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THE STRUCTURE OF THE FISSION TRANSITION NUCLEUS 227Ra
I. INTRODUCTION

A, Preliminary Considerations

In 1938, Hahn and Strassman (Ha 39) discovered that
the bombardment of uranium with neutrons produced several
radioactive nuclides which were chemically indistinguishable
from elements in the middle of the periodic table, such as
barium and lanthanum. Although at first they believed these
nuclides to be isotopes of radium and actinium, soon they
were convinced that the radioactive products were isotopes
of much lighter elements formed by the splitting of the ura-
nium nucleus into two parts of comparable size.

The mechanics of nuclear fission was first described in
detail in a classic paper by Bohr and Wheeler (Bo 39). On
the basis of a liguid drop model of the nucleus, they devel-
oped a fission theoty which gives a satisfactory picture of
many aspects of nuclear fission. This theory was centered
on the idea that for the heaviest‘group of nuclei, the re-
pulsion of the long range coulombic forces opposes, to a
large extent, the short range nuclear forces which operate
in a manner analogous to a surface tension.

The immediate implication of the theory was that as
the nucleus distorted in a given direction, a point was

reached in which the coulomb repulsive forces became equal
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to the forces holding the nucleus together, and from here,
the nucleus could either undergo fission or collapse back
to its equilibrium shape. This critical point was called
the "saddle point" in the potential energy surface, and the
net increase in potential energy necessary to reach that
point was termed the "fission barrier".

The passage over the saddle point is the rate deter-
mining step in fission. A nucleus at the saddle point is
known as a "transition state nucleus" (see Figure 1l). 1If
the transition state nucleus is further deformed, it will
eventually divide into at least two fragments. The defor-
mation at which division into two fragments occurs is called
the "scission point". The fragments are of intermediate
mass and contain various amounts of excitation energy. At
the time of scission, the nuclear deformation has increased
beyond that of the transition state nucleus and at the in-
stant of separation, the primary fragments possess, in some
cases, considerable deformation energy, in addition to
their other forms of energy. A wide variety of division in
fragment mass, charge, and energy is observed, depending
upon the initial mass and excitation energy of the fission-
ing nucleus.

In this work we are mainly interested in the properties
of the transition state nucleus, i.e., the nucleus at the
saddle point. Historically, we should begin by pointing

out that in 1952, Winhold et al. (Wi 52) experimentally
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observed that the angular distribution of 2%2Th and 2%°%u
fission fragments induced by photofission was clearly aniso-
tropic., In order to explain the observed angular distribu-
tion, Bohr (Bo 55) proposed a theory in which he suggested
that fission proceeded through definite states in the tran-
sition state nucleus characterized by well defined quantum
numbers, which were responsible for many of the properties
of the final fragments. Basically, the spectrum of excited
states of the nucleus at the saddle point could be simply
explained in terms of the collective and unified models,
which had worked so well for the low lying states of stably
deformed nuclei (see Figure 1l). These quantum states of
the nucleus at the saddle point were termed "channels".
According to Bohr, a fission event passing through a fis-
sion channel might exhibit a marked anisotropy in the angu-
lar distribution of the fission fragments, depending on the
angular momentum quantum numbers of the channel,

In order to explain this situation, let us start by
supposing for a moment that the nucleus is spherical.
The simple shell model of the nucleus assumes that each
nucleon moves in a potential well (also spherical), which
is an approximate representation of the interaction of
that nucleon with all of the others. By solving the
Schrddinger equation for particles in such a potential well,

and introducing a spin-orbit interaction, a set of energy



levels is obtained. These levels are characterized by
their principal quantum number, orbital angular momentum,
and total spin. An odd nucleon in a given shell model
state can have several different projections of its angular
momentum on a symmetry axis. These projections are called
8. For example, a d5/2 single nucleon can have values 1/2,
3/2, and 5/2 for its £ gquantum number. When the potential
well is undeformed, the energy of the nucleon is independent
of §. However, this is no longer the case when the poten-
tial well is deformed. Each shell model level of angular
momentum j breaks into j + 1/2 levels (called Nilsson
levels), each of which may contain up to two nucleons of
each type. The angular momentum of the odd-A deformed nu-
clei is due to both the rotational angular momentum (if
any) and to the angular momentum of the odd nucleon. The
projection € of the nucleon's angular momentum adds vec-
torially to the rotational angular momentum R, to give the
total angular momentum J. The projection of J on the nuc-
lear symmetry axis is called K. As shown in Figure 2, R is
actually perpendicular to the symmetry axis in an axially
symmetric nucleus, and hence, §! is equal to K. When the
rotational angular momentum is zero, J, {, and K are all
equal. Thus, each Nilsson level may form the ground state
of a rotational band. Except for cases where K = 1/2, the

energies of the members of the band are given byl

1

The case of K = 1/2 is more complicated and a more complete
discussion of this case is given in the next chapter.



