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THE STRUCTURE OF THE FISSION TRANSITION NUCLEUS 227Ra

I. INTRODUCTION

A. Preliminary Considerations

In 1938, Hahn and Strassman (Ha 39) discovered that

the bombardment of uranium with neutrons produced several

radioactive nuclides which were chemically indistinguishable

from elements in the middle of the periodic table, such as

barium and lanthanum. Although at first they believed these

nuclides to be isotopes of radium and actinium, soon they

were convinced that the radioactive products were isotopes

of much lighter elements formed by the splitting of the ura-

nium nucleus into two parts of comparable size.

The mechanics of nuclear fission was first described in

detail in a classic paper by Bohr and Wheeler (Bo 39). On

the basis of a liquid drop model of the nucleus, they devel-

oped a fission theory which gives a satisfactory picture of

many aspects of nuclear fission. This theory was centered

on the idea that for the heaviest group of nuclei, the re-

pulsion of the long range coulombic forces opposes, to a

large extent, the short range nuclear forces which operate

in a manner analogous to a surface tension.

The immediate implication of the theory was that as

the nucleus distorted in a given direction, a point was

reached in which the coulomb repulsive forces became equal
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to the forces holding the nucleus together, and from here,

the nucleus could either undergo fission or collapse back

to its equilibrium shape. This critical point was called

the "saddle point" in the potential energy surface, and the

net increase in potential energy necessary to reach that

point was termed the "fission barrier".

The passage over the saddle point is the rate deter-

mining step in fission. A nucleus at the saddle point is

known as a "transition state nucleus" (see Figure 1). If

the transition state nucleus is further deformed, it will

eventually divide into at least two fragments. The defor-

mation at which division into two fragments occurs is called

the "scission point". The fragments are of intermediate

mass and contain various amounts of excitation energy. At

the time of scission, the nuclear deformation has increased

beyond that of the transition state nucleus and at the in-

stant of separation, the primary fragments possess, in some

cases, considerable deformation energy, in addition to

their other forms of energy. A wide variety of division in

fragment mass, charge, and energy is observed, depending

upon the initial mass and excitation energy of the fission-

ing nucleus.

In this work we are mainly interested in the properties

of the transition state nucleus, i.e., the nucleus at the

saddle point. Historically, we should begin by pointing

out that in 1952, Winhold et al. (Wi 52) experimentally
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observed that the angular distribution of 232Th and 238U

fission fragments induced by photofission was clearly aniso-

tropic. In order to explain the observed angular distribu-

tion, Bohr (Bo 55) proposed a theory in which he suggested

that fission proceeded through definite states in the tran-

sition state nucleus characterized by well defined quantum

numbers, which were responsible for many of the properties

of the final fragments. Basically, the spectrum of excited

states of the nucleus at the saddle point could be simply

explained in terms of the collective and unified models,

which had worked so well for the low lying states of stably

deformed nuclei (see Figure 1). These quantum states of

the nucleus at the saddle point were termed "channels".

According to Bohr, a fission event passing through a fis-

sion channel might exhibit a marked anisotropy in the angu-

lar distribution of the fission fragments, depending on the

angular momentum quantum numbers of the channel.

In order to explain this situation, let us start by

supposing for a moment that the nucleus is spherical.

The simple shell model of the nucleus assumes that each

nucleon moves in a potential well (also spherical), which

is an approximate representation of the interaction of

that nucleon with all of the others. By solving the

SchrOdinger equation for particles in such a potential well,

and introducing a spin-orbit interaction, a set of energy
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levels is obtained. These levels are characterized by

their principal quantum number, orbital angular momentum,

and total spin. An odd nucleon in a given shell model

state can have several different projections of its angular

momentum on a symmetry axis. These projections are called

0. For example, a d5/2 single nucleon can have values 1/2,

3/2, and 5/2 for its 0 quantum number. When the potential

well is undeformed, the energy of the nucleon is independent

of Q. However, this is no longer the case when the poten-

tial well is deformed. Each shell model level of angular

momentum j breaks into j + 1/2 levels (called Nilsson

levels), each of which may contain up to two nucleons of

each type. The angular momentum of the odd-A deformed nu-

clei is due to both the rotational angular momentum (if

any) and to the angular momentum of the odd nucleon. The

projection Q of the nucleon's angular momentum adds vec-

torially to the rotational angular momentum R, to give the

total angular momentum J. The projection of J on the nuc-

lear symmetry axis is called K. As shown in Figure 2, R is

actually perpendicular to the symmetry axis in an axially

symmetric nucleus, and hence, n is equal to K. When the

rotational angular momentum is zero, J, SI, and K are all

equal. Thus, each Nilsson level may form the ground state

of a rotational band. Except for cases where K = 1/2, the

energies of the members of the band are given by
1

1The case of K = 1/2 is more complicated and a more complete
discussion of this case is given in the next chapter.



Figure 2. Schematic Diagram for Angular Momenta in Deformed Nuclei.
rn
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2

EK,J = E0 + (J(J+1) (I-1)

where E
o

is a constant, and y is the moment of inertia of

the nucleus. This latter quantity depends on the nuclear

deformation. For the ground states of the very heavy ele-

ments, the value of t2/2Y is about 7 keV; for saddle point

deformations, this figure becomes two or three times

smaller. For an even-even nucleus, the ground state of the

nucleonic structure has K = 0, corresponding to a paired

nuclear configuration. Assuming a reflection-symmetric

shape, the spectrum contains for K = 0, only the rotational

levels with even J values 0, 2, 4..., which all have posi-

tive parity. If the nuclear shape is reflection-asymmetric,

the situation is somewhat different and we shall discuss

this problem later in more detail.

Thus, assuming axial symmetry for the nuclear shape at

the saddle point, the channels could then be characterized

by the quantum number K, representing the component of the

nuclear angular momentum J about the symmetry axis, and M,

the projection of J onto a space-fixed axis.

The probability distribution of the fission fragments

as a function of direction is identical to the probability

distribution of the direction of the symmetry axis of a

symmetric top, having the same quantum numbers J, M, and

K. This probability distribution can be expressed in terms



of a differential cross section
2

'
W (0), in the reaction

plane, at a given angle 0 by:

IAIJ
K,M M(0) m (2J+1) ID

,K (4), 0, Y) 12 (1-2)

8

where DjK,M
(4), 0, y) are the symmetrical top wave functions,

and (4), 0, y) are Euler angles of rotation. 4m(0) is in-

dependent of the polar angle yb, the angle y of rotation

about the symmetry axis, and the moments of inertia of the

transition nucleus.

In 1956, Henkel and Brolley (He 56) observed that the

angular distribution of fragments in neutron induced fis-

sion of 232Th near threshold, was concentrated in a direc-

tion normal to the incident neutron direction. Wilets and

Chase (Wi 56) interpreted these results in terms of the

Bohr model. They assumed that only a few rotational states

were excited in the transition nucleus, and also that the

direction of the separating fission fragments was that of

the nuclear symmetry axis. Under these assumptions, the

angular distributions could be described by the relation:

WK (0) cc f111)12d(OdS2 cc 1DJ
K, 1/212

DJK,
1/212

(I-3)

From the shape of the experimental distribution, they de-

duced the identity of two channels which appeared to be

2Differential cross section is defined as the cross section
per unit solid angle, and it is given in millibarns per
steradian (mb/sr).
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involved and also determined the contributions of different

J values to the intensity by a curve fitting procedure.

Hittmair (Hi 60), in a further development of the

theory went back to first principles to determine relative

intensities. He considered the problem in terms of the

absolute probabilities for fission through the various chan-

nels. The probability amplitude was identified as being the

product of the following factors:

1. Amplitude associated with the partial
wave in the incident plane wave.

2. An element of reaction matrix for a
transition from the state associated
with the original even-even nucleus
in its ground state, and the incident
neutron in the state with quantum num-
bers (k, s, 0, p) to the particular
exit channel with quantum numbers JKM.
This element of reaction matrix is
represented by:

<JKMIRIks0p> = <JKIRIks><ksOpIJM>

where the second factor is the Clebsch-
Gordan vector coupling coefficient.

3. The probability amplitude for the tran-
sition from the specified exit channel
to a state in which the axis of nuclear
symmetry lies within a certain solid
angle.

Given the above factors then, the differential cross section

would be given by the following expression:

urda (0) = 1/470,2(2k+1)143KmIRIks0p>12 x

(1-4)
(2J+1)

[ IdJ 12 + Idj12]87 1/2,K 1/2,_/(

The d
1/2 ,K

functions will be defined in the next chapter.
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In his classical review paper on fission, Wheeler (Wh

63) discussed, among other things, the types of channels

which could be expected to contribute to the fission process

at the saddle point. He gave great importance to the col-

lective modes in fission, and particularly, developed a rel-

atively simple theory in which he predicted different types

of collective vibrations, by borrowing, in part, from the

molecular theory. He discussed the roles of bending, sloshing,

and of gamma vibrations (in which symmetry about the

axis of extension is lost), and quantum numbers associated

with each. Wheeler also gave estimates of the types of en-

ergies involved with the different kinds of motion, which

he predicted by assuming the nucleus to be a liquid drop,

and applying the hydrodynamic theory of motion. The role of

the moment of inertia in the rotational spectrum and the

couplings between different kinds of collective motion were

also discussed. Wheeler recognized the fact that an accu-

rate channel analysis of the fission process could not be

carried out without including competition factors corres-

ponding to other modes of decay, such as neutron and y-ray

emission. Under these circumstances, for neutron induced

fission, he replaced the element of the reduced matrix in

the treatment of Hittmair with an expression in terms of

effective number of channels:

Nn. N (K,J)
<JKIRIks0p>12 m 1 f

N
n
+N

f
+N

(I-5)
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where the quantity Nn1 measures the chance for the compound

nucleus to break into a neutron plus the residual nucleus

in its ground state. Nn measures the "yield effective num-

ber" of channels for all processes of emission of a neutron

from a compound nucleus of the given J and parity 7 of exci-

tation. Similarly, the quantity Nf(J, 7, K) in the numera-

tor is but one of the contributions to the quantity Nf(J, 7)

in the denominator corresponding to a sum over various fis-

sion channels.

Wheeler also summarized the information needed for

channel analysis in the following terms:

1. Accurate measurement of the fission
cross section as a function of angle
and energy.

2. The cross section for the formation
of the compound nucleus with a speci-
fied spin and parity as a function of
energy for each (J, 7) that contri-
butes significantly to the fission
cross section.

3. The saddle point energy of each fis-
sion channel, and the characteristic
barrier curvature two

4. The effective number of fission chan-
nels leading out from a compound nuc-
leus of given spin and parity. This
is found by adding up the openings of
all the channels which are accesible
from that (J, 7).

5. The effective number of neutron chan-
nels accessible to a compound nucleus
of given spin and parity.

6. The other levels of the residual nuc-
leus and the opening of the channel
leading to each of them as a function
of energy.
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In 1962, Lamphere (La 62) measured the fission cross

section and fragment anisotropies3 in the reaction 234U(n,f)

for neutron energies between 0.4 and 3.8 MeV. He found that

for incident energies between 850 and 1050 keV, the fission

cross section was depressed in relation to other energies.

He interpreted this in terms of the argument by Wheeler,

that neutron inelastic scattering competes with fission to

an extent dependent, in part, on available levels in the

residual 234U nucleus.4

Lamphere derived expressions connecting the measured

shape of the anisotropy, with the structure of the transi-

tion nucleus. His analysis combined the probability of com-

pound nucleus formation of a certain spin J, with an expres-

sion describing the shape of the angular distribution of the

fission fragments expected for a certain combination of K

and J. The result was an explicit expression for the dif-

ferential cross section for fission which assumed no other

types of competing processes such as neutron emission and

'y -ray decay.

a
K
(8) =

1
2 (2J+1)T

7 K
Wj(0)

4 2,
2.7

3Anisotropy is defined as the ratio of the differential
cross section at an angle near 0° to that at 90°.

4Since then, this observation has been determined to be
false. Recent developments in the theory of fission
attribute the peaking and sudden depression in of(E) to
the presence of resonances caused by the existence of a
doubly humped fission barrier.
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Here, the Tuts are spin-dependent penetrabilities. These

measure the probability that a particle with angular momen-

tum 't' will penetrate the nuclear potential of the target

and create a compound nucleus of spin J. t represents the

rationalized wave length of the projectile (a neutron in

this case), and Wj(0) is a function which describes the

angular distribution of the fission fragments, in a similar

manner as in expression (1-3). Lamphere recognized the fact

that only relative strengths (i.e., proportions) of the

various K bands could be estimated since no allowance had

been made for other types of decay of the compound nucleus,

mainly neutron emission which was considered to be much more

probable than fission.

This situation was very much improved by Vandenbosch

(Va 67) who introduced fission barrier penetrability fac-

tors into the calculation and also accounted for competi-

tion from other modes of decay. The barrier penetrability

factors were necessary because the old theory by Bohr had

predicted that the fission excitation function should re-

semble the shape of a staircase, where the sudden jumps in

the cross section would be caused by the sudden opening of

new fission channels. Wheeler had earlier pointed out that

actually these expected sudden leaps in the probability of

fission should be smoothed out because the penetration of a

quantum mechanical barrier is a gradual process which in-

creases with energy at a rate that depends on the physical
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characteristics of the fission barrier. The barrier was

assumed to have the shape of an inverted harmonic oscilla-

tor potential, whose penetrability is given by the Hill-

Wheeler expression (Hi 53):

Tf(E) = 1/(1+exp[27r(Ef-E)/hw]) (I-7)

where E
f
represents the height of the barrier, E is the ex-

citation energy, and hw is a parameter which describes the

curvature of the parabola. By using the fission data from

Lamphere, Vandenbosch attempted to relate the K-band fission

probabilities at one incident neutron energy to that at

other incident energies. This was done by simultaneously

fitting the fission cross section and the relative angular

distributions as a function of energy, and by defining bar-

rier heights Ef and curvatures'kw for each fission channel.

Although this analysis proved to be very innovative, no

firm, unique K band assignments were possible. Instead, a

number of choices were left available.

In 1968, Behkami et al.(Be 68) published a paper re-

sembling, in form, that of Vandenbosch, in which the 235U

fission transition nucleus was analyzed. Although similar

in form, two important variations are noted. First of all,

new data on fission fragment angular distributions at 16

angles and 9 neutron energies between 200 and 1184 keV were

obtained. Secondly and most importantly, the analysis was

done by simultaneously fitting, instead of the relative
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angular distributions, the differential cross sections and

total fission cross section, as a function of energy. The

introduction of the absolute fission fragment angular dis-

tributions permitted the elimination of many of the ambigui-

ties in the analysis, and brought more coherence into the

calculations. The result was, that within the framework of

a simple and approximate mode of barrier penetration, it was

possible to uniquely and firmly make assignments of the K

values and parities of the channels in the transition nuc-

leus 235U. The use of differential cross sections instead

of relative angular distributions is important because in

the former, absolute growth in the strength of a given chan-

nel is observed progressively with excitation energy. The

use of relative angular distributions only permits one to

observe the relative increases in the strength of a certain

band in relation to others. This practice also presents the

problem that, if the 90° point is in error, it throws the

whole distribution off, making the analysis somewhat un-

reliable, especially if only a few points are available in

the data.

Until a few years ago the liquid drop model of fission

provided the only base for the study of the fission process.

According to this theory, a nucleus tends to assume a spher-

ical shape under the influence of a surface tension, but in

heavy nuclei it is prevented from doing so completely, by

the strong repulsion provided by the coulomb force between
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the protons, which acts as an agent of deformation in the

nucleus.

In 1966, Strutinsky (St 66) developed a theory concern-

ing shell effects5 in nuclear masses and energies of defor-

mation, which proved to have far reaching consequences in

the understanding of the nuclear fission process.

He argued that the old liquid drop model of the nuc-

leus, which had been so convenient in describing nuclear

masses and fission theories, was not sufficient anymore.

The LDM was based on the assumption of a classically uniform

distribution of nucleons in phase space, and thus ignored

completely nucleon shell effects. He then decided to treat

nucleon shell effects as small deviations from a uniform

distribution. These deviations were termed "shell correc-

tions". Under these conditions, the total energy of the

nucleus was written as the sum of the LDM energy, the pair-

ing correction 6P, and the shell correction 6E, for both

protons and neutrons:

E = ELDM + C (6E+6p)
p,n

(I-8)

Using a simplified Nilsson level scheme for his calcula-

tions, Strutinsky obtained some startling results. He ob-

tained large fluctuations for the shell correction as a

5These are the effects caused by the non - uniformities of
the spacings between the single particle levels in the
nucleus.
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function of nuclear deformation, especially for nuclei near

magic numbers or midshells. He reached the important con-

clusion that the oscillations of (SE reflected periodic

changes in the single particle level density near the Fermi

energy.

In near magic or midshell nuclei, the equilibrium de-

formation corresponds closely to the minimal density of nuc-

leon states at the Fermi energy. Strutinsky pointed out

that normally, the density fluctuations do not produce

essential minima of the deformation energy because of the

large dependence on the LDM surface energy. He observed

however, that there were certain exceptions. One of these

corresponds to the so called "fissionable" nuclei, where the

effective LDM surface tension is small. The result was the

appearance of a second minimum in the potential energy of

deformation, as is shown in Figure 30

Strutinsky's calculations were born out by the obser-

vation that, in many heavy nuclei (U, Pu, Am isotopes), one

can populate an isomeric state of the nucleus that decays

by spontaneous fission. These isomeric states are known to

be states of the nucleus trapped in the minimum in the fis-

sion barrier. Their y-ray decay to the ground state is

greatly inhibited because it involves a change in the nuc-

lear shape, while their spontaneous fission decay is en-

hanced because they have already partially passed over the

fission barrier.
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Figure 3. Effects of Shell and Pairing Corrections on the Shape of the Fis-
sion Barrier. The dashed line represents the LDM calculation,
while the full line corresponds to the LDM + shell corrections.
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The presence of a doubly humped fission barrier is res-

ponsible for the observation of strongly grouped subbarrier

fission resonances in capture reactions with low energy neu-

trons. This is suggestive evidence for the existence of two

weakly coupled sets of excited levels (Bj 69). In terms of

Bohr's channel theory of fission, the pronounced structure

in excitation functions for fission at energies near the

barrier, introduces complications in the analysis of fission

fragment angular distributions. Under these conditions, the

penetrability expression (I-7) is no longer appropriate, but

has to be replaced by a more complicated one which takes in-

to account the penetration through two barriers instead of

one. This immediately suggests that, unless the two humps

in the fission barrier are not comparable in size, all pre-

vious calculations regarding channel analysis of fission

are in error.

As the excitation energy above the fission barrier in-

creases, the structure in the fission fragment angular dis-

tributions and cross section decreases rapidly, and the

nucleus effectively "sees" only one barrier. According to

Vandenbosch (Va 73), fragment anisotropies at moderate ex-

citation energies are characteristic of the outer barrier

deformation, while at very high energies (>50 MeV) shell

effects disappear and the liquid drop barrier becomes

determinative.



20

Recent statistical model calculations (Ba 73) of fis-

sion probabilities at moderate energies, taking into account

competition between fission, neutron emission, and y-ray de-

excitation of the compound nucleus, suggest that fission

widths which are greater by about a factor of four than

those calculated, are necessary to reproduce the magnitude

of the measured fission probabilities. This development im-

plies that up to now, theoretical considerations have under-

estimated the number of fission channels above the fission

barrier by a factor of about four. Recent theories (Bj 73)

resulting from this observation suggest that arguments re-

garding the symmetry of the nuclear shape at high deforma-

tions are partially responsible for the noted increase in

the number of fission channels. The basic reason for this

increase lies in the fact that, the number of rotational

energy levels in a nucleus, or for that matter, in a mole-

cule, increases with the degree of asymmetry offered by the

body shape. Recent calculations (Ni 72) regarding the nuc-

lear shape tend to indicate that the nucleus has a reflec-

tion-asymmetric shape at the deformation, corresponding to

the second barrier. This would immediately increase rota-

tional contributions to the channel spectrum by a factor of

two. Not only is the high number of channels caused per-

haps by non-counted rotational states, but also possibly by

the neglect of vibrational contributions. It is even pos-

sible, as we shall see in a later chapter, that important
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collective effects have consistently been neglected at the

nuclear equilibrium deformation.

B. Short Overview of Fission Barrier Calculations

Shortly after Strutinsky developed his theory concern-

ing fission barrier shapes, people around the world began

studying the applications of the shell corrections to the

liquid drop model and some very sophisticated theoretical

calculations have been carried out in connection with many

fissioning systems. Most of them have adopted the so called

macroscopic-microscopic approach, in which the average be-

havior of the sum of the single particle level energies is

normalized to that of the liquid drop.

As pointed out by Nix (Ni 72), the calculations of the

potential energy of deformation by means of this approach

consist of five steps:

1. Specify nuclear shape.
2. Calculate macroscopic (LDM) energy.
3. Generate single particle potential

felt by nucleus.
4. Solve Schrodinger equation for

single particle energies.
5. Calculate microscopic (shell and

pairing) corrections.

The total potential energy is then given by the sum of the

macroscopic energy calculated in step two, and the micro-

scopic corrections calculated in step five.

Until recently, these calculations were carried out in-

cluding only shapes of the nucleus that were symmetric with

respect to reflection in the x-y plane. The results in
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these cases were that the predicted second barrier height

appeared systematically too high in relation to the experi-

mental evidence. Although several people had previously

conjectured that at very high P2 deformations, the liquid

drop energy surface was "soft" to asymmetric shape distor-

tions that involve a certain combination of P3 and P5 defor-

mations,6 it was not until recently, that it was specifi-

cally determined that for nuclei in the actinide region, the

asymmetric deformations were responsible for a general de-

crease in the potential energy of the second barrier (Mo 70,

72, 73). The mass asymmetry associated with the second peak

was first demonstrated by Moller and Nilsson with a modified

harmonic oscillator potential (Mo 70). Also, whereas the

first saddle point is stable with respect to reflection

asymmetry it is found to be unstable with respect to axial

symmetry (y-deformations), in some cases lowering the energy

by about one MeV (Ni 72).

Calculations in this region also show that as the pro-

ton number decreases towards thorium, the second barrier

increases in height systematically and becomes significantly

larger than the first barrier. This qualitative trend has

been observed experimentally and reported in a recent paper

by Back et al. (Ba 73, 73a)0 Although theoretical

6 P2 deformations are those associated with stretching of
the nucleus in the fission degree of freedom, while P3
and P5 distortions signify right-left asymmetry.
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calculations of the two barriers for these elements agree

remarkably well with experimental findings, 230Th presents

the problem that both its secondary minimum and first saddle

point are higher by about 3 MeV than the theory predicts.

These discrepancies constitute the "thorium anomaly".

In the case of radium, calculations predict that for

all intents and purposes, the fission barrier is essentially

single humped. Theoretically, Brack et al. (Br 72) estimate

the height of the inner barrier in the case of 228Ra to be

about 204 MeV, compared to an outer barrier height of 8.2

MeV. This latter figure would agree very well with recent

calculations by Moller and Nix (Ni 73), which tentatively

place the outer barrier height in 226Ra at about 802 MeV

also. Some inconclusive evidence supporting the concept of

a comparatively small inner barrier for radium is reported

by Kuks et al. (Ku 73) who, after irradiating 226Ra with

neutrons at various energies, found no evidence of isomeric

fission present in the samples. We will come back to this

point as we develop the statement of the problem concerning

the present work.

C. Statement of a Problem

While these fission barrier calculations appear to des-

cribe reasonably well the experimental data on spontaneously

fissioning isomeric states, they have not, in general, been

rigorously tested as to how well they predict the low energy
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single particle level spacings at the saddle point, and few

if any, tests have been made concerning predictions of fis-

sion barrier structure in nuclei with Z S 90.

In the search for systems that could yield important

information in this respect, the isotopes of radium stand

out. They are considered to be in the intermediate region

between heavy and light fissioning nuclei, and they are en-

dowed with a series of unique properties in relation to

other nuclei. For example, we might comment briefly in

phenomena related to the mass distribution of fission frag-

ments in connection with this mass region. Low excitation

energy fission of higher Z-actinide nuclei is typically

asymmetric, characterized by a double humped mass distribu-

tion. On the contrary, nuclei near Pb and Bi exhibit a

symmetric mass distribution. However, for fission of nuc-

lei in the intermediate region (Ra and Ac), a triple humped

mass distribution with well established minima between the

three mass yield peaks is observed. As the excitation

energy is increased, the yield of symmetric fission in-

creases rapidly. The origin of these phenomena is still

being debated. It has been suggested that the triple-humped

mass distribution is the result of a superposition of two

different fission components, a symmetric one, appropriately

described by the liquid drop model, and an asymmetric com-

ponent, whose origin is believed to be determined by the in-

fluence of the shells in the nascent heavy fragments. The



25

question arises as to when, in the fission process, is the

mass distribution decided? Or, what set of conditions de-

termines the mode of fission which the nucleus will exhibit?

There are those who believe that the mass distributions are

decided at the saddle point, while others prefer to think

that it is actually decided by the nucleus on its way to-

wards scission from the saddle point.

The experimental data obtained recently by Konecny et

al. (Ko 73) for excitation energies up to 15 MeV on the com-

pound systems 225Ra, 227Ra, 226Ac, 227Ac, and 228AC would

tend to support the argument that the mass distributions are

decided at the saddle point. For all the above systems,

they find that the variation of of(E *) as a function of ex-

citation energy is quite different when both mass components

are considered separately.(see Figure 22). The asymmetric

component dominates totally at low energies; as the energy

increases, symmetric fission increases at a relatively slow

rate until, at about 12 MeV of excitation, the contributions

from both modes are about equal. Presumably, then two bar-

riers would be available; a lower asymmetric barrier, and a

higher symmetric barrier, two or three MeV above the former.

The data obtained by Nobles and Leachman (No 58) on the

226Ra(n, %f) reaction also shows that the mass distribution

changes from one asymmetric in character at neutron energies

below 4.6 MeV, to one predominantly symmetric at energies

above E
n

= 10 MeV. A complete analysis of the structure of
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the 227Ra transition nucleus in this region might yield evi-

dence concerning the nature of the corresponding mass dis-

tribution. That is, the existence of a mass symmetry de-

pendent path to fission for the transition nucleus, might be

reflected in the energy dependence of the parameters that

describe the state of the transition nucleus over the appro-

priate energy range.

Recently, Babenko and coworkers (Ba 68, 69, 70) and al-

so Ippolitov et al. (Ip 72) have reported some very unusual

data concerning the 226Ra(n,
f) reaction. Their published

data on the energy variation of the fission cross section

and angular distributions is shown in Figures 4 and 5. Of

great interest are the sharp variations in the anisotropy as

the cross section steadily increases at neutron energies,

E
n
, between 3.6 and 3.9 MeV. It is also important to notice

the steady decrease in the anisotropy as the cross section

remains relatively unchanged in the region 3.9 < En < 4.7

MeV. Then there is a step in the cross section correspond-

ing to En = 4.7 Mev, and for neutron energies ranging be-

tween 5.4 and 9.0 MeV, the fission cross section increases

slowly and monotonically. We also notice that anisotropies

remain relatively constant between En = 5.4 MeV and En = 7.1

MeV, with certain changes observed for En > 7.1 MeV. From

9.0 MeV to the last point at 14.8 MeV, the cross section in-

creases more rapidly, and very unusual features in the
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angular distributions are noticeable at neutron energies

equal to 14.4 and 14.8 MeV.

Babenko et al. correctly point out that the rapid

changes in the cross section near the threshold are usually

due to the opening of new fission channels. From the raw

data, they estimate the fission barrier to be about 8.5 MeV

high. Normally, a step in the cross section, such as the

one observed above E
n

= 4.7 MeV is interpreted as being

caused by fission after neutron evaporation. In the case of

radium, this interpretation is completely ruled out. Assum-

ing that the binding energy released when a neutron is added

to the 226Ra nucleus is about 4.5 MeV, an incident neutron

with a kinetic energy of 4.7 MeV produces a compound nuc-

leus with an excitation of about 9.2 MeV. If the nucleus

decays by neutron emission, the average energy of the out-

going neutron is roughly 1.5 MeV. This means that the resi-

dual nucleus is left with an average excitation of about 3.2

MeV, which is considerably less than the fission barrier

height of 8.5 MeV and thus second chance fission is very im-

probable.

Their analysis of the data includes some over-simplify-

ing assumptions. The expression for the fission cross sec-

tion in their analysis was written in the following form:

N f (J 7 I E
n

)

a
f
(E
n

) = c
c

(J, 7, En)
J7

N
n
(J, 7, E

n
)
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where N
f

and N
n

are the effective numbers of fission and

neutron channels respectively (neutron emission is assumed

to be overwhelming dominant in relation to other modes of

decay), ac is the capture cross section for neutrons, and

J,Tr are the angular momentum and parity of the nucleus res-

pectively. They assumed that the quantity N
n
(J, Tr, E

n
) re-

mained constant for incident neutron energies between 3.5

and 5.0 MeV. As we shall demonstrate later, this is a poor

assumption, since the energy levels in the residual nucleus

increase exponentially with excitation energy.

The angular distributions of the fission fragments were

analyzed by fitting Legendre polynomials to the a(0)/a(90)

data. Although this method gives an idea of the nature of

some of the channels involved, it does not predict their

positions. In the same manner, no account was taken of the

energy differences between the different J members of a

given K rotational band. Also the fits to cross sections

and angular distributions were carried out not simultane-

ously, but separately. As we mentioned before, this latter

procedure presents the problem that we are constrained in

the amount of information that can be extracted regarding

the absolute contributions to the cross sections from indi-

vidual channels. We are allowed only to speculate about the

relative strengths of certain K bands in relation to others.

Finally, it was assumed that the step in the cross sec-

tion is caused by the existence of two barriers, one lower,
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characterized by negative parity states, and another one,

higher, characterized by positive parity states at higher

energies. In reality, there is no physical reason for

adopting such a scheme.

The development of this introductory part has led us

to the following conclusions:

1. Very peculiar features are observed in the

cross section and angular distribution data reported by

Babenko and co-workers and Ippolitov et al, regarding the

226 Ra(n,f) reaction.

2. The triple humped mass distribution in the

fission of radium isotopes might be caused by two different

components, each being characteristic of a particular mass

region.

3. There is no agreement between theoretical cal-

culations and experimental observations regarding the fis-

sion barrier in the thorium isotopes, while the agreement is

good for heavier nuclei.

4. The fission barrier in radium is predicted to

be double humped, but the first hump can be considered, for

all intents and purposes, negligible in relation to the

second hump; the latter is predicted to have a height of

8.2 MeV above the ground state.

5. Recent evidence indicates that the number of

channels at the saddle point is underestimated by a factor
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of about four, possibly because of the neglect of collective

contributions to the fission width.

It is the purpose of this work to study the fission

transition nucleus 227Ra by analyzing the experimental data

reported by Babenko et al., and Ippolitov et al. The analy-

sis should be facilitated by the fact that the fission bar-

rier can be assumed to be single humped. It should give

some degree of indication as to whether the anomaly reported

for thorium is only observed for Z = 90, or in radium also.

At the same time, it is the intention of this work to inves-

tigate the problem regarding the collective contributions in

fission. Finally, it is hoped that the analysis of the ex-

perimental data might yield some tentative evidence regard-

ing the stage at which the mass distribution is decided in

fission. We hope to accomplish this, by what we think is a

substantial improvement over the method of analysis employed

by Babenko, Ippolitov and collaborators.

D. Scope

It is clear that the 226Ra(n,f) data measured in refer-

ences (Ba 68, 69, 70) and (Ip 72), covers a fairly complete

range of energies. Near the fission threshold, the nature

of the transition nucleus structure requires that the analy-

sis be discrete, since we are dealing with only a few chan-

nels above the fission barrier. As the excitation of the

nucleus increases, the system must be described in terms of
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parameters that emphasize the statistical behavior of the

nucleus. This behavior will then be compared with theoreti-

cal predictions based on different assumptions regarding the

nuclear shape at the transition state.

As we shall see later, the question regarding the nuc-

lear shape is not a trivial one. The symmetry of the nuc-

leus plays an important role in determining the degree of

freedom involved in the fission process, which are associ-

ated with that part of the wave function that describes the

collective motion of the nucleons.

Therefore, we shall proceed now to develop the model

and, as we go along, a description will be made of the

assumptions employed in this calculation.
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II. DEVELOPMENT OF THE CALCULATIONAL MODEL

A. General Aspects of the Calculations

We might begin to develop the model for transition

state spectroscopy by describing the fate of the compound

nucleus formed by the absorption of a low energy neutron.

The nucleus is excited to an energy which is equal to the

sum of the neutron binding energy, plus the kinetic energy

of the neutron, minus a negligible amount corresponding to

the recoil energy. The excited nucleus then has essentially

three modes of decay available for de-excitation. It might

emit y-rays, in which case only levels of the compound nuc-

leus will be populated; it also has the possibility of

emitting one or more neutrons, depending upon the excitation

energy, and thereby population levels in the residual nuc-

leus of lower A; or it might alternatively, choose the path

to fission, in which case, given channels in the transition

nucleus will be population.

If we assume that statistical equilibrium is reached

before the compound nucleus has a chance to decay, then we

can describe the probability for a particular type of de-

excitation as a suitably weighted fraction of the neutron

absorption cross section. The suitably weighted fraction of

the absorption cross section is formed by computing the

ratio of the relative number of a particular type of



37

de-excitation channels to the total possible number of de-

excitation channels.

The number of available channels can effectively be

described in terms of the average width for a particular

process, and the average level spacing between resonances of

given total angular momentum and parity. Mathematically,

the effective number of channels for a certain process may

be written in the following way:

Jk
7>

Nf = 27
<D 7>

where N
f
is equal to the effective number of channels.

<r
Jk

7> is equal to the average width for a certain channel

of total angular momentum J, orbital angular momentum k and

parity 7; and <Dj7> is equal to the average level spacing

between compound nuclear resonances of given spin and

parity. As we will show, the effective number of channels

can be computed using the transmission coefficients for

given processes. If then, we wish to calculate the partial

cross section for a given process, we can incorporate these

transmission coefficients into a Hauser-Feshbach calculation

in an appropriate manner (Ha 52).

In 1964, Moldauer et al. (Mo 64) created a computer

code for calculating energy averages of integrated compound

nucleus scattering, capture, and fission cross sections.

This code incorporated features from the Hauser-Feshbach

approach to particle scattering, the Blatt-Weisskopf theory
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for y-ray emission, and the effects of level width fluctua-

tions. The partial cross sections for the given processes

could be obtained from the expression:

n't

<I' a ><r- >
CM I

7

2 <D

2 AJk
<F

AJk
<a >=.

k
(2J+1) x Saa' (II-2)

> >AJ X

where a
' is equal to the cross section for partial wave

k, entrance channel a, exit channel a' near an isolated

resonance A of total angular momentum J. k is equal to the

wave number of the incident neutron, <F°72,> to the partial

width for entrance channel a, < r 3
>
to the average partial

k

width for the exit channel a', <1' > to the average total
ALT

width of the resonance, and <Dxj> is equal to the average

level spacing between resonances of given spin and parity.

Saa' represents the level width fluctuation correction

factor. Its magnitude depends on the number of degree of

freedom, if it is assumed that the partial widths are dis-

tributed according to a X2 family of distributions. This

quantity arises from the fact that the average of a ratio is

not in general equal to the ratio of the averages, and the

original Hauser-Feshbach expression is as follows:

Cr

a
, a

aa, 7 1 AJk AJk>r r
> = (2J+1) (07)

<r) >
<J9.,

AJ AJ

and therefore:
a r a

_
/r >xJ,Q, AJk Xj

NISaa
<r ><.7- >/<rx).AJZ AJZ
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In the particular case of the 226 Ra(n,f) reaction analysis,

where the number of neutron exit channels is very large,

Saa' becomes essentially unity, and therefore, it will be

neglected in the analysis.

In 1968, Behkami et al. (Bo 68) extended the above for-

malism to allow a microscopic description of the fission

exit channels in terms of the states of the transition nuc-

leus, and to allow the calculation of fission fragment angu-

lar distributions.

In the calculations described in the present work, the

same approach has been adopted with some important changes.

