseanettLiral resource inventories, and
environmental monitoring which are often singularniierested in either pattern detection or
reducing error variance in parameter estimatesdi®ive mapping may be especially
attractive in the FTE and other habitat types trawial inventory programs may under sample
due to their small and discontinuous land covetrraye important biodiversity hotspots,
potentially sensitive to the effects of climate e, or are high value recreation areas.

Sample design strategy (location, sample sizepéoidsize) will influence pattern
detection and parameter estimates, and an optiesajm for pattern detection can be
suboptimal for parameter estimation (Kenkel el@8B9), while field sampling design can be
additionally constrained by non-statistical consadiens such as financial costs and other
logistic and historic considerations (Frayer anchiual 1999). The value of mapping is to
make inferences at scales where plot density isdmd characterize spatial patterns of
ecological or resource attributes. These issugsbhmaompounded for fine-scale predictive
mapping, which may have to rely on limited subsétsxisting inventories or new inventories
with limited sample size; in contrast to predictmapping at large spatial scales which can
rely on very large plot numbers (Tomppo 1991, Ohmamd Gregory 2002, Tomppo et al.
2008).

Effects of sample size were not specifically adsieesn this study, but relatively
small increases in species detected occurred weh40 plots, suggesting the sample size of
this study was adequate to capture species riclwitsn the study area (Figure 2.11). Itis
less certain if sample size was adequate to cappatial patterns of all response variables,
which may be especially important when responsebkas are spatially autocorrelated
(Fortin et al. 1989). Prediction uncertainty wasaxiated with increased geographic distance

to field plots, suggesting the GNN predictions ratgo be influenced by the spatial
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arrangement of plots on the landscape. Mappingracg in landscapes with spatially
autocorrelated vegetation patterns can be sensititree spatial distribution of plots, with
clustered and random plot distributions more capabtetecting spatial patterns then
systematic samples (Fortin et al. 1989). This eatgga potential conflict between improved
detection of spatial structure provided by clusleard randomized sampling, versus
improved geographic representation from systenaaittstratified sampling approaches (Scott
et al. 2005). Stratification can be more costatite means of estimating parameters
compared to random or clustered sampling, but capggate new spatial errors by incorrectly
stratifying along a low number of explanatory geads, result in unbiased parameter
estimates, risk circular logic when using vegetastrata when predictions are also vegetation
types, and serious hamper the ability to deteaaghan the attributes of interest (Orléci 1978,
Kenkel et al. 1989, Fortin and Legendre 1989).t&yatic sampling has traditionally been
viewed as easier and most cost effective to estatian randomized plots, but recent
widespread availability of inexpensive GIS and G§tems can enable easy assignment and
location of randomized plot coordinates. A potaintbmpromise between random clustered
sampling and systematic and stratified samplinggita for predictive mapping would be to
cluster plots in a geographically stratified randed design (where clusters of plots are
randomly places within systematic geographic sshskthe study area). This approach may
avoid bias and circularity problems associated wfithatified and systematic sampling,
improve geographic distribution of plots comparedandom sampling, while still retain the
clustered design for detection of auto correlategetation pattern and randomization for
unbiased parameter estimation. In national inugmicograms such as the USDA Forest
Service Forest Inventory and Analysis Program,ithéskey component of plot location
(Bechtold and Patterson 2005). However local Scalentories rarely consider plot spatial
distribution. Further investigation of the rolesrgple design and sample density have on fine
scale predictive mapping accuracy could optimizglgdield data placement if inventory and

monitoring programs intend to utilize predictiveppang approaches in the future.
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Table 2.1. Tree, shrub, forb, and graminoid sgeaeorded on plots, their species codes, and
frequency.

Growth Frequency Growth Frequency
form Scientific Name Code (n=98) form Scientific Name Code (n=98)
Tree  Abies amabilis ABAM 66 Forb  Antennaria alpina ANAL 22

Abies concolor ABCO 8 Arenaria capillaris ARCA 16
Abies lasiocarpa ABLA 4 Aster alpigenus ASAL 85
Callitropsis nootkatensis CANO 4 Aster foliaceus ASFO 2
Pinus albicaulis PIAL 25 Caltha leptosepala CALE 6
Pinus contorta PICO 3 Castilleja parviflora orepola CAPA 64
Tsuga mertensiana TSME 86 Dodecatheon jefferyi DOJE 23
Epilobium alpinum EPAL 13

Shrub  Cassiope mertensiana CAME 70 Epilobium angustifolium EPAN 2
Kalmia microphylla KAMI 32 Eriogonum umbellatum ERUM 5
Phyllodoce empetriformis PHEM 86 Gentiana calycosa GECA 34
Rhododendron albiflorum RHAL 3 Hieracium gracile HIGR 53
Rubus lasiococcus RULA 2 Hypericum anagalloides HYAN 2
Salix commutata SACO 2 Ligusticum grayi LIGR 55
Sorbus sitchensis SOSI 37 Lupinus arcticus LUAR 17
Vaccinium deliciosum VADE 81 Luetkea pectinata LUPE 84
Vaccinium membranaceum VAME 25 Lycopodium sitchense LYSI 33
Microseris alpestris MIAL 8

Graminoid Carex aquatilis CAAQ 10 Microseris borealis MIBO 7
Carex nigricans CANI 89 Pedicularis bracteosa PEBR 2
Carex spectabilis CASP 57 Plantanthera stricta PLST 2
Festuca sp. FESTU 10 Potentilla flabellifolia POFL 11
Juncus drummondii JUDR 55 Polygonum newberryi PONE 8
Juncus mertensianus JUME 9 Saxifraga ferruginea SAFE 9
Luzula sp. LUZUL 3 Saxifraga tolmiei SATO 6
Poa sp. POA 9 Senecio triangularis SETR 4
Tofieldia glutinosa TOGL 2

Veratrum viride VEVI 6

Veronica wormskjoldii VEWO 2

Xerophyllum tenax XETE 3
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Table 2.2. Mapped explanatory variables usedérgtadient nearest neighbor method.

Variable class
and code

Definition

Topography derived from LiDAR

ELEV
SLOPE
ASPECT

RAD

TOPO300

TOPO100

TOPO30
TOPO10

Elevation (m), from 5 m digital elevation model (DEM)

Slope (percent), from 5 m DEM

Cosine transformation of aspect (degrees) (Beers et al. 1966)
0.0 (southwest) to 2.0 (northeast), from 5 m DEM

Growing season Potential Relative Radiation (Pierce et al. 2005)
June - September, from 5 m DEM

Topographic position index, difference between sample elevation and mean elevation
150 - 300 m from the sample

Topographic position index, 50 - 100 m from sample
Topographic position index, 15 - 30 m from sample
Topographic position index, 5 - 10 m from sample

Vegetation Structure derived from LiDAR

VMAX
VMIN
VMEAN
VSTDEV
VCV
VRNG
vcov
VP05
VP10
VP25
VP50
VP75
VP90
VP95

Maximum vegetation height (m)

Minimum vegetation height (m)

Mean vegetation height (m)

Standard deviation of vegetation height (m)
Coefficient of variation of vegetation height (m)
Range of vegetation hieght (m)

Percent vegetation cover greater than 3 m tall
5th percentile of vegetation height (m)

10th percentile of vegetation height (m)

25th percentile of vegetation height (m)

50th percentile (median) of vegetation height (m)
75th percentile of vegetation height (m)

90th percentile of vegetation height (m)

95th percentile of vegetation height (m)

SPOT 5 HRG Satellite Imagery

PAN

B1

B2

B3

B4

R32

Vi

NDVI
Geomorphology

LANDFORM
Location

X

Y

Panchromatic band (0.48 - 0.71 um), 5 m spatial resolution

Band 1 (green, 0.50 - 0.59 um), 10 m spatial resoution (pan-sharpened to 5 m)

Band 2 (red, 0.61 - 0.68 um), 10 m spatial resoution (pan-sharpened to 5 m)

Band 3 (near-infrared, 0.79 - 0.89 um), 10 m spatial resoution (pan-sharpened to 5 m)
Band 4 (mid-infrared, 1.58 - 1.75 um), 20 m spatial resoution (pan-sharpened to 5 m)
Ratio of B3 to B2, pan-sharpened to 5 m

Vegetation Index (B3 - B2), pan-sharpened to 5 m

Normalized Difference Vegetation Index (B3 - B2) / (B3 + B2), pan-sharpened to 5 m

Binary, with debris flow (1) and glacial (0) landforms

Easting in UTM NAD83 Zone 10N (m)
Northing in UTM NAD83 Zone 10N (m)




44

Table 2.3. Explanatory variable subsets usedriomiaal correspondence analysis of species
composition and vegetation structure.

Explanatory variable type

Subsets of LiDAR-derived
explanatory SPOT5 LiDAR-derived vegetation Landform
variables  imagery  topography structure type
1 X
2 X
3 X
4 X
5 X X
6 X X X
7 X X X
8 X X X
9 X X X X

Note: Mapped explanatory variables described indatp.
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Table 2.4. Amount of variation in response datecdbed by the environmental variables
(percent of total inertia), and number of explanat@riables selected, by subsets of
explanatory variables in stepwise canonical coomadpnce analysis of species composition
and vegetation structure.

Proportion of total inertia

Subset of explantory variables compostion nvars structure nvars
SPOTS 20.1 4 13.6 2
LiDAR-derived topography 20.2 6 18.8 8
LiDAR-derived vegetation structure 9.9 2 37.5 6
landform 6.8 1 3.7 1
SPOT 5 + landform 21.8 5 13.6 2
SPOT 5 + landform + LiDAR-derived topography 34.4 11 22.2 4
SPOT 5 + landform + LiDAR-derived veg structure 32.2 9 37.5 6
landform + LiDAR-derived topography + LiDAR-derived veg structure 28.4 7 39.5 6
All explantory variable subsets combined 38.6 12 39.5 6
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Table 2.5. Descriptive statistics comparing obsérin = 98 plots) and predicted vegetation

structure attributes

Vegetation attribute Mean Range SD
Total basal area (m2/ha)

Observed 3.89 0-70.34 9.84
Predicted 4.56 0-70.34 9.11
Stand density (trees/ha)

Observed 14758 0-1130.52 231.60
Predicted 167.13 0-1130.52 261.06
Quadratic mean diameter (cm)

Observed 8.63 0-110.48 15.19
Predicted 10.18 0-110.48 14.27
Regeneration density (trees/ha)

Observed 1818.89 0-16358.34 2664.92
Predicted 2193.07 0-16358.34 3297.47
Age of stand initiation (years)

Observed 99.92 0-411 100.41
Predicted 129.01 0-411 124.00
Stand mean age (years)

Observed 63.10 0-239.5 55.86
Predicted 75.41 0-239.5 62.90
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Table 2.6. Plot-level overall classification acy, kappa statistic (K) and assympotic errors
of kappa for GNN mapped species predictions.

Vegetation Species Overall Vegetation Species  Overall
Type Species Code accuracy K ASE Type Species Code accuracy ASE
Overstory  All O_ALL 0.81 052 0.10 Forbs Antennaria alpina ANAL 0.77 0.36 0.12
trees Tsuga mertensiana O_TSME 0.84 0.57 0.10 Arenaria capillaris ARCA 0.78 0.22 0.15
Abies amabilis O_ABAM 0.88 0.53 0.13 Aster alpigenous ASAL 0.88 0.47 0.14
Abies lasiocarpa O_ABLA 0.97 -0.01 0.58 Aster foliaceus ASFO 0.98 0.00 0.70
Callitropsis nootkatensis O_CANO 0.99 0.00 0.99 Caltha leptosepala CALE 098 0.79 0.15
Castillgja parviflora CAPA 0.68 0.28 0.11
Tree Al U_ALL 0.85 0.39 0.14 Dodecatheon jeffreyii DOJE 0.73 0.30 0.12
regeneration Tsuga mertensiana U_TSME 0.86 0.45 0.14 Epilobium alpinum EPAL 0.79 0.04 0.19
Abies amabilis U_ABAM 0.70 0.37 0.10 Epilobium angustifolium EPAN 0.96 -0.02 0.50
Abies lasiocarpa U_ABLA 0.81 -0.10 0.23 Eriogonum umbellatum ERUM 098 0.79 0.15
Callitropsis nootkatensis U_CANO 093 0.33 0.24 Gentian calycosa GECA 0.67 0.30 0.10
Pinus albicaulis U_PIAL 0.70 0.14 0.13 Hieraciumgracile HIGR 0.57 0.15 0.10
Pinuc contorta U_PICO 0.95 -0.03 0.45 Hypericum anagalloides HYAN 099 0.79 0.20
Ligusticum grayii LIGR 0.62 0.22 0.10
Shrubs Cassiope mertensiana CAME 0.78 0.44 0.11 Lupinus arcticus LUAR 0.92 0.69 0.11
Kalmia microphylla KAMI 0.79 0.52 0.09 Luetkea pectinata LUPE 0.77 0.01 0.18
Phyllodoce empetriformis PHEM 0.87 0.31 0.18 Lycopodium sitchensis LYSI 0.56 0.05 0.11
Rhododendron albiflorum RHAL 0.94 -0.03 041 Microseris alpestris MIAL 0.89 0.21 0.23
Rubus lasiococcus RULA 0.98 0.49 0.36 Microseris borealis MIBO 0.92 0.29 0.24
Salix commutata SACO 0.97 -0.01 0.58 Pedicularis bracteosa PEBR 0.98 0.49 0.36
Sorbus sitchensis Sosl 0.70  0.37 0.10 Plantanthera stricta PLST 0.99 0.79 0.20
Vaccinium deliciosum VADE 0.82 0.29 0.15 Potentilla flabellifolia POFL 0.85 0.26 0.18
Vaccinium membranaceum VAME 0.86 0.61 0.10 Polygonum newberryi PONE 0.94 059 0.16
Saxifraga ferruginea SAFE 0.94 0.54 0.18
Graminoids Carex aquatilis CAAQ 0.81 0.07 0.19 Saxifraga tolmeii SATO 0.97 0.71 0.16
Carex nigricans CANI 0.86 0.05 0.24 Senecio triangularis SETR 0.97 056 0.25
Carex spectabilis CASP 0.53 0.07 0.10 Tofieldia glutinosa TOGL 099 0.79 0.20
Festuca sp. FESTU 0.79 -0.12 0.22 Veratrumviride VEVI 0.93 -0.04 0.38
Juncus drummondii JUDR 0.62 0.23 0.10 Veronica wormskjoldii VEWO 0.99 0.79 0.20
Juncus mertensianus JUME 0.93 0.55 0.16 Xerophyllum tenax XETE 0.98 0.66 0.24
Luzula sp. LUZUL 0.92 -0.04 0.35
Poa sp. POA 0.78 -0.12 0.21  Vegetation well drained sparse forbs GRP1 0.71 0.33 0.11
groups low wet forbs GRP2 0.84 0.24 0.17

pink mountain-heather shrub GRP3 0.78 0.38 0.12
white mountain-heather shrub GRP4 0.89 0.29 0.20
tall mountain-ash shrub GRP5 093 0.19 0.30
wet sedge meadow GRP6 0.78 0.31 0.13
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Study Area

Oregon

Figure 2.1. The study area location within thete&std Oregon (a), with the Oregon Cascades
ecoregion shaded in gray. The study area outiiméthck in relation to Mount Jefferson (b).
An enlarged image of the study area (c), with [doations as yellow circles and debris flow

landforms shaded red.
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Figure 2.2. Biplots and ordinations showing asstimis between vegetation and explanatory
variables from canonical correspondence analy<BA)C (a) Species centroids in relation to
the CCA axes and explanatory variables. (b) Exgitany variable biplot for species
composition ordination (see Table 2.2 for variad#éinitions). (c) Explanatory biplot for
vegetation structure ordination, centroids of vatieh structure variables were not plotted
since structure variables were not categoricalctMdength and position in biplots indicates
the strength and direction of correlation betweguanatory variables and CCA axes.
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(a) Composition model
P High - 1

(b) Structural model
P High ;1

-Low:o :

Figure 2.7. Nearest-neighbor distances for theda)position model and (b) structure model.
Distances are Euclidean in eight-dimensional gradipace based on the first eight axes in
the canonical correspondence analyses. Distare&ctoaxis is weighted by its eigenvalue.
Nearest neighbor distances are a proxy for pregiaincertainty, higher nearest neighbor
distances indicating increased prediction uncegtain
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Figure 2.8. Comparison of predictions to plot alsaons of vegetation structure variables
on n = 98 field plots. (a -¢) Total, hemlock, airdree basal area (m2/ha) .(d —f) Total,
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Figure 2.10. Photo within the Jefferson Park staisya showing fine-scale patterns of
vegetation groups. From left to right, vegetatpades from wet sedge meadow to pink
mountain-heather shrub, to a mountain hemlock (@sugrtensiana) dominated tree island.
Foreground scale is approximately 10 m acrossniagé. Photo facing southwest, Mount
Jefferson is in the background.
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CHAPTER 3: SEEDLING ESTABLISHMENT IN A SUBALPINE PARKLAND
LANDSCAPE CONTROLLED BY INTERACTIONS OF TOPOGRAPHY, SEED
SOURCE, DISTURBANCE AND CLIMATE, OREGON CASCADES, USA.

ABSTRACT

Over the past five decades, FTE movement andrikesion into alpine and subalpine
meadows has been documented at many locationgtiwatithe Northern Hemisphere.
Relationships between temperature and FTE postiggest regional to global treeline shifts
in response to climate change. However, treelioeament and meadow invasion are driven
by tree regeneration processes, which are infliehgeclimatic, physical and biological
factors at multiple spatial scales. This studiiagtil airborne Light Detection and Ranging
(LiDAR), geo-referenced field plots, and tree ektiinent reconstructions to quantify
spatiotemporal patterns of tree invasion in retatmlandform types, fine-scale topographic
variability, late season snow persistence, diswfroen potential seed sources, and climate
variation in a subalpine parkland landscape inQhegon Cascades, USA. The number of
sites occupied by trees increased from 7.75% ostilndy area in 1950 to 34.7% in 2007.
Landform types and finer-scale patterns of topogyaand vegetation structure nested within
landforms influenced summer snow depth, which grfled temporal and spatial patterns of
tree establishment. The rate of tree invasionhigiser on the debris flow landform which
has lower summer snow depth, suggesting potentiafigl treeline responses to disturbance
events. Tree invasion rates were strongly assatiaith reduced annual snow fall on glacial
landforms, but not on debris flows. Tree estalptiesht was spatially constrained to micro
sites with high topographic positions and closeimndy to overstory canopy associated with
low summer snow depth. Seed source limitationsgalaan additional species-specific spatial
constraint on where trees invaded meadows. Cliaradetopography had an interactive
effect, with trees establishing on higher topograjlositions during both high snow/low
temperature and low snow/high temperature perimatshad greater than expected
establishment on lower topographic positions dulimgsnow/high temperature periods.
Within the context of lerger landform types, topaygjny, and proximity to overstory trees
placed constraints on where trees establishecimgadows, even during favorable climate

periods. Results of this study suggest large stt®te-driven models of vegetation change
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may overestimate treeline movement and meadowimvdecause they do not account for
biophysical controls limiting tree establishmentratitiple spatial scales.
INTRODUCTION

Subalpine parklands and treelines (also referred e forest-tundra ecotone, or
FTE) are transitional areas between forested grnideakcosystems. FTE positions are
globally associated with thermal deficiencies limgtplant growth, implying that increased
temperatures will result in FTE movement (Grace9 $&rner 1998, Jobbagy and Jackson
2000). Contemporary FTE movement has been varibbtehas occurred across a diverse
range of geographic locations, climatic zones,tardnomic groups, suggesting a global
ecological phenomenon in response to climate chédgesch et al. 2009). Changes in FTE
positions and reductions of alpine and arctic vati@t may impacts surface radiation balance,
ecosystem productivity and carbon sequestratiatiep distributions, and biodiversity
(Bonan et al. 1992, Solomon et al. 1997, Foley.e2G0, Koérner 2000, Prichard et al. 2000,
Halloy and Mark 2003, Dirnbéck et al. 2003, Cannenhal. 2007). The magnitude of these
varied ecological effects will be heavily influenicley temporal rates and spatial extent of
FTE movement, which is fundamentally determinedd&gd-based regeneration processes
(Lescop-Sinclair and Payette 1995, Smith et al3200

Although often referred to as a “line”, the FTEoften a transitional area whose
complexity increases from global to local spatgles, resulting in landscape mosaics
containing elements of both forest and tundra estesys (Holtmeier and Broll 2005). FTE
positions may be thermally limited globally, butaxiety of biophysical factors become
important at finer scales (Kérner 1998), emphagitire importance of spatial scale in
detecting patterns and determining driving factorscosystems (Wiens 1989, Levin 1992).
FTE position and movement have largely been studieelation to global and regional
factors such as climate and land use change (K488, Gehring-Fasel et al. 2007, Batllori
and Gutiérrez 2008); or local biophysical factarstsas topography, regeneration ecology,
seed source dispersal, competition, autogeniarsiification, and disturbance (Germino et
al. 2002, Bekker 2005, Dok et al. 2008, Stueve et al. 2009). Howevelitteractive
effects of large-scale climate and local-scale lysjral factors on tree establishment in the
FTE have received much less attention and are \paaderstood (although see Kupfer and
Cairns 1996, Daniels and Veblen 2004).
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It is important to understand FTE dynamics in teahboth large-scale climate and
local-scale biophysical factors, because vegetatiamge often results from interactions
among climate, topography, biotic interactions, disturbance (Turner et al. 1989, Urban et
al. 2002, Holtmeier and Broll 2005). For exampieow pack depth and late season snow
persistence have been observed to control FTEestadlishment in the Pacific Northwest
region of North America (Fonda and Bliss 1969, kharet al. 1974). Snow pack in the
Pacific Northwest is driven by large-scale temp@etand circulation patterns (Mote 2003,
Mote et al. 2005), but regional topography and aterinteract, modifying snow pack depth
and persistence, resulting in different patterngeamporal patterns of FTE tree establishment
during different climatic regimes (Woodward etE)95, Rochefort and Peterson 1996, Miller
and Halpern 1998). In addition to climate and tpmaphic factors, seed source, vegetation
structure (as modifier of snow depth) and distudeacan strongly influence patterns of FTE
tree establishment (Arseneault and Payette 1992nier and Broll 1992, Daniels and
Veblen 2003, Dogiak et al. 2008). However, the relative influenaes interactions of
climate, topography, disturbance, seed sourcesotuga biophysical controls on FTE
dynamics is not well understood.

