AN ABSTRACT OF THE THESIS OF

		for the	Doctor	r of Philosophy	
(Name of Student)				(Degree)	
	mistry	p res en	ted on _	4 December 1973	
(1	Major)			(Date)	
Title: _	The Structure	of the F	ission 1	Transition Nucleu	s
	²²⁷ Ra			<u> </u>	
- Abstract	approved:	Redacted for Privacy			
		Dr: Wa	1tor D	T.ovel and	

The character and positions of the first few single particle levels in the transition nucleus ²²⁷Ra have been deduced from the available experimental data on the ²²⁶Ra (n,f) reaction at neutron energies between 3.6 and 4.1 MeV. A Hauser-Feshbach calculation was carried out in which the fission cross section and the fission fragment angular distributions were simultaneously fitted. In order to calculate the probability of neutron emission from the ²²⁷Ra compound nucleus, the excitation energy dependence to the level density in Ra was assumed to be similar to the one in thorium. The level density in the latter was deduced from neutron evaporation data at low energies in ²³²Th, and neutron resonance information in ²³⁰Th. The Hauser-Feshbach calculation was conducted for two different assumptions regarding the nuclear shape at the saddle point. In one case,

the shape of the transition nucleus was assumed to be reflection-symmetric, in the other, asymmetric. The results of our calculation agree well with the theoretical predictions of Nix and Möller as to the number and character of the single particle levels and the height of the fission barrier for 227 Ra which was found to be $\rm E_f = 8.2 \pm 0.1 \ MeV.$

Calculations extended to higher incident neutron energies (4.7 MeV < $\rm E_n$ < 9.0 MeV) indicate that collective effects in the nuclear level density have been consistently underestimated at the equilibrium, as well as at the saddle point deformations by a factor of about 10 3 . Analysis of the fission fragment angular distributions at moderate energies tentatively suggest a value of the pairing gap parameter $\Delta_{\rm f}$ considerable larger than the corresponding one at the equilibrium deformation ($\Delta_{\rm f} \sim 1.7\Delta_{\rm O}$).

The Structure of the Fission Transition Nucleus 227Ra

by

Hugo Rafael Groening

A THESIS

submitted to

Oregon State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

June 1974

APPROVED:

Redacted for Privacy

Assistant Professor of Chemistry

Redacted for Privacy

Chairman, Department of Chemistry

Redacted for Privacy

Dean of Graduate School

Date thesis is presented <u>Dee. 4th</u>, 1973.

Types by Deanna L. Cramer for Hugo Rafael Groening

ACKNOWLEDGEMENTS

At this time I would like to thank my major professor,
Dr. Walter Loveland, for his help and guidance and also for
having suggested this project. To the Venezuelan Government
for its financial backing during the time taken for the completion of my studies. To the International Atomic Energy
Agency and the National Research Council of the United
States for having partially supported two years of my stay
at the University.

My deep appreciation goes to Drs. J. R. Nix and P. Möller for making available to me their ²²⁶Ra calculations. Important suggestions and useful discussions with Dr. R. Vandenbosch are gratefully acknowledged. I would also like to thank Dr. M. Bolsterli for having made available his computer program to me, and to Dr. H. C. Britt for his cooperation.

It is a pleasure to acknowledge the help and cooperation from the personnel at the Computer Services Department of the EPA Water Research Laboratory in Corvallis, and also at the Bonneville Power Administration in Portland whose computer was employed in carrying out the present calculations.

Finally, I would like to acknowledge my wife, in spite of whom I was able to carry out this work to its happy completion.

TABLE OF CONTENTS

Chapter		Page
I	INTRODUCTION	1
	Preliminary Considerations Short Overview of Fission Barrier	1
	Calculations	21
	Statement of a Problem	23
	Scope	34
II	DEVELOPMENT OF THE CALCULATIONAL MODEL	36
	General Aspects of the Calculation	36
	The Role of Neutron Emission The neutron transmission coefficients	47 50
	The level densities in the residual	50
	nucleus	57
	Extension of the Model to Moderate	67
	Excitation Energies Final Comments on the Model	67 73
	rinal comments on the model	7 3
III	RESULTS OF THE CALCULATIONS	74
	The Analysis of the Experimental Data	
	at Low Energies	75
	Fission Channels in the Symmetric Nucleus ²²⁷ Ra	84
		04
	Fission Channels in the Asymmetric Nucleus ²²⁷ Ra	93
	Parameters Describing the 227Ra Transition	n
	Nucleus at Moderate Excitation Energies	102
IV	DISCUSSION OF RESULTS	115
	Interpretation of Results at Low	
	Excitation Energies	115
	Interpretation of Results at Moderate	104
	Excitation Energies Fission Fragment Angular Distributions	124
	at High Energies	148
	The Energy Region \leq E _n \leq 4.7 MeV	157
	Comments on the Mass Distribution in	
	the Fission of ²²⁷ Ra	158
	Parameters Describing Second Chance Fission	160
	LIBBLUII	TOO

Chapter		Page
V	CONCLUSIONS	17 5
	BIBLIOGRAPHY	179
	APPENDICES	
	Appendix I. Error Incurred in the Approximation for the Exit Channel Neutron Transmission Coefficients	
	Above 5.0 MeV Appendix II. Normalization of the	184
	Experimental Data Appendix III. Computer Program for	187
	Calculating Compound Transmission Coefficients and Sample Output Appendix IV. Transition State	192
	Spectroscopy Computer Code and Sample Output	246

LIST OF ILLUSTRATIONS

Figure		Page
1	Schematic Overview of the Fission Process	3
2	Schematic Diagram for Angular Momenta in Deformed Nuclei.	6
3	Effects of Shell and Pairing Corrections on the Shape of the Fission Barrier.	18
4	Fission Cross Section and Anisotropy vs. Neutron Energy for Neutron Induced Fission of ²²⁶ Ra.	
5a	Fission Fragment Angular Distributions in Neutron Induced Fission of ²²⁶ Ra for Neutron Energies between 3.6 and 6.7 MeV.	28
5b	Fission Fragment Angular Distributions in Neutron Induced Fission of ²²⁶ Ra for Neutron Energies between 7.1 and 13.6 MeV.	29
5c	Fission Fragment Angular Distributions in Neutron Induced Fission of ²²⁶ Ra for Neutron Energies between 14.4 and 14.8 MeV.	30
6	Theoretical Fission Fragment Angular Distribution for Neutron Induced Fission of Even-Even Targets Assuming Fission Proceeds through a State of Given (K,J.M) in the Transition Nucleus.	46
7	Neutron Transmission Coefficients for A=232 Corresponding to $\ell=0$ and $\ell=1$.	53
8	Neutron Transmission Coefficients for A=232 Corresponding to $\ell=2$ and $\ell=3$.	54
9	Neutron Transmission Coefficients for A=232 Corresponding to $\ell=4$ and $\ell=5$.	55
10	Neutron Transmission Coefficients for A=232 Corresponding to $\ell=6$ and $\ell=7$.	56
11	$N(E_n^1)/E_n^1$ vs. Square Root of the Excitation Energy for the Evaporation Spectra from ^{2 3 2} Th at 3. 4. 7 MeV Incident Neutron Energy.	59

gure		Page
12	Relative Level Density vs. (Excitation Energy) for the Evaporation Spectra from 232Th at 3, 4 7 MeV Incident Neutron Energy.	60
13	Same as in Figure 12 Except that Lines have been Smoothly Joined.	62
14	Deduced Level Density Dependence on Excitation Energy for 226Ra.	63
15	Experimental and Calculated Dependence of $\sigma_{En}(n,\gamma)$ on Neutron Energy for ²²⁶ Ra.	78
16a	Differential Cross Sections and Fits for the 226 Ra(n,f) Reaction.	80
16b	Differential Cross Sections and Fits for the ²²⁶ Ra(n,f) Reaction for Neutron Energies 4.1 to 5.4 MeV.	81
16c	Differential Cross Sections and Fits for the ^{2 2 6} Ra(n,f) Reaction for Neutron Energies 6.2 to 7.9 MeV.	82
16d	Differential Cross Sections and Fits for the ²²⁶ Ra(n,f) Reaction for Neutron Energies 8.9 to 9.7 MeV.	83
17	Partial Fission Cross Sections for Four Open Channels.	92
18	Best Fits to the Fission Cross Sections at Low and High Energies.	101
19	Excitation Energy Dependence of the Level D Density Parameters \mathbf{a}_f and \mathbf{a}_n	107
20	Incident Neutron Energy Dependence of K _o .	110
21	Excitation Energy Dependence of the Temperature using two Different Assumptions Regarding af.	112
22	Fission Probabilities vs. Excitation Energy for ²²⁷ Ra Showing Two Possible Fission Components.	116

Figure		Page
23	Theoretical and Experimentally Deduced Single Particle Levels for the ²²⁷ Ra Transition Nucleus	118
24	Theoretical and Experimentally Deduced Single Particle Levels for the ²²⁷ Ra Transition Nucleus.	122
25	Theoretical and Experimentally Deduced State Density Dependence on Energy.	130
26	Temperature Dependence on Excitation Energy for ²²⁶ Ra at Equilibrium Deformation.	140
27	Temperature Dependence on Energy for the Transition Nucleus ²²⁷ Ra.	141
28	Experimentally Deduced Values of K _O ² .	149
29	Calculated Values of K _O at High Energies.	156
30a	Fits to the Angular Distribution Corresponding to Second Chance Fission.	170
30b	Fits to the Angular Distributions Corresponding to Second Chance Fission.	171
31	Schematic Dependence of K ² as a Function of Energy.	174

LIST OF TABLES

<u>Table</u>		Page
I	Inelastic Cross Sections for 232Th(n,n') Reaction	51
II	Parameters used in Calculating Compound Neutron Transmission Coefficients	52
III	Neutron Resonance Data for Nuclei in the Th Region.	61
IV	Summary of Calculations Describing the Symmetric Nucleus $^{2\ 2\ 7}$ Ra.	86
V	Summary of Calculations Describing Asymmetric Nucleus $^{227}\mathrm{Ra}$ at Low Energies.	94
VI	Parameters Describing the Low Lying Single Particle States in the ²²⁷ Ra Transition Nucleus.	102
VII	Statistical Parameters for 227Ra.	106
VIII	$\ensuremath{\text{K}_{\text{O}}}^2$ Values Describing Angular Distribution of Fission Fragments	111
IX	Macroscopic-Microscopic Calculations for 226Ra	117
X	Fission Barrier Heights (In MeV) for Various RA Isotopes	120
XI	State Density Parameters for ²²⁶ Ra from Microscopic Calculations	128
XII	Collective Enhancements in 226Ra.	144
XIII	First and Second Chance Fission Cross Sections	162
xIV	Parameters for 226 Ra(n,f) at Moderate Energies	164
xv	Deduced Angular Distribution for the Two Fissioning Systems ²²⁶ Ra and ²²⁷ Ra	166
XVI	Partial K Fission Cross Sections for the 226 Ra (n,n'f) Reaction.	169
XVII	Parameters Derived in Fitting ²²⁶ Ra(n,f) Anisotropies	190

T. INTRODUCTION

A. Preliminary Considerations

In 1938, Hahn and Strassman (Ha 39) discovered that the bombardment of uranium with neutrons produced several radioactive nuclides which were chemically indistinguishable from elements in the middle of the periodic table, such as barium and lanthanum. Although at first they believed these nuclides to be isotopes of radium and actinium, soon they were convinced that the radioactive products were isotopes of much lighter elements formed by the splitting of the uranium nucleus into two parts of comparable size.

The mechanics of nuclear fission was first described in detail in a classic paper by Bohr and Wheeler (Bo 39). On the basis of a liquid drop model of the nucleus, they developed a fission theory which gives a satisfactory picture of many aspects of nuclear fission. This theory was centered on the idea that for the heaviest group of nuclei, the repulsion of the long range coulombic forces opposes, to a large extent, the short range nuclear forces which operate in a manner analogous to a surface tension.

The immediate implication of the theory was that as the nucleus distorted in a given direction, a point was reached in which the coulomb repulsive forces became equal

to the forces holding the nucleus together, and from here, the nucleus could either undergo fission or collapse back to its equilibrium shape. This critical point was called the "saddle point" in the potential energy surface, and the net increase in potential energy necessary to reach that point was termed the "fission barrier".

The passage over the saddle point is the rate determining step in fission. A nucleus at the saddle point is known as a "transition state nucleus" (see Figure 1). the transition state nucleus is further deformed, it will eventually divide into at least two fragments. The deformation at which division into two fragments occurs is called the "scission point". The fragments are of intermediate mass and contain various amounts of excitation energy. At the time of scission, the nuclear deformation has increased beyond that of the transition state nucleus and at the instant of separation, the primary fragments possess, in some cases, considerable deformation energy, in addition to their other forms of energy. A wide variety of division in fragment mass, charge, and energy is observed, depending upon the initial mass and excitation energy of the fissioning nucleus.

In this work we are mainly interested in the properties of the transition state nucleus, i.e., the nucleus at the saddle point. Historically, we should begin by pointing out that in 1952, Winhold et al. (Wi 52) experimentally

Figure 1. Schematic Overview of the Fission Process.

observed that the angular distribution of 232Th and 238U fission fragments induced by photofission was clearly anisotropic. In order to explain the observed angular distribution, Bohr (Bo 55) proposed a theory in which he suggested that fission proceeded through definite states in the transition state nucleus characterized by well defined quantum numbers, which were responsible for many of the properties of the final fragments. Basically, the spectrum of excited states of the nucleus at the saddle point could be simply explained in terms of the collective and unified models, which had worked so well for the low lying states of stably deformed nuclei (see Figure 1). These quantum states of the nucleus at the saddle point were termed "channels". According to Bohr, a fission event passing through a fission channel might exhibit a marked anisotropy in the angular distribution of the fission fragments, depending on the angular momentum quantum numbers of the channel.

In order to explain this situation, let us start by supposing for a moment that the nucleus is spherical. The simple shell model of the nucleus assumes that each nucleon moves in a potential well (also spherical), which is an approximate representation of the interaction of that nucleon with all of the others. By solving the Schrödinger equation for particles in such a potential well, and introducing a spin-orbit interaction, a set of energy

levels is obtained. These levels are characterized by their principal quantum number, orbital angular momentum, and total spin. An odd nucleon in a given shell model state can have several different projections of its angular momentum on a symmetry axis. These projections are called For example, a $d_{5/2}$ single nucleon can have values 1/2, 3/2, and 5/2 for its Ω quantum number. When the potential well is undeformed, the energy of the nucleon is independent of Ω . However, this is no longer the case when the potential well is deformed. Each shell model level of angular momentum j breaks into j + 1/2 levels (called Nilsson levels), each of which may contain up to two nucleons of each type. The angular momentum of the odd-A deformed nuclei is due to both the rotational angular momentum (if any) and to the angular momentum of the odd nucleon. projection Ω of the nucleon's angular momentum adds vectorially to the rotational angular momentum R, to give the total angular momentum J. The projection of J on the nuclear symmetry axis is called K. As shown in Figure 2, R is actually perpendicular to the symmetry axis in an axially symmetric nucleus, and hence, Ω is equal to K. When the rotational angular momentum is zero, J, Ω , and K are all Thus, each Nilsson level may form the ground state of a rotational band. Except for cases where K = 1/2, the energies of the members of the band are given by

The case of K = 1/2 is more complicated and a more complete discussion of this case is given in the next chapter.

Figure 2. Schematic Diagram for Angular Momenta in Deformed Nuclei.

$$E_{K,J} = E_0 + \frac{\hbar^2}{2ij} (J(J+1))$$
 (I-1)

where E_0 is a constant, and \Im is the moment of inertia of the nucleus. This latter quantity depends on the nuclear deformation. For the ground states of the very heavy elements, the value of $\hbar^2/2\Im$ is about 7 keV; for saddle point deformations, this figure becomes two or three times smaller. For an even-even nucleus, the ground state of the nucleonic structure has K=0, corresponding to a paired nuclear configuration. Assuming a reflection-symmetric shape, the spectrum contains for K=0, only the rotational levels with even J values 0, 2, 4..., which all have positive parity. If the nuclear shape is reflection-asymmetric, the situation is somewhat different and we shall discuss this problem later in more detail.

Thus, assuming axial symmetry for the nuclear shape at the saddle point, the channels could then be characterized by the quantum number K, representing the component of the nuclear angular momentum J about the symmetry axis, and M, the projection of J onto a space-fixed axis.

The probability distribution of the fission fragments as a function of direction is identical to the probability distribution of the direction of the symmetry axis of a symmetric top, having the same quantum numbers J, M, and K. This probability distribution can be expressed in terms

of a differential cross section 2 , $W_{K,M}^J(\theta)$, in the reaction plane, at a given angle θ by:

$$W_{K,M}^{J}(\Theta) \propto (2J+1) |D_{M,K}^{J}(\phi, \Theta, \gamma)|^{2}$$
 (I-2)

where $D_{K,M}^{J}(\phi, \Theta, \gamma)$ are the symmetrical top wave functions, and (ϕ, Θ, γ) are Euler angles of rotation. $W_{K,M}^{J}(\Theta)$ is independent of the polar angle ϕ , the angle γ of rotation about the symmetry axis, and the moments of inertia of the transition nucleus.

In 1956, Henkel and Brolley (He 56) observed that the angular distribution of fragments in neutron induced fission of 232Th near threshold, was concentrated in a direction normal to the incident neutron direction. Wilets and Chase (Wi 56) interpreted these results in terms of the Bohr model. They assumed that only a few rotational states were excited in the transition nucleus, and also that the direction of the separating fission fragments was that of the nuclear symmetry axis. Under these assumptions, the angular distributions could be described by the relation:

$$W_{K}^{J}(\Theta) \propto \int |\psi|^{2} d\phi d\Omega \propto |D_{K, 1/2}^{J}|^{2} + |D_{-K, 1/2}^{J}|^{2}$$
 (I-3)

From the shape of the experimental distribution, they deduced the identity of two channels which appeared to be

Differential cross section is defined as the cross section per unit solid angle, and it is given in millibarns per steradian (mb/sr).

involved and also determined the contributions of different J values to the intensity by a curve fitting procedure.

Hittmair (Hi 60), in a further development of the theory went back to first principles to determine relative intensities. He considered the problem in terms of the absolute probabilities for fission through the various channels. The probability amplitude was identified as being the product of the following factors:

- 1. Amplitude associated with the partial wave in the incident plane wave.
- 2. An element of reaction matrix for a transition from the state associated with the original even-even nucleus in its ground state, and the incident neutron in the state with quantum numbers (l, s, 0, μ) to the particular exit channel with quantum numbers JKM. This element of reaction matrix is represented by:

$$= < ls0\mu|JM>$$

where the second factor is the Clebsch-Gordan vector coupling coefficient.

3. The probability amplitude for the transition from the specified exit channel to a state in which the axis of nuclear symmetry lies within a certain solid angle.

Given the above factors then, the differential cross section would be given by the following expression:

$$\frac{d\sigma}{d\Omega} (\Theta) = 1/4\pi\lambda^{2} (2\ell+1) | \langle JKM|R| \ell s0 \mu \rangle |^{2} x$$

$$\frac{(2J+1)}{8\pi} [|d_{1/2,K}^{J}|^{2} + |d_{1/2,-K}^{J}|^{2}]$$
(I-4)

The $d_{1/2,K}^{J}$ functions will be defined in the next chapter.

In his classical review paper on fission, Wheeler (Wh 63) discussed, among other things, the types of channels which could be expected to contribute to the fission process at the saddle point. He gave great importance to the collective modes in fission, and particularly, developed a relatively simple theory in which he predicted different types of collective vibrations, by borrowing, in part, from the molecular theory. He discussed the roles of bending, sloshing, and of gamma vibrations (in which symmetry about the axis of extension is lost), and quantum numbers associated with each. Wheeler also gave estimates of the types of energies involved with the different kinds of motion, which he predicted by assuming the nucleus to be a liquid drop, and applying the hydrodynamic theory of motion. The role of the moment of inertia in the rotational spectrum and the couplings between different kinds of collective motion were also discussed. Wheeler recognized the fact that an accurate channel analysis of the fission process could not be carried out without including competition factors corresponding to other modes of decay, such as neutron and Y-ray emission. Under these circumstances, for neutron induced fission, he replaced the element of the reduced matrix in the treatment of Hittmair with an expression in terms of effective number of channels:

$$||^2 \propto \frac{Nn_1N_f(K,J)}{N_n+N_f+N}$$
 (I-5)

where the quantity N_{nl} measures the chance for the compound nucleus to break into a neutron plus the residual nucleus in its ground state. N_n measures the "yield effective number" of channels for all processes of emission of a neutron from a compound nucleus of the given J and parity π of excitation. Similarly, the quantity $N_f(J, \pi, K)$ in the numerator is but one of the contributions to the quantity $N_f(J, \pi)$ in the denominator corresponding to a sum over various fission channels.

Wheeler also summarized the information needed for channel analysis in the following terms:

- Accurate measurement of the fission cross section as a function of angle and energy.
- 2. The cross section for the formation of the compound nucleus with a specified spin and parity as a function of energy for each (J, π) that contributes significantly to the fission cross section.
- 3. The saddle point energy of each fission channel, and the characteristic barrier curvature $\hbar\omega$.
- 4. The effective number of fission channels leading out from a compound nucleus of given spin and parity. This is found by adding up the openings of all the channels which are accesible from that (J, π) .
- 5. The effective number of neutron channels accessible to a compound nucleus of given spin and parity.
- 6. The other levels of the residual nucleus and the opening of the channel leading to each of them as a function of energy.

In 1962, Lamphere (La 62) measured the fission cross section and fragment anisotropies 3 in the reaction 234U(n,f) for neutron energies between 0.4 and 3.8 MeV. He found that for incident energies between 850 and 1050 keV, the fission cross section was depressed in relation to other energies. He interpreted this in terms of the argument by Wheeler, that neutron inelastic scattering competes with fission to an extent dependent, in part, on available levels in the residual 234U nucleus. 4

Lamphere derived expressions connecting the measured shape of the anisotropy, with the structure of the transition nucleus. His analysis combined the probability of compound nucleus formation of a certain spin J, with an expression describing the shape of the angular distribution of the fission fragments expected for a certain combination of K and J. The result was an explicit expression for the differential cross section for fission which assumed no other types of competing processes such as neutron emission and γ -ray decay.

$$\sigma_{\mathbf{K}}(\Theta) = \frac{1}{4} \, \boldsymbol{x}^2 \, \sum_{\ell, \mathbf{J}} (2\mathbf{J} + 1) \, \mathbf{T}_{\ell, \mathbf{J}} \mathbf{W}_{\mathbf{K}}^{\mathbf{J}}(\Theta) \qquad (I - 6)$$

Anisotropy is defined as the ratio of the differential cross section at an angle near 0° to that at 90°.

 $^{^4\}mathrm{Since}$ then, this observation has been determined to be false. Recent developments in the theory of fission attribute the peaking and sudden depression in $\sigma_f(E)$ to the presence of resonances caused by the existence of a doubly humped fission barrier.

Here, the $T_{\ell,J}$'s are spin-dependent penetrabilities. These measure the probability that a particle with angular momentum ' ℓ ' will penetrate the nuclear potential of the target and create a compound nucleus of spin J. \hbar represents the rationalized wave length of the projectile (a neutron in this case), and $W_K^J(\theta)$ is a function which describes the angular distribution of the fission fragments, in a similar manner as in expression (I-3). Lamphere recognized the fact that only relative strengths (i.e., proportions) of the various K bands could be estimated since no allowance had been made for other types of decay of the compound nucleus, mainly neutron emission which was considered to be much more probable than fission.

This situation was very much improved by Vandenbosch (Va 67) who introduced fission barrier penetrability factors into the calculation and also accounted for competition from other modes of decay. The barrier penetrability factors were necessary because the old theory by Bohr had predicted that the fission excitation function should resemble the shape of a staircase, where the sudden jumps in the cross section would be caused by the sudden opening of new fission channels. Wheeler had earlier pointed out that actually these expected sudden leaps in the probability of fission should be smoothed out because the penetration of a quantum mechanical barrier is a gradual process which increases with energy at a rate that depends on the physical

characteristics of the fission barrier. The barrier was assumed to have the shape of an inverted harmonic oscillator potential, whose penetrability is given by the Hill-Wheeler expression (Hi 53):

$$T_f(E) = 1/(1+\exp[2\pi(E_f-E)/\hbar\omega])$$
 (I-7)

where E_f represents the height of the barrier, E is the excitation energy, and $\hbar\omega$ is a parameter which describes the curvature of the parabola. By using the fission data from Lamphere, Vandenbosch attempted to relate the K-band fission probabilities at one incident neutron energy to that at other incident energies. This was done by simultaneously fitting the fission cross section and the relative angular distributions as a function of energy, and by defining barrier heights E_f and curvatures $\hbar\omega$ for each fission channel. Although this analysis proved to be very innovative, no firm, unique K band assignments were possible. Instead, a number of choices were left available.

In 1968, Behkami et al. (Be 68) published a paper resembling, in form, that of Vandenbosch, in which the 235U fission transition nucleus was analyzed. Although similar in form, two important variations are noted. First of all, new data on fission fragment angular distributions at 16 angles and 9 neutron energies between 200 and 1184 keV were obtained. Secondly and most importantly, the analysis was done by simultaneously fitting, instead of the relative

angular distributions, the differential cross sections and total fission cross section, as a function of energy. introduction of the absolute fission fragment angular distributions permitted the elimination of many of the ambiquities in the analysis, and brought more coherence into the calculations. The result was, that within the framework of a simple and approximate mode of barrier penetration, it was possible to uniquely and firmly make assignments of the K values and parities of the channels in the transition nuc-The use of differential cross sections instead of relative angular distributions is important because in the former, absolute growth in the strength of a given channel is observed progressively with excitation energy. use of relative angular distributions only permits one to observe the relative increases in the strength of a certain band in relation to others. This practice also presents the problem that, if the 90° point is in error, it throws the whole distribution off, making the analysis somewhat unreliable, especially if only a few points are available in the data.

Until a few years ago the liquid drop model of fission provided the only base for the study of the fission process. According to this theory, a nucleus tends to assume a spherical shape under the influence of a surface tension, but in heavy nuclei it is prevented from doing so completely, by the strong repulsion provided by the coulomb force between

the protons, which acts as an agent of deformation in the nucleus.

In 1966, Strutinsky (St 66) developed a theory concerning shell effects in nuclear masses and energies of deformation, which proved to have far reaching consequences in the understanding of the nuclear fission process.

He argued that the old liquid drop model of the nucleus, which had been so convenient in describing nuclear masses and fission theories, was not sufficient anymore. The LDM was based on the assumption of a classically uniform distribution of nucleons in phase space, and thus ignored completely nucleon shell effects. He then decided to treat nucleon shell effects as small deviations from a uniform distribution. These deviations were termed "shell corrections". Under these conditions, the total energy of the nucleus was written as the sum of the LDM energy, the pairing correction δP , and the shell correction δE , for both protons and neutrons:

$$E = E_{LDM} + \sum_{p,n} (\delta E + \delta p) \qquad (I-8)$$

Using a simplified Nilsson level scheme for his calculations, Strutinsky obtained some startling results. He obtained large fluctuations for the shell correction as a

These are the effects caused by the non-uniformities of the spacings between the single particle levels in the nucleus.

function of nuclear deformation, especially for nuclei near magic numbers or midshells. He reached the important conclusion that the oscillations of δE reflected periodic changes in the single particle level density near the Fermi energy.

In near magic or midshell nuclei, the equilibrium deformation corresponds closely to the minimal density of nucleon states at the Fermi energy. Strutinsky pointed out that normally, the density fluctuations do not produce essential minima of the deformation energy because of the large dependence on the LDM surface energy. He observed however, that there were certain exceptions. One of these corresponds to the so called "fissionable" nuclei, where the effective LDM surface tension is small. The result was the appearance of a second minimum in the potential energy of deformation, as is shown in Figure 3.

Strutinsky's calculations were born out by the observation that, in many heavy nuclei (U, Pu, Am isotopes), one can populate an isomeric state of the nucleus that decays by spontaneous fission. These isomeric states are known to be states of the nucleus trapped in the minimum in the fission barrier. Their γ -ray decay to the ground state is greatly inhibited because it involves a change in the nuclear shape, while their spontaneous fission decay is enhanced because they have already partially passed over the fission barrier.

Figure 3. Effects of Shell and Pairing Corrections on the Shape of the Fission Barrier. The dashed line represents the LDM calculation, while the full line corresponds to the LDM + shell corrections.

The presence of a doubly humped fission barrier is responsible for the observation of strongly grouped subbarrier fission resonances in capture reactions with low energy neu-This is suggestive evidence for the existence of two weakly coupled sets of excited levels (Bj 69). In terms of Bohr's channel theory of fission, the pronounced structure in excitation functions for fission at energies near the barrier, introduces complications in the analysis of fission fragment angular distributions. Under these conditions, the penetrability expression (I-7) is no longer appropriate, but has to be replaced by a more complicated one which takes into account the penetration through two barriers instead of This immediately suggests that, unless the two humps one. in the fission barrier are not comparable in size, all previous calculations regarding channel analysis of fission are in error.

As the excitation energy above the fission barrier increases, the structure in the fission fragment angular distributions and cross section decreases rapidly, and the nucleus effectively "sees" only one barrier. According to Vandenbosch (Va 73), fragment anisotropies at moderate excitation energies are characteristic of the outer barrier deformation, while at very high energies (>50 MeV) shell effects disappear and the liquid drop barrier becomes determinative.

Recent statistical model calculations (Ba 73) of fission probabilities at moderate energies, taking into account competition between fission, neutron emission, and y-ray deexcitation of the compound nucleus, suggest that fission widths which are greater by about a factor of four than those calculated, are necessary to reproduce the magnitude of the measured fission probabilities. This development implies that up to now, theoretical considerations have underestimated the number of fission channels above the fission barrier by a factor of about four. Recent theories (Bj 73) resulting from this observation suggest that arguments regarding the symmetry of the nuclear shape at high deformations are partially responsible for the noted increase in the number of fission channels. The basic reason for this increase lies in the fact that, the number of rotational energy levels in a nucleus, or for that matter, in a molecule, increases with the degree of asymmetry offered by the body shape. Recent calculations (Ni 72) regarding the nuclear shape tend to indicate that the nucleus has a reflection-asymmetric shape at the deformation, corresponding to the second barrier. This would immediately increase rotational contributions to the channel spectrum by a factor of two. Not only is the high number of channels caused perhaps by non-counted rotational states, but also possibly by the neglect of vibrational contributions. It is even possible, as we shall see in a later chapter, that important

collective effects have consistently been neglected at the nuclear equilibrium deformation.

B. Short Overview of Fission Barrier Calculations

Shortly after Strutinsky developed his theory concerning fission barrier shapes, people around the world began studying the applications of the shell corrections to the liquid drop model and some very sophisticated theoretical calculations have been carried out in connection with many fissioning systems. Most of them have adopted the so called macroscopic-microscopic approach, in which the average behavior of the sum of the single particle level energies is normalized to that of the liquid drop.

As pointed out by Nix (Ni 72), the calculations of the potential energy of deformation by means of this approach consist of five steps:

- 1. Specify nuclear shape.
- 2. Calculate macroscopic (LDM) energy.
- 3. Generate single particle potential felt by nucleus.
- 4. Solve Schrödinger equation for single particle energies.
- 5. Calculate microscopic (shell and pairing) corrections.

The total potential energy is then given by the sum of the macroscopic energy calculated in step two, and the microscopic corrections calculated in step five.

Until recently, these calculations were carried out including only shapes of the nucleus that were symmetric with respect to reflection in the x-y plane. The results in

these cases were that the predicted second barrier height appeared systematically too high in relation to the experimental evidence. Although several people had previously conjectured that at very high P, deformations, the liquid drop energy surface was "soft" to asymmetric shape distortions that involve a certain combination of P, and P, deformations, b it was not until recently, that it was specifically determined that for nuclei in the actinide region, the asymmetric deformations were responsible for a general decrease in the potential energy of the second barrier (Mo 70, 72, 73). The mass asymmetry associated with the second peak was first demonstrated by Moller and Nilsson with a modified harmonic oscillator potential (Mo 70). Also, whereas the first saddle point is stable with respect to reflection asymmetry it is found to be unstable with respect to axial symmetry (γ -deformations), in some cases lowering the energy by about one MeV (Ni 72).

Calculations in this region also show that as the proton number decreases towards thorium, the second barrier increases in height systematically and becomes significantly larger than the first barrier. This qualitative trend has been observed experimentally and reported in a recent paper by Back et al. (Ba 73, 73a). Although theoretical

 $^{^6}$ P₂ deformations are those associated with stretching of the nucleus in the fission degree of freedom, while P₃ and P₅ distortions signify right-left asymmetry.

calculations of the two barriers for these elements agree remarkably well with experimental findings, ²³⁰Th presents the problem that both its secondary minimum and first saddle point are higher by about 3 MeV than the theory predicts. These discrepancies constitute the "thorium anomaly".

In the case of radium, calculations predict that for all intents and purposes, the fission barrier is essentially single humped. Theoretically, Brack et al. (Br 72) estimate the height of the inner barrier in the case of 228Ra to be about 2.4 MeV, compared to an outer barrier height of 8.2 MeV. This latter figure would agree very well with recent calculations by Moller and Nix (Ni 73), which tentatively place the outer barrier height in 226Ra at about 8.2 MeV also. Some inconclusive evidence supporting the concept of a comparatively small inner barrier for radium is reported by Kuks et al. (Ku 73) who, after irradiating 226Ra with neutrons at various energies, found no evidence of isomeric fission present in the samples. We will come back to this point as we develop the statement of the problem concerning the present work.

C. Statement of a Problem

While these fission barrier calculations appear to describe reasonably well the experimental data on spontaneously fissioning isomeric states, they have not, in general, been rigorously tested as to how well they predict the low energy

single particle level spacings at the saddle point, and few if any, tests have been made concerning predictions of fission barrier structure in nuclei with Z \lesssim 90.

In the search for systems that could yield important information in this respect, the isotopes of radium stand They are considered to be in the intermediate region between heavy and light fissioning nuclei, and they are endowed with a series of unique properties in relation to other nuclei. For example, we might comment briefly in phenomena related to the mass distribution of fission fragments in connection with this mass region. Low excitation energy fission of higher Z-actinide nuclei is typically asymmetric, characterized by a double humped mass distribu-On the contrary, nuclei near Pb and Bi exhibit a symmetric mass distribution. However, for fission of nuclei in the intermediate region (Ra and Ac), a triple humped mass distribution with well established minima between the three mass yield peaks is observed. As the excitation energy is increased, the yield of symmetric fission increases rapidly. The origin of these phenomena is still being debated. It has been suggested that the triple-humped mass distribution is the result of a superposition of two different fission components, a symmetric one, appropriately described by the liquid drop model, and an asymmetric component, whose origin is believed to be determined by the influence of the shells in the nascent heavy fragments. The

question arises as to when, in the fission process, is the mass distribution decided? Or, what set of conditions determines the mode of fission which the nucleus will exhibit? There are those who believe that the mass distributions are decided at the saddle point, while others prefer to think that it is actually decided by the nucleus on its way towards scission from the saddle point.

The experimental data obtained recently by Konecny et al. (Ko 73) for excitation energies up to 15 MeV on the compound systems 225 Ra, 227 Ra, 226 Ac, 227 Ac, and 228 Ac would tend to support the argument that the mass distributions are decided at the saddle point. For all the above systems, they find that the variation of $\sigma_{\rm f}({\rm E}^*)$ as a function of excitation energy is quite different when both mass components are considered separately. (see Figure 22). The asymmetric component dominates totally at low energies; as the energy increases, symmetric fission increases at a relatively slow rate until, at about 12 MeV of excitation, the contributions from both modes are about equal. Presumably, then two barriers would be available; a lower asymmetric barrier, and a higher symmetric barrier, two or three MeV above the former.

The data obtained by Nobles and Leachman (No 58) on the 226 Ra(n,f) reaction also shows that the mass distribution changes from one asymmetric in character at neutron energies below 4.6 MeV, to one predominantly symmetric at energies above $E_n = 10$ MeV. A complete analysis of the structure of

the ²²⁷Ra transition nucleus in this region might yield evidence concerning the nature of the corresponding mass distribution. That is, the existence of a mass symmetry dependent path to fission for the transition nucleus, might be reflected in the energy dependence of the parameters that describe the state of the transition nucleus over the appropriate energy range.

Recently, Babenko and coworkers (Ba 68, 69, 70) and also Ippolitov et al. (Ip 72) have reported some very unusual data concerning the 226Ra(n,f) reaction. Their published data on the energy variation of the fission cross section and angular distributions is shown in Figures 4 and 5. Of great interest are the sharp variations in the anisotropy as the cross section steadily increases at neutron energies, En, between 3.6 and 3.9 MeV. It is also important to notice the steady decrease in the anisotropy as the cross section remains relatively unchanged in the region 3.9 \leq E_n \leq 4.7 Then there is a step in the cross section corresponding to En = 4.7 Mev, and for neutron energies ranging between 5.4 and 9.0 MeV, the fission cross section increases slowly and monotonically. We also notice that anisotropies remain relatively constant between $E_n = 5.4$ MeV and En = 7.1MeV, with certain changes observed for $E_n > 7.1$ MeV. From 9.0 MeV to the last point at 14.8 MeV, the cross section increases more rapidly, and very unusual features in the

Figure 4. Fission Cross Section and Anisotropy vs. Neutron Energy for Neutron Induced Fission of 226Ra from References (Ba 68, Ba 69 and Ip 72).

Figure 5a. Fission Fragment Angular Distributions in Neutron Induced Fission of ²²⁶Ra for Neutron Energies between 3.6 and 6.7 MeV from References (Ba 68, Ba 69 and Ip 72).

Figure 5b. Fission Fragment Angular Distributions in Neutron Induced Fission of 226Ra for Neutron Energies between 7.1 and 13.6 MeV from References (Ba 68, Ba 69 and Ip 72).

Figure 5c. Fission Fragment Angular Distributions in Neutron Induced Fission of ²²⁶Ra for Neutron Energies between 14.4 and 14.8 MeV from References (Ba 68, Ba 69 and Ip 72).

angular distributions are noticeable at neutron energies equal to 14.4 and 14.8 MeV.

Babenko et al. correctly point out that the rapid changes in the cross section near the threshold are usually due to the opening of new fission channels. From the raw data, they estimate the fission barrier to be about 8.5 MeV Normally, a step in the cross section, such as the one observed above $E_n = 4.7 \text{ MeV}$ is interpreted as being caused by fission after neutron evaporation. In the case of radium, this interpretation is completely ruled out. Assuming that the binding energy released when a neutron is added to the ²²⁶Ra nucleus is about 4.5 MeV, an incident neutron with a kinetic energy of 4.7 MeV produces a compound nucleus with an excitation of about 9.2 MeV. If the nucleus decays by neutron emission, the average energy of the outgoing neutron is roughly 1.5 MeV. This means that the residual nucleus is left with an average excitation of about 3.2 MeV, which is considerably less than the fission barrier height of 8.5 MeV and thus second chance fission is very improbable.

Their analysis of the data includes some over-simplifying assumptions. The expression for the fission cross section in their analysis was written in the following form:

$$\sigma_{f}(E_{n}) = \sum_{J\pi} \sigma_{c} (J, \pi, E_{n}) \frac{N_{f}(J, \pi, E_{n})}{N_{n}(J, \pi, E_{n})}$$

where N_f and N_n are the effective numbers of fission and neutron channels respectively (neutron emission is assumed to be overwhelming dominant in relation to other modes of decay), σ_c is the capture cross section for neutrons, and J,π are the angular momentum and parity of the nucleus respectively. They assumed that the quantity $N_n(J,\pi,E_n)$ remained constant for incident neutron energies between 3.5 and 5.0 MeV. As we shall demonstrate later, this is a poor assumption, since the energy levels in the residual nucleus increase exponentially with excitation energy.

The angular distributions of the fission fragments were analyzed by fitting Legendre polynomials to the $\sigma(\theta)/\sigma(90)$ data. Although this method gives an idea of the nature of some of the channels involved, it does not predict their positions. In the same manner, no account was taken of the energy differences between the different J members of a given K rotational band. Also the fits to cross sections and angular distributions were carried out not simultaneously, but separately. As we mentioned before, this latter procedure presents the problem that we are constrained in the amount of information that can be extracted regarding the absolute contributions to the cross sections from individual channels. We are allowed only to speculate about the relative strengths of certain K bands in relation to others.

Finally, it was assumed that the step in the cross section is caused by the existence of two barriers, one lower,

characterized by negative parity states, and another one, higher, characterized by positive parity states at higher energies. In reality, there is no physical reason for adopting such a scheme.

The development of this introductory part has led us to the following conclusions:

- l. Very peculiar features are observed in the cross section and angular distribution data reported by Babenko and co-workers and Ippolitov et al. regarding the $^{2\,2\,6}$ Ra(n,f) reaction.
- 2. The triple humped mass distribution in the fission of radium isotopes might be caused by two different components, each being characteristic of a particular mass region.
- 3. There is no agreement between theoretical calculations and experimental observations regarding the fission barrier in the thorium isotopes, while the agreement is good for heavier nuclei.
- 4. The fission barrier in radium is predicted to be double humped, but the first hump can be considered, for all intents and purposes, negligible in relation to the second hump; the latter is predicted to have a height of 8.2 MeV above the ground state.
- 5. Recent evidence indicates that the number of channels at the saddle point is underestimated by a factor

of about four, possibly because of the neglect of collective contributions to the fission width.

It is the purpose of this work to study the fission transition nucleus ²²⁷Ra by analyzing the experimental data reported by Babenko et al., and Ippolitov et al. The analysis should be facilitated by the fact that the fission barrier can be assumed to be single humped. It should give some degree of indication as to whether the anomaly reported for thorium is only observed for Z = 90, or in radium also. At the same time, it is the intention of this work to investigate the problem regarding the collective contributions in fission. Finally, it is hoped that the analysis of the experimental data might yield some tentative evidence regarding the stage at which the mass distribution is decided in fission. We hope to accomplish this, by what we think is a substantial improvement over the method of analysis employed by Babenko, Ippolitov and collaborators.

D. Scope

It is clear that the ^{2 2 6}Ra(n,f) data measured in references (Ba 68, 69, 70) and (Ip 72), covers a fairly complete range of energies. Near the fission threshold, the nature of the transition nucleus structure requires that the analysis be discrete, since we are dealing with only a few channels above the fission barrier. As the excitation of the nucleus increases, the system must be described in terms of

parameters that emphasize the statistical behavior of the nucleus. This behavior will then be compared with theoretical predictions based on different assumptions regarding the nuclear shape at the transition state.

As we shall see later, the question regarding the nuclear shape is not a trivial one. The symmetry of the nucleus plays an important role in determining the degree of freedom involved in the fission process, which are associated with that part of the wave function that describes the collective motion of the nucleons.

Therefore, we shall proceed now to develop the model and, as we go along, a description will be made of the assumptions employed in this calculation.

II. DEVELOPMENT OF THE CALCULATIONAL MODEL

A. General Aspects of the Calculations

We might begin to develop the model for transition state spectroscopy by describing the fate of the compound nucleus formed by the absorption of a low energy neutron. The nucleus is excited to an energy which is equal to the sum of the neutron binding energy, plus the kinetic energy of the neutron, minus a negligible amount corresponding to the recoil energy. The excited nucleus then has essentially three modes of decay available for de-excitation. It might emit γ -rays, in which case only levels of the compound nucleus will be populated; it also has the possibility of emitting one or more neutrons, depending upon the excitation energy, and thereby population levels in the residual nucleus of lower A; or it might alternatively, choose the path to fission, in which case, given channels in the transition nucleus will be population.

If we assume that statistical equilibrium is reached before the compound nucleus has a chance to decay, then we can describe the probability for a particular type of deexcitation as a suitably weighted fraction of the neutron absorption cross section. The suitably weighted fraction of the absorption cross section is formed by computing the ratio of the relative number of a particular type of

de-excitation channels to the total possible number of deexcitation channels.

The number of available channels can effectively be described in terms of the average width for a particular process, and the average level spacing between resonances of given total angular momentum and parity. Mathematically, the effective number of channels for a certain process may be written in the following way:

$$N_{f} = 2\pi \frac{\langle \Gamma_{J} \ell^{\pi} \rangle}{\langle D_{J}^{\pi} \rangle}$$
 (II-1)

where N_f is equal to the effective number of channels. $<\Gamma_{J\ell}\pi>$ is equal to the average width for a certain channel of total angular momentum J, orbital angular momentum ℓ and parity π ; and $<D_J\pi>$ is equal to the average level spacing between compound nuclear resonances of given spin and parity. As we will show, the effective number of channels can be computed using the transmission coefficients for given processes. If then, we wish to calculate the partial cross section for a given process, we can incorporate these transmission coefficients into a Hauser-Feshbach calculation in an appropriate manner (Ha 52).

In 1964, Moldauer et al. (Mo 64) created a computer code for calculating energy averages of integrated compound nucleus scattering, capture, and fission cross sections.

This code incorporated features from the Hauser-Feshback approach to particle scattering, the Blatt-Weisskopf theory

for γ -ray emission, and the effects of level width fluctuations. The partial cross sections for the given processes could be obtained from the expression:

$$<\sigma_{\ell}^{\alpha\alpha'}>=\frac{\pi^2}{k^2}$$
 (2J+1) $\frac{<\Gamma_{\lambda J \ell}^{\alpha}><\Gamma_{\lambda J \ell}^{\alpha'}>}{<\Gamma_{\lambda J}>}$ x S\alpha\alpha' (II-2)

where $\sigma_{JL}^{\alpha\alpha'}$ is equal to the cross section for partial wave ℓ , entrance channel α , exit channel α' near an isolated resonance λ of total angular momentum J. k is equal to the wave number of the incident neutron, $\langle \Gamma_{\lambda JL}^{\alpha} \rangle$ to the partial width for entrance channel α , $\langle \Gamma_{\lambda JL}^{\alpha'} \rangle$ to the average partial width for the exit channel α' , $\langle \Gamma_{\lambda J} \rangle$ to the average total width of the resonance, and $\langle D_{\lambda J} \rangle$ is equal to the average level spacing between resonances of given spin and parity.

 $S\alpha\alpha'$ represents the level width fluctuation correction factor. Its magnitude depends on the number of degree of freedom, if it is assumed that the partial widths are distributed according to a χ^2 family of distributions. This quantity arises from the fact that the average of a ratio is not in general equal to the ratio of the averages, and the original Hauser-Feshbach expression is as follows:

$$\langle \sigma_{J\ell}^{\alpha\alpha'} \rangle = (2J+1) \left(\frac{\pi^2}{k^2}\right) \frac{1}{\langle D_{\lambda J} \rangle} \langle \frac{\Gamma_{\lambda J\ell}^{\alpha} \Gamma_{\lambda J\ell}^{\alpha'}}{\Gamma_{\lambda J}} \rangle$$
 (II-3)

and therefore:

$$S\alpha\alpha' = \frac{\langle \Gamma \alpha \Gamma \alpha' \rangle \langle \Gamma \alpha' \rangle \langle \Gamma \alpha' \rangle}{\langle \Gamma \alpha J \rangle \langle \Gamma \alpha J \rangle \langle \Gamma \alpha J \rangle}$$
(II-4)

In the particular case of the 226 Ra(n,f) reaction analysis, where the number of neutron exit channels is very large, $S\alpha\alpha'$ becomes essentially unity, and therefore, it will be neglected in the analysis.