Figure 2. Schematic Diagram for Angular Momenta in Deformed Nuclei.
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where Eo is a constant, andff is the moment of inertia of
the nucleus. This latter gquantity depends on the nuclear
deformation. For the ground states of the very heavy ele-
ments, the value of h?/27 is about 7 keV; for saddle point
deformations, this figure becomes two or three times
smaller., For an even-even nucleus, the ground state of the
nucleonic structure has K = 0, corresponding to a paired
nuclear configuration. Assuming a reflection-symmetric
shape, the spectrum contains for K = 0, only the rotational
levels with even J values 0, 2, 4..., which all have posi-
tive parity. If the nuclear shape is reflection-asymmetric,
the situation is somewhat different and we shall discuss
this problem later in more detail.

Thus, assuming axial symmetry for the nuclear shape at
the saddle point, the channels could then be characterized
by the guantum number K, representing the component of the
nuclear angular momentum J about the symmetry axis, and M,
the projection of J onto a space-fixed axis.

The probability distribution of the fission fragments
as a function of direction is identical to the probability
distribution of the direction of the symmetry axis of a
symmetric top, having the same gquantum numbers J, M, and

K. This probability distribution can be expressed in terms



of a differential cross sectionz, Wi M(@), in the reaction
!

plane, at a given angle © by:

J J 2
Wy (@) = (23+41) Dy (6, ©, )| (I-2)
where Di M(¢, ©, y) are the symmetrical top wave functions,
’
and (¢, ©, Y) are Euler angles of rotation. Wi M(@) is in-
’

dependent of the polar angle ¢, the angle y of rotation
about the symmetry axis, and the moments of inertia of the
transition nucleus.

In 1956, Henkel and Brolley (He 56) observed that the
angular distribution of fragments in neutron induced fis-
sion of 2%%Th near threshold, was concentrated in a direc-
tion normal to the incident neutron direction. Wilets and
Chase (Wi 56) interpreted these results in terms of the
Bohr model. They assumed that only a few rotational states
were excited in the transition nucleus, and also that the
direction of the separating fission fragments was that of
the nuclear symmetry axis. Under these assumptions, the
angular distributions could be described by the relation:

J I 2

J 2 « J 2
Wy (@) = [lp]?dean = [Dy 4 5l% + [Dg 1,9

(I-3)

From the shape of the experimental distribution, they de-

duced the identity of two channels which appeared to be

2Differential cross section is defined as the cross section
per unit solid angle, and it is given in millibarns per
steradian (mb/sr).
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involved and also determined the contributions of different
J values to the intensity by a curve fitting procedure.

Hittmair (Hi 60), in a further development of the
theory went back to first principles to determine relative
intensities. He considered the problem in terms of the
absolute probabilities for fission through the various chan-
nels. The probability amplitude was identified as being the
product of the following factors:

1. Amplitude associated with the partial
wave in the incident plane wave.

2. An element of reaction matrix for a
transition from the state associated
with the original even=-even nucleus
in its ground state, and the incident
neutron in the state with gquantum num-
bers (2, s, 0, u) to the particular
exit channel with quantum numbers JKM.
This element of reaction matrix is
represented by:

<JKM|R|2s0u> = <JK|R|&s><2s0u|IM>

where the second factor is the Clebsch-
Gordan vector coupling coefficient.

3. The probability amplitude for the tran-
sition from the specified exit channel
to a state in which the axis of nuclear
symmetry lies within a certain solid
angle.

Given the above factors then, the differential cross section

would be given by the following expression:

S5 (0) = 1/4m)%(22+1) | <IKM|R|2s0u> |2 x
(I-4)
(2J+1) J 2 J 2
g U layp gl® + lay , xl*)

The di/Z K functions will be defined in the next chapter.
’



10

In his classical review paper on fission, Wheeler (Wh
63) discussed, among other things, the types of channels
which could be expected to contribute to the fission process
at the saddle point. He gave great importance to the col-
lective modes in fission, and particularly, developed a rel-
atively simple theory in which he predicted different types
of collective vibrations, by borrowing, in part, from the
molecular theory. He discussed the roles of bending, sloshing,
and of gamma vibrations (in which symmetry about the
axXis of extension is lost), and quantum numbers associated
with each. Wheeler also gave estimates of the types of en-
ergies involved with the different kinds of motion, which
he predicted by assuming the nucleus to be a liquid drop,
and applying the hydrodynamic theory of motion. The role of
the moment of inertia in the rotational spectrum and the
couplings between different kinds of collective motion were
also discussed. Wheeler recognized the fact that an accu-
rate channel analysis of the fission process could not be
carried out without including competition factors corres-
ponding to other modes of decay, such as neutron and y-ray
emission. Under these circumstances, for neutron induced
fission, he replaced the element of the reduced matrix in
the treatment of Hittmair with an expression in terms of

effective number of channels:

Nple(K,J)

Nn+N f+N PP

(1I-5)

| <JK|R|2s0p> |2 =
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where the quantity an measures the chance for the compound
nucleus to break into a neutron plus the residual nucleus
in its ground state. N measures the "yield effective num-
ber" of channels for all processes of emission of a neutron
from a compound nucleus of the given J and parity 7 of exci-
tation. Similarly, the quantity Nf(J, m, K} in the numera-
tor is but one of the contributions to the quantity Nf(J, )
in the denominator corresponding to a sum over various fis-
sion channels.