Heterogeneous FTE landscapes can confound attéonpigsangle the multiple
climatic and biophysical controls of FTE dynamiahile also making it difficult to estimate
the landscape-level extent of FTE movement ovee tiacological research generally focuses
on either pattern detection or estimating poputagiarameters, and both sampling decisions
and scope of inference often differ between thesedbjectives (Kenkel et al. 1989). Our
understanding of how climate and biophysical deviefluence FTE dynamics has largely
been inferred from observational research withgpattietection objectives, with
guantification of FTE movement inferred from obs#ions on transects or plots subjectively
positioned in relation to a limited number of exytory variable gradients such as elevation
or aspect (Rochefort and Peterson 1996, Lloyd aadii@lich 1997). Since spatial patterns of
vegetation are often shaped by multiple driversthed interactions at varying spatial and
temporal scales, observational data collected addogy number of environmental gradients
may miss factors important to tree establishmetit@FTE, which could result in incorrect

inferences of processes from observed patterrtss sliggests observations from subjective
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placement of transects or plots typically cannotdoaled-up” to make landscape-level
estimates of FTE movement or meadow invasion.

The study had two objectives: (1) to charactertzanges in landscape pattern of tree
establishment in a subalpine meadow complex one,tand (2) to determine how climate
and biophysical characteristics interactively cohtine temporal and spatial patterns of tree
establishment in a subalpine parkland landscapaikiiple spatial scales. Five major
hypotheses were developed:

[1] The areal extent of tree establishment hasmmed over the past fifty years.

[2] Variation in late season (summer) snow dep#msisociated with abiotic variables
(microtopography and larger-scale landforms), bigtiriables (distance to overstory
tree canopy), and their interactions.

[3] Spatial patterns of tree establishment, likevslepth, are associated with
microtopography, larger-scale landforms, and distdo overstory canopy, as well as
distance from potential parent trees (i.e. seedcsdu

[4] Tree establishment is positively associatedhwitars of low snowfall and increased
temperature.

[5] Tree establishment is a function of interactitretween regional climate factors and
biophysical factors that operate at landscape ecal kpatial scales. For example, tree
establishment will occur during cool and snowy oegil climate periods on ridgetops
and upper slopes, and on sites with greater patesttow depth (valleys and

depressions) during warm and less snowy regioimahtd periods.

METHODS
Sudy Area Description

The study was conducted in 260 ha of Jefferson @42’ N 121°48' W, 1693 —
1814 m), a subalpine parkland in the Mount JefieMblderness, Willamette National Forest,
Oregon, USA (Figure 3.1). The climate is interna¢elibbetween Mediterranean and maritime
temperate, with dry warm summers and significamtevi precipitation (Csb/Cfb) under the
Ko6ppen Climate Classification System (Peel et@07). The nearest weather station above
1000 m (Government Camp Station, National Weatleevi€e Cooperative Network
#353402, 45°18’' N 121°145’ W, 1213 m, 1951 to 2@6& period), reported annual average
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maximum and minimum temperatures of 10.2° C antl@.JAnnual precipitation averaged
217 cm, the major of which fell as snow betweenddawer and April. Comparisons to
climate data from three nearby weather stationgifvid-orks, 44°36’'N 121°57'W 813 m;
Santiam Junction 44°26'N 121°158'W, 1230 m; andkBep Spring, 44°18’'N 122°02'W, 705
m) suggests similar annual variation of temperatune: precipitation across the region (Figure
3.2), but Jefferson Park is likely to be colder &asgle higher snowfall because of its higher
elevation.

Jefferson Park contains landforms derived fromiglactivity, as well as debris
flows originating on the flanks of Mount Jeffers@®199 m) and Park Butte (2,139 m).
During the most recent glacial maxima of the Hofec&poch, glacial advance and retreat
deposited outwash, basal till and ablation tillie study area (Scott 1977). Since the mid-
19" century, Cascade Range alpine glacier extentuizsantially decreased (O’'Connor and
Costa 1993, Dyurgerov and Meier 2000). Glaciakadt combined with steep slopes and
loose parent materials, result in the Cascade Rlaagjag the highest concentration of
neoglacial lakes in the conterminous United Sté@€onnor et al. 2001). On August®1
1934, a small (~4,0003nmoraine dammed lake breached on Mount Jeffersmrering
roughly 320,000 fhof Jefferson Park with debris 0.3 to 2.4 m deelC@@nor et al. 2001).
Field reconnaissance during 2006 discovered a smalidocumented debris flow in north
Jefferson Park of older but indeterminate agels®dithe study area are poorly documented,
consisting of either rubble derived from ice, ceilm and residuum weathered from
sedimentary rock with influences of volcanic aghTgpic Vitricryands formed in residuum
and colluvium from pyroclastic ash flows, andesdtied volcanic ash (MacDonald 1998).

Jefferson Park is within the lower FTE, the transizone between the upper limit of
closed subalpine forest (i.e. timberline) and tbgibning of the alpine zone (sensu Kdrner
2003). Jefferson Park is in the mountain hemldskda mertensiana) vegetation zone
(Franklin and Dyrness 1988). Mountain hemlock Badific silver fir @bies amabilis) are
the dominant tree species, found in both singleispeand mixed-species stands. Most of
these stands are “islands” of variable size angeslarrounded by meadow vegetation. The
oldest trees in these islands date to the 1600¢ttee majority of mature trees are at least 150
years old (Zald 2010a). Subalpine #b{es lasiocarpa), whitebark pineRinus albicaulis),

lodgepole pineFRinus contorta), and Alaska yellow-cedaCallitropsis nootkatensis) are also



64

present, but in greatly reduced amounts and matdated spatial distributions. Six
vegetation groups were previously identified witthie study area (Zald 2010a), and are
generally consistent with prior studies of subadpirarklands in the Oregon Cascades
(Campbell 1973, Halpern et al. 1984). A dry forbup on well-drained sites (Group 1) was
characterized byrenaria capillaris, Lupinus arcticus, Eriogonum umbellatum, and

Polygonum newberyi. The pink mountain-heather type (Group 2) inctuBbyllodoce
empetriformis, Luetkia pectinata, andLycopodium sitchensis. The wet sedge meadow type
(Group 3) was characterized @arex nigricans andJuncus drummondi. The wet low forb
type (Group 4) includedster alpiginus, Castelija parviflora, Festuca sp., Gentian calycosa,
andKalmia microphylla. The white mountain-heather type (Group 5) was atterized by
Cassiope mertensiana andMicroseris alpestris. The mountain-ash tall shrub type (Group 6)
includedSorbus sitchensis, Rubus lasiococcus, Vaccinium deliciosum, Ligustrum gracilis,
Epibolium al pinum, Dodecatheon jeffreyi, andVeratrumviride.

In addition to debris flows livestock grazing magve occurred, although historical
records are scarce so it is unclear if sustainashhgrazing occurred in Jefferson Park.
Overgrazing in the region at similar elevations aadetation types can result in soil erosion
and reduced plant cover (Kuhns 1917). Grazingma® sustained and of higher intensity in
close proximity to driveways (areas designatedsfarep movement), and the Skyline Tralil
driveway was near Jefferson Park (Rakestraw & Redk@sl991). Long travel distances and
conflicts with recreational users discouraged liveks grazing in Jefferson Park, and access to
Jefferson Park via the Skyline Trail was closetiestock in 1937 (Rakestraw & Rakestraw
1991). Low intensity grazing by recreational packmals has continued at Jefferson Park to
the present. Heavy livestock grazing of FTE anddogv vegetation may either facilitate tree
establishment via reduced vegetation competitiahexposure of mineral soil, or inhibit tree
establishment via direct browsing and tramplingexdlings. Direct experiments are lacking,
but prior research suggests grazing suppressesdtalishment at the FTE, and a pulse of
increased tree establishment often follows grazessation (Miller and Halpern 1998, Didier
2001, Gehring-Fasel et al. 2007). Fire are angib&ntial disturbance in high elevation
ecosystems of the region, but are infrequent viighreturn intervals in the mountain hemlock
zone ranging from centuries to several millennierzman and Krebs 1991, Hallett et al

2003). Qualitative observations during field pstablishment found no evidence of charred
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tree boles or biological legacies indicative oftpeigdfires. Some whitebark pines showed
symptoms of white pine blister rusEronartiumribicola), but otherwise qualitative

observations did not find significant tree mortatiue to pests or pathogens.

Sampling Design Overview

My previous observations of the study area in 20@fgest distance to overstory
canopy and microtopography influenced late summewspersistence and tree establishment.
However multiple topographic variables (elevatimpographic position, etc.) and overstory
canopy trees were spatially autocorrelated, patiytomplicating statistical analyses of
individual and interactive effects of biophysichlcacteristics on tree establishment. Spatial
autocorrelation would be likely to persist in tit@mhal transect sampling, while transect
sampling would also prohibit accurate estimatiotanfiscape-level tree establishment. To
overcome these problems, airborne discrete retigim Detection and Ranging (LIDAR) was
used to map micro site scale (1 m) topography agetation structure on glacial and debris
flow landforms throughout 260 ha of Jefferson Rigfined in Zald (2010a). Maps of
LiDAR-derived microtopography and distance to ot@mngcanopy were entered into a
Geographic Information System (GIS) to select geferenced sites in a spatially constrained
stratified random sampling design. By stratifyingelation to microtopography and distance
from overstory canopy, spatial correlation betweamables could removed, individual and
interactive variable effects could be quantifieal] é&andscape-level estimates of tree
establishment calculated, since the proportiorstiution of each strata within the study
area was known. Five hundred sites in the spgptiflistered stratified random sample were
located in the field using a high precision glopasitioning system (GPS), anda 2 m
diameter plot was established at each site. Spatistraints placed on sampling stratification
allowed LiDAR data of overstory trees to be combimeth field observations to calculate the
distance of each plot to the nearest overstorymanbeach tree species present, providing a
metric of potential seed source distances at elath At each plot, snow depth, vegetation
type and cover, and substrate cover were meagheedbundance and sizes of trees were
recorded by species, and a sample of these treesithar cored or cross-sectioned to obtain

tree ages.
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LiDAR-derived Microtopography and Overstory Canopy Data

Fine scale patterns of microtopography and vegetatiructure were characterized
using LiDAR data collected on September 3-4, 20pWatershed Sciences, Inc (Corvallis,
Oregon USA). LiDAR was collected from approximgt2D00 m above ground level using a
Leica ALS50 Phase Il laser with a 59 kHz pulse,reépturing scan angle of +11°, and scan
swath overlap of at least 50%. LiDAR point densitgeeded 10 pointsfrwithin the study
area. Because there was no road access to theasta] 523 real-time kinematic (RTK)
ground survey points were collected eight kilometeest of the study area, and LiDAR data
was collected over these survey points at the sanecas the study area. The root mean
squared error between coordinates of LIDAR dataRifild survey points was 0.04 m.

LiDAR point data was converted into three gridshwiim pixel resolution to characterize
microtopography and vegetation structure: 1) ataligerrain model of bare earth ground
elevation, 2) a top of vegetation canopy elevatimuel, and 3) a vegetation height model
calculated by subtracting the digital terrain mddein the vegetation canopy elevation
model.

Topographic position index (TOPO) and potentigtige radiation (RAD) were
calculated from the digital terrain model (Figur8&8b). These two microtopography
variables were believed most likely to influenceelseason snow depth and persistence, since
snow melts fastest at higher radiation, is oftewinl off ridge tops, and accumulates in
depressions (Marks and Dozier 1992, Lapen and M&%86). TOPO was calculated from the
digital terrain model as the difference betweeixaljs elevation and mean elevation of an
annulus spanning 5-10 m from that pixel. TOPO alae evaluated using annuli ranging
from 2 to 50 m, but the 5-10 m annulus most efietyi delineated small ridges and
depressions that characterize the study area. @ddce et al. 2005) is an integrative
potential relative radiation index which accourtstemporal variability in radiation by
summing hourly estimates of clear-sky radiationd@iven day, and then summing daily
values over the growing season. RAD accountofmwdraphic shading of surrounding
landscape features by incorporating the digitabtermodel in point radiation estimates.
RAD was calculated for the growing season (Junautiin September). To reduced the
number of sampling strata, RAD and TOPO were cogtbinto a single ecological exposure

index (EEI) representing the physical micro sitedignt, calculated by relativizing RAD and
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TOPO by their respective standard deviates anddkieraging the relativized variables
together (Figure 3.3c).

The second sampling stratum was distance from torgreanopy (CANDIST),
selected because overstory canopy can reduce stiv @nd persistence via interception,
sloughing, and enhanced incident thermal radigf@mia et al., 2000, Sicart et al. 2004).
Overstory canopy was defined as any vegetationl @qupeater than 8 m in height.
Assigning a single height value to define “overgt@ss” may oversimplify the influence
vegetation structure has on snow melt. Howevéor field reconnaissance found the 8 m
threshold excluded all non-tree vegetation, whileiscluded trees that influenced light and
vegetation conditions underneath them. Treesgréaan 8 m tall were also observed to be
producing the vast majority of cones, making themrmost likely seed sources in the study
area. CANDIST was calculated as the nearest Eratlidiistance of each 1 m grid pixel in the
study area to the nearest pixel with vegetationm 8va tall (Figure 3.3d). CANDIST also

defined the population of interest (i.e. meadowsgkcluding areas occupied by mature trees.

Stratification, Plot Selection, and Plot Location

Grids of EEI and CANDIST with continuous values wepnverted into grids with 5
classes each, and these two classified grids \wersttata for sampling. Continuous values of
EEI ranged from -8.08 to 6.79 and were classifi¢d five quantiles (-8.08 to -0.33, -0.33 to
0.02, 0.02 to 0.26, 0.26 to 0.55, and 0.55 to 6. T@)ntinuous values of CANDIST ranged
from O to 91.9 m, and were classified based onrgbgdeand modeled seed dispersal rates for
the two dominant tree geneMaies andTsuga (Franklin and Smith 1974, Carklin et al. 1978,
LePage et al. 2000). The five distance classeséiters) for CANDIST were 0 to 5, 5 to 10,
10 to 20, 20 to 30, and 30 to 91.9. Grids of dessEEI and CANDIST were then combined
with a matrix function to produce a single grid2&f strata representing all potential
combination of the two 5 class grids (Figure 3.3e).

Plots were spatially constrained in 100 x 100 nstelts to reduce time needed for
mapping overstory vegetation by species, whichwsasl as a proxy for distance to potential
seed sources. A moving window analysis found 28ameerlapping 100 x 100 m clusters
containing all 25 sampling strata. One cluster @aduded due to its location in sensitive

habitat, another was excluded because it was |pattaated in water, and a third was
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randomly excluded resulting in twenty clusters cieleé for data collection (Figure 3.3f).

Using Hawth’s tools version 3.24 (Beyer 2004), ttydive points were located in a stratified
random design within each of the 20 cluster (508l fglots, Figures 3.3g-h). Additionally,
points had to be at least 4 m apart from each athéat least 2 m away from a stratum
different from the one occupied. These additimuaistraints reduced the likelihood that GPS
positional errors could result in 2 m diameter ploéntered on points overlapping each other
or strata. Spatial constraints had the additibeakfit of removing potential short distance
spatial autocorrelation for snow depth, RAD, TOEB]J, and CANIDST, the absence of
which was confirmed by empirical semivariogram gsas$ (results not shown).

Plots were located in July of 2008 using a sub-n@&teS receiver (Leica GS20 with
an external pole antenna, Leica Geosystems AGa&lten, Switzerland). Plot coordinates
from the GIS sample design were loaded into the @&P8aypoints, and field located. At
least 10 GPS coordinates with a positional errgs than 1 m were averaged for each plot
center to improve positional accuracy (Wing andskgr2006). GPS coordinates were post-
processed using GIS DataPro software (Leica GemsigsAG, St. Gallen, Switzerland), and
horizontal positional accuracy averaged 0.28 mg0.2.29 m 95% CI). One hundred and
nine plots (from six different clusters) were lain debris flow landforms, three hundred
and ninety plots were located in older glacial fanohs, and one plot was discarded because it

lay at the intersection of debris and glacial |amnifs.

Distance to Potential Seed Sources

LiDAR-derived overstory canopy was combined wittiadled field observations to
spatially delineate overstory canopies by speeied,the distance of each plot to the nearest
overstory canopy of each species was calculatedistence to potential seed sources. A grid
of LiDAR-derived overstory canopy (> 8m tall) wageolaid on a geo-referenced high
resolution (1 m pixel) color aerial photograph toguce digital overstory canopy maps of the
100 x 100 m clusters, plus a 50 m horizontal buf@und each cluster. Overstory canopy
maps were printed and taken to the field, everysivey tree within each map was visited,
identified to species, and its canopy outline dra@anopy outlines drawn in the field on
canopy maps were manually traced to GIS polygopedilas in ArcGIS (Environmental

Systems Research Institute, Redlands, Califorr@anopy polygons were compared against
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the raw LiDAR point cloud to correct for any geqgginéc offsets using the 3D visualization
software FUSION version 2.61 (McGaughey 2007). dpgrpolygons were convertedto a 1
m pixel resolution grid of species-specific overgtoanopy for each of the 20 clusters plus
their 50 m buffers. The Euclidean distance frowhgalot to the nearest overstory canopy of
each species present within the cluster and ifebwias calculated (i.e. TSMEDIST for
mountain hemlock, and ABAMDIST for Pacific silver)f Distances to overstory canopy
exceeding 50 m were converted to 50 m (the maxifouffer distance). The direction to the
nearest overstory canopy of any species (CANDIRE&AS also calculated, since the
position of trees in relation to prevailing windsyrbe importance for snow redistribution
(Holtmeier and Broll 1992, Hiemstra et al. 2002).

Plot-level Data Collection

Minimum, maximum, and plot center snow depth waasueed on all plots between
July 29 and August 1, 2008. Snow depth was meddarthe nearest 0.05 mwitha 2.5 m
long metal probe. The snow year preceding dataa@n (September 2007 to April 2008)
was above the 90percentile for the 1951-2008 time period for thev&nment Camp
weather station, and snow covered approximatelyeréent of the study area on July 29,
2008. On each plot, all trees 5 cm to 8 m tallemetlied by species and height class (5-10
cm, 10-50 cm, 50-130 cm, 130-800 cm). The 5 crmimmim height cutoff eliminated the
more temporally variable pool of first year gernmritea The tallest and shortest trees of each
species on each plot had their diameters (eithiereaist height or basal if under 1.3 m tall)
and height measured, and were classified as beitig or secondary establishment. Initial
establishment was defined as a tree which establigithout the canopy of another tree
above it, and no evidence the site was previoustypied by a taller tree that died.
Secondary establishment was defined as being uealrthe canopy of another tree of any
size. The tallest and shortest tree of each specieach plot were cored or cross sectioned at
the root/shoot boundary. Cores and cross seatvens sanded and rings counted using a
microscope to determine tree ages. Cross-datilgade as described by Yamaguchi (1991)
and marker years were used to accurately assignaal year of establishment for each

sample. One of the six vegetation types definatérstudy area description was assigned to
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each plot in the field, and the percent cover gfetation, bare soil, rock, litter, coarse woody

debris, moss, and lichen tallied by 5 percent colasses.