In 1968, Behkami et al. (Ba 68) extended the above formalism to allow a microscopic description of the fission exit channels in terms of the states of the transition nucleus, and to allow the calculation of fission fragment angular distributions.

In the calculations described in the present work, the same approach has been adopted with some important changes. The computer program of Behkami et al. was modified (see Appendices III and IV) to take into account up to 60 fission channels instead of the original five. In addition (as we shall describe in more detail in another section), an option has been added to the program that permits the exit neutron channels to be treated in a statistical manner. This was done because in the original program it was only possible to treat up to 26 neutron exit channels.

Because of the wide range of excitation energies studied in this project, it was also necessary to extend the formalism in such a way as to include a statistical treatment of the fission channels when they could no longer be treated discretely. This at the same time, called for the extension of the subprogram that calculates the angular distributions, to treat any desired values of the (K,J) quantum numbers.

It is important to point out that although the shape of the formalism remains basically the same, the substance and depth are somewhat changed. For the sake of completeness and clarity, we have decided to proceed with the description of both what is old and what is new in the substance of the calculation, with the hope that it will provide a better understanding of the theory behind this work.

In order to express the partial reaction probabilities in terms of transmission coefficients, Moldauer et al. proceeded to replace the neutron and exit channel partial widths with optical model transmission coefficients using the relation:

$$T_{\lambda J \ell} = \frac{2\pi}{\langle D_{\lambda J \ell} \rangle} \langle T_{\lambda J \ell} \rangle \qquad (II-5)$$

The partial widths for γ -ray decay of the compound nuclear state λ , spin J, parity π , and excitation energy U in equation (II-5) were replaced by transmission coefficients using the expression:

$$\mathbf{T}_{\lambda\gamma}(\mathbf{J},\pi,\mathbf{U}) = 2\pi \langle \mathbb{I}_{\lambda\gamma}(\mathbf{J},\pi,\mathbf{U}) \rangle \rho(\mathbf{J},\pi,\mathbf{U})$$
 (II-6)

where $\rho(J,\pi,U)$ is the density of (J,π) levels at excitation energy U. The energy dependence of the average radiation width was given by the Blatt-Weisskopf formula for dipole γ -ray emission:

$$\Gamma_{\lambda\gamma}(U) = C_1 \int_{\Omega}^{U} \frac{\rho(U-E)}{\rho(U)} E^3 dE$$
 (II-7)

with Ericson's formulation of the energy dependence of the level density

$$\rho(U) = C_2 \exp (2\pi^2 U/3\delta)^{\frac{1}{2}}$$
 (II-8)

In the above equations, C_1 , C_2 , and δ are constants, the latter being of the order of the average spacing between single particle levels. Thus, the energy dependence of $T_{\lambda\ell}$ was given by the function:

$$X(U,\delta) = e^{X}[x^{4}-10x^{3}+45x^{2}-105x+105]$$
 (II-9)

where $x = \sqrt{2\pi^2 U/3\delta}$. The functional form of the angular momentum dependence of the level density was given by:

$$F(J) = \exp(-J^2/2\sigma^2) - \exp[-(J+1)^2/2\sigma^2]$$
 (II-10)

where σ is the familiar spin cutoff parameter. Combining the above equations we get:

$$T_{\lambda\gamma}(J,\pi,E) = 2\pi \left(\frac{\Gamma_{\gamma}}{D}\right)_{0} \frac{F(J,\sigma)X(U_{0}+E,\delta)}{\left[F(\frac{1}{2},\sigma)\right]X(U_{0},\delta)}$$
 (II-11)

where $(\Gamma_{\gamma}/D)_{O}$ is the measured ratio of the average radiation width to level spacing for compound nuclear states populated by s-wave neutrons of zero energy, E is the neutron energy, and U_{O} is the neutron binding energy. For the case of radium at high excitation energies, γ -ray emission contributes very little to the total cross section. Therefore, the accuracy of the parameters used is not crucial to the calculation of the fission cross section. However, the parameter δ can be related to the level density parameter

an, which determined the slope of the log of the level density vs. the excitation energy in the compound nucleus.

The partial widths for fission through an exit channel of given (J,K,π) were replaced by transmission coefficients given by:

$$\mathbf{T}_{\lambda \mathbf{f}}(\mathbf{J}, \mathbf{K}, \boldsymbol{\pi}, \mathbf{E}) = (2\pi/\langle \mathbf{D}_{\lambda \mathbf{J}} \rangle) \langle \Gamma_{\lambda \mathbf{f}}(\mathbf{J}, \mathbf{K}, \boldsymbol{\pi}, \mathbf{E}) \rangle \qquad (II-12)$$

As was mentioned before, in order to calculate the transmission coefficients for fission, the fission barrier was assumed to have the shape of an inverted parabola. Hill and Wheeler (Hi 53) have shown that the penetrability is then given by:

$$T_f(J,K,\pi,E) = \{1+\exp[2\pi(E_f(J,K,\pi)-E_n)/\hbar\omega]\}^{-1}$$
 (II-13)

where E_n is equal to the incident neutron energy, $E_f(J,K,\pi)$ is the fission barrier height relative to the neutron binding energy, associated with the state (J,K,π) of the transition nucleus, and $\hbar\omega$ is equal to the barrier curvature parameters.

We can see that for small values of $\hbar\omega$, the barrier is thick, and penetration only takes place close to the top of the barrier. As $\hbar\omega$ increases, the barrier becomes thinner, and penetration becomes a more gradual function of energy. The barrier height is usually calculated assuming the following expression:

$$E_{f}(J,K,\pi) = E_{o} + (h^{2}/2 \frac{J_{1}}{J_{2}}) [J(J+1) - \alpha(-1)^{J+\frac{1}{2}} (J+\frac{1}{2}) \delta_{K,\frac{1}{2}}]$$
(II-14)

where E_0 is the constant representing the base of the rotational band, \mathcal{I}_{\perp} is equal to the nuclear moment of inertia about an axis of rotation perpendicular to the nuclear symmetry axis, α is the decoupling constant for $K=\frac{1}{2}$ bands, and δ is the familiar Kronecker delta.

It is worth mentioning that as the nucleus becomes more and more elongated, 51 increases. The effect of this increase for highly deformed shapes is to lower the effective barrier corresponding to the different members of the rotational band, and thereby increasing the fission probability.

Once the transmission coefficients have been defined, they can be replaced in the Hauser-Feshback expression, to obtain the cross section for neutron induced fission through a state (K,J,π) of the transition nucleus, in the following manner:

$$\sigma_{\mathbf{f}}(K,J,\pi) = \pi \pi^{2} \frac{(2J+1)}{2} T_{\ell J} (E_{\mathbf{n}})$$

$$\times \frac{2T_{\mathbf{f}}(K,J,\pi)}{\sum_{K} 2T_{\mathbf{f}}(K,J,\pi) + T_{\gamma}(E,J,\pi) + \sum_{E',\ell',J'} T_{\ell',J'}(E')}$$
(II-15)

where E_n is equal to the incident neutron energy, π is the reduced wave length of the neutron, and T_f , T_γ , and $T_{\ell j}$ have already been defined. The primed quantities refer to energy levels in the residual nucleus. Therefore, these neutron transmission coefficients are "inverse reaction coefficients". They are evaluated at an energy which is the

difference between the incident neutron energy, and that of the level which is being fed. In the calculation, angular momentum and parity are, of course, conserved, and only certain values of & are allowed to populate levels in the residual nucleus. The transmission coefficients for fission are counted twice, in order to account for the possibilities of two projections of the angular momentum over the nuclear symmetry axis.

The question regarding the angular distribution of the fission fragments hinges on the assumption that when the nucleus reaches the saddle point, the K quantum number, which is the projection of the total angular momentum over the nuclear symmetry axis, becomes a constant of the motion. This assumption would clearly become invalid in the event that the nucleus lost axial symmetry.

Assuming then, axial symmetry, the dynamics of the dividing nucleus is compared with the dynamics of a symmetric top. In other words, the probability distribution in space of the fission fragments is taken to be the same as the probability distribution in direction of the symmetry axis of a symmetric top, which has: (1) The same total angular momentum quantum number J; (2) The same quantum number M for the component of the angular momentum about the space fixed axis "s"; and (3) The same quantum number K for the component of the angular momentum about the symmetry axis of extension.

The wave equation of the rotator is given by the expression for the symmetric top:

$$\psi = D_{MK}^{J}(\phi, \Theta, \chi) = e^{iM\phi} d(\Theta)e^{iK\chi}$$
 (II-16)

where φ , Θ , and χ are the familiar Euler angles, and $d\,(\Theta)$ will be defined later.

The probability that a fissioning nucleus will be oriented in a certain way will be given by an expression:

d(probability) =
$$\frac{2J+1}{4\pi} |D_{M,K}^{J}(\phi,\theta,\chi)|^2 2\pi \sin\theta d\theta$$
 (II-17)

For neutron induced fission of even-even nuclei, the above two equations yield the following relation for the angular distribution:

$$W_{M,K}^{J}(\Theta) = \frac{1}{4}(2J+1) \left[|d_{M=\frac{1}{2},K}^{J}(\Theta)|^{2} + |d_{M=-\frac{1}{2},K}^{J}(\Theta)|^{2} \right] (II-18)$$

where the d functions are given by:

$$d_{M,K}^{J}(\Theta) = [(J+M)!(J-M)!(J+K)!(J-K)!]^{\frac{1}{2}}$$

$$\times \sum_{X=0}^{\infty} \frac{(-1)^{X}[\sin(\frac{1}{2}\Theta)]^{K-M+2X}[\cos(\frac{1}{2}\Theta)]^{2J-K+M-2X}}{(J-K-X)!(J+M-X)!(X+K-M)!X!}$$
(II-19)

where the sum is over x = 0, 1, 2, 3, ... and contains all terms in which no negative value appears in the denominator, for any one of the quantities in parentheses.

Some typical $W_{M,K}^J$ functions are shown in Figure 6. These serve to illustrate the point that the fission fragment angular distributions can be used as "fingerprints" to

Figure 6. Theoretical Fission Fragment Angular Distributions for Neutron Induced Fission of Even-Even Targets Assuming Fission Proceeds through a State of Given (K,J,M) in the Transition Nucleus.

clarify the identity of the fission channels. For example, $K = \frac{1}{2}$ bands are the only ones responsible for angular distribution peaking at 0°. Therefore, when forward peaking is observed, this represents the unqualified signature of $K = \frac{1}{2}$ character in the transition state spectrum. Assuming that all the parameters are known, the fragment distribution associated with fission through a channel of given K can readily be computed from the expression:

$$W_{K}(\Theta) = \sum_{J,\pi,M} \sigma_{f}(J,K,\pi)W_{MK}^{J}(\Theta) \qquad (II-20)$$

once the various partial fission cross sections have been determined.

In reality though, some of the variables are not known, and the way the calculation is carried out is to assume, in a trial and error basis, values for some of the parameters, until the experimental data have been fit in the most statistically significant manner. The free parameters in the two regions singled out for calculation, namely, moderate and low energies, are not the same. They will be specified as each section of the calculation is individually described.

B. The Role of Neutron Emission

By far, the dominant mode of decay of the excited compound nucleus for incident neutron energies between 3.6 and 14.8 MeV, is the emission of neutrons to energy levels in the residual nucleus. This neutron emission represents ~95% of the decay events observed in this region. Therefore, in computing the cross section for fission, we see that the denominator in the Hauser-Feshbach expression (II-15) will be largely determined by the neutron emission probability factor.

Under normal circumstances, the neutron emission term in the denominator of the Hauser-Feshbach expression (II-15) represents a summation of transmission coefficients for decay to levels of energy E' in the residual nucleus in the range of excitation energies from 0 to the incident neutron energy. Because not all combinations of (ℓ', J') are allowed due to momentum conservation arguments, the sum only takes place over a restricted selection of these values. If these energy levels in the residual nucleus are known, the sum can be made in an exact manner; however, at moderate excitation energies encountered in this work, two complications come into play. In the first place, the residual nucleus levels are only known up to a relatively low value of the excitation energy, and secondly, even if the levels were known accurately, their number would seriously lengthen the calculation in terms of computer time, making it impractical. In the individual case of 226Ra, the energy levels are only known to 0.445 MeV. The lowest neutron energy for which we have data available corresponds to 3.6 MeV. means that any summation in terms of energy levels should be

performed up to this energy. Of course, the same situation applies for the whole set of neutron energies.

The way in which we have decided to treat this problem is to assume a continuous distribution of levels from the ground state to the incident neutron energy. In this manner, for a given neutron partial wave with a (ℓ ', J') combination and kinetic energy (ℓ _k), decaying into a small number interval of levels dN of spin and parity ℓ _n and energy (ℓ _n- ℓ _k) of the target nucleus, the effective number of channels dP is given by the relation:

$$dP = T_{\ell,J,L}(E_k) dN_{T\pi}(E_n - E_k)$$
 (II-21)

For a small enough energy interval the number of levels $dN_{\text{I}\pi}(E_n - E_k) \text{ can be expressed in terms of the local level density:}$

$$dN_{I\pi}(E_n-E_k) = \rho(E_n-E_k)d(E_n-E_k)$$
 (II-22)

Substituting the above expression in (II-21) and integrating over $\boldsymbol{E}_{\mathbf{k}}$, we get:

$$P_{\ell,J}(I\pi) = \int_{0}^{E_{n}} T_{\ell,J}(E_{k}) \rho(E_{n}-E_{k}) d(E_{n}-E_{k}) (II-23)$$

By reversing the limits of integration and differentiating (E_n-E_k) with respect to E_k , we get:

$$P_{\ell'J'}(I\pi) = \int_{E_n}^{o} T_{\ell'J'}(E_k)\rho(E_n - E_k) dE_k \qquad (II-24)$$

The effective number of neutron channels of all (ℓ ', j') decaying into all (I, π) levels of the residual nucleus for all allowed excitation energies is given by the relation:

$$\sum_{\mathbf{E'}} \sum_{\mathbf{l'J'}} \mathbf{T_{\mathbf{l'J'}}}(\mathbf{E'}) \rightarrow \sum_{\mathbf{I,\pi}} \sum_{\mathbf{l'J'}} \sum_{\mathbf{E_n}} (\mathbf{T_{\mathbf{l'J'}}}(\mathbf{E_k}) \rho_{\mathbf{I\pi}}$$

$$(\mathbf{E_n-E_k}) d\mathbf{E_k}]$$

$$(\mathbf{E_n-E_k}) d\mathbf{E_k}]$$

In order to be able to evaluate this expression we must know the dependence on energy of the different neutron transmission coefficients, and that of the level density.

1. The neutron transmission coefficients

The evaluation of the different $T_{\ell'j'}(E_k)$, requires the use of an appropriate optical model code. To make use of such a code in a continuous manner as would be required in the evaluation of an integral would prove cumbersome because of the complexity of the calculation. For neutron energies below 3 MeV, the tables produced by Perey and Auerbach (Au 62) of neutron transmission coefficients, are very useful, and have enjoyed widespread use. However, as we have pointed out, neutron energies encountered in the $^{226}{\rm Ra}({\rm n,f})$ data go up to almost 15 MeV, and therefore the above tables are not appropriate for our use. Meldner and Lindner (Me 64) have calculated values of the transmission coefficients for several values of the atomic mass, and for values of ℓ corresponding to $0 \le \ell \le 7$, as a function of

neutron energy. We have used the Meldner-Lindner $T_{\ell'j'}$ values for A = 232 to represent the $T_{\ell'j'}$ values needed in our calculation for these reasons. In the first place, we have not been able to find any specific data for $T_{\ell'j}$ values corresponding to A = 226 specifically. Secondly, the dependence of the transmission coefficients is expected to be on $A^{1/3}$ rather than on A and therefore, the use of values corresponding to A = 232 rather than A = 226 should make very little difference in the final results (Bo 69). Finally, quite good agreement is obtained between the calculations of total reaction cross sections using the Meldner-Lindner $T_{\ell'j'}$ values and the experimental data on 2^{32} Th of Batchelor et al. (Ba 65). This agreement is shown in Table I.

Table 1. Inelastic Cross Sections for 232Th(n,n') Reaction.

E _n (MeV)	n(MeV) Experimental*	
3	2.96 b.	3.11 b.
4	2.85 b.	2.90 b.
7	2.77 b.	2.90 b.

^{*} Batchelor et al. (Ba 65)

In order to simulate analytically the energy dependence of the transmission coefficients for the purpose of evaluating the compound expression (II-24) we fitted this energy dependence using a non-linear least squares calculation with five free parameters. Fits were made for each value of ℓ

^{**} Meldner and Lindner (Me 65)

between 0 and 7. In all cases the same functional form was used, but of course, with different values of the free parameters. The general form of this relation is:

$$T_{\ell}(E_k) = \frac{\alpha}{1 + \exp[\beta(\gamma - E_k)]} + \delta E_k^{\xi}$$
 (II-26)

where α , β , γ , δ and ξ are free parameters. Table II shows the best values of these constants for the different ℓ waves, and Figures 7 through 10 show plots of the real neutron transmission coefficients and our empirical fits using expression (II-26).

Table II. Parameters used in Calculating Compound Neutron Transmission Coefficients.

l	α	β	Υ	δ	ξ
0	0.30	-0.2272	-5.250	0.36900	0.27150
1	1.00	8.1300	0.257	-0.05030	0.08210
2	0.35	2.8530	1.242	0.08972	0.49590
3	1.00	3.0550	1.574	-0.03078	0.48730
4	0.50	1.5220	3.099	0.00933	0.06276
5	0.50	1.1720	3.855	-0.04660	-0.50000
6	1.00	1.0939	6.865	0	0
7	1.00	0.6743	7.305	-0.00008	-1.00000

For some of the \$\ell\$ values, the fits deviate from the original curves at energies above 5 MeV. This however, does not introduce an important source of error in the calculation of the "compound transmission coefficients" because of

Figure 7. Neutron Transmission Coefficients for A=232 Corresponding to $\ell=0$ and $\ell=1$.

Figure 8. Neutron Transmission Coefficients for A=232 Corresponding to $\ell=2$ and $\ell=3$.

Figure 9. Neutron Transmission Coefficients for A=232 Corresponding to $\ell=4$ and $\ell=5$.

Figure 10. Neutron Transmission Coefficients for A=232 Corresponding to $\ell=6$ and $\ell=7$.

the sharp dependence of the level density on the excitation energy. See Appendix I.

2. The level densities in the residual nucleus

To evaluate expression (II-25) we need to know $\rho_{I\pi}$, the level density of the residual nucleus. The problem concerning the evaluation of this level density is a complex one because of the almost non-existent data in the mass region around A = 226. In the case of radium in particular, there is no information that can be used in determining the densities. Experimental data relating to state densities and their dependence upon excitation energy was available for thorium and this data was used in the present calculation because it is felt that it should closely approximate the case of ^{226}Ra . As we shall see in a moment, a justification for this assumption is found in the fact that neutron resonance data for the even-odd elements in the region around uranium are quite similar in magnitude.

The detailed study of neutron resonances provides information about level densities that is confined to a very narrow energy interval at the neutron binding energy. Evidence concerning the nuclear level densities over a much wider energy interval can be obtained from the analysis of the energy spectra of evaporated particles in nuclear reactions. The level density $\rho(E)$ at the excitation energy E

is deduced from the yield of neutrons $N\left(E_n^{\,\prime}\right)$ of energy $E_n^{\,\prime}$ by employing the statistical relation:

$$N(E_n') \propto \rho(E)E_n' \sigma_C(E_n',E)$$
 (II-27)

where $\sigma_{\mathbf{C}}(\mathbf{E}_{\mathbf{n'}}^{\mathbf{r}}\mathbf{E})$ is the inverse cross section for formation of the compound nucleus at excitation energy E by bombardment with neutrons of energy $\mathbf{E}_{\mathbf{n}}$.

The dependence of the level density on excitation e energy can be obtained naturally by plotting $\log N(E_n^*)/E_n^*$ $\sigma_{C}^{(E_{n},E)}$ vs. E. The paper by Batchelor et al. (Ba 65) contains plots of log $N(E_n^1)/E_n^1$ vs. E for various incident energies in the 232 Th(n,n') reaction. Fission components were subtracted from the total non-elastic neutron spectrum to give the spectrum of the evaporation neutrons. cident neutron energies were 3, 4, and 7 MeV, and plots are shown in Figure 11. All these plots show linear dependences of log $N(E_n^{\prime})/E_n^{\prime}$ vs. \sqrt{E} in the energy regions considered; however, the ordinate is not directly proportional to the level density because the inverse cross section is absent in the denominator of the expression plotted in this figure. We have made a correction by including this factor, which was obtained from the 232Th capture cross section calculation by Meldner and Lindner (Me 64). The shapes of the lines are only slightly changed as shown in Figure 12. In

 $^{^7}$ The magnitude of the error incurred by neglecting σ_{C} fluctuates between 6 and 14% for the energy range considered.

Figure 11. $N(E_n^1)/E_n^1$ vs. Square Root of the Excitation Energy for the Evaporation Spectra from $^{2\,3\,2}$ Th at 3, 4, 7 MeV Incident Neutron Energy, from Reference (Ba 65).

Figure 12. Relative Level Density vs. (Excitation Energy) for the Evaporation Spectra from 232Th at 3, 4, 7 MeV Incident Neutron Energy.

order to obtain the dependence of the continuous density on energy, these lines are superposed on each other at the overlapping excitation energies. The $^{2.32}$ Th data however, presents the problem that there is a lack of data in the curves for 1.6 MeV $^{\frac{1}{2}} \leq \sqrt{E} \leq 2.1$ MeV $^{\frac{1}{2}}$. This problem was solved by an extrapolation procedure that joins both curves smoothly at the crossing point. The result is shown in Figure 13. The data drawn in Figure 13 was then replotted in the form: log N(E'_n)/E'_n'c_(E'_n,E) vs. E, as shown in Figure 14. Having the dependence of the level density on excitation energy, one needs to find the absolute level densities. These absolute level densities were obtained by normalizing the curve showing the energy dependence of the level density to one measured value of the level density at a given excitation energy.

Vorotnikov (Vo 69) has tabulated neutron resonance data for a series of nuclei in the radium region. This data is shown in Table III. The even-even nucleus closest to 226Ra

Table III. Neutron Resonance Data for Nuclei in the Th Region*.

Compound Nucleus	I _o	Binding Energy (MeV)	Interval of E _n ,eV	Number of Resonances	N/∆ E _n , eV ⁻¹
Th ²³⁰	5/2	6.72	0-10	14	1.40±0.37
U ²³⁴	5/2	6.78	20.5-62.8	68	1.60±0.10
U ²³⁶	7/2	6.40	0-25	42	1.68±0.16
Pu ²⁴²	5/2	6.21	0-30	25	0.83±0.10

^{*}Vorotnikov (Vo 69)

Figure 13. Same as in Figure 12 Except that Lines have been Smoothly Joined.

Figure 14. Deduced Level Density Dependence on Excitation Energy for 226 Ra.

for which this kind of information exists is 230 Th. The data in Table III are the observed density of levels excited when an s-wave neutron strikes a target of spin I_O , to form a compound nucleus of resulting spin $I_O \pm 1/2$ if $I_O \ne 0$, and of spin 1/2 if $I_O = 0$ with the parity of the compound system being determined by the parity of the ground state of the target nucleus. In the case of the compound nucleus 230 Th, the angular momenta and parities of the levels excited are J = 2+ and J = 3+, because the spin and parity of 229 Th are J = 5/2+. Knowing the local density of these states at the neutron binding energy, we can determine the total level density provided we also know the spin distribution. The spin distribution is usually assumed to be Gaussian in shape, and it is given in the form:

$$\rho(J) \propto \frac{(2J+1)}{2\sigma^2} e^{-J(J+1)/2\sigma^2}$$
 (II-28)

where J is the total spin, and σ is the spin cutoff parameter that determines the width of the distribution. Gilbert and Cameron (Gi 65) give the following expression to calculate σ^2 :

$$\sigma^2 = 0.0888 \, (aU)^{\frac{1}{2}} A^{2/3}$$
 (II-29)

where a is equal to the level density parameter, in the order of A/8; U is equal to E-P(Z)-P(N): E is equal to the excitation energy of the nucleus and P(Z) and P(N), are proton and neutron pairing corrections respectively. Assuming

that we know all these values, we can calculate the total density of levels at the binding energy from the relation:

$$(E,all\ J,\pi) = 2\rho(E,J=2,3;\pi=+) \times \frac{\rho(all\ J;\pi=+)}{\rho(J=2,3;\pi=+)}$$
 (II-30)

We have made the assumption that the density of positive levels is equal to that of negative levels. $\rho(\text{all J,}\pi=+)$ can be calculated by integrating (II-28) over all J's to give:

$$\rho(all J_n \pi = +) = 1$$

In the calculation of σ^2 we have used the parameters given by Gilbert and Cameron: $a_n = 29.65$, P(Z) = 0.89, P(N) = 0.79 for 226 Ra. These values are very close to other estimates (Ne 62). Using these values, we find:

$$\rho(E,al1 J\pi) = 15\rho(E,J=2,3;\pi=+)$$

and $\rho(B_n=6.72 \text{ MeV}, all \text{ spins}) = 2.05 \times 10^7 \text{ MeV}^{-1}$

The normalized level density curves is shown in Figure 14. For purposes of comparison we also show the one estimated for 226 Ra by Gilbert and Cameron (Gi 65).

We analytically parameterized the level density dependence on excitation energy so that it could be used to compute expression (II-24). For this purpose we have chosen the standard Fermi-gas expression for the level density, and left one parameter, a_n , to vary as a function of energy, At excitation energies below 3 MeV, where the log of the level

density is a linear function of energy, we have chosen to use a constant temperature formula of the same form as that used by Gilbert and Cameron (Gi 65). We have also added a spin dependence to this expression of the form given by (II-28). The two models are made to join smoothly at 3 MeV. On account of the above, we have the following expressions: 8

Below 3 MeV
$$\rho(E) = \frac{1}{T} e^{(E-E_O)/T}$$
 (II-31)

Above 3 MeV
$$\rho(E) = \frac{\sqrt{\pi}}{12} \frac{e^{2\sqrt{a_n U}}}{a_n^{1/4} U^{5/4}} \times \frac{1}{\sqrt{2\pi\sigma}}$$
 (II-32)

where $E_{\rm O}$ is an empirical constant and T is equal to the nuclear temperature (also to be determined empirically). Upon fitting these expressions to the level density curve, we find the following values for the parameters:

$$E_O = -0.29$$
 $T = 0.415$

The variation of a_n with E is shown in Figure 19, and it seems to follow the empirical relation:

$$a_n(E) = 29.2 + 205.62 e^{-1.003E}$$
 (II-33)

or

$$a_n(U) = 29.2 + 38 e^{-1.003U}$$

 $^{^{8}}$ A somewhat more complicated formula due to Lang and Le Couteur (La 54) is sometimes found in the literature instead of equation II-32, in which $U^{5/4}$ is expressed as (U + t) $^{5/4}$. According to (Gi 65), this formula contains an error regarding the procedure used in conducting the saddle point integration

The total fit to the level density is given in Figure 14.

Individual J contributions are obtained from the relation:

$$\rho(E,J) = \rho(E) \frac{(2J+1)}{2\sigma^2} e^{-J(J+1)/2\sigma^2}$$

C. Extension of the Model to High Energies

As the excitation energy above the fission barrier increases, the number of fission channels increases to the point where the statistical properties of the levels must be considered rather than the discrete ones. This is done by extending the calculation by defining "statistical transmission coefficients" for fission in the same spirit in which we defined the "compound transmission coefficients" of expression (II-24). These compound fission penetrabilities would then play the same role as the individual penetrabilities in the case of the discrete fission channels, and the parameters (K, J, π , E) describing them would be determined in a similar way.

These compound fission transmission coefficients are given by the expression:

$$T_{f}(K,J,\pi,E) = \int_{0}^{U-B_{f}+\varepsilon} \rho_{F}(E,K,J,\pi)T_{f}'(E)dE \qquad (II-35)$$

where $\rho_{\mathbf{F}}(\mathbf{E}, \mathbf{K}, \mathbf{J}, \pi)$ is the density of channels with quantum numbers \mathbf{K} , \mathbf{J} , and π at an energy \mathbf{E} . $\mathbf{T'}_{\mathbf{f}}(\mathbf{E})$ is of the same form as the expression given in (II-13). U represents

the excitation energy of the nucleus, B_f represents the height of the fission barrier, and ϵ is a small energy increment to the excitation energy interval over which the integration is carried out to account for the contributions of channels at higher energies.

The transition nuclear level density expression $\rho_{\mathbf{F}}(\mathbf{E},\,\mathbf{K},\,\mathbf{J},\,\pi) \text{ takes the form of the Fermi-gas expression}$ for two different types of particles for the sake of consistency with the calculation used for the case of the neutron exit channels. We assume that we have an equal number of positive and negative parity levels.

For a rotating system of total energy E, the level density follows the relation:

$$\rho_{J,K}(E) \propto \exp \left[(E-E_{rot}^{J,K})/T \right]$$
 (II-36)

where $E_{\text{rot}}^{J,K}$ is the energy which is tied up in the rotation of the deformed nucleus, and T is the temperature. This expression can be transformed to yield (Gi 68):

$$\rho_{\rm J,K}(\rm E) \propto \exp\{\rm E/T-h^2J^2/2\,J_LT-(h^2K^2/2T)\,[1/J_{||}-1/J_L]^{-1}\} \eqno(11-37)$$
 where J is the total angular momentum. The quantity $[1/J_{||}-1/J_L]^{-1}$ is usually termed the effective moment of inertia and it is symbolized by $J_{\rm eff}$. If we assume that the distribution in K for a fixed value of J is Gaussian, then we can set:

$$\rho_{J,K} \propto \exp(-K^2/2K_0^2)$$
 (II-38)

and

$$K_o^2 = \frac{\mathcal{J}_{eff}^T}{\hbar^2}$$
 (II-39)

This leads to the following expression for the total level density of the transition nucleus:

$$p_{f}(E,K,J) = \frac{1}{24\sqrt{2}} \frac{(2J+1)}{a_{f}^{\frac{1}{4}}E^{5/4}\sigma^{3}} \exp \left[2\sqrt{a_{f}E} - \frac{(J+\frac{1}{4})^{2}}{2\sigma^{2}} - K^{2}/2K_{O}^{2}\right]$$
(II-40)

where a_f is the level density parameter related to the local density of levels in the transition nucleus near the Fermi surface, and σ is the spin cutoff parameter. It is calculated from the expression:

$$\sigma^2 = \frac{\mathcal{I}_{LT}}{\hbar^2} \tag{II-41}$$

J_L is the moment of inertia for rotation about an axis perpendicular to the nuclear symmetry axis.

The evaluation of the temperature, T, for use in (II-41) above, is not as completely straightforward as it might seem. The temperature is usually calculated directly as the inverse of the partial derivative of the log of the state density, ω , with respect to the excitation energy. In this respect then:

$$\frac{1}{T} = \frac{\partial \ln \omega(E)}{\partial E}$$
 (II-42)

For a Fermi-gas of two kinds of particles with equidistant levels the state density is given by the expression (Gi 65):

$$\omega (E) \frac{\sqrt{\pi}}{12} \frac{\exp(2\sqrt{aE})}{a^{\frac{1}{4}} E^{5/4}}$$
 (II-43)

From this definition, the resulting formula for the temperature is:

$$\frac{1}{T} \approx \sqrt{\frac{a}{E}} - \frac{5}{4E}$$
 (II-44)

The problem with this relation is that it assumes the parameter 'a' to be a constant, independent of energy, and this is not necessarily so. We have seen in the neutron emission discussion that an is a very sharp function of excitation energy at low energies, tending to a constant value at higher excitation. This is a result of fluctuations of the local level density around the Fermi surface, and reflects the fact that the level spacings are not uniform as is usually assumed.

The same is true in the transition nucleus and there is no reason why we should expect a_f to be a constant, at least a priori. This fact also poses a problem in the sense that there is no convenient analytical expression which defines a_f in terms of excitation energy, and therefore we have to resort to empirical fits of the same nature that we used in the neutron emission case. Under these conditions, we might define a general form for a_f in terms of a flexible

function which would be expected to yield a constant asymptotic value of a_f at the limits of higher excitation. As we did before, and for convenience, we choose the function to be of the form:

$$a_f(E) = \alpha + \beta e^{-\gamma E}$$
 (II-45)

where α , β , γ are free parameters. In terms of this function and (II-42), the temperature becomes:

$$\frac{1}{T} = \left(\frac{\alpha + \beta e^{-\gamma E}}{E}\right)^{\frac{1}{2}} - \left(\frac{E}{\alpha + \beta e^{-\gamma E}}\right)^{\frac{1}{2}} \beta \gamma e^{-\gamma E} + \frac{\beta \gamma e^{-\gamma E}}{4 (\alpha + \beta e^{-\gamma E})} - \frac{5}{4E}$$
(II-46)

and as the excitation energy E reaches high values, the inverse of the temperature approaches the form:

$$\frac{1}{T} \rightarrow \left(\frac{\alpha}{E}\right)^{\frac{1}{2}} - \frac{5}{4E} \tag{II-47}$$

where α represents then the asymptotic limit of $a_f(E)$. So, we see that at high excitation energies, the temperature is expected to follow the uniform spacing model prediction but, to deviate from this prediction for lower energy regions. Of course, these conclusions are model dependent, and it might very well be that our choice of an analytic function for $a_f(E)$ might not be right, but it provides us with a start. Figure 21 shows results from calculating T from both constant a_f and variable a_f assumptions. It will be discussed later.

The resulting level density expression must be normalized in K. This is done by dividing the level density by the sum of all the relative K contributions up to the maximum value of the angular momentum. The resulting expression for the statistical transmission coefficients for fission is then:

$$T_{f}(K,J,\pi,E) = \frac{\int_{O}^{U-B}f^{+E}}{\int_{O}^{D}} \rho_{F}(E,K,J,\pi)T'_{F}(E)dE$$

$$\sum_{J \text{ max}} \exp(-K^{2}/2K_{O}^{2})$$

$$-J \text{ max}$$
(II-48)

Note that we are summing over a range of $-J_{\text{max}} \leq K \leq J_{\text{max}}$ because we must include both K projections, in the same manner as we did in the case of the individual channels. 9

 ${\rm K}_{\rm O}^2$ measures the mean square value of the project of the angular momentum on the nuclear symmetry axis. It can be extracted from the shape of the angular distribution of fission fragments. The flatter this distribution is, the higher ${\rm K}_{\rm O}^2$ will be, reflecting the width of the distribution in K. As the anisotropy increases, ${\rm K}_{\rm O}^2$ decreases, because proportionally, we find more bands with low values of K. Rapid and sudden shifts in ${\rm K}_{\rm O}^2$ as a function of excitation energy in the statistical region are usually associated with either the creation of new quasiparticle states, or the occurrence of multiple chance fission.

In many instances the normalization in K is done by integrating the denominator in (II-48) between the limits of $-\infty$ and $+\infty$. This is basically incorrect, because in certain cases, the value of J_{max} may be relatively small and the sum will not approximate the value of the integral as is usually assumed.

D. Final Comments on the Model

In the three previous sections we have described the determination of the parameters involved in evaluating the "compound transmission coefficients" as given by (II-24) and (II-35). The integrals in these expressions were solved numerically by Simpson's rule of integration, using a total of 30 terms. This was done for all neutron energies involved in the calculations. Computer programs used in the calculations are listed in Appendices III and IV. Calculated "compound transmission coefficients" for neutrons were read into the modified version of the transition state spectroscopy code WILDCAT as part of the total calculation.

In this chapter we have discussed the main assumptions adopted in the calculational model. We have also described in detail how neutron emission is treated in the calculation, but have not yet shown how the total calculation is carried out. We have so far assumed in the development of the formalism that the fission channels are discrete, and have not said anything regarding their statistical behavior in the limit of high energies above the barrier. This we shall do as the need arises. A description of the practical aspects of the calculation, starting in the limit of a few channels will be shown in the next chapter.

III. RESULTS OF THE CALCULATIONS

The problem of determining the nature of the fission channels from experimental data has been shaded with some ambiguity lately because of the uncertainty in the shape of the transition state nucleus. If the transition nucleus has a reflection-symmetric shape, then one would expect the usual form of the allowed (J,π) values for a rotational band, i.e., 0+, 2+, 4+, 6+... or 3/2-, 5/2-, 7/2-, etc. However, if, as predicted by calculations (Ni 72), the transition nuclei in this region have asymmetric shapes, then the number of levels in the rotational band are doubled. For example, asymmetric e-e nuclei rotational bands have the form 0+, 1-, 2+, 3-, 4+, 5-, etc., while odd-A nuclei rotational bands have the form $3/2\pm$, $5/2\pm$, $7/2\pm$, etc. The arqument is that additional collective degrees of freedom result from deformations that are not reflection symmetric. A deformation violating either of these symmetries leads to a doubling of the energy levels, and hence to an increase of the level density by a factor of two. Thus, each (K,R) level of transition nucleus is fourfold degenerate, i.e., ± parity and ± K value (Er 58). This effect was pointed out by Vandenbosch (Va 73a), and later confirmed by Bjornholm, Bohr, and Mottelson (Bj 73).

Although some theoretical predictions, as we have mentioned, favor an asymmetric shape for the $^{2\,2\,7}Ra$ transition

nucleus, it would not be correct to, a priori, rule out the symmetric shape. For this reason we have carried out the calculations using both assumptions separately.

Before going directly on to the substance of the calculations, we should describe the procedure followed in practical terms, and tell also how the constant parameters involved in the calculations are obtained.

A. The Analysis of the Experimental Data at Low Energies

From the theory that has been developed in the preceding sections it is clear that angular distributions of fission fragments observed experimentally should be determined by weighted contributions of curves similar to the types shown in Figure 6. At low energies, close to the fission barrier, the distributions are determined by the parameters characterizing the first few individual levels, and we do not know, a priori, what values these parameters assume; in fact, this is exactly what we are seeking.

The procedure which is followed in this work is to leave four free parameters for each channel and then, by trial and error, to find the set of parameters that will give us the best fit simultaneously to both the fission cross sections and the corresponding angular distributions at various energies. The parameters that are left to vary are: (a) the single particle energy, E_{O} , which is the base of the rotational band; (b) the K quantum number, or projection of the angular momentum over the nuclear symmetry axis;

(c) the parity of the band, if reflection symmetry is assumed; and finally, (d) the parameter $\hbar\omega$ which measures the curvature of the parabola simulating the fission barrier. Small values of $\hbar\omega$ imply a thick, almost impenetrable, barrier and vice versa.

The values of other constants, such as the rotational constant $h^2/2\mathcal{I}_{\perp}$, the decoupling constant α , the level density parameter δ , the spin cutoff parameter σ for γ decay, and $(\Gamma_{\gamma}/D)_{O}$ are inserted into the calculation. The moment of inertia is calculated from the formula given by Brack et al. for a rigid body (Br 72):

$$\langle \mathcal{I}_{\perp}^{RB} \rangle = \frac{1}{2} \langle \mathcal{I}_{\parallel}^{RB} \rangle + \frac{1}{5} \text{ mAR}_{O}^{2} [c^{2} + 4/35 \ c^{5} (c-1)]$$
 (III-1) and

$$<\mathcal{J}_{II}^{RB}=\frac{2}{5}$$
 mAR $_{0}^{2}$ [c⁻¹-2/35 c² (c-1)+4/525 c⁵ (c-1) ²] (II-2) where $<\mathcal{J}_{II}^{RB}>$ is equal to the nuclear moment of inertia around nuclear symmetry axis, m is equal to the mass of the nucleon, R_o is equal to the nuclear radius at zero deformation (8.5f), and c equal to the nuclear elongation parameter taken at the saddle point in the potential energy surface (1.65, from estimates by Brack et al. [Br 72]).

The above expressions yields a value of the rotational constant at the saddle point equal to about 2 keV. The value of the decoupling constant is not really known, but it makes little difference in the calculation. 10 A value of α =2 was used.

¹⁰This was confirmed by assuming values of $-2 \le \alpha \le +2$.

The contribution of γ -ray emission to the total cross section is very small in relation to neutron evaporation. This means that if the denominator of the Hauser-Feshbach expression (II-15) is almost totally controlled by neutron emission, the cross section for γ -ray emission may be written as:

$$\sigma_{n,\gamma}(E_n) \approx \sigma_{c}(E_n) \left(\frac{\Gamma_{\gamma}}{\Gamma_{n}}\right)_{E_n}$$
 (III-3)

where Γ_{γ} and Γ_{n} are the widths for $\gamma\text{-ray}$ de-excitation and neutron evaporation respectively, and $\boldsymbol{\sigma}_{_{\mathbf{C}}}(\boldsymbol{E}_{n})$ is the neutron capture cross section. Because $\Gamma_{_{\mbox{\scriptsize Y}}}$ increases slowly with energy around 7 MeV (Gi 68), and $\sigma_{_{\mbox{\scriptsize C}}}$ decreases slowly with energy, the dependence of σ_n , $\gamma(E_n)$ on energy will be almost totally dependent on $(\Gamma_n)^{-1}$. Since Γ_n is directly proportional to the allowed sum of "compound transmission coefficients" for neutron emission, a partial test of the empirically determined level density, would be to compare the experimental and calculated dependences of σ_n , γ (E $_n$) on E $_n$. In reality, what we have done is to deduce the parameter δ by fitting the slope of the experimentally determined cross section for γ -ray emission as a function of incident neutron energy. This is shown in Figure 15. The curve yields a value of $\delta=0.07$, and $(\Gamma_{V}/D)_{O}$ is estimated to be approximately equal to 0.0002, while σ , the spin cutoff parameter was assumed to have a value of about 6.0. On the basis of the level density systematics, the value of δ can be equated

Figure 15. Experimental and Calculated Dependence of $\sigma_{En}^{}\left(n,\gamma\right)$ on Neutron Energy for $^{2.2.6}Ra$.

with a value of $a_n \approx 29$ at an excitation energy $^{\sim 9}$ MeV, if it is assumed that:

$$2\sqrt{a_n U} = \sqrt{\frac{2\pi^2 E}{3\delta}}$$
 (III-4)

where E represents the excitation energy of the nucleus and U-E-P(Z)-P(N). P(Z) and P(N) are pairing corrections, previously defined. This relation is deduced from a comparison of expressions (II-8) and II-39) for the level density. The value of a_n deduced in this form is consistent with the one estimated from the neutron evaporation data, $a_n \cong 29.5$. Since the slopes of the lines in Figure 15 remain roughly parallel in the energy range in question, this can be considered as partial indication that the treatment given to the level density of the residual nucleus and the "compound transmission coefficients" for neutron evaporation is basically correct.

The experimental data of Babenko et al. concerning angular distributions is given in the form of differential cross section ratios. In order to carry out the analysis properly, these must be converted into absolute differential cross sections. The procedure followed for this purpose is outlined in Appendix II. Resulting differential cross sections are shown in Figures 16a, b, c and d.

The best fit to the experimental data was determined by a χ^2 or "goodness of fit" test. Unsatisfactory fits were rejected at the 99% level of confidence. A problem that

Figure 16a. Differential Cross Sections and Fits for the $^{2\,2\,6}$ Ra(n,f) Reaction.

Figure 16b. Differential Cross Sections and Fits for the ²²⁶Ra(n,f) Reaction for neutron energies 4.1 to 5.4 MeV.

Figure 16c. Differential Cross Sections and Fits for the 226 Ra(n,f) Reaction for neutron energies 6.2 to 7.9 MeV.

Figure 16d. Differential Cross Sections and Fits for the ²²⁶Ra(n,f) Reaction for neutron energies 8.9 to 9.7 MeV.

arose in using the χ^2 test was to estimate the numbers of degrees of freedom in fitting the data. For a given number of data points, the number of degrees of freedom is represented by the total number of experimental points minus the effective number of free parameters used in the calculation. There are a total of seven experimental points for every neutron energy, and we are trying to find optimal values for four variables, K, π , E and $\hbar\omega$ for every fission channel. Two of these, E and $\hbar\omega$ are unrestricted in the number of values that they can assume. K can only take a few values and π can only be either positive or negative. The interpretation of this problem becomes a little different when we consider the argument in terms of symmetric vs. asymmetric saddle point shapes. In the latter case, both parities are available for every channel, and π is no longer a free parameter. With the above in mind, we can now proceed to carry out a search for the parameters that best fit the experimental data assuming both symmetric and asymmetric shapes at the saddle point.

1. Fission channels in the symmetric nucleus 227Ra

The technique that we have used is to try to fit the data simultaneously for, at first one neutron energy, then two, three, etc., by using the minimum number of channels possible in each case. It is clear that as the number of angular distributions and cross sections increases, the

chance of obtaining a statistically significant fit to the data decreases very rapidly. The reason for this is that we need an ever increasing number of channels, and each channel introduces four free parameters. Since we only have a total of seven experimental points at each energy, the number of degrees of freedom left in each case is exhausted quickly. We can obtain fits to the data but they are statistically meaningless.

The data listed in Table IV shows the different combinations of parameters tried. We note that it is possible to fit the experimental data meaningfully only for two energies, 3.6 and 3.8 MeV. Statistically speaking, nothing can be said about the parameters characterizing the distributions at neutron energies equal to 3.9 and 4.1 MeV. We can, however, resort to common sense to discover a few items. Figure 16a shows that $d\sigma/d\Omega$ at about 10° in the 3.8 MeV data takes a value of about 0.60, and it is about 0.42 for E_n = 3.6 MeV. However, it jumps to 1.35 for $E_n = 3.9$ MeV. The calculations show that it is not possible to reproduce this sudden rate of increase in cross section in $d\sigma/d\Omega$ at 10° with only three channels. Since only K = 1/2 bands peak at forward angles, we conclude that there must be some nearby K = 1/2 band which produces a sharp increase in cross section around 3.9 MeV. In order to produce such a sharp increase and not affect the distribution at 3.8 MeV, the channel must open only very close to the top of the

Table IV. Summary of Calculations Describing the Symmetric Nucleus 227Ra.