Wheeler also summarized the information needed for
channel analysis in the following terms:

1. Accurate measurement of the fission
cross section as a function of angle
and energy.

2. The cross section for the formation
of the compound nucleus with a speci-
fied spin and parity as a function of
energy for each (J, m) that contri-
butes significantly to the fission
cross section.

3. The saddle point energy of each fis-
sion channel, and the characteristic
barrier curvature hu.

4, The effective number of fission chan-
nels leading out from a compound nuc-
leus of given spin and parity. This
is found by adding up the openings of
all the channels which are accesible
from that (J, 7).

5., The effective number of neutron chan-
nels accessible to a compound nucleus
of given spin and parity.

6. The other levels of the residual nuc-
leus and the opening of the channel
leading to each of them as a function
of energy.
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In 1962, Lamphere (La 62) measured the fission cross

3in the reaction 2%*U(n,f)

section and fragment anisotropies
for neutron energies between 0.4 and 3.8 MeV. He found that
for incident energies between 850 and 1050 keV, the fission
cross section was depressed in relation to other energies.,
He interpreted this in terms of the argument by Wheeler,
that neutron inelastic scattering competes with fission to
an extent dependent, in part, on available levels in the

1 23%y nucleus.4

residua
Lamphere derived expressions connecting the measured

shape of the anisotropy, with the structure of the transi-
tion nucleus. His analysis combined the probability of com-
pound nucleus formation of a certain spin J, with an expres-
sion describing the shape of the angular distribution of the
fission fragments expected for a certain combination of K
and J. The result was an explicit expression for the dif-
ferential cross section for fission which assumed no other

types of competing processes such as neutron emission and

Y-ray decay.

)=

J
x2 ] (23+1)T, W (0) (I-6)

o, (@) =
K %)

3AnisotrOpy is defined as the ratio of the differential
cross section at an angle near 0° to that at 90°,

4Since then, this observation has been determined to be
false, Recent developments in the theory of fission
attribute the peaking and sudden depression in 0f(E) to
the presence of resonances caused by the existence of a
doubly humped fission barrier.
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Here, the T,.'s are spin-dependent penetrabilities. These

23
measure the probability that a particle with angular momen-
tum '2' will penetrate the nuclear potential of the target
and create a compound nucleus of spin J. X represents the
rationalized wave length of the projectile (a neutron in
this case), and W%(@) is a function which describes the
angular distribution of the fission fragments, in a similar
manner as in expression (I-3). Lamphere recognized the fact
that only relative strengths (i.e., proportions) of the
various K bands could be estimated since no allowance had
been made for other types of decay of the compound nucleus,
mainly neutron emission which was considered to be much more
probable than fission.

This situation was very much improved by Vandenbosch
(Va 67) who introduced fission barrier penetrability fac-
tors into the calculation and also accounted for competi-
tion from other modes of decay. The barrier penetrability
factors were necessary because the old theory by Bohr had
predicted that the fission excitation function should re-
semble the shape of a staircase, where the sudden jumps in
the cross section would be caused by the sudden opening of
new fission channels. Wheeler had earlier pointed out that
actually these expected sudden leaps in the probability of
fission should be smoothed out because the penetration of a

gquantum mechanical barrier is a gradual process which in-

creases with energy at a rate that depends on the physical
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characteristics of the fission barrier. The barrier was
assumed to have the shape of an inverted harmonic oscilla-
tor potential, whose penetrability is given by the Hill-

Wheeler expression (Hi 53):

T (E) = 1/(l+exp[2m (E .~E) /hw]) (I-7)

where Ef represents the height of the barrier, E is the ex-
citation energy, and huw is a parameter which describes the
curvature of the parabola. By using the fission data from
Lamphere, Vandenbosch attempted to relate the K-band fission
probabilities at one incident neutron energy to that at
other incident energies. This was done by simultaneously
fitting the fission cross section and the relative angular
distributions as a function of energy, and by defining bar-
rier heights Eg and curvatures fw for each fission channel.
Although this analysis proved to be very innovative, no
firm, unique K band assignments were possible. Instead, a
number of choices were left available.