Satistical Analyses

FTE movement and meadow invasion are often infdmyedconstructing tree
demographics from tree rings of living and/or deatividuals (Arseneault and Payette 1992,
Lloyd and Graumlich 1997, Didier 2001). These retouctions are often presented as tree
counts which may describe increases in tree deasithanges in growth form over time,
rather than tree establishment on previously ungiedusites (Lescop-Sinclair and Payette
1995). For this reason | graphically present tinalmer of aged trees established, but only site
occupancy (proportion of plots occupied by treesigivted by the proportion of the study area
in the sampling strata associated with each ocdygli®) over time was analyzed in relation
to climate variables. Partial F tests were usatktermine if rates of tree establishment (i.e.
linear regression slopes of cumulative site occapawer time) were different between
landform (glacial versus debris flow) and estalstight types (initial versus secondary
establishment).

Relationships between site occupancy rates andidudil climate variables on
different landforms were assessed using Pearsalugronoment correlations. Rates of site
occupancy were calculated as three-year bins réttharannual data, since: (1) many
individual years lacked establishment on new s{@smortality of conifer germinants in the
FTE and subalpine forest environments is often digifing the first year, but declines during
the second or third years of growth (Rochefort Baterson 1996, Brang 1998, Germino et al.
2002), and (3) cross-dating techniques were appdi¢te cores and cross sections, but
extremely small and distorted rings, missing rirgdalse rings could lead to incorrectly aged
trees by + 1 year. Rates of site occupancy wemelebed to mean, minimum, and maximum
snowfall within three-year bins for two periodsnaal (ANN_S, ANN_Si,, ANN_S;..), and
“spring” (April through June: AJ_S, AJpR AJ_Snay and mean, minimum, and maximum
temperatures for three periods: annual (ANN_T, ANN,, and ANN_T..9; spring (AJ_T,
AJ_Tmin, AJ_Tha; and “summer” (July through September: JS T, J&, IS _Tha). Spring

snowfall, spring temperature, and summer tempezatere included because climate
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warming is generally expected to increase temperatand reduce the overall and spring
snow pack (Mote 2003), while subalpine tree growtthe region is sensitive to summer
temperatures (Peterson and Peterson 1994). Susmmowfall does not result in measureable
accumulation and was not included in analyses.

The relationships between biophysical variablesragdsured snow depth were
assessed with nonparametric multiplicative regoes@PMR) using Hyperniche version 1.39
(McCune and Medford 2004). Snow depth was modeledsponse to TOPO, RAD,
CANDIST, Elevation, and CANDIRECT. The EEI varial®#nabled sampling to occur in a
relatively simple two-stratum design with CANDISAut inhibited analysis of the relative
importance of TOPO and RAD individually on snow ttepTOPO and RAD could be
individually assessed by decomposing the simpleeigivted EEI into its two components
(RAD and TOPO) for statistical analyses. This wassible since RAD and TOPO were not
correlated in 499 sampled plots (Pearson correlatefficient = 0.099), and distributions of
both variables in samples did not differ from thaistributions in the overall study area
(randomization chi-squared tests with 100,000 raridations, p=0.238 for RAD, and p =
0.063 for TOPO).

Separate models were developed for the 109 ddbwvisaind 390 glacial landform
plots. NPMR was run using a local mean, Gausskgighting, and minimum average
neighborhood size was set at five percent of saonpits (4.45 and 19.5 for debris flow and
glacial plots respectively). Variables were reggiin the final model if they improved model
fit by at least five percent. The best fit modelsaievaluated by a leave-one-out cross-
validated statistic (®). The relative importance of each predictor Magawithin the final
models was evaluated by sensitivity analysis, mglgiach explanatory variable value one at a
time by £5% throughout its range. Sensitivity wakulated as the average absolute value of
the differences induced by nudging the predictdisensitivity value of one indicates that
nudging a predictor resulted in a change in respohgqual magnitude, while a sensitivity of
zero would occur if nudging a predictor has no cletae effect on the response. Monte Carlo
procedures were conducted for each model with @A8 of randomized data to assess the null
hypothesis that model fit was no better than oletioy chance alone. Differences between
plot observations of snow depth, vegetation, bavergl, and rock cover on glacial versus

debris flow landforms were assessed using Sattartéwtests for samples with unequal



72

variances. Differences of RAD, TOPO, CANDIST, elton, and vegetation height between
landforms were compared for all grid cells withire tstudy (i.e. complete census rather than
population samples), therefore no statistical testdifferences of means or variances were

performed.

Limited sample sizes restricted analyses of thatiogiships between tree abundance
and biophysical variables to mountain hemlock aacifie silver fir. Tree abundance in
relation to microtopographic variables (TOPO, RAIDd elevation) and biotic variables
(CANDIST, TSMEDIST, ABAMDIST and CANDIRECT) were mieled using generalized
linear mixed models (GLMMs). GLMM was applied tee¢ count and biophysical data using
the GLMMIX procedure in SAS version 9.2 (SAS Inst#t 2008). Tree counts were assumed
to have a Poisson probability distribution, and plasters were treated as a G-side random
effect (an element of the random effects vectbgplace integral method was used to
approximate marginal likelihood, allowing for infoation criteria model selection which
would be otherwise biased when using default psdéikdbhood estimates in GLMMIX
(Schabenberger 2007). Tree counts were modelsgddxies and landform as a function of all
possible combinations of explanatory variables (RADPO, CANDIST, CANDIRECT,
elevation, and TSMEDIST or ABAMDIST). All 31 pob$ combinations of these variables
(plus a null model) were compared using an inforomatriterion approach to make inferences
regarding the relative importance of biophysicalalales on tree abundance. Model selection
used the small-sample Akaike's Information Critar{&IC,), AIC. differences 4;) were
calculated, a model was estimated to be bestif0, considered to have substantial empirical
support ifA; was between 0-2, moderate empirical suppaitvfas between 2-4, and not
empirically supported if\; was greater than 4 (Hurvuch and Tsai 1989, Burnduaan
Anderson 2002).

Interactions between climate, micro site conditjiansl tree establishment were
analyzed by splitting the climate record into tvegimes (cool and snowy years versus warm
and low snow years), and testing for differenceh@micro site conditions trees established
on during the two climate regimes. Climate in\egiyear was considered cool and snowy if
annual snowfall was greater than the mean for &er climate record and either annual or
summer mean temperature was below the mean. Tweetyears were considered cool and
snowy (1953-1956, 1960-1975, and 2007). Thirtg frears with conditions opposite from
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those described above were considered warm wittstewfall (1952, 1957-1959, and 1976-
2006). Aged trees were assigned to climate regbaeed on year of establishment, and the
microsites occupied by trees in these two climatgmes were tested for differences with
Wilcoxon-Mann-Whitney tests using the NPARIWAY pedare in SAS version 9.2 (SAS
Institute 2008). In addition, contingency tablesrevdeveloped to test if tree establishment
was more or less abundant than expected on miesosith high and low topographic

position during high and low snow fall periods. cBase of low sample sizes in contingency
tables, Fisher’'s exact test was used to test ifdladive proportions of observed tree
establishment were independent of the expected auailirees established in each climate
category. Expected numbers assumed equal propeuidrees established when accounting

for different number of years (21 and 35 yearsgjanh climate category.

RESULTS
Temporal Patterns of Tree Establishment and Correlates with Climate

Four hundred and ninety cores and cross sectian®{&05 collected) were
successfully aged, 374 on glacial landforms, ar@idiidebris flows. On glacial landforms,
tree establishment in meadows began in the 192@'s variable but generally increased until
1984, then increased dramatically until declinin@005 (Figure 3.4a). Temporal patterns of
tree establishment on debris flows were similadhtse on glacial landforms, except tree
establishment on debris flows was greatest duhiedl®63 to 1968 and 1988 to 1992 time
periods, and invasion was low since 1998 (Figu#)3. Five trees established on the northern
debris flow prior to the 1934, suggesting it predahe documented 1934 debris flow but is
still young compared to glacial landforms. Sixtyde percent of aged trees on glacial
landforms were initial establishment, of which eigtwo percent were mountain hemlock.
Seventy six percent of Pacific silver fir estabéidlunderneath existing trees. Sixty five
percent of aged trees on debris flows were ingsiablishment, and the majority of these
(sixty six percent) were mountain hemlock. Oveirgtial site occupancy across all landforms
was 7.75% in 1950, and increased at an averagefrtd9% y'rl, with 34.71% site
occupancy by 2008. In 1950, site occupancy waatgren glacial versus debris flow
landforms (9.06% versus 2.55%), but occupancy (@aganean annual rate over time) were
greater on debris flows from 1950 to 2008 (0.76% ¥0.02 SE versus 0.42% y#+0.01 SE,
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a difference of 0.34% yr F value = 248.49, p < 0.0001). This resultegriater site
occupancy on debris flow landforms by 1974, an@®98 site occupancy was 33.68% and
38.82% on glacial and debris flow landforms respebt.

Correlations between three-year occupancy rateslandte variables varied by
landform, and somewhat establishment type (Figusa-B). Correlations between occupancy
rates and climate variables were generally stroogaglacial landforms than debris flows. On
glacial landforms, occupancy rates for both inigéiatl secondary establishment were
negatively correlated with annual maximum snow, falld had non- significant negative
correlations with mean and minimum annual snowfhdltial occupancy rates were not
correlated to temperate variables on glacial lamd§p but secondary establishment rates were
positively correlated to annual minimum and summarimum temperatures. In contrast,
occupancy rates on debris flow landforms were patetated to annual snow variables, but
had positive correlations with spring minimum snallyfand no significant correlations for

either establishment type with any temperaturealdes.

Show Depth and Correlates with Landforms and Biophysical Variables

Snow depth was deeper on glacial (0.67 m, 0.5940. 5% CI) versus debris flow
(0.21 m, 0.14-0.28 95%CI) landforms (t value = 8 &#387, p < 0.0001). Glacial landforms
had closer proximity to overstory trees and roudise earth and vegetation surfaces
compared to debris flow landforms (Table 3.1). dizlblandforms also had greater vegetation
cover, less surface occupied by bare soil, and momlecover than debris flow landforms.

NPMR models of snow depth in relation to explanai@riables differed between
glacial and debris flow landforms (Figure 3.6).eT¥now model for glacial landforms had a
final xR? = 0.274, and was a better fit than 200 runs ofioarized data (p = 0.0049).
Sensitivity analysis (SA) found snow depth on glhtandforms was most sensitive to
elevation (SA = 0.596), followed by TOPO (0.4250d&»ANDIST (0.332), and was
insensitive to RAD (0.020) and CANDIRECT (0.028Bnow depth declined with increased
elevation, was lower on ridges (high TOPO valuasy, was lower in close proximity to
overstory canopy (low CANDIST). Elevation, TOP@daCANDIST had nonlinear
interactive associations with snow depth. At hedgvation, snow depth declined with

increased TOPO in a linear manner. However ati@levations, snow depth increased
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slowly from ridges to midslopes (TOPO from 1 tol)t increased rapidly from mid slopes to
depressions (TOPO from 0 to -1). At high elevai®snow depth initially increased and then
declined with distance from overstory canopy, lidbwaer elevations displayed a more linear
increase in snow depth with increased distance freenstory canopy. The snow model for
debris flow landforms had a lower model fiR= 0.116) compared to glacial landforms,
although still better than expected by chance Qp0899). Snow depth on debris flow
landforms was most sensitive to RAD (SA = 2.238lipived by much lower sensitivity for
CANDIST (0.162), and insensitive to elevation (@Pé&nd TOPO (0.047). CDIRECT was
not included in the model for debris flows becaitiskd not meet the 5% improvement
criterion in model development. In addition to Ewveoverall snow depth, lower variance
described by biophysical variables, and differemisgtivity to those variables, debris flow
landforms had reduced interaction between explapatriables and snow depth as inferred

from the more linear response surfaces (Figure 3.6)

Tree Establishment and Correlates with Landforms and Biophysical Variables

In total, 1620 trees less than 8 m tall (835 maurttamlock, 758 Pacific silver fir, 12
whitebark pine, 8 Alaska yellow-cedar , and 7 Iquije pine) were observed in the plots.
Only mountain hemlock and Pacific silver fir wersabyzed. Tree abundance was highly
variable, but did not differ between landform typesmountain hemlock (Satterthwaite T test
with unequal variances: df=170, t=-0.46, p=0.64@5pacific silver fir (df=288, t=0.89,
p=0.3722).

The relationships between tree abundance and sagtywariables in empirically
supported GLMMs varied by species and landform {{izbles 3.2-3.3). The best model
describing mountain hemlock abundance on glacnafams included: RAD, TOPO,
elevation, CANDIST, and TSMEDIST. One other mddelmountain hemlock on glacial
landforms had substantial empirical support; no @®tad moderate empirical support, there
was a large\; for the null model. On glacial landforms, mounthemlock abundance
increased with higher topographic position, de@daadiation, decreased distance to
overstory canopy, and increased distance to henaeefstory canopy. The same explanatory
variables (except elevation) describing mountaimlbek abundance on the glacial landforms

were present in the best debris flow model. Ini@st to models of mountain hemlock
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abundance on glacial landforms, there were moeergltive models, and a much smaller
for the null model of mountain hemlock on debr@afllandforms. This was interpreted as
evidence of strong associations between mountaimdok abundance and explanatory
variables on glacial landforms, but much weakeoecissions on debris flows. In the best
model for mountain hemlock model on debris flondmmms, hemlock was more abundant
with increased TOPO, decreased RAD and CANDIST iaciased TSMEDIST. For
mountain hemlock on both landforms, TOPO had ttengest fixed effects.

For Pacific silver fir on glacial landforms, thesbenodel of abundance included:
RAD, TOPO, CANDIST, and ABAMDIST. Two other moddiad substantial empirical
support, two had moderate support, and there vag@A; for the null model. Pacific silver
fir abundance on glacial landforms increased wettuced ABAMDIST and RAD, and high
TOPO. There were multiple models of Pacific silifeon debris flow landforms with
substantial and moderate empirical support, aloitly a/smallA; for the null model. This is
interpreted as the presence of strong associdiiemgen Pacific silver fir abundance and
explanatory variables on glacial landforms, and mureaker associations on debris flows.
On debris flow landforms, Pacific silver fir abumga increased with higher TOPO and
decreased ABAMDIST. ABAMDIST had the strongestfixeffects on glacial landforms,
while TOPO had the largest fixed effects on dethois landforms.

Interactive Effects of Climate and Microtopography on Tree Establishment

Sufficient sample numbers were only available &b ii@eractive effects of climate
and microtopography on mountain hemlock initiaebshment on both landforms, and
mountain hemlock secondary establishment on glimalforms. From the 56 years of
climate data, 21 were categorized as high snoafalllow temperatures, and 35 years as low
snowfall and high temperatures. Initial establiehtrof mountain hemlock on glacial
landforms occurred on high topographic positionsnduyears of high snowfall and low
temperatures, and on lower topographic positiomsdwyears with reduced snowfall and
increased temperatures (Table 3.4). Establishohainig low snow periods occurred on
topographic positions with values around zero (apipnately mid slope). Secondary
establishment on glacial landforms did not occunuero sites with different TOPO or

elevation values during different climate perio@n debris flow landforms, initial
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establishment of mountain hemlock occurred at highevations during years of increased
snowfall and reduced temperatures. On glacialftants, observed abundance of initial
establishment on high topographic positions oratiem was not different than expected
during high or low snow periods (Table 3.5). Hoeeat low topographic positions, observed
abundance of initial establishment was greater éxgected during low snow periods. This
suggests micro sites likely to have greater snawigtence require low snow periods for tree
establishment, and tree establishment continuesgitirese low snow periods on sites likely
to have reduced snow persistence. On debris Bodfbrms, both initial and secondary
establishment was not different than expected gh br low topographic and elevations

positions during low or high snow periods.

DISCUSSION

This study provided a unique opportunity to exantivespatial and temporal patterns
of tree establishment within the FTE at landscapaitro site scales. Previous studies have
documented FTE movement and increased tree e$iaelig in subalpine meadows (Lloyd
and Graumlich 1997, Miller and Halpern 1998, Didi601), but methodological constraints
prevented them from explicitly separating increandsee density from landscape-level FTE
movement and meadow invasion. In contrast, thidystound large increases in the
proportion of the Jefferson Park landscape occupyetlees over the past 50 years. The
results of this study suggest tree invasion has bamaporally and spatially constrained over
time by a multi-scale hierarchy of climatic, landfg microtopographic, and biotic controls
(Figure 3.7). | propose that the effects of reglatrivers (e.g. snow fall) are modified by
landscape-level patterns of microtopography an@tagmn structure. These interactions are
the primary controls of tree establishment, whiféecences in species seed sources and
regeneration ecology additionally constrain midte favorability. Finally, interactions
between climate, landform, and microtopographyamdy influenced spatial patterns of tree
establishment, but also influenced establishmeaasrand resulted in complex establishment
responses to climate conditions over time. Pattana controls of tree establishment are
discussed below within a framework of increasinmptexity with decreasing spatial scale;
focusing on regional patterns of snow persistemcktaee establishment, how landforms and

microtopography influenced snow and tree establgtinthe role of biotic factors such as
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vegetation structure and regeneration ecology hamdclimate and physical factors

interactively generate complex tree establishmespanses across the studied landscape.

Show Persistence and Tree Establishment

Previous studies have hypothesized snow deptheasbgral persistence are the
primary spatial and temporal controls of FTE movetrand invasion of meadows in the
Pacific Northwest region (Franklin et al. 1971 Wadd et al. 1995, Miller and Halpern
1998). These studies correlated temporal pattdrtiee establishment with regional climate
data, but did not co-measure tree establishmensiaod depth on the same sites across
topographic or other environmental gradients. @guently, these previous studies provided
relatively weak inference regarding the role ofwgras the primary driver of temporal and
spatial patterns of FTE tree establishment. Caardisvith these past studies, | found
correlations between tree establishment and reggomaual snowfall. | also found early
summer snow depth and tree abundance were assbgititeboth landform and
microtopographic variables, supporting the hypdthsat snow depth and persistence exert
temporal and spatial controls on tree establishimetiie FTE. It should be noted that
associations between snow depth and tree estalgligimthe Pacific Northwest region
contrasts with patterns documented in other climeganes. For example, in the more arid
and windy continental climate of the Rocky Mounsaiimcreased snow depth facilitates tree
establishment by increasing soil moisture; redugiimgl desiccation, and moderating
temperature extremes (Holtmeier 2003, Geddes 20@b, Hiemstra et al. 2006) , although
very deep snow can still inhibit establishment ¢eldschwiler and Smith 1999, Maher et al.
2005). This highlights how tree establishmentim ETE can have contrasting responses to

regional climate.

Landform and Microtopographic Controls of Show Persistence and Tree Establishment

Landforms, and microtopographic gradients nestekinvithem serve as the physical
template which modifies spatial patterns of la@ss@ snow persistence, and therefore tree
establishment. Snow depth was greatly reducedbrisiflows versus glacial landforms,
despite plot data with similar distributions of mitopography and distance to overstory
canopy. LiDAR provides a synoptic view of largantlscape patterns that influence snow

depth. Debris flows had more uniform ground elievet, lower and less variable vegetation
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heights, and increased distances to overstory gamegulting in a smoother surface
compared to glacial landforms. Smoother surface® iewer depressions for snow
deposition and higher surface wind speeds, whiahrcaease wind redistribution of snow
(Marks et al. 2002, Litaor et al. 2008). | proptisat wind redistribution on debris flows
partially results from a lack of control by surfeaateucture, which is more strongly developed
on glacial landforms, resulting in different scatesitrolling of snow distribution (sensu
Trujillo et al 2007). Differences in surface raéa balance between the two landform types
may result in different snow melt rates, sincedbeer of soil and different vegetation types
which vary by landform have different albedos (Eegst al. 2000). However, albedo
differences between landforms is unlikely to cadaselform-level differences in snow depth
observed. Different land cover types have oveitapplbedo values, and sparsely vegetated
mineral soil can have a higher albedo than alpegetation and conifers, not less as would be
needed to increase melting on the more sparsebtaty debris flows (Goodin and Isard
1989).