		1	2	3	RUN 4	5	6	7	8	9	10
# of Ene	rg.	one	one	two	two	two	two	two	two	two	two
Channel							- 1-		- 4-		
1	κ Eo ħω	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2 - 3.630 0.400	3/2+ 3.600 0.400	3/2+ 3.600 0.400	3/2- 3.650 0.400	3/2 - 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400
2	Κ Έο ኹ ω	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750
3	κ Eo ħω		5/2+ 3.800 0.400				3/2+ 3.800 0.400	3/2+ 3.800 0.400	3/2+ 3.775 0.400	3/2+ 3.750 0.400	3/2+ 3.750 0.300
4	Κ Eo ħω										
5	Κ E _O ħω										
6	κ Έ ο ħ ω										
	χ²	3.23	2.91	35.9	35.7	86.7	47.8	19.75	18.84	19.37	18.37
Satisfac	tory	no	no	no	no	no	no	no	no	no	no

Table IV. continued

					RUN						
_		11	12	13	14	15	<u> 16</u>	17	18	19	20
# of Ene	erg.	two	two	two	two	two	two	two	three	three	three
Channel		-			-	·					· · · · · ·
1	Κ Έ ο ħ ω	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2 - 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400
2	Κ Ε ο ħ ω	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750
3	K E _O ħω	3/2+ 3.750 0.200	3/2+ 3.725 0.200	5/2- 3.800 0.400	5/2+ 3.700 0.300	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2+ 3.700 0.300	5/2+ 3.700 0.300	5/2+ 3.700 0.300
4	Κ Έ ο ħ ω					3/2- 3.975 0.400	5/2- 3.900 0.400	1/2- 3.880 0.150	1/2- 3.880 0.100	1/2- 3.850 0.050	1/2- 3.860 0.075
5	Κ Ε ο ħ ω							3/2 - 3.975 0.400			
6	κ Ε ο ħ ω										
	χ²	18.06	21.81	12.68	8.64	11.59	9.91	5.99	29.0	30.4	27.5
Satisfac	ctory	no	no	yes	ye s	no	no	no	no	no	no

Table IV. continued

			·		RUI	1			,		
		21	22	23	24	25	26	27	28	29	30
# of Ene	erg.	three	three	three	three	three	three	three	three	three	three
Channel	#						and the second				
1	K Eo ħω	3/2 - 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2 - 3.650 0.400	3/2- 3.650 0.400	3/2 - 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400
2	K Eo hω	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750
3	Κ Ε ο ħ ω	5/2+ 3.700 0.300	5/2+ 3.700 0.300	5/2- 3.740 0.250	5/2- 3.740 0.200	5/2+ 3.700 0.300	5/2+ 3.700 0.300	5/2+ 3.700 0.300	5/2+ 3.700 0.300	1/2- 3.880 0.150	5/2- 3.800 0.400
4	Κ Έο ħ ω	1/2- 3.870 0.075	1/2- 3.875 0.075	1/2- 3.875 0.075	1/2- 3.875 0.075	1/2- 3.875 0.075	1/2- 3.875 0.075	1/2- 3.875 0.075	1/2 - 3.875 0.075	3/2- 3.975 0.400	1/2- 3.880 0.150
5	Κ E _O ħω						3/2- 3.950 0.200	3/2- 3.950 0.200	3/2- 3.950 0.200		3/2- 3.975 0.400
6	Κ Έ _Ο ħ ω							1/2- 4.050 0.300	1/2- 4.090 0.300		
	χ²	26.4	26.7	27.24	28.0	72.15	41.6	35.7	32.8	59.0	30.0
Satisfac	Satisfactory		no	no	no	no	no	no	no	no	no

Table IV. continued

		31	32	33	RUN 34	35	36	37	38	39	40
# of Ene	rg.	three	three	three	three	three	three	three	three	three	three
Channel	#										
1	κ Έο ħω	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2 - 3.650 0.400	3/2- 3.650 0.400	3/2- 3.650 0.400	3/2 - 3.650 0.400	3/2- 3.650 0.400
2	κ Ε ο ἡ ω	1/2+ 3.700 0.750	1/2+ 3.650 0.750	1/2+ 3.675 0.850	1/2+ 3.675 0.650	3.675	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750	1/2+ 3.675 0.750
3	Κ Έο ħω	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2- 3.800 0.400	3.800	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2- 3.800 0.400	5/2- 3.800 0.400
4	Κ Έο ħω	1/2- 3.880 0.150	1/2- 3.880 1.150	1/2- 3.880 0.150	1/2- 3.880 0.150	3.880	1/2- 3.930 0.150	1/2- 3.880 0.100	1/2- 3.880 0.200	1/2+ 3.880 0.150	1/2+ 3.830 0.150
5	κ ħω	3/2- 3.975 0.400	3/2- 3.975 0.400	3/2- 3.975 0.400	3/2- 3.975 0.400	3.975	3/2- 3.975 0.400	3/2- 3.975 0.400	3/2- 3.975 0.400	3/2- 3.975 0.400	3/2 - 3.975 0.400
6	Κ Έο ħ ω										
	χ²	30.0	35.5	30.6	30.7	164.3	54.6	29.0	32.4	38.6	36.3
Satisfactory		no	no	no	no	no	no	no	no	no	no

Table IV. continued

					RUN
		41	42	43	44
# of Ene	rg.	three	three	three	four
Channel	#	·			
	K	3/2 -	3/2-	3/2-	3/2-
1	Εo	3.650	3.650	3.650	3.650
	$\hbar\omega$	0.400	0.400	0.400	0.400
	K	1/2+	1/2+	1/2+	1/2+
2	Εo	3.675	3.725	3.625	3.675
	$\hbar\omega$	0.750	0.750	0.750	0.750
	K	5/2 -	5/2 -	5/2 -	5/2 -
3	Εo	3.800	3.800	3.800	3.800
3	h_{ω}	0.400	0.400	0.400	0.400
	22.00				
	K	1/2+	1/2-	1/2-	1/2-
4	Εo	3.830	3.880	3.880	3.880
	$\hbar\omega$	0.100	0.150	0.150	0.150
	K	3/2-	3/2-	3/2-	3/2-
5	Εo	3.975	3.975	3.975	3.975
J	$\bar{\mathbf{h}}_{\omega}$	0.400	0.400	0.400	0.400
			3.5.2.30		
	K				1/2-
6	Ε ο ħ ω				4.090
	ħω				0.300
	χ²	31.2	34.8	47.3	37.4
Satisfac	ctory	no	no	no	no

barrier; if so, then the barrier must be wide and therefore $\hbar\omega$ small.

In the case of $E_n=4.1$ MeV, the fits become statistically meaningless; combination 28 of Table IV shows the best fit that can be obtained with six channels, but with the condition that we not be allowed to say much about them.

For the case in which only two neutron energies are considered, the combination that gives us the best fit is combination 14. However, we have some ambiguity present with regard to the K = 5/2 channel; the table shows that the parity is not defined, thereby making the energy and curvature parameter uncertain. We tried to fit the angular distribution with K = 3/2 channels instead of the K = 5/2 appearing in the table, but it was not possible to obtain an acceptable value of χ^2 for any combination tried. Figure 16a shows the best fits obtained for three energies, 3.6, 3.8, and 3.9 MeV, and also other combinations of each channel with energy. Figure 17 represents a fit of channel cross section vs. neutron energy for the optimum set of parameters. The uncertainties in the deduced parameters are hard to evaluate in an exact manner because the search would have to become much more extensive and the meaning of the information gathered in this fashion would not be entirely accurate in any case, due to the other uncertainties in the calculation. However, from the information available in Table IV we have made a compilation of the best

Figure 17. Partial Fission Cross Sections for Four Open Channels.

parameters and most likely errors for every channel. This is shown in Table VI. The best fit to the fission cross section is shown in Figure 18.

2. Fission Channels in the asymmetric nucleus 227Ra

The search for a best fit in this case was done in the same manner as in the symmetric case, with one exception; for every channel both parities were allowed in the calculation. It was done in this fashion in order to simulate the doubling in the rotational band as was mentioned before. The same problems were encountered as in the symmetric case, and Table V shows a list of all the combinations tried. best fit is obtained for $E_n = 3.6$ and 3.8 MeV with the use of three channels as indicated by combination 17. When the third energy, $E_n = 3.9$ MeV, comes into play, the ground state, and the one above, are pushed upwards in energy a little bit in order to obtain the best fit for three energies simultaneously. As was pointed out for the symmetric case, we cannot specify the parameters with any statistical significance when the third neutron energy is included. uncertainties in the parameters as extracted from Table V are shown in Table VI. Figure 16a shows the best fit obtained for two energies. Other fits are also shown for purposes of comparison and illustration. The best fit to the cross section is shown in Figure 18.

Table V. Summary of Calculations Describing Asymmetric Nucleus 227Ra at Low Energies.

					RUN						
		1	2	3	4	5	6	7	8	9	10
# of E	nergies	two									
Channe:				·	-						
1	K E o hω	3/2 3.750 0.600	5/2 3.700 0.600	5/2 3.700 0.600	5/2 3.700 0.400	3/2 3.750 0.600	3/2 3.740 0.600	3/2 3.730 0.600	5/2 3.730 0.450	3/2 3.725 0.500	5/2 3.675 0.500
2	κ Έο ἡ ω	1/2 3.875 0.900	1/2 3.890 1.200	1/2 3.890 1.000	1/2 3.890 0.900	1/2 3.890 1.000	1/2 3.910 1.000	1/2 3.910 1.000	1/2 3.910 1.000	1/2 3.910 1.000	1/2 3.910 1.000
3	κ Έ ο ἡ ω										
4	κ Ε ο † ω										
5	κ Έο ħω										
	χ²	44.3	114.0	39.5	60.5	35.3	30.2	28.4	34.3	28.12	28.5
Satisf	actory	no									

Table V. continued

					RUN						
		11	12	13	14	15	16	17	18	19	20
# of En	erg.	two									
Channel	#		-								
1	Κ Έο ħω	5/2 3.665 0.500	3/2 3.740 0.500	3/2 3.740 0.600	3/2 3.740 0.600	3/2 3.740 0.550	3/2 3.750 0.600	3/2 3.755 0.600	3/2 3.755 0.600	3/2 3.758 0.600	3/2 3.760 0.600
2	κ ħω	1/2 3.910 1.000	5/2 3.850 0.400	5/2 3.850 0.400	5/2 3.850 0.400	5/2 3.850 0.500	5/2 3.840 0.500	5/2 3.830 0.500	5/2 3.830 0.500		5/2 3.830 0.500
3	κ Έο ħω		1/2 3.910 1.000	1/2 3.910 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.050	1/2 3.915 1.025	1/2 3.915 1.025
4	Κ Ε ο ħ ω										
5	κ Έο ħω										
	χ²	26.7	21.0	16.8	15.6	15.6	13.9	13.4	15.2	13.8	13.65
Satisfa	ctory	no	no	no	no	no	yes	yes	no	yes	yes

Table V. continued

		21	22	23	RUN 24	25	26	27	28	29	30
# of Ene	rg.	two	three								
Channel	#						_				
1	κ Eo ħω	3/2 3.770 0.600	3/2 3.755 0.600								
2	κ Ε _Ο ħω	5/2 3.830 0.500	5/2 3.830 0.550	5/2 3.840 0.550							
3	Κ Έ _Ο ħω	1/2 3.915 1.025	1/2 3.915 1.000	1/2 3.900 0.150	1/2 3.925 0.150	1/2 3.915 0.100	1/2 3.910 0.100	1/2 3.905 0.100	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000
4	Κ Έ _Ο ħω			1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.925 0.150	1/2 3.925 0.150	1/2 3.925 0.150
5	K E _O ħω								3/2 4.000 0.200		
	χ²	13.7	45.5	51.0	37.5	37.5	38.4	41.1	38.4	37.1	36.1
Satisfac	ctory	ye s	no								

Table V. continued

		31	32	33	RUN 34	35	36	37	38	39	40
		<u> </u>	J Z								 -
# of Ene	rg.	three									
Channel	#		<u></u>						.		
1	κ Έο ħω	3/2 3.755 0.600	3/2 3.755 0.600	3/2 3.755 0.600	3/2 3.755 0.600	3/2 3.755 0.600	3/2 3.775 0.630	3/2 3.765 0.625	3/2 3.775 0.630	3/2 3.780 0.630	3/2 3.780 0.650
2	Κ Έο ħω	5/2 3.850 0.600	5/2 3.860 0.600	5/2 3.870 0.600	5/2 3.870 0.600	5/2 3.880 0.625	5/2 3.880 0.625	5/2 3.880 0.625	5/2 3.880 0.675	5/2 3.880 0.700	5/2 3.880 0.700
3	κ Έο ħω	1/2 3.915 1.000									
4	Κ Έο ħω	1/2 3.925 0.150	1/2 3.925 0.150	1/2 3.925 0.150	1/2 3,905 0.100	1/2 3.905 0.100	1/2 3.905 0.100	1/2 3.905 0.100	1/2 3.905 0.100	1/2 3.905 0.100	1/2 3.905 0.100
5	Κ Ε ο ħ ω										
	χ²	35.1	34.6	34.4	35.6	34.8	34.8	34.2	33.5	33.4	33.1
Satisfac	tory	no									

Table V. continued

		41	42	43	RUN 44	45	46	47	48	49	50
			42	43	44	 -	40	4 /	40	49	
# of Ene	rg.	three	three	three	three	four	four	four	four	four	four
Channel	#	 								-	
1	κ Έο ħω	3/2 3.780 0.650	3/2 3.790 0.650	3/2 3.790 0.675	3/2 37.90 0.675						
2	κ Εο ħω	5/2 3.880 0.750	5/2 3.880 0.775	5/2 3.880 0.775	5/2 3.880 0.775	5/2 3.880 0.775		5/2 3.880 0.775	5/2 3.880 0.775	5/2 3.880 0.775	5/2 3.880 0.775
3	K Eo ħω	1/2 3.915 1.000									
4	κ Έο ħω	1/2 3.905 0.100	1/2 3.905 0.100	1/2 3.905 0.100	1/2 3.900 0.100	1/2 3.900 0.100		1/2 4.000 0.200	1/2 4.100 0.400	1/2 4.050 0.400	1/2 4.075 0.450
5	K Fο ħω										
	χ²	32.5	32.6	32.6	34.0	69.3	69.5	76.6	57.6	53.7	53.1
Satisfac	tory	no									

Table V. continued

	·				RUN						
		51	52	53	54	55	56 	57	58 	59 	60
# of Ene	rg.	four	four	four	four	two	two	two	two	two	two
Channel	#										
1	Κ Εο ħω	3/2 3.790 0.675	3/2 3.790 0.675		3/2 3.790 0.675	3/2 3.755 0.600	3/2 3.730 0.600	3/2 3.780 0.600	3/2 3.755 0.500	3/2 3.755 0.700	3/2 3.755 0.700
2	Κ Ε _Ο ħ ω	5/2 3.880 0.775	5/2 3.880 0.775		5/2 3.880 0.775	.5/2 3.830 0.500	5/2 3.830 0.500	5/2 3.830 0.500	5/2 3.830 0.500	5/2 3.830 0.500	5/2 3.805 0.500
3	Κ Έο ħω	1/2 3.915 1.000	1/2 4.025 0.600		1/2 3.850 0.600	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000
4	Κ Ε _Ο ħω	1/2 4.060 0.450									
5	Κ Έ _Ο ħω										
	χ²	52.3	324.0	167.5	86.8	13.4	19.5	15.5	18.7	15.4	14.4
Satisfac	ctory	no	no	no	no	yes	no	no	no	no	yes

Table V. continued

				, <u> </u>	RUN				<u> </u>
		61	62	63	64	65	66	67	68
# of Ene	erg.	two							
Channel	#							,	
1	Κ Έο ħω	3/2 3.755 0.700							
2	K Eo ħω	5/2 3.855 0.500	5/2 3.830 0.400	5/2 3.830 0.600	5/2 3.830 0.600	5/2 3.830 0.600	5/2 3.830 0.600	5/2 3.830 0.600	5/2 3.830 0.600
3	Κ Έο ħω	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.915 1.000	1/2 3.890 1.000	1/2 3.940 1.000	1/2 3.915 0.800	1/2 3.915 1.200	1/2 3.940 1.000
4	Κ Έο ħ ω								
5	Κ Έ ο ħ ω								
	χ²	14.6	14.8	13.8	22.3	12.2	26.5	30.5	29.3
Satisfac	ctory	yes	yes	yes	no	yes	no	no	no

Figure 18. Best Fits to the Fission Cross Sections at Low and High Energies.

Table VI. Parameters Describing the Low Lying Single Particle States in the 227Ra Transition Nucleus.

Part A State No.	(Κ,π)	Saddle Point Defe E _O (MeV)	ormation ħω (MeV)
		E _O (MeV)	$\hbar\omega$ (MeV)
1	2 /0		
	3/2-	3.65±0.1	0.4 ±0.1
2	1/2+	3.67±0.1	0.75±0.2
3	5/2±	3.70±0.1	0.3 ±0.2
4	1/2-	3.88±0.1	~0.1 ±0.05
Part B.	Asymmetric	Saddle Point Defe	ormation
State No.	K	E _o (MeV)	ħω (MeV)
1	3/2	3.76±0.05	0.6 ±0.1
2	5/2	3.83±0.05	0.4 ±0.2
3	1/2	3.92±0.05	1.0 ±0.1

B. Parameters Describing the ²²⁷Ra Transition Nucleus at Moderate Excitation Energies

The discussion concerning the excited transition nucleus in this energy region follows basically the same pattern used in describing the region where only a few channels are available for fission. The calculations are carried out on a trial and error basis. In this manner the values of certain free parameters which best fit the experimental data are chosen; the fit is judged according to the χ^2 criteria. As we did before, we have to allow for two basic possibilities: in one case the shape of the transition nucleus is assumed to be symmetric, in the other the nuclear

shape will be asymmetric. The number of levels in each rotational band is doubled in the latter case.

One question that immediately comes to mind is in relation to where the "statistical region" lies. In other words, at what point are we justified in using the statistical approximations developed above" We know that there is in fact a "twilight zone" between the "discrete" and "statistical worlds". Conservatively speaking, we might expect the application of a statistical model for E* < 1 MeV to be questionable and that for E* \geq 3 MeV, such an application should be quite acceptable. The excitation energy range : $1 \leq E^* \leq 2$ MeV constitutes a "twilight zone". Unfortunately the interestingly large step in the cross section is observed at the point corresponding to $E_n=4.7$ MeV (E* \approx 1 MeV). This "discontinuity" in the cross section assures the existence of a large jump, in the number of fission channels available, within a short energy range.

What we have done to treat this lower energy region is to feed discrete channels into the undefined region (from $^{\sim}3.9$ MeV to $^{\sim}4.7$ MeV), with the idea of fitting the cross section in this range in a way which will reproduce the angular distribution of fragments at 4.7 MeV (the next point where data of this kind is available). Of course, the use of discrete levels in fitting the data in this region has no meaning other than perhaps giving us a vague idea of the relative K strengths required to reproduce the

anisotropy at 4.1 and 4.7 MeV. From 4.7 MeV on, we apply the statistical formalism in a way such that all the data points are fitted. The two models are made to join smoothly in a region ($E_n = 4.7$ MeV) where some of the parameters describing the behavior of the system lose some of their significance. This is the best that we can do under the circumstances and it might be a small price to pay in return for the overall information which we will finally obtain.

As the excitation energy of the nucleus increases, the cross section reaches a point where its variations with energy is relatively small, because of the relative constancy of ($\Gamma_{\rm f}/\Gamma_{\rm n})$. Large jumps in the slope of the curve can be associated with fission after neutron evaporation. In the case of 227Ra we see that at neutron energies above approximately 9.0 MeV, the cross section increases very rapidly; this rapid change takes place in a region where we can expect second chance fission to begin occurring. Qualitatively it can be shown that this is the case. An incident 9 MeV neutron excites the 227Ra nucleus to about 13.5 MeV. An evaporated neutron would, on the average, possess a kinetic energy of about 1.5 MeV, leaving the residual nucleus excited to about 7.5 MeV. However, the range of excitation is wide, and, for example, the most probable kinetic energy would be in the order of about 0.75 MeV, which would leave the residual nucleus with 8.25 MeV of excitation energy. This is more or less the height of the fission barrier in

the residual nucleus and thus where we would expect fission to begin to be observed.

Therefore, the region over which the statistical calculation can be used is for excitation energies corresponding to neutron energies between 4.7 and 9.0 MeV. Another reason why the formalism in this calculation cannot be used at higher energies is that we simply do not know the shape of the level density of the residual nucleus at energies much higher than the neutron binding energy, because no experimental data is available.

As might have been anticipated, the free parameters left to vary in our calculation are a_f and K_O^2 . The determinations of the parameters can be carried out separately, also very conveniently, because the value of the fission cross section does not depend strongly on K_O^2 , as can be inferred from the normalization implied in (II-48). Therefore, we can proceed to fit the cross sections independent of the angular distributions.

It is clear that the variation of a_f with energy must be simulated analytically such that it is a continuous function of energy. For this purpose we make use of expression (II-45). As we have already mentioned, this form has three free parameters, α , β , and γ . The variable α represents the asymptotic value of a_f as the energy becomes very high: γ reflects the sharpness of the variation of a_f with energy; and β reflects the magnitude of the energy dependence

itself. The excitation energy is evaluated from the barrier heights (3.650 and 3.755 MeV), which were estimated from the discrete calculations, for both the symmetric and asymmetric shapes. The parameters extracted from the best fits are listed in Table VII, while the fits themselves are shown in Figure 18. The dependence of a on the excitation energy is shown in Figure 19.

Table VII. Statistical Parameters for 227Ra

Mode	α	β	Υ	ħω	ħ²/2⅓⊥
Asym.	28.9	58.0	1.055	0.400	0.002
Symm.	30.0	55.0	0.960	0.400	0.002

The fit to the point at $E_n=4.7~{\rm MeV}~(E^*=1.5~{\rm MeV})$, may be somewhat artificial, as we have explained, because it is not possible to define a clear-cut transition point between the single particle calculations and the statistical calculations. In order to fit this point, 15 channels are added individually to the calculation between 4.0 and 4.7 MeV in the symmetric case, while ten are used in the asymmetric case.

In the symmetric case, the integration of the statistical expression (II-35) starts at $E_n=4.650$, while in the asymmetric case the integral is evaluated beginning at $E_n=4.7$ MeV. Fixed parameters used in the calculation are the rotational constant $\hbar^2/2J_1$, assumed to be the same as before (~ 2 keV); the curvature parameter $\hbar\omega$, which assumes a

Figure 19. Excitation Energy Dependence of the Level Density Parameters a_f and a_n .

value of 0.400 MeV (Be 68), and the upper integration limit, ϵ , used in the evaluation of expression (II-35). Although in most calculations done by others (Gi 68) the fission channels are assumed to be completely open, up to the nominal excitation energy, with higher lying channels completely closed, we have not adopted this approximation because it is not physically correct. The nucleus in the transition state at a given excitation energy samples the character of the barriers immediately above that energy because of the nature of the penetrability implied by (II-13). The value of ϵ was chosen by noting that if, for example, we integrate up to 0.400 MeV above the incident neutron energy, and have used a value of $\hbar\omega$ = 0.400 MeV, then the barrier penetration factor at that point would be:

$$T_f' = \{1 + \exp[(2\pi/0.400)(0.400)]\}^{-1} = e^{-2\pi} 0.002$$

which is small enough to cause no appreciable error. Hence, the upper integration limit has been chosen for an excitation energy 0.4 MeV above $(E_n + B_n - B_f)$, where E_n is the neutron kinetic energy, B_n is the neutron binding energy, and B_f is the height of the fission barrier. Since the values for some of these constants have been assumed, we have decided to determine the effect of varying them. We express this effect as the percentage of change in a_f in relation to the original value, needed to reproduce the experimental data when the constants in question have been

varied by a certain specified amount. Thus, when $\hbar\omega$ changes by ± 0.200 MeV, a_f varies by about 0.5%. In the same manner, a variation in the rotational constant $\hbar^2/2J_L$ from 2 to 5 keV, requires a decrease in a_f of about 13%. Similarly, a decrease in ϵ from 0.4 MeV to zero, requires a change in a_f of roughly 1%.

From the fission fragment angular distributions we can infer the values of K_0^2 for every energy. Since, as we mentioned previously, the evaluation of both, ${\bf a_f}$ and ${\bf K_O^2}$ are separable, the best value for K_{Ω}^{2} is obtained by fitting the fission cross section by varying a_f , and then varying K_O^2 until the smallest χ^2 value is obtained for every angular distribution individually. The error limits in K_{Ω}^2 are deduced in a similar manner by finding the values of this parameter corresponding to the points where the fits are no longer considered to be acceptable using a χ^2 criterion. Table VIII lists the best values deduced for K_{Ω}^{2} in this energy region, together with the upper and lower limits of error. Figures 16b, c, d how best fits to the angular distributions of the fission fragments at the different energies, and Figure 20 is a plot of K_0^2 vs. the kinetic energy of the incident neutron.

Figure 20 shows how K_0^2 oscillates with energy in a manner not expected from the theory developed in the previous section, although the character of the energy dependence is not very precise because of the uncertainty in the values

Figure 20. Incident Neutron Energy Dependence of K_0^2 .

Table VIII.	K _O ² Values Describing Angular Distribution of	эf
	Fission Fragments.	

En	Best	χ²	Low	χ²	High	χ²
4.7	8.0	8.2	6.5	12	14.0	12.8
5.4	14.0	9.0	11.0	13	21.0	12
6.2	8.0	6.6	6.0	13	12.0	12.7
6.7	5.0	3.0	3.0	12	20.0	12
7.1	11.0	9.9	8.0	12	13.0	11.6
7.9	21.0	5.8	13.5	12.5	45.0	12
8.9	50.0	7.7	15.0	9.0	Very High	-
9.0	19.0	6.1	13.0	12	30.0	12.7
9.7	11.0	4.2	8.5	∿12	16.0	·12

deduced. However, for energies below 7.1 MeV, the value of $\rm K_O^2$ fluctuates around an average of about 8, and of about 24 for energies between 7.9 and 9.0 MeV. Above this region, at 9.7 MeV, $\rm K_O^2$ decreases substantially as the contribution from second chance fission becomes more significant.

One final parameter which we have not commented on is the nuclear temperature. The dependence of T on excitation energy follows directly from (II-46). Figure 21 shows the behavior of T(U) vs. U, where U is the excitation energy above the fission barrier. For comparison, we also show the behavior of the temperature when a uniform Fermi gas model is assumed, in which a_f remains constant (at a value of $\sim 30~{\rm MeV}^{-1}$), with varying energy. As we can see, the

Figure 21. Excitation Energy Dependence of the Temperature using two Different Assumptions Regarding $a_{\mathbf{f}}$.

non-uniformity of the single particle levels near the Fermi surface seems at first sight to be responsible for the plateau and slight decrease in T. As the energy increases, T approaches the value predicted by the constant af model. We shall discuss this problem in more detail in the next chapter.

Before we enter the discussion of the results reported in this chapter, it is important that we point out and clarify some of the terminology that will be used in relation to the excitation energies.

A plot of level densities vs. excitation energy for even-even, odd-A and odd-odd nuclei in the same mass region shows that at a given excitation energy, $\rho_{\text{O-O}} > \rho_{\text{O-A}} > \rho_{\text{e-e}}$. Moreover, the shape of the density functions is very similar in all cases, the difference arising from a shift in the energy axis. This phenomenon is associated with the fact that an even-even nucleus has all its nucleons paired, and its only low lying states are collective in nature. the excitation energy becomes sufficiently large to break a nuclear pair, the level density begins to exhibit the characteristic exponential increase with energy. An odd-odd nucleus, by contrast, already has two unpaired nucleons and intrinsic states associated with different orbits of the unpaired nucleons can therefore be immediately excited. effective excitation energy, U, is thus related to the excitation energy measured from the true ground state by:

U = E for o-o nuclei $U = E - \Delta_{(n \text{ or } p)}$ for odd-A nuclei $U = E - \Delta_{n} - \Delta_{p}$ for e-e nuclei

It is very useful to be able to compare some of the statistical parameters on a common ground of intrinsic excitation. Therefore, in the coming discussion we will refer to the quantity U as the energy "above the unpaired ground state", or the "fictitious excitation energy".

IV. DISCUSSION OF RESULTS

A. Interpretation of Results at Low Excitation Energies

In the discussion of the preceding chapter, we deduced the sets of parameters which describe the ²²⁷Ra transition nucleus at the saddle point for two types of deformations. Since the neutron binding energy has a value of 4.5 MeV, this calculation places the fission barrier height at about 8.2 MeV. How do our results compare with those obtained independently by other investigators?

The most recent experimental data regarding fission of ^{227}Ra is that of Konecny and co-workers (Ko 73), whose results are shown in Figure 22 for the reaction $^{226}\text{Ra}(\text{d,p})$ $^{227}\text{Ra} \rightarrow \text{f.}$ The "elbow" in the $\Gamma_{\text{f}}/\Gamma_{\text{n}}$ curve observed in their experimental data would place the fission barrier at approximately 8.2 MeV of excitation. This estimate agrees substantially well with our own previously stated result.

Theoretical predictions of the single particle levels and the barrier height have come from the calculations done by Drs. Nix and Moller (Ni 73) (who have very kindly made these available to us). The results involve calculations for two deformations, one corresponding to the ground state, and another corresponding to a very deformed, highly asymmetric saddle point shape. The potential energies of deformation were evaluated according to the macroscopic-microscopic method. The macroscopic part was calculated for two

Figure 22. Fission Probabilities vs. Excitation Energy for ²²⁷Ra Showing Two Possible Fission Components, from (Ko 73).

orders of approximation. In one case the nuclear energy is evaluated by including the Coulomb and surface energies, expressed in terms of lower order shape dependent quantities; this approximation leads to the liquid drop model (LDM). The inclusion of higher order terms in the expansion leads to the droplet model, which takes into account effects that are associated with the finite size of nuclei, such as nuclear compressibility and curvature corrections.

From the nuclear shape specified by the macroscopic calculation, a potential is generated, and the Schrödinger equation is solved to obtain the single particle energies. From these, the shell and pairing corrections are calculated. They arise because of fluctuations in the actual distribution of levels relative to a smooth distribution. A partial potential energy surface diagram for ²²⁶Ra, as calculated by Nix and Moller, is given in Figure 23, and arrows indicate the most probable path to fission. The "s" indicates the probable saddle point. Table IX lists the

Table IX. Macroscopic-Microscopic Calculations for 226Ra*.

	Ground State**	Saddle Point**	Total**
Shell Correction	-2.394	- 3.524	
Pairing Correction	+0.276	+ 0.698	
LDM Energy	+2.637	+13.780	
Droplet Energy	+2.720	+11.550	
Potential Energy (LDM)	+0.518	+10.950	+10.43
Potential Energy (Droplet)	+0.602	+ 8.72	+ 8.12

^{*} Nix and Moller (Ni 73)

^{**} All energies in MeV.

S					
6666 771 6666 771 6555 1 4444444441 444444441	666	551 566 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	44444 333 333 233	1 2 33 4 22 3 4 1 22 3 4 1 33 444444444444444444444444444444	566 551 56 551 56 551 777 6666661
8888 777 56 54444	55.555 55.556666 66666 666666 6	nassennasnoon 66666466666 6664666666666 55555 5555554	333 22 11	0000000 11 0000 11 2 11111111 22 22222 333333 44 45555555555555555	55 66566666666666666666666666666666666
BRBB A AAAA 99 AAAA 99 777777 66666 44444444 444444444444444444444444444444444444	444444444 44444 44444 5555 44 5555 66	5555 6444444444444444444444444444444444	333 25252 2525 1111111111111111111111111	111 006000000000 11 2 33 4 1111 00000000 11 22 3 4 I 222222 333 44I 222222 333 44I 3333 44444444444444444444444444	44, 55555 55555 5555, 66 444, 5555, 66 4444, 5555 4444444444444444444444444444
		1444 4444 4444 4444 4444 4444 4444 444	3333 3333 3333 3222 322	222 11 222 2 222 2 33333 2 3333 4 44444	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
566 CCCC 38 44A 999 998 777	3333 3333 3333	772 3333 272 3333 2 333333 3333333 33	44	ოოო ო "	1333333 2222 3333 22222 333 22222 333 23333333333
CC CC AB	555	22222222222222222222222222222222222222	77 77777 7777	555555 55555 444444 5444444 5444444 53333333333	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
CCCC CCCC AAAAAAAAAAAAAAAAAAAAAAAAAAAA	is of	22222222222	444 5555 555 5	555 5555 444 3333	222222222 22 22 444444 5555555 55
7 FE	55555555 444 3333 22222		44 55555	ጉ ኢ. ት አ. ት አ.	777622 111 277227772222 777722 3333 3444 5 54555555
776666 77 77 888888	44 44 7000 7000	11111 1000 1111 1001 111 112 113 113 113 113 113 113 113 11	7 3 44 3 44 4 555 44 555 44 555	44 555 44 555 44 555 44 555 44 555 11 223	1000 1111 7 1100 1111 1100 1111 1100 1111 1100
	g gang gand gar, gann , ,		7	724 724 744 744 744 744 744 744 744 744	

tyst wig general

Partial Potential Energy Diagram for Ra. Arrows Indicate Probable Path to Fission. Contours Are in Arbitrary Units. Figure 24.

values for the shell and pairing corrections, the liquid drop and droplet energies, and the resulting potential energies at the ground state and saddle point deformations. It is interesting to notice the difference between the barriers calculated by the droplet model and the LDM. The latter is higher by over 2 MeV. Therefore, it seems that the introduction of higher order correction terms into the LDM introduces a significant difference in the results of the calculations at high deformations. The shell corrections for the ground state and fission deformations can be interpreted to mean that the calculations predict a lower than average single particle level density around the Fermi surface at these deformations.

In comparing these results with the ones extracted from the experimental data, we notice that our estimate of the fission barrier height is in very good agreement with the calculations by Nix and Möller, whose barrier estimate is 8.12 MeV in the droplet approximation.

Other fission barrier results are summarized in Table X. Apart from the calculations that we have described, good agreement is also obtained with the estimates of Brack et al. (Br 72) for 228Ra. It is important to note the height of the inner barrier derived in this calculation. It is only calculated to be 2.2 MeV. Also, not listed in Table X, but worth mentioning is the magnitude of the shell correction for 228Ra, which according to Brack et al., is

Table X. Fission Barrier Heights (In MeV) for Various Ra Isotopes.

Nucleus	Source	Inner Barrier	Outer Barrier Symmetric	Outer Barrier Asymmetric	Reference
^{2 2 6} Ra	Experimental	-	8.5	±0.5	Zhagrov (Zh 71)
^{2 2 6} Ra	Theory	4.5	10.0	10.0	Adeev (Ad 72)
^{2 2 6} Ra	Theory	4.2	10.5	9.0	Moller (Mo 72)
^{2 2 6} Ra	Theory	3.7	10.7	-	Mosel & Schmitt
^{2 2 6} Ra	Theory	_	10.2	10.2	(Mo 71) Pauli (Pa 73)
^{2 2 7} Ra	Experimental	-	8.2	±0.1	This work
^{2 2 8} Ra	Theory	2.4			Brack et al. (Br 72

-0.4 MeV at the ground state. This is to be compared with a shell correction of -2.394 MeV as estimated by Nix and Möller and listed in Table IX. We shall comment more on the subject of the shell corrections in a subsequent section.

If the independent estimates of the fission barrier in 227Ra show such good agreement, it will be interesting to see how well the single particle level calculations carried out by other people compare with those deduced in this work. We might begin by noting that the gradual decrease in the anisotropy with decreasing energy from a maximum at 8.6 MeV of excitation ($E_n = 4.1 \text{ MeV}$) observed by Konecny et al., (Ko 73) would qualitatively support the notion that the first channel at the barrier is not a K = 1/2 channel. both our estimates (symmetric and asymmetric), the lowest lying channel is K = 3/2. Figure 24 shows the neutron single particle levels calculated theoretically for the saddle point deformation by Nix and Möller and also Pashkevich (Ip 72), in comparison with those determined in the present work, which assumes symmetric and asymmetric saddle point deformations. The agreement between the Nix-Möller set of data and ours can be considered remarkably good, and perhaps fortuitous. In the symmetric case, the order of the levels is predicted by the theory, even though the energy differences are not well reproduced. In order to empirically reproduce the level spacings, the level

Figure 24. Theoretical and Experimentally Deduced Single Particle Levels for the ²²⁷Ra Transition Nucleus.

density of ²²⁶Ra would have had to be reduced. This would have caused a rise in the height of the barrier which would have been necessary in order to fit the experimental data. In the asymmetric case, the level spacings are better reproduced by the theory; however, the ordering of the 5/2 and 1/2 levels would have to be reversed. Considering the numerous approximations that have been made in these calculations, we must say that the agreement is quite reasonable.

Very little or no agreement is observed between our set of levels and that resulting from Pashkevich's calculations. Sources of discrepancy between the theoretical and empirically determined single particle levels would involve the accuracy of the deformation at which these levels are calculated in comparison to the one corresponding to the precise saddle point. From looking at Nilsson-type diagrams it is easy to see that a small displacement in deformation can substantially alter the spacings between the levels and even reverse their order if there are nearby crossings.

Now we return to one of the important points in the purpose of this project. In the introductory part of this work it was suggested that even if the problem of the "thorium anomaly" could not be resolved, we could perhaps at least determine whether this disagreement between the theory and experiment persisted in the case of radium. The evidence displayed in this section would indicate that it

does not. The agreement between different theoretical calculations, particularly those of Nix and Möller, and experimental analysis for ²²⁷Ra in this work is very good. This observation would lead us to conclude that there is something peculiar in thorium which does not seem to be present in other nearby elements.

B. Interpretation of Results at Moderate Excitation Energies

A great proportion of the results obtained from the calculations outlined in the previous sections are based upon the validity of the assumptions regarding the evaluation of the level density of the ²²⁶Ra nucleus at equilibrium deformation. Under these circumstances we might spend some time discussing the parameters that entered in this particular part of the calculation.

The fit to the experimental level density dependence on energy had made use of a back-shifted Fermi-gas model expression with one free parameter, a_n, at energies above 3 MeV. We have pointed out previously that in this fit, a dependence of a_n on excitation energy is obtained as shown in Figure 19. In the derivation of the Fermi-gas level density expression, this parameter is proportional to the density of single particle levels in the nucleus in the following form:

$$a_n = \frac{\pi^2}{6} g_0$$

where go represents the single particle density for both neutrons and protons. We have assumed that these particle levels are equidistant and therefore go is a constant.

However, from fits to experimental data we know that this is not the case and that in many cases and is indeed a function of excitation energy. At low energies the nucleus only samples the levels close to the Fermi surface, and the level density of the nucleus is therefore characterized by the single particle levels in a short energy interval above and below the Fermi surface. However, as the energy increases, the nucleus begins sampling regions far from the surface, with the effect that it now "sees" an average single particle density, in which the local density fluctuations are effectively washed out.

In the case of ²²⁶Ra, values of a_n decrease steadily as the excitation energy increases, until asymptotic values are reached. The real location at which the a_n dependence on energy becomes flat is not known because we do not have any more experimental data above this region, and therefore our fit is not reliable at energies a little above the neutron binding energy, or about 7.0 MeV of excitation energy. The main point to be emphasized, is the meaning of this steady decrease with energy.

Under normal circumstances, this energy dependence of the level density could be equated with a high local density of single particle levels at the Fermi surface, in the order of 40/1.5 ~ 24 levels/MeV, or about 12 MeV⁻¹ for each nucleon type. This is quite high if we look at other systems above and below the radium mass region and see that the a_n dependence is in a sense reversed. In other words, what is observed is that a_n increases with excitation energy; the interpretation of this is based on the argument that at ground state deformations, the Strutinsky shell correction is negative because the local density of levels at the Fermi surface is lower than average. Therefore, unless the interpretation given to the experimental data is wrong, it is clear that we have at hand a system which shows some peculiar properties.

The problem becomes more important when we realize that the behavior of the fissioning system depends directly on the level density of the residual nucleus. For example, the evaluation of Γ_f depends totally on what Γ_n values are used in the calculations and Γ_n is, of course, directly proportional to ρ_n , the level density of the residual nucleus.

Our version of the energy dependence of a_f , the density parameter at the saddle point, is therefore strongly bound to what we may determine regarding a_n , as we have implied previously. The result, as we have already seen, is shown in Figure 19. As in the case of a_n , we observe a monotonic decrease of a_f with energy in both the asymmetric and symmetric calculations. It is interesting to notice

that the symmetric curve does not cross the a_n line at any point, while the asymmetric line crosses it at a point corresponding to about 4.25 MeV of excitation above the unpaired ground state: from there on, $a_f^{asym} < a_n$. We will discuss the meaning associated with this observation a little later.

The derivation of the Fermi-gas expression (II-32) assumes that the overwhelming contribution to the level density is provided by the random coupling between single particle excitations in the nucleus. This assumption could be tested by theoretically calculating the level density dependence on energy and comparing it with the results deduced from the experimental data.

Single particle levels can be used to calculate microscopically the nuclear level density. An important formalism has been established by Decowski et al. (De 68) which properly takes into account the effect of the pairing correlations. Based on this formalism a computer code has been developed by Bolsterli (Bo 73, Br 73) which calculates the density of intrinsic levels as a function of excitation energy. Input parameters in this calculations are the single particle levels and the pairing strengths, which are obtained from the macroscopic-microscopic calculations of Nix and Möller. We have used this computer code for calculating the density of states at the ground state and saddle point deformations in 226Ra. Table XI lists the values of

0.565

0.581

0.595

0.615

0.623

0.648

0.693

Table XI. State Density Parameters for 226Ra from Microscopic Calculation

	scopic Calcu	lation		
	Part A.	Equilibrium 1	Deformation	
E (MeV)	log ₁₀ ω	$^{\Delta}{}_{ extbf{n}}$	Δp	т
0.50	-0.605 -0.080	1.230 1.210	0.89 0.83	0.353 0.388
1.50	0.418	1.190	0.78	0.416
2.00	0.895	1.160	0.73	0.439
2.50	1.354	1.140	0.68	0.460
3.00	1.796	1.120	0.62	0.478
3.50	2.224	1.100	0.56	0.495
4.00	2.641	1.070	0.50	0.510
4.50	3.046	1.050	0.43 0.34	0.524 0.538
5.00 5.50	3.442 3.840	1.030 0.998	0.34	0.552
6.00	4.271	0.968	0.21	0.567
6.70	4.797	0.924	_	0.586
7.00	5.015	0.895	_	0.598
8.00	5.702	0.811	-	0.628
10.00	6.995	0.615	- .	0.680
	Part B. Hi	ghly Deformed		:
E (MeV)	$\log_{10}\omega$	$^{\Delta}$ n	$^{\Delta}$ p	T ·
0.50	-0.510	1.320	0.54	0.355
1.00	0.010	1.300	0.44	0.390
1.50	0.505	1.280	0.32	0.418
2.00	0.979	1.260	0.15	0.442
2.50	1.486	1.240	- .	0.467
3.00	1.911	1.210	-	0.490
3.50	2.318 2.715	1.180 1.150	_	0.511 0.531
4.00 4.50	3.099	1.120	_	0.549
4.00	3.033	1.120		0.545

the excitation energies, the resulting state density, the pairing gap for both protons and neutrons, and the nuclear temperature. The calculated state density does not include

1.090

1.060

1.030

0.990

0.970

0.900

0.750

3.472

3.835

4.191

4.676

4.879

5.542

6.801

5.00

5.50

6.00

6.70

7.00 8.00

10.00

collective contributions such as rotations and vibrations, and these would have to be included separately. Figure 25 shows a plot of the intrinsic state densities calculated in this fashion, in comparison with those obtained empirically from the experimental data. It is apparent from this graph that the difference in magnitude between the experimental and theoretical level densities is immense.

The recent paper by Bjornholm et al. (Bj 73) may shed some light on the problem. This work discussed the relative enhancements in the total level density of the nucleus based on the degrees of asymmetry associated with certain nuclear shapes. Thus, a spherical nucleus would possess the lowest density of levels because of its high symmetry. For example, they point out that if the spin cutoff parameter σ has a value of five, a nucleus with no rotational symmetry would be expected to have a level density:

$$(8\pi)^{\frac{1}{2}}\sigma^3 \approx 625$$

times higher than its spherical counterpart at comparable excitation energies. In the same manner, the total density of levels of energy E would be enhanced by vibrational contributions to the level density, expressed by the factor:

$$z_{vib}(T) = (1-e^{-\hbar\omega/T})^{-g}$$
 (IV-1)

where $\hbar\omega$ is the frequency of the vibration, T is the temperature, and g is a degeneracy factor equal to $2\lambda+1$; λ is

Figure 25. Theoretical and Experimentally Deduced State Density Dependence on Energy.

in the multipole order. It is clear then, that the degree of enhancement provided by the collective degrees of freedom can be very substantial, particularly in cases where values of the vibrational frequency are small, and multipole orders are high, and also in cases where asymmetries are found in the nuclear shape, particularly if the deformations are large. For nuclei in the actinide region the characteristic ground state deformations is prolate. The rotational enhancement provided for such a shape is equivalent to σ^2 , which is proportional to the temperature. Although $\sigma^{\,2}$ can be large, its variation with energy is not expected to be very significant in a relatively short range of energy because the temperature T varies approximately as $T \propto \sqrt{E}$. ever, intrinsic excitations increase very rapidly with energy because of the exponential dependence of $\rho_{\mbox{\scriptsize intr}}$ on E. The degree of variation of the vibrational enhancement with energy is not expected to be nearly as large as for the intrinsic excitations, but larger than in the case of rotations, particularly if λ in (IV-1) is relatively high. Therefore, the slope of the log10 of the level density curve is expected to be largely determined by the dependence of the internal excitations on energy with relatively small deviations provided by the other contributions to the level density. The degree to which these deviations are observed should depend, to a great extent, on the mass region to which a certain nucleus belongs. This is clearly indicated

by the characteristic low energy spectra noted in certain areas of the periodic table. These spectra are determined largely by the corresponding nuclear shapes (see for example [Ma 70]).

The "transitional character" of radium in relation to other nuclei can be described in terms of the fact that other nuclei of lower atomic number do not exhibit rotational levels because of their sphericity. In contrast, vibrational states are observed. In the case of radium and thorium, both types of levels are present and the vibrations are low in energy ($^{\circ}$ 0.25 MeV for the first octupole state in radium). We might say that radium is "soft" to octupole deformations (Jo 61). As we can see, the enhancement of the level densities predicted by (IV-1) can be considerable, particularly if T >> $\hbar\omega$. The same is true of the rotational contribution to the level density, which is in the order of σ^2 . Now it is possible to begin answering the question which was posed before, namely why does the Fermi-gas expression (II-32) yield a value for the level density parameter a which implies a much larger than expected single particle level density around the Fermi surface? The answer lies in the fact that our method of deducing a_n does not distinguish between single particle levels and collective levels and thus, some of the collective effects may be "absorbed" into the deduced a_n value, thereby causing a rise in the value of a_n. This effect would be expected to be large

at low energies because the proportion of single particle excitations is relatively low in relation to other types of excitations.

To demonstrate this, we could ask ourselves how the different types of excitations exist in proportion to each other as the energy of the nucleus increases. What ratios of collective to quasiparticle excitations are expected at different temperatures? One typical type of motion is the octupole vibration as we mentioned before. In the case of thorium, from which we have borrowed our functional level density, the first octupole vibration is observed at about 500 keV above the ground state. The partition function for this type of motion is given by (IV-1), where g = 7; since $\lambda = 3$. If we assume that the temperature is approximately 400 keV, we find that:

$$Z_{vib}$$
 (T=0.4) \sim 10

If we now assume that the temperature is about 500 keV, or in the order of the vibration quantum energy,

$$z_{vib}$$
 (T=0.5) \sim 25

Switching for a moment into the BCS formalism, we could compare these two quantities with the partition functions corresponding to quasiparticle excitations evaluated at these same values of the temperature. For $T \geq \Delta/2$, where Δ is the pairing gap parameter, the partition function may be approximated by the following expression (Kl 64);

$$\log Z(\beta) \approx 4g_0 \Delta \sum_{n=1}^{\infty} (-1)^{n+1} K_1(n\beta\Delta)/n - \log 4 \qquad (IV-2)$$

where β is the inverse of the temperature, and K_1 is the modified Bessel function of first order. If $g_0^{\ \Delta}\approx 5$ then it is found that:

$$z_{intr}(\beta) \sim \begin{cases} 3.9 & \text{for } T = 0.4 \\ 24 & \text{for } T = 0.5 \end{cases}$$

The result is that the ratio of z_{intr} to z_{vib} increases by a factor of about 2.6 when the temperature increases by 25%. We have made this rough calculation to show that collective excitations are extremely important, and that their contribution is very large, particularly at low energies. In the mass region A \(^230\), octupole vibrations seem to play a significant role; other types of excitation might also contribute, but for purposes of illustration we have only chosen to discuss one mode. So far, that is how the situation regarding the level density appears at the equilibrium deformation. However, we have not yet said anything regarding collective effects at the transition state deformation. The number of levels that are required to fit the fission cross section and angular distributions goes up rapidly as the energy increases. This is a direct consequence of the high number of neutron exit channels which are present in the residual nucleus.