The computer program of Behkami et al. was modified (see

Appendices III and IV) to take into account up to 60 fis-

sion channels instead of the original five. In addition

(as we shall describe in more detail in another section), an

option has been added to the program that permits the exit

neutron channels to be treated in a statistical manner.

This was done because in the original program it was only

possible to treat up to 26 neutron exit channels.

Because of the wide range of excitation energies stud-

ied in this project, it was also necessary to extend the

formalism in such a way as to include a statistical treat-

ment of the fission channels when they could no longer be

treated discretely. This at the same time, called for the

extension of the subprogram that calculates the angular dis-

tributions, to treat any desired values of the (K,J) quantum

numbers.
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It is important to point out that although the shape

of the formalism remains basically the same, the substance

and depth are somewhat changed. For the sake of complete-

ness and clarity, we have decided to proceed with the des-

cription of both what is old and what is new in the sub-

stance of the calculation, with the hope that it will pro-

vide a better understanding of the theory behind this work.

In order to express the partial reaction probabilities

in terms of transmission coefficients, Moldauer et al, pro-

ceeded to replace the neutron and exit channel partial

widths with optical model transmission coefficients using

the relation:

2
a

ff

T
XJk <D

209,
>

<2 >

The partial widths for y-ray decay of the compound nuclear

state X, spin J, parity Tr, and excitation energy U in equa-

tion (II-5) were replaced by transmission coefficients using

the expression:

T
Xy

(J,ff,U) = 2ff<r
Xy

(J,7,U)>p(J,7,U) (11-6)

where p(J,ff,U) is the density of (J,Tr) levels at excitation

energy U. The energy dependence of the average radiation

width was given by the Blatt-Weisskopf formula for dipole

y-ray emission:

r
Xy

(U) = C
1 J

(

tU Pp(UU) -E) E3dE
0

(11-7)
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with Ericson's formulation of the energy dependence of the

level density

P(U) = C2 exp (272U/36)1/2 (II-8)

In the above equations, Cl, C2, and 6 are constants, the

latter being of the order of the average spacing between

single particle levels. Thus, the energy dependence of Tu

was given by the function:

X(U,6) = ex[x4-10x3+45x2-105x+105] (II-9)

where xEi272U/36. The functional form of the angular momen-

tum dependence of the level density was given by:

F(J) = exp (-J2/2a 2) - exp [-(J+1)2/2a2] (II-10)

where a is the familiar spin cutoff parameter. Combining

the above equations we get:

F(J,a)X(U
o
+E,6)

T
Xy

(J17,E) = 27 (D 1)
0 [F(1/2,a)]x(u ,6)

(II-11)

where (r y/D) o
is the measured ratio of the average radiation

width to level spacing for compound nuclear states populated

by s-wave neutrons of zero energy, E is the neutron energy,

and U
o
is the neutron binding energy. For the case of

radium at high excitation energies, y-ray emission contri-

butes very little to the total cross section. Therefore,

the accuracy of the parameters used is not crucial to the

calculation of the fission cross section. However, the

parameter 6 can be related to the level density parameter
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a
n
, which determined the slope of the log of the level den-

sity vs. the excitation energy in the compound nucleus.

The partial widths for fission through an exit channel

of given (J,K,ff) were replaced by transmission coefficients

given by:

T
Af

(J,K,7,E) = (2r/<D
AJ Xf

(J,K,ff,E)> (II-12)

As was mentioned before, in order to calculate the

transmission coefficients for fission, the fission barrier

was assumed to have the shape of an inverted parabola. Hill

and Wheeler (Hi 53) have shown that the penetrability is

then given by:

Tf(J,K,ff,E) = {1+exp[271-(Ef(J,K,TO-En)/tw]}-1 (II-13)

where E
n

is equal to the incident neutron energy, Ef(J,K,n)

is the fission barrier height relative to the neutron bind-

ing energy, associated with the state (J,K,ff) of the transi-

tion nucleus, and tit) is equal to the barrier curvature para-

meters.

We can see that for small values of tiw, the barrier is

thick, and penetration only takes place close to the top of

the barrier. Astw increases, the barrier becomes thinner,

and penetration becomes a more gradual function of energy.

The barrier height is usually calculated assuming the

following expression:

J+1
(II-14)

E
f
(J,K

'

Tr) = E +(h2/21.0[J(J+1)-a(-1) (J+1/2)d
K,

1]
1
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where E
o

is the constant representing the base of the rota-

tional band, tti is equal to the nuclear moment of inertia

about an axis of rotation perpendicular to the nuclear

symmetry axis, a is the decoupling constant for Km1/2 bands,

and 8 is the familiar Kronecker delta.

It is worth mentioning that as the nucleus becomes more

and more elongated, t1 increases. The effect of this in-

crease for highly deformed shapes is to lower the effective

barrier corresponding to the different members of the rota-

tional band, and thereby increasing the fission probability.

Once the transmission coefficients have been defined,

they can be replaced in the Hauser-Feshback expression, to

obtain the cross section for neutron induced fission through

a state (K,J,7) of the transition nucleus, in the following

manner:

71.2 (2J+2 1)

1, J 'n

2T f (K I J I n)

x
2Tf (K J IT)+T (E,J,711+I Ttiv(V)

K E'VJ1

where E
n

is equal to the incident neutron energy, IC is the

reduced wave length of the neutron, and Tf, Ty, and Tti

have already been defined. The primed quantities refer to

energy levels in the residual nucleus. Therefore, these

neutron transmission coefficients are "inverse reaction co-

efficients". They are evaluated at an energy which is the
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difference between the incident neutron energy, and that of

the level which is being fed. In the calculation, angular

momentum and parity are, of course, conserved, and only cer-

tain values of 9., are allowed to populate levels in the resi-

dual nucleus. The transmission coefficients for fission are

counted twice, in order to account for the possibilities of

two projections of the angular momentum over the nuclear

symmetry axis.

The question regarding the angular distribution of the

fission fragments hinges on the assumption that when the

nucleus reaches the saddle point, the K quantum number,

which is the projection of the total angular momentum over

the nuclear symmetry axis, becomes a constant of the motion.

This assumption would clearly become invalid in the event

that the nucleus lost axial symmetry.

Assuming then, axial symmetry, the dynamics of the

dividing nucleus is compared with the dynamics of a symme-

tric top. In other words, the probability distribution in

space of the fission fragments is taken to be the same as

the probability distribution in direction of the symmetry

axis of a symmetric top, which has: (1) The same total an-

gular momentum quantum number J; (2) The same quantum num-

ber M for the component of the angular momentum about the

space fixed axis "s"; and (3) The same quantum number K for

the component of the angular momentum about the symmetry

axis of extension.
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The wave equation of the rotator is given by the ex-

pression for the symmetric top:

= Dijii((c1)eX) = ei" d(0)eiKX (II-16)

where (I), 0, and X are the familiar Euler angles, and d(G)

will be defined later.

The probability that a fissioning nucleus will be

oriented in a certain way will be given by an expression:

_J
,K

d(probability)
2J+1 1

D ((iblefX)1227sined6 (II-17)M

For neutron induced fission of even-even nuclei, the above

two equations yield the following relation for the angular

distribution:

wJ (0) = 1(2J+1) [le (8)12+1e (8)12] (II-18)
M,K 4 M=1/2,K

where the d functions are given by:

dm,K (e) = [ (J+M) ! (J-M) ! (J+K) ! (J-K) !

(11-19.)

(-1)x[sin(%0)]
K-M+2x

[cos(1/26)]
2J-K+M-2x

x=o (J-K-x) I(J+M-x)I(x+K-M)Ix!

where the sum is over X = 0, 1, 2, 3, ..o and contains all

terms in which no negative value appears in the denominator,

for any one of the quantities in parentheses.

Some typical WmK functions are shown in Figure 6.

These serve to illustrate the point that the fission frag-

ment angular distributions can be used as "fingerprints" to
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Figure 6. Theoretical Fission Fragment Angular Distribu-
tions for Neutron Induced Fission of Even-Even
Targets Assuming Fission Proceeds through a
State of Given (K,J,M) in the Transition Nuc-
leus.
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clarify the identity of the fission channels. For example,

K = 1/2 bands are the only ones responsible for angular dis-

tribution peaking at 0°. Therefore, when forward peaking is

observed, this represents the unqualified signature of K = 1/2

character in the transition state spectrum. Assuming that

all the parameters are known, the fragment distribution

associated with fission through a channel of given K can

readily be computed from the expression:

W K(0) = af "(J K Tr)W3-
MK

(0) (II-20)

once the various partial fission cross sections have been

determined.

In reality though, some of,the variables are not known,

and the way the calculation is carried out is to assume, in

a trial and error basis, values for some of the parameters,

until the experimental data have been fit in the most sta-

tistically significant manner. The free parameters in the

two regions singled out for calculation, namely, moderate

and low energies, are not the same. They will be specified

as each section of the calculation is individually

described.

B. The Role of Neutron Emission

By far, the dominant mode of decay of the excited com-

pound nucleus for incident neutron energies between 3.6 and

14.8 MeV, is the emission of neutrons to energy levels in
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the residual nucleus. This neutron emission represents '1)95%

of the decay events observed in this region. Therefore, in

computing the cross section for fission, we see that the de-

nominator in the Hauser-Feshbach expression (II-15) will be

largely determined by the neutron emission probability fac-

tor.

Under normal circumstances, the neutron emission term

in the denominator of the Hauser-Feshbach expression (II-15)

represents a summation of transmission coefficients for de-

cay to levels of energy E' in the residual nucleus in the

range of excitation energies from 0 to the incident neutron

energy. Because not all combinations of (2', J') are al-

lowed due to momentum conservation arguments, the sum only

takes place over a restricted selection of these values. If

these energy levels in the residual nucleus are known, the

sum can be made in an exact manner; however, at moderate ex-

citation energies encountered in this work, two complica-

tions come into play. In the first place, the residual nuc-

leus levels are only known up to a relatively low value of

the excitation energy, and secondly, even if the levels were

known accurately, their number would seriously lengthen the

calculation in terms of computer time, making it impracti-

cal. In the individual case of 226Ra, the energy levels are

only known to 0.445 MeV. The lowest neutron energy for

which we have data available corresponds to 3.6 MeV. This

means that any summation in terms of energy levels should be
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performed up to this energy. Of course, the same situation

applies for the whole set of neutron energies.

The way in which we have decided to treat this problem

is to assume a continuous distribution of levels from the

ground state to the incident neutron energy. In this man-

ner, for a given neutron partial wave with a (2', J') com-

bination and kinetic energy (Ek), decaying into a small num-

ber interval of levels dN of spin and parity J7r and energy

(E
n
-E

k
) of the target nucleus, the effective number of chan-

nels dP is given by the relation:

dP = T
k'J'

(E
k
)dN

Iff
(E
n
-E

k
)

For a small enough energy interval the number of levels

dN
Iff

(E
n
-E

k
) can be expressed in terms of the local level

density:

dN
Iff

(E
n
-E

k
) = p(E

n
-E

k
)d(E

n
-E ) (11-22)

Substituting the above expression in (II-21) and integrating

over Ek, we get:

E
P50,3,(Iff) = fon Tilji(Ek)P(En-Ek)d(En-Ek)(II-23)

By reversing the limits of integration and differentiating

(En-Ek) with respect to Ek, we get:

0
P
k'J'

(Iff) = f
E

T
kiJI k

)p(E
n
-E

k
)dE

k (11-24)
n
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The effective number of neutron channels of all (k', j') de-

caying into all (1,10 levels of the residual nucleus for all

allowed excitation energies is given by the relation:

1 1 T
i' J'

(E') f° (T (E k)

E' E
n

(F
n
-E

k
)dE

k ]

It

(11-25)

In order to be able to evaluate this expression we must know

the dependence on energy of the different neutron transmis-

sion coefficients, and that of the level density.

1. The neutron transmission coefficients

The evaluation of the different Tvi,(Ek), requires the

use of an appropriate optical model code. To make use of

such a code in a continuous manner as would be required in

the evaluation of an integral would prove cumbersome be-

cause of the complexity of the calculation. For neutron

energies below 3 MeV, the tables produced by Perey and

Auerbach (Au 62) of neutron transmission coefficients, are

very useful, and have enjoyed widespread use. However, as

we have pointed out, neutron energies encountered in the

226Ra(n, f) data go up to almost 15 MeV, and therefore the

above tables are not appropriate for our use. Meldner and

Lindner (Me 64) have calculated values of the transmission

coefficients for several values of the atomic mass, and for

values of k corresponding to 0 < k < 7, as a function of
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neutron energy. We have used the Meldner-Lindner Tt,j,

values for A = 232 to represent the Tt,j, values needed in

our calculation for these reasons. In the first place, we

have not been able to find any specific data for Ttj values

corresponding to A = 226 specifically. Secondly, the depen-

dence of the transmission coefficients is expected to be on

A
1/3

rather than on A and therefore, the use of values cor-

responding to A = 232 rather than A = 226 should make very

little difference in the final results (Bo 69). Finally,

quite good agreement is obtained between the calculations

of total reaction cross sections using the Meldner-Lindner

Tt,j, values and the experimental data on 232Th of Batchelor

et al. (Ba 65). This agreement is shown in Table I.

Table 1. Inelastic Cross Sections for 232Th(n,n') Reaction.

E
n
(MeV) Experimental* Theory**

3 2.96 b. 3.11 b.

4 2.85 b. 2.90 b.

7 2.77 b. 2.90 b.

Batchelor et al. (Ba 65)

** Meldner and Lindner (Me 65)

In order to simulate analytically the energy dependence

of the transmission coefficients for the purpose of evaluat-

ing the compound expression (11-24) we fitted this energy

dependence using a non-linear least squares calculation with

five free parameters. Fits were made for each value of
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between 0 and 7. In all cases the same functional form was

used, but of course, with different values of the free para-

meters. The general form of this relation is:

T (E
k

)

1+exp[8(y-Ek)]
+ 6E

k
(11-26)

where a, Y, 6 and E are free parameters. Table II shows

the best values of these constants for the different 9.

waves, and Figures 7 through 10 show plots of the real neu-

tron transmission coefficients and our empirical fits using

expression

Table II.

(11-26).

Parameters used in Calculating Compound Neutron
Transmission Coefficients.

9, a $ Y 6

0 0.30 -0.2272 -5.250 0.36900 0.27150

1 1.00 8.1300 0.257 -0.05030 0.08210

2 0.35 2.8530 1.242 0.08972 0.49590

3 1.00 3.0550 1.574 -0.03078 0.48730

4 0.50 1.5220 3.099 0.00933 0.06276

5 0.50 1.1720 3.855 -0.04660 -0.50000

6 1.00 1.0939 6.865 0 0

7 1.00 0.6743 7.305 -0.00008 -1.00000

For some of the values, the fits deviate from the

original curves at energies above 5 MeV. This however, does

not introduce an important source of error in the calcula-

tion of the "compound transmission coefficients" because of
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the sharp dependence of the level density on the excitation

energy. See Appendix I.

2. The level densities in the residual nucleus

To evaluate expression (11-25) we need to know p17,

the level density of the residual nucleus. The problem con-

cerning the evaluation of this level density is a complex

one because of the almost non-existent data in the mass re-

gion around A = 226. In the case of radium in particular,

there is no information that can be used in determining the

densities. Experimental data relating to state densities

and their dependence upon excitation energy was available

for thorium and this data was used in the present calcula-

tion because it is felt that it should closely approximate

the case of 226Ra. As we shall see in a moment, a justifi-

cation for this assumption is found in the fact that neutron

resonance data for the even-odd elements in the region

around uranium are quite similar in magnitude.

The detailed study of neutron resonances provides in-

formation about level densities that is confined to a very

narrow energy interval at the neutron binding energy. Evi-

dence concerning the nuclear level densities over a much

wider energy interval can be obtained from the analysis of

the energy spectra of evaporated particles in nuclear reac-

tions. The level density p(E) at the excitation energy E
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is deduced from the yield of neutrons N(E,11) of energy En by

employing the statistical relation:

N(Ef) cc p(E)E
n

a
c
(E',E)
n

(11-27)

where a
c
(E',E) is the inverse cross section for formation of

the compound nucleus at excitation energy E by bombardment

with neutrons of energy Eno

The dependence of the level density on excitation e

energy can be obtained naturally by plotting log N(EA)/El!I

a
c
(E',E) vs. E. The paper by Batchelor et al. (Ba 65) con-

tains plots of log N(EA)/EA vs. E for various incident

energies in the 232Th(n,n') reaction. Fission components

were subtracted from the total non-elastic neutron spectrum

to give the spectrum of the evaporation neutrons. The in-

cident neutron energies were 3, 4, and 7 MeV, and plots are

shown in Figure 11. All these plots show linear dependences

of log N(E:1)/EA vs. 14ff in the energy regions considered;

however, the ordinate is not directly proportional to the

level density because the inverse cross section is absent in

the denominator of the expression plotted in this figure.

We have made a correction by including this factor, which

was obtained from the 232Th capture cross section calcula-

tion by Meldner and Lindner 7
(Me 64). The shapes of the

lines are only slightly changed as shown in Figure 12. In

7The magnitude of the error incurred by neglecting ac fluc-
tuates between 6 and 14% for the energy range considered.
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Energy for the Evaporation Spectra from 232Th
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order to obtain the dependence of the continuous density on

energy, these lines are superposed on each other at the

overlapping excitation energies. The 232Th data however,

presents the problem that there is a lack of data in the

curves for 1.6 MeVi < /E < 2.1 MeV2. This problem was

solved by an extrapolation procedure that joins both curves

smoothly at the crossing point. The result is shown in

Figure 13. The data drawn in Figure 13 was then replotted

in the form: log N(EA)/E;lac(E;1,E) vs. E, as shown in Figure

14. Having the dependence of the level density on excita-

tion energy, one needs to find the absolute level densities.

These absolute level densities were obtained by normalizing

the curve showing the energy dependence of the level density

to one measured value of the level density at a given exci-

tation energy.

Vorotnikov (Vo 69) has tabulated neutron resonance data

for a series of nuclei in the radium region. This data is

shown in Table III. The even-even nucleus closest to 226Ra

Table III. Neutron Resonance Data for Nuclei in the Th
Region*.

Interval N/A E
n

n
,

Compound Binding of E eV Number of
Nucleus o Energy (MeV) Resonances eV-

Th"°

U234

U
236

pu242

5/2

5/2

7/2

6.72

6.78

6.40

6.21

0-10

20.5-62.8

0-25

0-30

14

68

42

25

1.40±0.37

1.60±0.10

1.68±0.16

0.83±0.10

*Vorotnikov (Vo 69)
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for which this kind of information exists is 230Th. The

data in Table III are the observed density of levels excited

when an s-wave neutron strikes a target of spin I0, to form

a compound nucleus of resulting spin I0 ± 1/2 if I0 0, and

of spin 1/2 if I0 = 0 with the parity of the compound system

being determined by the parity of the ground state of the

target nucleus. In the case of the compound nucleus 23°Th,

the angular momenta and parities of the levels excited are

J = 2+ and J = 3+, because the spin and parity of 229Th are

J = 5/2+. Knowing the local density of these states at the

neutron binding energy, we can determine the total level

density provided we also know the spin distribution. The

spin distribution is usually assumed to be Gaussian in

shape, and it is given in the form:

/

(2J+1)
e
-J(J+1)/2a2

(11-28)

where J is the total spin, and a is the spin cutoff para-

meter that determines the width of the distribution. Gil-

bert and Cameron (Gi 65) give the following expression to

calculate 02:

a2 = 0.0888 (aU)1/2A2/3 (11-29)

where a is equal to the level density parameter, in the

order of A/8; U is equal to E-P(Z)-P(N): E is equal to the

excitation energy of the nucleus and P(Z) and P(N), are pro-

ton and neutron pairing corrections respectively. Assuming
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that we know all these values, we can calculate the total

density of levels at the binding energy from the relation:

(E,all J,r) = 2p(E,J=2,3;r
p(all J; r=+)

=+) (11-30)
p(J=2,3;7=+)

We have made the assumption that the density of positive

levels is equal to that of negative levels. pall J1r=+)

can be calculated by integrating (11-28) over all J's to

give:

P(all J,r=+) = 1

In the calculation of a2 we have used the parameters given

by Gilbert and Cameron: a
n

= 29.65, P(Z) = 0.89, P(N) =

0.79 for 226Ra. These values are very close to other esti-

mates (Ne 62). Using these values, we find:

p(E,all Jr) = 15p(E,J=2,3;r=+)

and p(Bn=6.72 MeV, all spins) =

2.05 x 107 MeV-1

The normalized level density curves is shown in Figure 14.

For purposes of comparison we also show the one estimated

for 226Rax by Gilbert and Cameron (Gi 65).

We analytically parameterized the level density depen-

dence on excitation energy so that it could be used to com-

pute expression (11-24). For this purpose we have chosen

the standard Fermi-gas expression for the level density, and

left one parameter, an, to vary as a function of energy, At

excitation energies below 3 MeV, where the log of the level
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density is a linear function of energy, we have chosen to

use a constant temperature formula of the same form as that

used by Gilbert and Cameron (Gi 65). We have also added a

spin dependence to this expression of the form given by (II-

28). The two models are made to join smoothly at 3 MeV. On

account of the above, we have the following expressions:
8

Below 3 MeV p(E) =
1

e
(E-E0)/T (11-31)

e 2 /7-7VT n 1
Above 3 MeV p(E) (11-32)

n
12 1/4 5/4x/1771

a U

where E
o
is an empirical constant and T is equal to the nuc-

lear temperature (also to be determined empirically). Upon

fitting these expressions to the level density curve, we

find the following values for the parameters:

E
o

= -0.29

T = 0.415

The variation of an with E is shown in Figure 19, and it

seems to follow the empirical relation:

or

an(E) = 29.2 + 205.62 e
-1 003E

a
n
(U) = 29.2 + 38 e

-1 003U

8

(11-33)

A somewhat more complicated formula due to Lang and Le
Couteur (La 54) is sometimes found in the literature in-
stead of equation II-32, in which U5/4 is expressed as (U +
t)5/4. According to (Gi 65), this formula contains an
error regarding the procedure used in conducting the saddle
point integration
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The total fit to the level density is given in Figure 14.

Individual J contributions are obtained from the relation:

(2J+1) -J(J+1)/2c2p(E,J) = p(E) =yr-- e

Extension of the Model to Hi h Ener les

As the excitation energy above the fission barrier in-

creases, the number of fission channels increases to the

point where the statistical properties of the levels must be

considered rather than the discrete ones. This is done by

extending the calculation by defining "statistical transmis-

sion coefficients" for fission in the same spirit in which

we defined the "compound transmission coefficients" of ex-

pression (11-24). These compound fission penetrabilities

would then play the same role as the individual penetrabi-

lities in the case of the discrete fission channels, and

the parameters (K, J, 7, E) describing them would be deter-

mined in a similar way.

These compound fission transmission coefficients are

given by the expression:

U-Bf+e
T f (K J Tr E) = f p

F ' "(E K J Tr)11
f
(E) dE (11-35)

where pF(E, K, J, Tr) is the density of channels with quan-

tum numbers K, J, and 7 at an energy E. T'f(E) is of the

same form as the expression given in (II-13). U represents
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the excitation energy of the nucleus, Bf represents the

height of the fission barrier, and e is a small energy in-

crement to the excitation energy interval over which the

integration is carried out to account for the contributions

of channels at higher energies.

The transition nuclear level density expression

K, J, Tr) takes the form of the Fermi-gas expression

for two different types of particles for the sake of con-

sistency with the calculation used for the case of the neu-

tron exit channels. We assume that we have an equal number

of positive and negative parity levels.

For a rotating system of total energy E, the level den-

sity follows the relation:

J K
p
J,K

(E) a exp [(E-E
rot ) /T] (11-36)

K .

Iwhere EJ '
ot

is the energy which is tied up in the rotation
r

of the deformed nucleus, and T is the temperature. This ex-

pression can be transformed to yield (Gi 68):

pJ,K(E) « eXp{E/T-fl 2J2/211T-Ct2K2/2T)[1/jil -1/1]-1}

(11-37)

where J is the total angular momentum. The quantity [1/%1 -

1/1l] -1 is usually termed the effective moment of inertia

and it is symbolized by:leff. If we assume that the distri-

bution in K for a fixed value of J is Gaussian, then we can

set:
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exp (-K2/2K2)

,2 effTAo --
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(11-38)

(11-39)

This leads to the following expression for the total

level density of the transition nucleus:

1
(2J+1)

p (E,K,J) = exp (2)/3E -
24 7 %E5/4a3

(II-40)
(J+11)2

- K2/2K20 ]

where of is the level density parameter related to the local

density of levels in the transition nucleus near the Fermi

surface, and a is the spin cutoff parameter. It is cal-

culated from the expression:

2 (II-41)

11. is the moment of inertia for rotation about an axis

perpendicular to the nuclear symmetry axis.

The evaluation of the temperature, T, for use in (II-

41) above, is not as completely straightforward as it might

seem. The temperature is usually calculated directly as the

inverse of the partial derivative of the log of the state

density, w, with respect to the excitation energy. In this

respect then:

1 9 In w(E)
T 8E

(11-42)
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For a Fermi-gas of two kinds of particles with equidistant

levels the state density is given by the expression (Gi 65):

IF ex (2 $/gE
w(E)

12
(11-43)

From this definition, the resulting formula for the tempera-

ture is:

1 a 5

T f (11-44)

The problem with this relation is that it assumes the

parameter 'a' to be a constant, independent of energy, and

this is not necessarily so. We have seen in the neutron

emission discussion that an is a very sharp function of ex-

citation energy at low energies, tending to a constant value

at higher excitation. This is a result of fluctuations of

the local level density around the Fermi surface, and re-

flects the fact that the level spacings are not uniform as

is usually assumed.

The same is true in the transition nucleus and there

is no reason why we should expect af to be a constant, at

least a priori. This fact also poses a problem in the sense

that there is no convenient analytical expression which de-

fines of in terms of excitation energy, and therefore we

have to resort to empirical fits of the same nature that we

used in the neutron emission case. Under these conditions,

we might define a general form for af in terms of a flexible
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function which would be expected to yield a constant asymp-

totic value of of at the limits of higher excitation. As

we did before, and for convenience, we choose the function

to be of the form:

af(E) = a+e-YE (11-45)

where a, (3, y are free parameters. In terms of this func-

tion and (11-42), the temperature becomes:

1
= (

a+13e
-yE

1/2 , E 11/20t,e-yE f3ye
-YE

5

T E ' ' -YE ' "I TE
a+13e 4(a+6eYE)

(11-46)

and as the excitation energy E reaches high values, the in-

verse of the temperature approaches the form:

(2.4) 1/2
5

T E 4E
(11-47)

where a represents then the asymptotic limit of af(E). So,

we see that at high excitation energies, the temperature is

expected to follow the uniform spacing model prediction but,

to deviate from this prediction for lower energy regions.

Of course, these conclusions are model dependent, and it

might very well be that our choice of an analytic function

for a
f
(E) might not be right, but it provides us with a

start. Figure 21 shows results from calculating T from both

constant of and variable of assumptions. It will be dis-

cussed later.

The resulting level density expression must be nor-

malized in K. This is done by dividing the level density



72

by the sum of all the relative K contributions up to the

maximum value of the angular momentum. The resulting ex-

pression for the statistical transmission coefficients for

fission is then:

U -Bf +c

fo p
F
(E,K,J,TOT'

F
(E)dE

T f (K J 7r 1 E) J max
exp (-K2/2K(2))

-J max

(11-48)

Note that we are summing over a range of
-Jmax K Jmax

because we must include both K projections, in the same man-

ner as we did in the case of the individual channels. 9

K2 measures the mean square value of the project of

the angular momentum on the nuclear symmetry axis. It can

be extracted from the shape of the angular distribution of

fission fragments. The flatter this distribution is, the

higher K(2.) will be, reflecting the width of the distribution

in K. As the anisotropy increases, K(23 decreases, because

proportionally, we find more bands with low values of K.

Rapid and sudden shifts in K(23 as a function of excitation

energy in the statistical region are usually associated

with either the creation of new quasiparticle states, or

the occurrence of multiple chance fission.

9 In many instances the normalization in K is done by inte-
grating the denominator in (11-48) between the limits of
-00 and +00. This is basically incorrect, because in cer-
tain cases, the value of Jmax may be relatively small and
the sum will not approximate the value of the integral as
is usually assumed.
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D. Final Comments on the Model

In the three previous sections we have described the

determination of the parameters involved in evaluating the

"compound transmission coefficients" as given by (11-24) and

(11-35). The integrals in these expressions were solved

numerically by Simpson's rule of integration, using a total

of 30 terms. This was done for all neutron energies in-

volved in the calculations. Computer programs used in the

calculations are listed in Appendices III and IV. Calcu-

lated "compound transmission coefficients" for neutrons were

read into the modified version of the transition state

spectroscopy code WILDCAT as part of the total calculation.

In this chapter we have discussed the main assumptions

adopted in the calculational model. We have also described

in detail how neutron emission is treated in the calcula-

tion, but have not yet shown how the total calculation is

carried out. We have so far assumed in the development of

the formalism that the fission channels are discrete, and

have not said anything regarding their statistical behavior

in the limit of high energies above the barrier. This we

shall do as the need arises. A description of the practi-

cal aspects of the calculation, starting in the limit of a

few channels will be shown in the next chapter.
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III. RESULTS OF THE CALCULATIONS

The problem of determining the nature of the fission

channels from experimental data has been shaded with some

ambiguity lately because of the uncertainty in the shape of

the transition state nucleus. If the transition nucleus has

a reflection-symmetric shape, then one would expect the

usual form of the allowed (J,7) values for a rotational

band, i.e., 0+, 2+, 4+, 6+... or 3/2-, 5/2-, 7/2-, etc.

However, if, as predicted by calculations (Ni 72), the tran-

sition nuclei in this region have asymmetric shapes, then

the number of levels in the rotational band are doubled.

For example, asymmetric e-e nuclei rotational bands have the

form 0+, 1-, 2+, 3-, 4+, 5-, etc., while odd-A nuclei rota-

tional bands have the form 3/2±, 5/2±, 7/2±, etc. The argu-

ment is that additional collective degrees of freedom result

from deformations that are not reflection symmetric. A de-

formation violating either of these symmetries leads to a

doubling of the energy levels, and hence to an increase of

the level density by a factor of two. Thus, each (K,R)

level of transition nucleus is fourfold degenerate, i.e.,

± parity and ± K value (Er 58). This effect was pointed out

by Vandenbosch (Va 73a), and later confirmed by Bjornholm,

Bohr, and Mottelson (Bj 73).

Although some theoretical predictions, as we have men-

tioned, favor an asymmetric shape for the 227Ra transition
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nucleus, it would not be correct to, a priori, rule out the

symmetric shape. For this reason we have carried out the

calculations using both assumptions separately.

Before going directly on to the substance of the cal-

culations, we should describe the procedure followed in

practical terms, and tell also how the constant parameters

involved in the calculations are obtained.

A. The Analysis of the Experimental Data at Low Energies

From the theory that has been developed in the preced-

ing sections it is clear that angular distributions of fis-

sion fragments observed experimentally should be determined

by weighted contributions of curves similar to the types

shown in Figure 6. At low energies, close to the fission

barrier, the distributions are determined by the parameters

characterizing the first few individual levels, and we do

not know, a priori, what values these parameters assume;

in fact, this is exactly what we are seeking.

The procedure which is followed in this work is to

leave four free parameters for each channel and then, by

trial and error, to find the set of parameters that will

give us the best fit simultaneously to both the fission

cross sections and the corresponding angular distributions

at various energies. The parameters that are left to vary

are: (a) the single particle energy, E0, which is the base

of the rotational band; (b) the K quantum number, or projec-

tion of the angular momentum over the nuclear symmetry axis;
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(c) the parity of the band, if reflection symmetry is as-

sumed; and finally, (d) the parameter tw which measures the

curvature of the parabola, simulating the fission barrier.

Small values of tw imply a thick, almost impenetrable, bar-

rier and vice versa.

The values of other constants, such as the rotational

constant h2/21, the decoupling constant a, the level den-

sity parameter d, the spin cutoff parameter a for y decay,

and (r /D)
0

are inserted into the calculation. The moment
Y

of inertia is calculated from the formula given by Brack et

al. for a rigid body (Br 72):

<
RB > = i<juRB

1> + - mAR 2 [c2 +4/35 cs (c-1) ] (III-1)
5

and

<1.-ABB = 5 mAR(2.)[c-1-2/35 c2(c-1)+4/525 c5(c-1)2] (II-2)

where
RB> is equal to the nuclear moment of inertia

around nuclear symmetry axis, m is equal to the mass of the

nucleon, Ro is equal to the nuclear radius at zero deforma-

tion (8.5f),and c equal to the nuclear elongation parameter

taken at the saddle point in the potential energy surface

(1.65, from estimates by Brack et al. [Br 72]).

The above expressions yields a value of the rotational

constant at the saddle point equal to about 2 keV. Tie

value of the decoupling constant is not really known, but

it makes little difference in the calculation.
10 A value

of ar--2 was used.

10This was confirmed by assuming values of -2<a<+2.
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The contribution of 1-ray emission to the total cross

section is very small in relation to neutron evaporation.

This means that if the denominator of the Hauser-Feshbach

expression (II-15) is almost totally controlled by neutron

emission, the cross section for 1-ray emission may be

written as:

ry
an

,1
(En)

ac
(E
n) ()in En

where r and F
n
are the widths for y-ray de-excitation and

neutron evaporation respectively, and ac(En) is the neutron

capture cross section. Because r increases slowly with

energy around 7 MeV (Gi 68), and ac decreases slowly with

energy, the dependence of an, y(En) on energy will be almost

totally dependent on (in)-1. Since in is directly propor-

tional to the allowed sum of "compound transmission coeffi-

cients" for neutron emission, a partial test of the empiri-

cally determined level density, would be to compare the ex-

perimental and calculated dependences of u n,y(En) on En.
In

reality, what we have done is to deduce the parameter d by

fitting the slope of the experimentally determined cross

section for y-ray emission as a function of incident neutron

energy. This is shown in Figure 15. The curve yields a

value of 6=0.07, and ( yr /D)
o
is estimated to be approxi-

mately equal to 0.0002, while a, the spin cutoff parameter

was assumed to have a value of about 6.0. On the basis of

the level density systematics, the value of 6 can be equated
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with a value of an
29 at an excitation energy (N.,9 MeV, if

it is assumed that:

=1272E3d

where E represents the excitation energy of the nucleus and

U-E-P(Z)-P(N). P(Z) and P(N) are pairing corrections, pre-

viously defined. This relation is deduced from a comparison

of expressions (II-8) and 11-39) for the level density. The

value of a
n
deduced in this form is consistent with the one

estimated from the neutron evaporation data, an = 29050

Since the slopes of the lines in Figure 15 remain roughly

parallel in the energy range in question, this can be con-

sidered as partial indication that the treatment given to

the level density of the residual nucleus and the "compound

transmission coefficients" for neutron evaporation is basi-

cally correct.

The experimental data of Babenko et al. concerning

angular distributions is given in the form of differential

cross section ratios. In order to carry out the analysis

properly, these must be converted into absolute differential

cross sections. The procedure followed for this purpose is

outlined in Appendix II, Resulting differential cross sec-

tions are shown in Figures 16a, b, c and d.

The best fit to the experimental data was determined by

a X 2 or "goodness of fit" test. Unsatisfactory fits were

rejected at the 99% level of confidence. A problem that
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arose in using the X2 test was to estimate the numbers of

degrees of freedom in fitting the data. For a given number

of data points, the number of degrees of freedom is repre-

sented by the total number of experimental points minus the

effective number of free parameters used in the calculation.

There are a total of seven experimental points for every

neutron energy, and we are trying to find optimal values for

four variables, K, 7, E0 and iw for every fission channel.

Two of these, E0 and to.) are unrestricted in the number of

values that they can assume. K can only take a few values

and 7 can only be either positive or negative. The inter,-

pretation of this problem becomes a little different when we

consider the argument in terms of symmetric vs. asymmetric

saddle point shapes. In the latter case, both parities are

available for every channel, and ii is no longer a free para-

meter. With the above in mind, we can now proceed to carry

out a search for the parameters that best fit the experimen-

tal data assuming both symmetric and asymmetric shapes at

the saddle point.