Temporal and spatial patterns of tree establishimgpear to have been driven by
differences in snow persistence associated wittifétems and microtopography within
landforms. Rates of establishment have been greateéebris flows, where reduced snow
depth and persistence increase growing seasorlbggtltering surface radiation balance
(Ling and Zhand 2005). Relationships betweendiaemdance and microtopography are
much weaker on debris flows versus glacial land&roonsistent with landform-scale wind
redistribution of snow. Debris flows have been enfaivorable for tree establishment than
glacial landforms, although substrate factors ateel to snow persistence may contribute to
this. Although glacial landforms had a high petage of rock cover, debris flow substrate
has a large component of exposed coarse gravelate, fine scale heterogeneity which
may facilitate seed trapping and provide safe $tteplant establishment (Jompponen et al
1999). Compared to glacial landforms, debris fldvad three times greater mineral soil and
reduced vegetation cover, which are generally thbtgpromote germination and
establishment of many conifer species (Smith et@37). This would suggest reduced snow
cover at the landform-scale resulted in highersrafdree establishment on debris flows,
although additional factors such as substrate agdtation competition may also facilitate

increased tree establishment.
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In addition to fundamentally altering the biophygicontrols of snow persistence,
debris flows are also high-severity disturbancenesjeburying almost all organic matter and
vegetation, after which primary succession wasaitatl. Studies of FTE tree establishment in
response to disturbances have primarily focusddwer-severity disturbances such as
wildfire and/or grazing (Debenedetti & Parson 19v8le 1981, Butler 1986, Stueve et al.
2009). Prior research suggests deterministic ssemeal pathways (Henderson 1973, Chapin
et al. 1995) and long time periods for trees taldith at high elevations and latitudes post-
disturbance (Agee and Smith 1984, Arseneault agdtal1992, Coop and Schoettle 2009).
In this study debris flow landforms were rapidlijfaized by trees and rates of tree
establishment were greater than on glacial landpemggesting more rapid post-disturbance
tree establishment is possible at high elevatibtisidisturbance results in favorable site
conditions and seed sources are available. Cotmtaeore deterministic concepts of
succession, rapid development of a young mountinidck forest on debris flows suggests
there are multiple successional pathways, whichbeaa function of landscape context, seed

availability, and stochastic events (Fastie e1985, del Moral et al. 1995).

Biotic Controls of Show Persistence and Tree Establishment

Vegetation structure was another important inflgeoic both snow persistence and
tree establishment. Proximity to overstory canapg associated with reduced snow depth,
consistent with the “tree well” pattern of reducgebw accumulation and increased snowmelt
under canopy, resulting from interception, sloughend enhanced incident thermal radiation
(Faria et al., 2000, Sicart et al. 2004). Thisisontrast to studies in more arid and windy
regions, were extensive wind redistribution cawssesv to accumulate within and to the lee
side of trees and taller vegetation (Holtmeier 2@®8&ddes et al. 2005, Hiemstra et al. 2006).
Compared these drier and windier regions, windstadution in the Pacific Northwest is
likely to be less significant as a result of lowmend speeds and greater snow densities (Elliot
et al. 1987, Mizukami and Perica 2008). The absefdlagged and krummbholz trees also
indicates relatively lower wind speeds within thedy area. Tree wells form on glacial
landforms where fine scale structures exert stammgrols on snow distribution. However, on
debris flows, they are less likely to form givee treater importance of wind and reduced

influence of fine scale topography and vegetattouncture.
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Spatial and temporal patterns of tree invasion \aée strongly influenced by the
autoecology of the tree species present. Distliooecon-specific overstory (potential seed
sources) was the most important biophysical vagialskociated with Pacific silver fir
abundance, with increased establishment assodidiiedloser proximity to potential seed
sources, but this relationship was much weaketdeswiconsistent for mountain hemlock.
The seeds of both species are wind dispersedhéwseteds of Pacific silver fir are 9 to 22
times heavier, resulting in shorter dispersal dists (Bonner and Karrfalt 2008). Pacific
silver fir is also a poor seed producer and itsesoran suffer high predation from insects and
rodents (Owens and Molder 1997, Bonner and Kar2fl3). Short dispersal distances, poor
seed production, and high potential seed predatiggest tree invasion into meadows may be
more spatially restricted for Pacific silver firahh mountain hemlock due to recruitment
limitations, even when suitable micro sites existshould be noted that separating the
influences of all overstory on snow depth versugmital seed source limitation for mountain
hemlock was complicated by the species dominanteeiloverstory (63% of overstory
canopy area), possibly resulting in multi-collingaconfounding statistical models of
mountain hemlock abundance. Despite these confiogifigictors evidence supports seed
limitation for Pacific silver fir, with inconcluse/ evidence of seed limitation for mountain
hemlock.

Trees may also facilitate secondary tree estabbstimnderneath them via species
differences in shade tolerance and other autogeadifications of site conditions. Mountain
hemlock was the dominant tree species initiallgleghing on both glacial and debris flow
landforms, while Pacific silver fir was more rested to establishing underneath hemlocks.
Mountain hemlock and Pacific silver fir are veryadb tolerant and can persistent as
suppressed individuals in stands for up to 100sy@@ranjina 1969, Minore 1979, Packee et
al. 1981). However Pacific silver fir is believedbe slightly more shade tolerant and slower
growing when young (Kranjina 1969, Crawford andv@1i1990), and mountain hemlock
hemlocks grow best in partial shade (Means 19@@xrelations between site occupancy and
annual climate variables were not weaker for seagndersus initial establishment,
suggesting initially establishing trees do not verak&limatic controls of tree establishment
over time via autogenic site modification as sugggdy Miller and Halpern (1998).

However, initial establishment of mountain hemlackglacial landforms occurred on
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different topographic conditions during high ana lsnow climate periods, but secondary
establishment did not. This would suggest somekerag of climate and topographic
controls on secondary establishment, which maytrésin autogenic modification of site
conditions. In combination, biotic factors mayqaaspatial constraints on tree establishment
because of species-specific recruitment limitateord may facilitate tree establishment in the
future via both overstory effects on snow depth amthgenic weakening of scale-dependent

climate-site-establishment interactions.

Interactive Responses of Tree Establishment to Climate, Landform Type, and
Microtopography

Multi-scale interactions of snow depth, landformpeymicrotopography, and
vegetation structure not only influenced the spatdterns of tree establishment, but also
resulted in complex establishment responses tatdimGlacial landforms had slower rates of
tree establishment which were positively associat reduced annual snow fall. On debris
flow landforms, tree establishment was more ragégoupled from annual snowfall, and was
even associated with increased spring snow falNeithe low snow depths and coarse well-
drained substrate, tree establishment on debrislfindforms may be somewhat moisture,
rather than thermally limited. This is countethe belief that tree establishment in subalpine
forests and the alpine FTE is thermally limitedowéver, moisture limitation of tree growth
has been documented in the boreal forests and &TE (Barber et al. 2000, Wilmking et al.
2002). This study suggests that both thermal ditinih (via snow persistence) and moisture
limitation may occur for tree establishment, depegan the landforms and substrate within
the study area.

Regional snow fall was associated with rates of main tree establishment on glacial
landforms over time, while micro site biophysicahditions (i.e. microtopography, elevation,
overstory modified snow depth, and distance torg@keseed sources) appear to control the
spatial pattern of tree establishment. This stodynd evidence of climate and micro site
variables interactively controlling both the sphtisstribution and temporal rates of tree
establishment in the FTE, which has implicationrsHOE sensitivity to future climate change.
During years with high snow fall, initial hemlocktablishment was restricted to ridge tops
and upper elevations. During years with low snally mitial hemlock establishment

continued on high topographic positions, but alscuored at lower topographic positions and
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lower elevations. Increased establishment occlonddwer positions on glacial landforms,
but not on debris flows. Similar climate-site-édishment interactions have been observed
within the Pacific Northwest region at much largpatial scales of entire mountain ranges
and across much larger gradients in topographiedaghic factors (Woodward et al. 1995,
Rochefort and Peterson 1996, Miller and Halperm8l9®owever, in these regional-scale
studies, tree establishment declined on siteslaitier average snow depth during low snow
periods. This study suggests climate-site-tregblishment interactions may be both scale
dependent (varying in strength when going fromaedgi to individual meadow/micro site
spatial scales), and also landscape context depe¢idehis case the influence of landforms

on microtopographic features nested within them).

Sudy Limitations and Uncertainty

Inferences made in this study about the spatiatemgoral patterns of tree
establishment, and the underlying controls of theedterns are drawn from retrospective and
observational data from one landscape. As sutdrpretations and inferences drawn from
this study have various limitations and uncertaaggociated with them. Inference regarding
spatial patterns of snow in relation to biophysfeators was based on snow depth
measurements taken at a single point in time Jlatg of 2008). Biophysical variables did not
explain a large amount of the spatial variatiosnow depth. Similar studies within the region
are lacking, but in an agricultural setting Laped 8artz (1996) found similar variance of
snow depth explained by topographic variables atpayable spatial scales (10 m pixel versus
2 min this study). This suggests a high degrestagfhastic variability in fine-scale spatial
patterns of snow depth, but still demonstrates iggpatterns in relative snow depth are
related to microtopography, and vegetation strectunter-annual spatial variation of snow
depth likely occurs, and might be reflected in tietdy low variance in snow depth described
by biophysical controls. Despite the likely termglorariation in spatial patterns of snow
depth, general patterns of relative snow depthyligersist at both intra- and inter-annual time
scales (Heegaard 2002, Williams et al. 2009), sstijggegeneral patterns of snow are
generally valid beyond the single year of dataemibn.

This study was unable to determine the role ofliwek grazing and its cessation on

tree invasion in the meadows. It is unlikely gnagor its cessation have played a role in rapid



84

tree invasion of the 1934 debris flow, since theoelld not have been significant forage for
livestock due to the burial of almost all vegetatidOn glacial landforms increased rates of
tree establishment do appear to coincide with ptessiessation of sheep grazing. However
grazing history for the study area is qualitatine aegional in nature, and cannot be used to
guantify the timing or intensity of grazing withine Jefferson Park study area.

One objective of this study was to quantify trelelsshment in relation to regional
climate records. Consequently, sampling focusegommger trees, preventing detailed
examination of trees established prior to the 192®Retrospective studies such as this one
cannot detect tree establishment which may hawe slisappeared due mortality events. This
has been the case on the debris flows, wherettiaepreviously occupied those sites were
either buried or transported off site in 1934. sTlimnitation was addressed by restricting the
temporal scope of inference for this study to metpte 1934. There are no documented
wildfires within the study area, nor are there higlogical legacies such as large woody
debris, stumps, snags, or remnant trees indicafipast disturbances (sensu Franklin et al.
2002). However, mortality events in prior decadassed by multiple extreme snow years or
avalanches could have resulted in mortality of yps@edlings which would not be detectable
during field sampling. The lack of such extremerdag within the historical or proxy climate
records suggests such mortality events are unlikéhin this studies temporal scope of
inference, but would become more problematic i€agied before 1940 when extreme mutli-

year droughts may have been more common regiof@égalof et al. 2004).

Implications for Future FTE Movement and Subal pine Meadow Invasion

Tree establishment in this study was temporallp@ased with low snowfall and
higher annual and spring temperatures. The sicongol snowpack has had on tree
establishment across the region over the pastiBeades is likely to continue in the future.
Snowpack in large areas of the FTE in Oregon anghiigton many be sensitive to increased
temperatures, and regional snowpack may be degl{iMiote 2003, Mote et al. 2005, Nolan
and Daly 2006). Regional models suggest declimesdw water equivalency by 11 to 70
percent in the Pacific Northwest by 2050 (Salathe.2008, Casola et al. 2009, Salathé et al.
2009). However, regional precipitation and snoanseios are major shortcomings of climate

models (Randal et al. 2007). Until regional snoedels are improved to provide transient,
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spatially-explicit, and annual predictions of snpack, scenarios of FTE change will be
dependent on highly uncertain snowpack scenariasghpatial and temporal scales are not
compatible with the ecological patterns and proees$ tree establishment observed in this
study.

Even if future climate conditions are favorable ti@e establishment, this research
suggests FTE movement and meadow invasion wilidf@yhvariable, driven by multi-scale
interactions of climate, landform type, microtopaginy, existing vegetation structure, seed
source limitations for some species, and disturbaegimes. Tree establishment has largely
occurred on high topographic positions, with mutthe meadow landscape in low
topographic positions displaying micro sites camesiy unfavorable for tree establishment
over the past fifty years. If these low topograpbosition microsites maintain late season
snow persistence even during reduced regional stlpwifey will likely persist as unfavorable
sites for tree establishment in the future. Addi¢illy, seed dispersal limitations for some
species (such as Pacific silver fir and the singlavalpine fir) may also constrain tree
establishment and FTE movement where these spdmmeisiate. Counteracting micro site
and seed dispersal constraints could be autogeeidtbficks of tree establishment, where trees
influence micro site conditions making adjacenalelishment more likely even under
unfavorable climate conditions. The temporal gratial extent of these feedbacks is largely
unknown, but may play a large role in future treeasion in meadows as favorable sites in the
landscape are increasingly occupied and only Igedoaphic meadows remain on the
landscape. The results of this study suggest derable limitations for regional and global
simulation models attempting to project future FBvement or meadow loss; estimating
since multi-scale and multi-species responseseoFIFE to climate change may not be
possible by downscaling larger models of climatesing simple single species responses to

climate.
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Table 3.1. Biophysical characteristics of landfefipased on field plots and LIDAR
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measurements.

Glacial landforms  Debris flow landforms
Plot variables (percent cover) mean sd mean sd df tvalue p
Vegetation 53.31 25.38 47.04 25.24 283.45 254 0.0116
Bare Soil 5.20 13.03 18.21 24.22 187.05 -6.21 0.0000
Rock 10.78 16.92 7.31 12.89 365.09 2.50 0.0128
Litter 14.53 18.98 16.57 18.09 294.65 -1.14 0.2570
Coarse Wood Debris 0.70 3.67 1.21 3.98 262.68 -1.33 0.1859
Moss 12.73 15.09 8.07 12.60 33459 3.57 0.0004
Lichen 1.09 2.29 0.31 1.30 461.23 4.82 0.0000
LiDAR-derived variables mean sd mean sd
Elevation (m) 1790.49 6.47 1783.51 5.38
CANDIST (m) 12.26 11.28 25.22 18.95
RAD 3820.02 178.46 3836.05 85.32
TOPO -0.01 0.30 -0.02 0.19
Vegetation Height 2.24 4.52 1.12 2.27

Note: CANDIST is the distance to overstory candpipD is potential relative radiation, and
TOPO is the topographic position index. Differenbetween variables collected on field
plots were assessed using Satterthwaite t tesisnagg unequal variances. LiDAR-derived
variables are a complete census of entire study aceno statistical tests for differences
between landform types were conducted.
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Table 3.2. Selected, supported, and null modeiseefabundance by species and landform
type in relationship to biophysical explanatoryizghles.

Species  Landform Explanatory variables in model AlCc A;
mountain glacial RAD TOPO ELEV CANDIST TSMEDIST 1865.56 0.00
hemlock RAD TOPO CANDIST TSMEDIST 1866.67 1.11
NULL 2106.47 240.91
mountain debris RAD TOPO CANDIST TSMEDIST 603.16 0.00
hemlock flow RAD TOPO TSMEDIST 604.55 1.40
TOPO CANDIST TSMEDIST 605.00 1.84
RAD TOPO ELEV CANDIST TSMEDIST 605.71 2.55
RAD TOPO 605.82 2.67
RAD TOPO CANDIST 606.28 3.12
TOPO TSMEDIST 606.80 3.64
RAD TOPO ELEV CANDIST TSMEDIST 606.88 3.73
TOPO ELEV CANDIST TSMEDIST 607.04 3.89
NULL 612.14 8.99
Pacific glacial RAD TOPO CANDIST ABAMDIST 1868.33 0.00
silver fir RAD TOPO ABAMDIST 1868.95 0.62
RAD TOPO ELEV CANDIST ABAMDIST 1870.39 2.06
RAD TOPO ELEV ABAMDIST 1870.99 2.66
NULL 2245.46 377.13
Pacific debris TOPO ABAMDIST 438.44 0.00
silver fir flow TOPO ELEV ABAMDIST 439.08 0.64
TOPO CANDIST ABAMDIST 439.17 0.73
TOPO ELEV CANDIST ABAMDIST 439.93 1.48
RAD TOPO ABAMDIST 440.60 2.15
RAD TOPO ELEV ABAMDIST 441.20 2.76
RAD TOPO CANDIST ABAMDIST 441.38 2.94
RAD TOPO ELEV CANDIST ABAMDIST 442.12 3.68
NULL 483.18 44.74

Note: Akiake Information Criterion for small saradizes (AlG), and delta AIG (A;) values.
Determination of empirically supported model in Atiddel selection follows
recommendation of Burnham and Anderson (2002).|dBgtory variable are: potential
relative radiation (RAD), topographic position iedd OPO), elevation (ELEV), distance to
overstory canopy (CANDIST), distance to mountaimloek overstory (TSMEDIST), and
distance to Pacific silver fir overstory (ABAMDIST) meters.
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Table 3.3. Fixed effects of explanatory varialitethe best empirically supported modets (
= 0) of tree abundance by species and landform type

Explanatory  Fixed effects solutions Type lll fixed effects
Species Landform variable estimate  se Icim uclm df f value p
mountain glacial RAD -0.0023 0.0003 -0.0030 -0.0016 1,368 46.5574 0.0000
hemlock TOPO 15975 0.1224 1.3568 1.8382 1,368 170.3093 0.0000
ELEV 0.0232 0.0132 -0.0027 0.0491 1,368 3.0953 0.0794
CANDIST 0.1318 0.0249 0.0828 0.1808 1,368 27.9603 0.0000
TSMEDIST -0.1229 0.0250 -0.1721 -0.0736 1,368 24.0736 0.0000
mountain debris RAD -0.0022 0.0010 -0.0042 -0.0003 1,99 5.4005 0.0222
hemlock flow TOPO 0.8314 0.2564 0.3226 1.3403 1,99 10.5122 0.0016
CANDIST -0.0386 0.0194 -0.0771 0.0000 1,99 3.9436 0.0498
TSMEDIST 0.0468 0.0191 0.0089 0.0846 1,99 6.0144 0.0159
Pacific glacial RAD -0.0017 0.0003 -0.0023 -0.0010 1,369 25.4059 0.0000
silver fir TOPO 0.5289 0.1312 0.2709 0.7869 1,369 16.2488 0.0001
CANDIST 0.0133 0.0082 -0.0029 0.0295 1,369 2.5898 0.1084
ABAMDIST -0.0636 0.0073 -0.0778 -0.0493 1,369 76.8308 0.0000
Pacific debris TOPO 1.5349 0.2817 0.9762 2.0937 1,101 29.6962 0.0000
silver fir flow ABAMDIST -0.0289 0.0068 -0.0424 -0.0155 1,101 18.1728 0.0000

Note: Explanatory variable codes as defined imtle¢hods section and Table 2.2.
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Table 3.4. Mean (with 95% confidence intervalsjogfographic position (TOPO) and
elevation (ELEV) on micro sites where mountain heckltrees established during periods of
high snowfall with low temperature (HSLT), and Iewowfall with high temperatures
(LSHT) regimes.

Establishment Landform Topographic Climate Regime Z value p
Type Type Variable HSLT LSHT
initial glacial 41 trees 99 trees
ELEV 1791.68 (1790.01, 1793.35) 1791.07 (1790.04, 1792.1)  0.7419 0.4594
TOPO 0.24 (0.16, 0.33) 0.09 (0.02, 0.16) 2.5941 0.0105
initial debris flow 23 trees 28 trees
ELEV 1782.61 (1781.92, 1783.3) 1781.06 (1780.05, 1782.07) 2.1209 0.0389
TOPO 0.05 (-0.05, 0.15) -0.04 (-0.14, 0.07) 1.0036 0.3204
secondary glacial 11 trees 14 trees
ELEV 1790.01 (1786.09, 1793.92) 1793.25(1790.1, 1796.41) -1.5066 0.1450
TOPO 0.26 (0.05, 0.48) 0.05 (-0.1, 0.21) 1.5066 0.1450

Note: Differences between HSLT and LSHT periodsevassessed using Wilcoxon-Mann-
Whitney tests. Climate variable codes as desciibbéite methods section. Micro site
variable codes as described in the methods seatidTable 2.2.
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Table 3.5. Observed versus expected tree estdbtishountain hemlock by landform and
establishment type, on micro sites with high awd opographic positions and elevations
during high snow low temperature (HSLT) and lowwrtogh temperature (LSHT) climate

periods.