In 1968, Behkami et al.(Be 68) published a paper re-
sembling, in form, that of Vandenbosch, in which the *3°U
fission transition nucleus was analyzed. Although similar
in form, two important variations are noted. First of all,
new data on fission fragment angular distributions at 16
angles and 9 neutron energies between 200 and 1184 keV were

obtained. Secondly and most importantly, the analysis was

done by simultaneously fitting, instead of the relative
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angular distributions, the differential cross sections and
total fission cross section, as a function of energy. The
introduction of the absolute fission fragment angular dis-
tributions permitted the elimination of many of the ambigui-
ties in the analysis, and brought more coherence into the
calculations. The result was, that within the framework of
a simple and approximate mode of barrier penetration, it was
possible to uniquely and firmly make assignments of the K
values and parities of the channels in the transition nuc-
leus 2%°U. The use of differential cross sections instead
of relative angular distributions is important because in
the former, absolute growth in the strength of a given chan-
nel is observed progressively with excitation energy. The
use of relative angular distributions only permits one to
observe the relative increases in the strength of a certain
band in relation to others. This practice also presents the
problem that, if the 90° point is in error, it throws the
whole distribution off, making the analysis somewhat un-
reliable, especially if only a few points are available in
the data.

Until a few years ago the liquid drop model of fission
provided the only base for the study of the fission process.
According to this theory, a nucleus tends to assume a spher-
ical shape under the influence of a surface tension, but in
heavy nuclei it is prevented from doing so completely, by

the strong repulsion provided by the coulomb force between



16
the protons, which acts as an agent of deformation in the
nucleus.

In 1966, Strutinsky (St 66) developed a theory concern-
ing shell effects5 in nuclear masses and energies of defor-
mation, which proved to have far reaching consequences in
the understanding of the nuclear fission process.

He argued that the old liquid drop model of the nuc-
leus, which had been so convenient in describing nuclear
masses and fission theories, was not sufficient anymore.
The LDM was based on the assumption of a classically uniform
distribution of nucleons in phase space, and thus ignored
completely nucleon shell effects. He then decided to treat
nucleon shell effects as small deviations from a uniform
distribution. These deviations were termed "shell correc-
tions". Under these conditions, the total energy of the
nucleus was written as the sum of the LDM energy, the pair-
ing correction 8P, and the shell correction S6E, for both
protons and neutrons:

E =E + ) (SE+6p) (I-8)
p,n
Using a simplified Nilsson level scheme for his calcula-
tions, Strutinsky obtained some startling results. He ob-

tained large fluctuations for the shell correction as a

5These are the effects caused by the non-uniformities of

the spacings between the single particle levels in the
nucleus.
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function of nuclear deformation, especially for nuclei near
magic numbers or midshells. He reached the important con-
clusion that the oscillations of SE reflected periodic
changes in the single particle level density near the Fermi
energy.

In near magic or midshell nuclei, the equilibrium de-
formation corresponds closely to the minimal density of nuc-
leon states at the Fermi energy. Strutinsky pointed out
that normally, the density fluctuations do not produce
essential minima of the deformation energy because of the
large dependence on the LDM surface energy. He observed
however, that there were certain exceptions. One of these
corresponds to the so called "fissionable" nuclei, where the
effective LDM surface tension is small. The result was the
appearance of a second minimum in the potential energy of
deformation, as is shown in Figure 3.

Strutinsky's calculations were born out by the obser-
vation that, in many heavy nuclei (U, Pu, Am isotopes), one
can populate an isomeric state of the nucleus that decays
by spontaneous fission. These isomeric states are known to
be states of the nucleus trapped in the minimum in the fis-
sion barrier. Their y-ray decay to the ground state is
greatly inhibited because it involves a change in the nuc-
lear shape, while their spontaneous fission decay is en-
hanced because they have already partially passed over the

fission barrier.



Potential Energy
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Figure 3. Effects of Shell and Pairing Corrections on the Shape of the Fis-
sion Barrier. The dashed line represents the LDM calculation,
while the full line corresponds to the LDM + shell corrections.
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The presence of a doubly humped fission barrier is res-
ponsible for the observation of strongly grouped subbarrier
fission resonances in capture reactions with low energy neu-
trons. This is suggestive evidence for the existence of two
weakly coupled sets of excited levels (Bj 69). In terms of
Bohr's channel theory of fission, the pronounced structure
in excitation functions for fission at energies near the
barrier, introduces complications in the analysis of fission
fragment angular distributions. Under these conditions, the
penetrability expression (I-7) is no longer appropriate, but
has to be replaced by a more complicated one which takes in-
to account the penetration through two barriers instead of
one. This immediately suggests that, unless the two humps
in the fission barrier are not comparable in size, all pre-
vious calculations regarding channel analysis of fission
are in error.

As the excitation energy above the fission barrier in-
creases, the structure in the fission fragment angular dis-
tributions and cross section decreases rapidly, and the
nucleus effectively "sees" only one barrier. According to
Vandenbosch (Va 73), fragment anisotropies at moderate ex-
citation energies are characteristic of the outer barrier
deformation, while at very high energies (>50 MeV) shell
effects disappear and the liquid drop barrier becomes