Just as in the previous case of a, we observe a general decrease of a with increasing excitation energy as shown in Figure 19. The state density at the saddle point deformation, calculated theoretically (Figure 25), follows closely that corresponding to the ground state deformation, crossing the latter at about 5.0 MeV of excitation (in relation to the unpaired ground state). Again, in this calculation we seem to be badly underestimating the collective contributions to the level density. The single particle level densities at the saddle point are too large in relation to what is normally expected. It is possible to develop an argument similar to the one which we expressed before, relating a_n, with some minor variations. In the first place, the nuclear shape is very elongated and the moment of inertia large; secondly, two types of deformations can be discussed, symmetric and asymmetric; whereas before one could only talk about symmetric distortions. Finally, little is known about the vibrational effects.

The elongated shape of the transition nucleus provides for a great enhancement of the rotational contributions to the level density, because the moment of inertia of the transition nucleus is about three times larger than that corresponding to the residual nucleus. If the transition nucleus is reflection-asymmetric, as the theoretical calculations predict, this enhancement increases automatically by a factor of two. This explains why a saym is

consistently lower than a_f^{sym} . In calculating the transition state level density, all contributions, collective and intrinsic, were thrown together, and accounted for in one parameter, a_f. When we multiplied the level density by a factor of two in order to include the asymmetry factor, this had the effect of effectively removing one of the collective factors (the one corresponding to x-y asymmetry) from a_f and accounting for it externally and artificially by doubling the total density of levels. Actually this is a step in the right direction because the nature of the level density parameters a_f and a_n requires that only intrinsic contributions be accounted for in their use, while collective effects should appear as multiplicative factors to the internal level density. We will return to this particular point shortly. Similarly, the fact that a asym crosses a at some point in our empirical level density is not indicative of anything, except the fact that we have accounted externally for the asymmetric degree of freedom predicted for the shape of the transition nucleus.

At this point we do not know anything regarding vibrational effects at the saddle point. Calculations by Nix and Swiatecki (Ni 65) based exclusively on the liquid drop model would indicate that certain modes of vibration with frequencies in the order of 1 MeV are possible at the saddle point. We simply cannot say anything more in this respect.

The variation of a_f and a_n with excitation energy has been interpreted by Vandenbosch and Mosel (Va 72), and Bishop et al. (Bi 72) as a reflection of the close relationship between the sign and magnitude of the shell correction energy and the local single particle level density near the Fermi energy. If the single particle level density is unusually low, the shell correction is negative, and vice versa. However, as the excitation energy increases, single particle levels farther away from the Fermi surface begin playing a role, and shell effects tend to disappear.

From the decreasing trend of a_f and a_n with increasing energy, it might have appeared natural to predict positive shell corrections for both the ground state and saddle point deformations. We have pointed out however, that because of the relatively high contribution of collective states to the level density in both cases, it is hard to say what the real dependence of an and af on energy is. In the previous section we briefly mentioned that the theoretically calculated values of the shell corrections are negative (see Table IX). If these theoretical results are realistic, it is clear that either one of two things is happening. Either our estimates of af and an are wrong, in which case our level density calculation is also wrong; or the extent to which collective states are "absorbed" into the af or a values is fairly substantial. From the very rough calculations involving the two partition functions which were shown in the last section, we note that there is, in fact, a large probability that the latter argument can be accepted. We might have made substantial errors in determining the level density of 232Th. However, if anything these errors should have gone in the direction of underestimating the number of resonances at the neutron binding energy. The reason for this observation is that, in counting these resonances, there is always a danger of missing some resonances because of resolution problems. Alternatively, the dependence of the level density in the low energy region might have been overestimated, in which case the treatment of the neutron evaporation data would have been in error.

On the other hand, Lynn and Bjornholm (Br 72) have experimentally deduced a positive ground state shell correction for thorium. They find that the values of the ground state shell correction decrease rapidly as a function of Z, such that they are all negative for U, Pu, and Cm. From this trend it would be expected that the ground state shell correction energy would be positive in the case of radium. This observation conflicts sharply with the results from Nix and Möller who predict a large negative shell correction for radium. It is conceivable that the Nix-Möller calculation might have failed to take into account effects of which we are not aware. However, it is hard to forget that such good agreement is found between their results and those deduced in this work regarding the height of the fission

barrier and the single particle levels as discussed in the previous section.

From the above discussion, we conclude that at this point we cannot infer much about the shell correction in radium. All what can be said is that because of the similar dependences of a_f and a_n vs. energy, and because of the occurrence of low energy collective phenomena, at both deformations, the sign of the shell correction is perhaps the same in these two cases. Because of the predominance of collective excitations at low energies over intrinsic excitations, and the subsequent relative increase of the latter with energy, it is worthwhile to point out that the real variation of a_n and a_f (or g_o) with energy is surely less than what is observed in the empirical dependence shown in Figure 19.

The behavior of the nuclear temperature as a function of excitation energy is a direct result of the sharp dependence of the nuclear level density parameters a_f and a_n on energy. In the case of the ground state deformation, there is a rapid increase in T up to about 2 MeV of excitation (Figure 26). Between 2 and 4.5 MeV, the curve levels off into a plateau, and then it begins to climb again at a relatively slow rate. In the case of a_f , there actually seems to be a small dip in the curve (Figure 27). It is hard to say whether it is realistic to expect such an occurrence in the excitation energy dependence of the

Figure 26. Temperature Dependence on Excitation Energy for ²²⁶Ra at Equilibrium Deformation.

Figure 27. Temperature Dependence on Energy for the Transition Nucleus 227Ra.

temperature. If realistic, it could be interpreted as meaning only that within the small range of energy in which T decreases, there is a very small increment in the rate at which the level density increases with excitation energy. This behavior is not normally expected, and the temperature is usually assumed to follow the smooth dependence:

$$T \propto \sqrt{E}$$
 (IV-3)

Deviations from this dependence can be observed, for example, in the values derived from the experimental data on lighter nuclei by Tsukada and co-workers (Ts 66), who obtained nuclear temperatures by fitting the level density dependence on energy, and then computing the inverse of the nuclear temperature according to the expression;

$$\frac{1}{T} = \frac{\partial \ln \rho(E)}{\partial E}$$
 (IV-4)

where $\rho(E)$ is the level density. Qualitatively, the deduced energy dependences of the temperatures are similar to that which we observe for $^{2\,2\,6}$ Ra. It is worthwhile to also point out that values of a_n obtained by Tsukada et al. are in some cases strongly dependent on excitation energy. Although the calculations and experimental data which we have mentioned concern lighter masses (Co, Ag, In, Ta, and Au), the results reported serve to illustrate the point that in many cases the expected energy dependence of the temperatures does not follow the simpler relation (IV-3).

Let us now see if it is possible by simple calculations to numerically account for the degree of discrepancy between the experimentally determined and theoretically calculated state densities shown in Figure 25. For this purpose, we make use of the temperature information described previously, and for simplicity, only the ground state deformation is chosen. For two different temperatures, 400 and 500 keV, the excitation energies relative to the unpaired ground state are 1.65 and 5.6 MeV respectively. Vibrational contributions, which are assumed to be mainly octupole, provide us with the partition functions;

$$z_{\text{vib}}^{\lambda=3}$$
 (1.65 MeV) $=$ 10

$$Z_{vib}^{\lambda=3}$$
 (5.6 MeV) ≈ 25

The partition function for rotations can be derived to be $Z_{\rm rot} = 2\sigma^2/S$, where σ is the familiar spin cutoff parameter, and S represents a symmetry factor which is equal to 2 when the nucleus is reflection-symmetric, and 1 when it is reflection-asymmetric. Under these circumstances, the rotational partition functions are:

$$z_{rot}$$
 (1.65 MeV) \sim 30

$$z_{\rm rot}$$
 (5.6 MeV) \sim 41

The degree of collective enhancement over the intrinsic level density is the product of the partition functions contributing to the entropy of the system. The predicted degrees of enhancement are now compared with the ratios of the experimental state densities to the calculated intrinsic densities shown in Figure 25 at the two energies in question. The results are listed in Table XII.

Table XII. Collective Enhancements in 226 Ra.

Energy	log ₁₀ (Z _{vib} Z _{rot})	log ₁₀ (w _{exp} /w _{intr})
1.65	2.48	2.65
5.60	3.20	3.40

These results are remarkable in view of the rough approximations used in calculating the collective enhancements from the partition functions. They seem to indicate that in principle the assumptions made regarding the predominance of the low frequency octupole mode over other vibrational modes are not at all unrealistic, and also that the single particle levels of Nix and Möller seem to correctly describe the ²²⁶Ra nucleus at its equilibrium deformation.

For some time now we have relied on the experimentally deduced temperatures for conducting the partition function calculations. The evidence seems to indicate that they are fairly reliable. However, we should compare our estimates with those predicted by the theory.

Figures 26 and 27 show plots of temperature vs. energy for the two saddle point assumptions and for the ground state deformation as deduced from the experimental data.

Microscopically calculated temperatures are also shown for both nuclear deformations with no collective correction. It is clear from these figures that the theoretical estimates differ substantially from those obtained empirically. These differences in the separately evaluated temperatures are consistent with the argument that we have employed all along, namely that the general formalism has been neglecting contributions from degrees of freedom other than intrinsic excitations. Generally, the entropy in the exponential factor of the level density is expressed as the sum of several terms;

$$S = \ln Z + \beta E - \mu_n N_n - \mu_p N_p$$
 (IV-16)

where Z is the partition function, β is the inverse of the temperature, μ_p and μ_n are Lagrangian multipliers for the proton and neutron numbers N_p and N_n respectively. From this condition we could for example, establish:

$$-\frac{\partial \ln Z}{\partial \beta} = E_{T}$$

If all we are concerned with is intrinsic excitations, then the above expression remains as written. However, if other degrees of freedom are present, namely rotational motion and vibrations, the expression converts into:

$$-\frac{\partial \ln Z}{\partial \beta} = (\frac{\partial \ln Z_{intr}}{\partial \beta} + \frac{\partial \ln Z_{vib}}{\partial \beta} + \frac{\partial \ln Z_{rot}}{\partial \beta}) = (IV-8)$$

$$E_{intr} + E_{vib} + E_{rot} = E_{T}$$

When we include three terms into the partition function, the value of β must increase by some amount in order to conserve the total energy E_T , as opposed to the case where only the intrinsic excitations are included. In other words, the temperature of a system decreases with increasing number of degrees of freedom, when the total energy is conserved. This explains basically the reason why the temperatures calculated in the two manners, theoretically and empirically, differ as shown in Figures 26 and 27.

The entropy in a system is given in terms of the state density as:

$$S = k \ln \omega \qquad (IV-9)$$

where k is the Boltzmann constant, S is also given by the expression:

$$S = \frac{E}{t} + k ln Z$$
 (IV-10)

where E is the total energy, and Z the partition function. From these two expressions, the state density becomes:

$$\omega(E) = Ze^{E/T} \qquad (IV-11)$$

and Z includes the contributions from all degrees of freedom. We have set T = kt for convenience in the above expression. If, for example, T = 0.400 MeV, the E-2 Δ = 1.65 MeV, and E = 3.3 MeV. From previous discussions at the given temperature Z_{intr} \sim 3.9 and Z_{vib} \sim 10. Z_{rot} = 2 σ ² for a deformed symmetric nucleus and in the order of Z_{rot} \sim 30

in this case. Putting together all these quantities it is found that:

 $\omega(T=0.4) \approx (10)(3.9)(30)e^{(3.3/0.4)} = 4.56 \times 10^6$ or $\log_{10}\omega$ (T = 0.400) = 6.66. The experimentally deduced value is $\log_{10} \omega_{\text{exp}}$ (T = 0.400) = 5.25. Analogously, we could calculate the state density at T = 0.500 MeV, which corresponds to E - 2Δ = 5.6 MeV or E = 7.33 MeV. We found previously that z_{vib} $^{\sim}$ 25, z_{intr} $^{\sim}$ 23, and z_{rot} $^{\sim}$ 40. These values give us an estimate of $\omega(T = 0.500) = 3 \times 10^{10} \text{ MeV}^{-1}$, or $\log_{10}\omega$ (T = 0.5) = 10.48, as opposed to an experimentally deduced value, $\log_{10} \omega_{\text{exp}}$ (T = 0.5) = 8.95). The differences between the calculated and experimental state densities are $10^{1.41}$ for T = 0.400 and $10^{1.53}$ for T = 0.500. This calculation indicates that the slope of the calculated density line remains roughly equal to that of the experimentally deduced one, through an energy interval of about 4 MeV. The constant difference in the state densities obtained by these two methods is in part explained by the fact that in our crude calculations we did not put any constraints regarding the total number of particles, which would have the effect of reducing the total density of states. Perhaps we have carried the statistical mechanical analogy too far, in view of the simplistic arguments involved. Nevertheless, it is important to notice that apart from a normalization factor, the correct dependence of the

density on excitation energy is predicted. This would argue that, in principle, the calculations of the temperature as a function of energy and the partition function arguments regarding the collective contributions to the level density are realistic.

C. Fission Fragment Angular Distributions at High Energies

In the last chapter we parameterized the fission fragment angular distributions for 4.7 MeV \leq E $_{\rm n}$ \leq 9.0 MeV in terms of the variable $\rm K_{\rm O}^2$ which describes the width of the K distribution in the transition nucleus. For sufficiently high energies, the distribution in K is assumed to be Gaussian, as in expression (II-38).

Figure 28 shows the dependence of K_O^2 on excitation energy above the barrier for the transition nucleus $^{2\,2\,7}$ Ra, obtained by determining the values of K_O^2 which minimize χ^2 when the fission fragment angular distributions in Figures 16b, c, and d are fitted with expressions (II-15 (II-48). For comparison, we also show the values of K_O^2 deduced for the same system by Ippolitov et al. (Ip 72) who used the expression:

$$K_O^2 = (2.1 \sqrt{E_n} + 1)^2 / 8(A-1)$$
 (IV-12)

where A is the anisotropy and E_n is the incident neutron energy. It can be noted that good agreement is found between the two methods. The data shows that K_0^2 oscillates

Figure 28. Experimentally Deduced Values of K2.

around a value $^{\circ}8$ for excitation energies $E_{f}^{\star} \leq 4$ MeV and then it seems to jump to $K_{O}^{2} \sim 24$ for $4 \leq E_{f}^{\star} \leq 5.5$. The point at about 6 MeV has a value of $K_{O}^{2} \sim 12$, and it shows strong contributions from second chance fission; therefore, we will disregard it in our discussion.

In terms of the Fermi-gas model, the behavior of K_0^2 as a function of energy is expected to follow the relation:

$$K_{O}^{2} = \frac{4 \operatorname{RB}_{eff}^{T}}{e^{2}}$$
 (IV-13)

where $\mathcal{J}_{ ext{eff}}^{ ext{RB}}$ is the effective moment of inertia for a rigid body as defined in (II-37), and T is the nuclear temperature. Since T $\propto \sqrt{E}$, K_O^2 is also supposed to be directly proportional to E. However, at low excitation energies, a significant deviation from the behavior predicted by the Fermi-gas model is observed, and ${\rm K}_{_{\rm O}}$ appears generally depressed in relation to the Fermi-gas value (IV-13). deviation is explained in terms of the BCS superconductivity theory, which takes into account the pairing interactions between nucleons. At excitation energies close to the fission barrier, K_O^2 is generally observed to increase in a step-like manner; as the energy increases the step-like structures smooth out and disappear rapidly and K_{O}^{2} increases more or less linearly with energy until a point is reached at which the behavior of K_{O}^{2} follows that predicted by expression (IV-13). This point of transition is labeled the critical energy, and in the BCS superconductivity theory,

it corresponds to the energy at which the pairing correlations between nucleons disappear and the nucleus behaves as a Fermi-gas. Figure 31 shows qualitatively the expected behavior of K_O^2 as a function of excitation energy for a highly deformed e-e nucleus. For even-even nuclei at low energies, the first observed intrinsic excitation corresponds to energies just above 2Δ , where Δ is the pairing gap parameter. Since the number of excited quasiparticles is low in relation to the number of available levels, the probability that a given level will be doubly occupied will be small, and configurations with the maximum allowed quasiparticle number are predominant. Therefore, in very simplistic terms, a "jump" in the value of K_O^2 should be observed every 2Δ energy interval such that:

$$K_0^2$$
 (E*) $\approx 2.\overline{v} K_p^2$

where $\overline{\nu}$ is the average number of pairs of excited quasiparticles and K_p 's are simply the quantum numbers characterizing the single particle levels in a deformed nucleus, the average of their squares being taken over an appropriate energy range. The observed steps in K_0^2 are more weakly pronounced than required by expression (IV-13), mainly because of the so-called "blocking effect", which leads to a decrease in Δ for individual excited nucleon states. In other words, the presence of an odd particle in a given level k' prevents pairs from scattering into this level, and the

level is said to be blocked; as the energy increases, more and more individual particles occupy levels above the Fermi surface, thereby increasing the blocking effect and causing a decrease in the pairing correlations. At energies above a few $\Delta_{\rm O}$ the dependence of $\rm K_{\rm O}^2$ can be expressed in terms of a smooth function, $\rm A(T/T_{\rm C})$, which roughly relates the effective moment of inertia to the moment of inertia of a rigid body, such that:

$$K_O^2 \approx \frac{y_{eff}^RB}{\hbar^2} A(T/T_C)$$
 (IV-14)

The values assumed by $A(T/T_C)$ depend on the ratio of T/T_C where T_C is the nuclear temperature corresponding to the critical energy E_C^* , above which the nucleus behaves as a Fermi-gas. Suffice for the moment to say that for:

$$E^* < E_C^*, A(T/T_C) = f(T/T_C)$$

and for

$$E^* \geq E_C^*$$
, $A(T/T_C) = 1$ (IV-15)

Numerical values for $A(T/T_c)$ as a function of T/T_c have been tabulated by Vonach et al. (Vo 64).

From the above discussion, it is clear that from the dependence of K_O^2 on energy it is possible to deduce some of the parameters that describe the transition state nucleus. In the case of $^{2\,2\,7}Ra$ we have few experimental points, and their uncertainties are relatively large; however, by tentatively identifying the points at which K_O^2 seems to show

"breaks" in its energy dependence, we might be able to offer an estimate for the pairing gap parameter, Δ_{f} . For excitation energies 1 MeV < E* < 3 MeV, the average value of K_{O}^{2} is about 8, and it corresponds to the excitation of one quasiparticle. For 3 MeV < $E_n \leq 5.5$ MeV, K_O^2 increases rapidly to an average value of about 25 which would be more or less the value of K_{Ω}^{2} required from expression (IV-13) in the presence of three quasiparticles. Therefore, we tentatively place the value of pairing gap at the saddle point at $2\Delta_{\text{f}} \approx 3 \text{ MeV}$. From single particle levels provided to us by Nix and Moller, $K_p^2 \sim 6$. Ipolitov et al. (Ip 72) calculated ${\rm K}^{\,2}_{\,\,\,{\rm D}}$ from sets of single particle levels with Nilsson and Pashkevich potentials, and obtained values of $K_{p}^{2} = 7.52$ and $K_{p}^{2} = 9.05$ respectively. These estimates tend to agree better with the experimental data, although the uncertainties in the latter are large. Ippolitov et al. estimate the pairing gap as $2\Delta_f = 2.7 \pm 0.7$ MeV which substantially agrees with our findings.

A value of the pairing gap in the order of 3 MeV contrasts sharply with values of the same quantity calculated for the equilibrium deformation. The question concerning the dependence of the pairing gap on nuclear deformation has been the subject of controversy for some time. On theoretical grounds, Δ may increase as the nucleus deforms. The calculations by Kennedy et al. (Ke 64) on the slab model of the nucleus show that while infinite nuclear matter

presents very small pairing effects, the slab model calculations predict a finite pairing gap, very sensitive to the slab thickness. However, from the experimental aspect there have been arguments favoring both points of view, and there is no conclusive evidence one way or the other. The classical paper by Griffin (Gr 53) in which the pairing gap at the saddle point is deduced for the compound nucleus $^{240}{\rm Pu}$, yielded a value of $\Delta_{\rm f}=1.36$. Subsequently this value was found to be lower. Huizenga et al. (Hu 68) determined $2\Delta_{\rm f} \simeq 2.2$ MeV for $^{240}{\rm Pu}$, while Britt et al. (Br 68) placed $2\Delta_{\rm f} \simeq 2.0$ MeV for the same nucleus, and $2\Delta_{\rm f} \approx 2.10$ for $^{236}{\rm U}$. More recently, Shpak et al. (Sh 71) have found $2\Delta_{\rm f}=1.7$ MeV for $^{240}{\rm Pu}$; however, their estimate is based on the expression:

$$E_{C}^{*} \approx 0.78 \text{ g}\Delta_{O}^{2} \qquad (IV-16)$$

where g is the single particle level density around the Fermi surface. They estimate this quantity from the Fermi-gas level density parameter $a=(\pi^2/6)g_0$ where they set a=A/8. It is clear from previous discussions that g may vary with excitation energy. Also because collective effects have been included in the empirical determination of 'a', the real value of 'g' may be somewhat inflated, which would have the effect of decreasing the value of Δ_f calculated in (IV-16).

Moretto et al. (Mo 69) have deduced the value of the pairing gap in 210 Po to be $^{\Delta}$ 1.62 by identifying the breaks in the 2 Spectrum. Itkis et al. (It 73) have deduced $^{\Delta}$ = 0.90 for the same nucleus. This latter estimate offers the problem that the method used in its deduction relies on a good estimate of $^{\Delta}$ which, again, is assumed to be in the order of a $^{\Delta}$ A/8. Therefore, it seems that at present, the safest way of determining $^{\Delta}$ is by identifying the breaks in the $^{\Delta}$ Spectrum and comparing the jumps in $^{\Delta}$ Swith the predicted increases caused by quasiparticle break up. However, it is important to stress the fact that none of the results appear to be conclusive, there is a lot of controversy surrounding this topic and more work needs to be done in relation to the problem.

Finally, for purposes of illustration, we have calculated the predicted dependence of $K_{\rm O}^2$ in $^{2\,2\,7}{\rm Ra}$, assuming the nucleus to be a Fermi-gas and also under the assumption of a superconductor (Figure 29). For the case of the latter, the quantity $A(T/T_{\rm C})$ in expression (IV-14) has been interpolated from a table given by Vonach et al. The value of the critical temperature $T_{\rm C}$ is calculated from the relation:

$$T_{C} = \frac{4}{7} \Theta_{O} \qquad (IV-17)$$

where according to Lang, 11 $\Theta_{_{\scriptsize{O}}}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ $^{\wedge}$ Therefore, $^{\circ}$ $^{\circ}$ 0.87 MeV.

Vonach et al. tentatively set $\theta_0 = 1.3\Delta$ in order to obtain the experimental odd-even mass difference.

D. The Energy Region 3.9 \leq E_n < 4.7 MeV

The region of the plateau in $\sigma_{\mbox{\scriptsize f}}(E_{\mbox{\scriptsize n}})$ is in essence what we have termed the "twilight zone". The data in this region could not be analyzed discretely because the number of levels required to fit the experimental data would be too large for the analysis to have statistical significance. the other hand, no statistical approximations are possible because the number of levels is still too small for the analysis to have any meaning. It is difficult to speculate about the significance of the plateau and subsequent step at 4.7 MeV. A step in the cross section could, under normal circumstances, be identified with the same type of pairing phenomena at low energies which we discussed in the previous section. Breaks in the cross section have been predicted by Strutinsky (St 58, 65). Kluge (Kl 64) has also qualitatively predicted jumps in the level density which are caused by the pairing correlations at low energies. Much in the same manner as in K_{O}^{2} , these breaks are expected at energies which are multiples of 2\Delta. Because of the "blocking effect", the breaks quickly disappear as the energy increases, Under this interpretation, the sudden increase in σ_{f} would be expected not just above $E_n = 4.7 \text{ MeV}$, but at about 6.7 MeV, where a second plateau has been reached. It is clear that a great increase in σ_{f} must occur at energies slightly above 4.7 MeV, but it is hard to speculate about the causes

of such a great increment. Figure 24 shows the single particle level spectrum calculated for the transition nucleus ^{226}Ra by Nix and Möller. As we have pointed out, the level sequence above the 69^{th} neutron level is very similar to the one predicted in this work, and it goes 3/2, 1/2, 5/2, 1/2. However, above this last 1/2 level, there is a gap of about 0.9 MeV, before the next level is encountered, and then there is a sequence of fairly close levels. It may be possible that the region above $E_{\rm n}=3.9$ MeV, where the plateau begins, corresponds to the gap above the K = 1/2 level in Figure 24. While the sudden increase in the cross section corresponds to a region of high channel density at the end of the gap, which creates a great increase in $\sigma_{\rm f}$ at that point.

E. Comments on the Mass Distribution in the Fission of 227Ra

The data reported by Konecny et al. (Ko 73) on the reaction ²²⁶Ra(d,p) ²²⁷Ra → f, shown in Figure 22 is interesting in the sense that it would seem at first sight to show that the so-called triple-humped mass distribution in fission is actually caused by fission proceeding through two different saddle points, one symmetric and the other asymmetric. The latter fission barrier height appears to be lower in energy than the former. The range of excitation energies studied is between 7 and about 12 MeV, which would correspond to neutron energies between 2.5 and 7.5 MeV. The

plateau in the fission excitation function which Babenko <u>et al.</u> observe between 4.1 and 4.7 MeV is not present in the (d, pf) data. An increase in the Γ_f/Γ_n function is observed however, and the uncertainties in the data do not permit any assertion as to whether the slight drop in Γ_f/Γ_n at an excitation energy of about 8.2 MeV (corresponding to $E_n = 3.8$ MeV in the (n,f) experiment) is related in any way to the features reported in the (n,f) cross section data.

The assertion made by Konecny et al. regarding the two different paths leading to scission would seem to be supported by the difference in the anisotropies observed for the symmetric and asymmetric fission components of the cross section extracted in the study of the 226Ra (3He, df) reaction. However, this problem is far from being resolved theoretically. Until recently, no account had been taken of the dynamics of the fission process. When dynamic variables are included into the calculation of spontaneous fission rates, the path to fission may not necessarily be the one where the energy remains lowest. Pauli and Ledergerber (Pa 73) in a very instructive paper argue that the trajectory adopted by the fissioning nucleus is really that of least action which does not necessarily correspond to that of lowest potential energy. In other words, it would seem that the fission process would be controlled not by the thermodynamics but, by the kinetics of the system. If this were to be true, many of the experimentally deduced fission

barrier heights might be in error, but as we pointed out previously, this argument is still a subject of heated debate.

Within the range of energies in which we so far have carried our analysis (3.6 MeV \leq $E_{\rm n}$ \leq 9.0 MeV), we have not noted any irregular features which could be associated with fission through two different saddle points. However, the data by Konecny et al. indicates that we should not begin seeing these effects except for energies $E_{\rm n}$ $^>$ 8.0 MeV. Unfortunately, the energy region corresponding to second chance fission starts at about $E_{\rm n}$ $^\sim$ 9.0 MeV, and any effects caused by fission through a saddle point would be mixed with those corresponding to fission after neutron evaporation.

F. Parameters Describing Second Chance Fission

We previously pointed out that the steep rise in the fission cross section at incident neutron energies above 9 MeV is caused by the contribution from fission after neutron evaporation. This was shown in Figure 4. The corresponding angular distributions of fission fragments are displayed in Figure 5.

Before we are able to analyze the behavior of the fissioning nucleus ²²⁶Ra, it is necessary to subtract the contribution to fission from ²²⁷Ra. The evaluation of this contribution is dependent upon the assumption that since the

total fission cross section can be described by the function: 12

$$^{227}\sigma_{\mathbf{f}}(\mathbf{E}_{\mathbf{n}}) \simeq \sigma_{\mathbf{c}}(\frac{\Gamma_{\mathbf{f}}}{\Gamma_{\mathbf{n}}})^{227}$$
 (IV-18)

then $\sigma_{\mathbf{f}}(\mathbf{E}_{\mathbf{n}})$ should remain relatively constant as a function of energy at moderate and high excitation. The reason for this is that $\Gamma_{\mathbf{f}}/\Gamma_{\mathbf{n}}$ is predicted to increase only slowly with excitation energy, while $\sigma_{\mathbf{c}}$ decreases slowly with increasing incident neutron kinetic energy.

The result is that we can set σ_f for first chance fission as equal to an average over energy of the cross section in the plateau region between neutron energies of 5.4 and . 9.0 MeV. This permits us to calculate $(\frac{\Gamma_f}{\Gamma_n})^{2\,2\,7}$ if we also know the neutron evaporation cross section $\sigma_n(E_n)$. The latter is given by the Hauser-Feshbach calculation as evaluated in (II-15). Within the region in question, $\sigma_n(E_n)$ remains fairly constant at about 2.92 barns. If we assume σ_f to be about 3.1 mb. between $E_n=5.4$ and 9.0 MeV, then we can give an approximate value for $(\Gamma_f/\Gamma_n)^{2\,2\,7}$:

$$(\frac{\Gamma_{f}}{\Gamma_{n}})^{227} \approx \frac{\sigma_{f}}{\sigma_{n}} = \frac{3.1 \times 10^{-3}}{2.92} = 1.061 \times 10^{-3}$$

Assuming $\Gamma_n >> \Gamma_f + \Gamma_\gamma$, the expression for $(\Gamma_f/\Gamma_n)^{226}$ becomes for, first and second chance fission:

^{12 226} and 227 written as superscripts mean reference to the corresponding Ra isotopes.

$$(\frac{\Gamma_{f}}{\Gamma_{n}})^{226} \approx \frac{226,227\sigma_{f}}{\sigma_{c}} - (\frac{\Gamma_{f}}{\Gamma_{n}})^{227}$$
 (IV-19)

Table XIII lists the calculated values of $(\Gamma_{\rm f}/\Gamma_{\rm n})^{226}$ and for $^{226}\sigma_{\rm f}$ for the different incident neutron kinetic energies.

Table XIII. First and Second Chance Fission Cross Sections

E _n (MeV)	$(\Gamma_f/\Gamma_n)^{226}$	^{2 2 6} of (mb)	^{2 2 7} of (mb)
9.7	0.365×10 ⁻³	0.985	2.865
11.6	1.994×10 ⁻³	5.220	2.780
12.5	2.789×10 ⁻³	7.250	2.750
13.6	3.299x10 ⁻³	8.310	2.690
14.4	3.739×10 ⁻³	9.350	2.650
14.8	5.339x10 ⁻³	13.350	2.650

Similarly, the angular distributions of fission fragments corresponding to the fissioning nucleus 226 Ra are obtained by subtracting the predicted 227 Ra distributions from those observed experimentally from the combined system 226,227 Ra. In order to determine the first chance fission angular distributions at high excitation energies, it is necessary to know the dependence of K_O^2 with energy. This can be done because K_O^2 is directly related to the inverse of the anisotropy $\sigma(0^\circ)/\sigma(90^\circ)$ by the following approximation (Ip 72):

$$\sigma(0^{\circ})/\sigma(90^{\circ}) = 1 + \frac{(2.1\sqrt{E_n}+1)^2}{8K_0^2}$$
 (IV-20)

The shape of the angular distribution can be obtained with sufficient accuracy if we assume that three points in $\sigma(\theta)/\sigma(90)$ are known, namely those at 0°, 45°, and 90°. The one at 0° is the anisotropy calculated from (IV-20). The point at 90° is unity, by definition. The point at 45° can be assumed to be half way between $\sigma(0^\circ)/\sigma(90^\circ)$ and 1. We can easily prove this assumption by evaluating the anisotropies at the three angles from a second degree polynomial fit. First let us assume that the distribution can be simulated by a function:

$$\sigma(\Theta) = a_0 + a_2 P_2 (\cos \Theta)$$

$$= a_0 + (a_2/4) (3 \cos \Theta + 1)$$
(IV-21)

where a and a are constants. From the above expression we find that:

$$\sigma(0^{\circ}) = a_0 + a_2$$

$$\sigma(90^{\circ}) = a_0 - \frac{1}{2}a_2$$

$$\sigma(45^{\circ}) = a_0 + a_2/4$$

The latter is equal to the average between $\sigma(0^{\circ})$ and $\sigma(90^{\circ})$. A basic assumption is, of course that the angular distribution of the fission fragments peaks only at 0°, and decreases smoothly towards 90°.

The three points are then fitted with a function of the form (IV-21) in which a_0 and a_2 are free parameters to be obtained. Once these two are known, the distributions over

all angles can be simulated, and by using the methods of Appendix II we normalize all of those to the corresponding fission cross sections shown in Figure 4 for ^{227}Ra . The next and final step is to subtract point by point the calculated $^{227}\sigma(\Theta)$ from the experimental 226 , $^{227}\sigma_{\text{f}}(\Theta)$.

In the actual calculation we have made use of only the data obtained from the symmetric saddle point shape assumption. This decision was made for the sake of simplicity since the outcome of the calculation is not affected seriously, and because nothing new would be learned by carrying out both approaches to greater lengths. The uncertainties in some of the parameters, such as $\Delta_{\mathbf{f}}$ and $\mathbf{T}_{\mathbf{c}}$, would not, in any case, permit great accuracy in the final results.

Table XIV lists the values of K_{O}^2 which are obtained by applying the formalism developed in the first section. The

Table XIV. Parameters for 226Ra(n,f) at Moderate Energies.

E _n (MeV)	U(MeV)	K _O ²	σ(0)/σ(90)	a o	a ₂	Correction Factor
9.7	6.0	18.1	1.393	1.131	0.262	1.267
11.6	7.9	25.7	1.323	1.108	0.215	1.155
12.5	8.8	30.6	1.290	1.097	0.193	1.254
13.6	9.9	36.9	1.259	1.086	0.173	1.238
14.4	10.7	41.6	1.242	1.081	0.161	1.226
14.8	11.1	44.0	1.235	1.07.8	0.15.7	1.229

critical temperature is assumed to be in the order of 0.87 MeV as was estimated in the previous section, and this yields a critical energy of about 22 MeV. The dependence of $K_{\rm O}^2$ on excitation energy is shown in Figure 29.

Table XIV lists the values of the anisotropies as calculated from expression (IV-20), together with those of the constants a and a obtained from fits to the angular distributions, for different neutron energies. Correction factors as defined in Appendix II are also tabulated.

Table XV lists the differential cross sections as a function of angle (θ) , for:

- a) The unresolved 226,227Ra fissioning data
- b) The estimated 227Ra distributions, and
- c) The deduced 226Ra values.

This last set of data is shown graphically in Figures 30a and b. We have fitted these ²²⁶Ra(n,n'f) angular distributions with a Legendre polynomial function of sixth order, in the same manner as described previously, see Appendix II. The fits corresponding to 11.6, 12.5, 14.4, and 14.8 MeV are remarkable in the sense that they peak at side angles. Assuming the fission barrier in ²²⁶Ra to be about the same as in ²²⁷Ra, i.e., about 8.2 MeV, and also that evaporated neutrons have a mean energy of 1.5 MeV, the corresponding excitation energies are 0.9, 2.8, 4.7, and 5.1 MeV above the fission barrier. Such effects are not

Table XV. Deduced Angular Distribution for the Two Fissioning Systems 226Ra and 227Ra

	$E_n = 9.7 \text{ MeV}$			$E_{n} = 11.6 \text{ MeV}$			$E_{n} = 12.5 \text{ MeV}$		
Angle	σ(Θ) _{TOT}	σ(Θ) ²²⁷	σ(Θ) ²²⁶	σ (Θ) _{TOT}	σ(Θ) ²²⁷	σ(Θ) ²²⁶	σ(Θ) _{TOT}	σ(Θ) ²²⁷	σ(Θ) ²²⁶
0°	2.794	1.765	1.029						
10°	2.600	1.750	0.850	4.040	1.648	2.392	5.612	1.607	4.005
20°	2.521	1.707	0.814	4.278	1.613	2.665	6.886	1.575	5.311
35°	2.057	1.601	0.456	4.516	1.527	2.989	5.888	1.498	4.390
45°	2.109	1.517	0.592	4.000	1.458	2.543	6.070	1.436	4.634
60°	1.847	1.430	0.417	3.906	1.356	2.550	4.703	1.345	3.358
75°	1.613	1.300	0.313	3.720	1.282	2.438	3.946	1.319	2.627
90°	1.746	1.267	0.479	4.040	1.255	2.785	4.248	1.254	2.994

Table XV. continued

	$E_n = 13.6 \text{ MeV}$			$E_n = 14.4 \text{ MeV}$			$E_{n} = 14.8 \text{ MeV}$		
Angle	σ(Θ) _{TOT}	σ(Θ) ²²⁷	σ (Θ) ^{2 2 6}	σ (Θ) _{TOT}	σ(Θ) ²²⁷	σ(Θ) ²²⁶	σ(Θ) _{TOT}	σ(Θ) ²²⁷	σ(Θ) ²²⁶
10°	6.525	1.549	4.977	8.475	1.514	6.961	10.000	1.509	8.491
15°	6.525	1.537	4.988	6.839	1.503	5.336	9.534	1.498	8.036
20°	6.828	1.521	5.307	7.308	1.488	5.820	8.250	1.484	6.766
30°	6.525	1.478	5.047	5.845	1.448	4.357	7.976	1.446	6.530
40°	6.629	1.426	5.203	5.492	1.400	4.092	8.414	1.398	7.016
45°	5.274	1.398	3.876	6.082	1.374	4.708	8.110	1.373	6.737
55°	6.227	1.343	4.884	7.134	1.324	5.810	8.651	1.324	7.327
65°	4.772	1.295	3.475	7.013	1.279	5.734	8.451	1.281	7.170
75°	5.423	1.259	4.164	4.677	1.246	3.431	7.976	1.248	6.728
85°	4.519	1.248	3.270	4.682	1.235	3.447	6.625	1.238	5.387
90°	4.519	1.238	3.281	5.261	1.226	3.995	6.084	1.229	4.855

expected in these regions of excitation, where the angular distributions are expected to be forward peaked.

In order to investigate some of these effects we have attempted to calculate the relative strengths of K bands that are necessary to cause the observed irregularities. The J distribution is assumed to be the same as that of the initial compound nucleus ²²⁷Ra, and the values of M, the projection of J over the neutron beam direction, are assumed to range from -1 to +1.

Under the above assumptions, we may write the differential cross section contributed by a given value of K for a certain energy in the following manner:

$$\sigma_{K}(\Theta) = {}^{2} {}^{2} {}^{6} \sigma_{f} f_{K} \sum_{J=0}^{J_{max}} (2J+1) T_{J}(E_{n}) \sum_{M=-1}^{+1} \varepsilon_{K} W_{K,M}^{J}(\Theta) \quad (IV-22)$$

where the f_K 's are weighting coefficients corresponding to different values of K; ϵ_K takes a value of 2 for all values of K, except for K = 0, where it is unity. This accounts for the fact that K can normally be either positive or negative, except when K equals zero. The $T_J(E_n)$'s are transmission coefficients for the formation of the compound nucleus with neutrons of kinetic energy E_n , and values of the angular momentum J.

The actual calculation is carried out by separately evaluating the normalized angular distribution functions $W^{J}_{K\,,\,M}(\Theta)\,, \text{ and summing them individually for } 0\,\leq\,K\,\leq\,5\,, \text{ and}$

weighting each $J=\ell$ wave correspondingly. The f_K parameters are left to vary independently, and the angular distributions are fitted using a non-linear least squares code. The results of these calculations are given in Table XVI for the different values of K, while the angular distribution

Table XVI. Partial K Fission Cross Sections for the 226Ra (n,n'f) Reaction*

	•	Incident	Neutron	Energy (M	eV)	
K	9.7	11.6	12.5	13.6	14.4	14.8
0	0.493	~0	1.789	1.322	2.282	3.712
1	0.129	1.069	0.510	2.067	1.701	1.970
2	0.140	1.112	2.779	2.047	0.824	√o
3	∿0	1.045	1.186	2.530	0.489	3.027
4	0.223	0.128	0.986	∿ 0	∿ 0	0.111
5	∿0	1.866	∿ 0	0.343	4.053	4.526

^{*} in mb.

fits are shown in Figures 30a and b. As we can see, these results are very puzzling because of the zig-zagging in the cross section function.

The distribution corresponding to $E_n=9.7$ MeV seems to peak at forward angles. The dominant channel excited corresponds to K=0, and the distribution looks quite normal. However, as we go up in energy, side peaking is observed in the angular distribution data corresponding to 11.6 and 12.5 MeV. This is very unusual at these excitation energies (\sim 1.9 and \sim 2.8 MeV above the fission barrier of 226 Ra),

Figure 30a. Fits to the Angular Distribution Corresponding to Second Chance Fission.

Figure 30b. Fits to the Angular Distributions Corresponding to Second Chance Fission.

where forward peaking would be expected if a Gaussian distribution in K is assumed. However, the percentage of K = 0 is very small at $E_n = 11.6 \text{ MeV}$, in comparison with the contributions from all other bands, especially in relation to K = 5. At $E_n = 12.5$ MeV, K = 2 seems to predominate but, K = 0 again becomes significant. K = 3 strength increases to dominate at $E_n = 13.6$ MeV, but, K = 1 and K = 2 bands are important. The angular distributions at both 14.4 and 14.8 MeV are fairly similar in shape, showing peaking at 0 and at about 60 degrees. This requirement can only be met if large percentages of K = 0 and K = 5 are mixed. Strangely indeed, it seems that in three out of the six angular distributions analyzed, K = 5 bands predominate relative to others. strange distributions at 14.4 and 14.8 MeV coincide with a relatively sharp increase in the cross section at a place where the cross section would be expected to level off. Clearly, this increase is not caused by third chance fission, since the energy available would require too small a fission barrier height (about 6.5 MeV).

In any case, the important point to notice is the strong predominance of certain K \neq 0 bands at some of these energies. Angular distributions in neutron induced fission of $^{2\,3\,2}$ Th at comparable energies (12.18 \leq E $_{\rm n}$ \leq 18.26 MeV) do not seem to show the anomalies observed in the case of radium (Em 73).

It is necessary to emphasize the fact that these calculations are by no means accurate. All we have pretended to do is to find out in a rough way what kinds of K strengths are necessary to assume in order to reproduce the unusual angular distributions which are observed in the fission of 226 Ra.

Figure 31. Schematic Dependence of ${\rm K}_{\rm O}^2$ as a Function of Energy.

V. CONCLUSIONS

The information obtained from the analysis of the experimental data can be summarized in a few paragraphs.

- l. Our deduced height of the fission barrier stands in very good agreement with the estimates by Brack et al., and those of Nix and Möller. The ordering and nature of the single particle levels above the barrier are in near perfect agreement with those of Nix and Möller, although discrepancies are found in the level spacings. The anomaly found in thorium seems to be confined to this element. The disagreement found between theory and experiment concerning the fission barrier does not appear in radium.
- 2. The agreement between the theoretical calculations of Nix and Möller and the information deduced from the experimental data leads us to believe that the methodology employed in conducting the present analysis is a correct way of carrying out transition state spectroscopy.
- 3. We have obtained what we think is a reliable description of the excitation energy dependence of the level density of radium at the equilibrium deformation, up to energies around the neutron binding energies. This dependence was deduced from the neutron evaporation spectra in the $^{2\,3\,2}$ Th(n,n') process, and the neutron resonance data in $^{2\,3\,0}$ Th. From this information, and from the cross-section

information data in the ²²⁶Ra(n,f) reaction, the level density dependence on energy at the saddle point was obtained.

- 4. The empirical dependence on energy of the parameters a_f and a_n in the Fermi-gas expression indicate that these decrease with excitation energy. Normally this would be interpreted as reflecting a higher than average single particle level density around the Fermi surface at the equilibrium and fission deformations. New calculations based on the macroscopic-microscopic method indicate that the shell correction is negative at both of these deformations, which signifies that, on theoretical grounds, the density of levels around the Fermi surface is expected to be lower than average.
- 5. The above discrepancy can be understood if we accept the premise that many of the levels that are seemingly missing in the microscopic calculation, are actually collective in nature. Level density calculations carried out microscopically show values at least 10³ times smaller than those obtained from experimental data. Rough estimates of collective enhancements based on partition function arguments show that collective degrees of freedom could possibly account for the huge difference between the microscopic and empirical estimates of the level density. Calculations show that vibrational contributions are comparatively more important at low energies than at higher excitations. This might

explain in part the observed decrease of the level density parameters with increasing excitation energy at low energies.

- 6. From the K_O^2 dependence on excitation energy, we have deduced a tentative value for the pairing gap at the saddle point of about 3 MeV. This contrasts sharply with the value deduced at the equilibrium deformation of $2\Delta_O$ $^{\sim}$ 1.7 MeV. The estimate of $2\Delta_f$ at the transition state deformation may present a considerable degree of inaccuracy because of the scarcity of available data and also because of the large uncertainties in the experimental points. The dependence of the parameter Δ on nuclear deformation is still the subject of considerable controversy.
- 7. The fission fragment angular distributions corresponding to fission after neutron evaporation show very unusual shapes. This phenomenum is not observed in other systems and the question is still open to interpretation.
- 8. The problem concerning the origin of the mass distribution in fission has not been resolved in this work. There are indications that symmetric fission begins to contribute significantly in radium at energies where second chance fission is expected to become important, thereby making the analysis difficult.

In conclusion, we might say that many of the problems that have been observed in the study of the fission phenomena, are being explained with relative success by recent

theoretical developments. Particularly, impressive progress has been made in describing the topology associated with nuclear deformation, which has been born out by experimental confirmations. More study needs to be carried out in relation to the problem of the level density dependence on energy, and its connection with collective phenomena.