1. Fission channels in the symmetric nucleus 227Ra

The technique that we have used is to try to fit the

data simultaneously for, at first one neutron energy, then

two, three, etc., by using the minimum number of channels

possible in each case. It is clear that as the number of

angular distributions and cross sections increases, the
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chance of obtaining a statistically significant fit to the

data decreases very rapidly. The reason for this is that we

need an ever increasing number of channels, and each channel

introduces four free parameters. Since we only have a total

of seven experimental points at each energy, the number of

degrees of freedom left in each case is exhausted quickly.

We can obtain fits to the data but they are statistically

meaningless.

The data listed in Table IV shows the different com-

binations of parameters tried. We note that it is possible

to fit the experimental data meaningfully only for two ener-

gies, 3.6 and 3.8 MeV. Statistically speaking, nothing can

be said about the parameters characterizing the distribu-

tions at neutron energies equal to 3.9 and 4.1 MeV. We can,

however, resort to common sense to discover a few items.

Figure 16a shows that da /d2 at about 10° in the 3.8 MeV data

takes a value of about 0.60, and it is about 0.42 for E
n

=

3.6 MeV. However, it jumps to 1.35 for En = 3.9 MeV. The

calculations show that it is not possible to reproduce this

sudden rate of increase in cross section in da /d2 at 10°

with only three channels. Since only K = 1/2 bands peak at

forward angles, we conclude that there must be some nearby

K = 1/2 band which produces a sharp increase in cross sec-

tion around 3.9 MeV. In order to produce such a sharp in-

crease and not affect the distribution at 3.8 MeV, the

channel must open only very close to the top of the



Table IV. Summary of Calculations Describing the Symmetric Nucleus
227

Ra.

RUN
1 2 3 4 5 6 7 8 9 10

# of Energ. one one two two two two two two two two

Channel #
K 3/2- 3/2- 3/2- 3/2- 3/2+ 3/2+ 3/2- 3/2- 3/2- 3/2-

1 Eo 3.650 3.650 3.650 3.630 3.600 3.600 3.650 3.650 3.650 3.650
tw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

K 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 E0 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675

tw 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

K 5/2+ 3/2+ 3/2+ 3/2+ 3/2+ 3/2+
3 E0 3.800 3.800 3.800 3.775 3.750 3.750

tiw 0.400 0.400 0.400 0.400 0.400 0.300

4

5

K
E0
nw

K
E0
tiw

K
6

tc?)

X2 3.23 2.91 35.9 35.7 86.7 47.8 19.75 18.84 19.37 18.37

Satisfactory no no no no no no no no no no rn



Table IV. continued

RUN
11 12 13 14 15 16 17 18 19 20

# of Energ. two two two two two two two three three three

Channel #
K 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2-

1 E0 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650
'tiw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

K 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 Eo 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675

tiw 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

K 3/2+ 3/2+ 5/2- 5/2+ 5/2- 5/2- 5/2- 5/2+ 5/2+ 5/2+
3 E0 3.750 3.725 3.800 3.700 3.800 3.800 3.800 3.700 3.700 3.700

tiw 0.200 0.200 0.400 0.300 0.400 0.400 0.400 0.300 0.300 0.300

K 3/2- 5/2- 1/2- 1/2- 1/2- 1/2-
4 Eo 3.975 3.900 3,880 3.880 3.850 3.860

tw 0.400 0.400 0.150 0.100 0.050 0.075

K 3/2-
5 Eo 3.975

tw 0.400

K
6 Eo

ti w

2 18.06 21.81 12.68 8.64 11.59 9.91 5.99 29.0 30.4 27.5

Satisfactory no no yes yes no no no no no no



Table IV. continued

RUN
21 22 23 24 25 26 27 28 29 30

# of Energ. three three three three three thFee three three three three

Channel #
K 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2-

1 E0 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650
tiw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

K 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 Fo 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3 675 3.675

Ew 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750

K 5/2+ 5/2+ 5/2- 5/2- 5/2+ 5/2+ 5/2+ 5/2+ 1/2- 5/2-
3 Eo 3.700 3.700 3.740 3.740 3.700 3.700 3.700 3.700 3.880 3.800

tw 0.300 0,300 0.250 0.200 0.300 0,300 0.300 0.300 0.150 0.400

K 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 3/2- 1/2-
4 E0 3.870 3.875 3.875 3.875 3.875 3.875 3.875 3.875 3.975 3.880

Ew 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.400 0.150

K 3/2- 3/2- 3/2- 3/2-
5 E0 3.950 3.950 3.950 3.975

0.200 0,200 0.200 0.400

K 1/2- 1/2-
6 E0 4,050 4.090

Ew 0.300 0.300

2 26.4 26.7 27.24 28.0 72.15 41.6 35.7 32.8 59.0 30.0

Satisfactory no no no no no no no no no no



Table IV. continued

RUN
31 32 33 34 35 36 37 38 39 40

# of Energ. three three three three three three three three three three

Channel #

K 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2-
1 E0 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650

to) 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

K 1/2+ 1/2+ 1/2+ 1/2+ 1/2- 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 E0 3.700 3.650 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675

tw 0.750 0.750 0.850 0.650 0.750 0.750 0,750 0.750 0.750 0.750

K 5/2- 5/2- 5/2- 5/2- 5/2- 5/2- 5/2- 5/2- 5/2- 5/2-
3 E0 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800

tw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

K 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 1/2+ 1/2+
4 E0 3.880 3.880 3.880 3.880 3.880 3.930 3.880 3.880 3.880 3.830

tw 0.150 1.150 0.150 0.150 0.150 0.150 0.100 0.200 0.150 0.150

K 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2-
5 E0 3.975 3.975 3.975 3.975 3.975 3.975 3.975 3.975 3.975 3.975

tw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400

K
6 E0

to)

X2 30.0 35.5 30.6 30.7 164.3 54.6 29.0 32.4 38.6 36.3

Satisfactory no no no no no no no no no no



Table IV. continued

41 42 43
RUN

44

# of Energ. three three three four

Channel #

K 3/2- 3/2- 3/2- 3/2-
1 Eo 3.650 3.650 3.650 3.650

tiw 0.400 0.400 0.400 0.400

K 1/2+ 1/2+ 1/2+ 1/2+
2 E0 3.675 3.725 3.625 3.675

tw 0.750 0.750 0.750 0.750

K 5/2- 5/2- 5/2- 5/2-
3 Eo 3.800 3.800 3.800 3.800

tiw 0.400 0.400 0.400 0.400

K 1/2+ 1/2- 1/2- 1/2-
4 Eo 3.830 3.880 3.880 3.880

tw 0.100 0.150 0.150 0.150

K 3/2- 3/2- 3/2- 3/2-
5 E0 3.975 3.975 3.975 3.975

hw 0.400 0.400 0.400 0.400

K 1/2-
6 Eo 4.090

tiw 0.300

x2 31.2 34.8 47.3 37.4

Satisfactory no no no no
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barrier; if so, then the barrier must be wide and therefore

to small.

In the case of E
n

= 4.1 MeV, the fits become statisti-

cally meaningless; combination 28 of Table IV shows the best

fit that can be obtained with six channels, but with the

condition that we not be allowed to say much about them.

For the case in which only two neutron energies are

considered, the combination that gives us the best fit is

combination 14. However, we have some ambiguity present

with regard to the K = 5/2 channel; the table shows that the

parity is not defined, thereby making the energy and curva-

ture parameter uncertain. We tried to fit the angular dis-

tribution with K = 3/2 channels instead of the K = 5/2 ap-

pearing in the table, but it was not possible to obtain an

acceptable value of X2 for any combination tried. Figure

16a shows the best fits obtained for three energies, 3.6,

3.8, and 3.9 MeV, and also other combinations of each chan-

nel with energy. Figure 17 represents a fit of channel

cross section vs. neutron energy for the optimum set of

parameters. The uncertainties in the deduced parameters

are hard to evaluate in an exact manner because the search

would have to become much more extensive and the meaning of

the information gathered in this fashion would not be en-

tirely accurate in any case, due to the other uncertainties

in the calculation. However, from the information available

in Table IV we have made a compilation of the best
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parameters and most likely errors for every channel. This

is shown in Table VI. The best fit to the fission cross

section is shown in Figure 18.

2, Fission Channels in the asymmetric nucleus 227Ra

The search for a best fit in this case was done in the,

same manner as in the symmetric case, with one exception;

for every channel both parities were allowed in the calcula-

tion. It was done in this fashion in order to simulate the

doubling in the rotational band as was mentioned before.

The same problems were encountered as in the symmetric case,

and Table V shows a list of all the combinations tried. The

best fit is obtained for E
n
= 3.6 and 3.8 MeV with the use

of three channels as indicated by combination 17. When the

third energy, En = 3.9 MeV, comes into play, the ground

state, and the one above, are pushed upwards in energy a

little bit in order to obtain the best fit for three ener-

gies simultaneously. As was pointed out for the symmetric

case, we cannot specify the parameters with any statistical

significance when the third neutron energy is included. The

uncertainties in the parameters as extracted from Table V

are shown in Table VI. Figure 16ashows the best fit ob-

tained for two energies. Other fits are also shown for

purposes of comparison and illustration. The best fit to

the cross section is shown in Figure 18.



Table V. Summary of Calculations Describing Asymmetric Nucleus 227Ra at Low Energies.

RUN
1 2 3 4 5 6 7 8 9 10

# of Energies two two two two two two two two two two

Channel #
K 3/2 5/2 5/2 5/2 3/2 3/2 3/2 5/2 3/2 5/2

1 FO 3.750 3.700 3.700 3.700 3.750 3.740 3.730 3.730 3.725 3.675
hw 0.600 0.600 0.600 0.400 0.600 0.600 0.600 0.450 0.500 0.500

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
2 E0 3.875 3.890 3.890 3.890 3.890 3.910 3.910 3.910 3.910 3.910

hw 0.900 1.200 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000

3

4

K
E0
it W

K
E0
tiw

K
5 E0

RW

2 44.3 114.0 39.5 60.5 35.3 30.2 28.4 34.3 28.12 28.5

Satisfactory no no no no no no no no no no



Table V. continued

RUN
11 12 13 14 15 16 17 18 19 20

# of Energ. two two two two two two two two two two

Channel #
K 5/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

1 E0 3.665 3.740 3.740 3.740 3.740 3.750 3.755 3.755 3.758 3.760
tw 0.500 0.500 0.600 0.600 0.550 0.600 0.600 0.600 0.600 0.600

K 1/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 E0 3.910 3.850 3.850 3.850 3.850 3.840 3.830 3.830 3.830 3.830

tw 1.000 0.400 0.400 0.400 0.500 0.500 0.500 0.500 0.500 0.500

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3.910 3.910 3.915 3.915 3.915 3.915 3.915 3.915 3.915

tiw 1.000 1.000 1.000 1.000 1.000 1.000 1,050 1.025 1.025

4

5

K
Eo
hw

K

_,o
-hw

x
2 26.7 21.0 16.8 15.6 15.6 13.9 13.4 15.2 13.8 13.65

Satisfactory no no no no no yes yes no yes yes



Table V. continued

RUN
21 22 23 24 25 26 27 28 29 30

# of Energ. two three three three three three three three three three

Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

1 Eo 3.770 3.755 3.755 3.755 3.755 3.755 3.755 3.755 3.755 3.755
tic 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600

K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2

2 Eo 3.830 3.830 3.830 3.830 3.830 3.830 3.830 3.830 3.830 3.840
tiw 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.550 0.550

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3.915 3.915 3.900 3.925 3.915 3.910 3.905 3.915 3.915 3.915

'hw 1.025 1.000 0.150 0.150 0.100 0.100 0.100 1.000 1.000 1.000

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

4 Eo 3.915 3.915 3.915 3.915 3.915 3.925 3.925 3.925
hco 1.000 1.000 1.000 1.000 1.000 0.150 0.150 0.150

K 3/2
5 E 4.000

icoo 0.200

x2 13.7 45.5 51.0 37.5 37.5 38.4 41.1 38.4 37.1 36.1

Satisfactory yes no no no no no no no no no



Table V. continued

RUN
31 32 33 34 35 36 37 38 39 40

# of Energ. three three three three three three three three three three

Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

1 Eo 3.755 3.755 3.755 3.755 3.755 3.775 3.765 3.775 3.780 3.780
hw 0.600 0.600 0.600 0.600 0.600 0.630 0.625 0.630 0.630 0.650

K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3.850 3.860 3.870 3.870 3.880 3.880 3.880 3.880 3.880 3.880

tw 0.600 0.600 0.600 0.600 0.625 0.625 0.625 0.675 0.700 0.700

3

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
E0 3.915 3.915 3.915 3.915 3.915 3.915 3.915 3.915 3.915 3.915
hw 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
4 E0 3.925 3.925 3.925 3,905 3.905 3.905 3.905 3.905 3.905 3.905

tw 0.150 0.150 0.150 0.100 0.100 0.100 0.100 0.100 0.100 0.100

5

K

iEota

2 35.1 34.6 34.4 35.6 34.8 34.8 34.2 33.5 33.4 33.1

Satisfactory no no no no no no no no no no



Table V. continued

RUN
41 42 43 44 45 46 47 48 49 50

# of Energ. three three three three four four four four four four

Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

1 Eo 3.780 3.790 3.790 3.790 3.790 3.790 3.790 3.790 3.790 37.90
tiw 0.650 0.650 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675

2

3

K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
Eo 3.880 3.880 3.880 3.880 3.880 3.880 3.880 3.880 3.880 3.880
tiw 0.750 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
Eo 3.915 3.915 3.915 3.915 3.915 3.915 3.915 3.915 3.915 3.915
hw 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
4 Eo 3.905 3.905 3.905 3.900 3.900 3.925 4.000 4.100 4.050 4.075

hw 0.100 0.100 0.100 0.100 0.100 0.150 0.200 0.400 0.400 0.450

K
5 Eo

tiw

x2 32.5 32.6 32.6 34.0 69.3 69.5 76.6 57.6 53.7 53.1

Satisfactory no no no no no no no no no no



Table V. continued

RUN
51 52 53 54 55 56 57 58 59 60

# of Energ. four four four four two two two two two two

Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

1 Eo 3.790 3.790 3.790 3.790 3.755 3.730 3.780 3.755 3.755 3.755
tiw 0.675 0.675 0.675 0.675 0.600 0.600 0.600 0.500 0.700 0.700

K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2

2 E0 3.880 3.880 3.880 3.880 3.830 3.830 3.830 3.830 3,830 3.805
tiw 0.775 0.775 0.775 0.775 0.500 0.500 0.500 0.500 0.500 0.500

3

4

5

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

Eo 3.915 4.025 3.925 3.850 3.915 3.915 3.915 3.915 3.915 3.915
hw 1.000 0.600 0.600 0.600 1.000 1.000 1.000 1.000 1.000 1.000

K 1/2
E0 4.060
tiw 0.450

K

E0
hw

x2 52.3 324.0 167.5 86.8 13.4 19.5 15.5 18.7 15.4 14.4

Satisfactory no no no no yes no no no no yes



Table V. continued

RUN
61 62 63 64 65 66 67 68

# of Energ. two two two two two two two two

Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2

1 E0 3.755 3.755 3.755 3.755 3.755 3.755 3.755 3.755
hw 0.700 0.700 0.700 0.700 0.700 0.700 0.700 0.700

2

K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
E0 3.855 3.830 3.830 3.830 3.830 3.830 3.830 3.830
tw 0.500 0.400 0.600 0.600 0.600 0.600 0.600 0.600

K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3.915 3.915 3.915 3.890 3.940 3.915 3.915 3.940

tw 1.000 1.000 1.000 1.000 1.000 0.800 1.200 1 000

4

K
E0
tw

K
5 E0

tiw

2 14.6 14.8 13.8 22.3 12.2 26.5 30.5 29.3

Satisfactory yes yes yes no yes no no no
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Table VI. Parameters Describing the Low Lying Single
Particle States in the 227Ra Transition Nucleus.

Part A. Symmetric Saddle Point Deformation

State No. (K,Tr) E
o

(MeV) tiw (MeV)

1 3/2- 3.65±0.1 0.4 ±0.1

2 1/2+ 3.67±0.1 0.75±0.2

3 5/2± 3.70±0.1 0.3 ±0.2

4 1/2- 3.88±0.1 r4.1 ±0.05

Part B. Asymmetric Saddle Point Deformation

State No. K E
o

(MeV) tiw (MeV)

1 3/2 3.76±0.05 0.6 ±0.1

2 5/2 3.83±0.05 0.4 ±0.2

3 1/2 3.92±0.05 1.0 ±0.1

B. Parameters Describing the 227Ra
Transition Nucleus at Moderate Excitation Energies

The discussion concerning the excited transition nuc-

leus in this energy region follows basically the same pat-

tern used in describing the region where only a few channels

are available for fission. The calculations are carried out

on a trial and error basis. In this manner the values of

certain free parameters'which best fit the experimental

data are chosen; the fit is judged according to the X2 cri-

teria. As we did before, we have to allow for two basic

possibilities: in one case the shape of the transition nuc-

leus is assumed to be symmetric, in the other the nuclear
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shape will be asymmetric. The number of levels in each ro-

tational band is doubled in the latter case.

One question that immediately comes to mind is in rela-

tion to where the "statistical region" lies. In other

words, at what point are we justified in using the statisti-

cal approximations developed above" We know that there is

in fact a "twilight zone" between the "discrete" and "stai-

tistical worlds". Conservatively speaking, we might expect

the application of a statistical model for E* < 1 MeV to be

questionable and that for E* > 3 MeV, such an application

should be quite acceptable. The excitation energy range

1 < E* < 2 MeV constitutes a "twilight zone". Unfortunately

the interestingly large step in the cross section is ob-

served at the point corresponding to En = 4.7 MeV (E* = 1

MeV). This "discontinuity" in the cross section assures

the existence of a large jump, in the number of fission

channels available, within a short energy range.

What we have done to treat this lower energy region is

to feed discrete channels into the undefined region (from

q.,3.9 MeV to ti4.7 MeV), with the idea of fitting the cross

section in this range in a way which will reproduce the

angular distribution of fragments at 4.7 MeV (the next point

where data of this kind is available). Of course, the use

of discrete levels in fitting the data in this region has

no meaning other than perhaps giving us a vague idea of

the relative K strengths required to reproduce the
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anisotropy at 4.1 and 4.7 MeV. From 4.7 MeV on, we apply

the statistical formalism in a way such that all the data

points are fitted. The two models are made to join smoothly

in a region (En = 4.7 MeV) where some of the parameters des-

cribing the behavior of the system lose some of their sig-

nificance. This is the best that we can do under the cir-

cumstances and it might be a small price to pay in return

for the overall information which we will finally obtain.

As the excitation energy of the nucleus increases, the

cross section reaches a point where its variations with

energy is relatively small, because of the relative con-

stancy of (rf/rn). Large jumps in the slope of the curve

can be associated with fission after neutron evaporation.

In the case of 227Ra we see that at neutron energies above

approximately 9.0 MeV, the cross section increases very

rapidly; this rapid change takes place in a region where we

can expect second chance fission to begin occurring. Quali-

tatively it can be shown that this is the case. An incident

9 MeV neutron excites the 227Ra nucleus to about 13.5 MeV.

An evaporated neutron would, on the average, possess a kine-

tic energy of about 1.5 MeV, leaving the residual nucleus

excited to about 7.5 MeV. However, the range of excitation

is wide, and, for example, the most probable kinetic energy

would be in the order of about 0.75 MeV, which would leave

the residual nucleus with 8.25 MeV of excitation energy.

This is more or less the height of the fission barrier in
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the residual nucleus and thus where we would expect fission

to begin to be observed.

Therefore, the region over which the statistical cal-

culation can be used is for excitation energies correspond-

ing to neutron energies between 4.7 and 9.0 MeV. Another

reason why the formalism in this calculation cannot be used

at higher energies is that we simply do not know the shape

of the level density of the residual nucleus at energies

much higher than the neutron binding energy, because no ex-

perimental data is available.

As might have been anticipated, the free parameters

left to vary in our calculation are af and K. The deter-

minations of the parameters can be carried out separately,

also very conveniently, because the value of the fission

cross section does not depend strongly on K(2), as can be in-

ferred from the normalization implied in (11-48). There-

fore, we can proceed to fit the cross sections independent

of the angular distributions.

It is clear that the variation of of with energy must

be simulated analytically such that it is a continuous func-

tion of energy. For this purpose we make use of expression

(11-45). As we have already mentioned, this form has three

free parameters, a, $, and y. The variable a represents the

asymptotic value of af as the energy becomes very high: y

reflects the sharpness of the variation of af with energy;

and 8 reflects the magnitude of the energy dependence
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itself. The excitation energy is evaluated from the barrier

heights (3.650 and 3,755 MeV), which were estimated from the

discrete calculations, for both the symmetric and asymmetric

shapes. The parameters extracted from the best fits are

listed in Table VII, while the fits themselves are shown in

Figure 18. The dependence of of on the excitation energy is

shown in Figure 19.

Table VII. Statistical Parameters for 227Ra

Mode a h /2J1

Asym. 28.9 58,0 1.055 0.400 0.002

Symm. 30.0 55.0 0.960 0.400 0.002

The fit to the point at En = 4.7 MeV (E* = 1.5 MeV),

may be somewhat artificial, as we have explained, because it

is not possible to define a clear-cut transition point be-

tween the single particle calculations and the statistical

calculations. In order to fit this point, 15 channels are

added individually to the calculation between 4.0 and 4.7

MeV in the symmetric case, while ten are used in the asym-

metric case.

In the symmetric case, the integration of the statisti-

cal expression (11-35) starts at En = 4.650, while in the

asymmetric case the integral is evaluated beginning at En =

4.7 MeV. Fixed parameters used in the calculation are the

rotational constant h2/211, assumed to be the same as be-

fore (ti2 keV); the curvature parameter iw, which assumes a
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value of 0.400 MeV (Be 68), and the upper integration limit,

E, used in the evaluation of expression (11-35). Although

in most calculations done by others (Gi 68) the fission

channels are assumed to be completely open, up to the nomi-

nal excitation energy, with higher lying channels completely

closed, we have not adopted this approximation because it is

not physically correct. The nucleus in the transition state

at a given excitation energy samples the character of the

barriers immediately above that energy because of the nature

of the penetrability implied by (11-13). The value of E was

chosen by noting that if, for example, we integrate up to

0.400 MeV above the incident neutron energy, and have used

a value of hw = 0.400 MeV, then the barrier penetration fac-

tor at that point would be:

Tf = {1+exp[(27/0.400)(0.400)1}-1 = e-27rA.002

which is small enough to cause no appreciable error. Hence,

the upper integration limit has been chosen for an excita-

tion energy 0.4 MeV above (En + Bn - Bf), where En is the

neutron kinetic energy, Bn is the neutron binding energy,

and B
f
is the height of the fission barrier. Since the

values for some of these constants have been assumed, we

have decided to determine the effect of varying them. We

express this effect as the percentage of change in of in

relation to the original value, needed to reproduce the ex-

perimental data when the constants in question have been



109

varied by a certain specified amount. Thus, when tw changes

by ±0.200 MeV, af varies by about 0.5%. In the same manner,

a variation in the rotational constant 12/2J1 from 2 to 5

keV, requires a decrease in af of about 13%. Similarly, a

decrease in c from 0.4 MeV to zero, requires a change in af

of roughly 1%.

From the fission fragment angular distributions we can

infer the values of K2 for every energy. Since, as we men-

tioned previously, the evaluation of both, af and K(!) are

separable, the best value for K(2) is obtained by fitting the

fission cross section by varying af, and then varying K(2) un-

til the smallest x2 value is obtained for every angular dis-

tribution individually. The error limits in K(2) are deduced

in a similar manner by finding the values of this parameter

corresponding to the points where the fits are no longer

considered to be acceptable using a X2 criterion. Table

VIII lists the best values deduced for K2 in this energy

region, together with the upper and lower limits of error.

Figures 16b, c, d how best fits to the angular distributions

of the fission fragments at the different energies, and

Figure 20 is a plot of IC() vs. the kinetic energy of the in-

cident neutron.

Figure 20 shows how K(2) oscillates with energy in a man-

ner not expected from the theory developed in the previous

section, although the character of the energy dependence is

not very precise because of the uncertainty in the values
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Table VIII. K(2) Values Describing Angular Distribution of
Fission Fragments.

E
n

Best X2
Low 2 High 2

4.7 8.0 8.2 6.5 12 14.0 12.8

5.4 14.0 9.0 11.0 13 21.0 12

6.2 8.0 6.6 6.0 13 12.0 12.7

6.7 5.0 3.0 3.0 12 20.0 12

7.1 11.0 9.9 8.0 12 13.0 11.6

7.9 21.0 5.8 13.5 12.5 45.0 12

8.9 50.0 7.7 15.0 9.0 Very High -

9.0 19.0 6.1 13.0 12 30.0 12.7

9.7 11.0 4.2 8.5 1,12 16.0 1,12

deduced. However, for energies below 7.1 MeV, the value of

K 2 fluctuates around an average of about 8, and of about 24

for energies between 7.9 and 9.0 MeV. Above this region, at

9.7 MeV, Ic) decreases substantially as the contribution from

second chance fission becomes more significant.

One final parameter which we have not commented on is

the nuclear temperature. The dependence of T on excitation

energy follows directly from (11-46). Figure 21 shows the

behavior of T(U) vs. U, where U is the excitation energy

above the fission barrier. For comparison, we also show

the behavior of the temperature when a uniform Fermi gas

model is assumed, in which of remains constant (at a value

of 1,30 MeV-1), with varying energy. As we can see, the
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non-uniformity of the single particle levels near the Fermi

surface seems at first sight to be responsible for the pla-

teau and slight decrease in T. As the energy increases, T

approaches the value predicted by the constant of model. We

shall discuss this problem in more detail in the next

chapter.

Before we enter the discussion of the results reported

in this chapter, it is important that we point out and

clarify some of the terminology that will be used in rela-

tion to the excitation energies.

A plot of level densities vs. excitation energy for

even-even, odd-A and odd-odd nuclei in the same mass region

shows that at a given excitation energy, p o-o P o-A
> p

e-e*

Moreover, the shape of the density functions is very similar

in all cases, the difference arising from a shift in the

energy axis. This phenomenon is associated with the fact

that an even-even nucleus has all its nucleons paired, and

its only low lying states are collective in nature. When

the excitation energy becomes sufficiently large to break a

nuclear pair, the level density begins to exhibit the char-

acteristic exponential increase with energy. An odd-odd

nucleus, by contrast, already has two unpaired nucleons and

intrinsic states associated with different orbits of the un-

paired nucleons can therefore be immediately excited. The

effective excitation energy, U, is thus related to the ex-

citation energy measured from the true ground state by:
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U = E for o-o nuclei

U = E - A
(n or p)

for odd-A nuclei

U= E- An - A for e-e nuclei
p

It is very useful to be able to compare some of the

statistical parameters on a common ground of intrinsic ex-

citation. Therefore, in the coming discussion we will refer

to the quantity U as the energy "above the unpaired ground

state", or the "fictitious excitation energy".
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IV. DISCUSSION OF RESULTS

A. Interpretation of Results at Low Excitation Energies

In the discussion of the preceding chapter, we deduced

the sets of parameters which describe the 227Ra transition

nucleus at the saddle point for two types of deformations.

Since the neutron binding energy has a value of 4.5 MeV,

this calculation places the fission barrier height at about

8.2 MeV. How do our results compare with those obtained

independently by other investigators?

The most recent experimental data regarding fission of

227 Ra is that of Konecny and co-workers (Ko 73), whose re-

sults are shown in Figure 22 for the reaction 226Ra(d,p)

227
Ra -0- f. The "elbow" in the r

f
/r

n
curve observed in their

experimental data would place the fission barrier at appro-

ximately 8.2 MeV of excitation. This estimate agrees sub-

stantially well with our own previously stated result.

Theoretical predictions of the single particle levels

and the barrier height have come from the calculations done

by Drs. Nix and Moller (Ni 73) (who have very kindly made

these available to us). The results involve calculations

for two deformations, one corresponding to the ground state,

and another corresponding to a very deformed, highly asym-

metric saddle point shape. The potential energies of defor-

mation were evaluated according to the macroscopic-micro-

scopic method. The macroscopic part was calculated for two
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orders of approximation. In one case the nuclear energy is

evaluated by including the Coulomb and surface energies,

expressed in terms of lower order shape dependent quanti-

ties; this approximation leads to the liquid drop model

(LDM). The inclusion of higher order terms in the expan-

sion leads to the droplet model, which takes into account

effects that are associated with the finite size of nuclei,

such as nuclear compressibility and curvature corrections.

From the nuclear shape specified by the macroscopic

calculation, a potential is generated, and the SchrOdinger

equation is solved to obtain the single particle energies.

From these, the shell and pairing corrections are calcu-

lated. They arise because of fluctuations in the actual

distribution of levels relative to a smooth distribution.

A partial potential energy surface diagram for 226Rd as

calculated by Nix and Moller, is given in Figure 23, and

arrows indicate the most probable path to fission. The "s"

indicates the probable saddle point. Table IX lists the

Table IX. Macroscopic-Microscopic Calculations for 226Ra*.

Ground
State**

Saddle
Point** Total**

Shell Correction -2.394 - 3.524

Pairing Correction +0.276 + 0.698

LDM Energy +2.637 +13.780

Droplet Energy +2.720 +11.550

Potential Energy (LDM) +0.518 +10.950 +10.43

Potential Energy (Droplet) +0.602 + 8.72 + 8.12

* Nix and Moller (Ni 73)
** All energies in MeV.
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values for the shell and pairing corrections, the liquid

drop and droplet energies, and the resulting potential ener-

gies at the ground state and saddle point deformations. It

is interesting to notice the difference between the bar-

riers calculated by, the droplet model and the LDM. The

latter is higher by over 2 MeV. Therefore, it seems that

the introduction of higher order correction terms into the

LDM introduces a significant difference in the results of

the calculations at high deformations. The shell correc-

tions for the ground state and fission deformations can be

interpreted to mean that the calculations predict a lower

than average single particle level density around the Fermi

surface at these deformations.

In comparing these results with the ones extracted

from the experimental data, we notice that our estimate of

the fission barrier height is in very good agreement with

the calculations by Nix and Mailer, whose barrier estimate

is 8.12 MeV in the droplet approximation.

Other fission barrier results are summarized in Table

X. Apart from the calculations that we have described,

good agreement is also obtained with the estimates of Brack

et al. (Br 72) for 228Ra. It is important to note the

height of the inner barrier derived in this calculation.

It is only calculated to be 2.2 MeV. Also, not listed in

Table X, but worth mentioning is the magnitude of the shell

correction for 228Ra, which according to Brack et al., is



Table X. Fission Barrier Heights (In MeV) for Various. Ra Isotopes.

Inner Outer Barrier Outer Barrier
Nucleus Source Barrier Symmetric Asymmetric Reference

226 Ra Experimental - 8.5±0.5 Zhagrov (Zh 71)

226 Ra Theory 4.5 10.0 10.0 Adeev (Ad 72)

2 2 6 Ra Theory 4.2 10.5 9.0 Moller (Mo 72)

2 2 6 Ra Theory 3.7 10.7 - Mosel & Schmitt
(Mo 71)

226 Ra Theory - 10.2 10.2 Pauli (Pa 73)

227 Ra Experimental - 8.2±0.1 This work

228 Ra Theory 2.4 8.2 Brack et al. (Br 72)
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-0.4 MeV at the ground state. This is to be compared with

a shell correction of -2.394 MeV as estimated by Nix and

M611er and listed in Table IX. We shall comment more on

the subject of the shell corrections in a subsequent sec-

tion.

If the independent estimates of the fission barrier in

227Ra show such good agreement, it will be interesting to

see how well the single particle level calculations carried

out by other people compare with those deduced in this work.

We might begin by noting that the gradual decrease in the

anisotropy with decreasing energy from a maximum at 8.6 MeV

of excitation (En = 4.1 MeV) observed by Konecny et al.,

(Ko 73) would qualitatively support the notion that the

first channel at the barrier is not a K = 1/2 channel. In

both our estimates (symmetric and asymmetric), the lowest

lying channel is K = 3/2. Figure 24 shows the neutron

single particle levels calculated theoretically for the

saddle point deformation by Nix and Moller and also

Pashkevich (Ip 72), in comparison with those determined in

the present work, which assumes symmetric and asymmetric

saddle point deformations. The agreement between the Nix-

Moller set of data and ours can be considered remarkably

good, and perhaps fortuitous. In the symmetric case, the

order of the levels is predicted by the theory, even though

the energy differences are not well reproduced. In order

to empirically reproduce the level spacings, the level
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density of 226Ra would have had to be reduced. This would

have caused a rise in the height of the barrier which would

have been necessary in order to fit the experimental data.

In the asymmetric case, the level spacings are better re-

produced by the theory; however, the ordering of the 5/2

and 1/2 levels would have to be reversed. Considering the

numerous approximations that have been made in these calcu-

lations, we must say that the agreement is quite reasonable.

Very little or no agreement is observed between our

set of levels and that resulting from Pashkevich's calcula-

tions. Sources of discrepancy between the theoretical and

empirically determined single particle levels would involve

the accuracy of the deformation at which these levels are

calculated in comparison to the one corresponding to the

precise saddle point. From looking at Nilsson-type dia-

grams it is easy to see that a small displacement in defor-

mation can substantially alter the spacings between the

levels and even reverse their order if there are nearby

crossings.

Now we return to one of the important points in the

purpose of this project. In the introductory part of this

work it was suggested that even if the problem of the

"thorium anomaly" could not be resolved, we could perhaps

at least determine whether this disagreement between the

theory and experiment persisted in the case of radium. The

evidence displayed in this section would indicate that it
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does not. The agreement between different theoretical cal-

culations, particularly those of Nix and Mailer, and experi-

mental analysis for 227Ra in this work is very good. This

observation would lead us to conclude that there is some-

thing peculiar in thorium which does not seem to be present

in other nearby elements.

B. Interpretation of Results at Moderate
Excitation Energies

A great proportion of the results obtained from the

calculations outlined in the previous sections are based

upon the validity of the assumptions regarding the evalua-

tion of the level density of the 226Ra nucleus at equili-

brium deformation. Under these circumstances we might

spend some time discussing the parameters that entered in

this particular part of the calculation.

The fit to the experimental level density dependence

on energy had made use of a back-shifted Fermi-gas model

expression with one free parameter, at at energies above

3 MeV. We have pointed out previously that in this fit, a

dependence of an on excitation energy is obtained as shown

in Figure 19. In the derivation of the Fermi-gas level

density expression, this parameter is proportional to the

density of single particle levels in the nucleus in the

following form:

7
2

a
n

= g
6 0
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where go represents the single particle density for both

neutrons and protons. We have assumed that these particle

levels are equidistant and therefore go is a constant.

However, from fits to experimental data we know that

this is not the case and that in many cases an is indeed a

function of excitation energy. At low energies the nucleus

only samples the levels close to the Fermi surface, and the

level density of the nucleus is therefore characterized by

the single particle levels in a short energy interval above

and below the Fermi surface. However, as the energy in-

creases, the nucleus begins sampling regions far from the

surface, with the effect that it now "sees" an average

single particle density, in which the local density fluctua-

tions are effectively washed out.

In the case of 226Ra, values of a
n
decrease steadily

as the excitation energy increases, until asymptotic values

are reached. The real location at which the a
n
dependence

on energy becomes flat is not known because we do not have

any more experimental data above this region, and therefore

our fit is not reliable at energies a little above the neu-

tron binding energy, or about 7.0 MeV of excitation energy.

The main point to be emphasized, is the meaning of this

steady decrease with energy.

Under normal circumstances, this energy dependence of

the level density could be equated with a high local den-

sity of single particle levels at the Fermi surface, in the
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order of 40/1.5 f\., 24 levels/MeV, or about 12 MeV-1 for each

nucleon type. This is quite high if we look at other sys-

tems above and below the radium mass region and see that

the a
n
dependence is in a sense reversed. In other words,

what is observed is that a
n

increases with excitation

energy; the interpretation of this is based on the argument

that at ground state deformations, the Strutinsky shell

correction is negative because the local density of levels

at the Fermi surface is lower than average. Therefore, un-

less the interpretation given to the experimental data is

wrong, it is clear that we have at hand a system which

shows some peculiar properties.