Landform Topographic

Topographic

Climate Regime

Type Variable position HSLT LSHT p
glacial TOPO high observed 28 41

expected 26 43  0.8616
glacial TOPO low observed 13 61

expected 28 46 0.0009
debris TOPO high observed 9 8

expected 6 11 0.4905
debris TOPO low observed 15 21

expected 13.5 22.5 1.0000
glacial ELEV high observed 22 47

expected 26 43  0.5921
glacial ELEV low observed 18 56

expected 28 46  0.1094
debris ELEV high observed 15 11

expected 10 16  0.2668
debris ELEV low observed 7 17

expected 9 15 0.7601

Note: p values are from Fisher’s exact test. Etqubvalues are the observed row totals

multiplied by the percent of years in the climageard within HSLT and LSHT climate

periods.
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Figure 3.1. Study area location. (a) State of Gmegith the Cascades ecoregion in gray, the
Cascades crest and montane zone in black, andogubahd alpine areas in dark gray. The
Jefferson Park study area (red star). (b) showstidy area (black outline) in relation to
Mountain Jefferson. (c) close up image of thep@ma, plots (light yellow circles) , and
debris flows (shaded red). Light grey lines arer28ontour intervals.
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Figure 3.2. Regional snow fall and temperaturenfselected climate stations during the 1951
to 2008 time period. Annual minimum, maximum, anelam temperature, annual snowfall,
and spring (April thru June) snowfall for the Gawerent Camp==), Santiam Junction-{),
Marion Forks ), and Belknap Springs{) stations.
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a) Topographic position index b} Potential relative radiation c) Ecological exposure index
T = (EEN) S

[

d) Distance to overstory canopy || e) Matrix of EEl and CANDIST f) Moving window analysis

h) Example of clustered i) Canopy mapping
plot stratification by species
N
o
o o
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o ©
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Figure 3.3.Constrained stratified random sampling design s@psOPO explanatory
variable grid, b) RAD explanatory variable grid, TQPO and RAD are relativized by their
respective standard deviates and averaged to gertieeaEEI grid, d) distance to overstory
canopy (vegetation greater than 8 m tall), e) 28<natrix of all combinations of EEI and
CANDIST, f) moving window analysis to find 100 * @0n areas with all 25 class
combinations of EEl and CD_ALL. Areas with all 2%ata are shown as red squares, g) final
locations of 500 field plots shown as yellow ddtsexample 25 plot cluster stratified random
sampling in relation to 25 strata. Plots are yeltims, pixels are colored by the 25 sampling
strata, i) example of overstory canopy maps byisgen relation to a 100 * 100 m cluster
showing mountain hemlock (dark green), Pacificesiffir (light green), and Alaska yellow-
cedar (yellow) overstory canopy.
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Figure 3.4. Count of trees less than 8 m tall lawigl (a) and debris flow (b) landforms,
cumulative proportion of sites occupied by treeddoyiform and establishment type (c), and

annual rates of site occupancy (d) in relationsleded regional snow fall (€) and temperature

variables (f).
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Figure 3.5.Pearson correlation coefficients between rateg@bscupancy and climate
variables for: a) snowfall, and b) temperature.  peacy rates and climate variable data are
for 3 year periods. Solid circle are for initiataslishment, hollow circles are for secondary
establishment, glacial landforms are shown in blackl debris flows are shown in gray. Error
bars are the upper and lower 95% confidence liafitorrelation coefficients. Correlations
are significant at the 0.05 level if error barsmbb intersect zero (highlighted with an asterisk
above the bar).



Snow Depth (m)

1.8

1.6 |
1.4 |
1.2 ]
1.0 |
0.8 1
056 -
0.4 1

Snow Depth (m)

0.2

1.6

Snow Depth (m)

Glacial Landforms

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1798
1797
1798
1798
1800

Elevation (m)

1.0
Topographic Position Index (TPI)

-0.5 0.0 0.5 1.5

—8— 1782
—8— 1783
—¥— 1784
—&— 1785
—0— 1788
—— 1787
—o— 1788
—— 1789
—a&— 1790
—v— 1791
—8— 1792

Elevation (m)

0 10 20 30 40 60

Distance to Overstory Canopy (m)

Topographic Position Index (TPI) : s

Py -0

Distance to Overstory Canopy (m)

Snow Depth (m) Snow Depth (m

Snow Depth (m)

0.5

0.0

0.28

0.26 1

0.24 1

0.22 1

0.20 A

0.18 1

0.16

0.6

0.5 |

0.4 -

0.3 1

0.2 1

0.1

0.0

107

Debris Flow Landforms
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CHAPTER 4: MODELING TREE INVASION OF A SUBALPINE MEADOW
LANDSCAPE, OREGON CASCADES, USA.

ABSTACT

Climate-driven treeline movement and invasion dfsdpine meadows have been
documented across wide ranges of geographic lowsatind controlling factors. Treeline
movement can in turn influence temperature feedhazdrbon sequestration, and biodiversity
at multiple spatial scales. Large-scale specigsilouition models (SDMs) suggest climate
change will shifts species distributions and biorued reduce biodiversity. Local scale
SDMs incorporating downscaled climate models suggeal high-elevation persistence of
species habitat, but do not specifically model ptageneration in relation to the many non-
climatic biophysical parameters important for tieelestablishment (i.e. dispersal limitations,
micro sites, biotic interactions, and disturbancé®)is study developed a fine-scale (2 m
pixel size) spatially explicit statistical modeltoge invasion into a subalpine meadow
landscape in the Oregon Cascades, simulating itgtdree invasion from 1950 to 2007, and
potential future invasion from 2007 to 2064. Thedal incorporated temporal data from
regional climate and tree-ring establishment reican8ons, and used Light Detection and
Ranging (LIDAR) data to characterize micro sitaetib interactions based on vegetation
structure, and a historical debris flow disturbaagent. From 2007 to 2064 tree invasion was
modeled under six different annual snowfall scargwith three levels of snowfall declines
from historical means (0, 25, and 50 percent des)incrossed with two levels of forcing
persistent three year periods of extreme highwrdoowfall (forcing and no forcing). From
1950 to 2007, simulated historical meadow areaimgatifrom 82% to 65% of the study area.
Model outputs of historical area, spatial distribas, and spatial clustering of tree invasion
generally agreed with independent validation, argbest biotic interactions due to young tree
establishment facilitation are only important oaaihl landforms. Simulations indicate
meadows may decline by 36-43% from 2007 to 2064addws area declined with reduced
annual snow fall. Under all scenarios there wemsiptent areas of meadow without tree
invasion in 2064. This model suggests subalpinadoas may significantly decline in
relation to climate, but unfavorable micro sited agcruitment limitations may be equally or
more important factors in meadow decline and ptensi®, while also suggesting local high-

elevation persistence of subalpine meadows undearefglimate warming.
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INTRODUCTION

The boundary between forests and alpine/arctictaéiga (referred to as treeline,
subalpine parklands, or the forest-tundra ecotBil&), is a conspicuous feature of mountain
and high latitude landscapes throughout the wdflE positions are globally associated with
thermal deficiencies limiting plant growth (K6rnE98, Jobbagy and Jackson 2000). Arctic
and mountain ecosystems are believed to be sangitislimate change (Christensen et al.
2007, Fischlin et al. 2007), while varying degreéslimate-driven FTE movement have been
documented across a wide range of climatic regifoesst types, and land use histories
(Harsch et al. 2009). Climate-driven FTE movenmaay have numerous ecological effects
including: temperature feedbacks resulting frorarell surface energy balances (Bonan et al.
1992, Beringer et al. 2005), changes in ecosysteloa storage (Prichard et al. 2000,
Wilmking et al. 2006), and the loss of alpine bi@dsity (Dirnbock et al. 2003, Halloy and
Mark 2003, Thuiller et al. 2005). The magnituddhadse ecological effects will in part be
determined by the extent and rates of FTE movemidotvever the sensitivity of FTE
movement and alpine/subalpine meadow invasionnwaté can be dependent on numerous
non-climatic biophysical factors (Miller and Halpet998, Daniels and Veblen 2004,
Holtmeier and Broll 2005, Zald 2010b), making iffidult to quantify FTE movement and
associated ecological effects in response to céiroange. Simulation models have the
potential to improve our understanding of FTE mogatunder future climate scenarios. At
global to regional scales, simulation models haaentused to project large geographic shifts
in biomes, species distributions, and biodiversitygesponse to future climate scenarios
(Bachelet et al 2001, Thuiller et al 2005, Rehfeldal. 2009). However, global and regional
models of species and vegetation distributionsuali&ely to generate realistic scenarios of
future FTE movement, because they do not modékaspatial resolution at which FTE
movement often occurs, and they tend to excludeyman-climatic factors which influence
tree regeneration at the FTE.

Species distributions models (SDMs) are the masingonly used approach for
simulating future species distributions and divgrsi response to potential climate change
(Guisan and Zimmerman 2000, Guisan and Thuilleb2D0 SDMs relate multiple abiotic
habitat characteristics with observed occurren€asspecies, fitting a bioclimatic envelope or

realized niche. Climate change scenarios canlibapplied to a species fitted bioclimatic
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envelope to simulate how the potential spatiakithistion of a species (or biodiversity in the
case of many species envelopes) may change intilvef However, global climate models
(and regional models generated by statistical doalivgy) used in SDMs may not realistically
simulate the effects of meso-scale topography andsicape context on temperature and
precipitation in mountainous landscapes (Salatla @008). This suggests scale
incompatibilities between existing climate modeisl apecies observations (Guisan and
Thuiller 2005, Randin et al. 2009). Scale incorifplities may be especially problematic at
the FTE, because climatic and non-climatic bioptsidiactors can control patterns of tree
establishment at regional to micro site spatialescéRochefort and Peterson 1996, Holtmeier
and Broll 2005, Zald 2010b). Coarse-resolutiomelie data also obscures fine-scale climate
variability in mountain landscapes, and localizedsgstence of favorable thermal habitat
conditions may allow species to persist in spitelohate change (Randin et al. 2009).
Another limitation of SDMs is their reliance on biionatic envelopes correlated to
species occurrences, but tree migration and FTEement are fundamentally determined by
seed-based regeneration (Lescop-Sinclair and Ral@®5, Smith et al. 2003). SDMs are
criticized for not incorporating many non-climafactors (such as dispersal limitations, biotic
interactions, and disturbance) important in deteimg species distributions (Woodward and
Beerling 1997, Davis et al. 1998). Regeneratiamagyics are not only problematic for
SDMs, but also difficult to accurately simulateaivariety of forest dynamics, succession, and
growth models (Price et al. 2001, Larocque et@D62 Pabst et al. 2008), suggesting many
existing modeling frameworks are poorly suiteditowdating regeneration dynamics
fundamental to the rates and extent of FTE movem@nicess-oriented forest regeneration
models explicitly parameterize resources levelsuignent, growth, and mortality (Pacala et
al. 1996, Wallentin et al. 2008), but these paransedre largely unknown for forests with
marginal or non-existent wood products value. Reealscenarios of future FTE movement
and tree invasion of alpine/subalpine meadowsreguire: modeling at spatial resolutions
comparable to the patterns and processes of ttaalisement, and incorporation of tree
regeneration dynamics which are often influencedibyy non-climatic parameters (i.e. seed

dispersal, disturbance, biotic interactions, etc.).
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The primary objective of this study was to spafigltoject historical and near-term
future (1950 to 2064) tree invasion of a subalpmadow landscape in the Pacific Northwest
region of North America. In contrast to SDMs whidiflize bioclimatic envelopes and forest
dynamics, succession, and growth models which petexime processes such as fecundity,
dispersal, and growth; | developed an empiricaltyided statistical model to quantify tree
invasion in relation to deterministic spatial patseof tree invasion controlled by biophysical
factors (microtopography, seed sources, overstadyaung tree interactions, larger-scale
landform types), and probabilistic temporal patseshtree establishment in relation to climate
(specifically snowfall). Spatial and temporal patis of tree invasion were quantified from
results of Zald (2010b), which combined spatialtpleit tree establishment reconstructions
from tree-ring dating, regional historical climatata, and spatial characterizations of
microtopography and vegetation structure derivethftight Detection and Ranging
(LiDAR) data. Specifically, this model was devedojto address the following three
questions: (1) can fine-scale (2m pixel size) pag®f historical tree invasion be accurately
predicted? (2) how sensitive is future tree inviagend therefore meadow persistence) to
different future snowfall scenarios? and (3) are-olimatic factors such as landforms and

biotic interactions associated with different saigpiatterns of tree invasion?

METHODS
Sudy Area Description

The study was conducted in 132 hectares of JefidPsok (44°42' N 121°48" W,
1693-1814 m asl), a subalpine parkland immediateiyh of Mount Jefferson in the Mount
Jefferson Wilderness Area, Willamette National Bor®regon, USA. Jefferson Park is
within the High Cascades physiographic provincehefPacific Northwest region (Franklin
and Dyrness 1989). The climate is intermediate éetwMediterranean and maritime
temperate, with dry warm summers and significamtevi precipitation largely falling as
snow. The physiography of Jefferson Park is dotaoh@y glacial and debris flow landforms.
Glacial landforms consist of outwash and till depasduring the most recent glacial maxima
of the Holocene Epoch (Scott 1977). One debris fiocurred in 1934, depositing debris
0.36-2.4 m deep across 320,00baheastern Jefferson Park (O’Connor et al. 2064).

smaller undocumented debris flow in north JefferBark occurred at an indeterminate age
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prior to 1934. Soils of the study area are poddgumented, and consist of either rubble or
soils derived from glacial material, sedimentargitgpyroclastic ash flows, and volcanic ash
(MacDonald 1998). Additional details regarding ttienate, geology, and soils of the study
area can be found in Zald (2010a).

Mountain hemlockTsuga mertensiana) is the dominant tree species, followed by
Pacific silver fir @bies amabilis), found in single species and mixed-species stahtist of
these stands are “islands” of variable size angeslsarrounded by meadow vegetation.
Mature trees in these islands are generally 125@years old, but can exceed 400 years of
age (Zald 2010a). Results from Zald (2010a) irtdicaountain hemlock has been the
dominant species invading meadows for the pastd 2680 years. Subalpine fikl§ies
lasiocarpa), whitebark pine Rinus albicaulis), lodgepole pineRinus contorta), and Alaska
yellow-cedar Callitropsis nootkatensis) are also present, but in greatly reduced amdilegs
than two percent of recent tree establishment)e ®uits dominance in both older and
recently initiated stands, the models in this stiadyis exclusively on mountain hemlock

establishment

Modeling Overview

Mountain hemlock establishment was simulated uaispatially and temporally
explicit empirically-derived statistical model, Wiboth deterministic and probabilistic spatial
and temporal components. The study area was dmoudes a 595 x 737 grid of 2 m pixels
encompassing 132 ha. Tree establishment was dedwaross the study area during the
1950 to 2064 time period in 3-year time steps.eTngasion of meadows was modeled as the
presence- absence of trees represented as 2 g, pikéth was considered reasonable
because the slow growth and narrowly conical crosfmaountain hemlock will be largely
confined to the pixel size over the time periodiofiulation. The model is based on the
spatial and temporal patterns of tree invasioriation to landform type, microtopography,
vegetation structure, and climate from field datd analyses in Zald (2010b). The starting
spatial distribution of trees in 1950 was deterrdibg combining LIiDAR data of tree heights
with age-height regressions of dated trees sanipl2eid (2010a and 2010b). The base
model iterates each three-year time step from 5&&ing conditions to 2064 as follows
(Figure. 4.1):
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1. Pixels are selected as having the potentiaétimmaded by a tree if their spatial
probability of occupancy (Prgh) is greater than a randomly generated value.

2. The temporal probability of occupancy (Reah determines what proportion of
pixels in the landscape invaded at each time sitbpre selected pixels from step 1

having higher Praf,values are more likely to be invaded.

For each time step from 1950 to 2007, Ryglwas calculated as the proportion of
meadow area invaded by landform type (glacial v@d=bris flows), as reconstructed via tree-
ring dating in Zald (2010b). For projecting inteetfuture (2007 to 2064), Prgh, was
calculated from the relationship between the priopomeadow area invaded by landforms
type and maximum annual snowfall as determinedaid 22010b). This relationship between
tree invasion and snowfall was applied to six défe future snowfall scenarios representing
potential changes in the mean and temporal vaitiabil annual snowfall. In addition to the
base model described above, a second model (reéferges the facilitation model) was
developed where the probability of any given pbeing invaded can increase because of a
facilitation effect of young tree presence in adjatccells (Prof). Details of Prof;

Prohkem, Prol, starting configurations, and future snowfall ssréws are described below.

Spatial Probability of Mountain Hemlock Occupancy (Probgp)

The spatial probability of occupancy (Pgab was calculated from field data on the
biophysical controls of tree establishment in thuelg area (Zald 2010b). Tree establishment
was recorded on 499 2 m plots (390 on glacial kama$é and 109 of debris flow landforms),
located in a stratified random design in relatiomicrotopography and distance to overstory
canopy, both derived from airborne discrete retught Detection and Ranging (LIDAR).
Zald (2010b) found mountain hemlock establishmesd gpatially controlled by a multi-scale
hierarchy of landform type, microtopographic vakesh and distance to overstory.
Biophysical variables were associated with varirabblate summer snow depth, thought to
influence spatiotemporal patterns of FTE tree distalnent in the Pacific Northwest region of
North America via control of growing season len(fbnda and Bliss 1969, Franklin et al.
1971, Zald 2010b). Since 1950, mountain hemlogksion of meadows in the study area

was greater on debris flows versus glacial landéramd was greatest on micro sites with
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higher topographic position, potential relationiagidn, and elevation, and in closer proximity
to overstory canopy. For details regarding figlthpling design, data collection, and
statistical analyses of tree invasion in relatiobibphysical controls within the study area,
please refers to Zald (2010b).

Based on these previous findings of mountain heknloeasion in relation to
biophysical controls, an empirically-derived griidtloe spatial probability of tree occupancy
(Proh,a) was developed for the study area. The probgmfimountain hemlock presence
was modeled in relation to seven biophysical vdemfTable 4.1). Zald (2010b) analyzed
tree establishment in relation to only one finelstapographic position index variable
(TOPO1). However TOPOL failed to account for largeale depressions and drainages
where increased snow depth reduced the presemsewftain hemlock. To characterize
larger-scale topographic features, four additisopbgraphic position indices (TOPO2-5)
were developed with annuli ranging from 10 to 30threize, but only TOPO2 and TOPO4
were selected in model below.

The probability of mountain hemlock presence wasl@hed in relation to biophysical
variables with nonparametric multiplicative regieagNPMR) using Hyperniche version
1.39 (McCune and Medford 2004). Like linear regiass, NPMR quantifies the
relationships between a response and explanatogbles. However, NPMR represents
dependent variable responses to multiple explayatmiables based on kernel functions to
weight observations, rather than generating regnesoefficients for a model of fixed global
form. NPMR can be applied to data with many exalary dimensions, and
multidimensionality is provided automatically andltiplicatively (rather than additively as
in linear regressions), parsimoniously modelingdbmplex interactions among predictors
(McCune 2006). Separate models were developegaldts on debris flow and glacial
landforms. NPMR was run using a local mean wi@aaissian weighting function, binary
response, and the minimum average neighborhoodvsigeset at 5 percent of sample units.
Variables were retained in the final model if theyproved model fit by at least five percent.
The best fit model was evaluated by the log 1Meflikelihood ratio (11.8 and 3.55 for
glacial and debris landforms). The selected moflelountain hemlock presence on glacial
landforms had five explanatory variables (CANDISQPO1, TOPO2, RAD, and slope),

while four variables were selected on debris flandforms (CANDIST, elevation, TOPO1,
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and TOPO4). The sensitivity of tree presence th @aedictor variable was evaluated by
nudging each explanatory variable value one aha by +5% of its range throughout its
range. Sensitivity was calculated as the averbgelate value of the differences induced by
nudging the predictor (Table 4.2). Mountain herklpeesence was most sensitive to
CANDIST and TOPO2 on glacial landforms, and ELEM &L.OPE on debris flow
landforms. Monte Carlo permutation procedures werelucted for each model with 200
runs (p = 0.0040 and p = 0.0396 for glacial andiddlmw landforms), suggesting that model
fit was better than could obtained by chance ald@ieiilar to Yost (2008), a grid of the
probability of occupancy of each pixel (Pggab in the study area was generated by applying
the model response surfaces to a set of gridsseptiag each explanatory variable in the
model (Figure 4.2). Prgh:values ranged from 0.01 to 0.94, or a 1 to 94qudrchance of

being occupied.