BIBLIOGRAPHY

- Ad 72 Adeev, G. D., Gamalya, I. A., Cherdantsev, P. A., Sov. J. Nucl. Phys. <u>14</u>, 637 (1972).
- Au 62 Auerbach, E. and Perey, F., Brookhaven National Laboratory Report No. BNL-765(T-286), 1962 (unpublished).
- Ba 65 Batchelor, R., Gilboy, W. B., and Towle, J. H., Nucl. Phys. 65, 236 (1968).
- Ba 68 Babenko, Y. A., Nemilov, Y. A., Selitskii, Y. A. and Funshtein, V. B., Sov. J. Nucl. Phys. 7, 186 (1968).
- Ba 69 Babenko, Y. A., Ippolitov, V. T., Nemilov, Y. A., Selitskii, Y. A., and Funshtein, V. B., Sov. J. Nucl. Phys. 10, 133 (1969).
- Ba 70 Babenko, Y. A., Nemilov, Y. A., Pleskachevskii, L. A., Selitskii, Y. A., and Funshtein, V. B., Sov. J. Nucl. Phys. 11, 560 (1970).
- Ba 73 Back, B. B., Britt, H. C., Garrett, J. D., and Hansen, O., Proc. Symp. Phys. Chem. Fission, Rochester, N. Y., (1973), Paper, SM-174/201. Intern. At. Energy Agency, Vienna.
- Ba 73a Back, B. B., Hansen, O., Britt., H. C., and Garrett, J. D., Proc. Symp. Phys. Chem. Fission, Rochester, N. Y., (1973), Paper, SM-174/27, Intern. At. Energy Agency, Vienna.
- Be 68 Behkami, A. N., Roberts, J. N., Loveland, W., and Huizenga, J. R., Phys. Rev. <u>171</u>, 1267 (1968).
- Bi 72 Bishop, C. J., Halpern, I., Shaw, R. W., and Vandenbosch, R., Nucl. Phys. A198, 161 (1972).
- Bj 69 Bjornholm, S. and Strutinsky, V., Nucl. Phys. A136, 1 (1969)
- Bj 73 Bjornholm, S., Bohr, A., and Mottelson, B., Proc. Symp. Phys. Chem. Fission, Rochester, N. Y., (1973), Paper, SM-174/205. Intern. At. Energy Agency, Vienna.
- Bo 39 Bohr, N. and Wheeler, J. A., Phys. Rev. <u>56</u>, 426 (1939).

- Bo 55 Bohr, A., Proc. Int. Conf. Peaceful Uses At. Energy: Geneva, 2, 151 (1955).
- Bo 69 Bohr, A. and Mottelson, B. R., <u>Nuclear Structure</u>
 Pt. I. W. A. Benjamin, Inc. (1969) New York.
- Bo 73 Bolsterli, M., Private communication.
- Br 72 Brack, M., Damgaard, J., Jensen, A., Pauli, H., Strutinsky, V., and Wong, C., Rev. Mod. Phys. 44, 320 (1972).
- De 68 Decowski, P., Grochulski, W., Marcinkowski, A., Siwek, K., and Wilhelmi, Z., Nucl. Phys. Allo, 129 (1968).
- Em 73 Emma, V., LoNigro. S., and Milone, C., Nucl. Phys. A199, 186 (1973).
- Er 58 Ericson, T., Nucl. Phys. 6, 62 (1958).
- Gi 65 Gilbert, A. and Cameron, A. G. W., Can. J. Phys. <u>43</u>, 1248 (1965).
- Gi 68 Gindler, J. E. and Huizenga, J. R., Nuclear Chemistry, (L. Yaffe, ed.) Pt. II., Academic Press, Inc. (1968) New York.
- Gr 63 Griffin, J. J., Phys. Rev. <u>132</u>, 2204 (1963).
- Ha 39 Hahn, O. and Strassmann, F., Naturwissenschaften 27, 11 (1939).
- Ha 52 Hauser, W. and Feshbach, H., Phys. Rev. <u>87</u>, 366 (1952).
- He 56 Henkel, R. and Brolley, J., Phys. Rev. <u>103</u>, 1292 (1956).
- Hi 53 Hill, D. L. and Wheeler, J. A., Phys. Rev. 89, 1102 (1953).
- Hi 60 Hittmair, O., Nucl. Phys. <u>18</u>, 346 (1960).
- Hu 68 Huizenga, J. R., Behkami, A. N., Meadows, J. W., and Klema, E. D., Phys. Rev. <u>174</u>, 1539 (1968).

- Ip 72 Ippolitov, V. T., Nemilov, Y. A., Selitskii, Y. A. and Funshtein, V. B., Sov. J. Nucl. Phys. 14, 526 (1972).
- Jo 61 Johansson, S. A. E., Nucl. Phys. 22, 529 (1961).
- Ke 64 Kennedy, R., Wilets, L., and Henley, E. M., Phys. Rev. 133B, B1131 (1964).
- Kl 64 Kluge, G., Nucl. Phys. 51, 41 (1964).
- Ko 73 Konecny, E., Specht, H. J., and Weber, J., Proc. Symp. Phys. Chem. Fission, Rochester, N. Y., (1973), Paper, SM-174/20. Intern. At. Energy Agency, Vienna.
- Ku 73 Kuks, I. M., Matvienko, V. I., Nemilov, Y. A., Selitskii, Y. A., and Funshtein, V. B., Sov. J. Nucl. Phys. <u>16</u>, 244 (1973).
- La 54 Lang, J. M. B. and LeCouteur, K. J., Proc. Phys. Soc. A67, 586 (1954).
- La 62 Lamphere, R., Nucl. Phys. 38, 561 (1962).
- Ma 70 Marmier, P. and Sheldon, E., Physics of Nuclei and Particles, Vol. II., Academic Press, Inc. (1970)

 New York.
- Me 64 Meldner, H. and Lindner, A. Z., Z. Physik 180, 362 (1964).
- Mo 64 Moldauer, P. A., Engelbrecht, C. A., and Duffy, G. J., Argonne National Laboratory Report No. ANL-6978, 1964 (unpublished).
- Mo 69 Moretto, L. G., Gatti, R. C., Thompson, S. G., Huizenga, J. R., Rasmussen, J. O., Phys. Rev. <u>178</u>, 1845 (1969).
- Mo 70 Moller, P. and Nilsson, S. G., Phys. Lett. 31B, 283 (1970).
- Mo 71 Mosel, U. and Schmitt, H. W., Nucl. Phys. <u>A165</u>, 73 (1971).
- Mo 72 Moller, P., Nucl. Phys. A192, 529 (1972).

- Mo 73 Moller, P. and Nix, J. R., Proc. Symp. Phys. Chem. Fission, Rochester, N. Y., (1973), Paper, SM-174/202. Intern. At. Energy Agency, Vienna.
- Ne 62 Nemirovsky, P. E. and Adamchuk, Y. V., Nucl. Phys. 39, 551 (1962).
- Ni 65 Nix, J. R. and Swiatecki, W. J., Nucl. Phys. 71, 1 (1965).
- Ni 72 Nix, J. R., Ann. Rev. Nucl. Sci., 22, 65 (1972).
- Ni 73 Nix, J. R. and Moller, P., Private communication.
- No 58 Nobles, R. A. and Leachman, R. B., Nucl. Phys. <u>5</u>, 211 (1958).
- Pa 73 Pauli, H. C., Phys. Rep. 7, 36 (1973).
- Pa 73a Pauli, H. C. and Lederberger, T., Proc. Symp. Phys. Chem. Fission, Rochester, N. Y., (1973), Paper SM-174/206. Intern. At. Energy Agency, Vienna.
- Sh 71 Shpak, D. L., Ostapenko, Yu. B., and Smirenkin, G. N., Sov. J. Nucl. Phys. 13, 547 (1971).
- St 58 Strutinsky, V. M., Compt. Rend. Congr. Intern. Phys. Nucl., Paris, 1958, p. 617.
- St 65 Strutinsky, V. M. and Pavlinchuk, V. A., Proc. Symp. Phys. Chem. Fission, Salzburg, Austria, (1965), p. 121. Intern. At. Energy Agency, Vienna.
- St 66 Strutinsky, V., Nucl Phys. A95, 420 (1966).
- Ts 66 Tsukada, K., Tanaka, S., Maruyama, M., and Tomita, Y., Nucl. Phys. 78, 369 (1966).
- Va 67 Vandenbosch, R., Nucl. Phys. A101, 460 (1967)
- Va 72 Vandenbosch, R. and Mosel, U., Phys. Rev. Lett. 28, 1726 (1972).
- Va 73 Vandenbosch, R., Phys. Rev. C7, 2092 (1973).
- Va 73a Vandenbosch, R., Private communication.
- Vo 64 Vonach, H. K., Vandenbosch, R., and Huizenga, J. R., Nucl. Phys. <u>60</u>, 70 (1964).
- Vo 69 Vorotnikov, P. E., Sov. J. Nucl. Phys. <u>9</u>, 179 (1969).

- Wh 63 Wheeler, J. P., Fast Neutron Physics, (J. B. Marion and J. L. Fowler, eds.), Pt. II. Wiley (Interscience), New York (1963).
- Wi 52 Winhold, E. J., Demos, P. T., and Halpern, I., Phys. Rev. 87, 1139 (1952).
- Wi 56 Wilets, L. and Chase, D., Phys. Rev. <u>103</u>, 1296 (1956).
- Zh 71 Zhagrov, E. A., Nemilov, Yu. A., Nikitina, N. V., and Selitskii, Yu. A., Sov. J. Nucl. Phys. 13, 537 (1971).

APPENDIX I

Error Incurred in the Approximation for the Exit Channel
Neutron Transmission Coefficients Above 5.0 MeV

The fits made to the neutron transmission coefficients shown in Figures 7 through 10 are not very reliable at energies above 5 MeV. However, these fits are used in conjunction with the calculated level densities in order to calculate the neutron emission expression in the denominator of the Hauser-Feshbach relation (II-15).

For purposes of illustration we can make a rough evaluation of the magnitude of the of the error that we are introducing into the calculation due to poor fit to the T_{ℓ} values above 5 MeV by calculating the differential contribution to the average kinetic energy of the outgoing neutron, and comparing it with that of a 5 MeV outgoing neutron.

Assume that a nucleus absorbs a 7 MeV neutron; the excitation energy of the compound system is about 11.5 MeV, because the neutron binding energy is 4.5 MeV. If the spectrum of neutrons is assumed to be Maxwellian, then the emission probability is roughly given by the expression:

$$P(E) \propto Ee^{-E/T}$$
 (AI-1)

and the average neutron energy is twice the value of the temperature, T. The temperature may be estimated from the expression

$$\frac{1}{T} = \sqrt{\frac{a_n}{U} - \frac{3}{2U}} \tag{AI-2}$$

where U is the excitation energy of the nucleus, a_n is the level density parameter and it roughly obeys the relation:

$$a_n \sim A/8$$
 (AI-3)

Therefore $a_n \sim 226/8 = 28.3$, and T ~ 0.62 MeV, when U = 11.5 MeV. Then the average neutron kinetic energy is estimated to be 1.24 MeV. The residual nucleus excitation energy is about 5.76 MeV. If we assume the level density to be proportional to $e^{E/T}$, then we can calculate the ratio of the compound level densities at residual nucleus excitation energies corresponding to an average energy neutron being emitted (U = 5.76 MeV) and a 5 MeV neutron being emitted (U = 2 MeV). Then the ratio, R, becomes:

$$R \sim \exp \left[\frac{(5.76)}{0.51} - \frac{(2)}{0.33} \right]$$

In this case R α e^{5.25} is equal to 200.

What this means is that, at most, the error introduced by neglecting contributions due to neutrons with $E_{\rm n}=5$ MeV is less than 0.5%. Of course, we are not neglecting this contribution, but merely saying that there is a deviation in the fit of T_{ℓ} , $(E_{\rm n})$ above 5 MeV for certain ℓ ' waves of outgoing neutrons. At worst, this deviation is about 25%, making the average total error in the calculation in the order of 0.12% which is certainly negligible.

We must also point out that the transmission coefficients for incoming neutrons are exact, and no calculational source of error appears in the evaluation of the Hauser-Feshbach expression (II-15).

APPENDIX II

Normalization of the Experimental Data

The experimental data shown in Figures 1 through 4 represent the ratios of the differential cross sections at the given angles to the corresponding ones at 90°. Although this representation might be useful in comparing angular distributions at different energies, it might also be misleading because the normalization is based on only one point, the one at 90°. Consequently, should this point be in error, it would throw off the relative strengths of the distributions for comparison at the different neutron energies. It follows that it is important and necessary that these angular distributions be expressed in a manner that reflects the variation of the total fission cross section with neutron energy, i.e., as differential cross sections.

Differential cross sections for nuclear reactions are expressed in terms of probability per unit solid angle; since the fission cross section for the ²²⁶Ra(n,f) reaction is so low, we choose to express the data in terms of mb/sr. To compute the differential cross section from the observed data we begin by noting that the angular distribution functions are normalized in such a way that:

$$\int_{-1}^{+1} W_{K_{\bullet}M}(\Theta) d (\cos \Theta) = 1$$
 (AII-1)

Following the same idea, we found a smooth function of cos 0, which when integrated between the appropriate limits, yielded the observed total fission cross section. We begin

by defining the total fission cross section in the following manner:

$$\sigma_{f}(E) = \int_{-1}^{+1} f(\cos \theta) d(\cos \theta)$$
 (AII-2)

This function f(cos 0) can be any useful function capable of reproducing the angular distribution pattern. Legendre polynomials are normally used for this purpose because of their simplicity. In our case, we have chosen to use a sixth order Legendre polynomial in which we only have even terms. The reason for this is that the angular distributions are symmetrical about 90°. Therefore, the integrating function would be:

$$f(\cos \theta) = a_0 + a_2 P_2(\cos \theta) + a_4 P_4(\cos \theta) + a_6 P_6(\cos \theta)$$
(AII-3)

where the a's represent coefficients to be determined for each energy studied, and the P_n 's are the Legendre polynomials of nth order.

Having chosen these functions, we proceeded to fit the angular distributions in their original form as shown in Figure 5, with expression (AII-3) using a non-linear least squares computer program, and leaving four free parameters $(a_0, a_2, a_4, and a_6)$. Table XVII shows the values of parameters extracted in every case.

Once we obtained these fits we proceeded to place the polynomial functions into expression (AII-2) for integration. From expressions (AII-2) and (AII-3) it can easily

Table XVII. Parameters Derived in Fitting 226Ra(n,f) Anisotropies

E _n (MeV)	a	a ₂	a,	a ₆
3.6	1.154	0.4610	0.1210	0.1100
3.8	1.029	0.1220	-0.0684	-0.0248
3.9	1.668	0.8780	-0.5580	0.2645
4.1	1.306	0.7450	-0.3020	-0.1950
4.7	1.192	0.3620	0.0346	-0.0892
5.4	1.210	0.1750	0.0149	0.1020
6.2	1.075	0.2990	0.1421	-0.0188
6.7	1.323	0.5660	-0.1930	-0.0004
7.1	1.195	0.4270	0.0693	-0.1500
7.9	1.125	0.2230	-0.0460	-0.0090
8.9	1.108	0.2110	-0.2010	0.0610
9.0	1.138	0.2680	-0.0012	-0.0763
9.7	1.103	0.3320	0.0853	0.0483
11.6	1.075	0.1020	0.0118	-0.1381
12.5	1.177	0.4520	-0.1095	-0.1975
13.6	1.217	0.3630	-0.0725	-0.0139
14.4	1.140	0.1952	-0.0893	0.4275
14.8	1.315	0.1927	-0.1480	0.3650

be shown that the following relation is obtained:

$$\sigma_{f}(E) = \int_{-1}^{+1} f(\cos \theta) d(\cos \theta) = 2a_{0}$$
 (AII-4)

This conclusion is very useful because we can now relate in a very simple manner the fission cross section to one of the parameters in the fit, and therefore normalize the angular distribution, point by point, through a constant factor, to the total fission cross section. From the above we then find:

$$\sigma(E,\Theta) = \frac{\sigma_f(E)}{2a_O} \times \frac{\sigma(E,\Theta)}{\sigma(E,90^\circ)}$$
 (AII-5)

where $\sigma(E,\theta)$ represents the differential cross section for a given neutron energy, E, at the angle θ . The resulting angular distributions are shown in Figure 16.

APPENDIX III

Computer Program for Calculating Compound Transmission

Coefficients and Sample Output

	PROGRAM WILDCAT (INPUT.OUTPUT.TAPE 7= INPUT.TAPE 6=1)UTPUT)	
	C MILDOAT. A CODE FOR TRANSITION STATE SPECTROSCOPY TO (N.F) REAC	
	C DAS	003
	C	004
	C 1184/RE257 BY C.ENGELBRECHT.P.MOLDAUER.G.DUFFY. W.LOVELAND	004*
	C THIS IS THE 3300 VERSION (FORTRAN 32 COMPATTSLE) OF THE MODIFICATI	ON
	C OF NEARREX CALLED WILDCAT WHICH	
	C WILL RUN ON 704 FORTRAN II WITH A FEW MINOR MODIFICATIONS.	R1050006
	CTO_PUN_THIS_CODE_ON_A_704_OR_7090/94.MAKE_THE_FOLLOWING_CHANGES-	R1950007
	C (1) CHANGE THE INITIALIZE TEMPORARY STORAGE SECTION BY REPLACING	R1050008
	C ALL MULTIPLE EQUALITIES WITH A SUITABLE SUBSTITUTE.	R1050010
	C (2) CHANGE ALL IF EXPONENT FAULT STATEMENTS TO IF ACCUMULATOR	R1050011
_	C OVERFLOW STATEMENTS.	R1050012
	C (3) THE 2 STATEMENTS FOLLOWING STATEMENT 9500 SET UP AN ERROR	k1050013
	C TERMINATION JUMPED TO FROM 20 DIFFERENT LOCATIONS IN THE CODE	
	C CHANGE THIS SUPPOUTINE, CALLED UNDERFORITO SUIT YOUR SYSTEM.	K1050015
	C THIS VERSION INCLUDES CORRECTIONS IN NEARREX TO AUGUST 1964 AVD	
	C WILDCAT TO DECEMBER 1966	<u> </u>
	C WIENOUT OF DEPARTMENT OF THE	R1050017
00003	DIMENSION H(26) .HI(26) .PI(26) .PE(20) .EM(20) .PAFO(19) .	1(10)0011
	X 4MEO(19) • PAF1(19) • AMF1(19) • PAHO(19) • AMHO(19) •	R1050019
	X PAH1(19) • G(30) • XK(30) • FINT(13 • 7) • EN(36) • FLIM(10) •	110 30012
	X FHALE (14,7),P(36,19),Q0(36,19),Q1(36,19),	
	XENSIG(26.15.15) . RGP(19) . HBR(19) . AGPLUS(19) . AGMIN(19) . HGM(19) .	
	XATEMPP(26:15):AMH1(19): RECORD(12):GFUNG(30);	
	XENSIGN (10.26) . ESURP (10) . ENSIGE (36) . DIST (9) . NEV(6) . XNOW (6) . E (10) .	
	X101AL(10):4(26:15):00(19):CWCALC(10:9):	
	XATEMPM (25.15) • GSIGN (35) • GSIG (19) •	
	XUSIGME (15) +SIGTO (15) +CSS (10) +VAH (10) +	
	XWCALC(10.9).SIGMAF(10).WEXP(10.9).SIGMAW(10.9).IOPTION(1).	
	X = PM(10.2). HIN(10.2). PIN(10.2). IN(2.15.10).	
	XFNU(40) • FKAY (40) • PSP (40) • PSM (40) • FZERO (40) • HBARO (40) • HBATI (40) •	
	XALPHA(60).AKPLUS(40,15),AKMIN(40,15),NFTR(60).TCDEFF(40,15),	
	XFSIG(40 • 15) • [EMPFA(60) • ASUBFF(60) • TEMPNE(60) • FSIGE(60) •	
00003	X F5[GN(10+60)+COMPTR(26+15)+RHO(20+10)+AMEV(10)+ESUP(15)	
00003	COMMUN/C/XJ(9) •W1(19•9) •W2(19•9) •W3(19•9) •W4(19•9) •WS(19•19•10) •	
	XW5(19.4).W6(19.9)	
	x \8\21e21(50+50)	
	CONTRACTOR OF LOGGETTOWN	R1050028
	C COMPUTE TABLE OF J-COEFFICIENTS	K1050029
	C	
00003	D03331N=1+7	R1050030
200005	3331 FHALE(1.N)=0.0	<u> 41050031</u>
210000	D03332N=1•13	K1050032

000266	H(I) = HI(I) = PI(I) = EN(I) = ENSIGE(I) = 0.0	
001275	D0 401 N=1.2	
000276	00 401 NIE=1.10	
000277	$HN(N(E \cdot N) = HIN(N(E \cdot N) = PIN(N(E \cdot N) = 0.0)$	
000305	$401 \text{IN}(\text{N} \cdot \text{NN} \cdot \text{NJE}) = 0.0$	
000315	(i) 17 J=1.9	
000316	0.0 = 0.0	
000317	$17 \times J(J) = 0.0$	
000322	00 9010 J=1•19	
000323	$O(I{\bullet}J) = O(I_{\bullet}J) = O(I_$	R1050073
000336	100 9010 K=1+19	
000340	9010 ENSIG(I+J+K)=0.0	R1050075
000354	00 9011 I=1•19	R1050076
_000355	9011 PAFO(I) = AMFO(I) = PAF1(I) = AMF1(I) = PAHO(I) = AMHO(I) = PAH1(I) = BGP(I) =	P1050077
	C $AGPLUS(I) = AGMIN(I) = HGM(I) =$	R1050078
000416	00 9012 I=1·30	R1050081
_000417	9012 G(I) = XK(I) = GFUNG(I) = 0.0	R1050082
000424	00 9013 I=1•19	
000426	9013 HBH (1) =G\$IG(1) =0.0	
000432	00 9014 I=1:35	R10500H5
_000434	9014 GSIGN(I) =0.0	
000437 _000440	00 9015 I=1.20	
000441	ESUBP(I)=0.0 DO 9015 J=1.36	
_0.00443	9015 ENSIGN(I+J)=0.0	111050000
000453	00 8667 I=1•60	K1050098
_000454	ENU(I) =FKAY(I) =PSP(I) =PSM(I) =EZEPO(I) =HBARO(I) =HBOTI(I) =	
	XALPHA(I) = NFTR(I) = TEMPFA(I) = ASURFE(I) = TEMPNE(I) = FSIGE(I) = 0.0	
_000511	DO 3010 J=1•20	
000513	3010 AKPLUS(I,J) = AKMIN(I,J) = TCOEFF(I,J) = FSIG(I,J) = 0.0	
_000524		
000526	FSIGN(L+1)=0.0	
000532	8667 CONTINUE	
	C	
	C ZERO OUT FIXED POINT TEMPORARIES.	R1050089
	C	
_000536	IAFGH = IAF = IAG = IAH = IAN = IBG = IEJPI = INAWI =	R1050090
	CINO = IPHI = ISIGMA= ITPT = JPI = J = JUPPER= KC =	R1050091
	CKKK = K = LMAX12= LMAX = L = MB = ME = MJ =	R1050092
	CMN = MP = M = NCAE = NE = NIF = NINT = NLKN =	R1050093
	$CNLK=NMA\times 1=NMA\times=NN=NOJ=NOJ=N=I$ $\Delta I=0$	094
000606	IOPTION=0	
	C	
	C PREPARATION OF W(K.J) TABLES	

000013			
0001016 3332 F=ALE (K+1)=1,0	000013	K=N+1	R1050033
000023 03333442+6 H1050035			R1050034
100025	_		
0.0025			R1050036
000026		ĐĐB BB 44=2+6	R1050037
000076 000032 000033 000033 000035 000035 000035 000035 000036 000037 000037 000037 000037 000038 0000038 000038 000038 000038 000038 000038 000038 000038 000038 0000038 0000038 000038 000038 000038 000038 000038 000038 000038 000038 0000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 000038 00000		003333J=1•13	R1050038
000032 K=J-1 000033 C = 0.5/(SS*SS)	000026	AHEL=FLOAT(J-1)	
000032 K=+1 000033 C=0.5/(SS*SS) R1050042 000035 FINT(J+N)=EXP(-C *AHEL*AHEL)-EXP(-C *(AHFL+1.0) X*(AHFL+1.0)) X*(AHFL+1.0) R1050044 000055 3333 FALCE(K-N)=EXP(-C *AHAL*AHAL)-EXP(-C *(AHAL 000076 3334 SS*SS*S*0 R1050047 000101 FINT(1.7)=1.0 R1050047 000102 FALCE(X-7)=1.0 P1050049 000103 FALCE(X-7)=1.0 P1050049 000104 D033353=1:12 R1050050 000105 K=3+1 000107 L=x+1 000107 L=x+1 000110 FINT(K-7)=FINT(J+7)+2.0 R1050051 000110 FINT(K-7)=FINT(J+7)+2.0 R1050052 000110 FINT(K-7)=FINT(J+7)+2.0 R1050053 000110 FINT(K-7)=FINT(J+7)+2.0 R1050055 C C INITIALIZE TEMPORAPY STORAGE. R1050055 C C ZERO OUT FLOATING POINT TEMPORARIES. R1050055 C C ZERO OUT FLOATING POINT TEMPORARIES. R1050055 C C XAA = AYA = C = DHPROD DELTA = EJPT = D = EYE = R1050056 X*FINAMTE FKN = FLN = FNINT = FTEMPE FK = PROD 1 = PROD 1 = PROD 2 = R1050056 X*FINAMTE FKN = FLN = FNINT = FTEMPE FTEMPE = R1050063 X*PROD 2 = PHPH = PIEN =		AHAL=AHEL+0.5	R1050040
000033		K=J+1	
TINT(J+N) = EXP(-C	<u> 000033</u>		- · · · · -
X8 (A F + ,0) X8 (A F + ,0) X1050044 X1050044 X1050046 X1050046 X110) **(A A + ,0)	000035	FINT(J.N)=EXP(-C *AHEL*AHEL)-EXP(-C *(AHFL+1.0)	
3333 FHALE(K,V)=EXP(-C		X*(4HFL+1.0))	R1050044
000076 000101 000103 000104 000105 000105 000105 000107 000107 000107 000107 000108 000108 000108 000109 000109 000109 000109 000109 000109 000109 000109 000109 000100 000100 000100 000100 000100 000100 000100 000100 000100 000100 000110 00	000055	3333 FHALE(K+N)=EXP(-C *AHAL*AHAL)-EXP(-C *(AHAL	
000076 000101 FINT(1+7)=1.0 R1050047 000103 FHALE(2+7)=1.0 P1050049 000104 D03335J=1:12 R1050050 000105 K=J+1 R1050051 000107 L=X+1 R1050051 000110 FINT(K+7)=FINT(J+7)+2.0 R1050053 000110 FINT(K+7)=FHALE(K+7)+1.0 R1050053 000111 3335 FHALE(L+7)=FHALE(K+7)+1.0 R1050053 000110 C C R1050055 C C C INITIALIZE TEMPORARY STORAGE. R1050056 C C ZERO DUT FLOATING POINT TEMPORARIES. R1050056 C C ZERO DUT FLOATING POINT TEMPORARIES. R1050056 C C AVAIP= AN = C = DHPRODE DELTA = EUPI = D = EYE = R1050059 C CAVAIP= AN = C = DHPRODE DELTA = EUPI = D = EYE = R1050060 XF NAMI= FKN = FLN = FNINT = FTEMP2= X PHIU= PHIUE= PATOTE GELTA = TEMP3= C PHPUP = PHPH = PIFK = PIEN = PIE = PRODIT= PRODIT= PRODIT= R1050063 XFRODZEPSTRARESTRAMESS=SUMINM=SUMINP=SUMINV=SUMKE C C SUMJIM= SIMUPE = SUMIPPE = SUMINM=SUMINP=SUMINV=SUMKE C C SUMJIM= SIMUPPE = SUMIPPE = SUMINM=SUMINP=SUMINV=SUMKE C SUMJIM= SIMUPPE = SUMIPPE = SUMINM=SUMINP=SUMINV=SUMKE C SUMJIM= SIMUPPE = SUMIPPE = SUMINM=SUMINP=SUMINV=SUMKE C SUMJIM= SIMUPPE = SUMIPPE = TEMPA = TEMPA = TEMPA = R1050068 C SUMJIM= SIMUPPE = SUMIPPE = SUMIPPE = TEMPA = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUP=SUMINPE = TEMPA = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = TEMPA = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIPPE = SUMIPPE = TEMPA = TEMPX = U = R1050068 C SUMJIM=SIMUPE = SUMIPPE = SUMIP		<u>X+1.0) ((ΑΗΔL+1.0))</u>	R1050046
0.00101	000076	3334 SS=SS+2.0	
000103	000101	FIVI(1,7)=1.0	
000104	000103	FHALE (2.7) = 1.0	
000107	<u>_000104</u> _	003335J=1.12	
000107	000105	K=J+1	
000110			- · · · · · ·
C			
C INITIALIZE TEMPORARY STORAGE. C ZERO OUT FLOATING POINT TEMPORARIES. C ZERO OUT FLOATING POINT TEMPORARIES. R1050057 C ZERO OUT FLOATING POINT TEMPORARIES. R1050057 C ZERO OUT FLOATING POINT TEMPORARIES. C ZERO OUT FLOATING POINT TEMPORARIES. R1050058 R1050057 R1050057 R1050057 C ZERO OUT FLOATING POINT TEMPORARIES. R1050058 C ZERO OUT FLOATING POINT TEMPORALE ANALITA ANALITA ANALITA RIOSOOFS C ZERO OUT FLOATING POINT TEMPORALE ANALITA ANALITA ANALITA RIOSOOFS C ZERO OUT FLOATING POINT TEMPORALE ANALITA ANALITA ANALITA RIOSOOFS C ZERO OUT FLOATING POINT TEMPORALE ANALITA ANALITA ANALITA RIOSOOFS C ZERO OUT FLOATING POINT TEMPORALE ANALITA ANALITA ANALITA RIOSOOFS C ZERO OUT FLOATING POINT TEMPORALE ANALITA ANALITA ANALITA RIOSOOFS C ZERO OUT FLOATING POINT TEMPORALES. R1050058 R1050057 R1050057 R1050058 R1050057 R1050058 R1050057 R1050058 R1050057 R1050057 R1050058 R1050057 R105	_000113	3335 FHALF (1.7) = FHALF (K.7) + 1.0	
C INITIALIZE TEMPORARY STORAGE. C ZERO OUT FLOATING POINT TEMPORARIES. C ZERO OUT FLOATING POINT TEMPORARIES. D00120 301 AE = AFPHI = AGSUPO= AHAL = AHFL = AMTOT = ANAUTA= ANAUTM= R105005R CAXA = AYA = C = DHPROD= DELTA = EUPI = D = EYE = R1050060 XFINAMT= FKN = FLN = FNINT = FTEMP3= CPHPHP = PHPH = PIFK = PIEN = PIE = PROD11= PROD12= PROD21= R1050063 XPROD22=PSIHAR=SIGMA=SS=SUMINM=SUMINP=SUMINV=SUMK= CSUMJIN= SIMMOTP= SUMUPM= SUMUPP= TEMP1 = TEMP2 = TEMP3 = TEMP4 = R1050066 CTEMP5 = TEMPAG= TEMPAD = TEMPA = TEMPBG= TEMPU = R1050066 CTEMPM = IEMPAD= TEMPA = TEMPA = TEMPY = R1050066 CVEK = VFL = VI = VJ = VKN = VK = VLN = VL = R1050068 COMPTA(I=NM)=0.0 000255			
C ZERO OUT FLOATING POINT TEMPORARIES. 000120 301 AE = AFPHI = AGSUPO= AHAL = AHEL = AMTOT = ANALYTA= ANAWTM= R105005R CANALYP= AN = AOFN = ASUBFF= ASUBH = ATFMP = AWTA = AWT = R105005R CAXA = AYA = C = DHPROD= DELTA = EUPI = D = EYE = R1050060 X1 INAWT= FKN = FLN = FNINT = FTFMP1= FTFMP2= X PHIU= PHIUE= PATOT= GELTA= TEMP3= CPHPHP = PHPH = PIFK = PIEN = PIE = PROD11= PROD12= PROD21= R1050063 XPROD22=PSIHAR=SIGMA=SS=SUMINM=SUMINP=SUMINV=SUMK= CSUMDTM= SUMOTP= SUMUPM= SUMUPP= TEMP1 = TFMP2 = TEMP3 = TEMP4 = R1050065 CTEMP5 = TFMPAG= TEMPAG= TEMPAG= TEMPBG= TEMPU = R1050066 CTEMP5 = TFMPAG= TEMPAG= TEMPA = TEMPRS = TEMPY = R1050066 CVEK = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068 COMOTN=XK1=ZMIN=ZPLS= C=CALSUM=CHISOW=CHISOS= 0.0 000247		C INITIALIZE TEMPORARY STORAGE.	_
000120 301 AE = AFPHI = AGSUP0= AHAL = AHFL = AMTOT = ANANTA= ANAWTM= R1050058 CANA = ANA		C ZERO OUT FLOATING POINT TEMPORARIES.	
CANAMIPE AN EAGEN = ASUBFE ASUBH = ATEMP = AWTA = AWT = R1050059 CANA = AYA = C = DHPRODE DELTA = EUPI = D = EYE = R1050060 XFINAWIE FKN = FLN = FNINT = FTEMP1 = FTEMP2 = TEMP3 = TEMP4 = R1050063 XPRODESPESIAMESIGMASSSUMINMESUMINVESUMKE		C	
CANAVIPE AN	000120		R1050058
CAXA = AYA = C = DHPROD= DELTA = EJPI = D = EYE = R1050060 XFINAWI= FKN = FLN = FNINT = FTEMP1= FTEMP2= X PHIU= PHIUE= PATOT= GELTA= TEMP3= CPHPHP = PHPH = PIFK = PIEN = PIE = PRODIT= PRODIT= PRODIT= R1050063 XPRODZZ=PSIHAR=SIGMA=SS=SUMINM=SUMINP=SUMINV=SUMK= CSUMOIM= SUMOIP= SUMOPH= SUMOPH= TEMP1 = TEMP2 = TEMP3 = TEMP4 = R1050065 CIEMP5 = TEMPAG= TEMPAG= TEMPBG= TEMPJ = R1050066 CIEMP6 = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068 CVEK = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068 C WOFN=XK1=ZMIN=ZPLS= C=CALSUM=CHISOW=CHISOS= 0.0 000257		$\frac{\text{CANAVIP = AN}}{\text{CANAVIP = AN}} = \frac{\text{AOFN}}{\text{AOFN}} = \frac{\text{ASUBFE}}{\text{ASUBH}} = \frac{\text{ATEMP}}{\text{ATEMP}} = \frac{\text{AWTA}}{\text{AWT}} = \frac{\text{AWT}}{\text{AUTEMP}} = \frac{\text{AWTA}}{\text{AUTEMP}} = \frac{\text{AUTEMP}}{\text{AUTEMP}} = \frac{\text{AWTA}}{\text{AUTEMP}} = \frac{\text{AUTEMP}}{\text{AUTEMP}} = \text$	R1050059
X PHIUE PHIUE PATOTE GELTAE TEMP3= CPHPHP = PHPH = PIEK = PIEN = PIE = PRODITE PRODIZE PRODIZE R1050063 XPRODZEPSTHARESIGMAESSESUMINMESUMINPESUMINVESUMKE CSUMOTME SUMOTPE SUMOPPE TEMP1 = TEMP2 = TEMP3 = TEMP4 = R1050065 CIEMP5 = TEMPAGE TEMPACE TEMPA = TEMPBGE TEMPU = R1050066 CTEMPM = TEMPACE TEMPA = TEMPT = TEMPX = U = R1050067 CVEK = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068 C WOFNEXKIEZMINEZPLSE EXPSUM 000247 00 9999 I=1.26 000252 COMPTR(I.NN)=0.0		CAXA = AYA = C = DHPROD= DELTA = EUPI = D = EYE =	R1050060
X PHIUE PHIUE PATOTE GELTAE TEMP3= CPHPHP = PHPH = PIFK = PIEN = PIE = PRODITE PRODIZE PRODICE XPRODZEPSIHARESIGMAESSESUMINMESUMINPESUMINVESUMKE CSUMOTME SUMOPPE SUMOPPE TEMP1 = TEMP2 = TEMP3 = TEMP4 = R1050065 CIEMP5 = TEMPAGE			
XPROD22=PSIHAR=SIGMA=SS=SUMINM=SUMINP=SUMINV=SUMK=		X PHIU= PHIUE= PATOT= GELTA= TEMP3=	
XPR3022=PSIHAR=SIGMA=SS=SUMINM=SUMINP=SUMINV=SUMK=		CHAPAR = BABH = BIEK = BIEN = BIE = BBU011= BBU01S= BBU01S1=	R1050063
CIEMPS = TEMPAG= TEMPAG = TEMPAG = TEMPBG = TEMPJ = R1050066 CTEMPM = TEMPP = TEMPT = TEMPX = U = R1050067 CVEK = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068 C WOFN=XKI=ZMIN=ZPLS = EXPSUM C=CALSUM=CHISOW=CHISOS = 0.0 000247		XPRODAR=PSIHAR=SIGMA=SS=SUMINM=SUMINP=SUMINV=SUMK=	
CIEMPS = TEMPAG= TEMPAG = TEMPAG = TEMPBG = TEMPJ = R1050066 CTEMPM = TEMPP = TEMPT = TEMPX = U = R1050067 CVEK = VEL = VI = VJ = VKN = VK = VLN = VL = R1050068 C WOFN=XKI=ZMIN=ZPLS = EXPSUM C=CALSUM=CHISOW=CHISOS = 0.0 000247		<u> CSUMOTME SUMOTPE SUMUPME SUMUPPE TEMP1 = TEMP2 = TEMP3 = TEMP4 =</u>	R1050065
CTEMPM = TEMPP = TEMPT = TEMPX = U = R1050067 CVEK = VFL = VI = VJ = VKN = VK = VLN = VL = R1050068 C WOFN=XKI=ZMIN=ZPLS= C=CALSUM=CHISON=CHISOS= 0.0 000247		CTEMPS = TEMPAG= TEMPAO= TEMPA = TEMPBG= TEMPU =	
CVEK = VFL = VI = VJ = VKN = VK = VLN = VL = R1050068 C WOFN=XK1=ZMIN=ZPLS= C=CALSUM=CHISON=CHISOS= 0.0 000247 00 9999 I=1.26 000251 00 9999 MN=1.15 000252 COMPTR(I.NN)=0.0		CTEMPM = TEMPP = TEMPT = TEMPX = U =	
C WOFN=XK1=ZMIN=ZPLS= C=CALSUM=CHISON=CHISOS= 0.0 000247 00 9999 I=1.26 000251 00 9999 MN=1.15 000252 COMPTR(I.NN)=0.0 000256 A(I.NN)=0.0			
C=CALSUM=CHISOW=CHISQS= 0.0 000247 00 9999 I=1.26 000251 00 9999 NN=1.15 000252 COMPTR(I.NN)=0.0 000256 A(I.NN)=0.0			
000251		C=CALSUM=CHISOW=CHISOS= 0.0	
$\begin{array}{ccc} 000252 & COMPTR(I\cdot NN) = 0.0 \\ 000256 & A(I\cdot NN) = 0.0 \end{array}$		00 9999 [=1.26	
000256 A(I.NN)=0.0			
		$COMPTR(I \cdot NN) = 0 \cdot 0$	
_ <u>000261</u>			
000264 UO 9010 I=1.36	000264	UO 9010 I=1.36	

	The second secon	
	C C	(1.1.1.25
	C READ INPUT	<u>(194#</u> ₹1050095
	C	R1050096
	C	#10300 0 0
	C READ IN TITLE	96#
	C	96#
000607	READ INPUT TAPE 7.3001.KKK, (RECORD(I).I=1.12)	' R1050097
000622	IF (KKK .EO. 999) 9205.9206	
000527	9205 CALL EXIT	
000630	9206 CONTINUE	
000530	WRITEOUTPUTTAPE6+3002	R1050098
000634	WRITEOUTPUTTAPE6.8006	R1050099
000640	wRITEOUTPUTTAPE6.8027.(RECORD(I).I=1.12)	R1050100
000652	READ (7.3003) IAG. IAF. NOK. NMAX.LMAX.NCAF.KC.ITPT.NE.Q.MN.	
	XNINT • NANGL • LIPRNI • LEVDEN • GSS	
000716	READ(7.1815)LIO.KINDEX.JSTAT.IMAX.EPSIL.SING.NLEV.AFFCTN	
000742	1815 FORMAI (413,2F3,1,12,F3,1)	
000742	IF (LEVDEN.EQ.1) READ (7.795) DFACT. DOBLE	
000754	795 FORMAI (2F10.5)	
	C	
	C READ STATISTICAL PARAMETERS	
	C	
000754_	IF (JSTAT,FO,0) GO TO 1846	<u> </u>
000755	READ (7.70) ATOMW.A1.A2.E0.AE.EX.TEMPER.HBAROS.RIGIDI .A3.EMIN	ĺ
001007	70 FORMAT (8F10.5)	
001007	WRITE(6+8006)	
001013	IC=(4.0/7.0)*1.3*(PZ+PN)/2.0	
001021	ALITE=AE	
001022	DO 1844 IM=1.NE	
001024	1844 READ (7.1845) VAR (IM) .ESUP (IM) .AMEV (IM)	
<u>001040 </u>	1845 FORMAT (3F10.5)	
001040	₩₹ITE(6•8006) 	
<u> </u>	1740 CONTINUE	
001043	LMAX1=LMAX+1	
001045	IEJPI=KC	R1050103
001047	40KK=N0K	K10-90103
001050	IF (MN-1) 3701 • 3702 • 3702	R1050104
001052	3701 NINT=12	₩1050104
001053	3702 CONTINUE	R1050106
001053	LMAX12=24FWAX+1	R1050107
	NMAX1=NMAX+1	R1050108
001055		
001055 001057	IF (LEVDEN.ED.1) NMAX1=NMAX*2	

001063		NM4X2=NM4X1+1	
001055		WRITEOUTPUTTAPE6.8006	R1050109
001070		WOTTERNITURITABLE, 2004	F1050110
_001070		WRITEOUTPUTTAPE6.3004 .KC	P1050111
001102		WRITEOUTPUTTAPE6.8006	R1050112
• • •		IF (LEVDEN) 912.917.912	K1050112
<u> </u>	017		
001107	917	00 914 N=1•NMAX1	
001111		<u> </u>	
001122	914	WRITE (6+27) R (N) +HI (N) +PI (N)	
001137		WRITE (6+8006)	
001142		60 To 780	
_001143	912	CONTINUE	
001143		IF(SING.EQ.0.0)GO TO 780	
001144	_	DO 750 N=NMAX2.NLIM	<u>` · </u>
001146		READ (7.27)B(N).HI(N).PI(N)	
001157	750	WRITE (6.27) P(N) . HI (N) . PI (N)	
001174		WRITE(6,8006)	
<u> 001177</u>	780	CONTINUE	
001177		HI(1)=GSS	
	C		116*
	С	TEST IF G.S. SPIN IS INTEGRAL	
	C		116*
105100		SS=HI(1)+0.75	
001203	305	IF(SS-1.0)306.307.307	R1050118
	С		114*
	C	G.S. SPIN IS 1/2 INTEGRAL	119#
	С		115#
001206	306	INAMI=1	<u>₽1050119</u>
001207		AWT=0.5	K1050120
001211		6010310	<u>R1050121</u>
001211	307	SS=SS-0.5	R105012 2
001213		IF(SS-1.0)308.309.309	R1050123
001215	308	I N A N T = 0	R1050124
001215		A = (1 • 0	<u>R1050125</u>
001217		6010310	R1050126
001217	309	SS=SS-0.5	R1050127
001221		G0T0305	R1050128
_001222	310	TEMP=FL()AT(LMAX+1)	·
001225		TEMP=TEMP+HI(1)	_
001227		IF (I'4AWI+1) 311, 312, 312	R1050131
001231	311	TEMP=TEMP+0.5	R1050132
001233		TEMP=TEMP+0.25	R1050133
	С		
	Č	NOJ IS TRUNC(TOTAL NO. L WAVES + G.S. SPIN + 0.25)	
	C	NOJ IS NO. J-S IN CALC	
	=		

001235	C NOU=XINTE(TEMP)	R1050134
001235	100-4141.4150-1	81050134
001241	1222 FORMAT ([3)	
001245	NO.11=NO.J+1	R1050135
001250	IF (IAG-1)313+314+314	R1050135
001252	313 AGSUPU=0.00005	R1050137
_001254	6010315	R1050138
<u> </u>	C G010313	138*
	C READ IN GAMMA CHANNEL DATA	1500
	C. READ IN CHANNEL DATA	138*
001254	314 READINPUTTAPE7,3101,AGSUPO,MJ,ME,MB,MP,SIGMA,U,DELTA,ZPLS,ZMIN	R1050139
001304	TF (MJ-1) 3141 • 3142 • 3142	R1050140
.001307	3141 SIGMA=6.0	R1050141
001311	ISIGMA=4	R1050142
_001312	60103143	R1050143
001312	3142 ISIG/44=XINTF(0.5*SIGMA+1.25)	R1050144
001321	3143 IF (ME-1) 3144+3145+3146	₩1050145
001324	3144 IPHI=0	K1050146
001325	G0T03147	R1050147
001326	3145 U=8•0	R1050148
_001330	DELTA=0.12	R1050149
001331	IPHI=1	R1050150
001332	60103147	R1050151
001333	3146 IPHI=1	R1050152
001334	3147_IF_(MP-1)_3149,3149	153
001337	3148 ZPLS=1.0	R1050154
001341	ZMIN=1.0	R1050155
001342	3149 WRIFEOUTPUTTAPE6+3005+AGSUPO	R1050156
_001350	WRITEUUTPUTTAPE6,8006	<u>R1050157</u>
001354	WRITE OUTPUT TAPE 6.3102	R1050154
_001360	WRITEOUTPUTTAPE6, 26, SIGMA, U, DELTA, ZPLS, ZMIN	R1050159
001376	IF (MB-1) 3150 • 105 • 105	R1050160
<u> 001401</u>	3150 IBG=0	R1050161
001402	6010315	R1050162
001403	105 READINPUTTAPE 7.25. (PE (JPI) . JPI=1.NOJI)	R1050163
001416	WRITE OUTPUT TAPE 6.8006	R1050164
001422	WRITE OUTPUT TAPE 6.8011	R1050165
001426	WRITE OUTPUT TAPE 6.8008. (PE(JPI).JPI=1.NOJ1)	R1050166
_001441	PEADINPUITAPE7, 25, (EM(JPI), JPI=1, NOJI)	R1050167
001454	WRITE OUTPUT TAPE 6.8006	R1050168
001460	WRITE OUIPUT TAPE 6.8012	R1050169
001464	WRITE OUTPUT TAPE 6.8008. (EM(JPI).JPI=1.NOJ1)	R1050170
001477	I3G=1	R1050171
001500	315 IF(IAF.E0.0)G0 TO 5000	

	С		172*
	С	INPUT CHANNEL F DATA	172*
	С	,	172*
001501		WRITE(6.8006)	
001505		00 6 IAF=1,NOK	
001507		READ(7.2666) FNU(IAF) .FKAY(IAF) .PSP(IAF) .PSM(IAF) .EZERO(IAF).	
		XH3ARO(IAF),HROTI(IAF),ALPHA(IAF)	
001532	2666	FORMAT (8F10.5)	
001532		ANTA=ANT	
001534	5	CONTINUE	
001536		WRITE(6,3007)	
<u>001542</u>	3007	FORMAT (* * . 2X , *FNU (K) * . 3X . *K * . 4X . *PSP * . 2X . *PSM * . 2X . *EZERO (K) * .	
		*2(.*HHARO(K)*,2X,*HBOTI(K)*,2X,*ALPHA(K)*)	
001542		00 5 IAF=1.NUK	
001544	5	WRITE (6, 3006) FNU(IAF) .FKAY (IAF) .PSP (IAF) .PSM (IAF) .EZERO (IAF) .	
		*HBARO (IAF) . HHOII (IAF) . ALPHA (TAF)	
001572	3006	FORMAT(* *.3X.F3.1.3X.F3.1.3X.F3.1.2X.F3.1.2X.F8.5.3X.F6.4.4X.	
		<u>*F7.5.2XF7.4)</u>	
001572	5000	CONTINUE	
001572		WRITE (6: 8006)	
001576	С	LMAX12=2*LMAX+1	
	c	INPUT EXPERIMENTAL DATA .	
	č		
001600		00 7043 I=1•NE	
_001602		READ INPUT TAPE 7.7046.SIGMAF(I).USIGMF(I)	
001611		WRITE OUTPUT TAPE 6,7046,SIGMAF(I).USIGMF(I)	•
_001621	7046	E0RMAI (2F10.5)	
001621	7043	CONTINUE	
_001624		DO 21H J=1 NANGL	
001625		READ INPUT TAPE 7.217.XJ(J)	
001632	21.7_		
001632	218	CONTINUE	
001635		CALL WKJ (NANGL)	
001636		DO 7045 I=1•NE	
001540		100 7045 J=1•NANGL	
001641	70	READ INPUT TAPE 7.7044, WEXP(I.J) .SIGMAW(I.J)	
001654		FORMAT (2F10.8)	
001654	7045	CONTINUE	
001661	70/7	FORMAT(18H0EXPERIMENTAL DATA//)	
001665	1041	DO 704H I=1.NE	
001665		WRITE OUTPUT TAPE 6,1749.I	
_001674	1740	FORMAT(19HOTHIS IS ENERGY NO. • 12//)	
001674	1149	WRITE OUTPUT TAPE 6,1750	
		WRITE VUTEUL LARG 091/30	

001700	1750 FORMAT(27HOANGLE WEXP SIGMA)	
001700	DO 7048 J=1.NANGL	
001702	J = UXXX	
001703	ARITE OUTPUT TAPE 6.1751.XJ(J).WEXP(I.J).SIGMAW(I.J)	
001721	1751 FORMAT(* *,F10.3.2F10.8)	
001721	7048 CONTINUE	. K1050192
	C	, 81070196
	C CALCULATE STAT. WT. FACTORS.IE. G(K).ETC.	R1050194
	C	K1030174
001725	FNINT=FLOAT(MINT)	R1050196
001739	00 1307 K=1+NINT	P 10 301 20
_001731	[EMP=FLI)AT (K)	R1050198
001732	TEMP1=3.141592654*(2.0*TEMP+1.0)/(2.0*FNINT)	110 7017
001740	G(K) = SIN (TEMP1)	
001744	TEMP=COS (TEMP1)	R1050201
001747	1807 XK(K)=0.5*(1.0+IEMP) FINANT=2.045/(2.0*HI(1)+1.0)	
001755		₩1050203
001761	IF(IPHI-1) 1902+1809+1901	R1050204
001763	1901 IERR=1701	R1050205
001764	1902 PHIU=1.0	R1050206
001765	60 TO 1813	R1050207
<u>_001767</u>	1809 TEMP=0.0	R105020H
001777	CALL PHI (DELTA TEMP N. PHIU)	£1 <u>050</u> 209
001773	1813 IF (INAWT-1) 1825+1814+1814	R1050210
001775	1814_INO=XINTF(HI(1)+1.25)	
002004	TEMP1=FHALE (INO+ISIGMA)	R1050212 -
002007	140=140+1	K1050213
002011	TEMP1=TEMP1+FHALE(INO+ISIGMA)	R1050214
002015	60 10 1835	R1050215
002015	1825 INO=XIN[F(HI(1)+0.75)	
_002023	[EMP]=FINT(INO.ISIGMA)	P1050217
002027	INO = I (40 + 1	R1050218
002031	· TEMP1=IEMP1+FINI(INO.ISIGMA)	R1050219
002035	1835 AFPHI=AGSUPO/(TEMP1*PHIU)	R1050220
002040	TEMP=0.5+HI(1)	01050333
002042	IF (INAWT-1) 1865.1855.1850	R1050222
002044	1850 IERK=3472	<u>P1050223</u> R1050224
002045	GO TO 9500	K1050224
002046	1855 TEMP=[LMP+0.5	R1050226
002050	60 TQ 1870	R1050226
_002051	1865 TEMP=TEMP+1.0	R1050228
002053	1870 TEMP=TEMP+0.25	KINDAFCQ
	C	
	C JUPPER = NOJ FOR OUR CALC.	