The problem becomes more important when we realize

that the behavior of the fissioning system depends directly

on the level density of the residual nucleus. For example,

the evaluation of r
f
depends totally on what r

n
values are

used in the calculations and rn is, of course, directly

proportional to pn, the level density of the residual

nucleus.

Our version of the energy dependence of af, the den-

sity parameter at the saddle point, is therefore strongly

bound to what we may determine regarding as as we have im-

plied previously. The result, as we have already seen, is

shown in Figure 19. As in the case of we we observe a

monotonic decrease of of with energy in both the asymmetric

and symmetric calculations. It is interesting to notice
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that the symmetric curve does not cross the an line at any

point, while the asymmetric line crosses it at a point cor-

responding to about 4.25 MeV of excitation above the un-

paired ground state: from there on, afasYm < an. We will

discuss the meaning associated with this observation a

little later.

The derivation of the Fermi-gas expression (11-32)

assumes that the overwhelming contribution to the level den-

sity is provided by the random coupling between single par-

ticle excitations in the nucleus. This assumption could be

tested by theoretically calculating the level density depen-

dence on energy and comparing it with the results deduced

from the experimental data.

Single particle levels can be used to calculate micro-

scopically the nuclear level density. An important formal-

ism has been established by Decowski et al. (De 68) which

properly takes into account the effect of the pairing cor-

relations. Based on this formalism a computer code has

been developed by Bolsterli (Bo 73, Br 73) which calculates

the density of intrinsic levels as a function of excitation

energy. Input parameters in this calculations are the sin-

gle particle levels and the pairing strengths, which are

obtained from the macroscopic-microscopic calculations of

Nix and Moller. We have used this computer code for calcu-

lating the density of states at the ground state and saddle

point deformations in 226Ra. Table XI lists the values of
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Table XI. State Density Parameters for 226Ra from Micro-
scopic Calculation

E (MeV)

Part A. Equilibrium Deformation

logiow An A
p T

0.50 -0.605 1.230 0.89 0.353
1.00 -0.080 1.210 0.83 0.388
1.50 0.418 1.190 0.78 0.416
2.00 0.895 1.160 0.73 0.439
2.50 1.354 1.140 0.68 0.460
3.00 1.796 1.120 0.62 0.478
3.50 2.224 1.100 0.56 0.495
4.00 2.641 1.070 0.50 0.510
4.50 3.046 1.050 0.43 0.524
5.00 3.442 1.030 0.34 0.538
5.50 3.840 0.998 0.21 0.552
6.00 4.271 0.968 0.567
6.70 4.797 0.924 0.586
7.00 5.015 0.895 0.598
8.00 5.702 0.811 0.628

10.00 6.995 0.615 0.680

E (MeV)

Part B.

logic

Highly Deformed Saddle Point

A
n

A
T

0.50 -0.510 1.320 0.54 0.355
1.00 0.010 1.300 0.44 0.390
1.50 0.505 1.280 0.32 0.418
2.00 0.979 1.260 0.15 0.442
2.50 1.486 1.240 0.467
3.00 1.911 1.210 0.490
3.50 2.318 1.180 0.511
4.00 2.715 1.150 0.531
4.50 3.099 1.120 0.549
5.00 3.472 1.090 0.565
5.50 3.835 1.060 0.581
6.00 4.191 1.030 0.595
6.70 4.676 0.990 0.615
7.00 4.879 0.970 0.623
8.00 5.542 0.900 0.648

10.00 6.801 0.750 0.693

the excitation energies, the resulting state density, the

pairing gap for both protons and neutrons, and the nuclear

temperature. The calculated state density does not include
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collective contributions such as rotations and vibrations,

and these would have to be included separately. Figure 25

shows a plot of the intrinsic state densities calculated in

this fashion, in comparison with those obtained empirically

from the experimental data. It is apparent from this graph

that the difference in magnitude between the experimental

and theoretical level densities is immense.

The recent paper by Bjornholm et al. (Bj 73) may shed

some light on the problem. This work discussed the relative

enhancements in the total level density of the nucleus based

on the degrees of asymmetry associated with certain nuclear

shapes. Thus, a spherical nucleus would possess the lowest

density of levels because of its high symmetry. For example,

they point out that if the spin cutoff parameter a has a

value of five, a nucleus with no rotational symmetry would

be expected to have a level density:

(81r) 2a" z, 625

times higher than its spherical counterpart at comparable

excitation energies. In the same manner, the total density

of levels of energy E would be enhanced by vibrational con-

tributions to the level density, expressed by the factor:

Z .

\rib
(T) = (1-e

-t.w/T
)

-g
(IV-1)

where taw is the frequency of the vibration, T is the tem-

perature, and g is a degeneracy factor equal to 2X+1; A is
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in the multipole order. It is clear then, that the degree

of enhancement provided by the collective degrees of freedom

can be very substantial, particularly in cases where values

of the vibrational frequency are small, and multipole orders

are high, and also in cases where asymmetries are found in

the nuclear shape, particularly if the deformations are

large. For nuclei in the actinide region the characteristic

ground state deformations is prolate. The rotational en-

hancement provided for such a shape is equivalent to 02,

which is proportional to the temperature. Although a2 can

be large, its variation with energy is not expected to be

very significant in a relatively short range of energy be-

cause the temperature T varies approximately as T=V. How-

ever, intrinsic excitations increase very rapidly with en-

ergy because of the exponential dependence of o'intr on E.

The degree of variation of the vibrational enhancement with

energy is not expected to be nearly as large as for the in-

trinsic excitations, but larger than in the case of rota-

tions, particularly if X in (IV-1) is relatively high.

Therefore, the slope of the logio of the level density curve

is expected to be largely determined by the dependence of

the internal excitations on energy with relatively small

deviations provided by the other contributions to the level

density. The degree to which these deviations are observed

should depend, to a great extent, on the mass region to

which a certain nucleus belongs. This is clearly indicated
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by the characteristic low energy spectra noted in certain

areas of the periodic table. These spectra are determined

largely by the corresponding nuclear shapes (see for example

[Ma 70]).

The "transitional character" of radium in relation to

other nuclei can be described in terms of the fact that

other nuclei of lower atomic number do not exhibit rota-

tional levels because of their sphericity. In contrast,

vibrational states are observed. In the case of radium and

thorium, both types of levels are present and the vibrations

are low in energy (ti0.25 MeV for the first octupole state in

radium). We might say that radium is "soft" to octupole de-

formations (Jo 61). As we can see, the enhancement of the

level densities predicted by (IV-1) can be considerable,

particularly if T >> tw. The same is true of the rotational

contribution to the level density, which is in the order of

a
2

. Now it is possible to begin answering the question

which was posed before, namely why does the Fermi-gas ex-

pression (11-32) yield a value for the level density para-

meter a
n
which implies a much larger than expected single

particle level density around the Fermi surface? The ans-

wer lies in the fact that our method of deducing an does not

distinguish between single particle levels and collective

levels and thus, some of the collective effects may be "ab-

sorbed" into the deduced a
n

value, thereby causing a rise in

the value of a
n

This effect would be expected to be large
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at low energies because the proportion of single particle

excitations is relatively low in relation to other types of

excitations.

To demonstrate this, we could ask ourselves how the

different types of excitations exist in proportion to each

other as the energy of the nucleus increases. What ratios

of collective to quasiparticle excitations are expected at

different temperatures? One typical type of motion is the

octupole vibration as we mentioned before. In the case of

thorium, from which we have borrowed our functional level

density, the first octupole vibration is observed at about

500 keV above the ground state. The partition function for

this type of motion is given by (IV-1), where g = 7; since

A = 3. If we assume that the temperature is approximately

400 keV, we find that:

Z
vib

(T=0.4) r\, 10

If we now assume that the temperature is about 500 keV, or

in the order of the vibration quantum energy,

Z
vib

(T=0.5) ti 25

Switching for a moment into the BCS formalism, we could com-

pare these two quantities with the partition functions cor-

responding to quasiparticle excitations evaluated at these

same values of the temperature. For T > A/2, where A is the

pairing gap parameter, the partition function may be appror

ximated by the following expression (Kl 64);
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CO

log Z0) 7.- 4g A / (-1)n-1-1K
1
(nf3A)/n - log 4 (IV-2)

o

where 6. is the inverse of the temperature, and K1 is the

modified Bessel function of first order. If g0 5 then it

is found that:

Z. (R) r-'intr

.9 for T = 0.4

24 for T = 0.5

The result is that the ratio of Zintr to Zvib increases by a

factor of about 2.6 when the temperature increases by 25%.

We have made this rough calculation to show that collective

excitations are extremely important, and that their contri-

bution is very large, particularly at low energies. In the

mass region A ti 230, octupole vibrations seem to play a sig-

nificant role; other types of excitation might also contri-

bute, but for purposes of illustration we have only chosen

to discuss one mode. So far, that is how the situation re-

garding the level density appears at the equilibrium defor-

mation. However, we have not yet said anything regarding

collective effects at the transition state deformation. The

number of levels that are required to fit the fission cross

section and angular distributions goes up rapidly as the

energy increases. This is a direct consequence of the high

number of neutron exit channels which are present in the

residual nucleus.
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Just as in the previous case of a
n
, we observe a gen-

eral decrease of of with increasing excitation energy as

shown in Figure 19. The state density at the saddle point

deformation, calculated theoretically (Figure 25), follows

closely that corresponding to the ground state deformation,

crossing the latter at about 5.0 MeV of excitation (in rela-

tion to the unpaired ground state). Again, in this calcula-

tion we seem to be badly underestimating the collective con-

tributions to the level density. The single particle level

densities at the saddle point are too large in relation to

what is normally expected. It is possible to develop an

argument similar to the one which we expressed before, re-

lating an, with some minor variations. In the first place,

the nuclear shape is very elongated and the moment of in-

ertia large; secondly, two types of deformations can be dis-

cussed, symmetric and asymmetric; whereas before one could

only talk about symmetric distortions. Finally, little is

known about the vibrational effects.

The elongated shape of the transition nucleus provides

for a great enhancement of the rotational contributions to

the level density, because the moment of inertia of the

transition nucleus is about three times larger than that

corresponding to the residual nucleus. If the transition

nucleus is reflection-asymmetric, as the theoretical calcu-

lations predict, this enhancement increases automatically

by a factor of two. This explains why af
asym

is
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consistently lower than afsYm. In calculating the transi-

tion state level density, all contributions, collective and

intrinsic, were thrown together, and accounted for in one

parameter, af. When we multiplied the level density by a

factor of two in order to include the asymmetry factor, this

had the effect of effectively removing one of the collective

factors (the one corresponding to x-y asymmetry) from af and

accounting for it externally and artificially by doubling

the total density of levels. Actually this is a step in the

right direction because the nature of the level density para-

meters of and a
n

requires that only intrinsic contributions

be accounted for in their use, while collective effects

should appear as multiplicative factors to the internal

level density. We will return to this particular point

shortly. Similarly, the fact that af
asym crosses a

n
at some

point in our empirical level density is not indicative of

anything, except the fact that we have accounted externally

for the asymmetric degree of freedom predicted for the shape

of the transition nucleus.

At this point we do not know anything regarding vibra-

tional effects at the saddle point. Calculations by Nix

and Swiatecki (Ni 65) based exclusively on the liquid drop

model would indicate that certain modes of vibration with

frequencies in the order of 1 MeV are possible at the saddle

point. We simply cannot say anything more in this respect.
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The variation of of and a
n
with excitation energy has

been interpreted by Vandenbosch and Mosel (Va 72), and

Bishop et al. (Bi 72) as a reflection of the close relation-

ship between the sign and magnitude of the shell correction

energy and the local single particle level density near the

Fermi energy. If the single particle level density is

unusually low, the shell correction is negative, and vice

versa. However, as the excitation energy increases, single

particle levels farther away from the Fermi surface begin

playing a role, and shell effects tend to disappear.

From the decreasing trend of af and a
n
with increasing

energy, it might have appeared natural to predict positive

shell corrections for both the ground state and saddle point

deformations. We have pointed out, however, that because of

the relatively high contribution of collective states to the

level density in both cases, it is hard to say what the real

dependence of an and af on energy is. In the previous sec-

tion we briefly mentioned that the theoretically calculated

values of the shell corrections are negative (see Table IX).

If these theoretical results are realistic, it is clear that

either one of two things is happening. Either our estimates

of of and a
n

are wrong, in which case our level density cal-

culation is also wrong; or the extent to which collective

states are "absorbed" into the of or a
n

values is fairly

substantial. From the very rough calculations involving the

two partition functions which were shown in the last section,
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we note that there is, in fact, a large probability that the

latter argument can be accepted. We might have made sub-

stantial errors in determining the level density of 232Th.

However, if anything these errors should have gone in the

direction of underestimating the number of resonances at the

neutron binding energy. The reason for this observation is

that, in counting these resonances, there is always a danger

of missing some resonances because of resolution problems.

Alternatively, the dependence of the level density in the

low energy region might have been overestimated, in which

case the treatment of the neutron evaporation data would

have been in error.

On the other hand, Lynn and Bjornholm (Br 72) have ex-

perimentally deduced a positive ground state shell correc-

tion for thorium. They find that the values of the ground

state shell correction decrease rapidly as a function of Z,

such that they are all negative for U, Pu, and Cm. From

this trend it would be expected that the ground state shell

correction energy would be positive in the case of radium.

This observation conflicts sharply with the results from

Nix and M011er who predict a large negative shell correction

for radium. It is conceivable that the Nix-Willer calcula-

tion might have failed to take into account effects of which

we are not aware. However, it is hard to forget that such

good agreement is found between their results and those

deduced in this work regarding the height of the fission
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barrier and the single particle levels as discussed in the

previous section.

From the above discussion, we conclude that at this

point we cannot infer much about the shell correction in

radium. All what can be said is that because of the similar

dependences of af and an vs. energy, and because of the

occurrence of low energy collective phenomena, at both de-

formations, the sign of the shell correction is perhaps the

same in these two cases. Because of the predominance of

collective excitations at low energies over intrinsic exci-

tations, and the subsequent relative increase of the latter

with energy, it is worthwhile to point out that the real

variation of an and of (or go) with energy is surely less

than what is observed in the empirical dependence shown in

Figure 19.

The behavior of the nuclear temperature as a function

of excitation energy is a direct result of the sharp depen-

dence of the nuclear level density parameters af and an on

energy. In the case of the ground state deformation, there

is a rapid increase in T up to about 2 MeV of excitation

(Figure 26). Between 2 and 4.5 MeV, the curve levels off

into a plateau, and then it begins to climb again at a

relatively slow rate. In the case of a
f'

there actually

seems to be a small dip in the curve (Figure 27). It is

hard to say whether it is realistic to expect such an

occurrence in the excitation energy dependence of the
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temperature. If realistic, it could be interpreted as mean-

ing only that within the small range of energy in which T

decreases, there is a very small increment in the rate at

which the level density increases with excitation energy.

This behavior is not normally expected, and the temperature

is usually assumed to follow the smooth dependence:

T a Vff (IV -3)

Deviations from this dependence can be observed, for

example, in the values derived from the experimental data

on lighter nuclei by Tsukada and co-workers (Ts 66), who ob-

tained nuclear temperatures by fitting the level density

dependence on energy, and then computing the inverse of the

nuclear temperature according to the expression;

1 3 In p(E)
T DE

(IV-4)

where p(E) is the level density. Qualitatively, the deduced

energy dependences of the temperatures are similar to that

which we observe for 226Ra. It is worthwhile to also point

out that values of an obtained by Tsukada et al. are in some

cases strongly dependent on excitation energy. Although the

calculations and experimental data which we have mentioned

concern lighter masses (Co, Ag, In, Ta, and Au), the results

reported serve to illustrate the point that in many cases

the expected energy dependence of the temperatures does not

follow the simpler relation (IV -3).
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Let us now see if it is possible by simple calculations

to numerically account for the degree of discrepancy between

the experimentally determined and theoretically calculated

state densities shown in Figure 25. For this purpose, we

make use of the temperature information described previ-

ously, and for simplicity, only the ground state deformation

is chosen. For two different temperatures, 400 and 500 keV,

the excitation energies relative to the unpaired ground

state are 1.65 and 5.6 MeV respectively. Vibrational con-

tributions, which are assumed to be mainly octupole, provide

us with the partition functions;

X=3
Z
vib

(1.65 MeV) = 10

X=3
Z .

\rib
(5.6 MeV) 25

The partition function for rotations can be derived to be

Z
rot

= 2a2/S, where a is the familiar spin cutoff parameter,

and S represents a symmetry factor which is equal to 2 when

the nucleus is reflection-symmetric, and 1 when it is re-

flection-asymmetric. Under these circumstances, the ro-

tational partition functions are:

Z
rot

(1.65 MeV) 'N., 30

Z
rot

(5.6 MeV) rk, 41

The degree of collective enhancement over the intrinsic

level density is the product of the partition functions
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contributing to the entropy of the system. The predicted

degrees of enhancement are now compared with the ratios of

the experimental state densities to the calculated intrinsic

densities shown in Figure 25 at the two energies in ques-

tion. The results are listed in Table XII.

Table XII. Collective Enhancements in 226Ra.

Energy log
(Zvib Zrot) 10 WeXp/wintr)

1.65 2.48 2.65

5.60 3.20 3.40

These results are remarkable in view of the rough ap-

proximations used in calculating the collective enhancements

from the partition functions. They seem to indicate that in

principle the assumptions made regarding the predominance of

the low frequency octupole mode over other vibrational modes

are not at all unrealistic, and also that the single par-

ticle levels of Nix and M011er seem to correctly describe

the 226Ra nucleus at its equilibrium deformation.

For some time now we have relied on the experimentally

deduced temperatures for conducting the partition function

calculations. The evidence seems to indicate that they are

fairly reliable. However, we should compare our estimates

with those predicted by the theory.

Figures 26 and 27 show plots of temperature vs. energy

for the two saddle point assumptions and for the ground

state deformation as deduced from the experimental data.
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Microscopically calculated temperatures are also shown for

both nuclear deformations with no collective correction. It

is clear from these figures that the theoretical estimates

differ substantially from those obtained empirically. These

differences in the separately evaluated temperatures are

consistent with the argument that we have employed all

along, namely that the general formalism has been neglecting

contributions from degrees of freedom other than intrinsic

excitations. Generally, the entropy in the exponential fac-

tor of the level density is expressed as the sum of several

terms;

S = In Z + 8E -
n
Nn ppNp (IV-16)

where Z is the partition function, 8 is the inverse of the

temperature, II and p
n

are Lagrangian multipliers for the

proton and neutron numbers N and N
n

respectively. From

this condition we could for example, establish:

in Z
a f3

ET

If all we are concerned with is intrinsic excitations, then

the above expression remains as written. However, if other

degrees of freedom are present, namely rotational motion

and vibrations, the expression converts into:

a In Z
as

D In Zintr D In Z
vib

D In Z
rot)

( +
D6 as D6.

(IV-8)
Eintr + E

vib
+ E

rot
= E

T
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When we include three terms into the partition func-

tion, the value of (3 must increase by some amount in order

to conserve the total energy ET, as opposed to the case

where only the intrinsic excitations are included. In other

words, the temperature of a system decreases with increasing

number of degrees of freedom, when the total energy is con-

served. This explains basically the reason why the tempera-

tures calculated in the two manners, theoretically and em-

pirically, differ as shown in Figures 26 and 27.

The entropy in a system is given in terms of the state

density as:

S = klnw (IV-9)

where k is the Boltzmann constant, S is also given by the

expression:

S = + klnZ (IV-10)

where E is the total energy, and Z the partition function.

From these two expressions, the state density becomes:

w(E) = Ze
E/T

(IV-11)

and Z includes the contributions from all degrees of free-

dom. We have set T = kt for convenience in the above ex-

pression. If, for example, T = 0.400 MeV, the E -2t = 1.65

MeV, and E = 3.3 MeV. From previous discussions at the

given temperature Zintr q.,3.9 and Zvib q, 10. Z
rot

= 2a2_ for

a deformed symmetric nucleus and in the order of Zrot rk, 30
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in this case. Putting together all these quantities it is

found that:

w(T=0.4) (10)(3.9)(30)e
(3.3/0.4)

4.56 x 106

or log10w (T = 0.400) = 6.66. The experimentally deduced

value is logluwexp (T = 0.400) = 5.25. Analogously, we

could calculate the state density at T = 0.500 MeV, which

corresponds to E - 2A = 5.6 MeV or E = 7.33 MeV. We found

previously that Zvib 'A, 25,
Zintr

23, and Zrot 'A, 40. These

values give us an estimate of w(T = 0.500) = 3 x 101° MeV-1,

or log10w (T = 0.5) = 10.48, as opposed to an experimen-

tally deduced value, logio wexp (T = 0.5) = 8.95). The dif-

ferences between the calculated and experimental state den-

sities are 101°41 for T = 0.400 and 101°53 for T = 0.500.

This calculation indicates that the slope of the calculated

density line remains roughly equal to that of the experimen-

tally deduced one, through an energy interval of about 4

MeV. The constant difference in the state densities ob-

tained by these two methods is in part explained by the fact

that in our crude calculations we did not put any con-

straints regarding the total number of particles, which

would have the effect of reducing the total density of

states. Perhaps we have carried the statistical mechanical

analogy too far, in view of the simplistic arguments in-

volved. Nevertheless, it is important to notice that apart

from a normalization factor, the correct dependence of the
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density on excitation energy is predicted. This would argue

that, in principle, the calculations of the temperature as a

function of energy and the partition function arguments re-

garding the collective contributions to the level density

are realistic.

C. Fission Fragment Angular Distributions at
High Energies

In the last chapter we parameterized the fission frag-

ment angular distributions for 4.7 MeV < En < 9.0 MeV in

terms of the variable K2 which describes the width of the K
0

distribution in the transition nucleus. For sufficiently

high energies, the distribution in K is assumed to be

Gaussian, as in expression (1I-38).

Figure 28 shows the dependence of K(23 on excitation

energy above the barrier for the transition nucleus 227Ra,

obtained by determining the values of K(2; which minimize x2

when the fission fragment angular distributions in Figures

16b, c, and d are fitted with expressions (11-15 (11-48).

For comparison, we also show the values of Ko deduced for

the same system by Ippolitov et al. (Ip 72) who used the

expression:

K2 = (2.1 17171+1)2/8(A-1) (IV-12)

where A is the anisotropy and En is the incident neutron

energy. It can be noted that good agreement is found be-

tween the two methods. The data shows that K2 oscillates



40

Incident Neutron Energy (MeV)

K2
Circles: This Work

30 Triangles: Ippolitov et al.
(Ip 72)

20

10

O
Excitation Energy of Transition Nucleus (MeV)

2

Superconductor
calculation

3 4 5 6 7

Figure 28. Experimentally Deduced Values of Kc2).



150

around a value '1,8 for excitation energies E; 4 MeV and

then it seems to jump to 1,1 '',24 for 4 < El < 5.5. The

point at about 6 MeV has a value of K2 q, 12, and it shows

strong contributions from second chance fission; therefore,

we will disregard it in our discussion.

In terms of the Fermi-gas model, the behavior of 1<:) as

a function of energy is expected to follow the relation:

RB
.gT

K2 = e"
-II 2o

(IV-13)

where )1 PB
f
is the effective moment of inertia for a rigid

'Jef

body as defined in (11-37), and T is the nuclear tempera-

ture. Since T VE, K2 is also supposed to be directly

proportional to E. However, at low excitation energies, a

significant deviation from the behavior predicted by the

Fermi-gas model is observed, and Ko appears generally de-

pressed in relation to the Fermi-gas value (IV-13). This

deviation is explained in terms of the BCS superconducti-

vity theory, which takes into account the pairing inter-

actions between nucleons. At excitation energies close to

the fission barrier, K(23 is generally observed to increase

in a step-like manner; as the energy increases the step-like

structures smooth out and disappear rapidly and K(23 increases

more or less linearly with energy until a point is reached

at which the behavior of K2 follows that predicted by ex-

pression (IV-13). This point of transition is labeled the

critical energy, and in the BCS superconductivity theory,
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it corresponds to the energy at which the pairing correla-

tions between nucleons disappear and the nucleus behaves as

a Fermi-gas. Figure 31 shows qualitatively the expected be-

havior of K2 as a function of excitation energy for a highly

deformed e-e nucleus. For even-even nuclei at low energies,

the first observed intrinsic excitation corresponds to ener-

gies just above 2A, where A is the pairing gap parameter.

Since the number of excited quasiparticles is low in rela-

tion to the number of available levels, the probability that

a given level will be doubly occupied will be small, and

configurations with the maximum allowed quasiparticle num-

ber are predominant. Therefore, in very simplistic terms,

a "jump" in the value of K(2) should be observed every 20

energy interval such that:

K2 (E*) 2 7 K2

where 7 is the average number of pairs of excited quasipar-

ticles and K 's are simply the quantum numbers characteriz-

ing the single particle levels in a deformed nucleus, the

average of their squares being taken over an appropriate

energy range. The observed steps in K(2) are more weakly pro-

nounced than required by expression (IV-13), mainly because

of the so-called "blocking effect", which leads to a de-

crease in A for individual excited nucleon states. In other

words, the presence of an odd particle in a given level k'

prevents pairs from scattering into this level, and the
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level is said to be blocked; as the energy increases, more

and more individual particles occupy levels above the Fermi

surface, thereby increasing the blocking effect and causing

a decrease in the pairing correlations. At energies above a

few A
o the dependence of K2 can be expressed in terms of a

smooth function, A(T/Tc), which roughly relates the effec-

tive moment of inertia to the moment of inertia of a rigid

body, such that:

R9
2 efn2ir

K0 A(T/Tc) (2V-14)

The values assumed by A(T/Tc) depend on the ratio of T/Tc

where T
c

is the nuclear temperature corresponding to the

critical energy above which the nucleus behaves as a

Fermi-gas. Suffice for the moment to say that for:

and for

E* < E*, A(T/T
c

) = f(T/T
c

)

E* > E*, A(T/T
c

) = 1
(IV-15)

Numerical values for A(T/T
c

) as a function of T/T
c
have been

tabulated by Vonach et al. (Vo 64).

From the above discussion, it is clear that from the

dependence of I<,) on energy it is possible to deduce some of

the parameters that describe the transition state nucleus.

In the case of 227Ra we have few experimental points, and

their uncertainties are relatively large; however, by tenta-

tively identifying the points at which K(23 seems to show
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"breaks" in its energy dependence, we might be able to

offer an estimate for the pairing gap parameter, Af. For

excitation energies 1 MeV < E* < 3 MeV, the average value

of K2 is about 8, and it corresponds to the excitation of

one quasiparticle. For 3 MeV < En < 5.5 MeV, K(2) increases

rapidly to an average value of about 25 which would be more

or less the value of K2 required from expression (IV-13) in

the presence of three quasiparticles. Therefore, we tenta-

tively place the value of pairing gap at the saddle point at

2Af 21 3 MeV. From single particle levels provided to us by

Nix and Moller, K2 ti 6. Ipolitov et al. (Ip 72) calculated

K 2 from sets of single particle levels with Nilsson and

Pashkevich potentials, and obtained values of K2 = 7.52 and

K 2 = 9.05 respectively. These estimates tend to agree

better with the experimental data, although the uncertain-

ties in the latter are large. Ippolitov et al. estimate the

pairing gap as 2Af = 2.7 ± 0.7 MeV which substantially

agrees with our findings.

A value of the pairing gap in the order of 3 MeV con-

trasts sharply with values of the same quantity calculated

for the equilibrium deformation. The question concerning

the dependence of the pairing gap on nuclear deformation

has been the subject of controversy for some time. On

theoretical grounds, A may increase as the nucleus deforms.

The calculations by Kennedy et al. (Ke 64) on the slab model

of the nucleus show that while infinite nuclear matter



154

presents very small pairing effects, the slab model calcula-

tions predict a finite pairing gap, very sensitive to the

slab thickness. However, from the experimental aspect there

have been arguments favoring both points of view, and there

is no conclusive evidence one way or the other. The classi-

cal paper by Griffin (Gr 53) in which the pairing gap at the

saddle point is deduced for the compound nucleus 240pu,

yielded a value of Of = 1.36. Subsequently this value was

found to be lower. Huizenga et al. (Hu 68) determined

2A
f

= 2.2 MeV for 2`+0P u, u while Britt et al. (Br 68) placed

2A
f
= 2.0 MeV for the same nucleus, and 2A

f
2.10 for 236U.

More recently, Shpak et al. (Sh 71) have found 2Af = 1.7 MeV

for 240pu;

sion:

however, their estimate is based on the expres-

E* 0.78 gA 2
0

(IV-16)

where g is the single particle level density around the

Fermi surface. They estimate this quantity from the Fermi-

gas level density parameter a = (72/6)go where they set

a = A/8. It is clear from previous discussions that g may

vary with excitation energy. Also because collective

effects have been included in the empirical determination of

'a', the real value of 'g' may be somewhat inflated, which

would have the effect of decreasing the value of Af calcu-

lated in (IV-16).
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Moretto et al. (Mo 69) have deduced the value of the

pairing gap in 210Po to be Of 1.62 by identifying the

breaks in the K2
o

spectrum. Itkis et al. (It 73) have de-

duced A
f
= 0.90 for the same nucleus. This latter estimate

offers the problem that the method used in its deduction

relies on a good estimate of of which, again, is assumed to

be in the order of a q, A/8. Therefore, it seems that at

present, the safest way of determining LXf is by identifying

the breaks in the K2 spectrum and comparing the jumps in K2

with the predicted increases caused by quasiparticle break

up. However, it is important to stress the fact that none

of the results appear to be conclusive, there is a lot of

controversy surrounding this topic and more work needs to

be done in relation to the problem.

Finally, for purposes of illustration, we have calcu-

lated the predicted dependence of K(23 in 227Ra, assuming the

nucleus to be a Fermi-gas and also under the assumption of a

superconductor (Figure 29). For the case of the latter, the

quantity A(T/Tc) in expression (IV-14) has been interpolated

from a table given by Vonach et al. The value of the criti-

cal temperature Tc is calculated from the relation:

4
T = 8Tc 7 o

where according to Lang,
11

o
A. Therefore, T

c
z 0.87

(IV-17)

MeV.

11Vonach et al. tentatively set eo = 1.3A in order to ob-
tain the experimental odd-even mass difference.
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D. The Energy Region 3.9 < En < 4.7 MeV

The region of the plateau in a
f
(E
n

) is in essence what

we have termed the "twilight zone". The data in this region

could not be analyzed discretely because the number of

levels required to fit the experimental data would be too

large for the analysis to have statistical significance. On

the other hand, no statistical approximations are possible

because the number of levels is still too small for the

analysis to have any meaning. It is difficult to speculate

about the significance of the plateau and subsequent step

at 4.7 MeV. A step in the cross section could, under normal

circumstances, be identified with the same type of pairing

phenomena at low energies which we discussed in the previous

section. Breaks in the cross section have been predicted by

Strutinsky (St 58, 65). Kluge (Kl 64) has also qualitati-

vely predicted jumps in the level density which are caused

by the pairing correlations at low energies. Much in the

same manner as in K 2

o'
these breaks are expected at energies

which are multiples of 2A. Because of the "blocking ef-

fect", the breaks quickly disappear as the energy increases,

Under this interpretation, the sudden increase in of would

be expected not just above En = 4.7 MeV, but at about 6.7

MeV, where a second plateau has been reached. It is clear

that a great increase in must occur at energies slightly

above 4.7 MeV, but it is hard to speculate about the causes
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of such a great increment. Figure 24 shows the single par-

ticle level spectrum calculated for the transition nucleus

226 Ra by Nix and Moller. As we have pointed out, the level

sequence above the 69
th neutron level is very similar to the

one predicted in this work, and it goes 3/2, 1/2, 5/2, 1/2.

However, above this last 1/2 level, there is a gap of about

0.9 MeV, before the next level is encountered, and then

there is a sequence of fairly close levels. It may be pos-

sible that the region above En = 3.9 MeV, where the plateau

begins, corresponds to the gap above the K = 1/2 level in

Figure 24. While the sudden increase in the cross section

corresponds to a region of high channel density at the end

of the gap, which creates a great increase in of at that

point.

E. Comments on the Mass Distribution in the
Fission of 22111a

The data reported by Konecny et al. (Ko 73) on the

reaction 226Ra(d,p) 227Ra f, shown in Figure 22 is inter-

esting in the sense that it would seem at first sight to

show that the so-called triple-humped mass distribution in

fission is actually caused by fission proceeding through two

different saddle points, one symmetric and the other asymme-

tric. The latter fission barrier height appears to be lower

in energy than the former. The range of excitation energies

studied is between 7 and about 12 MeV, which would corres-

pond to neutron energies between 2.5 and 7.5 MeV. The
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plateau in the fission excitation function which Babenko et

al. observe between 4.1 and 4.7 MeV is not present in the

(d, pf) data. An increase in the rf/Fn function is ob-

served however, and the uncertainties in the data do not

permit any assertion as to whether the slight drop in yrn

at an excitation energy of about 8.2 MeV (corresponding to

E
n
= 3.8 MeV in the (n,f) experiment) is related in any way

to the features reported in the (n,f) cross section data.

The assertion made by Konecny et al. regarding the two

different paths leading to scission would seem to be sup-

ported by the difference in the anisotropies observed for

the symmetric and asymmetric fission components of the

cross section extracted in the study of the 226Ra (3He, df)

reaction. However, this problem is far from being resolved

theoretically. Until recently, no account had been taken

of the dynamics of the fission process. When dynamic varia-

bles are included into the calculation of spontaneous fis-

sion rates, the path to fission may not necessarily be the

one where the energy remains lowest. Pauli and Ledergerber

(Pa 73) in a very instructive paper argue that the trajec-

tory adopted by the fissioning nucleus is really that of

least action which does not necessarily correspond to that

of lowest potential energy. In other words, it would seem

that the fission process would be controlled not by the

thermodynamics but, by the kinetics of the system. If this

were to be true, many of the experimentally deduced fission
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barrier heights might be in error, but as we pointed out

previously, this argument is still a subject of heated

debate.

Within the range of energies in which we so far have

carried our analysis (3.6 MeV < En < 9.0 MeV), we have not

noted any irregular features which could be associated with

fission through two different saddle points. However, the

data by Konecny et al. indicates that we should not begin

seeing these effects except for energies En > 8.0 MeV. Un-

fortunately, the energy region corresponding to second

chance fission starts at about E
n

9.0 MeV, and any effects

caused by fission through a saddle point would be mixed with

those corresponding to fission after neutron evaporation.

F. Parameters Describing Second Chance Fission

We previously pointed out that the steep rise in the

fission cross section at incident neutron energies above 9

MeV is caused by the contribution from fission after neutron

evaporation. This was shown in Figure 4. The corresponding

angular distributions of fission fragments are displayed in

Figure 5.

Before we are able to analyze the behavior of the fis-

sioning nucleus 2 2 6Ra it is necessary to subtract the con-

tribution to fission from 227Ra. The evaluation of this

contribution is dependent upon the assumption that since the
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total fission cross section can be described by the

function:
12

227
a
f
(h
n ) = a (-

F

1)227
c

n

then a
f
(E
n

) should remain relatively constant as a function

of energy at moderate and high excitation. The reason for

this is that F
f
/F

n
is predicted to increase only slowly with

excitation energy, while ac decreases slowly with increasing

incident neutron kinetic energy.

The result is that we can set of for first chance fis-

sion as equal to an average over energy of the cross section

in the plateau region between neutron energies of 5.4 and

rf
9.0 MeV. This permits us to calculate (--) 227 if we also

r
n

know the neutron evaporation cross section an(En). The lat-

ter is given by the Hauser-Feshbach calculation as evaluated

in (II-15). Within the region in question, an(En) remains

fairly constant at about 2.92 barns. If we assume of to be

about 3.1 mb. between E
n

= 5.4 and 9.0 MeV, then we can give

an approximate value for (F
f
/r

n
)

227

r
f 227 , (3f 3.1x10-3

(r ) = 1.061 x 10-3
a
n

2.92

Assuming Fn >> rf + r1,, the expression for
fi n'

\226 be-

comes for, first and second chance fission:

12
226 and 227 written as superscripts mean reference to the
corresponding Ra isotopes.
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Table XIII lists the calculated values of and for

226 6f for the different incident neutron kinetic energies.