determinative.
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Recent statistical model calculations (Ba 73) of fis-
sion probabilities at moderate energies, taking into account
competition between fission, neutron emission, and y-ray de-
excitation of the compound nucleus, suggest that fission
widths which are greater by about a factor of four than
those calculated, are necessary to reproduce the magnitude
of the measured fission probabilities. This development im-
plies that up to now, theoretical considerations have under-
estimated the number of fission channels above the fission
barrier by a factor of about four. Recent theories (Bj 73)
resulting from this observation suggest that arguments re-
garding the symmetry of the nuclear shape at high deforma-
tions are partially responsible for the noted increase in
the number of fission channels. The basic reason for this
increase lies in the fact that, the number of rotational
energy levels in a nucleus, or for that matter, in a mole-
cule, increases with the degree of asymmetry offered by the
body shape. Recent calculations (Ni 72) regarding the nuc-
lear shape tend to indicate that the nucleus has a reflec-
tion-asymmetric shape at the deformation, corresponding to
the second barrier. This would immediately increase rota-
tional contributions to the channel spectrum by a factor of
two. Not only is the high number of channels caused per-
haps by non-counted rotational states, but also possibly by
the neglect of vibrational contributions. It is even pos-

sible, as we shall see in a later chapter, that important
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collective effects have consistently been neglected at the

nuclear equilibrium deformation.

B, Short Overview of Fission Barrier Calculations

Shortly after Strutinsky developed his theory concern-
ing fission barrier shapes, people around the world began
studying the applications of the shell corrections to the
liquid drop model and some very sophisticated theoretical
calculations have been carried out in connection with many
fissioning systems. Most of them have adopted the so called
macroscopic-microscopic approach, in which the average be-
havior of the sum of the single particle level energies is
normalized to that of the liquid drop.

As pointed out by Nix (Ni 72), the calculations of the
potential energy of deformation by means of this approach
consist of five steps:

1. Specify nuclear shape.
2. Calculate macroscopic (LDM) energy.
3. Generate single particle potential
felt by nucleus.
4, Solve Schrodinger equation for
single particle energies.
5. Calculate microscopic (shell and
pairing) corrections.
The total potential energy is then given by the sum of the
macroscopic energy calculated in step two, and the micro-
scopic corrections calculated in step five.
Until recently, these calculations were carried out in-

cluding only shapes of the nucleus that were symmetric with

respect to reflection in the x-y plane. The results in
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these cases were that the predicted second barrier height
appeared systematically too high in relation to the experi-
mental evidence. Although several people had previously
conjectured that at very high P, deformations, the liquid
drop energy surface was "soft" to asymmetric shape distor-
tions that involve a certain combination of P, and P, defor-
mations,6 it was not until recently, that it was specifi-
cally determined that for nuclei in the actinide region, the
asymmetric deformations were responsible for a general de-
crease in the potential energy of the second barrier (Mo 70,
72, 73) ., The mass asymmetry associated with the second peak
was first demonstrated by Moller and Nilsson with a modified
harmoﬁic oscillator potential (Mo 70). Also, whereas the
first saddle point is stable with respect to reflection
asymmetry it is found to be unstable with respect to axial
symmetry (y-deformations), in some cases lowering the energy
by about one MeV (Ni 72),

Calculations in this region also show that as the pro-
ton number decreases towards thorium, the second barrier
increases in height systematically and becomes significantly
larger than the first barrier. This qualitative trend has
been observed experimentally and reported in a recent paper

by Back et al. (Ba 73, 73a). Although theoretical

L8

6 P2 deformations are those associated with stretching of

the nucleus in the fission degree of freedom, while P,
and Ps distortions signify right-left asymmetry.
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calculations of the two barriers for these elements agree
remarkably well with experimental findings, ?°*°Th presents
the problem that both its secondary minimum and first saddle
point are higher by about 3 MeV than the theory predicts.
These discrepancies constitute the "thorium anomaly".

In the case of radium, calculations predict that for
all intents and purposes, the fission barrier is essentially
single humped. Theoretically, Brack et al. (Br 72) estimate
the height of the inner barrier in the case of 228Ra to be
about 2.4 MeV, compared to an outer barrier height of 8.2
MeV. This latter figure would agree very well with recent
calculations by Moller and Nix (Ni 73), which tentatively
place the outer barrier height in ??®Ra at about 8.2 MeV
also. Some inconclusive evidence supporting the concept of
a comparatively small inner barrier for radium is reported
by Kuks et al. (Ku 73) who, after irradiating ?2?°Ra with
neutrons at various energies, found no evidence of isomeric
fission present in the samples. We will come back to this
point as we develop the statement of the problem concerning

the present work.

C. Statement of a Problem

While these fission barrier calculations appear to des-
cribe reasonably well the experimental data on spontaneously
fissioning isomeric states, they have not, in general, been

rigorously tested as to how well they predict the low energy
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single particle level spacings at the saddle point, and few
if any, tests have been made concerning predictions of fis-
sion barrier structure in nuclei with 2 $ 90,