Temporal Probability of Mountain Hemlock Occupancy (Probeny)

In the FTE of the Pacific Northwest region of No&imerica, temporal patterns of
tree establishment are strongly associated withi@nrariation of snow fall (Franklin et al.
1971, Woodward et al. 1995, Rochefort and Petet88%, Zald 2010b). Temporal
probability of tree occupancy (Prgh) was calculated in 3 year time steps as the reedtr
proportion of the study area by landform type ocedjby trees in a given time step, as
determined from tree establishment reconstructgngiree-ring dating in Zald (2010b). For
the 1950 to 2007 time period, Prghis simply the reconstructed proportion of the gtacta
invaded (without replacement of the area invadetfieémprevious time step) in three year time
steps. Prab,,was calculated using three year bins rather thanally because: (1) a large
number of individual years lacked new site invas{@) three year bins implicitly incorporate
FTE germinant mortality which is often high durithg first year, but declines during the
second and third years of growth (Rochefort anémiBeh 1996, Brang 1998, Germino et al.
2002), and (3) distorted and extremely small ringar the pith of dated trees could have led
to incorrectly aged trees by + 1 year in the tre@sion reconstruction in Zald (2010b). The
rate of meadow invasion by trees (without areaa@@hent) in the study area was negatively

associated with annual maximum snowfall on gldeiatiforms (adjustedR= 0.2887, Ity =
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8.308, p< 0.01034), but this relationship was not significan debris flows (adjusted’R -
0.0356, k17=0.382, p = 0.545) (Figure 4.3).

Future Showfall Scenarios (2007 to 2064)

For the 2007 to 2064 time period, Pggpwas calculated by applying future snowfall
scenarios to the regression coefficients and centid intervals from the historical
relationship between snowfall and tree invasioagatThere are currently no published
scenarios of future snowfall in the region withaamual temporal resolution. | developed six
future scenarios bounded by the most recent rebatinzate simulations which suggest future
April snow water equivalency (SWE) will declinetime Oregon Cascades roughly 20-40% by
2050 (Salathe et al. 2008, Salathe et al. 20089nual snowfall and April SWE at the Marion
Forks, Oregon weather station (44°36’N 121°57'W &i)3are strongly correlated for the
1950 to 2007 time period (linear regressiopssE 173.6, P < 0.0001, Adjusted R0.76),
suggesting changes in April SWE translate welhednnual snow fall data used in this study.
Salathe et al. (2008, 2009) also suggest therdowiihcreased snowfall variability and
extreme events, which have been largely absehteinggion for the past five centuries
(Gedalof et al. 2004). Based on the informatioovab six scenarios of future annual snowfall
were developed (Table 4.3) with three differentwmdsnowfall means (historical base, twenty
five percent reduction, and fifty percent reducticmm historical base), and two different
types of extreme event durations (same as therigiskoecord, and extreme snowfall periods
which persist for three consecutive years). Algitoaomparisons between annual snowfall
and April SWE were made using data from Marion Bpghowfall data used to generation
future snowfall scenarios come from the Governn@arhp weather station (45°18’ N
121°145 W, 1213 m), believed to more closely refflenowfall at Jefferson Park due to its
higher elevation (Zald 2010b).

For scenarios without prolonged extreme snowfargeit was assumed semi-decadal
variation of future snowfall would be similar toetpast 57 years of snow fall data. This was
achieved by iteratively applying loess regressiwits different span lengths to the historical
snowfall data. Wavelet analysis (morlet wavelanber six, numbers of power of 2 = 9,

significance level = 0.99) were conducted on eaeld iteration, and a loess span = 0.2
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resulted in wavelet power spectra that retainegy seimi-decadal variance in the loess curve
and 2-4 year variation in the loess regressiomuads. For each scenario a constant was
subtracted from the loess regression residualshigee the appropriate mean for a given
scenario (loess regression residuals have a mewoaahing zero). For each scenario, one
hundred iterations of 57 years were created byaahdassigning snowfall values within a
normal distribution based on the scenario mearstartiard deviation of loess regression
residuals using the function rnorm in R versionlAR Development Core Team 2009). The
loess regression line was then added to the siedifasiduals, resulting in 100 iterations for
each of the six snow scenarios with the desirechraed variance, while retaining semi-
decadal variability similar to the historical cliteaecord (Figure 4.4).

Prolonged extreme snowfall periods were generagdidi identifying all years
within each snowfall iteration where snow fall vgaeater or less than one standard deviation
from the mean. The following two years were thecafculated as randomly generated values
within a normal distribution of the snowfall dat#bset greater or less than one standard
deviation from the mean, dependent on if the indidreme year was a high or low snowfall
year. Itis important to note these snowfall scisahave not been developed as statistically-
downscaled regional climate models, nor do theyesgnt climate projections under different
emissions scenarios, although they are based avfalhecenarios from downscaled climate
models that do. Instead they represent a rangetehtial scenarios bounded by reasonable

estimates of future annual average snowfall antitgoral variability.

Facilitation of Tree Establishment by Existing Adjacent Young Trees (Probyagi)

In addition to seed source and micro site effettaature trees, young trees may
facilitate tree establishment in their immediateinity by alteration of micro site conditions
(Miller and Halpern 1998, Smith et al. 2003, Za@l@b). To quantify facilitation effects
from young trees (defined as trees less than eigiers tall), presence-absence data from
field plots was analyzed to determine how probgbdf occupancy was associated with
young tree presence in adjacent two meter pixé@bt@ixel neighborhood) when accounting
for Proly,s: Young tree presence in neighboring pixels wasrdgned from a grid of
vegetation height derived from LIiDAR data. To alobnfusing young trees with non-tree

vegetation, neighboring pixels were only considdoelde occupied by young trees if LIDAR-
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derived vegetation height was greater than 0.4&98' percentile of non-tree vegetation
height measured on all 499 plots. To avoid confygioung tree facilitation with that from
overstory trees, plots within four meters of ovengtcanopy were removed, leaving 243 plots
for analysis. Tree presence/absence on plotsporse to the number of the eight
neighboring pixels occupied by young trees was eatesing the logistic regression in SAS
version 9.2 (SAS Institute 2008). Logistic regress were run separately for each landform
type. Maximum likelihood estimates were significéor the number of neighboring pixels
occupied on both glacial and debris flow landfofms 0.0001 and p= 0.0025) when
accounting for Praf,;: Using logistic regression coefficients, pointiraates were generated
of the probability of occupancy due to young traeilitation (Prok;) when accounting for
Probyya;
[1] For glacial landforms:
Probaci = 1-(1/(1+(exp(-2.0128 + 2.4383*Prgh+ 0.4724*Count))))
[2] For debris flow landforms:
Prolaci = 1-(1/(1+(exp(-4.265 + 5.5685*Prgh+ 0.5007*Count))))

Where count is the number of eight neighboring Isieecupied by young trees.

Sarting Configuration and Model Runs (1950 to 2007)

The starting configuration for the year 1950 wédal@shed in three steps. First all
cells containing vegetation greater than eight nset#l as defined by the LIDAR data were
considered to be occupied by trees in 1950 (ovsrstees in Figure 4.3). This was
determined by height-age relationships from 398 menn hemlocks collected in the study
area (Zald 2010a). Tree height was related taiagey a fourth order polynomial regression
(F4304= 528.8, p = < 0.0001, Adjusted R 0.84), which found trees equal or greater than
eight meters tall to have established on or bef6&9 (95' percentile). Second, a conditional
statement was applied where Pygipixel values were retained if they were greatantixel
values of a randomly generated grid of equal dinesssand value ranges. The purpose of
this conditional statement was to generate stoichaatiability in Prol,,values. This
conditional statement was iterated 100 times, baddsults of all 100 iterations averaged. By

averaging many stochastic iterations of this Bgetonditional statement, the number of
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unique values was greatly increased without aljeitsdistribution. This was important for
the third step, when the averaged pixels of th&fxconditional statements were divided
into 1000 quantiles, with pixels in the top 9.0581&.551 percent of values assigned as
occupied in 1950 on glacial and debris flow landfsrrespectively. These starting
percentages are the proportions of the study aseduding vegetation over 8 m tall) occupied
by young trees in 1950 on both landform types (2411i0b). The starting configuration of
pixels occupied was merged with the Rpalgrid to obtain the starting configuration grid for
the model containing occupied cells (with cell v 1) and values of Prghranging from
0.01to 0.94.

From the starting configuration in 1950, threeat®ms of the condition statement
Prohy,,> random grid were run at each time step, wheo&Rrcell values were retained if
greater than the random generated grid cell vahresset to zero it they did not. The
products of these three iterations were averagetireen divided into 1000 quantiles. Grid
cells in the quantile equal or greater than Reglby landform type) were occupied at each
time step. Note that from 1950 to 2007, Rsglds deterministic (calculated from the
proportion of meadows invaded by trees over tiniixels not occupied in current or
preceding time steps retained their Bgglalue. In the model variant with young tree

facilitation, Proly,; was calculated for each grid pixel at the endamhetime step.

Model Validation (1950 to 2007)

Models were validated using two different datastees presence/absence data from
field plots, and LiDAR-derived estimates of tregdnion. Plot-level accuracy assessment
occurred for the 2007 model time by extracting nhiqguesence/absence data on pixels
corresponding to field plots. Using tree presemize#nce data from models (observed) and
field plots (expected); overall accuracy, errore@inmission and commission, and kappa
statistics (Cohen 1960) were calculated. Howeplet;based level accuracy assessments
represent a small percentage of the landscapegrantbt completely independent of data used
to construct the Prgh;model parameter. To address these concerns, Lifsa& of
vegetation height was used to independently vaidaddel accuracy of tree presence across
the entire study area. However, LIDAR data alselmaitations for accuracy assessments of

tree invasion. As noted in the description of ReglliDAR-derived vegetation height had to
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be greater than 0.4 m to discriminate betweenanekenon-tree vegetation, which excludes the
youngest trees. To determine the age threshatthiah young trees could be detected (i.e.
age of treez 0.4 m tall), the age and height of 287 mountaimlbeks from Zald (2010b)
were regressed (third order Polynomial regressidjusted R= 0.6, p < 0.0001), in which
trees less than 24 years old had 8 @&rcent chance of being less than 0.4 m tall.eBas
this regression, LiDAR-based accuracy assessmarts anly applied to models at the time
step associated with 1983. As with plot-based real&dation, overall accuracy, errors of
commission and commission, and kappa statistice walculated. Error maps of the study
area were also generated, comparing models in ttOB®AR-derived observations of tree
presence to assess spatial patterns of model agcura

In addition to traditional accuracy assessmengssfatial point patterns of the two
models (with and without the facilitation effectyafung trees) for the 1983 time step were
compared against spatial point patterns of LIiDARwl tree presence to determine if
models accurately portrayed point patterns of éstablishment (i.e. clustered, random, or
dispersed). Grids of model predictions and LiDAé&tded observations were converted to
point data. L function second-moment point patidan model predictions and LiDAR
observations were calculated as described by H4888). Computational limitations
prevented the L function from being calculatedtfar entire study area. Instead, a randomly
located four hectare square was selected from tuehpredictions and LIDAR observations
in each landform type. Random plots had 1614, 1848 1698 treed points in the glacial
landforms for the two model predictions and LiDABservations; and 4136, 4157, and 4177
treed points in the debris flow landforms for mopeddictions and LiDAR observations
respectively. L functions and 95% confidence eope$ (based on 100 Monte Carlo
simulations) were calculated using the packagestgiatin R version 2.9 (Baddeley and
Turner 2005).

Model Runs 2007 to 2064

Model runs from 2007 to 2064 were run in a simif@nner as from 1950 to 2007, but
the temporal rate (Prh,) of invasion was probabilistic (rather than detiaistic as during
the 1950 to 2007 time period). Prghfor 2007 to 2064 was derived by applying simulated

snowfall datasets to the linear regressions ofitregsion rates in relation to snowfall. There
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were 100 iterations for each snowfall scenariohwlie same mean and variance but different
values for each individual year. Annual snowfatalin each iteration was converted to three
year bins and the maximum snowfall in each binrdgteed. Three year maximum snowfall
values were applied to the empirical climate-tretatdishment rate regression coefficients and
confidence intervals with the rnorm function in &sion 2.9. This resulted in Prgl values

for each time step that reflected both the vanmatiosnowfall scenarios, and the uncertainty in
the relationships between snowfall and tree esffainlent. One hundred iterations of the
model were run for each of the six climate scemarieor each iteration, the total number of
cells invaded was converted to the percentageediotial study area. Differences in the
percentage of meadow area remaining by landform ity2016, 2037, and 2064 were
assessed with the Tukey Honest Significant DiffeeefHSD) method in R version 2.9.

RESULTS
Meadow Invasion and Model Validation (1950 to 2007)

Tree invasion of meadows in models with and withamung tree facilitation closely
matched plot-based invasion reconstructions, atthaovasion in the model with young tree
facilitation was slightly higher (Table 4.4). Coanpd to field plots, overall accuracy of
modeled tree invasion from 1950 to 2007 varied f(b6b to 0.74 (1.0 being 100% accurate),
which was 26% to 47% greater than expected by &alone. Accuracy was higher on
debris flow versus glacial landforms (Table 4.&yror for all models and landforms was
slightly biased towards predicting tree invasionmevelots had no trees (commission error).
For plot-based accuracy assessments, inclusioausfgytree facilitation slightly reduced
model accuracy (both overall accuracy and kapgettd on glacial landforms, but improved
model accuracy on debris flows.

Compared to LiDAR-derived tree invasion, overattaacy of modeled invasion
from 1950 to 1983 varied from 0.61 to 0.74 (Tah®) 4 Modeled tree invasion was 14 to
22% greater than expected by chance, lower thaplthidased accuracy assessment. Across
all models and landforms, error was biased towprddicting no tree invasion when LiDAR-
derived data indicated tree invasion (omissionrgrr@mission error biases resulted from
LiDAR-derived estimates of tree invasion for thés@%o 1983 time period, which were

greater than the plot-based invasion estimates tosgefrive Prof,,, For LiDAR-based
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accuracy assessments, inclusion of young tredtéditih had little effect on model accuracy
(both overall accuracy and kappa statistic) fdnegitandform type. Prediction errors for both
models in 1983 were most extensive in debris flowi#) pronounced areas of omission error
in the eastern half of the larger debris flows. @udasion errors in both landform types were
greatest in close proximity to both overstory traed areas of correctly modeled invasion
(Figure 4.5).

LiDAR-derived tree invasion displayed significahistering on both landform types
(Figure 4.6). On glacial landforms, the strendtklostering declined slightly at distances
greater than 20 m, while clustering was largelystant at distances greater than 20 m for
debris flow landforms. On glacial landforms, thedal with young tree facilitation resulted
in spatial patterns of tree invasion more comparaiDAR-derived invasion across the range
of distances. On debris flows, models resultgghitterns of predicted invasion that were
more clustered across the wide range of distategsliiDAR-derived invasion patterns, but
over-clustering was more pronounced with young taeditation. Although the accuracy
assessments (plot and LiDAR-derived) showed liifference in modeling accuracy when
including young tree facilitation, point patternadyses suggested young tree facilitation better
represented spatial patterns of tree invasion acigllandforms. For these reasons,
facilitation effects were only included on gladamhdforms modeling future (2007 to 2064)

tree invasion under the six different climate sciersa

2007 to 2064 Tree Invasion

Based on the LIDAR estimates of overstory canopythe field data (Zald 2010b),
82 percent of the study area (80 percent glac@Qdnpercent debris flow) was subalpine
meadow in 1950 (1950 baseline area). By 2007 igextitree invasion in both models
resulted in meadow area of 65.3, 66.3, and 61.&pé¢of 1950 baseline, on all landforms,
glacial, and debris flow landforms respectivelyy 216, median meadow area across all
snow scenarios ranged from 61.3 to 62.5 perceh®950 baseline across the study area, 61.8
to 63.4 percent on glacial landforms, and 58.18@® percent on debris flow landforms
(Figure 4.7). In 2016, meadow area (overall staicha and meadows on glacial landforms)
declined with reduced mean snowfall (scenarios Adetlines in meadow area were not

associated with increased persistence of extremafat (scenarios D-F), but a 50 percent
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decline in snowfall (scenario C) resulted in thestnneadow area remaining on debris flow
landforms.

By 2037, median meadow area across all snow sosnamged from 52.4 to 56.1
percent of 1950 baseline area across the study%ehto 57.1 percent on glacial landforms,
and 51.1 to 53.4 percent on debris flow landforfRsr both the entire study area and glacial
landforms, meadow area declined with reduced meawfall (scenarios A-C), while
increased persistent extreme events combined vidgercent reduction in snowfall
(scenario E) retained greater meadow area thae2®pt snowfall reductions alone (scenario
B). On debris low landforms, meadow area gened#lylined with increased snowfall and
increased persistence of extreme events, althdieyk tvas considerable overlap between
scenarios. A 50 percent decline in snowfall (sger@) resulted in higher meadow area
remaining on debris flow landforms

All scenarios resulted in a shift from a landscdpminated meadow matrix with
patches of forests in 1950, to a roughly even bglitveen meadows and trees in 2007, to a
landscape dominated by forest with greatly redyszedhes of meadow by 2064. By 2064,
median meadow area across all snow scenarios rdirgadi1.4 to 47.4 percent of 1950
baseline area across the study area, 40.3 to érc@m on glacial landforms, and 43.9 to 47.6
percent on debris flow landforms. For both thérergtudy area and glacial landforms, 2064
reductions from 1950 baseline meadow area werdagteaith reduced mean snowfall
(scenarios A-C), while increased persistent extrewamts combined with a 25 percent
reduction in snowfall (scenario E) resulted in ¢ggeaneadow area than 25 percent snowfall
reductions alone (scenario B). On debris low landf, meadow area declined with increased
snowfall (scenarios A-C). Increased persisten@xtieme events did not result in different
proportions of meadow area remaining for a giveamenowfall scenario (for example
scenarios A versus D), but did reduce differenea/éen difference mean snowfall scenarios
(for example scenarios D versus E). Spatial padtef tree invasion were consistent across
scenarios, but differed by landform type (Figur@) 4.0n glacial landforms, a general
enlargement of forest islands has occurred sifmcfting the landscape from meadows that
were largely interconnected in 1950, to meadowsofing shapes and sizes increasingly

separated by stands of mountain hemlock in 2064o0ihtrast to island enlargement on glacial
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landforms, modeled tree invasion on the southebnisilow was spatially continuous,

resulting in an extensive area of mountain hemfooést.

DISCUSSION

The primary objective of this study was to spafialharacterize historical (1950 to
2007) and project near-term future (2007 to 20620 invasion in the subalpine meadow
landscape of Jefferson Park. Results of modelamdsaccuracy assessments from 1950 to
2007 suggest historical fine-scale patterns ofitreasion can be accurately predicted. Model
runs from 2007 to 2064 indicate continued declineseadow area, shifting the study area
from meadow dominated land cover in 1950, to a rearhemlock forest dominated
landscape in 2064. Climate scenarios with diffeeemual average snowfalls resulted in
significant differences in the proportion of meadawd cover invaded by trees. However,
differences in projected meadow area remaining weral (median values ranging from 41
to 48% of the landscape without tree invasion i680suggesting landscape-level tree
invasion may be relatively insensitive to largeugtns in annual average snowfall across
the time period of study. Insensitivity to redoais in snowfall, combined with spatially
consistent areas lacking tree invasion across wis@enarios, suggests there will be
persistent areas of meadow habitat in the futlitee spatial pattern of tree invasion (and
therefore remaining meadows) appears largely degpermh fine-scale patterns of
microtopography and overstory canopy nested witlniger-scale landform features, resulting
in a mosaic of meadow and forest land cover onigléandforms, and largely contiguous
areas of mountain hemlock forests on debris flo¥sung-tree facilitation appears to be an
important landform-dependent factor in shapingiappatterns of tree invasion, but the
mechanism and extent of this control over spacdiaralis unclear. Model accuracy, tree
invasion sensitivity to climate and meadow persiste and non-climatic influences on tree
invasion are discussed in detail below; as arddiinins associated with the conceptual

framework of the model, and uncertainty regardhmgfteld and climate data which drive it.

Accuracy of Modeled Historical Tree Invasion

Overall extent of predicted tree invasion during liistorical period (1950 to 2007)

was moderately accurate, but spatial patterns ofetrerror varied by landform type.
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Predicted invasion on glacial landforms closelychatl LIDAR-derived estimates,
independently validating model rates of tree inmador the 1950 to 1983 time period.
Spatially, the greatest prediction errors on gldeiadforms were on sites with the highest
probability of tree invasion (i.e. higher topograppositions and close proximity to overstory
trees) (Zald 2010b). Stochastic variation in sgiegersal, germination, and mortality may
result in favorable sites remaining unoccupiedhigh degree of stochastic variation in tree
invasion would not be surprising given the spatablution of this study, since fine-grained
spatial scales generally increase variance in atieqm or process of interest (Wiens 1989).
Spatial heterogeneity of site conditions can adoiénce the regeneration niche, and the 2 m
resolution of this study may miss even finer segleironmental controls of regeneration
success (Grubb 1977, Gray and Spies 1997).