Table XIII. First and Second Chance Fission Cross Sections

En (MeV) (rf/rn)226 2266f(mb) 227af(mb)

9.7 0.365x10-3 0.985 2.865

11.6 1.994x103 5.220 2.780

12.5 2.789x10-3 7.250 2.750

13.6 3.299x10-3 8.310 2.690

14.4 3.739x10-3 9.350 2.650

14.8 5.339x10-3 13.350 2.650

Similarly, the angular distributions of fission frag-

ments corresponding to the fissioning nucleus 226Ra are ob-

tained by subtracting the predicted 227Ra distributions from

those observed experimentally from the combined system

226/227Ra. In order to determine the first chance fission

angular distributions at high excitation energies, it is

necessary to know the dependence of K(2) with energy. This

can be done because K2 is directly related to the inverse of

the anisotropy a(0°)/6(90°) by the following approximation

(Ip 72) :

(2.1Vc+1)2
6(0°)/6(90°) 777 1 +

8K2
(IV-20)
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The shape of the angular distribution can be obtained with

sufficient accuracy if we assume that three points in a(e)/

a(90) are known, namely those at 0°, 45°, and 90°. The one

at 0° is the anisotropy calculated from (IV-20). The point

at 90° is unity, by definition. The point at 45° can be

assumed to be half way betweena(0°)/a(90°) and 1. We can

easily prove this assumption by evaluating the anisotropies

at the three angles from a second degree polynomial fit.

First let us assume that the distribution can be simulated

by a function:

a(8) = a
o

+ a2P2 (cos 0)

= a
o

+ (a2/4) (3 cos 0 + 1)

(IV-21)

where a
o

and a
2
are constants. From the above expression we

find that:

a(0°) = a
o
+ a

2

a(90°) = a
o

- 1/2a2

a(45°) = a
o
+ a2/4

The latter is equal to the average between a(0°) and

a(90°). A basic assumption is, of course that the angular

distribution of the fission fragments peaks only at 0°, and

decreases smoothly towards 90°.

The three points are then fitted with a function of the

form (IV-21) in which ao and a2 are free parameters to be

obtained. Once these two are known, the distributions over
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all angles can be simulated, and by using the methods of

Appendix II we normalize all of those to the corresponding

fission cross sections shown in Figure 4 for 227Ra. The

next and final step is to subtract point by point the calcu-

lated 2270(0) from the experimental

In the actual calculation we have made use of only the

data obtained from the symmetric saddle point shape assump-

tion. This decision was made for the sake of simplicity

since the outcome of the calculation is not affected

seriously, and because nothing new would be learned by

carrying out both approaches to greater lengths. The uncer-

tainties in some of the parameters, such as Of and Tc, would

not, in any case, permit great accuracy in the final re-

sults.

Table XIV lists the values of K2 which are obtained by

applying the formalism developed in the first section. The

Table XIV. Parameters for 226Ra(n,f) at Moderate. Energies.

E
n
(MeV) U(MeV) K2 0(0)/0(90) a

o
a2 Correction

Factor

9.7 6.0 18.1 1.393 1.131 0.262 1.267

11.6 7.9 25.7 1.323 1.108 0.215 1.155

12.5 8.8 30.6 1.290 1.097 0.193 1.254

13.6 9.9 36.9 1.259 1.086 0.173 1.238

14.4 10.7 41.6 1.242 1.081 0.161 1.226

14.8 11.1 44.0 1.235 1.078 0.157 1.229
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critical temperature is assumed to be in the order of 0.87

MeV as was estimated in the previous section, and this

yields a critical energy of about 22 MeV. The dependence of

K 2 on excitation energy is shown in Figure 29.

Table XIV lists the values of the anisotropies as cal-

culated from expression (IV-20), together with those of the

constants a
o

and a2 obtained from fits to the angular dis-

tributions, for different neutron energies. Correction fac-

tors as defined in Appendix II are also tabulated.

Table XV lists the differential cross sections as a

function of angle (0), for:

a) The unresolved 226,227Ra fissioning data

b) The estimated 227Ra distributions, and

c) The deduced 226Ra values.

This last set of data is shown graphically in Figures

30a and b. We have fitted these 226Ra(n,n1 f) angular dis-

tributions with a Legendre polynomial function of sixth

order, in the same manner as described previously, see

Appendix II. The fits corresponding to 11.6, 12.5, 14.4,

and 14.8 MeV are remarkable in the sense that they peak at

side angles. Assuming the fission barrier in 226Ra to be

about the same as in 227Ra, i.e., about 8.2 MeV, and also

that evaporated neutrons have a mean energy of 1.5 MeV, the

corresponding excitation energies are 0.9, 2.8, 4.7, and 5.1

MeV above the fission barrier. Such effects are not



Table XV. . Deduced. Angular. Distribution. for. the. Two. Fissioning Systems 226.Ra and 227Ra

Angle

E
n

= 9.7 MeV

0.101227
(IUD)

TOT ' '

(0)226

0° 2.794 1.765 1.029

10° 2.600 1.750 0.850

20° 2.521 1.707 0.814

35° 2.057 1.601 0.456

45° 2.109 1.517 0.592

60° 1.847 1.430 0.417

750 1.613 1.300 0.313

90° 1.746 1.267 0.479

E
n

= 11.6 MeV E
n

= 12.5 MeV

,e, (0)227 0(0)226 ,,e, ,e)227 (0)226
' 'TOT ' ' 'TOT '

4.040 1.648 2.392 5.612 1.607

4.278 1.613 2.665 6.886 1.575

4.516 1.527 2.989 5.888 1.498

4.000 1.458 2.543 6.070 1.436

3.906 1.356 2.550 4.703 1.345

3.720 1.282 2.438 3.946 1.319

4.040 1.255 2.785 4.248 1.254

4.005

5.311

4.390

4.634

3.358

2.627

2.994



Table XV. continued

Angle

E
n

= 13.6

Q(0)TOT
( 0 )2 2 7

MeV

(0) 2 2 6

E
n

= 14.4

a(0)
TOT

(0) 227

MeV

6(0) 22 6

E
n
= 14.8 MeV

f
TOT 6(0) 227 (e) 226

a'''r_)N

10° 6.525 1.549 4.977 8.475 1.514 6.961 10.000 1.509 8.491

15° 6.525 1.537 4.988 6.839 1.503 5.336 9.534 1.498 8.036

20° 6.828 1.521 5.307 7.308 1.488 5.820 8.250 1.484 6.766

30° 6.525 1.478 5.047 5.845 1.448 4.357 7.976 1.446 6.530

40° 6.629 1.426 5.203 5.492 1.400 4.092 8.414 1.398 7.016

45° 5.274 1.398 3.876 6.082 1.374 4.708 8.110 1.373 6.737

550 6.227 1.343 4.884 7.134 1.324 5.810 8.651 1.324 7.327

65° 4.772 1.295 3.475 7.013 1.279 5.734 8.451 1.281 7.170

750 5.423 1.259 4.164 4.677 1.246 3.431 7.976 1.248 6.728

85° 4.519 1.248 3.270 4.682 1.235 3.447 6.625 1.238 5.387

90° 4.519 1.238 3.281 5.261 1.226 3.995 6.084 1.229 4.855
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expected in these regions of excitation, where the angular

distributions are expected to be forward peaked.

In order to investigate some of these effects we have

attempted to calculate the relative strengths of K bands

that are necessary to cause the observed irregularities.

The J distribution is assumed to be the same as that of the

initial compound nucleus 227Ra, and the values of M, the

projection of J over the neutron beam direction, are assumed

to range from -1 to +1.

Under the above assumptions, we may write the differen-

tial cross section contributed by a given value of K for a

certain energy in the following manner:

J
max +1

2260. f (2J+1)T
J
(E ) e Wj (8) (IV-22)

J=0
K n M=-1

K K , M

where the f
K
's are weighting coefficients corresponding to

different values of K; EK takes a value of 2 for all values

of K, except for K = 0, where it is unity. This accounts

for the fact that K can normally be either positive or nega-

tive, except when K equals zero. The Tj(En)'s are transmis-

sion coefficients for the formation of the compound nucleus

with neutrons of kinetic energy En, and values of the angu-

lar momentum J.

The actual calculation is carried out by separately

evaluating the normalized angular distribution functions

M '
Wj
K

(0) and summing them individually for 0 < K < 5, and
,
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weighting each J = 9, wave correspondingly. The fK para-

meters are left to vary independently, and the angular dis-

tributions are fitted using a non-linear least squares code.

The results of these calculations are given in Table XVI for

the different values of K, while the angular distribution

Table XVI. Partial K Fission Cross Sections for the 226Ra

(n,n'f) Reaction*

Incident Neutron Energy (MeV)

K 9.7 11.6 12.5 13.6 14.4 14.8

0 0.493 ti0 1.789 1.322 2.282 3.712

1 0.129 1.069 0.510 2.067 1.701 1.970

2 0.140 1.112 2.779 2.047 0.824 r\-,0

3 ti0 1.045 1.186 2.530 0.489 3.027

4 0.223 0.128 0.986 ti0 ti0 0.111

5 ti0 1.866 ti0 0.343 4.053 4.526

* in mb.

fits are shown in Figures 30a and b. As we can see, these

results are very puzzling because of the zig-zagging in the

cross section function.

The distribution corresponding to En = 9.7 MeV seems to

peak at forward angles. The dominant channel excited cor-

responds to K = 0, and the distribution looks quite normal.

However, as we go up in energy, side peaking is observed in

the angular distribution data corresponding to 11.6 and 12.5

MeV. This is very unusual at these excitation energies

(ti1.9 and '1,2.8 MeV above the fission barrier of 226Ra)
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where forward peaking would be expected if a Gaussian dis-

tribution in K is assumed. However, the percentage of K =

0 is very small at En = 11.6 MeV, in comparison with the

contributions from all other bands, especially in relation

to K = 5. At E
n
= 12.5 MeV, K = 2 seems to predominate but,

K = 0 again becomes significant. K = 3 strength increases

to dominate at E
n

= 13.6 MeV, but, K = 1 and K = 2 bands are

important. The angular distributions at both 14.4 and 14.8

MeV are fairly similar in shape, showing peaking at 0 and at

about 60 degrees. This requirement can only be met if large

percentages of K = 0 and K = 5 are mixed. Strangely indeed,

it seems that in three out of the six angular distributions

analyzed, K = 5 bands predominate relative to others. These

strange distributions at 14.4 and 14.8 MeV coincide with a

relatively sharp increase in the cross section at a place

where the cross section would be expected to level off.

Clearly, this increase is not caused by third chance fis-

sion, since the energy available would require too small a

fission barrier height (about 6.5 MeV).

In any case, the important point to notice is the

strong predominance of certain K # 0 bands at some of these

energies. Angular distributions in neutron induced fission

of 232Th at comparable energies (12.18 < En < 18.26 MeV) do

not seem to show the anomalies observed in the case of

radium (Em 73).
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It is necessary to emphasize the fact that these calcu-

lations are by no means accurate. All we have pretended to

do is to find out in a rough way what kinds of K strengths

are necessary to assume in order to reproduce the unusual

angular distributions which are observed in the fission of

226Ra.
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V. CONCLUSIONS

The information obtained from the analysis of the ex-

perimental data can be summarized in a few paragraphs.

1. Our deduced height of the fission barrier

stands in very good agreement with the estimates by Brack

et al., and those of Nix and Willer. The ordering and

nature of the single particle levels above the barrier are

in near perfect agreement with those of Nix and Mailer, al-

though discrepancies are found in the level spacings. The

anomaly found in thorium seems to be confined to this ele-

ment. The disagreement found between theory and experiment

concerning the fission barrier does not appear in radium.

2. The agreement between the theoretical calcula-

tions of Nix and Willer and the information deduced from the

experimental data leads us to believe that the methodology

employed in conducting the present analysis is a correct way

of carrying out transition state spectroscopy.

3. We have obtained what we think is a reliable

description of the excitation energy dependence of the level

density of radium at the equilibrium deformation, up to

energies around the neutron binding energies. This depen-

dence was deduced from the neutron evaporation spectra in

the 232Th(n,n') process, and the neutron resonance data in

230Th. From this information, and from the cross-section
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information data in the 226Ra(n,f) reaction, the level den-

sity dependence on energy at the saddle point was obtained.

4. The empirical dependence on energy of the

parameters of and a
n

in the Fermi-gas expression indicate

that these decrease with excitation energy. Normally this

would be interpreted as reflecting a higher than average

single particle level density around the Fermi surface at

the equilibrium and fission deformations. New calculations

based on the macroscopic-microscopic method indicate that

the shell correction is negative at both of these deforma-

tions, which signifies that, on theoretical grounds, the

density of levels around the Fermi surface is expected to

be lower than average.

5. The above discrepancy can be understood if we

accept the premise that many of the levels that are seeming-

ly missing in the microscopic calculation, are actually col-

lective in nature. Level density calculations carried out

microscopically show values at least 103 times smaller than

those obtained from experimental data. Rough estimates of

collective enhancements based on partition function argu-

ments show that collective degrees of freedom could possibly

account for the huge difference between the microscopic and

empirical estimates of the level density. Calculations show

that vibrational contributions are comparatively more impor-

tant at low energies than at higher excitations. This might
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explain in part the observed decrease of the level density

parameters with increasing excitation energy at low

energies.

6. From the K2 dependence on excitation energy,

we have deduced a tentative value for the pairing gap at the

saddle point of about 3 MeV. This contrasts sharply with

the value deduced at the equilibrium deformation of 2A0 ti

1.7 MeV. The estimate of 2A
f
at the transition state defor-

mation may present a considerable degree of inaccuracy be-

cause of the scarcity of available data and also because of

the large uncertainties in the experimental points. The

dependence of the parameter A on nuclear deformation is

still the subject of considerable controversy.

7. The fission fragment angular distributions

corresponding to fission after neutron evaporation show very

unusual shapes. This phenomenum is not observed in other

systems and the question is still open to interpretation.

8. The problem concerning the origin of the mass

distribution in fission has not been resolved in this work.

There are indications that symmetric fission begins to con-

tribute significantly in radium at energies where second

chance fission is expected to become important, thereby

making the analysis difficult.

In conclusion, we might say that many of the problems

that have been observed in the study of the fission pheno-

mena, are being explained with relative success by recent
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theoretical developments. Particularly, impressive progress

has been made in describing the topology associated with

nuclear dedormation, which has been born out by experimental

confirmations. More study needs to be carried out in rela-

tion to the problem of the level density dependence on

energy, and its connection with collective phenomena.
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APPENDIX I

Error Incurred in the Approximation for the Exit Channel

Neutron Transmission Coefficients Above 5.0 MeV
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The fits made to the neutron transmission coefficients

shown in Figures 7 through 10 are not very reliable at ener-

gies above 5 MeV. However, these fits are used in conjunc-

tion with the calculated level densities in order to calcu-

late the neutron emission expression in the denominator of

the Hauser-Feshbach relation (II-15).

For purposes of illustration we can make a rough evalua-

tion of the magnitude of the of the error that we are intro-

ducing into the calculation due to poor fit to the T9 values

above 5 MeV by calculating the differential contribution to

the average kinetic energy of the outgoing neutron, and com-

paring it with that of a 5 MeV outgoing neutron.

Assume that a nucleus absorbs a 7 MeV neutron; the ex-

citation energy of the compound system is about 11.5 MeV,

because the neutron binding energy is 4.5 MeV. If the spec-

trum of neutrons is assumed to be Maxwellian, then the emis-

sion probability is roughly given by the expression:

P(E) ¢ Ee
-E/T

(AI-1)

and the average neutron energy is twice the value of the

temperature, T. The temperature may be estimated from the

expression

1 /c 3-
T U 2U

(AI-2)

where U is the excitation energy of the nucleus, an is the

level density parameter and it roughly obeys the relation:
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11., A/8
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(AI-3)

Therefore a
n

q, 226/8 = 28.3, and T ti 0.62 MeV, when U = 11.5

MeV. Then the average neutron kinetic energy is estimated

to be 1.24 MeV. The residual nucleus excitation energy is

about 5.76 MeV. If we assume the level density to be pro-

portional to e
E/T

, then we can calculate the ratio of the

compound level densities at residual nucleus excitation

energies corresponding to an average energy neutron being

emitted (U = 5.76 MeV) and a 5 MeV neutron being emitted

(U = 2 MeV). Then the ratio, R, becomes:

. (2)
R rt, exp

(50.5176)
0.33

In this case R « e
5.25 is equal to 200.

What this means is that, at most, the error introduced

by neglecting contributions due to neutrons with En = 5 MeV

is less than 0.5%. Of course, we are not neglecting this

contribution, but merely saying that there is a deviation in

the fit of T (E
n

) above 5 MeV for certain £' waves of out-

going neutrons. At worst, this deviation is about 25%, mak-

ing the average total error in the calculation in the order

of 0.12% which is certainly negligible.

We must also point out that the transmission coeffi-

cients for incoming neutrons are exact, and no calculational

source of error appears in the evaluation of the Hauser-

Feshbach expression (II-15).
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APPENDIX II

Normalization of the Experimental Data
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The experimental data shown in Figures 1 through 4

represent the ratios of the differential cross sections at

the given angles to the corresponding ones at 90°. Although

this representation might be useful in comparing angular

distributions at different energies, it might also be mis-

leading because the normalization is based on only one

point, the one at 90°. Consequently, should this point be

in error, it would throw off the relative strengths of the

distributions for comparison at the different neutron ener-

gies. It follows that it is important and necessary that

these angular distributions be expressed in a manner that

reflects the variation of the total fission cross section

with neutron energy, i.e., as differential cross sections.

Differential cross sections for nuclear reactions are

expressed in terms of probability per unit solid angle;

since the fission cross section for the 226Ra(n, f) reaction

is so low, we choose to express the data in terms of mb/sr.

To compute the differential cross section from the observed

data we begin by noting that the angular distribution func-

tions are normalized in such a way that:

+1 J
f K M (0) d (cos 0) = 1
-1 '

Following the same idea, we found a smooth function of

cos 0, which when integrated between the appropriate limits,

yielded the observed total fission cross section. We begin
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by defining the total fission cross section in the following

manner:

+1
a f(E) = f f(cos 0) d (cos 0)

-1
(AII -2)

This function f(cos 0) can be any useful function capable

of reproducing the angular distribution pattern. Legendre

polynomials are normally used for this purpose because of

their simplicity. In our case, we have chosen to use a

sixth order Legendre polynomial in which we only have even

terms. The reason for this is that the angular distribu-

tions are symmetrical about 90°. Therefore, the integrating

function would be:

f(cos 0) = ao + a2P2 (COS 0) a
4
P

4
(COS 0) + a

6
P

6
(COS 0)

(AII-3)

where the a's represent coefficients to be determined for

each energy studied, and the Pn's are the Legendre poly-

nomials of-nth order.

Having chosen these functions, we proceeded to fit the

angular distributions in their original form as shown in

Figure 5, with expression (AII-3) using a non-linear least

squares computer program, and leaving four free parameters

(a
o

, a a4, and a6). Table XVII shows the values of pare-

meters extracted in every case.

Once we obtained these fits we proceeded to place the

polynomial functions into expression (AII-2) for integra

tion. From expressions (AII-2) and (AII-3) it can easily
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Table XVII. Parameters Derived in Fitting 226Ra(n,f)

Anisotropies

En
(MeV)

a
o

a
2

a
4

a
6

3.6 1.154 0.4610 0.1210 0.1100

3.8 1.029 0.1220 -0.0684 -0.0248

3.9 1.668 0.8780 -0.5580 0.2645

4.1 1.306 0.7450 -0.3020 -0.1950

4.7 1.192 0.3620 0.0346 -0.0892

5.4 1.210 0.1750 0.0149 0.1020

6.2 1.075 0.2990 0.1421 -0.0188

6.7 1.323 0.5660 -0.1930 -0.0004

7.1 1.195 0.4270 0.0693 -0.1500

7.9 1.125 0.2230 -0.0460 -0.0090

8.9 1.108 0.2110 -0.2010 0.0610

9.0 1.138 0.2680 -0.0012 -0.0763

9.7 1.103 0.3320 0.0853 0.0483

11.6 1.075 0.1020 0.0118 -0.1381

12.5 1.177 0.4520 -0.1095 -0.1975

13.6 1.217 0.3630 -0.0725 -0.0139

14.4 1.140 0.1952 -0.0893 0.4275

14.8 1.315 0.1927 -0.1480 0.3650



be shown that the following relation is obtained:

+1
a f(E) = f f(cos 0) d (cos 0) = 2ao

-1
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(AII -4)

This conclusion is very useful because we can now relate in

a very simple manner the fission cross section to one of the

parameters in the fit, and therefore normalize the angular

distribution, point by point, through a constant factor, to

the total fission cross section. From the above we then

find:

a
f
(E)

a(E 0)a(E,O)
2a

o
x-

a(E 90°)
(AII -5)

where a(E10) represents the differential cross section for

a given neutron energy, E, at the angle 0. The resulting

angular distributions are shown in Figure 16.
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APPENDIX III

Computer Program for Calculating Compound Transmission

Coefficients and Sample Output



PRoGqAm wILOCAT(INPUT,OUTPOTOAPF7=INPOT.IAPouTROI)
C ,JILOcAT. A CooF FOk TRANSITTOm STATE SPP,cTROSCORY IU (N.F) PEACTI

OAS
1)0?

003
004

C IIH4/PE2'17 HY C.ENGELHPECHT.P.mOLOAUER,G.o0FFY. w.LOVELANO 004*
C THIS IS THE 3300 VFPSION(FORTRAN COmPATT!'iLF)OF THE MODIFICATION
C OF NEARREX CALLED WILDCAT WHICH
C WILL RUN ON 704 FORTRAN II WITH A FEw MINOR mOOIFICATIONS. R105000F,
C TO RuA THIs CODE ON A 704 OP 7090/94,mAKF THE FOLLOWING CHANGES- 8I,)50007
C (1)CHANGt THE INITIALIZE TEMPORARY STOPAI,F SECTION 13Y REPLACING RI0000R
C ALL MULTIPLE FOUALTTIES WITH A SUITAHLF SHASTITUTF. RI0,-;0010
C (?) CHANt;E ALL IF ExPONENT FAULT STATEMENTS TO IF ACCUMULATOR 81050011
C OVEHELOw STATEMENTS. k1050012
C (3)TH STATEMENTS FOLLOWING STATEMENT 9500 SET UP AN Fk14014 k1050013
C TERMINATION .J(J1PF)) TO FROM 70 DIFFERENT lOrATIONS TN Tmr, CODE. k1050014
C CHANGE THIS Sui-IROOTINE, CALLED OSOFRROR.TO SUIT YOUR SYSTEM. k1050015
C THIS VERSION INCL1DFS CORRECTIONS IN NFARREx TO AUGUST91964 A40 TN
C WILDCAT TO OECEMHEP.1966
C R10ti0017

000003 DIMENSION 0(26),HI(?6),PI(200.PE(?0),Fm(p0),PAF0(19),
X AmF0(19).PAE1(19).AMF1(19).P4H0(19),AMH0(19), P1050019
X PAH1(19),6(30).xK(10).FINT(11,7),FN(36).FLIm(10),
X FHALF(1497),R(3.1±2).00(36.19).01(36.19).
Xf-NSIG(.--6.15.15).HOP(19).HRH(19),AGPLUS(19).46MIN(19).HGM(19).
XAT0=1RP(15).AMH1(19). RECORD ( I?) .C,Fomr, ( 3))
XFNSI6N(Io.?h).FSO,4P(10),ENSIGE(3f-U,OIST(q).NFW(t7).xNOW(6),E(10),
XTOTM (10).A(76.15)900(19).00CMC(10.9),
XATEMRA( )h.15),6SION(15),GIG(1Q).
XoSIcolF(15).CIGTO(15),CSS(10),VAR(10).
XwCALC(10.9),SIGMAF(10).wFXP(10.R).SIcimAw(10,9)IORTION(1),
X ,,m(10.?).UTN(10.7).PIM(10,7).Tm(2.15,10).
XFOU(40)0-KAY(40),PSP(40),Psm(40).FLER0(40).HHAR0(40).000TI(40),
)(ALPHALI:d1).AKPLUS(4091),Ar.MIN(40,1).NFTR(60).TCOEFE(40.15)".
XFSIO(40,1c).TEMPFA(60).ASURFF(60),TEMPNE(60),FSIGE(60),
X fSIGN(10,6,0),COmPTR(?6,15),RHO(20/10).AmFV(10).ESOR(15)

000003 COMMoN/C/xj(H),W1(19,9).W2(19.0),W3(19.9),W4(19.9),w5(19,19,10),
xw5(1904),W6(19,9)
X /P/SD,ST(70,20)

C

C

C

COMPUTE TAHLE OF J-COEFFICIENTS

000003
0(0005
00001?

1)0333114=1.7
3331 FHALE ( 1,N) =0.0

1)0333?N=1. 13

R10500?R
P1030029

RI050030
81050031
P1050032



000764,
000275

H(I)=H1(I)=PI(I)=EN(I)=ENSIGF(I)=0.0
DO 401 N-=1.?

000776 00 401 N1t=1.10
000277 HN(01t'.N)=HIN(NIEN)=PIN(NIE.N)=0.0
000305 401 1N(N.NN.NJE)=0.0
000115 DO 17 J=1,9
000116 AME)/(J)=0.0
000317 17 XJ(J)=0.0
00032? 00 9010 J=1.19
000123 P( i,J)=00(I,J)=01(I,J)=ATFtiPP(I,J)=ATEmPm(I.J) =0.0 R1050073
000336 DO 9010 K =1,1)
000340 9010 ENSif.(1.J.K)=0.0 1410,00V1
000354 DO 9011 1=1.19 .7PIOS006
000195 9011 PAF()(1)=Aff0(I)=PAFI(T)=AMF1(I)=PAHO(T)=AMH0(1)=PAH1(1)=HGP(I)= P10S0077

C AGPLOS(I)=AGMIN(I)=HGm(I)= 81050078
CAMH1(1)=PF(T)=FM(I)= 0.0

000416 DO 901? 1=1.30 R1050041
_a_a_0417 901? G(1)=XK(1)=GEONG(I)=0.0 R10500+2
000424 00 9013 1=1.19
0004 ?6 9013 HHH(1)=C,CIG(I)=0 0
000432 00 9014 1=1.35 k10500H5
000414 9014 risTc01(1)=0.0
000437 00 9015 1=1120
000440 ESL/HP(1)=0_0/
000441 00 9015 J=1.16

_000443 9015 ENS1(;011I.-J/0_._0 K1050098
000453 00 H667 1=1.60
000454 FNO(I)=FKAY(I)=PSP(T)=PSrn(1)=F7EP0(i)=HHARO(i)=HHOTI(T)=

XALPHA(1)=Ni-TP(I)=TEMPFA(I)=ASORFE(I)=TEmPNF(I)=FSIGE(1)=0.0
000511 00 3010 J=1.20
000513 3010 AKPLUSII,J)=AKmIN(I.J)=TCOEFF(I,J)=FSTG(I,J)=0.0
000524 00 867 L=1,20
000526 FSIGN(L.I)=0.0
00053? 8667 CONTINUE

C

C ZERO OUT FIXED POINT TEMPORARIES. P1050089
C

000536 IAFGH = IAF = IAG = IAH = IAN = IRG = IEJPI = 1NAWT = P100090
CINO = IPHI = ISIGMA= ITPT = JPI = J = JUPPER= KC = P1050091
CKKK = K = LMAX12-= LMAX = L = rnH = ME = MJ = R1OSU092
CMN = MP = IA = NCAE = NE = NIF = NINT = NLKN = R1050091
CNLK=UMAXI=NMAX=NN=NOJI=N0J=N=IAI=0 094

000606 IOPTION=0
C

I-,

LO
.t.

C PREPARATION OF w(K,J) TARLES



000013
000015

K= J +1

FINT(N.1) =1.0
p1050033
p10500 i4

000016 3332 FHAL(K.1)=1.0 P1150035000072 SS=,?..0 p1050016
000023 DO 3334N=P46 R1050037
000025 DO(33AJ=1.13 PI05003F1
000076 AHEL=1-LoAT(J-l)
090030 AHAL=AmEL+0.9 R1050040
000032 K=J+1 81050041
000031 C =0.5/(SS*SS) 810,5004?
000035 FINT(J,N)=EXP(-C *AHEL*AHELl-EXP(-C *(AHFL*1.0)

X*(4HEL4.1.0)) k1050044
000055 3333 FHALE(K.N)=ExP(-C *ANAL*AHAL)-EXP(-C *(AHAL

X+1.0)*(AHAL+1.0)) 81050046
000076 3334 SS= SS + ?.0 R1050047
000101 F11\17(1.7)=1.0 P105004P
000103 EHALE(7.7)=1.0 01050044
000104 003335J=1112 R1050050
000105 K=J4.1 81050051
000107 L=K+1 810"00057
000110 FINI(K.7)=FINT(J,7) +7.0 P1050051
000113 1115 FHA! E .7) =EHM F (K . 7) *1.0 P1050054

C R10500S5
C INITIALIZE TFmPORAPY STORASE. 81050056
C ZERO OUT FLOATING POINT TEMPORARIES. 81050057
C

000120 301 AE = AFPHI = AGSUPo. AHAL = AHEL = AMTOT = ANAAITA= ANAwTm= 81090058
CAsiA-qTP= AN = AOFN = ASOHFF= AS0,31-1 = ATEMP = ANTA = Au T = R1050059
CAxA = AYA = C = OHPPOD= DELTA = EJPI = =
xF INA9T= FKN = FLN = FNINT = ETEmPI=

EYE =
FTEmP7=

R1050060

X oHlu= pHIuF= PATOT= GELTA= TFmP3=
cPHPHP = PHpH = PIRK = PIEN = PIE = ppooll= PRODIP= PR0071= 81050063
)(PP102?=PSIH1 p=5I6m4=55=SUMINm=SUmINP=SUMINV=SOmK=

somoTP= SUm0Pm.: 90'10P4= TFAPI = TEMP? = TEmP3 = TEMP4 = R1050065
= TF-mpAo= TEmPAO= TEMPA = TEmPAG= TEMPJ = R1050066

CTEm0m = TEMPP = TEMP = TEMPT = TFmlax = U = R1050067
CVEK = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068
C WOFN=xKl=7mIN=ZPLS= ExPSOm
C=CALOm=CHISON=CHISOS= 0.0

000247 iU 9999
000751 00 4949 NN=1.15

___0_110257 cOmPTR(INN)=0.0
000756 A(INN)=(/*()

_000761 4499 coNTINOF
000264 00 9010 1=1.36



00041,27

00062?
0004,27
000630
000630

C

C
C READ INPUT
C

C

C RcA0 IN TITLE
C

00014
000640
00065?

000716
00074?
000742
000754

READ INPUT TARE 7,1001.1KKK.(PECORD(I),I=I+1?)
IF(KKK .FO. 999) 9205.9206

9205 CAI! EXIT
9?06 CONTINUE

wRITF.OUTPUTTAPE6.3002
wRITEOUTPUTTAIRE6.4006
ri4ITFOOTPUTTAPF6ic077.(RECORD(I),I=1,12)
READ(7.3003)IAG,IAF,NOK.NMAX.LMAX.NCAF,KC.ITPT.NE,Q.MN,

XNINT.NANCO TPRNT.LFVOFN.655
REA0(7.1H15)LIO.KINDEX.J5TAT.IMAX,EPSIL.SING.NLEV+AFFCIN

IRIS FORMAT(4I3,2F3.1.12,F3.1)
IF(LEVOEN.E0+1)PEA0(7.795)0FACTIDOHLE

795 F04MAT(?F10.5)

044*
..±1090099

R10500`)6

9+,*

96*
81050097

81050094
81050099
P1090100

C
C RFAD STATISTIC:Al PARAMFTFRS
C

_M4/56 IF(JSTAT,F0+0)60 TO 1946
000755 READ(7.70)ATOMW.A1,A2,E0.AF,EXITEMPER,HBAROS.RIGIDI ,A3,EMINI
_I01007 70 FORMAT (4F10.5)
001007 WRITE(6.8006)
nnlnil ir=(4.0/7.n)*1.3*(P7+PN)/?.0
001021 ALITF=AE
0010?? DO 1H44 IM=1.NF
001024 1944 READ(7.1945)VAP(Im),ESUP(IM).AMEV(IM)
001040 1445 FOR1AT(3f10.5)
001040 wqTTE(6.8006)
001043 I4y.6 CONTINUE

001043 LMAX1FLMAX+1
001045 IFJPI=KC
001047 NOKK=NOK
001050 IF(1N-1)3701.3702,3702
00105? 3701 NINT=1?
001053 3702 CONTINUE

_ifal MAX =2*LMAX+
001055
001057
001061

NMAX1=NMAX+1
IF(LEVOEN.E0.1)Nm4X1=NMAX*2
NLIM=NmAX1+NLEV

81050103

P1090104
81090105
81050106
P1090107
P1050109



001051
_0(1)0,-,5

NmAX2=NmAx1+1
w8IT,:o0TRNIT.501:6.800 R105010c)

001070
001074

,k,RITI'NOTRIITTA0F6.8006
r8ITFouTPUTTA01=6.3004

k10-0110
81050111

001102 wRITtoUTPUTTA8E60-1006
IFILFVoFN1912.917,912

8105011?
__02119_4,

001107 917 00 914 N=1.NmAX1
REA0_17.271H(N).HI(N),PI(N)_0_01111

0011 ?? 914 wRITF(6.27)H(N),HI(N),PI(N)
001117 w8ITF(504006)
001142 GO TO 780
001_141 912 CONTINUt
001143 IF(SING.E0.0.0)60 TO 780
001144 DO 750 N=NmA)p.NLIm
001146 READ(7.27)8(N).HI(N).PI(N)
001157 750 WRITF(6.77)P(N).H1(N)ePT(N)
001174 w8ITF(6,8006)
001177 780 CONTINUE
001177 HI(1)=GSS

C 116*
C TEST IF G.S. SPIN IS INTEGRAL

116*
001201 SS=HI(1)+0.75

_401291 305 ifiSS-1.4)306,307.307 P1050118
C 114*
C G.5_._$PIN IS 1/? INTEGRAL 11'1*

C 11)-±*

001206 106 IN4dT=1 81050119
001707 AWT=0.5 R10501?0

GOT0310 R105o1?1_0_0_1211
001711 107 SS=SS-0.5 810'7i012?