In the search for systems that could yield important
information in this respect, the isotopes of radium stand
out. They are considered to be in the intermediate region
between heavy and light fissioning nuclei, and they are en-
dowed with a series of unique properties in relation to
other nuclei. For example, we might comment briefly in
phenomena related to the mass distribution of fission frag-
ments in connection with this mass region. Low excitation
energy fission of higher Z-actinide nuclei is typically
asymmetric, characterized by a double humped mass distribu-
tion. On the contrary, nuclei near Pb and Bi exhibit a
symmetric mass distribution. However, for fission of nuc-
lei in the intermediate region (Ra and Ac), a triple humped
mass distribution with well established minima between the
three mass yield peaks is observed. As the excitation
energy is increased, the yield of symmetric fission in-
creases rapidly. The origin of these phenomena is still
being debated. It has been suggested that the triple-humped
mass distribution is the result of a superposition of two
different fission components, a symmetric one, appropriately
described by the liquid drop model, and an asymmetric com-
ponent, whose origin is believed to be determined by the in-

fluence of the shells in the nascent heavy fragments. The
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question arises as to when, in the fission process, is the
mass distribution decided? Or, what set of conditions de~
termines the mode of fission which the nucleus will exhibit?
There are those who believe that the mass distributions are
decided at the saddle point, while others prefer to think
that it is actually decided by the nucleus on its way to-
wards scission from the saddle point.

The experimental data obtained recently by Konecny et

al. (Ko 73) for excitation energies up to 15 MeV on the com-

227R 228A 227A 228

pound systems 2%°Ra, a, c, c, and Ac would
tend to support the argument that the mass distributions are
decided at the saddle point. For all the above systems,
they find that the variation of Of(E*) as a function of ex-
citation energy is quite different when both mass components
are considered separately.(see Figure 22). The asymmetric
component dominates totally at low energies; as the energy
increases, symmetric fission increases at a relatively slow
rate until, at about 12 MeV of excitation, the contributions
from both modes are about equal. Presumably, then two bar-
riers would be available; a lower asymmetric barrier, and a
higher symmetric barrier, two or three MeV above the former.
The data obtained by Nobles and Leachman (No 58) on the
226pa(n,f) reaction also shows that the mass distribution
changes from one asymmetric in character at neutron energies

below 4.6 MeV, to one predominantly symmetric at energies

above E = 10 MeV. A complete analysis of the structure of
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the 2?7Ra transition nucleus in this region might yield evi-
dence concerning the nature of the corresponding mass dis-
tribution. That is, the existence of a mass symmetry de-
pendent path to fission for the transition nucleus, might be
reflected in the energy dependence of the parameters that
describe the state of the transition nucleus over the appro-
priate energy range.

Recently, Babenko and coworkers (Ba 68, 69, 70) and al-
so Ippolitov et al. (Ip 72) have reported some very unusual
data concerning the ??®Ra(n,f) reaction. Their published
data on the energy variation of the fission cross section
and angular distributions is shown in Figures 4 and 5. Of
great interest are the sharp variations in the anisotropy as
the cross section steadily increases at neutron energies,
En' between 3.6 and 3.9 MeV. It is also important to notice
the steady decrease in the anisotropy as the cross section
remains relatively unchanged in the region 3.9 < En < 4.7
MeV. Then there is a step in the cross section correspond-
ing to En = 4,7 Mev, and for neutron energies ranging be-
tween 5.4 and 9.0 MeV, the fission cross section increases
slowly and monotonically. We also notice that anisotropies
remain relatively constant between E = 5.4 MeV and En = 7,1
MeV, with certain changes observed for En > 7.1 MeV, From
9.0 MeV to the last point at 14,8 MeV, the cross section in-

creases more rapidly, and very unusual features in the
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angular distributions are noticeable at neutron energies
equal to 14.4 and 14.8 MeV.

Babenko et al. correctly point out that the rapid
changes in the cross section near the threshold are usually
due to the opening of new fission channels. From the raw
data, they estimate the fission barrier to be about 8.5 MeV
high. Normally, a step in the cross section, such as the
one observed above En = 4,7 MeV is interpreted as being
caused by fission after neutron evaporation. In the case of
radium, this interpretation is completely ruled out. Assum-
ing that the binding energy released when a neutron is added
to the 2?2?°Ra nucleus is about 4.5 MeV, an incident neutron
with a kinetic energy of 4.7 MeV produces a compound nuc-
leus with an excitation of about 9.2 MeV. If the nucleus
decays by neutron emission, the average energy of the out-
going neutron is roughly 1.5 MeV. This means that the resi-
dual nucleus is left with an average excitation of about 3.2
MeV, which is considerably less than the fission barrier
height of 8.5 MeV and thus second chance fission is very im-
probable,

Their analysis of the data includes some over-simplify-
ing assumptions. The expression for the fission cross sec-

tion in their analysis was written in the following form:

N_.(J, m, E_)
£ 7! Tn
0g(E) = ) o_ (J, m, E)
£f'"n gr © n Nn(J, T, En§
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where N,. and Nn are the effective numbers of fission and

f
neutron channels respectively (neutron emission is assumed
to be overwhelming dominant in relation to other modes of
decay) , 9 is the capture cross section for neutrons, and
J,T are the angular momentum and parity of the nucleus res-
pectively. They assumed that the quantity Nn(J, T, En) re-
mained constant for incident neutron energies between 3.5
and 5.0 MeV. As we shall demonstrate later, this is a poor
assumption, since the energy levels in the residual nucleus
increase exponentially with excitation energy.