Spatial patterns of prediction errors were veryedént on debris flows, occurring
over larger contiguous areas compared to smallsteris on glacial landforms. Spatial
patterns of debris flow prediction errors likelsult from some combination of: (1) longer
and weaker gradients of site favorability; (2) deatls of site favorability; which may not be
associated with available explanatory variablegin@&eased stochastic variability in tree
establishment compared to glacial landforms; aphd€bris flow specific problems using
LiDAR-derived estimates of tree invasion as valmlatdata. The spatial probability of
occupancy (Praf.) on debris flows occurs along a long decliningdggat from west to east,
resulting in extensive areas expected to be invad&ik gradient is also much weaker
compared to glacial landforms, with tree abundaaréally decoupled from many
microtopographic and seed source controls whidhénte site favorability on glacial
landforms (Zald 2010b). Microtopography and distato potential seed sources may not
characterize age, stability, and quality of sulbefrahich can be important determinants of
tree establishment and vegetation composition amgaepositional landforms (Yarie et al.
1998, Pabst and Spies 2001, Garbarino et al 2@@6pris flow landforms are also
disturbance events, on which primary successiorbednghly stochastic (del Moral et
al.1995, del Moral et al. 2009). Finally, the LiBAderived accuracy assessment may have
greater bias on debris flow landforms because @ieskve areas containing the tall
herbaceous perennilalipinus lepidus, which is rare on glacial landforms (Zald 2010R).

lepidus often grows taller than the 0.4 m, the height ffudistinguishing small trees from
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shrubs and herbaceous plants. Field data usedablish this cutoff may have
underrepresentdd lepidus on debris flows in Zald (2010b), resulting in aregestimation of
LiDAR-derived tree invasion. This would explain yvimodels of tree invasion closely match
plot based estimates of tree invasion on glaciaflarms, but have greater errors of omission

in comparison to LiDAR-derived invasion estimatesdebris flows.

Tree Invasion Sensitivity to Future Climate and Meadow Persistence

Sensitivity of projected tree invasion to futurgr@te scenarios can be viewed from
different perspectives. The projected amounted tnvasion from 2007 to 2064 is
significantly different between scenarios with ditfint mean annual snowfall, although
differences are much weaker (and even reversedgbns flow versus glacial landforms.
Across all scenarios (including future projectiofihistorical baseline) projected tree invasion
results in a landscape matrix shift from a meadotvede domination by 2064. Sensitivity
analysis was not performed on the tree invasiorlation snowfall and its variability, since
snow scenarios were bounded by a wide range obmeate potential snow fall given current
information (Salathé et al. 2008, Salathé 2009hldAged extreme snow fall scenarios were
also realistic, given what is known about long-temow pack variability in the region via
tree-ring reconstructions (Gedalof et al. 2004he Empirical relationship between snow fall
and tree establishment (Pral) was also linear, suggesting sensitivity analyssld be
unlikely to find a snowfall threshold importantitovasion rates within the bounded snowfall
scenarios employed.

If viewed from the scale of the entire study apgajected climate scenarios do not
greatly influence the proportion of the study desalscape invaded, with approximately 50 to
36 percent of the study area remaining as mead@®64. Additionally, the areas remaining
as meadow are consistent across scenarios, sugpkste areas of meadow persistence by
2064, even with large reductions in snowfall. Tikisonsistent with the ‘local high-elevation
habitat persistence hypothesis’ (LHP), where firearged topographic modification of climate
results in suitable thermal habitat conditions,alhivould otherwise be perceived as
unsuitable when related to climate change at coapsdial scales (Randin et al. 2009).
Randin et al. (2009) support this hypothesis ufiegSDM'’s (i.e. bioclimatic envelopes).

Species occurrences used in SDMs can be from fanlyiitory stage from recent germinants
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to mature individuals, although plant species iifieation is more definitive with mature
specimens. Mature individuals and populationsgrline and alpine environments can
survive under adverse climatic conditions for ceasito millennia (Steinger et al. 1996,
Bettin et al. 2007, Salzer et al. 2009). In casttreneadow persistence in this study is based
on tree establishment which is spatially restriétecklation to landform, microtopography,
and overstory canopy (biophysical modifiers of fstale snow depth and seasonal
persistence), and temporally restricted by treabdishment rates in relation to regional
climate records. This study provides additionglpsrt for the ‘local high-elevation habitat
persistence hypothesis’ in part because it is basespecies regeneration, which is most

sensitive life history stage for individuals ancptations (Grubb 1977).

It is important to recognize this study supportsitiiP hypothesis by using tree
invasion as a proxy for habitat loss of numeropal and subalpine species which occupy
meadows, rather than aggregated persistence ofidhbabitat for numerous individual
species projected with SDMs. Projected persistefgalividual meadow species was
outside the scope of this study, so it is unclegr@ant communities would be lost from the
study area, or if plant communities with declineiea differently. However, species and
community presence within the study area in retattomicro site conditions (Zald 2010a)
suggests areas most likely to be invaded are diyr@ominated by Ericaceous shrubs on
glacial landforms and well-drained forb communitiesdebris flows, while the hydrologic
setting of wet sedge meadows (e.g. hydric soitf) iater table) may be least likely to be
invaded by trees. However, habitat for each sgeaiel/or community type is unlikely to
remain static, and migration potential will deperad only on future climate conditions, but

also propagule availability, competition, facilitat, disturbance regimes, etc.

Non-climatic Influences on Tree Invasion Spatial Patterns

Landforms, and the micro site conditions nestetiiwithem, play a significant role in
where tree invasion occurs on the landscape. bamdfype determined the degrees of
variation in microtopography, as well has the distato overstory canopy which modified
snow depth and proximity to potential seed soufZakl 2010b). Landforms and micro site

conditions within them influence the associatiohwa®n tree invasion and climate on debris
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flows. This resulted in spatially constrained ahgstered projected tree invasion on glacial
landforms, and wide spread invasion on debris flo@serstory trees play an important role
in the spatial pattern of projected tree invasighinfiuencing snow depth and seed availability
(Faria et al., 2000, Sicart et al. 2004, Biak et al 2008).

Less clear is the role of neighboring young treefailitating tree invasion. Young
tree facilitation effects were empirically deriviegd relating young tree presence in plots to
LiDAR-derived young tree presence (0.4 m to 8 metation height) in neighboring pixels.
As previously discussed for model validation, LiDAlRrived estimates of neighboring young
tree presence could have been overestimated tabtiedance of tallupinus lepidus on
debris flows. In addition, facilitation was qudietil by the number of neighboring pixels
occupied young trees, but alteration of micro siit®atic conditions is likely to be influenced
by other variables (i.e. percent cover or dendityegetation in different strata) that are
difficult for even small footprint LIiDAR to accurg@uantify at the spatial resolution of this

study.

Model Limitations and Uncertainty

In addition to specific limitations already discedsabove (i.e. limitations of LIDAR
in model validation, scale issues with regeneratyoning tree facilitation, etc.), it is important
to view projected tree invasion in this study ilaten to the conceptual limitations and
uncertainty in the model framework itself. Thisdebattempted to incorporate stochastic
variability into empirically-parameterized tree @sion simulations. Both climate data and the
climate-establishment relationships driving thegenal patterns of tree invasion are
probabilistic. Snowfall scenarios each have aidigtion with a mean and variance, as does
the percentage of the landscape occupied in emehdiiep as a function of climate. Both the
spatial (Prok,,) and young tree facilitation (Pr@f) parameters were deterministic, although
Prohy,:had a stochastic element due to conditional stxésrinvolving random data. In
reality Prolyy.;and Prol; have an unknown amount of variance associatedihesmgariance
varies spatially across the study landscape. dbfsand Prok.) parameters were
probabilistic, it would have likely increased thenfidence envelopes (increased uncertainty)

of all scenario outputs.



130

It is also important to note that interactions bestw landform type, micro site
conditions, and climate can result in contrastipatisal and temporal patterns of tree invasion,
which were not incorporated into the model. Tremsinvade lower topographic positions
with low Proly,,values during low snow years (Zald 2010b). Thosild suggest Prahyis
not static, but rather has dynamic interaction$ witcro site favorability, climate conditions,
and tree invasion. It was not possible to quartkify dynamic interaction, but the static nature
of the Prol,,grid may only be a minor limitation of this modeTontrasting spatial patterns
of tree invasion may result from interactions witlcrotopography and climate, but the
dominant signal was for trees to invade higher ¢gpgphic positions in meadows, and
invasion of these micro sites was greater durimgdoowfall years (Zald 2010b). Overstory
trees also should in reality influence the probgbdf a micro site being invaded in a dynamic
way over time, since young trees will eventuallgwgiinto overstory trees (defined as 8 m
tall), influencing snow persistence and seed abt&ElaThis model only projected 57 years
into the future, approximately the time for a seeglto grow to 8 m (based on historical
growth rates). Tree growth into the overstory wasincorporated into the model because it
is unknown what size (and therefore age) treemttegnfluence micro site probability of
invasion, and what the strength and spatial extttitese effects may be in relation to tree
size. The absence of this factor may bias prextisttowards underestimating the probability
of invasion over time,

Although using empirical relationships to parametethese models had the benefit
of incorporating realistic relationships and unaigrty in tree establishment-climate
relationships, it also may have constrained theghoohceptually. Tree establishment-
climate relationships were restricted to the raofgeonditions observed in the historical
period, and are essentially static relationshihen climate conditions were outside this
range, predictions of tree establishment followrégressions, and can go outside the
statistical scope of inference of available dathese assumptions are major shortcomings of
not only this model, but species distribution msded well (Zuller et al. 2009). This could be
especially problematic if there is potential fowvabecosystem responses to changing climate
and/or disturbance regimes (Rupp et al. 2000, Edisvair al. 2005). Limitations of static and
equilibrium based models highlight the need forezkpents which attempt to impose future

climatic conditions on current ecosystems. Expents modifying snow and/or temperature



131

have occurred in a wide range of ecosystems, Hutribe FTE (Beier et al. 2004, Hurteau
and North 2008, Wipf et al. 2009). Our understagdif future FTE responses to climate
change could be greatly improved with long-terndigs examining tree establishment in
response to manipulated snow depth and snowméiltginin addition to the impacts of
manipulated snow and temperature on tree estaldishrmnother dynamic response could be
increased seed production by existing trees, siaed production is likely to vary in relation
to temperature and drought stress (Mencuccini. 61985).

Despite these limitations, this study suggestsicoat loss of meadow habitat over
the next five decades. Climate has a role inghisess, but dominant controls of tree
invasion appear to be topographic for the nextdesades and constraints on establishment
rates and the abundance of micro sites resistdrgganvasion will likely persist under a wide
range of reduced snow scenarios. These remainiagomes will likely become smaller in

size and less interconnected.
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Table 4.1. Codes and descriptions of biophysiaghbles selected in nonparametric
multiplicative regression (NPMR) models used toegate probability of tree occupancy

(Prohy,s) grids.

Variable Code

Description

ELEV
SLOPE
RAD

TOPO1
TOPO2
TOPO4
CANDIST

Elevation (in meters), from 1 m digital elevation model (DEM)
Slope (percent), from 1 m DEM

Growing season Potential Relative Radiation (Pierce et al. 2005)
June - September, from 1 m DEM

Topographic position index, anulus 5-10 m from DEM
Topographic position index, anulus 10 - 15 m from DEM
Topographic position index, anulus 50 - 100 m from DEM
Distance from overstory canopy, in meters
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Table 4.2. Monte carlo test p value, Log likelidaatio (LogB), and sensitivity analysis
results for nonparametric multiplicative regressiONPMR) of mountain hemlock presence in
relation to mapping explanatory variables.

Landform Pvalue LogB Explanatory Varible Sensitivity

Glacial 0.0040 11.80 CANDIST 0.9640
TOPO2 0.6777
SLOPE 0.3537
TOPO1 0.2525
RAD 0.0863
Debris flow 0.0396 3.55 ELEV 1.1061
TOPO4 1.0120
TOPO1 0.2766
CANDIST 0.0455

Note: See Table 4.1 for explanatory variable dpsons.
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Table 4.3. Snowfall scenarios used in models theid respective annual means, percent
differences from historical means, and standardbdiens.

Change from Prolonged extreme Annual snowfall
Scenario mean snow fall years mean (cm) stdev (cm)
A historical (1950-2007) historical 682 222
B -25% historical historical 511 213
C -50% historical historical 346 204
D historical three year 675 275
E -25% historical three year 509 280
F -50% historical three year 339 262
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Table 4.4. Percentages of the study area occlhyitetes (vegetation greater than 8 m tall
excluded), by data type, and year.

Year

Data Type Landform 1950 1983 2007

Lidar All - 0.241 -
Model 1 All 0.078 0.231 0.336
Model 2 All 0.078 0.240 0.342
Reconstructed All 0.077 0.240 0.347

Lidar Glacial - 0.189 -
Model 1 Glacial 0.091 0.226 0.325
Model 2 Glacial 0.091 0.233 0.332
Reconstructed Glacial 0.091 0.231 0.337

Lidar Debris - 0.409 -
Model 1 Debris 0.026 0.260 0.372
Model 2 Debris 0.026 0.267 0.380

Reconstructed Debris 0.026 0.275 0.388
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Table 4.5. Omission and commission error, overauracy and kappa statistics for model 1
(without young tree facilitation) and model 2(witbung tree facilitation) by landform.

Model predictions were compared to field plots aber 1950 — 2007 time period.
Comparisons to LiDAR data occurred over the 199083 time period (see validation
section for details)

Ground Truth Overall Omission Comission Kappa
data type Model Landform  accuracy error error statistic
Field plots 1 All 0.67 0.34 0.47 0.32
Field plots 2 All 0.67 0.38 0.46 0.30
Field plots 1 Glacial 0.66 0.33 0.49 0.30
Field plots 2 Glacial 0.65 0.41 0.50 0.26
Field plots 1 Debris flows 0.71 0.37 0.37 0.39
Field plots 2 Debris flows 0.74 0.30 0.33 0.47

LiDAR 1 All 0.71 0.63 0.61 0.19
LiDAR 2 All 0.70 0.63 0.62 0.18
LiDAR 1 Glacial 0.74 0.58 0.65 0.22
LiDAR 2 Glacial 0.72 0.61 0.67 0.18
LiDAR 1 Debris flows 0.61 0.66 0.46 0.15
LiDAR 2 Debris flows 0.61 0.65 0.47 0.14
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Figure 4.1. Model conceptual diagram. The baseetiterates each three year time step
through spatial and temporal probabilities of elsthment. A tree establishes if the spatial
probability of establishment (Prgh) is greater than both random (rand), and the teahpo
probability of establishment (Prgh,) derived from tree establishment-climate recormsion.
The second model (with biotic feedback) also iteedy assesses how many neighboring
pixels are occupied by young trees, and appligslagbility of establishment with feedback
(Prohaci) which replaces Prghs
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Figure 4.2. Spatial probability of tree invasi®rdhy,,) derived from nonparameteric
multiplicative regression (NPMR). Prghvalues are proportional in relation to a potential
maximum of 1.
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maximum annual snowfall for glacial and debris flandforms. Fitted lines are in solid
black, 95 percent confidence intervals are dotteg.g
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Figure 4.4. Median (solid lines) and 95 percemificence envelopes (dotted lines) for the six
snow scenarios. Lines are color coded by scersa@mario A (black), scenario B (gray),
scenario C (blue), scenario D (yellow), scenari{ptange), and scenario F (red). The
historical snow record (thick black dashed lineJuperimposed for reference.
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Figure 4.5. Error maps of study area predicteel itneasion from 1950 — 1983. Errors based
on comparison of model predicted invasion to LiDAlBservations. Areas outlined in red are
debris flow landforms. Pixels in black are overgtivees. The two dashed black boxes are
the locations of a subset of the model predictanmd LIDAR observations used to assess

spatial point patterns of tree invasion.



148

0
20

B a) LIiDAR Data, Glacial landfarms B ) LiDAR: Data, Debriz flove landfarms

15
|

10

L) -1
o 2
|
= ﬁ:‘
L) -1
5
|

0 10 20 30 40 =0 ] 10 20 30 40 =0
Distance (m) Distance [m)
=3 o
cl Model 1 (no faciltation), Glacial landforms ™) oy Model 1 (no facilitation), Debris flow lsndforms
o —
w |
w —
i o4
&7 ="
= =
o~ — -
o - Mﬂ‘“"v\
o 4
N w
T T T T T T T T T T T T
0 10 20 30 40 =0 0 10 20 30 40 =0
Distance (m) Distance [m)
= |e1Maodel 2 (with facilitation), Glacial landforms ™ ) Maoddel 2 (with facilitation), Debris flow lendforms
oo — |
w —
i o 4
& =
= =
o~ — M -
o -
o
L\ \
T T T T T T T T T T T T
0 10 20 30 40 =0 ] 10 20 30 40 =0
Diztance (m) Diztance (m)

Figure 4.6. Spatial point patterns of LIDAR obsatymodell (without young tree
facilitation), and model2 (with young tree facitita) tree invasion by landform. The solid
line denotes the spatial point patterns of treasion, and the two dashed lines denote the
95% confidence envelope. The spatial point paiteoonsidered clustered at distances (in
meters) were the solid line is above the uppereathhe, randomly distributed if between the
dashed lines, and dispersed if below both dashed.li



Whole study area, year 2016

Snow fall scenarios

Glacial landforms, year 2016

Snow fall scenarios

Debris flows, year 2016

w (]
w w -
= a e a p=; a a b a abab
o 2 57 4 H | TTEY Y
@ [ .
: | T b [ z 47T b 1o4b : 87 1 | HEHE
I ) =1 ! =1
T ¢ Y ! P o = v T ! ! C &= ]
= 1 i 27 I ioE 2 B
2 o 8 p 8 I 2 s 8 LT 8 ! E ic
c o™ Il | c - ' c L T H
S @4 i s ] g g w [ T
£t o ] T £t o 1 ! T @A 1 1 b
2 ! e 2 241 i1 a2 @ g 3 1 i A
g o _L T : ! e @ e : - : =] : 1 _L | =
o o : T _:_ ; a - 4'_ : ! : o E_ _:_ <L -E—
f=3 il 1 1 o =i ] = .
L = s i D — '
o ! o - @ 4 . .
i I 1 i I i L] I I i I I o i I 1 L] I I
A B C D E F A B C D E F A B C D E F
Snow fall scenarios Snow fall scenarios Snowy fall scenarios
Whole study area, year 2037 Glacial landforms, year 2037 Debris flows, year 2037
da 4
. - @ 3 2
. =1 T © ab . 4
‘a P -a [ o ab-g ™ _r!)(:_'_bc
¥ 84 T ! : T ' : S A
£ S 1 :d =] i b ) a 7 g
= . b - 5w b L d g | ™ v
5 =- H & W - — - - 1 1 -
D _ LU 1 = 1 1 ' 1
E | ” 1 [+ E S ! H E 8
1 s -
PRI §,]TarIs7| §2/307030
E_ o _:_ == L 5 %_... o BT o : E 3.— !
S ! ! g g o T | g2 o ] ; 1
o - ] 4 = | =4 = 1 I ' I
: LE | 0] g i ETT AT
=] . [ I o + 1 _L ?__ R T ok Mo
e s . a7 e ? = -
T T T T T T T T T T T T T ? T T T T
& B C D E F A B C D E F A B C D E F
Snow fall scenarios Snowy fall scenarios Snow fall scenarios
Whole study area, year 2064 Glacial landforms, year 2064 Debris flows, year 2064
& - .
g4 9 T 4 -4 % £
(=1 1 I o ] [l o b b
3 P \od T W H z = 1 ab bc ¢
= — b - 8 [=] .g i i T™ ; -
" .5 | & b d 5 2 a ' 1
T @ | @ T o @ Y4 7T ! ' L |
E T H | E 1 | E © 1 | 1 !
BT A= B S BV S e B gt
Q i=3 = (=1
. et 1B ri B §HReTS
1 1 o 1
P23 18T ig| ¢ R PiET L
2 2 ! 2
£ s ~ el | S| fe{Tiil ]
= * i : o T -+ o = H SR
-t 1 1
8 =k S R & + e
q [ I
(=] T T T T T T T T T T T T o T T T T T T
A B C D E F A B C D E F A B C D E F

Snow fall scenarios

149

Figure 4.7. Notched box plots for the percenhefdtudy area remaining as meadow
separated by landform (panels left to right) ag¢é¢htimes during the model (panels top to
bottom) in relation to snowfall scenarios. FollagiMcGill(1978), Non-overlapping notches
imply significant differences in meadow remainirefween snow fall scenarios. Different
superscripts represent significantly different areBmeadow invaded from results of Tukey
HSD tests. See Table 3 for descriptions of sndvs€anarios.
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Figure 4.8. Maps of thé"snd 95' percentile iterations of simulated meadow invagiom
1950 to 2064. Colors represent trees in 1950 (h&€O7 (green), and 2064 (yellow). Blue
areas are lakes, and the outlines of debris floe/srared.
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CHAPTER 5: CONCLUSION

In this dissertation, | set out to understand gastsent, and potential future FTE
dynamics in Jefferson Park, Oregon from percepawging from the entire study area
landscape to individual micro sites. Within thiemll past, present, and future perceptive, |
directed my studies in relation to three centrahtes: combining pattern detection and
population/landscape estimation, understanding §érisitivity to climate in relation to non-
climatic biophysical controls, and integrating LiBAand satellite imagery with field data in
multiple ways to improve our understanding of Fyaaimics. | quantified the
spatiotemporal patterns of tree establishment lamdaictors driving these patterns, as well as
the spatial patterns of vegetation compositionstnacture, in the subalpine parkland of
Jefferson Park, Oregon, with three overall godlstd characterize fine-scale spatial patterns
of current vegetation structure, species distrangj and tree ages, (2) to determine how
climate and non-climate biophysical factors hafkiénces patterns of tree invasion in
subalpine meadows of the study area over the pastiécades, and (3) through simulation
models which incorporated climatic and biophysaaitrols, project tree invasion patterns
within the study area over the next five decadekeudifferent future climate scenarios.