IE(S5-1.0)308,309,309 R10501?-3_001211
001215 308 IN44T=0 R10501?4
001216 A41 =0.0 81050125
001217 G0T0310 P10501?6

3_09 SS=SS-0.5 R1050127_001217
001221 GOT0305 P1050128
001222 310 TEmR=FLOAT(LmAX+1)
001225 TEmP=TL-_mR+HI(1)
I I F NANT ) 3
001231 311 TEMP=TEMP+0.5 8105013?
001233 312 TEMP=TEm8+0.25 P1050133

C
C NOJ IS TPUNC(TOTAL NO. L WAVES + G.S. SPIN + 0.25)
C NOJ IS NO. JS IN CALC



001?30
C

NOJ=UNTF(TEmP) R1050134
00l?41
001266

pqior 12??.NOJ
12?? FORMAT(I3)

001746 N0J1=N0J+1 P1050135
001250 IF(T4G-11313.314,314 R105013
001 P52 313 AGSOP0=0.00005 81050137
001254 G0T0315 P1050138

C 138*
C READ IN GAMMA CHANNFI DATA
C 138*

00125 4 314 RFADINPUTT4PE7,3101 AG50P0+MJ,MF,M8,M?,SIGMA.U,DFLTA,ZPLS,ZHIN 8105013Q
001704 IFIHJ-113141,3142.3142_ 81050140

3141 5I6mA=02_0 81050141_n01317
001311 ISI6,4A=4 R1050142
001112 GnT01141 11050141
001112 3142 ISIG'44=AINTF(0.5*SIGmA+1.25) P1050144
001171 3143 TFNE-1)3144,314591146 P1050145
001324 3144 IPHI=0 P1050146
001325 1i0T03147 81050147
001326 3145 0=8.0
001330 DEITA=0 1?
001331 IPHI=1 P1050150

_001332 GOT03147 R1050151
001333 3146 1P81=1 P1050152

311 IE OP- 1) 3148,3149,3149 153_0_11334
001337 3148 ZDLS=1.0 81050154
001141 7'1IN=1.0 P1050155
00134? 3149 WRITEOUTPUTTAPE6,3005,AGSUPO R1050156
001150 wRITPOOTPOTTAPF6,4006

WRITE OUTPUT TAPE 6,3102
P1050157
R105015,4001354

_O913.60 wR1J1--OuTPOTTA°E6,26,SIGMA,U,PELTA.ZPLS,ZMIN R1050159
001376 IF(MR-1)3150.105.105 81050160
001401 3150 I8G=0 R1050161
001402

_001401
G0T0315

105-PEAOINPUTTAPE7,?5.(PF(JPI),JPI=1,N0J1) PTL511-?3
001416 WRITE OUTPUT TAPE 6,8006 P1050164
0014P2 WRITE OUTPUT TAPE 6,8011 P1050165
001426 WRITE OUTPUT TAPE 604008,TPE(JP1),JPI=1,N0J1/ P1050166
001441 PFAOINPUTTAPE7,25,(Fm(JPI),JPI=1,NOJ1) R10501'7
001454 WRITE OUTPUT TAPE 6,8006 8105016E
001460 WRITE OUTPUT TAPE 6,8012 R1050169
001464 WRITE OUTPUT TAPE 6,8008,(EM(JPI),JPI=1,N0J1) P1050170
001477 IHG=1 P1050171
001500 315 IF(IAF.E0.0)G0 TO 5000



C

C

C

INPUT C1AMNFL F DATA
172*
172*
172*

001901 wPITE(6.6i006)
001505 DO 6 IAF=1,NOK
2a0107 qEAo(7.?666)FNu(IAF),FKAy(TAF),psp(IAF).psm(IAF).EzERo(TAF),

XH9APOIIAF1,HHOTI(IAE).ALPHA(IAE)
001532 2666 FOP1AT(HF10.5)
001532 A'4TA=A4T
001c34 6 CONTINUE
001536 wPITE(6.3007)
001542 3007 FOPIAAT(* 0.92X,*ENUTK1*.3X,*K*,4X,*P5P*.2X1*PSM*112X,*EZEROTK)*.

*?,c.*HHARO(K)*,2X,*PROTI(K)*92)(.*ALPHATK1*)
_JL1154? U) 5 IAE=1.NO_
001544 5 WPITI-A6,3006)FNU(IAF).EKAY( IAF),PSP(IAF),PSM(IAF).EZERO(IAE),

414,4AR0 ( IaF) .HHOTT (TAF) .A1 PHA TAF)

001972 3006 FOPAAT(* *.3X,E3.1.3X.F3.1,3X,F3.1,2X,F3.1.2X,ER.5,3X,F6.4,4X,
*E7,S.2AAF7.4)

00157? 5000 CONTINUE
001972 wRITF(6.Ann6)
001576 LMAx12=2*LMAx+1

r

C INPUT EXPEPIMENTAL DATA
C

001600 00 7043 I=1,NE
_10160? PFAD INPUT TAPE 7,7,046.SIGMAFTI1,USIGMF(I)
001611 wPITF OUTPUT TAPE 6,7046,SIGMAF(I).USIG4F(I)
001621 7046 FoRMAT(7E10.9)
001621 7043 CONTINUE

_0_2162 4 00 ?lk J=1.NANGL
001625 PEAT) INPUT TAPE 7,217,XJ(J)

_0D16_3? 217 fORAaT(F_IZ H)
001632 21A CONTINUE
001639 CALL wKJ(NAN0L)
001636 DO 7045 I=1.NE

_001640 00 7045 J=1.NANGL
001641 PEAL) INPUT TAPE 7,7044,wEXP(I.J) .SIGMAW(I,J)
001654 7044 FOP4AT(21-710.H)
001654 7045 CONTINUE
001A61 wPITE OUTPUT TAPE 6.7047
001665 7047 FORNIAT(11H0EXPERIMENTAL DATA//)
001669 DO 704m I=1.NE
001667 WPITE OUTPUT TAPE 6,1749.1
001674 1749 FORAT(19P0THIS IS ENERGY (JO.02//)
001674 WRITE OUTPUT TAPE 6.1750



001700
001700
001702
001701
001721
001771

1750 FOqMAT(?7H04N(LE WEXP SIGMA)
DO 7048 J=1,NANGL
xxxJ = J
481jv OUTPUT TAPE 6.1751.XJ(J),WFAP(I,J),SIGMAw(19j)

1751 FORAAT(* *,F10.3.2F10.8)
7048 coNriNuF

C
C
C

CALCULATE 5TAT. 14T. FACTORS,LE, G(K),ETC.

001730
001731
00173?

_0_0174o
001744
001747
001755

_IL01761
001763
001764
001765
nnI7F,7
00174,7
AffiT/0
001773
001776
007004
007007
002011
007015
007_015
0_07023
007027
007011
002035
002040
00204?
007044
002045
007046
002050
002051
002053

C

P10,50197

P1050194

00 1.307 K=10JINT P1050196

WMP=FLoAT(K)
TENAP1=3.141592654*(2.0*TEmP-1.0)/(2.0*FNINT) R1050199

1,(K)=SIN(TEMP1)
TEmP=COS(TEMP1)

1807 AK(K)=0.5*_11.0+TFMP) P1050201

FINAAT=7.045/(2.0*HI(1) +1.0)
1F(IPH1-1) 1902,1809.1901 klOSO ?03

1901 1EPP=1701 81050204

o0 TO Q500 81050205

=g7190? PH1O=1.0
61) TO 1811

1809 TEW=0.0 P105020A

1813 IF(INA01T-111825.1814,1814
P10P105081050210

CALL PHI (OELTA.TFmP.U.PHIU)
0

181__INO=)SMTF(H1_11)+1.25)
TFmP1=FHALE(INO.ISIGmA) 8105021?

:1X21-2:
IN0=tA04.1

TEMP1=TEmPl+FHALE(INO,ISIGMA)
00 TO 1835 81050215

1825 IN0=x1NFF(HI(1) 4-0.75)

- TFmP1=TFt1P1+FINT(INO.ISIGNIA)
INO=I,41
TEmPI=FINT(INO,ISIC,mA)

04.
RI050218

TEmP=i),5+H I(1)
IR35 AFPHI=A1;SUP0 /(TEmP1*PHIU) P1050220

IF (IhjAwT-1) 1865,1955.1890 R1050227

O TO 9500

P190723
R1050224

G
1850 IRR=1477 0

1855 TFMP=11P+0.9 -,1050275

VIZ;72,1965 TFMP=TEmP+1.0
GO TO 1870

1870 TEMP=TP4.0.25 81050278

C JUPPEP = NOJ FOR OUR CALC.



C

0_020cc
oo?nAl
002061
007066
002067
002071
002074,
002101

joPpFk=z[NTF(TFmP1
JUPPFp=JoPpFp+LmAx
wRITEouTPDTTAPF6,1370
00 TO 321

321 DO 122 I =1,NE
pEAD(7.7046)E(I)

322 CONTI,4U6
READ INPUT TAPE 7,760910PTION

i410ci0229
((1050? 30
R10'10231

002106
002107
002110
00211?

_a112111
007121
0021??
002133
002117
002143

_Dp2145
002164

_an2165
002204
I I

C

C

C

TRANSMISSION COEFFICIENT INPUT

IFRFVDEN11131,111291131
113? NIF=0
1115 NIF=NIF4.1

PHPH=0
WPTT.1011/E(NIF)
WRITE16.3012/PHPH
WPIIF(6,H00,-)
wRITF(6.1913)
wPITE(6.8006)
Do 1134 NLK=1,NMAX1

1134 YE4017.261(4(NLK,NN),NN=1.LM4X12)
00 11.33 NLK=1,NMAX1

1131 WRIJk(6L.191L4)(A(NLK,AN)ANAIYIA131)
fin TO 110?

81050232
81050733
N1050234

002204
00220c
002207
00271_0

007212
002221
00 2240
00724?
002243
002747
002254
002255
002257
002276
002300
00?-4_17
002117

JIE=0
186 Nit--=Nft*

NA4k1=2*NMAX
N0K=00KK
f-?[401NPOTTAPE7.270-4N(NIE,1).HININIE+1/9PIN(NIF,1)
YFA010POTTAPE7. (TN ( 1 .NN.N1F) 9NN=1,LMAX 1?)

00 400 LKW=1.NMAX1
00 400 ^P1=1,LMAK1?
C0MPIrt(LN,NM)=0.0

400 CONTL4OK
IF(SI,46.E0.0.0)G0 TO 752
Do /60 oiK=AmAx7.M TM

760 PEA0(7,26)(A(NLK,NN),NN=I'LmAx12)
O0 761 NLK=NmAx7,NLIm

761 WRITE(6,3914)(A(NLKINN),NN=1.LMAX12)
762 CONTINIIF

PHPH =(.4

810502.36



002171 v)qIT( 00TPui TAPF 6.1011,F(NIF)
00212 yRIP-_1UTPUTIAPF16.3017.PHPHr,

007114 PI(1)=PI(NI(71)
00733' HI(1)=9IN(NIi-1.1)
002340
002141
002343
002159
007357
0071A0
007171
002172
002411
00_7411
007412

(410'i0740

9(1)=91 (N11-,1)
00 407 NN=1,LMAX17

407 A(1,NN)=TN(1.NN.NIE)
00 9989 J=1NMAX
00 9999 L=1,LAAX1

9898 1,0-(0(J.L) =0.0
00 1') LKN=1.N!,IAX

15 q(E*0(7.304)(RHO(LKN,NN),NN=1,LMAXI)
304 FO4mAT(9E10.3)

00 404 LKN=1.NMAX1,7
J=ILKN4.1)/2

002416 COOPTR(LNN+1.1)=RHO(J91)
007420 00 404 NN=7LAAX1712

_fi02471 =2(L/K.NN)=RHO(Jm)
007421

00243? COMPTR(LKN+1,NN)=RHO(J.M1
002417 CO TR(I KN.NN+1)=RHO(J,M)
007444 COmPIR(LKN+1,NN+1)=RHO(J.M)

(IP

002451 404 CONTINUE
007455 1)0 790 LKN = I.NmAxi
00_2457 00 790 N1=1LMAXI?

(1=';
7Q0 COATING

COMPF(R(LKN,NN)=COMPTR(LKNNN)*DFACT

v; --(h,279)

007460

007475 77,4 F0wAAF(* *,*FNEPGY 1..F)/ELC ARE IN THE CONTINUUM*)
002475 IF(JsrAr.FA:1)0.44ITF(6,1847)vAR(NIE).EsuP(NIE),EmINT

1P47 Fo,D'ira(* *.*KzEPo sotiApE=*,F10.5.,,*uppFl? LIMIT OF INTEGRATIoN=*,_0_02511

00211
XE10.S./,*LOP. LIMIT OF INTEGRATION=*.F10.5)

007513 (":AAx=1.-.9UP(NIh=)

007515 WRIT(-001POTTAPE68006 81050116
007520 y)PIT(-.001-PUTTAI,F6,1913 81050242
007574 )4RITFouTPUT1A2E6.8006 81050243
007530 IF(LFP9NT.E0.1)60 TO 1107

I (TP T TAPE 6 Q 4 (A( .NN) NN= 9 MAX 2)

002546 00 19 LKN=1NLIM
002550 19 wRIT(--(6.1914)(COMPTR(LKN,NN),NN=1,LMAX12)
007567 1102 CONTINUE

C 237*
C 0 IS 0ALPHA = TRANSMISSION COEFFICIENT FACTOR 237*



C

C

?37*

C CALC OF CN TRANSMISSION COEFFICIENTS
C

24F0+

007567 D = E(NIF)
002571 I;VDHIF(LF.F0.11NmAX1=1
002574 0033uNN=1.LMAX17

_102536 SS = A( 1,NN)
002601 IF (PHPH) 9003,9007.9003

_D07607 9002 TEmP1=S5
007604 HH(NrA)=0.0

_o_o_mas GO TO 330
002606 9003 TEmP=SOPT(1.0PHPH*55)
002614 TFmP1=5S4.(1.0-LTFOD)*(1.0TFMP)/PHPH
007620 HHH(NN)=0.1591549*(5STEmP1)
J102623 110 A( 1,NN) = 0.1591549*TFmP1
00263? IF(WAx1-1)333,333,331

_007635 331 D0332NLK=2,NMAX1
002637 00332NN=1.LmAx12
007E40 tiS = A( NIK,NN)
007644 IF (PHpH) 9001,9000,9001
nn2644 cmon TEMPIss
007647 GO T) 337

___002647 9001 TF-p=S4PT(1.0PHPH*S5)
00265 TEmP1=55+(1.0TEmP)*(1.0TFmP)/pHPH
007E5.1 312 A( 549*TFMPI
007673 333 IAN =?
0O?674 IF OPHII) 2041.2041.2040
007677 2040 IFIPP=2040
002700 GO TO 900
002701 2041 PHTIM_=1.0
00270-1 GO TO 205
007703 2043 CALL PHI (DFLTA,D.UPHIUE)
007706 ?05 cONTINuE
002706 IF(LEWEN.EQ.1)G0 TO 8050
007710 u0 8051 LKN=1NmAK1
007712 DO 8051 NN=1,LmAA1?
007711 COmPT,o(LKN.NN)=A(LKNNq)
002722 8051 CONTINUE

P C :

81050249
PI050250
P1050251
8105075?

P1050254
P1050255

P1050257
1.2105025

P1050259

k105061
RIOSO2f,2
PIW:)0263

PI050265

PI050267

P1050269
81050270
P1050271
P105027?

P1050274

007731 1)1) 8052 LKN=1,NMAx1
Wk T- 6,39 4)(COMPTP( KN.NN),NN= ,LMAX 2)

007751 8050 CONTINUE
007/5_1 1F(SING.F0.0.0) GO TO 765

I

002752 DO 766 NLK=NMAXP,NLIM



nn>7q4 no 7,-,6 NN=1,LNIAx12
002755 A( 4L.n-J)=A(ALK.'.\1) /#',.283?

002761 7Af-, COm-,T4(,,JLK.N,J)=A(NLKNN1
002771 765 CONFIqUE

C 81050275
C CALC OF THETA -MU -S 276
C R1050277
C
C CALC OF T-GAmmA(J.PI)/2*PI
C.

002773 no 423 JPI=11JUPpEP
0027/5 IF (NAwT-1) 405,403.402 Plo5027q
002777
AAapoo

402 IEkR=402
60 Ti) 9500

P1050?80
P10502R1

003001 403 ii-AP=FHALF(JPI+1,IsIGMA) klo5028?
003005 (,0 TO 405 14.10502k3

003005 405 T!'_,IID=FINT(JPI.IST5mA) R100284
003011 406 TE4P1=AFPHI*TEmP*2HiuP 81oti02,45

003014 AGPLoSAJPI1=TFMP1i3.7PLS R1050286
nn1nt6 423 4c,f4IN(Jai)= TI,JAPI*7mIN

C
C CAIC OF T- F (J.PI)/?*PI
C

_003922 IF(I4F.F,J.0)G0 TO 1213
003073 00 16 IAF=1,NOK

AKKAY=FKAYtIAF)_01131125
003077 EKZEw1=E7_F140(1AF)
001010 H1HOFF=.1110TI(IAF)
003012 H-i4PoK=HwARO(IAF)
001033 ALPHK=ALIJHA(1AF)
003035 IF(xKKAY-0.5)9.10.9

_003017 9 AKuELT=0.0
003040 oo T o 11
001041 10 XKnFI I = 1.0
003043
oolaA3

11 CONITI,JuF
xrcAY = AKKIIY

003045 KK1=
001050 FFK=0.0
003051 TFK=(1.0
003052 KK?=1
003053 IFIKINnEX.E0.0)KKP=KKI
001055 00 12 KK=KK2.A0J
003057 IF(KK.LT00(1)G0 TO 13 t\>

001061 F-FK = EK1Fq0+ HIROTI*((XKAY*(xKAY4.1.))+ALPHAK*(-1.**(AKAY+0.5)1 c>

X*(AKAY+0.5)*xKDELT)



_

001(177
nninn

1FK =tt1.+FXP(7.0*1.14*(EFts 0)/HHAPOK))**(-1))/(2.0*3.14/
xKAy = AKAy + 1.

001117
on112,1

13 Aro"Lo>tIAFIKK)=PSP(IAF)*1FK*2.0
A,\,4IN(IAKIKK)=PSM(IAF)*TFK*2.0

003124 IFK=0.0
403124 t.FK=0.0
003125 12 CONTINUE
001177 16 CONTINUE
001112 'RITE (5,++006)
00111s M-0
003136 N=0
003137 ,I=N+1

001141 N=m+4
001142 IF(N.GT.NON1N=NOK
003149 PO 2 I=M.N
001147 7 WFTR(I)=1
00115? ORITE(6.1731) (NFT14(1),I=MeN)

_0101169 1711 FORMATt* *.10(*FTRANS(*.121*1*),A)
003165 WRITE(6,8006)

_001171 00 8 KK=1,N0J
003173 00 36 IAF=M.N
001175 IF(PsP(IAF).Fo.1.0)Go TO 7
001177 TCOEFE(IAF.KK)=AKMIN(IAF.KK)
001a04 GO TO 36
003205 7 TCOEFF(T4Fekt()=AKPLUS(IAE,KK)

_11_03211 36 C0NT1_ N0R
003216 H CONrINUF
001220 00 1306 KK=1.NOJ
00322, 1306 wRITE(6.1727)(TCOEFF(IAF.KK),IAF=M.N)
003741 1727 FORMAT(** *.10(X.F9.300/
001241 wRITEttl,H0061
003244 1F(N.EO.NOK) (30 TO 1213
003246 GO TO 1212
001747 1213 CONTINOF

C
C STATISTICAL TPANSMISSION COEFFICIENTS FOR FISSION
C

003247 IF(JSrAT.F0.0)G0 TO 4001
001790 ERFL=FLFP0(1)
00125? ALITF=AmFV(NIE)
003294 CALL OISTAT(LMAX.PMINI.EMAX,HPAPOS.VARIAN,D,EX.ALITF,RIGIDI,E0.

XTEMPEROTONI.IMAX.ERFL.AFFCTN,A1.42.A3)
003275 IAFF=NOK4.2*NOJ
003300 KXX=NOK+1

U-1003302 00 400? IAF=KXX.IAFF.2



001103 L0=11A1:-mxx+11/?+1
001107 00 400? KK=1.NOJ
001119 LKPLU5(IAF.KK)=SIGST(LD.KK) *OONLE/6.2832
003117 AKmIN(IAF+1.KK)=SIGST(LD.KK) *DOHLE/6.?83?
003175 4002 CONTINuE
003131 e;RITE(6.H006)
003335 wMITE(6,4003)
003141 4_103 Fo414( (* *, *STATISTICAL TRANSMISSION COEFFICIENTS FOR FISSION *)
003141 wRITE(6.H006)
001145 AF=A1 1TF
003347 wRITE(6.71)
003157 73 FORMAT(* *.* A Al A2 E0 AE

X EX TPAPER HRAROS RIGIDI A3*)
_043252 WRIP( 6.74)ATOMW,A1,A29E0AEI_EX,TEMPER,HRAROS,RIGIDIeA3
00340? 74 FORAAT(10F10.5)
00140') RITF(6,R006)
001400, N=Kxx-1
001410 4006 M=N+1
00141? N=M+9

_ftfl3411 IF(N.6T.1pFF)N=TAFF
003416 DO 4004 I=m+N
001470 4004 vAFIR(T)=I
003423 WRITE(h.1731)(NFTR(I),I=MsN92)

_0123415 YaITF(6,80(16)
001442 00 4005 KK=1.NOJ
001444 4005 41RITP(h,17?7)(AKRIUC1JAE,KK),IAF=M9N,?)
001463 wRITF:(6006)
001466 TF(N.FU.IAFF)GO TO 4007
003470 60 TO 4006
003471 4007 CONTINUE
003471 4001 CONTINUE

C R1050309
C mG(F,J.0) R1050106

M1050307
001471 IF (I06-11 5021506.501 R1090104

_4_02474 501 IfmR=501 41050109
001475 GO TO 9500 R1050310
001476 50? 00 504)mI=1.JUPPEP R1050311
003500 mGP(JPI)=1.0 P105031?

7 R1)50113
(,0 TO m00 81050114

516 ) 0m = ,JUPPFR R1090319
IF (INAwT-1) 700,512.511 141050316

511 TERR=511 R1050317
GO TO 9500 81050318

11
001909
_0019
003507
003511
003512



003513 512 IF (J01-1) 513.590.515 P1050319

_a03516 511 J.5.-04=511 Hi050320
001917 GO To P500 P1050321

J101570 515 FD;MPI=FoALF(JPI,ISI(MA) (410503 ??

001524 FTE:4P?=FHALE(JPI+1,ISIGMA) 111050323

003526 FTEmP3=VHALE(JPI+2.I5I(MA) R1090324
003531 SOAIoV=FTEMPI+FTEMP3+FTEMP2 141050325

_0_113534 525 EJPI=E(JPI-1) (41050326

001536 IF (EJPI-O) 529,527,5?7
003540 S27 5WAUPP=F1-Fmpi P1050328
003942 f;0 TO 53? 81050129
00354? 529 CALL PSI (D.09EJPI.DELTA/1SIBAR)
003546 TEMP=ps1HAR/PHIUE P1050331

_993590 SOt1OPP=FTFMP1 *IEM9 P1050332
00355? 532 EJPI= EM(JPI) P1050333
001954 IF (FJPI-0) 536,534,514
003596 534 501UPP=50mUPP+FTEmP? P1050335

_01_035610 (0 TO 9 19 P1050336
001561 536 CALL PSI (0.1),EJPI+DELTA,PSIBAR)
00165 TFmP=PSIHAP/PHIUE P1050318
003567 SUMOPP=FT02*TEMP+SOMUPP P1050339
00197? 914 4-:JPI=E14(JPT+1) P1050140
001974 IF (EJPI-0) 543,541,541
_9_03576 541 50,40PP=FTEmP3+5UMOPP 141090342

003600 (4) TO 546 P1050343
001601 543,___cALL_e51.1.1_,DEI TA,PSIBAR)
003605 TEMP= PSIHAP /PHIUE P1050345
001607 SOMOPP=FTFmP3 *TFM9+9UMUPP (41050346

00361? 546 H6P(J0I)=SON100P/SUMINV 81050147
0015_15 FJPI=PF(JPI-1) P1950344
001616 IF (EJPI -O) 629,627,6?7

_192610 627 9UmoP1.FTE14p1 P1050350
00362? (.0 TO 63? R1050351

00167? 629 CALL PSI (O,U,FJPI,DFLTA.PSIRAP)
003626 UFAP=PSTHAP/PH/uE 81050353

003630 SONIOPNI=Impi*TEmo P1050354

00363? 632 EJPI=PE(JPI) 81050355

_a(1134 IF (EJPI-O) 636,634,634
003616 634 SUm0P:A=SumUPM+FTE".1P? P1050357
001640 GO TO 634 P1050354
001641 636 CALL PSI (0,0,EJPIIDELTA,PSIRAR)
003645 TFN(P=psi9AP/PHIOF 81090360

003647 SUOUPM=FTFHP2*TEMP+SUMUPM P1090361

003652 639 EJPI=PF(JPI+1) R1050362

003654 IF (EJPI -fl) 643,641,641



003696 641 SO:40P,4=FTFHP3+SOMUPM 81090364

001660 60 TO 646 P1050169

001661 643 CALL P'1I (n,o.FJPI.nFLTA.PSIAR)
10 ?"9 ri--mp=pSIHAP/PHI1P-- P1(150 4.7

003667 SUMOP:1=FIFMP3*TFMP+SUmUP4 P1U70_0-4

001677 646 P6M(JPI)=SOMUPM/SUMINV kl0S0369

001679 60 TO 730 81090170

550 FTEMP1=FHALE(2,ISI6MA) 81050171

003700 FTEMP?=Ft8ALE(3,ISIGMA) 8105037?

003703 50MINV=FTFmPl+FTFmP? P1050371

003705 FJPI=FM(1) P1050374

1103706 IF (EJPI-0) 564,562,562
003710 562 SUMO,'P=FTFMPI P1050376

04L9.3717 GO TO 567 8I090377

003712 564 CALL PSI (1),U,EJPI.DELTA.PSINAR)
00171A TFMP=PSINAR/HTUF 81090379

003770 SOMUPP=FTFMP1*TEMP 810503,40

n01777 567 FJPI=M(7) P1050341

003724 IF (FJPI-0) 571.5691969
_003776 569 SUIUPP=YWUPP+FTFMP? P1050193

003730 () TO 574 81050384

0(11711 571 rmi PST (13,11.F.12T.IWITA.P5IRAR)
001735 TEMP=PSINAP/PHI0E R1050386

_003137 SL1UPP=FTFWP7*TEMP+SOMUPP
003742 574 8618(1)=S0MOPP/50;41NV 81090349

_043744 FJPI=PF(1) 81090389

003746 IF (FJPI-D) 664.6629662
001790 662 SOMUPA=FTwm.01 R1090381

00375? 00 To 667 R1050192

J10375? 664 CALL PSI (D.U9EJPI1)FLTA,PSINAR)
003796 TEmP=PSINAP/PHIOF P1050394

_11_03750_ SUMOPM=FTFMPI*TEmP R1090399

003762 667 FJPI=PE(d) P1090396

(103766 TF 0281 n) 671.669,669
003766 669 SUmUPm=SuivloPm+FTEMPP 910(7i034H

_aallin (--.0 TI) 674 PI050189

003771 671 CALL PSI 10.0,EJPI,(IELTA.P5IHAP)
003735 Tr-,r4p=0S1 AR/PHIOE 81050401

003777 SUI4OP4 =FTFMP74TEMP+SUMOPM P105040?

00400? 674 86M(I)=50m0P4 /SOMINV RIOSC401

004004 60 TO 73(1 81050404

_3104005 700 IF (JPI -1) 7019702,775 R1050405

004010 701 IER8=701 91050406

004011 60 TO '8500 91090407

004012 702 EJPI=EM(?) 91050408



004014 IF 705*.704.704
one.014, 704 4-,,,(1)=1.0

=4.4.r)00407"
705 CAL' R5I (o.ti.FJPI.DFLTA,PSIHAR)

71>
004020
004024 15P(1)=RSIHAR/PHIUE
124021 712 FIPI=Pt'I>1 81050414
004030 IF (EJPID) 7151714,714
_004027 714 H7iM(1)=1.0 R1050416
004034 60 T0 730
004014 715 CAN w1I (0909FJPI.DFITA,PSTHAR)
004040 HG1(1)=PSI5AR/PHIUF R1050410
004047 60 TO 73_0 N1050470
004043 725 FTEMPI=FINT(JPI-1.ISIGmA)
M4_147 FTFm02=FINT(JPI,ISTGYA) 6:11(1)=1?
00405? F1EAR3=FINT(JRI4.1.ISIGMA) P1050423
nn4nSS SOMINv=FTFMPI+FTFmP24-FTFMP1 81050424
004060 60 TO 575 R10504?5
004061 710 CONTI4OF

C = 04727
SUMS OVFR I AND .1( R1050475

C H10504?9
00401,4 RN) ,,,T,T)0=4,-(1

004065
_0041)7_1

IFIW-JAT.E9.1/N°K=IAFF

n0407? IFIL10/1262.1?63+1767
_00_4011_ 1?6?
004077 130? FORMAT(.0 *,*NN*93X,*VLN*,3X,*VKN*.3X,*VJ*95X.*SUMINP*.SX,

X*SOMIWA*,5X.*TFMPA0*.15X.*TFmPJ*,5X,*TFMPFAII,JPTI*1
004077 ,vRIT,7(6.4006)
0041(13 17&.,3 coNrUD'---
004103 IFILEVoF',i.F0.11NMAX1=?*NMAX
_004107 IF(SI6.i-0.1.0)NMAX1=NLIM
004113 CIO 12,-05 roN=1.LmaX12
004115 TE'APAH=0,0
004116 1-FmPA,4=0.0

_0_04 L11 651G(t4N) =0.0 H1090431
0041?0 00 1717 1AF=1,NOK
004171 1717 FSI6(1AF.mN)=0.0
004127 DO 510 ,ILK=1.NMAXI 81050434
004131 00 51A NLKN=1,LMAX12 81050435
004137 A10 ENSIG(NLK,NN.NLKN)=0.0 81050436
_D04145 1-JCALL _KAY (NN,VLNOMN) 81050437
004147 NINOEx=INT(VocN+0.5) NJ
00415? DO 1251 J1'I=1JORRER R1050435
004153 INK =JPI .0



004154
004160

IF(KINDEX.F0.1)INK=NINDEX
IF (INANT-1) H60,857,856 P1050439

00416? 856 IEPq=756 P1050440
004161 GO TO 9500 P1050441
004164 857 VJ=FLOAT(JPI)
004166 VJ=VJ-0.5 R1050443
004170 GO TO 870 81050444
004170 860 VJ=FLOAT(JPI-1)
004171 870 PATOT=0.0
004174 AmToi=0.0
004175 PATOI=PATO-NAGPLUS(JPI)

_D04177 AMTOT=AmToT+AGmIN(J2I1
004201 DO 1718 IAF=1.NOK
004201 PATOT=PATOT+AKPLUS(IAF,INK)
004207 AMT01=AMT0T+AKMIN(IAF.INK)
004213 171A cONT1NOF
004215 SUNINP=0.0 P1050449
004216 SUM1Nm=0.0 P1050449
004217 DO 923 LKN=1.NMAA1 P1050450
004220 J= (LKN -1)/2
004222 TPIAL=xmOPF(LKM,?)
004725 SNMOIP=0.0 P1050451
004226 som0To=0.0 P105045?

_Q04727 DO 921 N=1,LMAX12 P1050453
004?30 FLAGP=0.0
004291 FLAGM =0.0
00423? CALL ELKAY (N.VL.VK) P1050454
004214 IF(LFVOsN.F0.0)60 TO 9053
004?35 IF(LKN.GT.(2*NMAX))GO TO 8053
004241 VI= FLC)AT(J)

00424? IF(TRIAL.F0.0.0)PIFN=-1.0
_n44245 1F(TPIAL.F0.1.0)PIEN=+1.0
004250 WOFN=R_HIN
004252 GO To .41154
004292 8053 VI=HI(LKN)
004254 PIEN=P1(LKN)
004256 w0FA=8(L.KN)
004257 8054 CONTIA01=.
004257 PIE=1.0 P1050459
I I A ANFJ K VJ.VK V VI.PIEOD EN,O,WOFN. AOFN) P1050459
004?71 IF (AOFN-1.0) 911.909.907 R1050460
004274 907 IEPP=707 81050461
004275 GO TO 9500 P1050462
004276 908 CONTINoF
004276 ATEMPm(LKN,N)=0.0 P1050464



004102 FLA69=1.0
004304 Go To 930
004104 911 ATEm9P(LKN,N)=0.0
004110 PIE=-1.0
00411? CALL ANEJLK (VJO/K,VL,VI.PIE,PIEN,D,WOFN.A0FN)
00412? IF (40FN-1.0) 918.916.915
004125 915 1FRR=719
004326 GO TO 9500
004127 918 ATEmPm(LKN,N)=0.0
004111 Go TO 920
004134 916 _A6m=1.0
004316 930 SPECTi4=COmPT9(LKN.N)
00414? IF(FLAGP.F0.1.0)ATEmPp(LKN,N)=SPECTR
004150
004356

1E1,11 4,71 ok.C.Le-U.D_LA T FIAP ( LKNJ N) =5Pf CTR

920 50mOTP=Sum0T9+ATI:m9P(LKN,N)
= M I.

P1050466
61050467
61050468
R1090469
P1090470
81050471
R1050474

81050475

004171 SOMINP=SUmOTP+SOmINP 81050477
_a0.4171 921 soMINM=SOMOTm+SOMINM 81050474
004177 PATOT=PATOT+5OmINR R1050479
004401 AMTOT=AMT0T+SUMIN4 81050440
004403 IF (ATEmPP(1.NN)-0.0) 953.951,955 61050481
004410 951 IF (4TFmPm(1.NN)-0.0) 951.952,960 61050442
004416 952 60 TO 1261 81090443
_004417 953 1F66=153 61050484
004420 Go TO 9500 R1050485
_004421 955 TFmPAQ=A_(l.NN)
004425 TEMPAP=TEmPAO
004426 PIF=1.0
004427 TEmPA6=AGPLUS(JRI)
004431 TEm9H6=H6P(JPI)
004433 00 1719 IAF=1.NOK
004414 1719 IEmPFA(IAF)=AKPLUS(IAF,INK)
004441 TEMPA=PATOT

G0 To 964004445
004445 960 TEAPAO=A(1,NN)

_144451 TEmPAm=TEmPAO

0

R1E=-1.0
000:473 TFmPA6=46mIN(Jpi)
004455 TEMPHG= MGM(JPI)
11 A = ,N

R1050487
81050488
61050489

61050492
61050493

R1050495
61050496
81050497

004460
004467
004471
004474
004477

1720 TEmPFA(IAF)=AKmIN(IAF,INK)
TFMPA=AmTOT

964 TEm9J=2.0*VJ+1.0
IF (IFJ9I-1) 967.1020,1020

967 ANA4TA=TEmPAO/TEm9A

61050500
61050501
R105050?
61050503



004541
004cnc

GSIG( ,i0)=GSIG(NN)+ANAWTA*TEMRAO*TEMPHG*TFMPJ
00 1/1 1AF=1.NOK

P1050504

004910 ESIG( IAE,NN)=FSIG(IAF,NN)+ANAWTA*TEMPFA(IAF)*TEMPJ
004917 17?1 CONTINUE
004571 IF(L10)1264,1265,1264
004972 1264 1,RITE.(6,1303)'4N,VLN,VKN,V.J.SUMTN17.5UMINM,TEMPANTEMRJ,TEMPFA(1)
004990 1303 FORMAI(* *,12,2X,F4.1.2X,F4.1,2X,F4.1,3X.E4.3,2X,E9.3112X,E4.3,'

X7X,F5.e,5x,r9.3)
004550 1265 CONTINUE
0040 P7mPP.TP-,IpAP/PATnT
004552 TFMPH=TFMRAM/AMTOT
004554 00 1010 NUK=1,NMAX1

81050509

004556 00 1010 NLKN=1,LMAX12 P1050510

004557 CALL ELKAY (NLKN,VL,VK)
R1090511

004961 IF(LEVOEN.E0.0)G0 TO 8055
00496? IF(NLK.(,T.(2*NMAX))G0 TO 8059
004566 J=(NLK-1)/2
004970 IPIAL=KMOOF(NLK,2)
004573 VI=FLOAT(J)
004574 IF(TRIAL.F0.0.0)PIFN=-1.0
004577 IF(TRIAL.F0.1.0)171EN=+1.0
nn4602 wOFN=FMN
004604 GO TO 14su58

_altAL624 8055 VI=HI(NLK)
004606 PIEN=PI(NLK)
0_0.4610 ';10FA324(NLK)

004611 8056 CONTINUE
884611 PTFK=1.0

81050915

004613 CALL ANEJLK ( VJ. VK.VL,VI.PIEK.PIEN.D,WOFN.AOFN)
P1050516

004621 IF (AUFN -1 0) 1004,1002,1001 P105017

004676 1001 IFPR=1001
P1050518

004627 1,0 TO 9500
P1050519

004630 1002 ATEAP=COmPTR(NLK,NLKN)
004614 -FNSIG(NIKINN,NIKN)=FNSIG(NIKNN,NLKN)+ATFMP* P1050571

X TFmP9*TEMPJ R1050527

004644 GO TO 1010
P1050523

004645 1004 PIEK=-1.0
P1050524

004647 CALL AN1--JLK (VJO/K,VL,VIODIEK,PIEN,O,WOFNIAOFN)
P10905?5

004657 IF (AUFN -1.0) 1010,1008,1007
141050526

I A 1 klq= 0
k1050527

004663 GO TO 9500
P1050528

004664 1008 ATEMP=COMPIP(NLK.NLKN)
004670 ENSIG(NLK,NN,NLKN)=ENSIG(NLK,NN,NLKN)+ATEMP*

P1050530

X TFMRM*TEMPJ 8I050531 tv

004700 1010 CONTINUE
P105053?