The angular distributions of the fission fragments were
analyzed by fitting Legendre polynomials to the o(©)/0c(90)
data. Although this method gives an idea of the nature of
some of the channels involved, it does not predict their
positions. In the same manner, no account was taken of the
energy differences between the different J members of a
given K rotational band. Also the fits to cross sections
and angular distributions were carried out not simultane-
ously, but separately. As we mentioned before, this latter
procedure presents the problem that we are constrained in
the amount of information that can be extracted regarding
the absolute contributions to the cross sections from indi-
vidual channels. We are allowed only to speculate about the
relative strengths of certain K bands in relation to others.

Finally, it was assumed that the step in the cross sec-

tion is caused by the existence of two barriers, one lower,
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characterized by negative parity states, and another one,
higher, characterized by positive parity states at higher
energies. In reality, there is no physical reason for
adopting such a scheme.

The development of this introductory part has led us
to the following conclusions:

l. Very peculiar features are observed in the
cross section and angular distribution data reported by
Babenko and co-workers and Ippolitov et al. regarding the
228Ra(n,f) reaction.

2, The triple humped mass distribution in the
fission of radium isotopes might be caused by two different
components, each being characteristic of a particular mass
region.

3. There is no agreement between theoretical cal-
culations and experimental observations regarding the fis-
sion barrier in the thorium isotopes, while the agreement is
good for heavier nuclei.

4, The fission barrier in radium is predicted to
be double humped, but the first hump can be considered, for
all intents and purposes, negligible in relation to the
second hump; the latter is predicted to have a height of
8,2 MeV above the ground state.

5. Recent evidence indicates that the number of

channels at the saddle point is underestimated by a factor
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of about four, possibly because of the neglect of collective
contributions to the fission width.

It is the purpose of this work to study the fission
transition nucleus ??’Ra by analyzing the experimental data
reported by Babenko et al., and Ippolitov et al. The analy-
sis should be facilitated by the fact that the fission bar-
rier can be assumed to be single humped. It should give
some degree of indication as to whether the anomaly reported
for thorium is only observed for Z = 90, or in radium also.
At the same time, it is the intention of this work to inves-
tigate the problem regarding the collective contributions in
fission. Finally, it is hoped that the analysis of the ex-
perimental data might yield some tentative evidence regard-
ing the stage at which the mass distribution is decided in
fission. We hope to accomplish this, by what we think is a
substantial improvement over the method of analysis employed

by Babenko, Ippolitov and collaborators.

D. ScoEe

It is clear that the 232°®

Ra(n,f) data measured in refer-
ences (Ba 68, 69, 70) and (Ip 72), covers a fairly complete
range of energies. Near the fission threshold, the nature
of the transition nucleus structure requires that the analy-
sis be discrete, since we are dealing with only a few chan-

nels above the fission barrier. As the excitation of the

nucleus increases, the system must be described in terms of
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parameters that emphasize the statistical behavior of the
nucleus., This behavior will then be compared with theoreti-
cal predictions based on different assumptions regarding the
nuclear shape at the transition state.

As we shall see later, the question regarding the nuc-
lear shape is not a trivial one. The symmetry of the nuc-
leus plays an important role in determining the degree of
freedom involved in the fission process, which are associ-
ated with that part of the wave function that describes the
collective motion of the nucleons.

Therefore, we shall proceed now to develop the model
and, as we go along, a description will be made of the

assumptions employed in this calculation.
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IT. DEVELOPMENT OF THE CALCULATIONAL MODEL

A. General Aspects of the Calculations

We might begin to develop the model for transition
state spectroscopy by describing the fate of the compound
nucleus formed by the absorption of a low energy neutron.
The nucleus is excited to an energy which is equal to the
sum of the neutron binding energy, plus the kinetic energy
of the neutron, minus a negligible amount corresponding to
the recoil energy. The excited nucleus then has essentially
three modes of decay available for de-excitation. It might
emit y=-rays, in which case only levels of the compound nuc-
leus will be populated; it also has the possibility of
emitting one or more neutrons, depending upon the excitation
energy, and thereby population levels in the residual nuc-
leus of lower A; or it might alternatively, choose the path
to fission, in which case, given channels in the transition
nucleus will be population.

If we assume that statistical equilibrium is reached
before the compound nucleus has a chance to decay, then we
can describe the probability for a particular type of de-
excitation as a suitably weighted fraction of the neutron
absorption cross section. The suitably weighted fraction of
the absorption cross section is formed by computing the

ratio of the relative number of a particular type of
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de-excitation channels to the total possible number of de-
excitation channels.