0.02055	С	JUPPER=XINIF (TEMP) -	R1050229
002061		BOODEN - BIODED AL MAY	R1050230
002053		WRITEOUTPUTTAPE6.1370	R1050231
002066		60 TO 321	
002057	321	00 322 I =1•NE	
002071	,,,,,	READ (7.7046) E(I)	
002075	322	CONTINUE	
002101	7:	READ INPUT TAPE 7.260. IOPTION	· · · · · · · · · · · · · · · · · · ·
002105	260	FORMAT(II)	
	С		R1050232
	č	TRANSMISSION COEFFICIENT INPUT	R1050233
	Č.		R1050234
002106	•	IF (LEVDEN) 1131, 1132, 1131	
002107	1132	NIE=0	
002110	1135	NIE=NIE+1	
211500		PHPH=0	
002113		WRITE (6 • 3011) E (NIE)	
151500		WRITE (6+3012) PHPH	
002127		WRITE(6:8005)	
002133		WRITE (6+3913)	
002137		WRITE (5.8006)	
002143		DO 1134 NLK=1.NMAX1	
002145	1134	READ (7.26) (A (NLK.NN) .NN=1.LMAX12)	-
002164		DO 1133 NEK=1.NMAX1	
002165	1133	WRITE (6, 3914) (4 (NLK, NN), NN=1, LMAX12)	
002204		60 10 1102	
002204	1131	CONTINUE	
002204		MTE = 0	01050004
002205	186	NIE=VIE+1	<u></u>
002207		XAMN*Z=ZXAMNX	
005510		MOK=MOKK	
212200		READ [NPUTTAPE 7 . 27 . HN (NIE . 1) . HIN (NIE . 1) . PIN (NIE . 1)	
002223		READ[APUTTAPE7.26. (TN(1.NN.NIE).NN=1.LMAX12)	
002240		00 400 LKN=1.NMAX1	
002242		1)0 400 NN=1+LMAX12	
002243		COMPTR(LKN•NN) = 0 • 0	
002247	400	CONTINUE	
002254		IF(SING.E0.0.0)60 TO 762	
002255	710	DO 760 NLK=NMAX2+NLIM READ (7+26) (A (NLK+NN) +NN=1+LMAX12)	
002257	760		
002276	7/3	DO 761 NLK=NMAX2+NLIM WRITE(6+3914)(A(NLK+NN)+NN=1+LMAX12)	
002300	761		
002317	762	CONTINUE	

002321	WRITE OUTPUT TAPE 6.3011.E(NIE)	
005356	WAITE OUTPUTTAPER 8430114 CHIEF	R1050240
002334	$PI(1) = PIN(NIF \cdot 1)$	<u>\\1030240</u>
002336	$HI(1) = HIN(NIE \cdot 1)$	
002340	H(1) =H(NIE+1)	
002341	100 407 NN=1+LMAX12	
002343	407 A(1•NN)=IN(1•NN•NIE)	,
_002355	00 9HHH J=1•NMAX	
002357	DO 9888 L=1+LMAX1	
_002360	9888 RHD (J+L) =0.0	
002371	DO 15 LKN=1•NetAX	
002372	15 READ (7.304) (RHO (LKN.NN) .NN=1.LMAX1)	
002411	304 FORMAT (HE10.3)	
_002411	1)0 404 LKN=1 • NMAX1 • 2	
002412	J=(LK:+1)/2	· ·
_002414	COMPIR(LKN+1) =RH0(J+1)	
002416	COMPTR (LKN+1+1) = RHO (J+1)	•
_002420	00 404 NN=2.L.1AX12.2	
002421	M=(N+2)/2	
_002423	COMPTR(LKN,NN) = RHO(J.M)	
002432	COMPTR (LKN+1+NN) =RHO (J+M)	
002437	COMPIR(LKN+NN+1)=RHO(J+M)	
002444	COMPTA(LKN+1*NN+1)=RHO(J*M)	
002451	404 CONTINUE	
002455	00 790 LKN = 1.NMAX1	
_002457	UO 790 NN=1+LMAX12	
002460	COMPTR(LKN+NN) = COMPTR(LKN+NN) *DFACT	•
002455	790 CONTINUE	
002472	wR1TE(n+229)	
002475	224 FORMAT(* * . * ENERGY LEVELS ARE IN THE CONTINUUM*)	
002475	IF (JSTAT.EQ: 1) WRITE (6.1847) VAR (NIE) .ESUP (NIE) .EMINI	
_002511	1847 FORMATIS * . * KZERO SQUARE = * . FIO. 5 . / . * UPPER LIMIT OF INTEGRATI	():V=++
	_ XF10.5./.*LOWER LIMIT OF INTEGRATION=*.F10.5)	
002511	VARIAN=VAR (NIE)	
002513	EMAX=ESUP (NIE)	R1050116
002515	WRITEOUTPUTTAPE6.8006 WRITEOUTPUTTAPE6.3913	K1050115
002520	* - · · · · · · · · · · · · · · · · · ·	R1050242 R1050243
<u>002524</u> 002530	WRITEOUTPUTIAPE6.8006 IF (LIPRNI.EQ.1)60 TO 1102	71030643
_002530 _002532	3291 WRITE OUTPUT TAPE 6,3914, (A(1.NN).NN=1.LMAX12)	
002546	DO 18 LKN=1+NLIM	
_0.0.2550	18 WRITE (6.3914) (COMPTR (LKN.NN) .NN=].LMAX12)	
002567	1102 CONTINUE	
00 E 30 F	_C	237*
-	C Q IS WALPHA = TRANSMISSION COEFFICIENT FACTOR	237*
	G G IS GALLING - INANSMISSION COLLITOIENT FACTOR	231

	С	237#
	C CALC OF CN TRANSMISSION COEFFICIENTS ,	
	C	
002567	0 = E(NIE)	
002571	IF (LEVDEM .FO. 1) NMAX1=1	
002574	0033UNN=1.LMAX12	
002576	SS = A(1.NN)	11053270
002601	IF (PHPH) 9003.9002.9003	R1050249
202500	9002 [EMP1=SS	P1050250
002604	ння (ии) =0 • 0	R1050251
002605	60 10 330	H1050252
002606	9003 TEMP=SURT(1.0-PHPH*SS)	
002614	TEMP1=SS+(1.0-TEMP)*(1.0-TEMP)/PHPH	R1050254
002620	HHH (NN) =0.1591549* (SS-TEMP1)	к1050255
002523	330 A(1.NN) = 0.1591549*IFMP1	
002632	IF (NMAX1-1) 333+333+331	R1050257
002635	331 D0332NLK=2+NMAX1	R1050258
002637	00332NN=1+LMAX12	R1050259
002640	SS = A(NLK,NN)	
002644	1F (PHPH) 9001.9000.9001	R1050261
002645	9000 IFMP1=SS	
002547	GO TO 33?	R1050263
002647	9001 TEMP=SQRT(1.0-PHPH*SS)	
002655	TEMP1=55+(1.0-TEMP)*(1.0-TEMP)/PHPH	R1050265
002651	332 A(NLK•NN) = $0.1591549*IEMP1$	
002673	333 144=2	£1050267
002674	IF (IPHI-1) 2041.2043.2040	
002677	2040 IERR=2040	P1050269
002700	60 10 9500	R1050270
002701	2041 PHIUE=1.0	R1050271
002703	60 10 205	R10502 7 2
002703	2043 CALL PHI (DELTA, D. U. PHIUE)	
002706	205 CONTINUE	<u> </u>
002706	IF(LEVDEN.EQ.1)GO TO 8050	
002710	DO 8051 LKN=1.NMAX1	
002712	DO 8051 NN=1+LMAX12	
002713	$COMPIH(FKW*NN) = \overline{V(FKW*NM)}$	
002722	8051 CONTINUE	
002727	IF (LIPRNI.EU.1) GO TO 8050	
002731	10 8052 LKN=1.NMAX1	
002732	8052 WRITE (6.3914) (COMPTR (LKN.NN) .NN=1.LMAX12)	
002751	8050 CONTINUE	
002751	IF (SING.FO.0.0) GO TO 765	·
002752	DO 766 NEK=NMAXZ+NLIM	

002754		DU 756 NN=1+[MAX]?	
002755		4 (JLK+MV) =4 (NLK+VV) /6.2832	
002761	760	COMSIS(MFK*NN) = V(MFK*NN)	
002773	_755	CO4[140E	
	С		R1050275
	С	CALC OF THETA-MU-S	276
	C		R1050277
	<u>C</u>	CALC OF T-GAMMA(J.PI)/2*PI	-
	Ċ		
002773		100 423 JP1=1+JUPPER	
002775		IF (INAWT-1) 405,403,402	R1050279
002777	402	1ERK=402	R1050280
003000		GO TO 9500	R1050281
003001	403	IEMP=FHALE (JPI+1+ISIGMA)	K1050282
003005		(ii) Ii) 405	<u>91050283</u>
003005	405	TEMP=FINT (JPI+ISIGMA)	R1050284
003011	406	TE API = AFPHI*TEMP*PHIUF	R1050285
003014	-	AGPLUS(JPI)=TEMP1*7PLS	R1050286
003016	423	AGMIN(JPI) = TEMP1*7MIN	
	С		
	С	CALC OF T- F (J.PI)/2*PI	
	С	•	
003022	_	IF(I4F.FU.0)GO TO 1213	_
003053		DO 16 14F=1•NOK	
_003025		XKKAY=FKAY(IAF)	
003027		EKZERO=EZFRO(IAF)	
003030	_	HI4011=H8011(IAF)	
003032		HHAROK=HHARO(IAF)	
003033		ALPHAK=ALPHA(IAF)	
003035		IF (XKKAY-0.5) 9.10.9	
003037	9_	xKDELT=0.0	
003040		60 TO 11	
	1.0	XKDELT = 1.0	
003041			
003041		CONTINUE	
	11	CONTINUE XKAY = KKKAY	
003043	11		
003043 003043	11	XKAY = AKKAY	
003043 003043 003045	11	XΚΔΥ = XKΚΔΥ KK] = XKΚΔΥ+0.5	
003043 003043 003045 003050	11	XKAY = KKKAY KK1 = XKKAY+0.5 FFK=0.0	
003043 003045 003045 003050 003051 003052 003053	11	XΚΔΥ = XΚΚΔΥ ΚΚ1 = XΚΚΔΥ+0.5 FFK=0.0 TFK=0.0	
003043 003043 003045 003050 003051 003052	11	XKAY = XKKAY KK1 = XKKAY+0.5 FFK=0.0 TFK=0.0 KK2=1	
003043 003045 003045 003050 003051 003052 003053	11	XKAY = KKKAY KK1 = XKKAY+0.5 EFK=0.0 TFK=0.0 KK2=1 IF(KINDEX.E0.0)KK2=KK1	

003077	1FK = $((1.+EXP(2.0*3.14*(EFK -0))/HBAROK))**(-1))/(2.0*3.14)$
003110	$\frac{1}{X \times AY} = \frac{X \times AY}{X \times AY} + 1$
003112	13 4KPLUS([AF,KK)=PSP([AF)*]FK*2.0
003120	AKMIM(IAF KK) =PSM(IAF) *TFK*2.0
003124	IFK=0.0
003124	FFK=0.0
003125	15 CONTINUE
003127	16 CONTINUE
003132	WRITE (6,4006)
003135	M=0
003136	N=N
_003137	1212 M=N+1
003141	N=M+9
_003142	IF (N.GT.NOK) N=NOK
003145	N••== 1 5 00
_003147	
003152	
_003165	WPITE(6+1731) (NFTR(I)+I=M+N)
003165	1731 FDKMAT(# **10(#F-TRANS(#*12,#)*)*X) WRITE(6*8006)
_003171	
003171	DO 8 KK=1+NOJ DO 36 IAF=M+N
_003175	
003177	IF (PSP (IAF) .EU.1.0) GO TO 7
_003204	TCOEFF (IAF+KK) = AKMIN (IAF+KK) GO TO 36
003205	
_003213	7 TCOEFF(IAF+KK)=AKPLUS(IAF+KK)
003216	36 CONTINUE
_003220	8 CONFINUE
	00 1306 KK=1.NOJ
003222	1306 WRITE (6.1727) (TCOEFF (IAF.KK).IAF=M.N)
003241	1727 FURMAT (* * 10 (X . F 9 . 3 . X))
003241	wRITE(6.8006)
003244	<u>IF (N.EU.NOK) GO TO 1213</u>
003246	60 10 1515
003247	1513 CONTINUE
	C .
	C STATISTICAL TRANSMISSION COEFFICIENTS FOR FISSION
003247	IF (USTAT.FQ.0) GO TO 4001
003250	EREL=EZERO(1)
003252	ALITE=AMEV(NIE)
003254	CALL DISTAT (LMAX.EMINI.EMAX.HRAPOS.VARIAN.D.EX.ALITE.RIGIDI.EO.
	A TEMPER A A TOMM • I MAX • EREL • AFECTN • A L • A A A A A A A A A A A A A A A A
003275	IAFF=NOK+2*NOJ
003300	KXX=NUK+1
003302	00 4002 IAF=KXX+IAFF+2

003303	$L \cdot D = (T A F - K \times X + I) / 2 + I$	
003307	00 4002 KK=1•NOJ	
003310	AKPLUS(IAF•KK)=SIGST(LD•KK)#DOHLE/6•2832 ,	
003317	AKMIN(IAF+]•KK)=SIGST(LD•KK)*DOHLE/6•2832	
003325	4002 CONTINUE	
003331	<u>₩RITF(6+8006)</u>	
003335	WRITE(6+4003)	
003341	4003 FORMAL (* * * * STATISTICAL TRANSMISSION COEFFICIENTS FOR FISSION*)	
003341	wRITE(6+8006)	
_003345	AE=ALIF	
003347	₩RITE(6•73)	
003352	73 FORMAT (* * • * A A1 A2 E0 AE	
	X EX TEMPER HBAROS RIGIDI A3*)	•
_003352	WRITE (6.74) ATOMW.A1.A2.E0.AE.EX.TEMPER.HRAROS.RIGIDI.A3	
003402	74 FURMAT(10F10.5)	
003402	WRITE (6.8006)	
003406	N=KXX−1	
_003410	4006 M=N+1	
003412	N=M+9	
003413	IF (NaGTalAFF) N= LAFF	·
003416	100 4004 I=M+N	
003420	4004 GFTR(I)=I	
003423	WRITE (6+1731) (NFTR(I)+I=M+N+2)	
_003436	WRITE(6.8006)	
003442	100 4005 KK=1+NOJ	
003444	<u>4005 WRITE(6+1727) (AKPLUS(IAF+KK)+IAF=M+N+2)</u> WRITE(6+8006)	 -
_003465	IF (N.EO.IAFF) GO TO 4007	
003470	60 TO 4006	
003470	4007 CONTINUE	
003471	4001 CONTINUE	
003471	C .	R1050305
	C BG(F*J*P)	R1050306
	6.00	P1050307
003471	IF (IBG-1) 502•506•501	R1050308
_003474	501 IERR=501	R1050309
003475	60 TO 9500	R1050310
003476	502 00 504 JPI=1•JUPPER	R1050311
003500	0.1=(19U) +004	R1050312
_003502	504 HGM(JPI)=1.0	R1050313
003505	(v) T0 800	R1050314
_003505	_ 506 DO 730 JPI=1•JUPPER	R1050315
003507	IF (INAWI-1) 700.512.511	R1050316
_003511	511 TERR=511	R1050317
003512	60 T0 9500	R1050318
		- · ·

	5.0 25 4434 13 512 550 515	£1050319
003513	512 IF (JPI-1) 513+550+515	R1050319
_0.0.351.6	513 IERR=513	R1050321
003517	60 TO 9500 ,	R1030321
003520	515 FTEMP1=FHALF (JPI+ISIGMA)	R1050322
003524	FTEMP2=FHALE (UPI+1+ISIGMA)	
003526	FTEMP3=FHALE (JPI+2+ISIGMA)	R1050324
003531	SUMINV=FTEMP1+FTEMP3+FTEMP2	
_003534	525 EJPI = EM (JPI - 1)	R1050326
003536	IF (EUPI-D) 529,527,527	01050330
_003540	527 SUMUPP=FTEMP1	R1050328
003542	GO TO 532	R1050329
003542	529 CALL PSI (D.U.EJPI.DELTA.PSIBAR)	0120021
003546	TEMP=PSIHAR/PHIUE	R1050331
_003550	SUMUPP=FTFMP1#TEMP	P1050332
003552	532 EJPI=EM(JPI)	R1050333
<u>003554</u>	IF (EUPI-D) 536,534,534	
003556	534 SUMUPP=SUMUPP+FTEMP?	R1050335
_003550	60 10 539	H1050336
003561	536 CALL PSI (D.U.EJPI.DELTA.PSIBAR)	
_003565	TEMP=PSIBAR/PHIUE	R1050338
003567	SUMUPP=FTEMP2*TEMP+SUMUPP	R1050339
_003572	539 FJPI=FM(JPI+1)	<u></u>
003574	IF (EJPI-D) 543,541,541 .	
003576	541 SUMUPP=FTFMP3+SUMUPP	R1050342
003600	GO TO 546	R1050343
_003601	543 CALL PSI (D.U.EJPI.DELTA.PSIBAR)	
003605	TEMP=PSIHAR/PHIUE	R1050345
_003607	SUMUPP=FTEMP3*TEMP+SUMUPP	<u> </u>
003612	546 HGP(JPI)=SUMUPP/SUMINV	R1050347
_003615	EJPI=PF(JPI=])	R1050348
003616	IF (EJPI-N) 629,627,627	
003620	627 SUMUPM=FTEMP1	R1050350
003622	. 60 To 63?	R1050351
003622	629 CALL PSI (D.U.EJPI.DELTA.PSIBAR)	(.10.50.70.7
003626	1EMD=B2IHAR/BHIUE	R1050353
003630	SUMUPM=FIFMP1*TEMP	R1050354
003632	632 EUPI=PE(UPI)	R1050355
003634		
003636	634 SUMUPM+FTEMP2	R1050357
_003640	<u>GO TO 639</u>	R1050359
003641	636 CALL PSI (D.U.EJPI.DELTA.PSIBAR)	
_003645	TEMP=PSIBAR/PHIUE	R1050360
003647	SUMUPM=FTFMP2*TEMP+SUMUPM	R1050361
_003652	639 EUPI=PE(UPI+1)	R1050362
003654	IF (EJPI-N) 643+641+641	
· · - ·		

		11050266
003656	641 SUMUPM=FTEMP3+SUMUPM	R1050364
003660	60 TO 645	P1050365
003661	643 CALL PSI (D. W. EUPI. DELTA. PSIBAR)	F1050367
003665	TEMP=P\$IHAR/PHIUE	#1050368
003667	SUMUPM=FTFMP3*TFMP+SUMUPM	R1050369
003672	646 RGM(UPI)=SUMUPM/SUMINV	R1050370
003675	GO TO 730	R1050370 R1050371
003675	550 FTEMP1=FHALE (2. ISIGMA)	R1050372
003700	FTEMPR=FHALE (3. ISTGMA)	R1050377
003703	SUMINV=FTFMP1+FTEMP2	R1050374
003705	EJPI=EM(1)	R1070374
003706	IF (EJPJ-0) 564,562,562	81050376
003710	562 SUMUPP=FTFMP1	R1050376
003712	<u> </u>	<u></u>
003712	564 CALL PSI (1) . U . EUPI . DELTA . PSIBAR)	R1050379
_003716	TEMP=PSIBAR/PHIUE	R1050374
003720	SUMUPH=FTFMP1*TEMP	R1050330 R1050331
_003722		
003724	IF (FUPI-0) 571.569.569	R1050383
_003725	569 SUMUPP=SUMUPP+FTEMP2	R1050384
003730	(6) (1) 574	R1030374
_003731	571 CALL PSI (D.U.E.JPI.DFITA.PSIBAR)	R1050386
003735	TEMP=PSIHAR/PHIUE	V10303:00
_003737	SUMUPP=FTFMP2*TFMP+SUMUPP	R1050388
003742	574 RGP(1)=SUMUPP/SUMINV	R1050389
003744	F.JP [=PF(1)	
003746	IF (EJPI-0) 664+662+662	R1050391
_003750	662 SUMUPM=FIEMP1	R1050392
003752	GO TO 557 664 CALL PSI (D.U.EUPI.DELTA.PSIBAR)	
003752	TEMP=PSIHAR/PHIUE	R1050394
003756	· ·	R1050395
_003760	SUMUPM=FTFMP1*TFMP	R1050396
003762	667 EUPI=PE(2) • IE (EUPI=0) 671•669•669	
003764	669 SUMUPM=SUMUPM+FTEMP2	R1050398
003766	GO 10 674	R1050399
_003770	671 CALL PSI (D.U.EJPI.DELTA.PSIBAR)	
003771	TEMP=PSTHAR/PHIUE	R1050401
003775	SAMASA ZEMBA-SAMANA	R1050402
003777	674 BGM(1)=SUMUPM/SUMINV	K1050403
004002	60 TO 730	R1050404
004004	700 IF (JPI-1) 701•702•725	R1050405
004005	700 1F (3P1=17 701+702+725	R1050406
004010		£1050407
004011	GO TO 9500	R1050408
004012	702 EJPI=EM(2)	

004014	IF (FUPI-H) 705.704.704	
004015	704 대대 (1) = 1 • 0	R1050410
00 40 20	60 (0.715	R1050411
004020	705 CALL PSI (D.H.EUPI, DELTA, PSIBAR)	
004024	HGP(1)=PSIHAR/PHIUE	
004026	712 E IPT=PE (2)	R1050414
004030	IF (EUPI-D) 715•714•714	
<u> </u>	714 PGM(1)=1.0	<u> </u>
004034	60 To 730	
004034	715 CALL PSI (D. U. F. JP 1 + DEL TA + PSI BAR)	<u> </u>
004040	BGM(1)=PSIRAR/PHIUF	R1050419
<u>_004042</u>	60 10 730	H1050420
004043	725 FTEMP1=FINT(UPI+1+ISIGMA)	R1050421
_004047	FIFMP2=FINI(JPI,ISIGMA)	R1050422
004052	F[EMP3=FINT(JPI+1+ISIGMA)	R1050423
<u>_004055</u> _	SUMINV=FIFMP1+FIFMP2+FIFMP3	R1050424
004060	60 10 525	R1050425
_004061	730 CONTINUE	K1050426
	C	R1050427
	C SUMS OVER L AND K	R1050428
	C	R1050429
004064	800 MINUFX=0	
004065	IF (USTAT.EQ.1) NOK=IAFF	
004071	FMIN=0.0.	
004072	IF (LIU) 1262+1263+1262	
_004073	1262 WAITE (6:1302)	
004077	1302 FORMAT(* *.*NN*.3X.*VLN*.3X.*VKN*.3X.*VJ*.5X.*SIJMINP*.5X.	
004077	X*SUMINM*+5X+*TEMPAO*+5X+*TEMPJ*+5X+*TEMPFA(1+JPI)*)	
004103	981Tr (6.4006)	
004103	1263 CONTIGUE IF (LEVDEN.FO.1) NMAX 1=2*NMAX	
004107		
_004115		
004116	TEMPAM=().()	
004115	65[6(4N)=0.0]	11.10C04.23
004177	DO 1717 TAF=1•NOK	K1050431
004121	1717 FSIG(IAF, MN) = 0.0	
004127	DO 810 DEK=1.NMAX1	53.0504.34
_004131		R1050434
004132	810 ENSIG(NLK+NN+NLKN)=0.0	<u> </u>
_004145	CALL ELKAY (NN.VLN.VKN)	R1050436
004147	NINDEX=INT(VKN+0.5)	R1050437
_004152	100 1261 JPI=1+JUPPFR	03.0507.00
004153	INK=JPI	R1050438
00-1.73	1101-011	

004154	IF(KINDEX.EQ.1)INK=NINDEX	
004160	IF (INAMI-1) 860,857,856	R1050439
004162	856 IERR=756	R1050440
004163	60 10 9500	R1050441
004164	A57 VJ=FLOAT(JPI)	
004155	VJ=VJ-(1.5	<u>' R1050443</u>
004170	GO TO 870	R1050444
004170	860 VJ=FL()AT(JPI-1)	
004173	870 PATOT=0.0	
004174	AMTO I = 0 • 0	
004175	PATOT=PATOT+AGPLUS(JPI)	
004177	AMTOT=AMTOT+AGMIN(JPI)	
004201	00 1718 IAF=1,NOK	
004203	PATOT=PATOT+AKPLUS (IAF+INK)	
004207	AMTOI=AMTOT+AKMIN(IAF,INK)	
004213	1718_CONTINUE	
004215	SUMINP=0.0	R1050448
004216	SUMINM=0.0	R1050449
004217	DO 923 LKN=1.NMAX1	R1050450
004220	J=(LKN-1)/2	
004222	TRIAL=XMODF (LKN,2)	
004225	SUM0TP=0.0	<u> </u>
004226	SUMOTA=0.0	R105045
004227	DO 931 N=1+LMAX12	R1050453
004230	FLAGP=0.0	•
004231_	FLAGM=0.0	
004232	CALL ELKAY (N.VL.VK)	R1050454
004234	IF(LEVOEN.EQ.0)GO TO 8053	
004235	IF(LKN.GT.(2*NMAX))GO TO 8053	
004241	VI=FL()AT(J)	
004242	IF(TRIAL.FO.0.0)PIFN=-1.0	
004245	IF (TRIAL.EU.).0) PIEN=+1.0	
004250	WOFN=FMIN	
004252		
004252	8053 V[=HI(LKN)	
004254	PIEN=PI(LKN)	
004256	WOFN=H(LKN)	
004257	8054 CONTINUE	
004257	PIE=1.0	R1050458
004261	CALL ANEULK (VJ.VK.VL.VI.PIE,PIEN.D.WOFN. AOF	N) R1050459
004271	IF (AOFN-1.0) 911.908.907	R1050460
004274	907 IERR=707	R1050461
004275	GO TO 9500	R1050468
004276	908 CONTINUE	
004276	ATEMPM (LKN.N) =0.0	R1050464

004302	FLAGP=1.0	
004304	60 10 930	
004304	911 ATEMPP (LKN.N) =0.0	41 050456
004310	PIE=-1.0	<u> </u>
004312	CALL ANEULK (VJ,VK,VL,VI,PIE,PIEN,D,WOFN,AOFN)	R1050468
004322	IF (40FN-1.0) 918.916.915	H1050469
004325	915 IERR=715	R1050470
004326	GO TO 9500	R1050471
004327	918 A TEMPM (LKN.N) = 0.0	R1050474
_004333	00 10 920	
004334	916 FLAGM=1.0	
004336	930 SPECTR=COMPTP(LKN•N)	
004342	IF (FLAGP.EQ.1.0) ATEMPP (LKN.N) = SPECTR	•
004350	IF (FLAGM.EQ.1.0) ATEMPM(LKN.N) =SPECTR	
004356	920 SUMOTP=SUMOTP+ATEMPP(LKN+N)	R1050475
004363	921 SUMOTM=SUMOIM+ATEMPM(LKN.N)	R1050476
004371	SUMINP=SUMOTP+SUMINP	R1050477
004373	923 SUMINM=SUMOIM+SUMINM	P1050478
004377	PATOT=PATOT+SUMINP	R1050479
004401	AMTOT=AMTOT+SUMINM	<u>R1050480</u>
004403	IF (ATEMPP(1.NN)-0.0) 953.951.955	R1050481
004410	951 IF (41FMPM(1,NN)-0,0) 953,952,960	<u>R1050492</u>
004416	952 60 TO 1261	R1050483
004417	953 IERR=753	R1050484
004420	60 TO 9500	R1050485
_004421	955 TEMPA0=A (1 • NN)	
004425	TEMPAP=TEMPAO	D1050407
004426	PIE=1.0	R1050487
004427	TEMPAG=AGPLUS (UPI)	R1050488
004431	TEMPHG=HGP (JPI)	R1050489
004433	00 1719 IAF=1•NOK	•
004434	1719 TEMPFA (TAF) = AKPLUS (TAF + INK)	R1050492
004443	TEMPA=PATOT	R1050492
004445	(6) T() 964	<u> </u>
004445	960 TEMPA()=A(1,NN)	
004451	TEMPAM=TEMPAO	R1050495
004452	PIE=-1.0	R1030443
004453	TEMPAG=4GMIN (JPI)	R1050498
004455	TEMPRG=RGM (JPI)	K (U) U 4 7 1
004457	1720 TAF = 1 • NOK	
004460	1720 TEMPFA (IAF) = AKMIN (IAF, INK)	R1050500
004467	TEMP4=AMTOT	R1050501
004471	964 TEMPJ=2.0*VJ+1.0	R1050502
<u>004474</u> 004477	IF (IFUPI-1) 967,1020,1020	R1050503
004477	967 ANAWTA=TEMPAO/TEMPA	WT0 30 30 3

		H1U50504
004501	GSIG(NN)=GSIG(NN)+ANAWTA*TEMPAG*TEMPHG*TFMPJ	R1050504
004506	DO 1721 [AF=1•NOK	
004510	FSIG(IAF +NN) =FSIG(IAF +NN) +ANAWTA*TEMPFA(IAF) *TEMPJ	
004517	1721 CONTINUE	
004521	IF (LIO) 1264 • 1265 • 1264	
004522	1264 WRITE (6.1303) NN. VLN. VKN. VJ. SUMINP. SUMINM. TEMPAO, TEMPJ. TEMPFA (1)	
004550	1303 FORMAL(* *, 12+2X+F4+1+2X+F4+1+2X+F4+1+3X+E9+3+2X+E9+3+2X+E9+3+	
	X2X,F5,2.5X,F9,3)	
004550	1265 CONTINUE	
004550	TEMPP=TEMPAP/PATOT	
004552	TEMPM=TEMPAM/AMTOT	R1050509
004554	DO 1010 NLK=1.NMAX1	R1050510
004556	00 1010 NLKN=1.LMAX12	R1050511
_004557	CALL FLKAY (NLKN.VL.VK)	11.10.70.71
004561	IF (LEVDEN.E(1.0) GO TO 8055	
004552	IF (NLK.GT. (2*NMAX)) GO TO 8055	
004566	J=(NLK-1)/2	
004570	TRIAL=xMODF (NLK+2)	
004573	VI=FLOAT(J)	
_004574	IF(IRIAL.EQ.0.0)PIEN=-1.0 IF(IRIAL.EQ.1.0)PIEN=+1.0	
004577		
_004602	WOEN=EMIN GO TO 8056	
004604	8055 VI=HI (NLK)	
<u>004604</u> 004606	PIEN=HI (NFK)	
_004610	WOFN=H(NLK)	
004611	8056 CONTINUE	
004611	P1FK=1-0	R1050515
004613	CALL ANEULK (VJ+VK+VL+VI+PIEK+PIEN+D+WOFN+AOFN)	R1050516
004623	IF (AUFN-1.0) 1004,1002,1001	R1050517
004625	1001 IERR=1001	K1050518
004627	60 10 9500	R1050519
004630	1002 ATEMP=COMPTR(NEK+NEKN)	01050531
004634	FNSIG (NLK.NN.NLKN) = FNSIG (NLK.NN.NLKN) + ATEMP*	R1050521
	X TEMPP*TEMPJ	R1050522 R1050523
004644	GO TO 1010	R1050524
004645	1004 PIEK=-1.0	R1050524
004547	CALL ANFULK (VJ.VK.VL.VI.PIEK.PIEN.D.WOFN.AOFN)	R1050526
004657	IF (AUFN-1.0) 1010.1008.1007	R1050527
_004562	1007 IERR=1007	R1050528
004663	60 TO 9500	1,20,30,32,3
004664	1008 ATEMP=COMPTR(NLK+NLKN)	R1050530
004670	ENSIG (NLK , NN , NLKN) = ENSIG (NLK , NN , NLKN) + ATEMP*	R1050531
	XTEMPM*TEMPJ	R1050532
004700	1010 CONTINUE	

004705	С	60 TO 1361	R1050534
	c	CALCULATE INTEGRAND CASE 1	R1050535
	Č	CALCULATE INTEGRAND CASE I	R1050536
004706		CONTINUE	
04705	1020	IF (PIE+1.0) 1100.1061.1021	
	102	1 DO 1049 K=1.NINT	R1050538
04711	102		
04713		XK1=XK(K) TEMP1=AGPLUS(JPI)*(1.0-XK1)/(PATOT*XK1)	
04715		IF (IEMP1-85.0) 5027.1025.1025	
	100	5 TEMP1=0.123456E38	R1050542
04725	102:		
04727		GO TO 1028 7 TEMP3=AGPLUS(JPI)/PATOT	R1050544
04727	502		R1050545
04732	500	[F (JEMP3-0.0001) 5029.5029.5031	R1050546
04734	205	9 TEMP1=1.0	
04736	F 6 3	GO TO 5527 1 TEMP1=EXP(TEMP1)	
004736	503	• • - • • • • • • • • • • • • • • • • •	
104741	553	GO TO 5527 7 TEMP4=ATEMPP(1,NN)/PATOT	R1050550
04741	552	IF (IEMP4-0.0001) 5529.1027.1027	
104746_		9 TEMP1=XK1*XK1*TEMP1	R1050552
004750	שמכ	GO TO 1028	
) <u>04752</u>)04753	102	7 TEMP1=XK1*XK1*TEMP1*(1.0+2.0*ATEMPP(1.NN)*	R1050554
104753	10%	X (1.0-XK1)/(PATOT*XK1))	£1050555
004767	102	8 PROD11=1.0	R1050556
	102	DO 1047 N=1.LMAX12	
004771		PR0051=1.0	
004772		CALL FLKAY(N.VFL.VFK)	
<u>104774 </u>	_	DO 1045 LK=1.NMAX1	
		VI=HI(LK)	
<u> </u>		PIFN=PI(LK)	
005002		w0FN=B(LK)	
205005	·	P[EK=1.0	
105005		CALL ANEULK (VJ. VEK. VEL. VI. PIEK. PIEN. D. WOFN. AOFN)	
		IF (AOFN-1.0) 1040.1042.1039	
005017	102	9 IERR=1037	R105056 7
)0 <u>5022</u>)05023	10.3	GO TO 9500	R1050568
	104	0 AMAWTP=0.0	R1050569
) <u>05024</u>)05025	104	GO TO 1045	
	104	2 ANANTP=4(LK•N)	
105025_	104	5 CALL PROU (ANAWTP, PATOT, XK1, DBPROU)	K1050572
005032	104	CALL OVERFL (1000)	
005035		IF (1000 -1)1044,1044	
005037		1F (1000 -1	
005041			

005044	IF (IOOO-1) 4045,4045,1046	R1050576
005047	4045 PROD21=0.123456E38	R1050575
005051	1046 CONTINUE ,	K1050578
005054	PROD11=PROD21*PROD11	K10.70,577
005055	CALL OVERFL (1000)	
005057	IF (1000- 1) 4048,4048,1047	R1050540
005062	4048 PRUD11=0.123456E38	R1050581
<u> 005064</u>	1047 CONTLINUE	R1050582
005067	AE=PATUT	R1050583
005070	IEMPX=(1.0-XK1)/XK1	R1050584
005073	TEMP5=2.0/AE	K1020244
<u>005075</u>	DO 1726 [AF=] • NOK	
005076	1726 ASUBFE(IAF) = AKPLUS(IAF + JPI)	
005105	DO 416 IAF=1,NOK	
005107	IF (ASUBEL (IAF) -1.0F-25) 4026,4026,4126	
005112	4126 TEMP=ASUBEF (IAF)/AF	R1050589
005115	IF (TEMP-0.0001) 4026.4028.4028	K1050389
005117	4026 TEMPNE (IAF) = 1.0	
005121	G() T() 416	
005122	4028 TEMPNE (IAF) = (1.0+TEMP5* (ASUBFE (IAF)/FNU (IAF)) *T	MPX) ** (F NU (LAF) /
	X2.0)	
005135	416 CONTINUE	
005140	TEMP=1.0	
005141	00 49 [AF=] • NOK	
005143	49 TEMP=TEMP#TEMPNE (TAF)	
005147	GFUNG (K) =PPOD11*TEMP1*TEMP	
005152	CALL OVERFL(IQQQ)	
005154_	IF (1000-1) 4034 • 4034 • 9220	F1050601
005157	4034 GEUNG (K) =0.123456E38	1. [0 70 70 1
005161	3550 CONTINUE	R1050602
005161	1049 CONTINUE	KIU MITO
005154		K1050604
	0	R1050605
	C CALCULATE INTEGRAND CASE 2	R1050606
	C	R105060 7
005164	1061 DO 1049 K=1-MINT	K1030001
005166	XK]=XK(K)	
005170	JEMPS=AGMIN(JPI) # (]. n-xK1) / (AMTOT *XK1)	
005176	IF (TEMP?-AS.0) 5067·1065·1065	D1050611
005200	1065 TEMP2=0.123455E38	R1050611
005202	GO TO 1068	01000412
005202	5067 JEMP3=AGMIN(JPI)/AMTOT	R1050613
005205	IF (TEMP3-0.0001) 5069.5069.5071	D1050415
	CD 40 TCUAN 1 0	R1050615
005207	5069 [FMP2=1.0	

	The state of the s	
005211	5071 TEMP2=EXP(TEMP2)	
005214	(ii) 11) 55h7	R1050619
005214	5567 TEMP4=ATEMPH(1.NN)/AMTOT	K1050014
_005221	IF (TEAP4-0.0001) 5569.1067.1067	K1050621
005223	-5569 TEMP?=XK1*XK1*FEMP?	12606018
005225	60 10 1058	R1050623
005226	1067 TEMP2=XK1*XK1*TEMP2*(1.0+2.0*ATEMPM(1.NN)*	R1050624
	x (1.0-XK1)/(AMTOT*XK1))	R1050625
005242	1068 PROD12=1.0	K10.3002.3
<u>005244</u>	DO 1087 N=1+LMAX12	
005245	PRUD22=1.0	
005247	CALL ELKAY (N. VEL. VEK)	
005251	00 1086 LK=1.NMAX1	
005253	<u> </u>	
005255	PIEN=PI(LK)	
_005256	WOFN=R(LK)	
005260	PIEK=-1.0	
_005261	CALL ANEULK (VJ.VEK.VEL.VI.PIEK.PIEN.D.WOFN.	
	X AOFN)	
005272	IF (A0FN-1.0) 1080:1082:1079	R1050637
005275	1079 IERR=1077	R1050638
005276	GO TO 9500	R1050639
005277	1080 ANAWTM=0.0	(1030037
005300	GO TO 1085	
005301	1082 ANANTH=4(LK+N) 1085 CALL PROD (ANANTM+AMIOT+XK1+DBPROD)	R1050642
005305	CALL OVERFL (1000)	
005310	IF (1999 -1) 1084 • 1084 • 1084	
_005312	1084 PRODSS=PRODSS*DBPROD	
005314 _005316	CALL UVERFE (1000)	
005317	IF (1909-1) 4085+4085+1086	
005322	4085 PROD22=0.123456E38	K1050646
005324	1086 CONTINUE	R1050647
005327	PRO013=PRO052*PRO015	R1050648
005330	CALL OVERFL(IQQO)	
005332	IF (I/000+1)4088.4088.1087	
005335	4098 PRO012=0.123456E38	R1050650
005337	1087 CONTINUE	R1050651
005342	AF=AMI()T	R1050652
_005343	TEMPX=(1.0-XK1)/XK1	K1050653
005346	TEMPS=2.0/AE	R1050654
005350	00 30 IAF=1.NOK	
005351	30 ASUBFE (IAF) = AKMIN (IAF . JPI)	
_005360	00 80 IAF=1.NUK	
005362	IF (ASUMFE (IAF) -1.0E-25) 4526.4626,4626	
30.70.1-		

005345	4625 FEMPEASUMEE (TAF)/AF	5.3.0000
005370	1F (TEMP-0.0001) 4526.4528.4528	R1050659
005372	4526 TEMPNE(IAF)=1.0	
005374	60 10 80	
005375	4528 TE 4PDE (IAF) = (1.0+TEMP5* (ASUBFE (IAF)/FNU(IAF)) *TEMPX) ** (FNU(IAF)/	
	X2,0)	
005410	. 80 COALIMAE	
005413	TEMP=1.0	
005414	DO 53 IAF=1.NOK	
005416	53 TEMPETE 4PMTEMPNE (TAF)	
005422	GFUNG(K)=PROD12*TEMP2*TEMP	
005425	CALL DVERFL (IQQQ)	
005427	IF (1900-1)4534•4534•1089	
005432	4534 GFUNG(K) = 0.123456E38	R1050671
005434	1089 CONTINUE	R1050672
<u>005437</u>	60 10 1101	
	C	R1050674
	C SIGMA CAPTURE	R1050675
	C	R1050676
<u>_005437</u>	1100 IERR=1100	R1050677
005440	GO TO 9500	R10506 7 8
005441	1101 IF (IFJPI-1) 1109:1107:1111	R1050679
005444	1107 TEMP=TEMPAO*TEMPAG/(TEMPA*TEMPA)	R1050630
_005447	IF (TEMP-0.0001) 1109.1109.1111	
005452	1109 EYE=1.0	R1050682
_005454	60 T0 1115	01050604
005454	1111 SUMK=0.0	R1050684
<u> 005455</u>	00 5116 K=1•NINI	
005457	SUMK=SUMK+G(K)/GFUNG(K)	12000433
_005462	5116 CONTINUE	<u>R1050687</u>
005464	EYE=3.141592654*SUMK/(2.0*FNINT)	01050400
005470	1115 GSIG(NN)=GSIG(NN)+TEMPAO*TEMPJ*EYE*TEMPAG	R1050689
	X *TEMPBGZTEMPA	R1050690
	C .	R1050691
	C SIGMA FISSION	R1050692
	<u>C</u>	R1050693
005500	00 1140 IAF=1.NOK	
005501	IF (IEUPI-1) 1122.1120.1124 1120 TEMP=TEMPAO*TEMPFA(IAF)/(TEMPA*TEMPA)	
005504 _005510	IF (IEMP=0.0001) 1122.1122.1124	
005512	1122 EYE=1.0	R1050697
005514	GO TO 1130	. 10.2007.
005514	1124 TEMP=2.0*TEMPFA(IAF)/(FNU(IAF)*TEMPA)	
_005520		
005521	5UMK=0.0 DO 5131 K=1.NINT	
005561	באודואב. ע 1915 העו	