1\.)



004705 GO TO 1Pc11

C CALCULATE INTEGkAND CASF 1

P10505:14
P1050535
P1050536

004706
_004704,
004711

_0_04711
004715
I II

1020 cOOTI,IUF_
IF(01E+1.0) 1100.1061.1021

1021 1)0 1049 K=1,NINT
XK1=XK(K)
TEM21=AGPLUS(JPI)*(1.0-XKl)/(PATOT*XKl)

Pm.) -A

R105053A

004729 1025 TE,AP1=0.1'3456E38
_0_4412_ (;(..) TO 10?8
004727 5027 TP-mP3=APLOS(JPI)/PATOT

_a 2 F 9

004734 5029 TFmP1=1.0
(104736 (,() To 527

8105054?

P1050544
0-49

R1050546

004736 5031 TEMPI=EKP(TEMP11
004741
004741

_L04746
004750
00475?
004793

004767
_004771
004772
004774
004776
005.000
00500?

_1/05_003
005005
1,1911

GO TO 557
5527 TEMp4=ATEmPP(1,NN)/PATOT

IF (TFIAP4-0.0001) 5529.1027.1027
5529 TEMPI=xKl*XKI*TEMPI

1,0 TO 107k
1027 TEMPI=XK1*XK1 *TFMP1*(1.0+2.0*ATEMPP(1.NN)*

X (1.0-XK1)/(2ATOT*XKI))
1028 PRO011=1.0

N=19IMAX12
rx,20021=1.0
rat I EIKAy(N.VF1 0/FK)
DO 104' LK=1.NMAX1
VI=HI(LK)
PIEN=PI(LK)
wOFN=8(LK)
PIEK=1.0

ANF K VJ VFK V .VI.P EK.P N .WOFN.A0FN)

81050550

R1050552

R1050594
P1050555
81050556

005017 IF (A0FN-1.0) 1040,1042,1039
_AQ5022 1039 IEP8 =1031
005023 GO TO 9500
005024 1040 AAA4TP=0.0
005025 GO TO 1049

-1/1150251942AL9-4TP=A ( LK.N1
005032 1045 CALL PROu (ANAWTP,PATOT,XKI,O8PROO)
005035 CALL OVEPFL(1000)
005037 IF (I000 -1 )104491044.1044
005041 1044 PRO021=PRO021*PPPROD
005043 CALL UVEPFL(I000)

P1050567
81050568
P1050569

P1050572



005(.4
0050,..7 6045

IF (IoLH ) 4045,4045.1046
R,q0021=0.121456fl4 R1140576

005051
005054

1046 COATINUF
PR0D11=RR0021*PRO011

R10509/7
81090574

009055 CALL OvEkEL(1000)
005057 IF (1000- 1) 4048,4048,1047
00506? 4048 PR0011=0.123456F3R P1090580

_005_066 1047 CONTINUE. P1090981

005067 AF=PATUT P105054P

005070 TFM?)c=(1.0-x,(1)/XKI R10505R3
005073 TEWP5.2.0/AE R1050544

_005075 DO 17?6 IAF=1.NOK
005076 1726 ASUHvE(IAF)=AKPLAS(TAF,JPI)

DO 416 1AF=1,NOK_D051_0_5L
005107 IF(c6AriFt(IF)-1.0E-P5)4026,4026,4126

no511 IF (1-P-0.0001) 4026,4028,4028 R1050589

005117 4026 TF,IRAF(IAF)=1.0
005121 00 Tr) 416
00512? 4028 TF3PAF( TAF)=(1.0+TFMP5*(ASUHFFITAFUFNU(IAF))*TrMPX)**(FNU(IAF)/

X2.0)
00911 416 COATINUF
005140 -1E00=1.0
D05141 00 4,9 IAF=1.NOK
005143 49 TEr4R=TERR*TtMRNF(TAF)
005147 6FDA000=2P0011*TEm21*TE1P
005157 CALL OVERFL(JODO)
005154 IF(Io'10-1 ) 4034.4034.9220
005157 4034 GFUNO(K)=0.1?3456F3H P1050601

005161 92?0 CONTINUE
005161 1049 CONTIAUF P105060?

005154 GO TO__11D1
C 81050604

At.
19 50604

C 81050606

1061 00 1049 K.1.AINT R1090607_005164
005166 XKI=AK(6)

_a_0517D_ TF'4?2=a0mINAJP1)*(1.0-xKl)/(AMTOT*XK1)
005175
S I

005202
_.01152D?
005205
005207
005211

S.
IF (TF0R2-45.0) 5067.1065.1065
mo2=0 2 lk

GO TO 106
5067 TFmP-A=ADAIN(JPI)/AmTOT

IF (IFt3P3-0.0001) 5069.506995071
9069 r,--11J2=1,c)

O TO 5567

P1090613

R1050619



005711
2.0c714
005714
006221
00522_3
005229
005?26

onP4?
005244
005245
005247
005251
005251
005255
005256
005260
005261

005272
005275
I I

006277
__005_1011
005101
0053.5
005310
005312
005114
005216
005117

_ffa5???
005124

127

5071 1-Fmk-Y=t(TP?)
0,1 TO 8957

9967 TEmP4=AT,_mPA(1,NN)/A^ITOT P105061°

IF (T,r1PA-0.0(101) 9569,106791067
-5569 TF'IP?=XKl*XKI*TEMP? P1050621

60 TO 1068
1067 TFAR2=XN1*XKl*TEMP2*(1.0+2.0*ATEMPM(1.NN)* 81050623

X (1.0XKI)/(AMTOT*XKl)) 81050624

1069 PROF./P=1.0 8I050625

no 1067 N=1,LMAX12
PPOD?2=1.0
CALL FL'c.AY(N.VEL,VEK)
00 1086 LK= 1,NMAX1
VI=H1(LK)
PIEN=PI(LK)
wOl'N.=(1JC)
PIF:K=-1.0
CALL Arif'iLK (VJO/FK.YFL,VI,PIFK.PIEN,O,WOFN,

X AOFN1
IF (A0FN-1.0) 108011087,1079

1079 IEPq=1077 P1090637

1I

1050 ANA4T,1 =0.0 81050639

Gj T 41_115
1082 ANANI1=A( LK.N)
1055 CALL?POp_ (ANAVITNITAMADT,XK19D8PROO) P1050642

CALL OVFPFL(IO00)
IF (IONN 1 )1084,1084,1054

1054 P900??=PP0D22*D9P,201)
CALL OVtRFL(I000)
IF (INO0-1 ) 4089.4085.1086

4055 PR0O22=0.123496F38 P1050646

1086 CONTF'40F P1090647

PRO012=PP007"PRODI? P1090648

005330 CALL OVFPFL(I0(J0)
005112 IF (1O00 -1 )4088,4088.1087
005115 4088 P2001:160.1?3456L38 81090650

005137 1057 CO,JT1'1U P1050691

005142 AF.ANITOT P105069?

005146 Tf:,4P9=7.0/AL 81050654

005150 NO 30 IAF=1,NOK
009391 30 ASUHFE(IAF)=AKMIN(IAF,JPI)

_005 0 00 80 IAF=1.NOK
00936? IF(ASOr(FE(IAF)-1.0E-25)4526,462694626



005165 4626 TFm0=a505FF(1AF)/Ap-
005370 IF (TEmP-0.0001) 4526.45?8.452P
005172 4526 TFAPNI-(1AF) =1.0
005174 1) TO 80
005375 45?8 TF4Prp,AIAF)=I1.0+TFmP5*(ASUHFE(IAF)/FNU(IAF))*TEmPX)**(FNU(I4F)/

X2.0)

P1050659

005410 PO CON ,4TIUE

_005411
005414 00 53 IAF=1,NOK
005416 53 TP-4P=D-AP*TF1PNF(IAF)
005422 GFUN1i(K) =PPOO12*TEMP2*TEMP
005475 CALL OvFPF1 (DM)
005427 IF (IOOL4-1 )4534,4534.1089

4534 GFUNG(K)=0.1?3456E38
CONT1NoF
GO TO 1101

81050671
P1050672

_fi.0.5k37
005434
009417

10H9

C P1050674
C SIGMA CAPTUPF

=616-756
005437 1100 IFRR =1100 P1050677
005440 GO TO 9500 P105067P
005441 1101 IF (1F31-,1-1) 1109,1107,1111 P1050679
005444 1107 TFmP=1-KrIPAo*TEMPAG/(TEmPAPJEmPA) P1050680

IF (ftmP-0.0001) 1109,110991111_05447
00545? 1109 EYE=1.0 P105068?

ff05454 00 TO 1115
005454 1111 SUMK=0.0 H1050616
005455 1)O 5116 K=1,NTNT
005457 SUmK=SOmK+1,(K)/(3FONGIK1
00545? 5116 CONTINUF t-1050-17

005464 EYE=3.141592654*SUmK/(2.0*FNINT)
005470 1115 GSIG(r4A=G51o(NN1,TEmPkO*TEmPJ*EYE*TEmPAG P1050689

X *TPN4P9G/TEmPA =71
C 5IGA FISSION P105069?

81050693

=07 Dl) 1140 IAF=1,N0K
IF (IEJ1-1-1) 11??.1120.11?4

005504 1120 TE(AP=1pAO*TF.mPFA(IAF)/(TEmPA*TFMPA)
005510 IF (1F:no-0.0001) 11?.11??,1124
00551? 112? EY1-=1.0 81050697
009514 GO TO 1130
005514 1124 TE,Iii=?.0i1TEmPFA(IAF)/(FNU(IAF)*TEMPA)
0Q55?0 sWIK=0.0
005521 1)0 5131 K=1.NINT



n05521 Ti=1J.,=IFm,,,FACIAF1/TEARA
IF (1170,7,-0.0001) 6131,5129,512R

0055-0
005512

6131 T-AP1=1.0
(0 To -5140

R1050704

005532 5129 TFART=1.0,(1.0-xKlK1) *TEm17/XK(K) 41050/06
0_05537 5130 S11'AK=Su-IK,(G(K)/GFUNG(K))/TEmRT 41050707
005544 5131 CoNTI40I-: 41050/0H
0(15546 1,_YE=3.141592654*SOmK/(2.0*FNINT)
00555? 1130 FSI6(IAF.mN)=FSIG(IAF.NN14.TEMPAO*TEmPJ*EYE*TEAPFA(IAF)/TEMPA
005562 1140 CONTIooF

C R1050731
C SIGMA SCATTERING 41050732
C 41050733

DO 1260 NLK=1.NMAX1_105565
005566 1205 0) 1?6u oLKN=1,LMAX12 81050735
005570 1210 CAII FI KAY (NIKNIVFI ,VFK) 41050716
005573 1?20 VI-7-11(NLK) 41050737
006576 Pft--.1-)1(NIK)

005577 q40FN=H(NLK)
005_6.00 1223 CALL 41,W.ILK (VJ/VEKO/FL,VI,PIE,PIEN,D,WOFN, R1050740

X AOFN) 41050741
11 24 A( 2 074
005614 1225 R1050/43
(05615 ('0 To 9500 41050744
00516 1226 AA=0.0 81050745

TO 12hn 41050746_ao561/
ocIs70

_1_227._GO
122H AN=4( NLK,NLKN)

11 . 20 ,4 R 074p
005627 12P9 T4A0=Ti;Apao*AN/(TFmPA*TFm9A) 41090/49
_Op5632 1 P30 IF (TF-1P-0.0001) 1231,1231,1241 41050750
005635 1211 FrE=1.0 41050751
_005637 1232 To 1255 4105075?
005640 1241 IF (.iLrs-1) 1246.1242.1246 81050753
00964? 124? IF (VI-vp 1 1246.1243,1246 41050754
0056,44 1243 IF (VKA-v1=-K) 1246.1244,1246 r-1050755
_ans646 1244 DELTA =-3.0 41050756
005650 1745 (;,) To 1747 81050757
005651 1746 6,7LTA=1.n R105075R
005651 1747 IF,.w.?.0*AN/TrimPA R1050/59

_LoaL ,4K=, 41050760
5751 Ho 5?56 K=1,NINT 41050761

0.49661 6254 l'EAP')=AN/TEMPA 8105076?
00561 6255 IF (1E425-0.0001) 6256,5254,5254 41050761
005666 6256 TEMPT =1.0 R1050764
005670 6757 Go To 5255 81050765



009,-71

00eliA
TFrAPF.1.0+1F,IP*(1.0xK(K))/xK(K)

5255 co)'AK.O'IK(5(K/1,5FLTA/GFUNGIK1)/TEMPT

uloc-,07

P10,,,077

005703
005705

5756 ciWJ1-4uE
1254 tYL=3,141,5()2h54*SUmK/(2.0*FNINT)

P1050758
P)0507h9

005711 1755 t1s1,..i(NLK,N,ALKN)=ENsiG(NLK,NN,NLKN)4.1-EmPJ* P1051)770

X TEmPAO*AN*EYE/TEMPA 81050771
005724 1?60 CONT1Nut 81050772

1251 C0NT1HUF 81090773_105731
005734 1270 TE,1P=F1NA1d111) R1050774

r I= F1041.( G N 7

005741 00 1?"7?_ 1AF=1,NOK
127? F515(1gF.NN)=TFMP*FSIG(I4F,NN)_0_05742

00571 1 ?H0 00 1282 NLK=1.NMAx1 P1050778
1781 00 1.c2 NLKN=1,LMAX1? P1050770_105753

005755 122 ENSIG(NLK.NN.NLKN)=TEmP*ENSIG(NLKNN,NLKN) P1050780
I

005773 3341 (0101?Wi P109078?
005774 334 ENSI6(1,NNON)=ENSIG(11NN,NN) 4-TEMP*Hh8(NN1*TEmPJ P1050781
006004 1785 CONTINUE P1050784

P1050785
C S0f1 OVER INCIDENT CHANNELS R1050/46
r 81050787

006007 1100 6SIGE=4.0 81050788
00.601_0_ 10 1111_1 a_E-1/1) OK
00601? 1101 F5IGE(IAF) =0.0

_onfinis 13119 oa fih NN=1,_12.1AX12_
006017
006021

GSI6E=6SIGt+OSIG(NN)
00 1AF=1.NOK

006023 30-) F516t-(1AF)=FS1GFAIAF1+FSIGHAF,NN/
0_06031 66 CONTII]i0--

006015 1310 DO 1314 ,ILK=1.NMAX1 P1050795
006017 1311 FN51--(N0()=0.0 P10907q6
006041 1112 00 1314 NN=1.L4AX12 81050707

N K = , A P10L,0748

006045 1314 EASI6f-ANLK)=ENSIGFINLK14-FNSIG(NLK.NN,NLKN) P10')0700

C P1050800
C 041-1TE OUTPUT MATRIX P1050801
C 8105080?

006064 135 cONTF,J01--. 81050803
I 1 64 P - H 7P P OS 8 4

006067 337 '01RITEOU(PuTTARE6,1370 P1050805
0060_71 (;01.01427
006074 118 CONTINUE

342 wRITEOuTPUTTARE6.8006 R1050-11?_0_06074
006100 w8ITE00IPUTTAPE6.3013 81090613



0061014 I4F;JI-1=?.
11q1TEOUToUTTAPF6vR006

004,111
00611?
006113 1503 1,1=N+1
_006115 N=M+P
006116
006171
006173
006175
006151
0°613
006156
J106160
006161

M.0
30

P1050814
141150:Q5

I I .

1F(N.61.N(1K)N=NOK
00343NN=1.LMAX12
CALLFLKAY(NN,FLN+FKN)

343 4P(TF(6.3014)FLN,FKN.GSIC;(NN),(FSIG(IAF,NN),IAE=MqN)
3014 FORMAT(* *,F5.29X4F5.?,11(X.E9.3.X))

W411.F(6.006)
IE(N.(1.NOK)60 TO 150?
63 TO 1503

1507 CONT10(0F.

P1050816
81050817

006165
_:10_6166
006177
0061/4
006176
n06200
006200
J10621?
006716

!0_06aaa
00622?

IF (IoPrION) 345,3441,345
3441 WoITi-- OOTRUT TARE 6+3015

003464LK=1,NMAX1
M=ALK-1
IF(0-k(NLK))346.3469344

144 CONTTNOF
wRITEouTPUTTAPE6.3016.m.RINLK).ENSIGE(NLK)
3qIrE0UTPuTTARE6.8006
D0345144=1,LmAA12
0411 E12CAT(NN.FLNIEKN)
wRITFOUIPUTTAPE6,3017.FLN.FKN,CENSIG(NLKINN.NLKN),

A

006245 345 CONTIAUr.
006250 346 coNTINuF
006253 347 CONTI,WE
006253 1501 50 TU 7051

C
C FoR-1AT STATEMENTS
C

_006754 75 FORMAT (6F12.6)
006254 26 F0R4J (hF12.8)
00_6254 27 Fl7A1 (7X,F8.6,30X.7F10.6)
006754 1370 FOkmAT(1H1)
.006254 3001 F0PM(13,1246)
006754 3007 F0k1AT(116N1

)0ILOCAT 3ECEMHER.1966 LOVELANO-NEARREX

P1050421
P10504 ??
P1050373
R1050824

P1050476
P10'30877
Y1050i473
R10,-;04?9
P

R1050,A31
k105083?
P1050833

P1050860
P1050861
P105046?
P1090561
P1090864
R1050865
81050366
81050867

006254 3003 FO3 AT(15.4179211,7179F13.8.5179F5.7)
3004 FOkMAT(44H ENF_PGY LEVELS KC = 12)

FIVX50:772
006754
006754 3005 FORm4T(13H0A(GAMmA) = F15.9)



005254 3009
3011

FoR:.IAT(IGHonu(H) = FP.4)
FORm4T(11H(p-WRGY = F?0.8)

51050576
P1050579_005254

005754
005754

3012
3013

4Fo'14F(s1H
r(-).1AT(54HOCRoSS SECTIONS FOR CAPTURE

0 = F8.51R1050580
FISSION OTHER) 81050551

005754 3015 FORmAT(30HOCROSS SECTIONS FOP SCATTERING) 81050853
006254 3016 FORmAT(?3,80ExCITtO LEVEL NUmHER I3.14H W(N) =F10.6,21H P1050554

_005754
x

1017
SIA(N.E) .F14.5)

FoR4AT(18 2F5.?,5H 9F11.7/(16H
R10508H5

9F11.7))
005?54 30H E04mAT(?6H SCATTERING CROSS SECTIONS) =r7

005754 3071 FOqlar(21H1OTHEP CROSS SECTIONS) P1050A91
00?94
005?54

3101
310?

FORm41-(F1?.H,?1?.?I1F6.2,4E10.5)
FoRmAT(S5H0 SIGMA U ZPLS

P1050593
ZMIN1P1050594

005794 3913 FORmfAT(26H TRANSMISSION COEFFICIENTS) P1050595
_006254 3914 FoRmAT(1H 9F1?.8)

41=)'-'7006754 8005 FORmAT(lH0)
005?54 8008 FORAr (8E15.6) R105(595
006254 8011 FORMAT (31HOE SUN J AND PI FOR PI POSITIVE) P1050899
905?54 8012 FORMAT 131H0t SUH J AND PI FOR 'PI NEGATIVE) P1050900
006254 8077 FORMAT(1246) P1050901
006754 9105 FORmAT(1x.15H*********** FRP = ,14) P105090?

C P1(150903
on6754 9500 wRITi-- OUTPUT TAPE 5.9105,1FRR RI050904
00575?

C
MESS = 4HOHEL

C CALC OF ANGULAR DISTPIHUTION
C

006?54 701 DO 5999 I.1.NAN6L
(106?55 5999 DISH') = 0.0
005771 NOK.10KK
005?73 o0 7004 raF=1.NOK
005?-74 7001 DO 700? J=1.LMAx1?

_105775 00 70O? 1.1.NANGL
005777 xT.I
onion XXI = XJ(I)
00610? FxKily.FKAY(IAr-)

_a_0_6,104 IF (ExIxAr - 1.5) 7016.7017.7018
006,104, 7015 DIST(1)=oIST(1)+FSIG(IAF,J)*W1(J.I)
(06316 Go To 700?
00117 7017 DIST(I)=DIsT(I)+FSIG(IAF,J)*W?(J.I)
0051?7 GO TO 70o?
005330 7018 IF(FxKAY -3.5)701991211,8123
006333 7014 0IsT(I).01ST(1)+FSIG(IAF.J)*w3(J,I)
005343 GO TO 700?
005144 1?11 oIST(I)=oIsT(I)+ESIG(IAF,J)*w4(J,I)
005354 GO TO 70J?



006155
3_96160
006170
006171
006401
006406

006411
00641?
00414
006417

_0116421
0064 ??
nnor,41S

006437
006444

R173 IF(Fr<Ay-5.12001 P1.7002
skip() 01ST(I)=01ST(I)+FSIG(IAF,J)*W5(J.I)

(;,) TO 1002
8121 DIST(I)=UIST(I)+FSIG(IAF,J)*W6(J,I)
7002 CONTINUE
7004 CONTINUE

C

C CALCULATION OF STATISTICAL ANGULAR DISTRIBUTION
C

1F(JSTAF.E0.0)G0 TO 4008
00 400(4 KX=KAA,IAFF
10=(KA-KXX)/2 +1
DO 4009 LK= L,LMAX1?
DO 20(12 I=1,NANGL
DIST(1)=DIST(I)+FSIG(KX,LK)*WS(LD,LK,I)

200? CONTINUE
4009 CONTINUE
4008 CONTINUE

C

C OUTPUT ANGU1AR DISTRIBUTION DATA
C

006444 WRITE- OUTPUT TAPE 6,7012
006450 7012 FOR ,141(40H0 FISSION FRAGMENT ANGULAR DISTRIBUTION)
00645D wRITF OUTPUT TAPE 6,7013
006454 7013 F0w4AT(21H0 THETA DIST(I))
0064_5 00 /_(11-t, I=1NANGJ
006456 *1 =1
006457 XX1=AJ(I)
006461 WRITE OUTPUT TAPE 6.7014.xXI.DIST(I)
006470 7014 FOR1AT( ?E10.9)
006470 7015 CONTINUE
006473 00 70q1 I=11,NANGL

C -

C wR1TF OUTPUT SUMMARY
C 81050836

_006474 7041 wCALC(NIE.I) = DIST(I)
006501 IF(JSFAT.E0.1)NOK=IAFF
006507 1427 GSIGN(N1E)=6SIGF
006511

R1050837
00 14?,-, IAE=1,NOK

006513 147k FtiI6N(Nit--.IA)=FSIGE(IAF)
00652? 3025 F0R1M-11H 101'11.7/
aa6527 1430 no 1431 NLK=1,NMAX1 81050940
006524 1431F\J51GN(NIE.NLK)=ENSIGE(NLK) PI050841
006531 1432 ESUBP(NIE)=0 8105094?
006535 WqITEOUIPUTTARE6,1370 P1050843



006941 IF(L1-_\mcH1-3432,4000.343?
71432 IF(AP"-,Ji-) 1.34H.34H P1050$444_006c42

On6c49
006550

4000 IF (NTENE ) 1 1 T-39 34F-±,34P

CONTI1M- R1050R45
C
C COAPOTATION OF CHISOUARF
C

(..--41s)-i =0.0_a0650
0065E+1
006592

CHIi,JN =0.0
EXPOI=0.0

00651
006954

CALSOA=0.0
00 7062 1=1+1\11-.

006555 00 7061 K=1.NAN(7L
J = K___0_06956

on67 KXPS0,4 = FXPSUM + wExP(I.J)
c,msul = rAlcom + WrAlr(T.J)

006q67
006571

7nh1
oCKXX =FKPCUM/CAISUM

00672
006574

00 7010 K=1,NANGL
J=K

onc79 7070 cONTIN(47:
00677 00 71h? K=1.NANGL
006601 J = K

00_6642 CHISLP,JCALC(I,J)wExP( iJ))**2)/(SIGNIAW(I,J)**2)+CHISOW
006611 CWCALC(I,J)= WCALC(I,J)

EAJ2.3LIA_0_06611
006617 CALSOA =0.0
00620 706? coNTINuc
00662 =, 00 7o6i I =1 "!F

006627 ';I61-0(I1=0.0
006630 00 70t6 1AF=1,NOK

) =CIGTO ( 1) +ESIGNI ( . IAF)

00637 7065 cOmrr,
JEL6544 iw__ELLblaj
006545 CS(1) = ((SUJO(I)-SIGmAF(I))**2)/(USIGmF(I)**2)

C01SS = CHISQS + CS5(I)
CONTIALJE

_0_0665,
006654 7066

ITEATION OUTPUT
C

00666 00 1,'sh6 1=1.HE
006h6C) WiRITE OUTPUT TAPE 6,8006
006661 00 1t-s6h J=1,NANGL N

N11.0665 xXJ=)(J(J) N
00667 1P66 WITE OUTPUT TAPE 6,7014,XXJ,CWCALC(I.J)



006705 uUTPUF TAPE 6.7067
004,711 7067 F0,4' ^AT(37H0 CHI SQUARE SIGMA CHI SQUARE MST)
004,711 OUTPUT TAPE 6.7068.CHISOS.CHISuw
006721 7068 F1R14T(?F?0.5)

006721
0067?5
006731
006732
006733

006736
006742
nnf,749

006747
00676?
006762

_0.06766
006770
006771
006776
007019
007019
_007020
00702,

_0070,3
007029
007017
007051

__007091
007091
007054
007094

7

C

349 NqITE_OuTPUTTAPF6,30Ig
WiRITt(6.8006)
m=j
NO

503 m=N+1
N=id+4
W.-TE(6.8006)
1F(Nrjr:)9059505,507

907 N=NF._

505 wq1T1-.(ti.3020)(E5ORP(NIE),NIE=4,N)
3070 Flo-24AT(* *,*FAFPGY*.6X,9(E1) .70-,X)1

wr-ZITE(6.006)
00 508 N1K=1,NmAX1
LLL=OLK
IF(OLK.GT.(OMAx*2)111L=INT(HI(NLK))

355 ..;q I PI (6,10"?3)LLL, (ENS IGN (NIE,NLK ) ,NIE=M,N)
1(173 FORMAT(* F VFL*.X T?. 4X,15 (F )1 7,5X) /

50P COOT-PIO,
00 514 NIF=M.N
TOTAL(N1F_)=0.0
00 5j4 NlY=1.NMAX1

514 TOT4L(N1)=TOI4L(NIF/+ENSIGN(NIE,NLK)
WR1P-(07.)(TOTAl (N F) I F=0N)

916 080 4I(* ***TOTAL*47)(95(F1
IF(.4.i=10.NF)50 TO 510
60 -I() 503

910 CONT1WE
IF(10-6H-1)3519352.352

5 60TO 301

81050846

.7,5X)/

81050851

007060 352_ ARirr:OUTROTIARE6.8006
007064
00705 N=0
007066 1215 M=H+1
007070 N=,14.7

007071 IF(Ni.o(.NoK)o=NOK
007074 WPITF(6.30?,)(NFTP(1),I=m,04)
007107 3022 FORMAT(* ,3X5*EN"GY*95X.*C4PTURE*94X.10(*FISSION*,X,I-29X))

81050853

007107 oRR I To- (ffiTPUT T HOP-, P.1050855

353 1)035401F1=1,,IE R1050.956

007115 354 WRIT(1(6,3( ?5)E5U8P(NIE)96SI6N(NIE),(FSIGN(NIF.IAF)+1AF.M4N)



007137 w41rt'_(o.,406)
0071_42 I(N.o.f,i0K)G0 TO 1214
007144 (-,o To 1215

0071" AkI-_(h.H705)
007151 8705 FCNAAF(* "920X.*ENERGY*,5X,*FISSION TOTAL *)
007151 0,qITE(h.'006)
007155 00 8730 N1E=1NE
007157 TOTAL1=0.0

7 F, A1,-= .NOKI

00716?
007171
007?04
007PO4
007204

8731 TOTAL1=TOTALl+FSIGN(NIE,IAF)
8730 .mPITE(h.121)ESUHP(NIE),TOT4L1
1?16 FORqAT(* **17A,F11.794X9F11.7)

60 TO 301
FNO P1050907



,..JKJ(N4NGLE)

CC
CC TA.TiLtS FOR PROGPAM WILOCAT
CC

000003 mIAI=NsioN C(2)
000003 CU'AA0A/C/X1( ).W1(19,9),W2(19.9),W3(19.9),W4(19.9),W(19919.10)

X.49(19.9).w6(1919)
000001 PEAL K,J.H
000(01 no 5,; Ty=1.\IAAGLE
000005 y=xI(iy)
000007 1p--(X1(11').F).0.0)Y=0.0001
000011 I,1AX=P14x1=1,1AX2=30
_0ao14 tY) 40 KI=1.19
00001 t<=FL(JAT(I)-0.5
aan070 x=0 0
000021
_000073 00 45 J1=1.19/2
000024 J=J+1.0
J11(1026 1F(J.LT.K)(;0 TO 30
000010 HO 5n il.(=1.?

000112 1F(AK.(-).1)N1=0.9
n00019 IF(oK.E0.2)m=-0.5

_0110041_ I,1Ax=10
000042 DEN1=t7ti?=DEN3=0EN4=1.0
_cm.147 A=0.o
00009n 29
000051 OFN1=J-K-x
000094 np-A2=j+-x
000057 oEN3=x+K-y
000061
00004,? 1F(cW-41)?o,?1,??
0000F,4 71 4FLA(,=t

I 2 2) 0.2 .74
000067
000070
000072
00007c.
000077
000101

73 IFLe0;=1
74 1F(0,='13)70,9.?6
2F, IFIX..-70.0.0) 1)-IN4=1.0

IF(IFLA6.0.1)60 TO ?7
X=X+1.n
r.0 Tel

00010P 27 1,4As=1,41-(x+1.0)

_01/0_105
000106 t)(1 I_.=1.1,1,1)(

_0_00107 x =_E_Lo A T ( -1 )
tJ

000111 otN1=J -n -X



Ann117
0- 001)4

000121
000122 CALL FI,CT(DR)I.ImAxl,P)-,00L)
00017/. CALL FACT(W.1.4=',1MAX1,Pi--2007)
00(1127 CALL FA C1(0Fkii,IMAx1.P1-2003)
00013? CALL rAC1(017:-N4.IMAX1.PRO04)
00_011 nc,Hp.1.,,ppo1 1*o007*pqon3*pPoo4
000141 IF(Do',JU TO 20
000147
0001C0 HqP4=K-,,( +?.0*A
09017 Ato1 =sT,J(Y/7.0)

000157 11,14!=C,)S(Y/2.0)

Aqum,--(ANI.*Pq1m)*(AN?**sEc)*(-1).*INT(x)
0- 00201 Ylm=3U;4+ANUM/DENOm
000203 4 CO\ITINUr---

000707 FAC1=J+441
_0 F10211 AC2=j-

000212 FACi=j+K
000?16 FAC4,A-K
00071q CALL rACT(FACI.IMAX?.P1-401)
00072n rAil )---Ari(FAr?,PO4X3qP0(12)
000223 CALL FACr(FAC3.Im4K2,Pq03)

_000774, C.22,1! f-ACTLRU:4,1:1AX2.PP041
000231 1-.AC-flq=(-,P01*.,q02i4PPO3i4PRO4)**0.5

_000737 50 01,1)=A,(FA(.1LOP*5APLI)
000245 v(KI.JI.1Y)=0.25*(?.0*J4.1.0)*(0(1)**24-0(2)**2)
00024,2 ND Ti I 45
000742 21) . AKIJI.1Y)=0.0

_ao2270
000103 40 co,J1i40t-
1100205 C,HifA
000310 0) 3.4 I=1.riAN5LE
000211 1f4 JI=1.1,o
000112 w1(.11.1) =v(1,JI,I1
00017)
000127 v3(.511)=.!(3J11)
nnnlic
00014'1
00011 q4,(J1.1)=(6.JII)
000157 3q (7,Y)Nif.

0001(7
000363 20 .JRITL(6.1)x
0_01)371 1 FORMAT( * EPPDP= *,F.3) cs.)

000371 END



)-o-ikoUTINF FACT(FACTOR,ImAx5,PRO0)
000006
00000A

RR00=FACToR
IF(F4CTOR-1.0)1,19?

000011 2 0) 3 12=1,IMAXS
_01000 IF(FACTOk-FLOAT(121)4.4,5
000015 5 Rk0o=RkOD*(FACTOk-FLUAT(I2))
000020 3 CONTINUF-
00002? GO Tu 4
000022 I RPon=1.0
000023 4 RETUkN
000024 FND



0,-11 (n1=_LTA.F,U.PHIUE) P10909?7
000007
AD0012

5 047 )*(0*t )/OFLTA
10 1.,-0.-.5,)k1(717,v,P)

P10509?P

000015 15 gINV=1.0/TE'liik k1050930

000017 20 POLY4=1.0*X1NV*(AINV*(45.0-105.0*XINV*(1.0- XINV))-10.0) 81050931

000030 25 "1:,101=TEWil-TcAP P1050932
000932 30 -AR?=1-:".x0(TEmPR)

000035 35 dRIO,==TEMPI*TEMP2*POLY4 11050934

00004? 40 FTUql R1050935

000043 ENO P1050936



5,i-i-toof1-- PSI (t,U,EJPI,OELTA.PSIHAR1 H1050937
C k105093+'

000010 5 x=SJ-0-(6.57975*(U+EI/DELTA)
000021 10 AJP1=S0qT(6.71975*(U+EJPI)/DELTA)
00001? 15 Tt-_1P1=xJPI/X H1050941
000014 17 TFNIP1=ftmP1 *TEMPI R105094?
_0_00015 20 7,T1-1-)?=1.0-TF.',1P1 H1050943
000037 25 Tt,7'P3=TEN1132*TEMP? P1050944
nonn41 30 TR^)/=T 0P3*Ti-i0P2 R1050945
000043 35 1-405=x*X 81050946
000045 40 Tr.vP67-T!,(4P5*TP5 R1050947
000047 45 TiE-qP7=U'MP5*TCOPP) 8105094

_0_000q1 50 TP-mP17=7.9*TIP1 H1050949
000053 55 Tw.vP31=3.0-TFAP17 H1050950
000055 60 1FmP17=1.0-TI;mpl7 81050951
000057 65 TEAP=71:yrJ4-1-P3*TFmP17/XJPI-F,.0 H1050952

X *TP?*TrjrIP37/TEMP54.6.0*(3.0- P1050953
x FE'iP1*(30.0-35.0*TEMP1))/(xJPI* P1050954
X T.T1P5) P1050955

000100 70 TEMPF=120.0*(rE(^P37-3.0*TEmP17/XJPI)/ H1050956
X TFmP6-5040.0*(1.0-1.0/XJPI)/TEMP7 H1050957

000113 75 rEmexP(xJPI) .