In chapter 2, | integrated field data on vegetatomposition, vegetation structure,
and tree ages with high-resolution multispectrédlge imagery, and discrete return Light
Detection and Ranging (LIDAR) data to predictivelgp vegetation compaosition, structure
and tree establishment within 260 ha of the subalparklands of Jefferson Park. The
objectives of this study were to: (1) charactespatial patterns of tree invasion via tree ages,
vegetation composition, and vegetation structure HTE landscape in the Oregon Cascades
using predictive mapping, (2) determine how vegatatomposition and structure were
associated with gradients of environmental facti@réved from multispectral satellite imagery
and LiDAR, and (3) determine if predictive mappuitaracterizations of tree ages, vegetation
composition, and vegetation structure were imprdwethe inclusion of LIDAR data. Spatial
predictions were accomplished using gradient aiglygh nearest neighbor imputation;
integrating field plots, multispectral SPOT 5 diteeimagery, and Light Detection and
Ranging (LIDAR) data.
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Vegetation composition was best described by SP®Ta§ery and LIiDAR-derived
topography, while vegetation structure was bestrile=d by LIiDAR-derived vegetation
heights. Tree invasion was the most accuratelgigiex] vegetation structure variable, and
indicates the study area was largely un-forestdd00, gradually invaded from 1600 to the
1920’s, and rapid invasion by trees occurred froen1t920’s to 1980. Other vegetation
structural attributes (e.g. stand density, bassd,ajjuadratic mean diameter) had very low
prediction accuracy, which likely results from artmnation of asynchronous development of
forest structure over time, and within pixel fineake spatial heterogeneity of vegetation
patches. Species occurrence predictions were awostate for tree species, moderate for
shrub species and vegetation groups, and highlghlarfor graminoid species.

This study suggests multispectral satellite imageilyAR data, and field plots can be
integrated to accurately predict fine-scale spatiaracterizations of species distributions and
tree invasion in the FTE. When integrated witle tage data, fine-scale predictive mapping
can provide previously unavailable landscape eséisnaf FTE movement and invasion of
alpine meadows. However, characterization of itmeasion in predictive mapping is
constrained by the range of tree age data collaniditld plots, which in this study failed to
guantify tree invasion which has occurred in tret I&7 years. Poor predictive mapping of
vegetation structure suggests limitations to th@iegbility of LIDAR data for characterizing
vegetation in landscapes where forest structun@igy variable, does not develop along
consistent trajectories over time, and where spadigrogeneity of structural attributes occurs
at finer grains than field or remotely sensed d&eedictions of species occurrence suggest
predictive mapping may be an effective means oérping species information in the FTE.
This approach may also be applicable to other &ityipes that are important biodiversity
hotspots, potentially sensitive to the effectslwhate change, or are high value recreation
areas, yet may be under sampled by traditionahitovg program s because of their small size
and discontinuous land cover. This study also daine spatial arrange of field plots can
strongly influence spatial variation in predictiaocuracy, suggesting sample design could
have implications for spatially extrapolating fieldta from natural resource inventory and
monitoring programs. Predictive mapping using imoey data is increasingly being used to
generate spatial characterizations of vegetatiomposition and structure as a decision

support tool for natural resource management (Tangd@l. 2008, Nationwide Forest
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Imputation Study 2010). Despite increasing usgreflictive mapping methods, the field
inventory data which it is based on is not exgiaitesigned to address spatial patterns of
predictive error, which will need to be further @stigated in the future.

In chapter 3, | continued to focus on tree esthbient in Jefferson Park, but turned
my attention to spatial and temporal patternsexd wstablish over the past five decades. This
short time period of study enabled me to ask hee tnvasion tree has occurred over time and
space in relation to historical regional climateadditional to non-climatic biophysical
controls such as topography and seed sourcescsciape to micro site spatial scales. This
chapter had two objectives: (1) to characterizedaape patterns of tree establishment over
time, and (2) to determine how climate and bioptaistharacteristics interactively control the
temporal and spatial patterns of tree establishinahie Jefferson Park landscape at multiple
spatial scales. This was accomplished utilizeldoaire Light Detection and Ranging (LIiDAR)
to establish geo-referenced field plots, and tstaldishment reconstructions to quantify
spatiotemporal patterns of tree invasion in refatmlandform types, fine-scale topographic
variability, late season snow persistence, diswfroen potential seed sources, and regional
climate variation.

The percentage meadow area (represented as 2m)mxelipied by trees increased
from 7.75% of the study area in 1950 to 34.7% i@720Landform types and finer-scale
patterns of topography and vegetation structuréedesithin landforms influenced summer
snow depth, which in turn influenced temporal apdtigl patterns of tree establishment.
Rates of tree invasion were higher on debris flamdforms which have lower summer snow
depth. Tree invasion rates on glacial landformeevegrongly associated with reduced annual
snow fall, but not on debris flows. High invasi@tes not associated with snow fall on debris
flows were surprising given conventional wisdomt Wegetation recovery is slow and follows
deterministic successional pathways at the FTBvoflg disturbance (Agee and Smith 1984,
Arsenault and Payette 1992, Coop and Schoettle)200% study indicates rapid post-
disturbance tree establishment and alternativeesstmnal pathways are possible if the
disturbance results in favorable micro sites comaét and seed sources are nearby. Tree
establishment was spatially constrained to midessaith high topographic positions and
close proximity to overstory canopy associated \att summer snow depth. However seed

source limitations placed additional species-spespatial constraints on meadow invasion.
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Climate and topography had an interactive effeitt) wees establishing on higher
topographic positions during both high snow/low pemature and low snow/high temperature
periods, but had greater than expected establighondower topographic positions during
low snow/high temperature periods. Strong bioptalsiontrols of tree establishment at
multiple spatial scales restricted the sites witheadows that trees establish on, even during
favorable climate periods. Results of this studygest large scale climate-driven models of
vegetation change may overestimate treeline moveamehmeadow invasion because they do
not account for biophysical controls limiting tregtablishment at multiple spatial scales.

In chapter 4, | built on the previous chapter'sagpective characterization of spatial
and temporal patterns of tree establishment toldp\sesimulation model characterizing
historical (1950 to 2007) tree establishment araf-term future (2007 to 2064) tree invasion
in relation to six future climate scenarios (normd® 25%, and 50% reductions from historical
annual snow fall crossed with forcing or not fogcthree year periods of extreme high and
low snow fall). | developed an empirically-derivsttistical model to quantify tree invasion
in relation to deterministic spatial patterns eftinvasion controlled by biophysical factors
(microtopography, seed sources, overstory and yteegnteractions, larger-scale landform
types), and probabilistic temporal patterns of gs&blishment in relation to climate
(specifically snowfall). This is in contrast toegjes distribution models which utilize
bioclimatic envelopes, and forest dynamics, suéoasand growth models which
parameterize processes such as fecundity, disparghbrowth. Specifically, this model was
developed to address the following three questi@)xan fine-scale (2m pixel size) patterns
of historical tree invasion be accurately predi@té?) how sensitive is future tree invasion
(and therefore meadow persistence) to differentréusnowfall scenarios? and (3) are non-
climatic factors such as landforms and biotic iat&ions associated with different spatial
patterns of tree invasion? From 1950 to 2007, kitad meadow area declined from 82% to
65% of the study area. Model outputs of historarala, spatial distributions, and spatial
clustering of tree invasion generally agreed wiitheipendent validation. Model results
indicate biotic interactions due to young tree ld&ghment facilitation play an important role
in the spatial pattern of tree establishment onigldandforms but not debris flows.
Simulations of future potential tree invasion résdlin declines of 36-43% of the study area

remaining as meadows by 2064. Meadows area ddahith reduced annual snow fall, but
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not under prolonged high and low snow fall periotdsder all scenarios there were
persistence areas of meadows in 2064. Using spdisiibution modeling, Randin et al.
(2009) suggest fine-scale climate variability inuntain landscapes may cause localized
persistent favorable climatic conditions in spitelanate change, resulting in local high-
elevation habitat persistence. Although my ressutgest subalpine meadows may
significantly decline in the future, also lend saggo the hypothesis that high-elevation
subalpine meadows will persist for the next sevéeabdes under climate warming.

Tree establishment in Jefferson Park has notijuseased tree density; but tree
invasion has reduced meadow land cover, espeaedlythe past 50 years. Reductions in
snow fall and increases in temperature promotingéo growing seasons for tree germination
and establishment, which promote tree invasiormgaal patterns of tree invasion are
consistent with Northern Hemisphere observatiorST& movement in response to climate
change (Harsch et al. 2009). However, biophydaabrs such as topography, overstory
vegetation, and potential seed sources exert stronigols (equal to and sometimes exceeding
climatic controls) on the spatial and temporalgrai$ of tree establishment in the FTE, and
these controls are nested within larger scale tantf, emphasizing the importance of
landscape context in determining FTE sensitivitglimate change. These biophysical
controls not only have constrained patterns of Ridzement and meadow invasion in the
past, but are likely to do so in the future as well

Despite their potential sensitivity to climate cganintrinsic values for biodiversity
and recreation, and small proportions of the oVégalestrial landscape, species abundance
and distributions are poorly quantified in the FTEhere are many remaining uncertainties as
to how FTEs will respond to a changing climatetehAtpts to understand biodiversity risks
caused by climate-driven FTE movement are hampgyéow resolution and incomplete
species distribution information which the predietmapping methods of chapter 2 may help
alleviate. Chapters 2-4 demonstrate on a limitadesthe power of integrating field
inventories with remotely sensed data sources podae not only our ability to detect
changes in FTE dynamics, but characterize how ttleseges may occur across complex
mountain landscapes. It is landscape charactienizat species distributions and change that
will allow us to move beyond highly speculativeessnents of FTE movements ecological

consequences, and begin to quantify what FTE moremi#i mean for biodiversity,
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ecosystem productivity, mountain snowmelt hydrologtg. This dissertation also
demonstrates the potential applications (and ltoia) of using LIDAR data in FTE

research. Of particular value, chapters 3 anddodstrated how LIiDAR data can be used not
just as another variable for statistical analyisig,how it can be used to formula new research
guestions and sampling strategies previously dilifior not possible in complex
heterogeneous landscapes.

However, more fundament questions and uncerta@main to understand FTE
movement and its potential impacts in a changimgate. Many projections of future change
(both in this dissertation and in numerous othedists), are based on historical responses to
climate or notions of steady state conditions @udlt al. 2009). These assumptions are
unlikely to be correct, and may be especially peotatic if there are novel ecosystem
responses to climate and/or disturbance regimgeeifuture (Rupp et al. 2000, Edwards et al.
2005). Limitations of static and equilibrium baseddels highlight the need for experiments
which attempt to impose future climatic conditimrscurrent ecosystems. For example,
experiments modifying snow and/or temperature lwepegirred in a wide range of ecosystems,
but not in the FTE (Beier et al. 2004, Hurteau Biedth 2008, Wipf et al. 2009). Our
understanding of future FTE responses to climasagé could be greatly improved with

long-term studies examining FTE dynamics in respdaasnanipulated climate conditions.
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APPENDIX A. VEGETATION GROUP CLASSIFICATION
VEGETATION DATA AND STATISTICAL ANALYSES

Vegetation data was collected on 98 plots as peomer by species. Species cover
data was only collected on vascular plants. Exolyttee species, 58 species were identified
and assigned cover values. 11 species were faugdroone plot each, and did not exceed
one percent cover individually. These 11 speciesevexcluded from the dataset, leaving 47
species for analysis. The development of vegetdyipes was accomplished by: 1)
conducting a cluster analysis of the 47 speci€8iplots which assigned plots to groups, 2)
assessing species within group agreement to giremsgigned by cluster analysis to determine
the most parsimonious number of vegetation groampd,3) quantifying and assessing
significance of species associated with each vegettype. All analyses were conducted
using PC-ORD version 5 (McCune and Mefford 1999).

Agglomerative cluster analysis was conducted ociepgercent cover values in plots
using Euclidean distance measures and Ward'’s lmkagthod. Chaining was minimal at
3.6%, and the dendrogram of plots in species sglames a primary split of sedge meadow

plots, followed by an additional split between fad shrub dominated plots.
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Dendrogram of plots in species space. Plots doe coded by species groups as defined by
multi-response permutation procedures (MRPP), aditdtor species Analysis (ISA).

To determine the most parsimonious number of véigetéypes, two to 97 groups
were generated as identified by the cluster arglgsid species agreement within these groups
assessed using Multi-response permutation procedii@PP). MRPP was run using
Euclidean distance and natural weighting. Theiggmce (p-value), chance-corrected within
group agreement (A statistic), and improvement istaistic with an additional group (Delta
A) were calculated for clusters with two to 15 goeu Results are presented for only 2 — 15
groups since all numbers of groups were statiggisgynificant (p< 0.0001) and chance-
corrected within group agreement leveled out at@pmately 10 groups (see figures below).
The most parsimonious number of groups was defisetie fewest number of groups with
the lowest improvement in agreement with the addlitf that group. Six groups were

selected, with a chance-corrected within groupemgent of 0.37 (g 0.0001).
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Chance corrected within group agreement (A sta}iatid Delta A in relation to the number
of groups generated in cluster analyses.

Indicator Species Analysis (ISA) was used to gdamtnd assign significance to
species in association with the six vegetation gsqDufrene and Legendre 1997). ISA uses
species percent cover in each plot and the a miotips of plots seen in the dendrogram as
selected by the MRPP analysis. ISA is implememdile steps: 1) the proportional
abundance of each species in each vegetation gg@agculated relative to each species
abundance in all groups, 2) the proportional freqyeof each species is calculated for each
group, 3) proportional abundance and proportiomegjifency are multiplied, resulting in an
indicator value (IV), which can be high only if pegies is both commonly present in a group
and has high relative abundance within that grdyhe highest indicator value (R from
each species across groups is saved, and 5) tisticahsignificance of V. is evaluated by

a Monte Carlo approach with 4999 randomizations.
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Indicator and significance values are presentdldniable below. Gray shaded
values in the table are the highest indictor valagroup for species of at least suggestive
importance (p< 0.1). Indicator values were considered signifieaif p< 0.05. Important
species on well drained sites (Group 1) includeénaria capillaris, Lupinus arcticus,
Eriogonum umbellatum, andPolygonum newberyi. Important species in the pink mountain-
heather type (Group 2) aRbyllodoce empetriformis, Luetkia pectinata, andLycopodium
sitchensis. The wet sedge meadow type (Group 3) had higleahor values foCarex
nigricans andJuncus drummondi. Species with high indicator values in the lowbftype
(Group 4) includedAster alpiginus, Castelija parviflora, Festuca sp., Gentian calycosa, and
Kalmia microphylla. In the white mountain-heather type (Group&)ssiope mertensiana
andMicroserisalpestris had high indicator values. The mountain-ashstailb type (Group
6) has high IVs foBorbus sitchensis, Rubus lasiococcus, Vaccinium deliciosum, Ligustrum

gracilis, Epibolium al pinum, Dodecatheon jeffreyi, andVeratrum viride.



180

Indicator values of species by vegetation groupseved and randomized indicator values by
species, and p values from randomization procedugeay boxes associated with significant
indicator species and the vegetation group in wihely have the highest indicator value.

Indicator Value by Vegetation Group Observed IV from
1 2 3 4 5 6 Indicator  randomized groups

Species N Plots 31 23 19 9 10 5 Value (IV) Mean SD p*

ANAL 19 1 3 7 0 0 18.8 14.7 7.25 0.2024
ARCA 33 0 0 0 1 0 32.9 10.7 5.41 0.0058*
ASAL 4 8 19 59 2 5 58.5 25.4 5.35 0.0002*
ASFO 6 0 0 0 0 0 6.5 7 4.78 0.4293
CAAQ 2 1 3 0 0 1 34 12.7 7.13 0.9836
CALE 3 0 5 0 0 0 5.2 8.8 5.61 0.7532
CAME 1 27 3 6 56 1 55.8 21.8 5.04 0.0002*
CANI 3 5 59 16 2 14 58.6 247 4.43 0.0002*
CAPA 5 21 13 33 2 3 33.2 18.6 3.91 0.0036*
CASP 16 3 28 12 1 4 28.5 233 7.52 0.1998
DOJE 1 0 1 9 0 30 30.1 15.2 7.57 0.0598
EPAL 0 1 6 4 0 20 20.2 9.7 5.5 0.0514
EPAN 1 0 3 0 0 0 33 7 4.63 0.7483
ERUM 16 0 0 0 0 0 16.1 8.1 5.24 0.0528
FESTU 2 0 0 47 0 0 47 9.3 5.55 0.001*
GECA 0 4 5 54 2 2 53.6 14.9 5.6 0.0004*
HIGR 5 19 16 4 14 2 18.8 17.4 4.45 0.3015
HYAN 0 0 5 0 0 0 53 6.3 4.28 0.4459
JUDR 19 10 39 0 2 0 38.6 19.7 5.88 0.0146*
JUME 6 0 6 1 0 0 6.3 8.9 5.48 0.6989
KAMI 3 18 4 32 0 0 32.3 16.3 6.75 0.0316*
LIGR 3 9 2 5 6 60 59.5 21 6.92 0.0014*
LUAR 42 0 0 1 0 0 421 12.6 6.54 0.005*
LUPE 6 35 13 3 26 9 35.4 23 4.28 0.0158*
LUZUL 1 0 7 0 0 0 6.5 7.4 4.83 0.4629
LYSI 0 29 4 6 14 0 29.2 17.1 7.08 0.0668
MIAL 0 0 0 0 20 0 195 10.8 6.48 0.073

MIBO 3 0 2 0 5 0 5 8.4 5.34 0.7101
PEBR 1 0 0 6 0 0 6.4 6.8 4.68 0.4969
PHEM 7 47 15 20 4 4 46.9 22.1 3.43 0.0002*
PLST 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
POA 5 0 4 2 0 0 4.9 8.8 5.22 0.7884
POFL 3 0 11 1 0 4 10.8 9.7 5.84 0.2805
PONE 26 0 0 0 0 0 25.8 9.2 5.73 0.026*
RHAL 0 0 0 0 7 6 7 7.6 4.98 0.4621
RULA 0 0 0 0 0 17 17.2 7 4.64 0.0542
SAFE 14 1 1 0 0 0 13.8 9.1 5.47 0.1466
SACO 6 0 0 0 0 0 6.5 6.9 4.52 0.6049
SATO 13 1 0 0 0 0 12.7 8.3 5.4 0.1462
SETR 1 0 2 0 0 7 7.4 7.5 4.93 0.3651
SOsSlI 5 2 0 0 14 61 60.7 17 6.29 0.0002*
TOGL 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
VADE 4 12 5 3 21 52 52.1 22.4 4.12 0.0002*
VAME 13 3 0 0 14 7 143 154 7.12 0.4537
VEVI 1 0 0 0 0 18 18.1 7.4 4.72 0.0338*
VEWO 0 0 5 0 0 0 5.3 6.3 4.28 0.4459
XETE 6 0 0 2 0 0 5.6 7.6 4.86 0.6635

*Indicator values considered significance & 0.05. P values are the proportion of
randomized trials with indicator value equal teegceeding the observed indicator value.