005523	TEAPS=TEMPEA(IAF)/TEMPA	
005526	IF (IFMP5-0.0001) 6131.5129.5129	
005530	6131 1-491=1.0	R1050704
005532	(c) TO 5130	
005532	5129 TEMPT=1.0+(1.0-XK(K))*TEMP/XK(K)	R1050706
005537	5130 SUMK=SUMK+(G(K)/GFUNG(K))/TEMPT	R1050707
005544	5131 CONTINUE	R1050708
005546	FYE=3.141592654*SUMK/(2.0*FNINT)	
005552	1130 FSIG(IAF.NN)=FSIG(IAF.NN)+TEMPAO*TEMPJ*EYE*TEMPFA(IAF)/TEMPA	
005552	. 1140 CONTINUE	
	C	R1050731
	C SIGMA SCATTERING	R1050732
	C	R1050733
0.05565	DO 1250 NLK=1.NMAX1	
005566	1205 00 1260 NEKN=1:EMAX12	R1050735
005570	1210 CALL FLKAY (NLKN+VEL+VEK)	R1050736
005573	1230 VI=HI(NLK)	R1050737
005575	PIEN=PI(NLK)	
005577	wi)FN=a (NLK)	
005600	1223 CALL AMEJLK (VJ, VEK, VEL, VI, PIE, PIEN, D, WOFN,	<u>R1050740</u>
	X AOFN)	K1050741
<u> </u>	1224 IF (AUFN-1.0) 1226,1228,1225	R1050742
005614	1225 IERR=1225 .	R1050743
005615	(i) TO 4500	R1050744
005616	1386 44-0.0	H1050745
105617		<u> </u>
005620	1228 AN=4 (NLK+NLKN)	
005624	1251 IF (KC-1) 1231,1229,1241	R1050748
105627	1220 TEMPETEMPAO*AN/ (TEMPA*TEMPA)	R1050749
205632	1230 IF (IF-4P-0.0001) 1231.1231.1241	R1050750
105635	1231 EYE=1.0	R1050751
205637_	1232 (4) (1) 1255	R1050752
005640	1241 IF (NLK-1) 1246+1242+1246	R1050753
<u> </u>	1242 IF (VLN-VEL) 1246.1243.1246	R1050754
005644	1243 IF (VKN-VFK) 1246+1244+1246	K1050755
005646	1244 GELTA=3.0	<u>R1050756</u>
0.05650	1245 60 10 1247	R1050757
205651	1246 GELTA=1.0	R1050758
105653	1247 TEMP=2.0*AN/TEMPA	R1050759
1056 <u>56</u>	1250 SUMK=0.0	R1050750
005457	5251 00 5256 K=1•NINT	R1050761
005661	6254 TEMPS=AN/TEMPA	R1050762
005663	6255 1F (TEMP5-0.0001) 6256.5254.5254	R1050763 R1050764
005666	6256 IEMPT=1.0	

	5254 [FMP[=].0+]FMP*(].0-XK(K))/XK(K)	k1050766
005671	5255 SUMK = SUMK + (G(K) * GELTA/GFUNG(K))/TEMPT	R1050767
005676	5256 CUNTINUE	K1050758
005703	1254 <u>LYL=3.141592654*SUMK/(2.0*FNINT)</u>	R1050769
005705	1255 ENSIG(NEK+NN+NEKN) = ENSIG(NEK+NN+NEKN) + TEMPU*	R1050770
005711	The second secon	R1050771
		R1050772
005724	1260 CONTINUE	
_0.05731	1261 CONTINUE	R1050773 R1050774
005734	1270 TEMP=FINAWI/D	
<u> 005735</u>	1271 GSIG (NN) = TEMP*GSIG (NN)	<u>R1050775</u>
005741	00 1272 IAF=1•NOK	
005742	1272 FSIG([AF +NN) = TEMP*FSIG(IAF +NN)	
005751	1580 DO 1585 AFK=1.WWWX1	R1050778
005753	1291 DO 1285 MEKN=1+EMAX15	R1050779
005755	1282 FNSIG(NLK.NN.NLKN)=TFMP*ENSIG(NLK.NN.NLKN)	R1050780
005771	IF (KKN-7) 334 • 334 • 3341	<u> </u>
005773	3341 (00101285	R1050782
_005774	334 ENSIG(1.NN.NN) = ENSIG(1.NN.NN) + TEMP*BBB (NN) * TEMPJ	R1050783
005004	1285 CONTINUE	R1050784
	<u> </u>	<u>R1050785</u>
	C SUM OVER INCIDENT CHANNELS	R1050786
		R1050787
005007	1300 G5IGE=0.0	R1050788
_0.6010	199 1301 IAF=1•NOK	
006012	1301 FSIGE(IAF)=0.0	
006015	1305 00 66 NN=1.LMAX12	
005017	GSIGE=GSIGE+GSIG(NN)	•
006021	(ii) 399 IAF=1,NOK	
006023	399 FSIGE (TAF) =FSIGE (TAF) +FSIG (TAF +NN)	
006033	66 CONTINUE	
006035	1310 DO 1314 NEK=1•NMAX1	R1050795
005037	1311 ENSIGE (NLK) =0.0	<u> </u>
006041	1312 DO 1314 NN=1+LMAK12	H1050797
006043	1313 00 1314 NEKN=1+EMAX12	R1050798
006045	1314 ENSIGE (NLK) =ENSIGE (NLK) +ENSIG (NLK+NN+NLKN)	R1050799
		<u> </u>
	C WRITE OUTPUT MATRIX	R1050801
		R1050802
006064	335 CONTINUE	R1050803
005054	336_IF(IIPI-1)337,338,338	R1050804
006067	337 WRITEOUTPUTTAPE6:1370	R1050805
006073	60101427	
006074	338 CONTINUE	
006074	342 WRITEOUTPUTTAPE6.4006	<u> </u>
006100	WRITEOUTPUTTAPE6.3013	R1050813

006104	14F6H=2	R1050914
006105	WRITEOUTPUTTAPE6,8006	£105 <u>0315</u>
006111	:A=0	
005112	iy=0	
006113	1503 M=N+1	
006115	N=M+9	
006116	IF (N.GI.NOK) N=NOK	
005121	D0343NN=1.LMAX12	R1050816
006123	CALLELKAY (NN.FLN.FKN)	R1050817
006125	343 VRITE (6.30)4) FLN. FKN. GSIG (NN) . (FSIG (IAF. NN) . IAF=M.N)	
006153	3014 FORMAT (* *.F5.2.X.F5.2.11 (X.E9.3.X))	
006153	थर1TE (6.€3006)	
006156	IF (N. E.Q. NOK) GO TO 1502	·
006160	GO TO 1593	
006161	1502 CONTINUE	01050010
_006161	3431 WRITEOUTPUTTAPE6.8006	<u> </u>
006165	IF (IOPTION) 345,3441,345	
006166	3441 WRITE OUTPUT TAPE 6:3015	()1250.331
006172	D0346NLK=1+NMAX1	R1050321
006174	M=VLK-1	R1050822 R1050823
006176	IF (I)-B (NLK)) 346+346+344	R1050823
006200	344 CONTINUE	R1V3V3C4
006500	WRITEOUTPUTTAPE 6 + 3016 + M + B(NLK) + ENSIGE (NLK)	R1050826
006212	WRITEOUTPUTTAPE6.8006	R1050827
006216	()0345NN=1.LM4X12	R1050828
_006220	CALLELKAY(NN•FLN•FKN) WRITFOUTPUTTAPE6•3017•FLN•FKN•(ENSIG(NLK•NN•NLKN)•	R1050829
006255	**************************************	R1050830
	XNLKN=1.LMAX12)	R1050431
006245	345 CUNTINUE	R1050832
_006250	346 CONTINUE 347 CONTINUE	H1050833
006253 006253	1501 GO TO 7051	- · · · · · · · · · · · · · · ·
<u> </u>	C .	R1050860
	C FORMAT STATEMENTS	R1050861
	C	R1050862
006254	. 25 FORMAT (6E12.6)	R1050863
006254	26 FOR44T (bF12.8)	R1050864
006254	27 FORMAT (2X.F8.6.30X.2F10.6)	R1050865
006254	1370 FORMAT(1H1)	R1050866
_005254	3001 FORMAF([3.1246]	<u>R1050867</u>
006254	3002 FORMAT (116H1	
· · ·	XWILDCAT DECEMBER+1966 LOVELAND-NEARREX)
006254	3003 FORMAT (15.412.211.212.F13.8.512.F5.2)	_
006254	3004 FORMAT (44H ENERGY LEVELS KC = I2)	<u> </u>
006254	3005 FORMAT(13H0A(GAMMA) = F15.9)	R1050872

006254	3009 FORMAT(10H0!!U(H) = F8.4)		R1050876
006254	3011 FORMAT(11HOFMERGY = F20.8)		R1050879
006254	3012 FORMAT(51H		FR.5)R1050890
006254	3013 FORMATISAHOCROSS SECTIONS FOR CAPTURE	FISSIONOT	<u>HER) R1050881</u>
005254	3015 FORMAT(30HOCKUSS SECTIONS FOR SCATTERING)		R1050A93
006254	3016 FORMAT(23H0EXCITED LEVEL NUMBER I3+14H	W(N) = F10.6.20	H R1050884
	X SIGMA(N.E) =F14.8)		R1050885
006254	3017 FOR 44T (1H 2F5.2.5H 9F11.7/(16H	9F11•7))	R1050886
006254	3018 FORMAT(26H SCATTERING CROSS SECTIONS)		R1050887
006254	3021 FORMAT(21H00THER CROSS SECTIONS)		<u> </u>
006254	3101 FORMAT(F12.8,212,211,F6.2,4F10.5)		H1050A93
006254	3102 FORMAT (55HO SIGMA U DELTA	ZPLS	ZMIN)R1050894
006254	3913 FORMAT(26H TRANSMISSION COEFFICIENTS)		R105 0 895
006254	3914 FORMAT(1H 9F12.8)		R1050896
006254	8006 FORMAT (1H0)		R1050897
_006254	8008 FORMAT (HE15.6)		<u> </u>
006254	8011 FORMAT (31HOF SUB J AND PI FOR PI POSITIVE)		R1050899
006254	ROIZ FORMAT (31HUE SUB J AND PI FOR PI NEGATIVE)		P1050900
006254	8027 FORMAT(12A6)	•	R1050901
006254	9105 FORMAT(1X • 1 HH********* FRR = • 14)		R1050902
	C		R1050903
_006254	9500 WRITE OUTPUT TAPE 6,9105, IERR		R1050904
006262	MESS = 4HOHEL .		
	MESS = 4HOHEL		
	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION		
006262	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C		
006262	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999 I=1.NANGL		
006262 006264 006266	MESS = 4HOHEL C		
006262 006264 006266 006271	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999 I=1.NANGL 6999 DIST(I) = 0.0 NOK = 40KK		
006264 006264 006266 006271 006273	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006264 006264 006266 006271 006273	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006264 006264 006266 006271 006273 006274 006276	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999 I=1.NANGL 6999 DIST(I) = 0.0 NOK = 40KK 100 7004		
006262 006264 006266 006271 006273 006274 006276	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999 I=1.NANGL 6999 DIST(I) = 0.0 NOK = 40KK		
006264 006266 006266 006271 006273 006274 006277 006300	MESS = 4HOHEL C		
006262 006264 006266 006271 006273 006274 006277 006300 006302	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999 I=1.NANGL 6999 DIST(I) = 0.0 NOK = 10KK 100 7004		
006262 006264 006266 006271 006273 006274 006276 006377 006302 006302	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006271 006273 006274 006276 006277 006302 006302 006304	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006273 006274 006276 006277 006300 006302 006304 006306	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006273 006274 006276 006277 006300 006302 006304 006306 006317	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006273 006274 006276 006277 006300 006302 006304 006306 006317 006327	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006273 006274 006276 006277 006300 006302 006304 006316 006317 006327 006330	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999 I=1.NANGL 6999 DIST(I) = 0.0 NOK = 40KK DO 7094 IAF=1.NOK 7001 DO 7002 J=1.LMAX12 DO 7002 I=1.NANGL XI=I XXI = XJ(I) FXKAY=FKAY(IAF) IF (FXKAY - 1.5) 7016.7017.7018 7016 DIST(I)=DIST(I)+FSIG(IAF.J)*W1(J.I) GO IO 7002 7017 DIST(I)=DIST(I)+FSIG(IAF.J)*W2(J.I) GO IO 7002 7018 IF (FXKAY - 3.5) 7019.1211.8123		
006262 006264 006266 006271 006274 006277 006300 006302 006306 006316 006317 006327 006330 006333	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006271 006273 006277 006277 006300 006302 006304 006316 006317 006327 006327 006330 006333 006343	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		
006262 006264 006266 006271 006273 006274 006277 006300 006302 006304 006306 006316 006317 006327 006330 006330	MESS = 4HOHEL C C CALC OF ANGULAR DISTRIBUTION C 7051 DO 6999		

006355	8123 IF (FKAY-5.5) 8120.8121.7002	
006360	8120 DIST(I)=DIST(I)+FSIG(IAF+J)*W5(J+I)	
006370	60 10 7002	
006371	8121 DIST(I)=DIST(I)+FSIG(IAF,J)*W6(J,I)	
006401	7002 CONTINUE	<u> </u>
006406	7004 CONTINUE	
	C	•
	C CALCULATION OF STATISTICAL ANGULAR DISTRIBUTION	
	C	
005411	1F(JSTAI.EQ.0)60 TO 4008	
006412	110 4009 KX=KXX+IAFF	
_005414	LD=(KX-KXX)/2 +1	
006417	DO 4009 LK=1,LMAX12	•
006421	DO 2002 I=1.NANGL	
006422	DIST(1)=DIST(I)+FSIG(KX+LK)*WS(LD+LK+I)	
_005435	2005 CONTINUE	
006437	4009 CONTINUE	
_005444	4008 CONTINUE	
	C .	
	C OUTPUT ANGULAR DISTRIBUTION DATA	
	C	
006444	WRITE OUTPUT TAPE 6.7012	<u> </u>
006450	7012 FORMAT (40HO FISSION FRAGMENT ANGULAR DISTRIBUTION)	
006450	WRITE OUTPUT TAPE 6,7013	
006454	7013 FORMAT (21HO THETA DIST (I))	
006454	DO 7015 I=1•NANGL	
005456	X[=[·
006457_	XXI=XJ(I)	
006461	WRITE OUTPUT TAPE 6.7014.XXI.DIST(I)	
006470 006470	7014 FOR 4AT (2F10.5)	
_006470	7015 CONTINUE	
	D0 7041 I=1.NANGL	R1050834
	C WRITE OUTPUT SUMMARY	R1050834 R1050835
	C WRITE OUTPUT SUMMARY	R1050836
005474	7041 wCALC(NIE.I) = DIST(I)	W.10.00.00.0
006503	IF (USTAT.FO.1) NOK = LAFF	
006507	1427 GSIGN(NIE) = GSIGF	R1050837
006511	1967 G3103(N167-0310F	71130037
_006513	1428_FSIGM(NIE+IAF) =FSIGE(IAF)	
006522	3025 FORMAT (1H 10F11.7)	
006522	1430 00 1431 NEK=1•NMAX1	P1050840
006524	1431 ENSIGN(NIE+NLK) = ENSIGE(NLK)	R1050841
_006533	1432 ESUBP (NIE) =[)	R1050842
006535	WRITEOUTPUTTAPE6,1370	R1050843
		N 1 0 20 0 4 2

006541 006542	IF (LEVOEN) 3432•4000 - 3432		508
006545	4000 IF (NIE-NE) 1135.348.3	349	
006550	348 CONTINUE		508
00000	C		
	C COMPUTATION OF CHI-S	SOLIARE	
	C		
006550	CHISUS =0.0		
006551	CHISUN =0.0		
006552	EXPSU 1=0.0		
006553	CALSUM=0.0		
006554	00 7062 I=1.NE		
006555	DO 7061 K=1.NANGL		
006556	J = K		
006557	EXPSUM = EXPSUM + W	EXP(I.J)	
006564	CALSUM = CALSUM + W		
006567	7061 CONTINUE		
006571	XXXX =EXPSUM/CALSUM	1	
006572	DO 7070 K=1.NANGL		
006574	J=K		
006575	7070 CONTINUE		
006577	100 7362 K=1.NANGL		
005501	J = K		
006502	CHIS-14 = ((WCALC(I+J)-	-WEXP(I,J))**2)/(SIGMAW(I,J)**2)+CHISQW	
006613	CWCALC(I+J) = WCALC(I)	I,J)	
006617	EXPSU1 =0.0		
006617	CALSUM =0.0		
006620_	7062 CONTINUE		
006625	00 7065 I=1•NE		
006627	SIGTO(I)=0.0		
006630	00 7055 IAF=1•NOK		
005632	516T0(1)=S16T0(1)+F9		
006637	7065 CONTINUE		
006544	00 7065 I=1.0E		
006645		I)~SIGMAF(I))**2)/(USIGMF(I)**2)	
005552	CHISUS = CHISQS + C	<u>\$\$(I)</u>	
005654	7066 CONTINUE		
	C WHITE ITEMATION OUT	РОТ	
006656	00 1866 I=1•NE		
006660	WRITE OUTPUT TAPE 6	- 9006	
<u></u>	100 1856 J=1•NANGL		
<u> 006655</u> 006667	XXJ=XJ(J) 1866 WRITE OUTPUT TAPE 6		

006705	WRITE OUTPUT TAPE 6.7067	
_006711	7067 FORMAT (37HO CHI SQUARE SIGMA CHI SQUARE DIST)	
006711	WRITE OUTPUT TAPE 6.7068.CHISOS.CHISOW ,	
006721	7068 FORMAT (2F20.5)	
	C	23.050.47
006721	349 WRITEOUTPUTTAPE6+3018	R1050846
006725	WRITE (6∙8006)	
005731	M=0	
006732	<i>γ</i> 1=0	
006733	503 M=N+1	
006735	N=1/1+4	
006736	WRITE (6.8006)	
006742	IF (N=NE) 505+505+507	
006745	507 N=NE	
006747	505 WRITE (6.3020) (ESUBP (NIE) .NIE=M.N)	
<u>_006762</u>	3020 FOR 4AT (* *• *FNFRGY*•6X•5(F1).7•5X))	
006762	₩₹ITE (6+×006)	
_0.0.67.66	DO SUB NLK=1.NMAX1	
006770	LLL=NLK	
_006771	IF (NLK.GT. (NMAX*2))LLL=INT (HI (NLK))	
006776	355 SRITE (6.3023) LLL. (ENSIGN (NIE.NLK) .NIE=M.N)	
007015	3023 FORMAT (* * **LEVEL * • X • I2 • 4X • 5 (F11 • 7 • 5X))	
007015	508 CONTINUE	
007020	00 514 NIF=M•N	
007022	TOTAL (NIE) =0.0	
007023	00 514 NLK=1 • NMAX] 514 TOTAL (NIF) = TOTAL (NIE) + ENSIGN (NIE • NLK)	
007025	514 TOTAL(NIF) = TOTAL(NIE) + ENSIGN(NIE + NLK) WRITE (6+516) (TOTAL (NIE) + NIE = M+N)	
007037	516 FORMAT (* * * * TOTAL * • 7 × • 5 (F11 • 7 • 5 X))	
007051	IF (N.€0.NE) GO TO 510	
007053	60 TO 503	
007054	510 CONTINUE.	
007054	IF (IAFGH-1) 351, 352, 352	R1050851
007057	351 6070 301	
007057	352 WRITFOUTPUTTAPE6+H006	K1050853
007050	MED	
007065	N=0	
007055	1215 M=N+1	
007079	N=M+7	
_007071	IF (N.GI.NOK) N=NOK	<u></u>
007074	WRITE(6.3022)(NFTR(I).I=M.N)	
007072	3022 FORMAT (* *.3X, *ENERGY*, 5X, *CAPTURE*, 4X, 10 (*FISSION*, X, 12, X))	
007107	WRITFOUTPUTTAPE6.8006	K1050855
007113	353 0035401E=1•NE	R1050856
007115	354 WRITE (6.3025) ESUBP (NIE) . GSIGN (NIE) . (FSIGN (NIE · IAF) . IAF = M.N)	
00.119	STATE WAS A COUNTY OF THE COUN	

007137	wd[[ē(o•4006)	
007142	IF(N.80.40K)60 TO 1214	
007144	60 TO 1215	
007145	1214 CONTLAIF	
007145	#KITE (6+8705)	
007151	8705 FOR 4A F (* * + 20 X + * ENERGY* + 5X + * FISSION TOTAL*)	
007151	WAITE (6.9006)	
007155	100_8730_NIE=1•NE	
007157	FOTAL 1=0.0	
007160	DD 8731 IAF=1•NOK	
007162	8731 TOTAL1=TOTAL1+FSIGN(NIE+IAF)	
007171	8730 WRITE (6.1216) ESUBP (NIE) . TOTAL1	·
007204	1216 FORMAT (* * • 17X • F11 • 7 • 4X • F11 • 7)	•
007204	60 TO 301	01050007
007204	END	R1050907
	·	
	· ·	
	-	
		_
_		

		SUPROUTINE WKJ (NANGLE)
	CC	
	<u>cc</u>	PREPARE TABLES W(K+J) FOR PROGRAM WILDCAT
	CC	
000003		DIMENSION D(2)
000003		COMMON/C/XI(9) *W1(19*9) *W2(19*9) *W3(19*9) *W4(19*9) *W(19*19*10)
		X•N5(19•9)•W6(19•9)
000003		PEAL K. J.M
000003		DO 55 IY=1.NANGLE
000005		A=XI([1,)
000007		$1 \in (X \setminus \{(1Y) \in \{0.000\} Y = 0.000\})$
110000		144x = 144x2 = 30
000014		00 40 K[=].19
000016		K=FLOΔT(KI)-0.5
000020		X=0.4
000021		J=-0.5
_000023		00 45 JI=1•19•2
000024		J=J+1•0
000025		IF(J.LT.K)60 TO 30
000030		00 50 dK=1•2
000032		IF (MK .EQ.1) M=0.5
000035		IF(MK.E0.2)M=-0.5
000041		IMAX = 30
000042		DEN1=DEN3=DEN4=1.0
000047		X=0•9
000050	29	
000051		DEN1=J+K-X
000054		NF √ ≥ = J + M + X
_000057		DEN 3= X + K - M
000061		DEN4=X
000062		[F(0)E4]) 20•21•22
000064	2	· · · · · ·
000065	27	
000067	2	
000070	20	
000072	26	
000075		IF (IFLAG. FO. 1) GO TO 27
000077		$X = X + \frac{1}{2} \cdot 0$
000101	2	60 In 28
000102	,	
000105		SUM=0 • ()
000106		U() 4 IE=1.1MAX
000107		<u> </u>
000111		0EN1= J-K-X

000114		0€42=J+M+X
<u> </u>		1)EN3±x+k=4
000151		リド·()4=X
000122		CALL FACT (DEVI-IMAXI, PRODI)
000124		CALL FACT (DEN2+IMAX1+PROD2)
000127		CALL FACT (DEN 3. IMAX 1. PROD 3)
000135		CALL FACT (DEN4.IMAX1.PROD4)
_000135	_	<u></u>
000141		IF (0F-NOM-EQ.0.0) GO TO 20
000142		<u>5£C=2.0#J-K+M-2.0#X</u>
000159		PRIM=K-M+2.0%X
000152		
009157		ANZ=C)5(YZ2.0)
000163		<u>ANUM=(AN]**PRIM)*(AN2**SEC)*(-1)**INT(X)</u>
000201		SUM=SUM+ARUM/DENOM
000203	4	
000207		FAC1=J+M
000211		<u>FAC2=J=0</u>
000212		FAC 3= J+K
000214		<u>FAC4=J-K</u>
000215		CALL FACT (FACT + IMAX 2 + PHOT)
_000220 _		CALL FACI(FACZ:IMAXZ:PROZ)
000223		CALL FACT (FAC3 · IMAX2 · PRO3)
000226		CALL FACT (FAC4, IMAX2, PRO4)
000231		FACTOR=(PRO1*PRO2*PRO3*PRO4)**0.5
<u>_000237_</u>	50_	
000245		((1· It · It
_000252		(D) TO 45
000262	3()	$0.00 = (X[\cdot][\cdot]Y) = 0.0$
_000270	45	#(KI,JI+1,IX) = #(KI,JI,IX)
000303	41)	CONTINUE
000305	55	COST I 40F
000310		00 3+ I=1-MAMGLE
000311	·	00 39 JI=1•19
000312		m1(11•1)=v(1•11•1)
<u> </u>		MS(7[•]) = M(S•3[•])
000327		w 3 (N1 • 1) = m (3 • N1 • 1)
000335		
000343		w5(J1•I)=9(5•JI•I)
_000351		v6 (J[•]) = w (6 • J[•])
000357	39	COMT (40E
000362		- KETOKA
000363	50	#RITE(6•1)X
000371	l	FORMAT(# #. #X ERHOR= #.FA.3)
000371		END

		The state of the s
		CANADATA CACTACTOR THAYS - PROD)
		SURROUTINE FACT (FACTOR • IMAXS • PROD) PROD=FACTOR
000006		
000006		IF (FACTOR-1.0)1:1:2
000011	S	
000013		IF (FACTOR-FLOAT(12))4.4.5 PROD=PROD*(FACTOR-FLOAT(12))
000015	5	
000020	3	CONFINUE
000022	,	60 T0 4
000022		PROD=1.0
000023	4	RETURN
000024		<u>END</u>
		·
		•

	S HAROUT [UF PH] (DELTA . E . U . PHIUE)	R1050927
000007	C TEMO-6 5797 SECULARIA ZORI TA	R1050928
000012	10 TEMPRESORT (TEMP)	
000015	15 XINV=1.0/TEMPR	R1050930
000017	20 POLY4=1.0+XINV*(XINV*(45.0-105.0*XINV*(1.0- XINV))-10.0)	R1050931
000030	25 TEMP1=TEMP*TEMP	R1050932
000032	30 TEMPP=EXP(TEMPR)	
000035	35 PHIUE=TEMP1*TEMP2*POLY4	R1050934
000042	40 RETURN	R1050935
000043	ENO	R1050936
000043		_
	_	
		
		-
	_	

C		SURROUTINE PSI (E.U.EUPI.DELTA.PSIBAR)	R1050937
100010			R105093P
15 TEMP =XJPI/X	000010	<u> </u>	
17 TEMP TEMP TEMP 10 10 10 10 10 10 10 10	000051	10 XJP[=\$0RT(6.57975*(U+EJPI)/DELTA)	
200035 20 TEMP2=1.0-TEMP1 R105094	000032		R1050941
25 TEMP3 = TEMP2 * TEMP2 R105094	000034		R1050942
25 TEMP3 = TEMP2 * TEMP2 P105094	000035	<u>20 TEMP2=1.0-TEMP1</u>	R1050943
35 TFMP5=X*X	000037	25 TEMP3=TEMP2*TEMP2	R1050944
100045	0.00041	30 TEMP4=TEMP3*TEMP2	R1050945
000047	000043	35 TEMP5=X*X	R1050946
100051	000045	40 TEMPS*TEMPS	R1050947
100051 50	000047	45 TEMP7=TEMP5#TEMP6	R1050948
100053	000051	50 TEMP17=7.0*TEMP1	R1050949
100055	000053	55 TEMP37=3.0-TEMP17	R1050950
000057	000055	60 TEMP17=1.0-TEMP17	R1050951
X	000057	65 TEMP=TEMP4-TEMP3*TEMP17/XJPI-6.0	R1050952
X			R1050953
70 TEMPE=120.0*(FEMP37-3.0*TEMP17/XJPI)/ R105095		X	K1050954
70 TEMPE=120.0*(TEMP37-3.0*TEMP17/XJPI)/ X TEMP6-5040.0*(1.0-1.0/XJPI)/TEMP7 R105095 000113 75 TEMP5=EXP(XJPI) 000116 80 PSI3AR=TEMP3*(TEMP+TEMPE)*(TEMP5* R105095 X XJPI**5.0)/48.0 R105096			R1050955
000113 75 FEMPS=EXP(XJPI) 000116 80 PSIBAR=TEMPS*(TEMP+TEMPE)*(TEMP5* R105095 X XJPI**5.0)/48.0 R105096	000100	70 TEMPE=120.0*(TEMP37-3.0*TEMP17/XJPI)/	K1050956
000116 80 PSIBAR=TEMP8*(TEMP+TEMPE)*(TEMP5* R105095 X XJPI**5.0)/48.0 R105096 000131 85 RETURN R105096		X TEMP6-5040.0*(1.0-1.0/XJPI)/TEMP7	R1050957
X XJPI**5.0)/48.0 R105096 000131 R5 RETURN R105096			
100131 85 RETURN R105096	000116		R1050959
1100070			R1050960
R105096			R1050961
	000132	EMD	R1050962
		·	
		<u> </u>	
			-

	SUBROUTINE ANEULK (VU.VK.VL.VI.PIE.PIFN.	<u> </u>
	X E.WOFN.AOFN)	R1050954
000014	5 IF (F-#OFN) 10 • 15 • 15	<u></u> R1050965
000020	10 AOF4=0.0	R1050966
000021	11 GO TO 55	R1050967
000022	15 TEMP=4H5 (VJ-VI)	
000025	20 IF (TEMP-VK) 25+25+10	<u> 81050969</u>
000030	25 IF (VK-VJ-VI) 30+30+10	R1050970
<u> </u>	30 TEMP=AHS (PIEN-PIE)	
000036	31 IF (TEMP-0.25) 35.32.45	R1050972
000041	32_IFRR=32	R1050973
000042	60 TO 9500	R1050974
000043	35 ITEMP=XINTF(VL+0.25)	K105 <u>0975</u>
000054	36 ITEMP=XMODF (ITEMP+2)	R1050976
000050	37 IF (ITEMP-1) 38.10.40	<u>k1050977</u>
000066	38 AOFN=1.0	R1050978
000070	34 GO TO 55	R1050979
000071	40 IERR=40	R1050980
000072	GO TO 9500	R1050981
000073	45 TEMP=ABS (PIEN+PIE)	
000076	46 IF (TEMP-0.25) 50.32.47	R1050983
000101	47 IERR=47	R1050984
201000	GO TO 9500	R1050985
000103	SO ITEMP=XINTE(VL+0.25)	R1050986
000114	5] ITEMP=(MODE(ITEMP+2)	<u>R1050987</u>
000120	52 IF (ITEMP-1) 10+38+40	R1050988
000127	55 RETURN	R1050989
000130	9500 WRITE OUTPUT TAPE 6.9105.IERR	R1050990
<u>000135</u>	MESS = 4H0HEL	
000140	9105 FORMAT (1X . 18H444444444 ERR = .14)	R1050993
000140		R1050994

000011	FUNCTION FVALROUSAFSASJOWSIGMA	(2)		
000011	V=(1.0/(2.0*SIGMAZ))*(J+0.5)**2	,		
000015	C=2.0*SORT (AE*U)			
000025	Ú=C-V-w			
000030		**1.25))**(~1.0)		
000043	CONSTJ=(2.0*J+1)/(SQRT(8.0)*(SIGMA?**1.5))		
000060	EVAL2=CONSTO*CONSTJ*EXP(D)	7 (310//4/,		
000065	RETURN			
000065	END			
			•	
			1	
	<u> </u>			
				_
				
<u> </u>				
				

	SU-ROUTINE PELK (FPELK.EN.VLN.VKN.ALPHA.HETA.LN1)	<u>R1050995</u>
000012	5 TE3P=(ALPHA-RETA*(VKN*(VKN+1.0)-VLN*(VLN+1.0)-0.75))	K1050996
000022	10 Y=5 V* [E 1P*] E 1P	R1050997
000024	11 YIHV=1.0/Y	R1050998
000026	<u>15 60 TO (20+25+30+35+40+45+50+55+60)+LN1</u>	к1050499
000043	20 ALNY=1.0	F1051000
000045	21 60 T0 70	R1051001
000046	25 ALNY=1.0+YINV	R1051002
000050	26_GO_T()_79	R1051003
000051	30 ALNY=1.0+YINV#(3.0+9.0#YINV)	R1051004
200156	31 (60 1) 70	R1051005
000057	35 ALNY=1.0+YINV*(6.0+YINV*(45.0+225.0*YINV))	R1051006
100066	36 60 10 70	R1051007
000057	40 ALNY=1.0+YINV*(10.0+YINV*(135.0+YINV*(1575.0+	R1051008
	X 11025.0*YINV)))	<u> </u>
000100	41 60 10 70	R1051010
000101	45 ALNY=1.0+YINV*(15.0+YINV*(315.0+YINV*(6300.0+	R1051011
	X YINV*(99225.0+893025.0*YINV)))	R1051012
100114	46 60 TO 70	<u> </u>
000115	50 ALNY=1.0+YINV+(21.0+YINV+(630.0+YINV+(18900.0+	₽1051014
	X YINV*(496125.0+YINV*(9823275.0+	R1051015
	X 10H05603.0E1*YINV)))))	R1051016
100132	51 60 TO 70	R1051017
00133	55 ALNY=1.0+YINV*(28.0+YINV*(1134.0+YINV*(47250.0+	R1051018
	X YINV*(1819125.0+YINV*(58939650.0+YINV*	· R1051019
	X (140472H3.0E2+1826146H.0E3#YINV)))))	R1051020 1
100152	56 60 10 70	R1051021
00153	60 ALNY=1.0+YINV*(36.0+YINV*(1890.0+YINV*(103950.0+	R1051022
	X YINV*(5457375.0+YINV*(25540515.0E1+	R1051023
	X YINV#(9H3309R3.0E2+YINV#(27392202.0E4+	R1051024
	X 41088304.0F5*YINV))))))	R1051025
00174	70 TEMPR=SQRT (Y)	
00177	. 75 FPELK=IEMPR/ALNY	<u>к1051027</u>
000204	80 RETURN	R1051028
000205	END	R1051029

	Colorada Colorada de Colorada	
	SURROUTINE PROD (ASURN.AE.XKI.DBPROD)	k1051030
000007	11 IF (ASUHN-1.UE-25) 14.14.112	K1751931
000012	112 IFFIP = ASTIRN/AF	R1051032
000014	113 IF (IEMP-0.0001) 14.5.5	R1051033
000017	5_TEMPX=(1.0-XK1)/XK1	R1051034
000051	10 TEMPA=2.0/AE	R1051035
000023	12 DBPRODESORT (1.0+TEMPA*ASURN*TEMPX)	
000033	13 GO TO 40	R1051037
<u>000034</u>	14_D3PRON=1.0	R1051038
000035	40 RETURA	R1051039
000036	END	R1051040
		
		-
		
		•
	•	
	•	
		

	FUNCTION XINTE	- (X)				
000003 000004	FUNCTION XINTE XINTE = X RETURN			,		
000005	END					
		·				
	_					
						·
			_			
			(
					<u> </u>	-
		· .			·	······································
·						
	· .					
						· · ·
					· · · · · · · · · · · · · · · · · · ·	

	SUBROUTINE ELKAY(NN.FLN.FKN)	R1050908
000006) TEMPETICATION)	
000010	5 TEMP1=TEMP/2.0	R1050910
000013	10 FEMP2=(TEMP-1.0)/2.0	· R1050911
000015	15 ITEMP=XMODF (NN+2)	R1050912
000023	20 IF (ITEMP-1) 45.30.25	R1050913
000025	25 IERR=25	R1050914
000027	GO TO 9500	R1050915
_000030	30 FLN=TEMP?	÷ ₹1050916
000031	35 FKN=TEMP1	R1050917
000032	40 GO TO 55	R1050918
000033	45 FLN=TEMP1	R1050919
000034	50 FKN=TEMP2	K1050920
000035	55 RETURN	R1050921
000036	9500 WRITE OUTPUT TAPE 6.9105.IERR	R1050922
000044	MESS = 4H0HEL	
000046	9105 FORMAT (1X+18H******** ERR = '+14)	<u>R1050925</u>
000046	E:NI)	R1050926
	·	<u> </u>
		·

	FUNCTION XMODE (K.1.)	
00005	FUNCTION XMODF (K+L) XMODF = K - (K/L)*L	
21000	<u> </u>	
000015	END	
		
	$oldsymbol{\cdot}$	
	· ·	
· · ·		
	<u> </u>	

	SUBROUTINE DISTAT(LMAX.EMIN.EMAX.HBARO.KO2.D.EX.AE.HBOTI.EO.
	XTEMP.A.IMAX.EREL.AFFCTN.A1.A2.A3)
	<u> </u>
	C CALCULATION OF COMP TRANSMISSION COEFF FOR FISSION
	C
000025	DIMENSION F (50)
000025	COMMONALYSIGMAE (50 • 50)
000025	REAL K.J.KOS
000025	H3AK=1.06F-27
000025	H=(EMAX-EMIN)/FLOAT(IMAX)
000031	SIGMA2=[EMP/(2.0*HROTI)
000034	E(1)=EMIN+H
000036	00 1 I=2•IM4X
000040	E(I)=E(I-1)+H
000043	1 CONTINUE
000045 000047	K1=LMAX+1
000050	D0 78 KK=1+20
000051	78 SIGMAF(KX+LK)=0.0
000051	FKN=-().5
000052	
000054	FKN=FKN+1.0
000055	SU4NUR=0.0
000067	κ=-0.5
000070	(i) 3) KX=1•LK
000072	K=K+1.0
000074	SUMNOR=SUMNOR+2.0#EXP(-(K##2)/(2.0#K02))
000107	30 CONTINUE
_000111	K=−0•5
000113	DO 51 KX=1+LK
<u> 000114</u>	K=K+1.0
000116	w=(K#*2)/(2.0*K02)
000151	· J=FK4
000122	TEMPU=7.0*FKN+1.0
000125	NINT=IMIXXXS
000127	$A = A \cap A \cap A = A \cap A \cap A \cap A \cap A \cap A \cap $
000131	YSUM0=YSUMF=0.0
000133	00 5 4=1.41141
000134	
000136	K()=2*I+1
_000137	KE=?*[+?
000141	EP=E (KO)
000143	FH=E (KE)
000145	IF (EP-EX)10,10,15

000150	10	RHO=EVAL1 (FP.EO.SIGMA?.TFMP.J.W)/2.0
000157		60 To 20
000163	15	IF (AFFCTN.EQ.1.0) AE=A1+A2*EXP(-A3*EP)
000202		FILL=A2*A3*FXP(-A3*FP)
000211		TINV=FILL*(1.0/(4*AE)-SQRT(EP/AE))+SQRT(AE/EP)-1.25/EP
000232		SIGMA 2=1.0/(2.0*TINV*HBOTI)
000236		RHO=EVALZ(EF+AF+A+J+W+SIGMAZ)/2+0
000245	20	Y=(EP-0+EPEL)*(6.2832/HBARO)
000257		DENOM=1.0+EXP(Y)
000262		Y00Э=КНУО В МОИ ЭО ТОГО МОИ Э
000264		YSUM0=YSUM0+4.0*YODD
000266		IF (EB=EX) 25+25+31
000275	25	RHO=EVAL1(EH+E0+SIGMA2+TEMP+J+W)/2.0
000304		60 10 35
000310	31	IF (AFFCTN.EQ.1.0) AF=A1+A2*EXP (-A3*EB)
000327		FILL=A2*A3*EXP(-A3*EB)
000336		TINV=FILL*(1.0/(4*AE)-SQRT(EB/AE))+SQRT(AE/EB)-1.25/EB
000357		SIGMA2=1.0/(2.0*TINV*HBOTI)
000363		RHO=EVAL2(EB, AE.A, J, W.SIGMA2)/2.0
000372	35	Y=(EH+D+EREL)*(6.2832/HBARO)
000404		0ENO4=1.0+EXP(Y)
000407		YEVEN=RHO/DENOM
000411		IF (N.EQ.NINT) YEVEN=YEVEN/2.0
000420		YSUME=YSUME+YEVEN#2.0
000423	5	CONTINUE
000425	_	SIGMAF(KX+LK)=(H/3.0)*(YSUME+YSUMO)*2.0/SUMNOR
000436	61	CONTINUE
000440	60	CONTINUE
000442		RETURN
000443		END
		·
	•	

	FUNCTION EVALI(EJ.EO.SIGMAZ.TEMP.J.W)
000011	HEAL A
000011	T=TEMP
000011	V=(1.0/(2.0*SIGMA2))*(J+0.5)**2
000016	C=(EJ-F0)/T
0500050	D=C-V-W
000023	CUNSTJ=(2.0*J+1)/(2.0*SIGMA2)
000027	EVAL1=CONSTJ#EXP(D)/T
000034	RETURN
000034	END
	
	,
	
	·

ENEPGY LEVELS				KC = 0			
7 ((GAMMA) =	-000	120000	10				
104	• • • •						
SIGMA	U		DELTA	7PLS	ZMIN		
6.00000000	4.530000	100	.0700000	1.000000	00 1.0000	00000	
FNU(K) K	စုဒ္မခ	PSM	EZERO(K)	HBARO (K.)	HBOTI(K)	ALPHA(K)	
1.0-1.5		1.0	3.65000	•4000	.00200	-2.0000	
1.0 .5	1.0	0.0	3.67500	•7500	.00200	5.0000	
1.0 2.5		1.6	3.20000	• 40 v 0	.00200	-0.0000	
1.0 .5		1.0	3.88000	•1500	.00200	2.0000	
1.0 1.5	0.0	1.0	3.97500	-4000	.00200	-0.0000	
.00060	•nnnna						
	•00003						
	<u>. गगत्तुः च</u>		_				
EXPERIMENTAL	DATA						
.350 .0	ስሰ44040 0035520 ሰ032040 0035520	.000 .000 .000	05340 05340 05340 05340				
1.305.0		• • / •	0 1.7 7.7				
1.305 .0 1.570 .n		•000	04350				
THIS IS EMERG	0027360 Y NO. 2						
I.570 .0 THIS IS ENERG	10027350 Y NO. 2	5](iii)	Λ.				
I.570 .0 THIS IS ENERG ANGER JEX .175 .0	0077350 Y №0. 2	5160 •000	л 6 H 24 ()				
1.570 .0 THIS IS EMERG ANGER JEX .175 .0 .350 .0	0027360 Y NO. 2 0054500	5] Gio • 0 0 0 • 0 0 0	Λ (0 H 2 H () (0 H 2 H ()				
I.570 .0 THIS IS ENERG ANGER	0077350 Y №0. 2	5160 .000 .000	Λ 6H240 0H240 0H240				
I.570 .0 THIS IS EMEPG ANGER	0053509 0053509 0053509 0073130 0078380 00783850	5160 •000 •000 •000 •000	A 08240 08240 03240 03240 07570				
I.570 .0 THIS IS ENERG ANGER	0057350 Y NO. 2 0053509 0073130 007430 007430 0063650	\$160 •000 •000 •000 •000	A 68240 03240 03240 07240 07570				
I.570 .0 THIS IS ENEPS ANGER	0057350 Y NO. 2 0053509 0073130 0073430 0063650 0060770 0063130	5160 •000 •000 •000 •000 •000	A 68240 03240 03240 07240 07570				
I.570 .0 THIS IS ENEPG ANGER	0057350 Y NO. 2 0053509 0073130 0073430 0063650 0060770 0063130	5160 •000 •000 •000 •000 •000	A 68240 03240 03240 07240 07570				
I.570 .0 THIS IS ENERG ANGLE	0077360 Y NO. 2 0054500 0073130 0073280 0073750 0063770 0073130 Y NO. 3	5160 .000 .000 .000 .000 .000	N 0 H 2 4 0 0 H 2 4 0 0 H 2 4 0 0 H 2 4 0 0 T 5 7 0 0 T 6 7 0 0 T 6 7 0				
1.570 .0 THIS IS ENERG ANGLE	0077360 Y NO. 2 0053500 0073130 00732710 006365770 006373130 Y NO. 3	\$169 .000 .000 .000 .000 .000 .000	A 0 4 2 4 0 0 4 2 4 0 0 4 2 4 0 0 7 5 7 0 0 7 6 7 0 0 7 6 7 0 0 7 6 7 0				
1.570 .0 THIS IS ENERG ANGLE	0077360 Y NO. 2 0053500 0073130 0073130 0073750 0063750 0073130 Y NO. 3	\$160 .000 .000 .000 .000 .000 .000 .000	A 0 4 2 4 0 0 4 2 4 0 0 4 2 4 0 0 4 2 4 0 0 7 5 7 0 0 7 6 7 0 0 0 7 6 7 0 0 0 7 6 7 0 0 0 7 6 7 0 0 0 7 6 7 0 0 0 0				
I.570 .0 THIS IS ENEPS ANGLE	0053509 9 NO. 2 0053509 0073130 0073280 0063650 0073136 0073136	\$160 .000 .000 .000 .000 .000 .000 .000	A 04240 07540 07570 07670 07670 07670 15400 15400 153300				
I.570 .0 THIS IS ENEPG ANGLE JEX .175 .0 .350 .0 .410 .0 .785 .0 1.305 .0 1.570 .0 THIS IS ENERG ANGLE WEX .175 .0 .350 .0 .350 .0 .785 .0	0057360 Y NO. 2 0053509 0073130 0073270 0063650 0063650 0073130 Y NO. 3	\$16M .000 .000 .000 .000 .000 .000 .000 .0	A 08240 08240 08240 08240 07570 07670 07670 07670 15400 15300 13300				
I.570 .0 THIS IS ENEPS ANGLE	0057350 Y NO. 2 0053500 0073130 0073130 0063650 0063650 0073130 0073130 00135106 0135106 0129800 0113600	\$16M .000 .000 .000 .000 .000 .000 .000 .0	A 08240 08240 08240 08240 07570 07670 07670 07670 15400 13300 13300				

					0.000	000	
NEPGY I	EVFL	S ARE IN T	HT CONTINUO	М			<u></u>
PANSMIS	510	COFFFICIE	NTS				
F-TRANS (]) F	-TRANS(2)	F-12AN5(3)	F-TRANS(4)	F-1RANS(5)	F-TRANS (
0.		1.1235-01	0.	2.8676-06	0.		
9.187F-		1.1115-01	0.	2.637F-66	7.833F-04		
8.196F-		1.07501	1.01+n=02	2.051F-06	6.698E-04		
6.931F-		1.016-41	<u> 유.190+ -0년</u>	1.3496-06	5.378E-04		
5.520F-	•	19.3702=02 8.405E=02	6.21st=03	7.5096-07	4.055E-04		
2.861F-		7.3165-02	2.455t=03	3.534E-07 1.407E-07	2.872E-04 1.910E-04		
CROSS SE	CTIC	NIS FOR	CAPTURE	FISSION	OTHER		
0.00	.50	4.644F-04	0.	6.444E-05	0.	0.	0.
1.00		7.5115-64	0.	0.	() •	2.667E-09	0.
		1.5305-03	1.U53E-05	0.	0.	2.598E-09	7.718E-07
		ਬ.7ਸ਼ਰਹੋ+ਹੁਕ	0.	6.2895-05	0.	0.	0.
		1.3546-03	· U •	6.698E-05	0.	0.	0.
		2.259E=03	A • 558c = 05 B • ≥17c = 05	0.	1.059E-05 9.781E-06	2.142E-09 1.612E-09	6.993E-07 6.423E-07
		1.1455-03	() •	4.4255-05	0.	0.	0.
		1.5021-03	0.	4.8495-05	0.	0.	0.
		8.54 10-114	1.6475-05	0.	1.H51E-06	2.238E-10	1.209E-07
5.00	·50	1.1971-03	1.5155-05	0.	1.628E-06	1.301E-10	1.057E-07
		1.7155-04	0.	3.418E-06	0.	0.	0.
6.00	0.50	1.520: -04		3.817E-06	().	0.	0.
	(T)	23GDE UT AND	OLAR DISTRI	RUTION			
THET	1	0181(1)					
1HFT 1	۱ ان	.00543	<u> </u>		<u>. </u>		
THET 1 -1750 -3500	in	0151(1) •00043 •00042					
THET 1 -1750 -3500 -6100	in —	.00043 .00043 .00048					
THET 1 -1750 -3500	10 10 10	0151(1) •00043 •00042	- 1 a 4 - 100 day - 100				
THET 1 -1750 -3500 -6100 -7850	10 10 10 10	DIST(1) •00043 •00042 •00038 •00034					
THET 1 -1750 -3500 -5100 -7850	00	0151(1) .00043 .00042 .00038 .00034					
14F1 -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14F1 -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14F1 -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14F1 -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					
14FT -1750 -3500 -6100 -7850 1-3050	00	0151(1) .00543 .00543 .00548 .00538 .00544 .00528 .00528					