000116 80 PSI.WR=TEmP*(TEMR+TEMPE)*(TEMP5* 81050959
X XJPI**5.0) /48.0 R1050960

000131 P5 pi-JuP;\1 8I050961
00013? ENO 81050962



'10-*OOTIOF 4NI-lJLt3 (VJO/K9VL.VI.PIE,PIEN9 81090963
F9'910F.4940FN)

000014 5 IF (-110FN) 10.19.15
P1OS094
81056965

000020 10 A0Fo=0.0
oof)oPi 11 GO Tel 99

81050966
81050967

000022 15 TEIP=f489(VJ-VI)
on00 P5 20 IF (TEMP -VK) 259?9.10 81090969
000030 29 IF (VK- VJ -VJ) 30.30.10 81050970
000033 30 TFO9=AHS(PIN-PD:1)
000036 31 IF (Tr-MP-0.25) 35.32149 81090972
000041 3? IFq9=3? 81050971
000042 GO To 9900 81090914
000041 35 ITEAP=AINTF(VL+0925) H1050915
000054 36 ITEMP=X.,10DF(ITEmP92) 81050976
000060 37 IF (1TFPP-1) 38.10940 H10509/7
000066 18 AOFN=1.0 R1050978

39 Go TO S5 R1090979_22070
000071 40 1FRR=40 81050980
00001? Go TO 9900 81090981
000073 45 TF:IP=ARS(PIFN+PIE)
000076 4h IF (P:MP-0.79) 9091?947 81090983
000101 47 IFHR=47 P1050984
000107 60 To yon 81090989
000103 90 ITF.MP=XPATF(VL+0.29) 81050986
_010114 91 ITF1P=X100F(ITEMP.?) P1050987
000l20 5? IF (ITFMP-I) 10.30,40 81050988
01121215514FTU0N 01050989
000130 9500 NPITF OUTPUT IAPt 699105.1ERR 81050990
000136 M.-155 = 4HOHEL
000140 9105 FORM4T(1X918H*********** ERR = 914) 81050993
000140 ENO 81050994



(ON] 590000 
NmnIAH Y/0000 
(0)dX3*r1SNO3*0ISNOD=2117A3 050000 

((51**VW0IS)*( O'N).030S)/(i4-('*0)=CISNOD 070000 
(0[-)**((S2.1** (1)*(Se0**3V)*O'CI)=01SNO0 010000 

m-A-D=0 500000 
(n*-21y)1Hos*o'?=9 S10000 
e**(S'0.0->*((?viei9IS*0')/0I)=A 110000 

C I[0000 
(eVi-IOISmr,v6Av,m),'-lvA NoIlD!'41A 



PELK(FPFLK,EN,vLN.vKN.ALPHA,HETA.LNI)
000012 5 1-=-,I,J=(hLpHeAETA*(vi<N*(vKN+1.0)vi_N*(vLN+,1.o)o.75))
on0027 1p Y =-- 1P Tr qtr'

000074 11 YF1V =1.0/Y
000026 1L, GO TO (20.25.30,35.40,45,50.55,60).LN1
000041 20 ALNY=1.0
41202i5 2.1 GO TO 70
000046 75 ALNY=1.0+Y1Nv
000090 Ph GO TO 70
000151 30 ALNY=1.0+YINV*(3.0+9.0*YTNV)
000194. 31 01) To 7o
000057 35 ALNY=1.0+YINV*(6.0+YINV*(45.0+225.0*YINV))
000066 36 GO TO 70
000067 40 bLNY=1.0+YINV*110.0+YINV*(135.0+YINV*(1575.0+

X 11025 Q*Y1NV)))
000100
1 1 1 I

41 GO TO 70
4 +Y n * N N

K1050996
H1090997
P1050998
H1050999
P1051000
01051001
H105100?
P1051003
H1051004
01051005
01051006
k1091007
k1051008
H1051009
P1051010

X YINV*(99?25.0+893025.0*Y1NV)))1
000114 (-,0 To 70
000115 50 *LNY=1.0+YINV,1.121.0+YINV*1630.0+YINV*118900.0+

X YINV*(49h125.0+YINV*(98?1275.0+
X 10-i05603.0F1*YINV))111

00011? 51 GO To 70
000133 55 ALNY=1.04.Y1AV*T28.0+YINV*11134.0+YINV*147250.0+

X YINV*1181912.0+YINv*(58939650.0+YINV*
X ( 14047283.0E2+18261468.0E3*Y1NV))111)

000192 96 GO TO 70
000193 60 ALNY=1.0+YINV*136.0+Y1NV*11890.0+Y1NV*1103950.0+

X Y INV* ( 9.vi737`).0+Y INV* ( 25540515 .0F1+
X YINV*(983309143.0E2+YINV*(27392202.0F4+
X 410R8304.0F5*YINV)))))))

000174 70 TEmkk=S0kT(Y)
7 . 75 1,-Pt:LK=TEMHP/ALNY

000204 AO KETUr(N
000?09 F. ND

0105101?
01051013
01051014
01051015
P1051016
H1051017
H1051018
R105101Q
H1051020-
H1051021
R1091022
P1051023
H1051024
H1051025

H1051027
01051029
01051029



S0,3qouT1o4 RRDD (45UPN.AF,XKI,OH4400) k10-)1030
000007 11 IF (4SOHN-1.0E-25) 14,14,112 ,<11.--)1231
00001") 11? ri-m1P=450,4N/AF_ RIOH1032
000014
onnn17

113 IF (TFm4-0.0001) 14,5,5
5 TI=Apx=(1.0-X1(1)/xf<1

41091031
41051034

000021 10 TEMP4=?.0/AE 81051035
000023 12 WiP4o0=SORT(1.044EmPA*ASURN*TEMPX)
000033 13 GO TO 40 41051037
000034 14 0-1P400=1.0 4105103A
000039 40 4E1'044 81051039
000036, FN!) 81051040



000001
000004.
000005

F,Y,ICI ION X INT!: (X)
XINTF = X

-t TURN
END



smidooTINE ELKAY(NN,ELN,EKN) P1050909
000006 1 TEmP=FEOAT(NN)
own') 5 ri=p1=rmp/2.0 R1050910
000012 10 1EAP2=(IEmR-1.0)/2.0 P1050911
00001c 15 ITENP=xmO0F(NN,2) P1050912
000023 ?u IF (ITEmP-1) 45930,25 P1050913
909076 ?5 IERR=R5 P1050914
000027 GO TO 9500 P1050915
nvoln 30 ELN=TFMR? P1050916
000011 35 EKN=TI;imPI R1050917
00003? 40 60 TO 55 R1050918
000033 45 FL=TEmpi P1050919
000014 90 FKN=TEMR2 k10509?0
000035 55 RETURN R1050921
0000 16 9900 wRITE OUTPUT TAPE 6.9109,IERR P10509??
000044 MESS = 4H0HEL
000046 9105 FORMAT(IX.19M*********** ERR = '914) R1050925
000046 END R1050926



FUNCTION XMODF(K,L)
000005 ;040OF = K - (K/L)*L
000012 RETURN
000012 ENO



SOF3qOUTINF DISTAT( LMAX.EMIN.EMAX,HRARO,K024D,EX.AF,HROTTIFO,
XTEMP.A.IMAX,EKEL.AFFCTN,Al.A?.A3)

C
C CALCULATION OF COMP TRANSMISSION COEFF FOR FISSION
C

000029 OIMENSION F(S0)
000029 COmMON/P/SIGMAF(20,?0)
000029 REAL K,J+KO?
000029 HSAR=1.06E-27
000024 H=07_04xFMINI/FLOATIIMAX1
000031 S16,444?=TEmP/(2.0*HROTI)
000014 E(1)=EmIN*H
000036 DO 1 I=P.IMAA
000060 E(I)=E(I-1)+11
000063 1 CONTINUE
000069 K1=L11Ax+1
000047 DO 78 Kk=1,?0
000090 DO 7M LK=1,?0
000091 78 SIGAAE(Kx,LK)=0.0
000061 FKW=-0.ti
000042 1)0 50 I K =1,K1

000066 EKN=FKN+1.0
00006A SUmN0q=0.0
000067 K=-0.5
010070 00 30 KX=1,LK
00007? K=K+1.0
00007e, SUmN0,4=SOmMOY+2.0*EXPI(K**2)/(2.0*K0?))
000107 30 CONFINO:
000111
000113
000114'
000116
0001?1
0001??
000129
0001?7
000131
000133
000134

00 51 KX=1,LK
K=K+1.0_
N=(K**2)/(2.0*K02)
J=FK0
TEMPJ=?.0*FKN+1.0
NINT=ImAX/
YrO-N=Y000=0,0
YS0v10=Y51JmF=0.0
00 N=1,NINT
1=N-1

000136
000137
000141
000141
000145

KO=?,,14.1

KE=2*I+?
FP=E(KOD
K8=E(KI-_)

IFIEPEX/10,10,15



000150 10 dHo=r_vALl(FP.E0.SIGmA2.TEmP,J.w)/?.0
(0 TO 20000197

000163 IS 1F(AFFCTN.I'0.1.0)AE=A14.4?*ExP(-43*EP)
00011? FILL=A2*A3*47Aw(-A3*FP)
000?11 TINV=FILL*(1.0/(4*AF)-SORT(EP/AE)1+SORT(AE/EP1-1.25/FP
000232 SIGmA?=1.0/(2.0*TINV*HHOTI1
000236 PHO=FV4L2(EP.,AE,A,J,W.SIGM421 /2.0
000245 20 y=lEi-,'-(3+EPEL)*(6.2R12/HBARO)
000 ?57 DENOP1=1.0,FAp(y)
nn0 ?6? rooDmoinFNom
000 P64 YSOM0=YSUM0+4.0*YOOD
0007..6 IF(E-i-EX)25,25.31
000?-7C 25 WAO=EVALI(EH.0,SIGMA2,TEmP,J,W)/2.0
000104 GO TO
000310 31 IF(AI,,TTN.E0.1.0)AE=A1+A2 *EAP(-A3*EH)
000377 FILL=4?*43*ExP(-A3*E81
000116 EINV=FILL*(1.0/(4*AE)-SQPT(Ei3 /AE)14.SuRT(AE/EH)-1.25/EB
000197 SI6mA?=1.0/(2.0*TINV*HNOTT1
00014,3 p.10=EVAL2(E9.4E.A9J9W,SIGmA2)/2.0
00037? 35 Y=(&-i-D+EqEL)*(6.2R32 /HHARO)
000.404 OENOA=1.0 +ExP(Y)
0004c7 YFVFM=kHO/DFNOM
000411 IFIN.EO.NINTIYEVEN=YEVEN/2.0
000420 YSUmE=YSIOEI-YEVEN*1,0
000423 2 CONTINUE
000425 SIGAAF(KXILK)=( H/3.0)*(YSUmE+YSUM0)*2.0/SUmNOR
000416 61 CONTINUE
000440 6n cONTINUF
000442
000443

RETURN
00443 ENO



FliNCTIDN FVAL1(E.J.FOoSIGt1A29TEMP,J,W)
000011 qtAL J
000011 T=TErit"

000011 v=c1.0/(2.0 *siGmA2)) *(J0.$)**2
00001' C=CEJF0)/T
000020 D=CV-4
0000?3 CONSTJ=(2.0*J+1)/(?.0*SIGMA2)
000027 EVAL1=CONSTJ*EXP(D)/T
000014 14V_TURA

000034 END



PA = »F sl FT-CC-TOM

240

ENcPGY I_FvFLs KC = 0

7

.000?U0000A1GAmmin--=

----c1T4f A

6.00000000 4.53000000 .0/000000
7PLS 77T-N

1.00000000 1.00000000

FNU(KI K ,St1 E/E1'0(K) NHARO(K) NROTI(KI ALPHA(K)
1.65000 --:-40-11-0 .-00200 -7.0161)0-

1.n .F 1.0 0.0 3.615u0 .7500 .0U ?00 2.0000

1.0 ?.s n.0 1.0 1.c000u .4000 .00200 -0.0000
1.0 .s 0.0 1.0 3.68000 .1500 .00200 2.0000

-1.0 v.0 1.0 3.40300 700 .00200 -0.000U

.11uf..0

.001/0 .0000-1

--:017.707 .11000

ExPEDNENTAL nAr,,

TRTS-TS-FNF-Pmr r. . T

ANGLF WFXP
.175
.390

;11014-40zrn

.00016520

.01)-0-3-01-4-07

.0001r57-40

.00005140

.0 n 017-4--01)

.7g5 .000A-o;?0 .00005140
1.00-4 .000.,4840 .up004.160
1.105 .100,4q4u 00004360
T .F-71, .100771-51 .0000411u

THIS TS FNFP5Y

ANI,Lh

.175 .0005i500
'11(1,.r,

.0u001,40

.10u70-40

.0000 A?40
.1517-700077711
.410 .0007,1-!80
,;711

1.040
717,

.0006145u
.00110-8740

.001076/0

1.570
.000E-0[I0
.000731)0

.uouuolto

.00007670
TIRTS--TS-t-

ANGI F

.

WPXP
1

.150
.01)1
.001 +5100 .4.),101,-,4(10

-r ) Pr .171J 1 P1R0771-:ITTITTF3101)

. 705 .0011300 .00013100
-1n tar-71111 I .0-00-1-11-017-
1.105 .0007w1u0 .00011100

.00014000 .ouuun-i09



p'NFP(;Y =
0 = 0.00000

ENFPGY TEvE) c 1 IN Tro ToNTIN0J0,

241

TPANS4TScION Col;FFI(:) rNTs

F-TRANc( 1)F-TPA,s( 3)1=-Twoqs( 4)F-1RANS( 5)F-TRANS(

0. 1.1?1!--01 O. 7.(16(L-06 O.
9.1147r-02 1.1117-1 O. 2.637r-06 7.133F-04
R.1R6r-07 1.07,1 1.014r-0? 2.051(2-06 6.6913E-04
6.911r-02 1.01,`---,,1 1.349F-06 5.1178E-04

7.50o-67 4.056t-04
4.116r-0, 0.4o-o? -.474r-03 3.34E-Oi 2.P72E-04
7.861r-02 7.31-o---0? 2.-o66r.--03 1.401E-07 1.410E-04

CROSS

0.00

sFrTTO'A Efw cNIPIOE FISSION OTHER

0 4.4-0-04 U. 6.4441-05 0. 0. 0.

1.no
1.00
2.00
7.00
1.00
1.00

.110 7.c;ili-I4
1.0 1.-0-1

0.
4.0-0,-)

0.
0.

0.
0.

2.667E-09
2.596E-09

0.
7.71i1E-07

1.,-,0 ..-+.7k# 4

2.0 1.-1L4-01
0.

U.

6.9-01)
. 8P-O669L,

O.

O.

O.

0.
o.
0.

---.9o--.2-.70,-4- i

3.50 1.14 o V- Li

,-.5r-0,1
0.r71r-06

0.

0.
1.0-0E-0")
9.781F-06

2.147E-09
1.612E-09

6.993E-07
6.423E-07

4.00
4.00

5.00
-6.00
6.00

3.0 i.1.,- i

4.r0 1. r -03
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FNIFPC,Y = 4. ,Il(fllIll
-TT = 0.7150-00--

ENFRGY LEVF)c 11()F To CONFINuum

TPANYAIssuw COFFFICftNIS

3))---1-7A7M-ATIST uoh-iRWNST-T=TPArTcl ) - DA7mr,711-11-(ANs(
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7.F,407-0T- F.E1113t-01 _5.717T-113 9.1T4F7=-0-3-
?.466F-01 7..(Q21-11 1.52IF-03 6.507E1-03
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3.00 -7;0 1./q7F--04 0. 77-726E=0"5
3.00 3.50 2.a1,41-)3 1.,49.-;C-04 0. 8.732E-05 4.153F-06 0.670E-06
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TRANSMISSION

F-TPamS( 1)F-TP),15( 2/1--71-4,1v!,( 3)F-TRANS( 4)C-IPANS( 5)F-THANS(

0. 7./Y)i.--) ;1. ?..,y1F.--01 O.

3.11"--01 u. ".137'.7-01

3.104r-01 P.7,.7!,--61 ?.061!:.-01 6.040E-0?
3.08qF-01 ".3/5!'_-01 1.74"F-01 9.037F-02

-T.80E-0I 11-.;1E-0?
1.003F-01 2.907F-J1 1.943r.-01 7.651F-02 2.902E-02
2.918E-01 2.LiO4E-,11 3.561E-( 1.990E-02

CAOSS SFCTInrJc; UP (.;1'1.Okt FISSION OcHER

O.( .r.10 4.()),--. 4 O. 7.80/F-0 O. 0. U.

1.00 .(1 .4_,,_..,4 U. 0. U. 1.007F-U4 0.

1.00 1.0 1.,,--,1 I.44/.-U4 0. O. 1.039E-04 3.179E-05
7.00- 1.00 7.4,7/,; - 1,-, o. 1.618f--05 O. O. O.

2.00 2.0 1.i!J-, i U. 8.303E-U O. O. O.
1.0n O. 1.2-17=1 04 1.018C-04 2.982E-05?.c7) 1.(42,:- )3 1.-,s,,,-04
3.00 3.00 7.53-fl 1.7i+r-04 O. 1.335r-04 9.79iE-05 ?.H32E-05
4.00 1.S0 1.1W-0; 0. 6.'104F-0b O. 0. 0.

4.00 4.90 1.4/+ -1 1 U. 7.946F-0b U. 0. O.

---1.0(1 4L)0 1.P757=)4 n.16IF=T-) 0. 3.106E-05 2.163E-05 6.678E-06
500 9.90 1.11' -,1 4).??3F-05 0. 4.027E-09 1.586E-09 6.014L-06
6.00- 5.Y) 1.771, -14 u. 8.194F-06 O. O. O.

6.00 g-,co 2.0)-0 -)4 J. 1.005E-05 U. O. O.

FTCSIng-777777-1-(-400)A ,11STr(IHUTION
THFT^ 1)1':J(1)

17500- .7)01 3

19000 .00123
---7TT71-00 .00111

.00101
T.06fl1) TrnTl
1.10900 .000/9
1.570T-0 .00076
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APPENDIX IV

Transition State Spectroscopy Computer Code

and Sample Output



PPO6q4m INIFGRO(INPUT,OUTRUT,TAPE5=INPOT,TAPE6=OUTPUT)
000003 01AENSION TKC(30,15),RHON(10,6),RHO(6),E(15),ELIM(15)
000003 k.EA0(5,200)ATOMW,E0.TEMPER,EX,PZ,PN
000023 200 FORMAT(8F10.91
000023 ',JEA0(5,2011NE,NMAX,LMAX
000035 201 FOk9AT(31?)
000035 WRITF(6,202)
000041 20? FOkAAT(* *,2X,*4TOMW*,7X,*E0*,6X,*TEMPER*,6X,*EX*,4X,4X,*RZ*,

*4X,4X.*PN*,7X,*NMAX*,6X,*LMAX*)
000041 ';ikITF(6,303)ATOMW,E0,TEMPEk,EX,PZ,PNeNMAX,LMAX
000065 303 FORMAT(* *,6(X,F7.3,2X),4X,12,4X,4X,I2,4X)
000065 T=IEmPEk
000067 HX=EAP7PN
D00072 AkIT=ALIT(FTF-
000074 SIG2. 1=0.04P18*SORT(ARIT*UX)*ATOMW**(2.0/3.0)
000107 LMAX1=LMAX+I
000111 WIAXI=NMAX*2
000112 LMAX12=2*LMAX+1
000113 no 13 1=1NE
00119 13 -!EA0(5,300)E(1),ELIMII/
000127 300 FORMAT(2F10.5)
000127 00 14 L=1,LMAX1
000130 RFA0(5,70)(RHON(L,IR),IP=1,6)
00014? 70 FOHIATI-61710.3)
000142 14 CONFINUF
000145 00 10 1=1,NE
000146 FMIN= ELIM(I)
000150 EMAX=11)
000151 00 11 LKN=1,NMAX1
000153 D) 11 L=1,LMAX12
000154 11 T4C(LKNL1=0.0
000165 wPITE(boS)
000170 5 FOPMAT(*0*)
000170 WkIIF(6,20)F(I)
000176 20 FORMAT(* *v*THE NEUTRON ENERGY IS41,3X,F5.2)
000176 WkITE(6,5)
000202 WKITc:.(6,923)

000206 923 FoRmatc* *,X,*J*,3X,*PIEN*,3X,*ENERGY INTEGRATED TRANSMISSION
X COEFFICIENTS *)

000206 00 1 LKN=1,NMAX1
000?10 J=ILKN-11/2
000212 VI= FLUAT(J)
000214 TkIAL=XMODF(LKN,?)
000217
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000?21 IF(TkIAL.F0.1.0)PIEN=4.1.0
000?24 DO ? L=I+LMAXI2
-00022 A CALL rLKAYIL,VL0.60
000?30 LVL=INT(VL+1.0)

00 18CV=1,6000233
000234 IA PHO(LV).HHON(LVL,LV)
000243 CALL Ar4EA(EMIN.EMAX,RHO'SPECTR9E0.SI621,ToVI,PZ,PN,ATOMW,EX/
000256 TPCILKN.L/=SPECTR
00026? 2 CONTINUE
000265 AWITE(6,926)J,PIEN,(TRC(LKN,N),N=I+LMAX12)
000304 926 F0qMAT(* 419I2,1X9F4.1.3A+11(E10.391X))
000104 1 CONTINUE
000307 10 CONTINUE
000311 STOP
noom -END
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000017
000017
000050
000050
00009?
000055
000057
000060
000052

249

SW3kOUTINE AREA(EMIN,EMAX.A95PFCTR,E095IG21,TAU,J,PboPN,ATOM,EX)
DIMENSION F(40),A(6)
T(S9H,C90,F,EINT)=5/(1.0+EXP(B*(C-EINT))1+D*EINT**F
qt-AL J
H=(FMAX-EMIN) /30.0
YEVFN=YOnD=0.0
YSOMO=Y5IIME=0.0
E(1)=1-7_141W+H

DO 1 1=2.30
F(I)=t'AI-11H

000055 icONTINOF
000065 N1NT=15
000067 00 2 N=1.NINT
000071 FACTOR=FACTUR=1.0
000074 1=H-1
000075 Ko=7*1+1
000076 KE=?i,I+?
000100 IFIA(61.6T.E(K0))FACTOR=0.0
000105 IF(A(61.6T.F(KE1)FACTUR=0.0
00011? EMAA -E(KO)
000114 EurrEmilx-E(KE)
000117 IF(EP-EA110.10,15
000127 10 RHO=tVAL1(EP,E0,SIG21+TAU,J)/2.0
000114 oo To 70
000114 15 AF=ALIT(-P)
000135
000150
000170
00017?
000175
000P00
000?03
000719
000215
ono?17
000?31
000791
000753
000255
000?51
000254
000?55
00072
oo6?7?

PHO=r.VAL2(UW/9PN.EP,AE,ATOM,J)/2.0
20 y000=RHO*T(A(1),A(P/9A(3)9A(4),A(5),E(K0)/

YOOD=YOOD*FACTOR
IF(YO11D.LT.0.0)YODD=0.0
rium0=YSOM0+4.0*YODD
IF(F,i-EX)29.25,30

75 PH0=tVAL1(EH.E09SIG210TAU,J)/2.0
00 TO AS

30 AE=ALI1(rAA)
PHO=EVAL2(U.P/_,PN,EB,AE,ATOM,J)/2.0

35 YEVEN=kHO*1(A(1),A(2),A(3),A(4),A(5),E(KE))
YFVFN=YEVEN*FACTOR
11-(Ye_lVt:N.L-1.0.0)YEVEN=0.0
IF(N.F_O.N1NT)YEVEN=YEVEN/2.0
VSUM1,=YSUME+YEVEN*7.0

? CONTINUE
SPECTR=(H/3.6-F}(Y5UME+YSUM0)/(2.0*3.14159)
RETURN
END
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FUNCTION XMODF(K,L1
TWU15 A.401W =K-JX/L)*L
00001? RETURN
000012 ENO
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000003
000012
000014

FUNCTION ALIT(E)
ALIT = 29.2 ~ 205.62*EXP(-1.003*E)

20 RETURN
ENO



St3RoUl1mF FLKAY(NN,FLN,FKN) R1050908
00000h I TEIP=FLOAT(NN)
000010 S 7,7MP1=Ti1P/?.0 R1050910
00001? 10 TEmP2=(1F_mP-1..01/2.0 R1050911
000015 15 IrEmP=AmODF(NN,2) 8I050912
000023 20 IF (ITE4P-1) 45,30,25 81050913
000026 25 1Eqq.25 R1050914
000027 60 TO v500 R1050915
000030 30 FLN=TF12 81050916
000031 35 VNN=Ti.:_mpi 81050917
00003? 40 o0 FO 55 R1050918
000033 45 FLN=TtMP1 81050919
000034 50 FKN=TEmP2 R1050920
000035 55 RETURN R1050921
000036 9500 WRITE OUTPUT TAPE 6,9105.IERR R1050922
000044 MESS = 4HOHEL
000046 9105 FORMAT(1X.18m*********** ERR = 914) R1050925
000046 END R1050926



FUNCTION EVAL1(EJ,E0,SIG21,T.J)
000010 "Eat_ J
000010 H=J*(J4.1)/(2.0*SIG21)
000014 C=(EJL0)/T
000016 0=C-11
000020 CONSTJ=(2*J+1)/(2.0*SIG21)
000025 EVALI=CONSTJ*EXP(0)/T
000034 RETU4N
000035 ENO



00001?
00001?
000014
00003?
000040
000051
000053
000066
000101

FUNCTION EVAL?(U,PZ,PN,EP,AE,A.J)
HEAL J
U=FP-P/-PN
SIG2,!=0.08RrosORT(AF*U)*4**(2./3.)
H=J*(J+1)/(2.0*SIGP2)
C=2.0*SuRT(AF*U)
D=C-R
C0NST0=(12.0*(AE**0.25)*(U**1.25))**(-1.0)
CONSTJ=(2*J+1)/(S(IRT(14.0 )*(SIG?2**1.5))
tVALP=CONSTO*CONSTJ*EXP(0)

000106 RETURN
000106 END



,

A 1.0
A -1.0

2.e370ai
2.'17101
1.7410.01 --,..30e.01
1.,41001

3.7050.01
3. 74S.: .ni

2.4300.01
2.154001
2.1541.01

3.745001
3.74c101
7.9100.01
7.9100.01

6.8290.00
6.6291.00
5.240000
5.240000

6.829E+00
6.8291.00
5.7601.00
5.260E+00

3.072000
3.0771.00
2.3571.00
2.3521.00

3.072000 6.580E-01 6.580E-01 7.059E-03 7.059E-03
3.072000 6.580E-01 6.580E-01 7,059E-03 7.059E-02

-4--T.0
A -1.0

2.3520.00 5.039E-01 5.0340-01 5.4011-03 5.401E-03
2.3521.00 5.034E-01 5.034E-01 5.401E-03_ 5.401E-03

TO 1.0
10 -1.0

1.2871.01
1.787001

2.1540.01
2.1541.01

3.9770.00
3.6470.00

3.8770.00
3.8770.00

1.706000
1.704000

1.7001.00 3.652E-01 3.6521-01 3.9170-03 3.9170-03
1.7081.00 3.652E-01 3.652E-01 2,0171-42_1.9171-03

11 1.0
11 -1.0

0.0510,00
9.0631.00

1.5061.01
1.5060.01

1.500F0 1
1.5060.01

2.708E00
2.7000.90

2.7080..00
2.7000.00

1.176000
1.178E00

1.178E00 2.516E-01 2.5160-01 2.700E-03 2.700E-03
1.176E+00 2.516E-01 2.5161-01 2.700E- 03__2.7000-03

THE .11071104 1,71_6ro' IS 1.40

'20 (il eq- Q.3 /3 . tv Of
J AIF4 EN0,6y INTE69000 784N5415s10N CoEFFICIENTS
0 1.0 0.59uEuu 1.491t.01 1.441t.01 2.7301.00 2.1300.00 1.315E.00 1.3157.00 2.986E-01 2.906E-01 3.3660-03 3.366E-03

0 -1.0 acw.,.00 1.4,41E.01 1.aglE.01 2.7300.00 2.7300.00 1.315E+00 1.3151.00 2.9661701_-2066101_30661-03_3.3661-0

I 1.0 7.4740.01 4.2991.01 4.2qqT.01 7.664000 7.860000 3.7821.00 3.7820.00 8.595E-01 8.5950-01 9.681E-03 9.681E-03

I -1.0 7.4767-.01 4.799,.01 4.7941.01

71:26180:: 7]..82:80::::

3.767000 3.7820.00 8.5950-01 8.5951-01 9.641E-03 9.641E-03

7 1.0 1.4160.01 6.617101 6.6171.01 1.2106.01 1.210001 5.797000 5.7470.00 1.3180.00 1.3160.00 1.483E-02 1.4410-02

2 -1.0 1.614001 6.617001 6.6171.01 5.797000 5.797000 1.3150.941018041_1.4830-02__1.4430-02
3 1.0 4.7i/001 6.7701.01 8.2700.01 1.501001 1.501001 7.1591.00 7.1591.00 1.629E+00 1.6290.00 1.830E-02 1.410002

7 -1.0 4.757=01 8.2,0+.01 8.7,0F.01 1.501001 1.501001 7.154E00 7.1590.00 1.6790.00_1.679000 1.4301-02 1.030E-02

4 1.0 5.273E01 9.013001 9.013001 1.644E+01 1.6441.01 7.7651.00 7.7651.00 1.774E00 1.774E+00 1.944E-02 1.988E-02

4 -1.0

49:::::::

1.6441.01 1.6441.01 7.7651.00 7.7651.00 1 ,774100_1 .774k.00_ 1.9891 - 02__,1.9690-02

5 1.0
S -1.0

5.248F.01
:::::::::

9.0781+01 9.0740.01
:::;::::

1 .64310 1

1. t 01
1.6430.01
1.6430.01

7.719000
7.11,70'90

7.7190.00 1.7620.00 1.762000 1.966E-02 1.9640-02

7.71'1Et00__1.7521-100__1.1921301_1.90117,02__1.9690-12_________

6 1.0 4.9031.01 6.4040.01 8.4040.01 1.5261.01 1.5260.01 7.096000 7.0900.00 1.6240.00 1.624E+00 1.801E-02 1.807E-02

A -1.0 4.901E.01 6.4041.01 P4041.01 1,5266.01 1.526001 7.0980+00 7,0961.00_1.6740.00_1,624000 1.8071602

7 1.0 4.3021.01 7.3411..01 7.3410.01 1.3301.01 1.330E01 6.1111.00
_1.8071-02

6.111E00 1.4010.00 1.4011.00 1.553E-02 1.553E-02

7 -1.0 4.301.01 7. wit..01 7.3410.01 1.110001 1.3301.01 6.111000 6.111000 1.401000_1.4010.00_1.5s30-02 1.553E-02

0 1.0 1.5661.01 6.054001 6.0540.01 1.093001 1.093001 4.9561.00 1.1391.00
1:13;:.49.0 1:gf61:(012

A -1.0 1.50...01 6.0541+01 6.0540.01 1.093E01 1.0930.01
9 1.0 2.4041.01 4.7341.01 4.734001 8.522000 8.527000 3.8021.00 3.8021.00 8.7660-01 8.766E-01 9.611E-03 9.611E-03

0 -1.0 7.004E01 4.714E+01 4.7340.01 8.5221.00 4.522000 3.002000 3.8020.00 6,7601-01 8,7561-01__9.61 10-.03 _9.611E-03

10 1.0 2.0941.01 3.5191.01 3.519/.01 6.3120.00 6.3170.00 2.7000.00 2.7000.00 6.400E-01 6.4001-01 6.9720-03 6.977E-03

10 -1.0 ?.0900.01 3.519E+01 3.519E+01 6.312000 6.312E+00 2.7661.00 2.766E+00 0.4000-01__6.400E-01 6.912E-03 _6.972E-03

1l 1.0 1.4970.01 2.4931.01 7.4930.01 4.4541.00 4.4541.00 1.9131.00 1.9131.00 4.442E-01 4.442E-01 4.404E-03 4.8041.-03

11 -1.0 1.4971001 2.49'11.01 2.4931.01 4.4S4100 4.4541.00 1.9130.00 1.913000 4,4421-01 4,4421-01 4.8041-03 4.804E-03

THE 4Eu700N 1.4167v IS 3.90

J PI14 ENER5Y 191E109010D TRANSMISSION COEFFICIENTS

-6-1.6---1.065041 1.8511.01 1.4511+01 3.4131.00 3.4131.00 1.6671.00 1.6670.00 3.7101-01 3.710E-01 4.421E-03 4.4210-03

n -1.0 1.06..1.01 1.65101 1.457001 3.4131.00 3.4130.00 1.6671+00 1.661E+00 3.710E-01 3.7101-01 4.421E-03 414210-03

1 1.0 1.0740 :.015.356,01 5.3560.01 9.6400.00 9.0401.00 4.7950.00 4.7950.00 1.068E.00 1.0681.00 1.2720-02 1.772E-02

1 -1.0 1.01,F131 5,166001
4.740E.0r--6.752r.01

9,3560.01 9.440E00 0.8400.00
1.510E-01

4.7950.00
1.3520.00

4.7951.00 1.0640.00 1.064E+00 1.272E-02 1.277002

-7-1.0 0.757E-01 1.510E.01 7.3520.00 1.6390.00 1.6391.00 1.944E-02 1.9480-02

7 -1.0 4.7011.01 8.?5,!101 4.7526.01 1.5141.01 1.5141.01 7.3520.00 7.3520.00 1.6390.00 1.6390.00 1.9491-02 _1.94.0-02

3 1.0 s.412,..01 1.0770.02 1.0271.92 1.8461.01 1.7820.01 9.0470.00 9.0820.00 2.024E00 2.026000 2.4040-02 2.4040-02

3 -1.0 c, 4110.01 1..0? 1.0210.02 1.867101 1.8021.01 9,0620.00 9.0821.00 2.027E+00 2.0200.00 2.4041-02 2.4041-02_____

4 1.0 6.51-2...01 1.12400? 1.128F.02 2.063E+41 2.0631.01 9.4421.00 9.8020.00 2.2101.00 2.2101.00 2.611E-02 2.611E-02

4 -1.0 A.51,..1.01 1.174007 1.1201+02 2.061001 2.063001 9.882E+00 9.8821,00 2.2101+00 2.210E+00 2.611E-02 2.6111-02

S 1.0 ---6.561v.01-1.13.11,.02 1.1331.02 2.067001-2.0670.01 9.80+,1.00 9.8051.00 2.1981.00 2.194E+00 2.586E-02 2.545E-02

S -1.0 6.5610.01 1.133._02 1.13300? 2.0671.01 2.067E+01 9.805E+00 9.805E+00 2.198E+00 2.198E+00 2.586E-02 2.546E-02

6 1.0 6.150E.01 1,064002 1.0541.02 1.925E01 1.9250.01 9.022000 9.0220.00 2.0240.00 2.024E00 2.373E-02 2.373E-02

6 -1.0 6.155,:0i 1.06,4007 1.0540+02 1.926101 1.9250.01 9.072000 9.0720.00 7.0291.00_2,0290.00___ 2.373E-02 _2.3731-02

7 1.0 4.417 .01 9.279.:.01 9.279t.01 1.6421.01 1.6820.01 7.7751.00 7.775E00 1.7540.00 1.7541.00 2.039002 2.0390-02

7 -1.0 5.4171.01 '4.7797.01_ 9.779.:01 1.667001 1.6421.01 7.7751.00 1.754000 2.0390-02 7.039007

R 1A-4.510001 7.6077.01 7.6070.01--1.3860.01 -1.388E+01 6.312E.00
.7.775000 _1.7540.00
6.312E00 1.4300.00 1.4300.00 1.650E-02 1.650E-02

A -1.0 4.510E.01 7.6870.01 7.6871.01 1.3880.01 1.3000.01 6.3120.00 6.312E00 1.430000 1.4300.00 1.650E-02 1.650E-02

9 1.0 1.56,-,T..31---6.041051 6.041001 1.046101 1.0060.01 4.6460.00 4.8481+00 1.103E+00 1.1031.00 1.267E-02 1.262E-02

9 -1.0 3.5650..01 6.041t01 6.7410.01 1.0766.01 1.0461.01 4.8461.00 4.71460001.1030.001.1030.00 1.2620-02 1.262E-02

10 1.0 7.642001 4..7.16t.01 4.0161.01 8.0811.00 8.0810.00 3...331.00 3.533E000 0.074E-01 8.074E-01 9.157E-03 9.157E-03

10 -1.0 2.6861.01 4.!0160.61_ 4.5160.01 8.0010.00 A.00110.00 3.533E000 3.5330.00 8.074E-01 8.0740-01 9.1570-03 9.157E-03

11--1.f----f.926i.01--3.2140001 3.219Cal 5.131E000 5.731E000 2.4470.00 2.447E000 5.623E-01 5.623E-01 6.311E-03 6.311E-03

11 -1.0 1.926E001 3.2190001 3.219E001 5.7310.00 5.731E000 2.447E000 2.4470.00 5.623E-01 5.623E-01 6.311E-03 6.311E-03

0,1001.709 iN/4,11' IS 4.10