510M 11F 11 11 11 11 11 11 11 11	COFFE ICIA	THE CONTINUU (NIS) F-TRANS (3) 7. 0. 1.3755-01 1.2056-01 1.0035-01 7.8205-02 CAPTURE 0. 1.7186-04 0. 0. 1.7975-04 9. 0. 2.3731-05	F-TRAMS(4) 1.195E-02 8.640F-03 5.738E-03 3.219E-03 1.523E-03 6.081F-04 FISSION 8.510E+05 0. 8.258F-05 8.951E-05 0. 6.543E-05 7.594E-05	0 = 0.00 F-TPANS(5) 0. 1.71/F-02 1.479E-02 1.198E-02 9.114E-03 6.50/E-03 4.356E-03 OTHER 0. 0. 0. 0. 8.726E-05 8.732E-05 0.		0. 0. 1.025E-05 0. 9.385E-06 8.670E-06
115 11 11 11 11 11 11 11 11 11 11 11 11	-TPAMS (2) 2.370% - 01 2.3606 - 01 2.3746 - 61 2.1746 - 61 2.19557 - 01 NS FOR 4.2038 - 04 6.7037 - 04 1.3715 - 04 2.0407 - 03 2.0407 - 03 1.4937 - 03	F-TRANS(3) 7. 0. 1.375E-01 1.205E-01 7.820E-02 5.655E-02 CAPTURE 0. 0. 1.718E-04 0. 1.797E-04 1.995E-04 0.	1.195E-02 1.102E-02 8.640E-03 5.738E-03 3.219E-03 1.523E-03 6.081E-04 FISSION 8.510E-05 0. 8.258E-05 8.951E-05 0. 6.543E-05 7.594E-05	0. 1.717F-02 1.479E-02 1.198E-02 9.114E-03 6.507E-03 4.356E-03 OTHER 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	0. 6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50	2.379% -01 2.3606 -01 2.3245 -01 2.2755 -01 2.1975 -01 2.0925 -01 1.9557 -01 MS FOW 4.2035 -04 6.7575 -04 1.2355 -03 2.8155 -03 1.1355 -03	0. 1.3755-01 1.2056-01 1.0035-01 7.8206-02 5.6556-02 CAPTURE 0. 0. 1.7186-04 0. 1.7976-04 1.9956-04 0.	1.195E-02 1.102E-02 8.640E-03 5.738E-03 3.219E-03 1.523E-03 6.081E-04 FISSION 8.510E-05 0. 8.258E-05 8.951E-05 0. 6.543E-05 7.594E-05	0. 1.717F-02 1.479E-02 1.198E-02 9.114E-03 6.507E-03 4.356E-03 OTHER 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	0. 6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
101 101 101 101 101 101 101 101 101 101	2.3606 - 01 2.3246 - 01 2.2750 - 61 2.1976 - 01 2.0925 - 01 1.9552 - 01 MS FOR 4.2936 - 04 6.757 - 04 1.355 - 04 2.8156 - 03 1.1356 - 03 1.4935 - 03	0. 1.3755-01 1.2056-01 1.0035-01 7.8206-02 5.6556-02 CAPTURE 0. 0. 1.7186-04 0. 1.7976-04 1.9956-04 0.	1.102F-02 8.640F-03 5.738E-03 3.219E-03 1.523E-03 6.081E-04 FISSION 8.510E-05 0. 8.258F-05 8.951E-05 0. 6.543E-05 7.594E-05	1.717F-02 1.479E-02 1.198E-02 9.114E-03 6.507E-03 4.356E-03 0THER 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
101 101 101 101 101 101 101 101 101 101	2.3606 - 01 2.3246 - 01 2.2750 - 61 2.1976 - 01 2.0925 - 01 1.9552 - 01 MS FOR 4.2936 - 04 6.757 - 04 1.355 - 04 2.8156 - 03 1.1356 - 03 1.4935 - 03	0. 1.3755-01 1.2056-01 1.0035-01 7.8206-02 5.6556-02 CAPTURE 0. 0. 1.7186-04 0. 1.7976-04 1.9956-04 0.	1.102F-02 8.640F-03 5.738E-03 3.219E-03 1.523E-03 6.081E-04 FISSION 8.510E-05 0. 8.258F-05 8.951E-05 0. 6.543E-05 7.594E-05	1.717F-02 1.479E-02 1.198E-02 9.114E-03 6.507E-03 4.356E-03 0THER 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
51 01 01 01 50 50 50 50	2.3246-01 2.2756-61 2.1976-11 2.0925-01 1.9557-01 MS FOW 4.2936-04 6.7576-04 1.3716-03 7.0365-03 2.8155-03 1.1356-03	1.205F-01 1.003E-01 7.820F-02 5.655F-02 CAPTURE 0. 0. 1.718E-04 0. 1.797E-04 1.995F-04 0.	5.738E-0.3 3.219E-0.3 1.523E-0.3 6.081E-0.4 FISSION 8.510E-0.5 0. 8.25BF-0.5 8.951E-0.5 0. 6.543E-0.5 7.594E-0.5	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50 50 50	2.1975-11 2.0925-01 1.9557-01 4.2935-04 4.2935-04 1.3715-04 1.2355-04 2.0405-03 2.8155-03 1.1355-03	1.00 3E-01 7.820E-02 5.655E-02 CAPTURE 0. 0. 1.718E-04 0. 1.797E-04 1.995E-04	3.219E-03 1.523E-03 6.081E-04 FISSION 8.510E-05 0. 8.25BF-05 8.25BF-05 8.951E-05 0. 6.543E-05 7.594E-05	9.114E-03 6.507E-03 4.356E-03 0THER 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50 50 50	2.0425-01 1.4557-01 MS FOR 4.2035-04 6.7575-04 1.3715-04 1.2355-04 2.0405-03 2.8155-03 1.1355-03 1.4435-03	7.8205-02 5.6555-02 CAPTURE 0. 1.7186-04 0. 1.7975-04 1.9955-04 0.	1.523E-03 6.081E-04 FISSION 8.510E-05 0. 8.258F-05 8.951E-05 0. 6.543E-05 7.594E-05	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E-05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50 50 50	1.4557-01 NS FOR 4.203F-04 6.757F-04 1.37F-04 1.2355-04 2.0405-03 2.815F-03 1.135E-03 1.4935-03	0. 1.797E-04 1.995E-04	FISSION 8.510E+05 0. 8.25BF-05 8.951E-05 0. 6.543E-05 7.594E-05	0. 0. 0. 0. 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E+05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50 50	MS FOR 4.2038 + 64 6.757 - 74 1.3715 - 93 1.2355 - 93 2.6407 - 93 1.7355 - 93 1.4435 - 93	0. 0. 1.718E-04 0. 0. 1.797E-04 1.995E-04	FISSION 8.510E+05 0. 8.258F-05 8.951E-05 0. 6.543E-05 7.594E-05	01HER 0. 0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E+05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50 50	4.203; -04 6.757; -04 1.371; -03 2.035; -03 2.040; -03 1.135; -03	0. 0. 1.7186-04 0. 0. 1.7976-04 1.9956-04 0.	8.510E+05 0. 0. 8.258F-05 8.951E-05 0. 0. 6.643E-05 7.594E-05	0. 0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E+05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50	6.757-74 1.371F-03 P.0365-74 1.2355-03 2.0405-03 2.8155-03 1.1355-03 1.4932-03	0. 1.7186-04 0. 0. 1.7976-04 1.9956-04	0. 0. 8.258F-05 8.951E-05 0. 0. 6.543E-05 7.594E-05	0. 0. 0. 0. 8.725E-05 8.732E-05	6.748E-06 6.581E-06 0. 0. 5.484F-06 4.153E-06	0. 1.025E+05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50 50	1.471F-03 P.0365-74 1.2355-03 2.040F-03 2.8155-03 1.1355-03	1./18E-04 0. 0. 1./9/E-04 1.995E-04	0. 8.25%F-05 8.951E-05 0. 0. 6.643E-05 7.594E-05	0. 0. 0. 8.725E-05 8.732E-05	6.581E-06 0. 0. 5.484F-06 4.153E-06	1.025E-05 0. 0. 9.385E-06 8.670E-06
50 50 50 50 50	#. 465 - 74 1 - 2355 - 03 2 - 0495 - 03 2 - 2155 - 03 1 - 1355 - 03 1 - 4435 - 03	0. 0. 1.797E=04 1.995E=04	8.258F-05 8.951E-05 0. 0. 6.543E-05 7.594E-05	0. 0. 8.725E-05 8.732E-05	0. 0. 5.484F-06 4.153E-06	0. 0. 9.385E-06 8.670E-06
50 50 50 50 50	1.235m=03 2.0400=03 2.815k=03 1.135E=03 1.443c=03	0. 1.797E=04 1.995E=04	0. 0. 6.543E-05 7.594E-05	0. 8.725E-05 8.732E-05	0. 5.484F-06 4.153E-06	0. 9.385E-06 8.670E-06
50 50 50	2.049F-03 2.815F-03 1.135E-03 1.443F-03	1.797E-04 1.995E-04 0.	0. 0. 6.543E-05 7.594E-05	8.725E-05 8.732E-05	5.484F-06 4.153E-06	9.385E-06 8.670E-06
50 50 50	2.815F-03 1.135E-03 1.443/-03	1.995E-04	0. 6.543E=05 7.594E=05	8.732E-05	4.153E-06	8.670E-06
<u>50</u>	1.135E-33 1.493/-03	0. 0.	6.543E=05 7.594E=05	0.	0.	
50	1.4442-03	0.	7.594E-05			· · ·
-						0.
			0.	2.042E-05	5.552E-07	1.855E-06
50	1.1060-03	6.169c=05	0.	1.956E-05	3.810E-07	1.628E-06
	1.5445-04	-0.	7.302E-06	- 0.	0.	0.
50	1.919f.=04	0.	8.711E-06	0.	0.	0.
					,	
4 1		OULAR DISTRI	ROLLON			
ŋ	0151(1) 					
ń	• 900 42					
n –	•000 -5			· · · · · ·	·	
0	.00975					
)	•00005					
n	.00053					
1	• 00058					
	·					
				•		
						
		· ·				
		_				
		·				
						-
0	i	•00075 •00065 •00053	.00975 .00065 .00053	•00975 •00065 •00053	•00975 •00065 •00063	•00975 •00065 •00063

ENFRGY	=		(4); (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	CONTRACT A COMMENTAL CONTRACT OF THE PARTY O	0.00	000	
NEPGY	LEVEL	.3 NOF 1-1-1	ar (Outline)	14	- Construction		
TRANSM	15510	COFFFICIE	<u>(118</u>				· .
F-TRAN	S(1)F	=TR145(-2)	F-TRANS (3)	F-TRANS(4)	F-TRANS(5)	F-TRANS (
0.		2.7728-01	Ű.	2.291F=01	0.		
3.116	F-01	2.7655-01	U .	2.2375-01	6.846E-02		
3.104		2.7475-01	2.5 99 E =01	2.0615-01	6.040E-02		
3.085	F-01	2.7155-51	2.375E-01	1.742E-01	5.037E-02		
3.054		2.6655-01	2.192E-01	1.2H0E-01	3.951E-02		
3.003		2.507F-J1	1.943c-01	7.651F-02	2.902E-02		
2.918	E-01	2.504E=01	1.6248-01	3.561E-02	1.940E-02		
CROSS	SECTI	NNS FIJR	CAPTURE	FISSION	OTHER		
0.00		4.0908-34	() •	7.407E-05	n	0.	() .
1.00		6.3420-04	U.	0.	0.	1.007E-04	0.
1.00		1.2.45-13	1.44/404	0.	<u> </u>	1.039E-04	3.179E-0
2.00		7.674E-04	U •	7.618E-05 8.303E-05	0.	0.	0.
3.00		1.1785-03 1.92503	1.532E-04	0.	1.234E-04	1.018E-04	2.982E-05
3.00		2.6535-03	1.73+6-04	ő.	1.335£-04	9.793E-05	2.832E-05
4.00		1.1305-03	0.	6.504E-05	0.	0.	0.
4.00	4.50	1.4745-03	U •	7.546E-05	(•	0.	0.
5.00	4.50	3.8025-04	5.1616-05	0.	3.705E-05	2.163E-05	6.67HE-06
5.00	5.50	1.1125-63	6.223E-05	0	4.027E-05	1.586E-05	6.014E-06
6.00		1.6735-04	0.	8.194E-06	0.	-0.	0.
6.00	A • >0	2.0 44F = 0.4	J.	1.005E-05	0.	0.	0.
FISS	TON F	PAGMENT AND	JULAR VISTRI	HUTION			
THE	TΛ	DISTO					
.17	500	•00153					
	5000	•00123	<u> </u>				
	000	-00113	_				
	3500	•00101 •0만038			•		
1.04		•00079					
1.57		•00076					
						· · · · · · · · · · · · · · · · · · ·	
			4				
						-	
					•		
	_						
			-				

	्रक्षकारम् । । । । । ।		-				
35000	.00342						
	•00735						
.78500	.00034						
7.04900							
1.30500	.00025						
1.57000	•10022						
-							
17570	.09972						
.35000	.(4)35						
.K[nnn	.00042						
.79500	.00075						
	•00055						
1.30500	• 00 0 5 A						
1.57000	_ស្រុក្ខភ						
.17500	.00123						
35000	•00123						
-61000	•00113			_			
.78500	*0610T						
T.04900	- <u>0</u> 1744					<u> </u>	
1.30500	.00079						
- 1 -5 7000	-nr:175						
CHI SOHARE	SIGMA CHI	SOMARE DIS					
	7.44717		5504				
CATTERING C	POSS SECTIONS	<u> </u>	<u> </u>				
NEPGY	3. 5000000	7. AU 0	πησσ	3.9000000			
	- 3.5000000 0250703		ппоо — — — — — — — — — — — — — — — — — —	.0237110			
FVFL 1		. nz4		.0237110			
FVFL 7	<u>. 1253783</u>	.074 .019	3898 4835 1979	.0237110 .0194697 .1715352			
FVFL 2 FVFL 3 EVFL 4	- 0258783 - 0207623 - 1855627 - 1539507	.019 .019 .175	1898 145 45 1479 14124	.0237110 .0194697 .1715352 .1425456			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5	.9253783 .9207523 .1853427 .1539507	.019 .019 .175 .149	3898 4535 1979 64124 1153	.0237110 .0194697 .1715352 .1425456			
FVFL 7 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6	.0253783 .0203624 .1853624 .1536507 .3853602 .2854475	.074 .019 .175 .149 .347	3898 (4535 (1979 (4124 (1153)	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7	.0259783 .0203624 .185927 .1530507 .3853007 .2853007 .2853007 .4333983	.024 .019 .175 .145 .347 .274	3898 (4535 (1979 (4124 (3153 (5285) (4373	.0237110 .0144697 .1715352 .1425456 .3387023 .2696440			
FVFL 7 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 6 FVFL 7	. 1254763 . 120 5624 . 1534507 . 1534507 . 2554975 . 4333983 . 3523233	.074 .019 .175 .145 .347 .274	3898 145 45 17474 54124 17153 55285 54373 55458	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414860			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 8	.02537A3 .0203/524 .1530507 .355302 .255497 .4333783 .352323		3898 17479 19124 1153 15285 15458 17729	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414669			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 8 FVFL 9 FVFL 10	.02547A3 .0207624 .1855427 .1534507 .3853402 .255475 .4333393 .3523234 .475045 .30517b5	.074 .019 .176 .149 .347 .274 .316 .344 .355	3898 345 35 34124 34124 34153 35285 34373 35458 77729	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091174 .3414869 .3582776 .3091824			
FVFL 1 FVFL 2 FVFL 3 FVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 9 FVFL 10 FVFL 11	.0260763 .0203624 .1855623 .1539507 .3855002 .2854975 .4333983 .3523234 .3755045 .3051365	.074 .019 .175 .145 .347 .274 .316 .344 .355		.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091174 .341460 .3682776 .3091824			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 8 FVFL 9 FVFL 10 FVFL 11 FVFL 12	. 1254743 .126743 .185627 .1539507 .2854975 .4333983 .352323 .375045 .3051 ino	.024 .019 .175 .145 .347 .274 .366 .368 .368	3898 345 45 34174 54174 54175 55285 4373 55458 37729 33435 555612	.0237110 .0144697 .1715352 .1425456 .3357023 .2696440 .4091124 .3414660 .3682776 .3041824 .2389571 .2063360			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 9 FVFL 11 FVFL 11 FVFL 12 FVFL 12	.0258783 .020 y624 .1539507 .1539507 .365302 .2554975 .433083 .3523234 .3755045 .3051 ind .2370476 .1926604 .0349179	.024 .019 .176 .145 .344 .416 .344 .365 .306 .235 .201	13898 17979 19124 17153 15285 16373 15458 17729 13935 155612 12853	.0237110 .0194697 .1715352 .1425456 .3357023 .2696440 .4091174 .3414660 .3682776 .3091824 .2389571 .2063360 .1101082			•
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 13 FVFL 14	.02537A3 .0203624 .1539507 .355402 .2554975 .4333983 .3523234 .3755045 .3051365 .2370476 .1926604	.024 .019 .175 .149 .347 .274 .316 .369 .306 .235 .201 .109	3898 345 45 17979 39124 1153 35285 35773 35458 37729 33935 35612 2853 33461	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414869 .3682776 .3041824 .2389571 .2063360 .1101082			
FVFL 1 FVFL 2 FVFL 3 FVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 13 FVFL 14 FVFL 14	.02637A3 .020 y/24 .165427 .1634507 .365402 .2654975 .4333393 .3523234 .375044 .3051365 .1426604 .044174 .031433	.024 .019 .176 .149 .347 .274 .316 .336 .306 .235 .201 .109	3898 45.45 11979 19124 11153 5285 4373 5458 7729 53935 55612 2853 2853 3946 3946	.0237110 .0194697 .1715352 .1425456 .3357023 .2696440 .4091174 .3414660 .3682776 .3091824 .2389571 .2063360 .1101082			
FVFL 1 FVFL 2 FVFL 3 FVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 13 FVFL 14 FVFL 15	.0269783 .020,7624 .1855427 .1534507 .2854975 .4333983 .3523233 .3755645 .3051 ino .2319476 .1926604 .033179 .0314194 .0351433 .025615	.024 .019 .176 .145 .347 .274 .316 .344 .355 .306 .235 .201 .109 .099	7898 745 45 71777 9124 7153 5285 74373 55458 77729 33435 55512 2853 9346 9346 9346	.0237110 .0194697 .1715352 .1425456 .3387023 .2695440 .4091124 .3414869 .3682776 .3091824 .2389571 .2063360 .1101082 .1034479			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 13 FVFL 14 FVFL 15	.0268783 .0203623 .1539507 .365302 .2654475 .4333983 .3523234 .4755045 .3051 ino .2370476 .1926604 .034179 .0314194 .035133 .1255615 .035233	.024 .019 .176 .145 .347 .274 .316 .365 .306 .235 .201 .105 .096 .073	13898 17979 19124 17153 15285 15458 17729 13935 15612 12853 19461 19461 19461 19461	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091174 .341460 .3682776 .3091824 .2389571 .2063360 .11701082 .1034479 .0317787			
FVFL 1 FVFL 2 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 13 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 17	.0269783 .020,7624 .1855427 .1534507 .2854975 .4333983 .3523233 .3755645 .3051 ino .2319476 .1926604 .033179 .0314194 .0351433 .025615	.024 .017 .145 .347 .274 .316 .344 .355 .306 .235 .201 .105 .095 .095	7898 745 45 71777 9124 7153 5285 74373 55458 77729 33435 55512 2853 9346 9346 9346	.0237110 .0194697 .1715352 .1425456 .3357023 .2694440 .4091124 .3414460 .3682776 .3091824 .2389571 .2063360 .1T01082 .1034479 .0414883 .0317787			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 12 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 16 FVFL 17	.02587A3 .0203/524 .1539507 .355402 .2554975 .4333983 .3523234 .4755045 .3051365 .233976 .1926604 .034179 .031194 .035133 .0535015	.024 .019 .175 .145 .347 .274 .316 .365 .306 .235 .201 .109 .095 .003	3898 345 45 115 79 341 74 115 3 35 78 5 37 73 35 45 8 37 72 9 33 9 3 5 35 6 12 38 4 6 39 4 6 39 4 6 39 4 6 39 4 6 39 7 1 31 7	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .40911724 .3414669 .3682776 .3091824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .0066351			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 EVFL 10 FVFL 11 FVFL 12 FVFL 14 FVFL 14 FVFL 16 FVFL 16 FVFL 16 FVFL 17 FVFL 10 FVFL 20	.0258783 .020 2624 .1539507 .365907 .2554775 .4333983 .3523234 .3755045 .3051765 .1926604 .0919194 .0919194 .0919194	.024 .019 .176 .149 .347 .316 .316 .316 .317 .717 .019 .019 .019 .019 .019 .019	3898 145.45 17979 19124 17153 15285 15458 15	.0237110 .0194697 .1715352 .1425456 .3357023 .26946440 .40911724 .3414660 .3682776 .3091824 .2389571 .2063360 .1701082 .1034479 .0414883 .0317787 .0066351 .0105639 .0019295			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 10 FVFL 11 FVFL 12 FVFL 14 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 10 FVFL 10 FVFL 10 FVFL 10 FVFL 10 FVFL 10 FVFL 20 FVFL 20 FVFL 20	.02587A3 .0207A3 .0207A3 .0207A3 .0207A3 .2554275 .237373 .252323 .775045 .035174 .035174 .035174 .035174 .035174 .035174 .035174 .035174 .035174 .035174 .035174 .035174 .035775 .035775 .035777	.024 .017 .145 .347 .274 .316 .316 .336 .336 .336 .235 .231 .105 .096 .013 .026 .010 .010 .001	3898 345 45 115 3 35 285 35 285 37 729 33 35 35 56 12 38 45 38 45 38 46 38	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091174 .3414660 .3682776 .3041824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .00166351 .0105639 .0019295 .0012008			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 8 FVFL 10 FVFL 12 FVFL 12 FVFL 14 FVFL 14 FVFL 15 FVFL 16 FVFL 16 FVFL 17 FVFL 16 FVFL 17 FVFL 17 FVFL 17 FVFL 19 FVFL 20 FVFL 21 FVFL 21	.02587A3 .0207624 .1539507 .355402 .2554975 .4333983 .3523234 .3755045 .3051765 .2370976 .1926604 .024174 .0714194 .031435 .003334 .003374 .0004734	.024 .017 .145 .347 .274 .316 .336 .336 .235 .201 .109 .095 .007 .007 .007 .007	3898 345 45 1153 35285 35285 37729 33935 35612 2853 3946 3754 36771 3754 36771 10788 3767 10788 3788	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414869 .3692776 .3091824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .0066351 .0105639 .0019295 .0012008			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 10 FVFL 11 FVFL 12 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 16 FVFL 17 FVFL 17 FVFL 17 FVFL 21 FVFL 21 FVFL 21 FVFL 21 FVFL 21	.02537A3 .020 y/c24 .1534507 .3654002 .2654975 .4333983 .3523234 .375045 .3051765 .1926604 .0934776 .1926604 .0934776 .0934775 .0043454 .004374 .009734 .009734	.024 .019 .176 .149 .347 .274 .316 .336 .235 .201 .109 .001 .001 .001 .001	3898 345 35 11979 39124 11153 35285 34373 35458 37729 33935 35612 2853 39461 35754 36771 31858 36771 31858 36771 31858 37871 31858 37871 37872 378	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414869 .3582776 .3041824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .0066351 .0105639 .0019295 .0012008 .0003143 .0000742			
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 FVFL 10 FVFL 11 FVFL 12 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 16 FVFL 17 FVFL 17 FVFL 17 FVFL 17 FVFL 21 FVFL 21 FVFL 21 FVFL 21	.02587A3 .0207624 .1539507 .355402 .2554975 .4333983 .3523234 .3755045 .3051765 .2370976 .1926604 .024174 .0714194 .031435 .003334 .003374 .0004734	.024 .019 .176 .149 .347 .274 .316 .336 .235 .201 .109 .001 .001 .001 .001	3898 345 45 1153 35285 35285 37729 33935 35612 2853 3946 3754 36771 3754 36771 10788 3767 10788 3788	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414869 .3692776 .3091824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .0066351 .0105639 .0019295 .0012008			
FVFL 1 FVFL 3 EVFL 4 EVFL 5 FVFL 6 FVFL 7 FVFL 9 EVFL 10 FVFL 11 FVFL 12 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 16 FVFL 17 FVFL 17 FVFL 17 FVFL 19 FVFL 21 FVFL 21 FVFL 21 FVFL 21	.02537A3 .020 y/c24 .1534507 .3654002 .2654975 .4333983 .3523234 .375045 .3051765 .1926604 .0934776 .1926604 .0934776 .0934775 .0043454 .004374 .009734 .009734	.024 .019 .176 .145 .347 .274 .316 .336 .336 .336 .336 .337 .095 .095 .095 .096 .001 .001 .001	3898 345 45 115 3 35 285 35 285 37 73 35 45 8 37 729 33 35 35 51 2 38 45 38 46 38	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091174 .3414660 .3682776 .3041824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .00166351 .0105639 .0019295 .0012008 .0003143 .0000742 .0000011 3.1455476	3 F18810N	4 F15510N	5 F15510N
FVFL 1 FVFL 3 EVFL 4 FVFL 5 FVFL 6 FVFL 7 FVFL 9 EVFL 10 FVFL 11 FVFL 12 FVFL 14 FVFL 15 FVFL 16 FVFL 17 FVFL 10 FVFL 20 FVFL 21 FVFL 21 FVFL 21 FVFL 21 FVFL 21 FVFL 22 FVFL 22 FVFL 24 FVFL 24	.0258783 .0207624 .1539507 .3654007 .2554975 .4333083 .3523234 .3755045 .3051765 .1926604 .02317976 .1926604 .02317976 .0031334 .0031334 .0003734 .000374 .000	.024 .017 .145 .347 .274 .316 .344 .355 .306 .235 .201 .105 .095 .017 .026 .007 .007 .007 .007 .007 .007 .007 .00	3898 345 45 115 3 35 285 35 285 37 73 35 45 8 37 729 33 35 35 51 2 38 45 38 46 38	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091174 .3414669 .3682776 .3091824 .2389571 .2063360 .1101082 .1034479 .0414883 .0317787 .0066351 .0105639 .0019295 .0012008 .0003143 .0000742 .0000742	3 FISSION	4 FISSION .0000023	5 F15510N
FVFL 1 FVFL 2 EVFL 3 EVFL 4 EVFL 5 EVFL 6 FVFL 7 EVFL 7 EVFL 10 EVFL 11 EVFL 12 EVFL 14 EVFL 15 EVFL 14 EVFL 16 EVFL 17 EVFL 17 EVFL 17 EVFL 17 EVFL 17 EVFL 17 EVFL 21 EVFL 22 EVFL 21 EVFL 21 EVFL 21 EVFL 21 EVFL 21 EVFL 21	.02537A3 .0207A24 .1539507 .365492 .2554973 .3752323 .3752323 .3752323 .3752323 .3752323 .375245 .1920A04 .033179 .034179 .034179 .0015175 .0093734 .0093734 .009374 .009734 .009734 .009734 .009734	.024 .019 .176 .145 .347 .274 .316 .336 .336 .336 .336 .337 .095 .095 .095 .096 .001 .001 .001	3898 145 45 145 45 147 49 191 24 111 53 15 28 5 177 29 139 35 15 45 8 177 29 139 35 15 55 61 2 128 5 138 46 175 75 167 71 110 28 110	.0237110 .0194697 .1715352 .1425456 .3387023 .2696440 .4091124 .3414869 .3692776 .3091824 .2389571 .2063360 .1T01082 .1034479 .0414883 .0317747 .0066351 .0105639 .0019295 .0012008 .0003143 .0000342 .0000011 3.1455475			

	e cogeto Y	FISSION TOTAL	,	
	3.6000000	.0005110		
	3.4000000 3.4000000	.0013523 .0018599	,	
the state of the s				
				
Augustus and the August of Conference of Con			<u>-</u>	
		- 		
			<u> </u>	
		<u> </u>		
appears the second of the seco				
				_
AND ADDRESS OF THE PARTY OF THE				

APPENDIX IV

Transition State Spectroscopy Computer Code and Sample Output

		PROGRAM INTEGRO (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT)
ñ.a.a.a.a.)] MENSION TRC (30+15) + RHON (10+6) + RHO (6) + E(15) + ELIM (15)
000003		READ (5.200) ATOMW. EO. TEMPER. EX. PZ. PN
000003	200	FORMAT (8F10.5)
000023	200	PEAD (5,201) NE, NMAX. LMAX
000023		
000035	201	FORMAT (312)
000035		WRITE (6,202)
000041	202	FOR 44T (# 4.24. * 4TOMW + 7X . * EU + . 6X . * TEMPER + . 6X . * EX + . 4X . 4X . * PZ + .
		*4X,4X,*PN*,7X,*NMAX*,6X,*LMAX*)
000041		WRITE (6.303) ATOMW. EO. TEMPER. EX. PZ. PN. NMAX. LMAX
000065	303	FORMAT(* *.6(X.F7.3.2X),4X.12.4X,4X.12.4X)
000065		TELEMPER
000067		IIX=EX-PZ-PN
000072		AR(TEALIT(EX)
000074		SIG21=0.0888*SQRT(ARIT*UX)*ATOMW**(2.0/3.0)
000107		LMAX1=LMAX+1
000111		NAX 1 = NAX 5 Z = X A M N Z = X A M N Z = X A M N Z = X A M N Z = X A M N Z = X A M N Z = X A M N Z = X A M N Z
000112		[WAX1S=S*FW4X+]
000113		00 13 I=1•NE
000115	13	READ (5.300) E (1). ELIM(1)
000127	300	FORMAT(2F10.5)
000127		00.14 L=1.LMAX1
000130		READ (5,70) (RHON(L,1P),1P=1,6)
000142	70	FORMAT(5E10.3)
000142	14	CONTINUE
000145		(0.0 - 1.0 - 1.0 = 1.0
000146		EMIN=ELIM(I)
000150		EMAX=E(I)
000151		DO 11 LKN=1+NMAX1
000153)() 11 L=1.4MAX12
000154	11	1-5C ([KN+L] = 0 • 0
000165		WRITE (6.5)
000170	5	FORMAT (*0*)
000170		WRITE (5,20)E(I)
000176	20	FORMAT (* * * THE NEUTRON ENERGY IS* 3X + F5.2)
000176		WRITE (6,5)
202000		WRITE (6.923)
000205	923	FORMAT(* *, x, *J*, 3x, *PIEN*, 3x, *ENERGY INTEGRATED TRANSMISSION
700707	<i>y</i> , 3	X COEFFICIENTS*)
000206		DO 1 LKN=1 NMAX1
000510		J=(LKN-1)/2
000210		VI=FLUAT(J)
000214		TRIAL=XMODF (LKN+2)
000217		IF(TRIAL.EU.O.O)PIEN=-1.0
000711		1) the Mediagodori 1611— 140
		,
-		
-		
****		· · · · · · · · · · · · · · · · · · ·
		Í

000221		IF (TRIAL.FO.1.0) PIEN=+1.0
000224		DO 2 L=1+LMAX12
		CALL ELKAY(L,VL,VK)
000230		LVL=INT(VL+1.0)
000233		00 18 LV=1,6
000234	18	
000243		CALL AREA (EMIN, EMAX, RHO, SPECTR, EO, SIG21, T, VI, PZ, PN, ATOMW, EX)
000256		TRC(LKN+L)=SPECTR
000262		CONTINUE
000265		WRITE(6.926) J.PIEN. (TRC(LKN.N).N=1.LMAX12)
000304	926	FURMAT(* *,12,1X,F4.1,3X,11(E10.3,1X))
000304	1	CONTINUE
000307	10	CONTINUE
000311		STOP
000313		END

<u> </u>		
		<u> </u>
<u> </u>		
		·
		

000017		SUBROUTINE AREA(EMIN, EMAX, A, SPECTR, E0, SIG21, TAU, J, PZ, PN, ATOM, E DIMENSION F (40), A(6)
		The second secon
		T(S+H+C+U+F+EINT)=S/(1.0+EXP(B*(C-EINT)))+D*EINT**F
000050		REAL J
00050		H=(EMAX-EMIN)/30.0
100052		YEVEN=YODD=0.0
100055		YSUMO=YSUME=0.0
000057		E(1)=EMIN+H
000060		DO 1 I=2•30
00062		E(1) = E(1-1) + H
000065	<u> </u>	
000066		NINT=15
100067		00 2 N=1•NINT
000071		FACTOR=FACTUR=1.0
000074	_	I = N - 1
00075		K()=2#[+]
000076		KE=2#I+2
000100		IF (A(6).GT.E(KO)) FACTOR=0.0
100105		IF(A(6).GT.E(KE))FACTUR=0.0
000112		EP=EMAX-E (KO)
000114		EH=EMAX-E (KE)
000117		IF (EP-EX) 10, 10, 15
000155	10	RHO=EVAL1 (EP,E0,SIG21.TAU,J)/2.0
000134		60 10 20
000134	15	AE=ALIT(EP)
000136		RHO=EVAL2(U+PZ+PN+EP+AE+ATOM+J)/2.0
000150	50	YODD=RHO+T(A(1) +A(2) +A(3) +A(4) +A(5) +E(KO))
00170		YODD=YODD*FACTOR
100172		IF (YODD.LT.0.0) YODD=0.0
0001 7 5		YSUMO=YSUMO+4.0*YODD
00200		IF (EH-EX) 25.25.30
100203	25	RHO=EVAL1(EH+EO+SIG21+TAU+J)/2.0
000215		60 10 35
000215	30	AE=ALII (EB)
00217		RHO=EVAL2(U.PZ.PN.EB.AE.ATOM.J)/2.0
000231	35	YEVEN=RHO* (A()),A(2),A(3),A(4),A(5),E(KE))
000251		YEVEN=YEVEN*FACTUR
000253		IF (YEVEN.LT.0.0) YEVEN=0.0
00256		IF (N.EQ.NINT) YEVEN=YEVEN/2.0
	_	YSUME = YSUME + YEVEN * 2.0
	2	CONTINUE
00264		TAKERYO I.I. I - II WITTEN W
000261 000264 000266		SPECTR=(H/3.0)*(YSUME+YSUM0)/(2.0*3.14159)
00264		SPECTR=(H/3.0)*(YSUME+YSUMO)/(2.0*3.14159) RETURN END

000005	FUNCTION XMODE(K,L) XMODE=K-(K/L)*L
000012	RETURN
000012	END
-	
	· ·

		CUNICTION ALITTE
000000		FUNCTION ALIT(E) ALIT = 29.2 + 205.62*EXP(-1.003*E)
000003	20_	RETURN
000012 3		END END
000014		
		•
		•
*		Bell strainer a control diplot strainer and a strai
Agricus management observed to the contract of		
ge grant a columbia		

	SUBROUTINE ELKAY(NN+FLN+FKN)	R1050908
000006	1 TEMP=FLOAT (NN)	•
000010	5 TEMP1=TEMP/2.0	R1050910
000012	10 TEMP2=(TEMP-1.0)/2.0	R1050911
000015	15 I FEMP=XMODF (NN.2)	R1050912
000023	20 IF (ITEMP-1) 45,30,25	R1050913
000026	25 IERR=25	R1050914
000027	GO TO 9500	R1050915
000030	30 FLN=TEMP2	R1050916
000031	35 FKN=TEMP1	R1050917
000035	40 GO TO 5 5	R1050918
000033	45 FLN=TEMP1	R1050919
000034	50 FKN=TEMP2	R1050920
000035	55 KETURN	R1050921
000036	9500 WRITE OUTPUT TAPE 6,9105, IERR	R1050922
000044	MESS = 4HOHEL	
000045	9105 FORMAT(]X+18H********* ERR = +I4)	R1050925
000046	END	R1050926
	<u> </u>	
<u> </u>		
		<u> </u>
		<u> </u>

	FUNCTION EVALI(EJ+EO+SIG21+T+J)	
000010	PEAL J	
000010	B=J*(J+1)/(2.0*SIG21)	
000014	C=(EJ-tu)/T	
000016	D=C-H	
000020	CONSTJ = (2*J+1)/(2.0*SIG21)	
000025	EVAL1=CONSTJ*EXP(D)/T	
000034	λΕΤ <u>Π</u> ΚΝ	
000035	END	
	·	
		
		_
		_

	FUNCTION EVAL?(U.PZ.PN.EP.AE.A.J)
00012	RCAL J
00012	U=EP-PZ-PN
00014	SIG22=0.0ARR#SURT(AE#U)*A**(2./3.)
00032	(SSDIS*0•S)\((1+L)*L=H
00040	C=2.0*SURT (AE *U)
00051	D=C-H
00053	CONSTO=(12.0*(AE**0.25)*(U**1.25))**(-1.0)
00066	CONSTJ=(2*J+1)/(SQRT(8.0)*(SIG22**1.5))
00101	EVALZ=CONSTO*CONSTJ*EXP(D)
00106	RETURN
00106	END
	·
	

							-1			4 COOC-01	7 0505-03	7.050F-03	
	R 1.0	2.2375.01	3.785E • 01	3.7A5E+01	6+859E+00	6.829E+00	3.0726+00	3.0726.00	6.580E-01	4 580E-01	7.059E-03	7.059E-03	
	A -1.0	2.2375.01	3.7455.01	3.785E • 01	_6.829E+00	6.829E+00	3.0/21.00	3.0156.00	5.034F=01	5.0341-01	7.059E-03 5.401E-03	5.401E-03	
	9 1.0	1.7416.01	2.9302.01	2.930E+01	5.280E+00	5.280E+00	2 352E+00	2.352E+00	5.034E-01	5.034E-01	_5.401E-03_	5.401E-03	
_	9 -1.0	1.7415.01	2.9305.01	2.430E+01 2.154E+01	3.977E+00	3.877E+00	1.708E +00	1 70HF +00	1.652F-01	3.6521-01	3.91/6-03	J.41/E-03	
	10 1.0		2.1546.01	7.154E+01	3.877E.00	3.877E+00	1.704F +00	1.708F+00	3.652E-01	3.6526-01		_3.91/E=03	
	10 -1.0	1.247E+01 9.663E+00			3 1005 . 00	3 7005 . 00	1 1746 400	1.178F.00	2.516F-01	2.516E-01	2.700E-03	2.700E-03	
	11 -1.0	9.0636.00	1.5055+01	1.506E+01	2.70HE+00	2.70HE+00	1.178E . 00	1.178E+00	2.516E-01_	2.5166-01	2.700E-03_	_2.700E-0 <u>3</u>	
	11 -1.0	4.04,31,-00	14,70.76.101										
	THE MEUTRO	N ENERGY IS	7.40										
	7772	1:0	(-1		(.2	6.2	6.3	Į•3	. 0.4	6:4	6.5	l+5	
	J PIFY	ENERGY IN	TEGRATED TE	RANS415510N		CIENTS				2 0045 01	2 2//5-02	2 3445-03	
	0 1.0	A.540F+00	1.4911.01	1.4716+01		2.730E+00	1.315E+00	1.315E+00	2.986E-01	2.9865-01	3.3666.703	3.366E-03	
	0 -1.0	4.5905.00	1.4915.01	1.491F+01	2.730E+00	2./3UE.00	1.315E • 00	_1.3156.00	_5.489F-01	_2,980E=01_	3.366F-03 9.681E-03	0.681F=03	
	1 1.0	2.4705.01	4.249F+01	4.299E+01		7.86HE+00	3.7HZE +00			8.595E-01	9.681E=03	9.6A1E-03	
	1 -1.0	2.47#5.01	4.2995.01	4.29 JE + 01		7.868E+00	3.782E+00	3.7826.00	_0.595E-01_	1 3146 400	1.483E-02	1.443E-02	
	2 1.0	3. HIHE+01	6.6175.01	6.6175.01		1.5106+01	5.747E+00	5.7976.00	1.3185.00	1.318E+00	1.4936-02	1.4836-02	
	2 -1.0	3.H1HE+01	5.617E+01	6.617E . 01	1,210F+01	1.210E+01	7.159E • 00	7 1505.00	1.629F+00	1.629F+00	1.830E-02	1.8308-02	
	3 1.0	4.7525.01	H.220E+01		1.5016 + 01	1.501E+01	2 1635 400	7 1505.00	1.6291.00	1.624E+00	1.3301-02	1.9306-02	
	3-1.0	4.75/01	8.2201.01			1.644E+01	7 7446 400	7 - 1H5F+00	1-774F+00	1.7746+00	1.988E-02	1.98%E-02	
	4 1.0		9.013E.01	9.013E+01	1.644E+01	1.644E + 01	7.765E+00	7 7466.00	1.774E+00	1.774F+00	1.9886-02	1.9846-02	
	4 -1.0	5.2235.01	9.01JE-01		1.643E+01	1.6436.01	7.719E+00	7.714F+00	1.7626+00	1.7626+00	1.4085-05	1.4005-05	
	5 1.0	5.244E+01 5.24×E+01	9.0245+01		1.6436.01	1.643E+01	7.719E+00	7 7105 400	1.762++00	1.7626+00	1.968E-02	1. 705E-UC	
	5 -1.0	4.4035.41			1.5261 *01		1 0	7 0045 400	1 42/5 400	1.624F • 00	1.8076-02	1.80/E-02	
	6 1.0 6 -1.0	4.9036+01	d. 4045 + 01		1.5265.01		7 0005.00	7 0005.00	1 6245400	1.624F+00	1.80/+-02	1.80/E-UZ	
	7 1.0		7.3416.01			1.330E+01	6-1116+80	6.111E+00	1.401E.00	1.4016.00	1.3335-05	1.0036-05	
	7 -1.0	4.302F+01				1.330E .01		6,111E+00	1.401E+00	1.401E+00	_1.553E-02	_1.553E-02	
	R 1.0	3.5666.01			1.0936+01		4.955E+00	4.956E+00	1.139E+00	1.1396+00	1.256E-02	1.2566-02	
	A -1.0	7.5641 +01	6.0546.01			1.093E.01	4.456E+00			# 766F-01	1.256E-02 9.611E-03	9.611F-03	
	9 1.0	2.804E+01				H.527E+00	3.8026.00	3.802E+00	8 766E-01	8.766E-01	9.611E-03	9.611E-03	
	9 -1.0	7.904E+01				# . 5 <u>C . 0 0</u>	3,802F+00 3,805F+00	2.766E+00	6.400F-01	-6.400E-01	6.972E-03	6.972E-03	_
	10 1.0	2.09HE +01				6.3126.00	2.766f.+00		6.400E-01	6.400E-01	_6.9/2E-03	6.972E-03	
	10 -1.0	2.04AE . 01	3.5141.01			4-454F-00	1.913E+00	1.9136+00	4.442E-01	4.442E-01	4.804E-03	4.804E-03	
	11 1.0	1.497E+01				4.454F+00	1.913E+00	1.913E+00		4.442E-01	4.804F-03	4. PQ4E-03	
	11 -1.0	1.497F.01	<u> </u>	E 473E 101	40 4 74 2 00								
	THE MEUTR	ON ENERGY I	S 3.40										
	1112												
	J PIFN	ENEMBY I	NIEGRATED T	RANSMISSION		ICIENTS	errene maari . E			3 7105-01	4.421E-03	4-421E-03	
	0 1.0	1.0056.01	T. 657E • 01	1.447E+U!		3.413E+00	1.667E+00	1.667E+00	3.7106-01	3.710E-01	4.421E-03	4.421E-03	
	0 -1.0	1.0555+01						1.667E+00 4.795E+00		1.068E+00		1.272E-02	
	1 1.0	3.0745+01							1.0005.00	1.0686+00	1.272E-02		
	1 -1.0	3.074F +01							-1-639E+00	1.639E+00	1.94HE-02	1.948E-02	
	2 1.0	4.7436.01						7.352E+00	1.639F+00	1.639E • 00	1.949F-UZ	1.949E-02	
	2 -1.0	4.74 JF + 01						9.0H2E+00	2.029E.00	2.02HE+00) 2.404E-02	2.404E-02	
	3 1.0	5.9125.01		1.02/E+02				9.0HZE+00	2.0295+00	2.02HE+00	2.4048-02	2.404E-02	
	3 -1.0	5.912E+01			2.0636.01		0 4935 400	9.882F+00	2-2101-00	2.2106+00	2.6116-02	2.611E-02	
	4 1.0	6.512E.01		. 1.124F.02	2.0616.01			9.8826+00	2.210E.00	2.2106.00	2.411E-02	2.6116-02	
	5 1.0	6.5615.01				2.067E.01	9.A05E+00	9.805E+00	2-1945-00	2.198F+00	1 7.586E-02	と・ うりつもつりと	
	5 -1.0	6.561E+01				2.067E+01	9.805E+00	. 9.805E+00	2.198E.00	2.19HE+00	2.5866-02	2.586E-02 2.373E-02	
	6 1.0	5.1506.01	1.0541.00		1.9256+01	1.9256+01	9.022E+00	9.022E+00	2.029E+00	2.0271.00	, 2.3/JE-02 , 3.71E-02	2.3736-02	
	6 -1.0	6.1505.01			! 1.925E+U1	1.925E • 01		9.022E+00		7.0298.00	2.3736-02	5.0396-05	
	7 1.0	5.417: •01		0 2745 401	1.6425.01	1.682E+01	7.775E+00	7.775E+00 7.775E+00	1 7545+00	1.754E+00	2.039E-02	2.039E-02	
	7 -1.0	5.41/5.01	9.274t +01	1_ 9.2796+01	1.682F +01	1.6426.01	- 4 - 71 - 5 - 00	4 31 46 400	1.430E+00	- 1.430F+0	1.650E-02		
	A 1.0	4.510E+01		7.6H7E.01	1.3886.01							1.650E-02	
	A -1.0	4.5105+01	7.6H/E+U1	1 1.68/5.40	1.3HHE - 01	1.38HE + 01	A DAME ADD	4. HAHF + UL	1.10 IF+00	1.103E+0	1.262E-02	1.262E-02	
	9 1.0	3.5655.01			1.0456+01		4.84HF+00	4. BAHF • OC	1.103F+00	1.1031+0) .coct=vc	1.0000-00	
	9 -1.0	3.5655.11		1 6.041E+0				3.5336+00	D H.U74E-01	8.074E-0	1 9.15/E-03	A.12/6-03	
	10 1.0	7.5826-01			8.081E.00			2 5225.00		A 074F=0	1 9.157F-07	9.15/1-03	
1	10 -1.0	2.68/E+01	4.516E+0						5 623F-01	5.62 IF-0	6.311F-03	6.311E-03	
	11 1.0	1.9256.01		1 3.219E+01	5.731E+U	5.731E+00	2.447E+00	2.447E+00	5.623E-0	5.623E-0	1_6.311E-03	6.311E-03	
٠,	11 -1.0	1.4544.01	3.614.40	. 3.2171.									-
2	THE NEUT	SON FHENCY I	5 4.10										