The number of available channels can effectively be
described in terms of the average width for a particular
process, and the average level spacing between resonances of
given total angular momentum and parity. Mathematically,
the effective number of channels for a certain process may

be written in the following way:

<FJ£n>

£ = 27 '<DJT (II-l)

where Nf is equal to the effective number of channels,
<FJ£ﬂ? is equal to the average width for a certain channel
of total angular momentum J, orbital angular momentum £ and

parity m; and <D.7> is equal to the average level spacing

J
between compound nuclear resonances of given spin and
parity. As we will show, the effective number of channels
can be computed using the transmission coefficients for
given processes. If then, we wish to calculate the partial
cross section for a given process, we can incorporate these
transmission coefficients into a Hauser-Feshbach calculation
in an appropriate manner (Ha 52).,

In 1964, Moldauer et al, (Mo 64) created a computer
code for calculating energy averages of integrated compound
nucleus scattering, capture, and fission cross sections.

This code incorporated features from the Hauser-Feshbach

approach to particle scattering, the Blatt-Weisskopf theory
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for y-ray emission, and the effects of level width fluctua-
tions. The partial cross sections for the given processes
could be obtained from the expression:

CX.'

r o I
. 2 <l >< >
oo T AT R AT R '
<o . z.ET (2J+1) <D, ;> Ty q> X Sao (II-2)
N J
.
where og% is equal to the cross section for partial wave

%, entrance channel a, exit channel o' near an isolated
resonance ) of total angular momentum J. k is equal to the

wave number of the incident neutron, <i. > to the partial

CX.'

width for entrance channel a, <FAJ2> to the average partial
width for the exit channel o', <FAJ> to the average total
width of the resonance, and <DAJ> is equal to the average
level spacing between resonances of given spin and parity.
Soa' represents the level width fluctuation correction
factor. 1Its magnitude depends on the number of degree of
freedom, if it is assumed that the partial widths are dis-
tributed according to a X’ family of distributions. This
quantity arises from the fact that the average of a ratio is
not in general equal to the ratio of the averages, and the

original Hauser-Feshbach expression is as follows:

2 r,.%r¢
]
<0J2aa s = (2J+1)(%T) <Dl _ < AJ? ATL (II-3)
AT AJ
and therefore:
<Tyg2 Tage/Tag”
Soa' = ; (I1-4)

[0 ~ 0
g g/’
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In the particular case of the %*?°Ra(n,f) reaction analysis,

where the number of neutron exit channels is very large,
Sao' becomes essentially unity, and therefore, it will be
neglected in the analysis.

In 1968, Behkami et al. (Ba 68) extended the above. for-
malism to allow a microscopic description of the fission
exit channels in terms of the states of the transition nuc-
leus, and to allow the calculation of fission fragment angu-
lar distributions.

In the calculations described in the present work, the
same approach has been adopted with some important changes.
The computer program of Behkami et al. was modified (see
Appendices III and IV) to take into account up to 60 fis-
sion channels instead of the original five. In addition
(as we shall describe in more detail in another section), an
option has been added to the program that permits the exit
neutron channels to be treated in a statistical manner.

This was done because in the original program it was only
possible to treat up to 26 neutron exit channels.

Because of the wide range of excitation energies stud-
ied in this project, it was also necessary to extend the
formalism in such a way as to include a statistical treat-
ment of the fission channels when they could no longer be
treated discretely. This at the same time, called for the
extension of the subprogram that calculates the angular dis-
tributions, to treat any desired values of the (K,J) quantum

numbers.
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It is important to point out that although the shape
of the formalism remains basically the same, the substance
and depth are somewhat changed. For the sake of complete-
ness and clarity, we have decided to proceed with the des-
cription of both what is old and what is new in the sub-
stance of the calculation, with the hope that it will pro-
vide a better understanding of the theory behind this work.

In order to express the partial reaction probabilities
in terms of transmission coefficients, Moldauer et al. pro-
ceeded to replace the neutron and exit channel partial
widths with optical model transmission coefficients using

the relation:

e}
27 "
T = — <L > (II-S)
AJ L <DAJQ> AT L

The partial widths for y-ray decay of the compound nuclear
state A, spin J, parity 7, and excitation energy U in equa-
tion (II-5) were replaced by transmission coefficients using

the expression:

T)\Y(JITTIU) = 2TT<?>\Y(Jr7TrU)>Q(JrTTrU) (II1-6)

where p(J,m7,U) is the density of (J,m) levels at excitation
energy U. The energy dependence of the average radiation
width was given by the Blatt-leisskopf formula for dipole

Y-ray emission:

U
= p(U-E) .3 (II-7)
rM(U) = C, (f) oy E'dE
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with Ericson's formulation of the energy dependence of the

level density
1
p(U) =C, exp (2m2U/38) " (II-8)

In the above equations, C,, C,, and § are constants, the
latter being of the order of the average spacing between
single particle levels. Thus, the energy dependence of Tyg

was given by the function:
X(U,8) = e [x"=10x°+45%x2~105%x+105] (I1-9)

where x=v/2m20/38. The functional form of the angular momen-

tum dependence of the level density was given by:
F(J) = exp (-J%?/20%) - exp [-(J+1)?%/20%] (II-10)

where 0 is the familiar spin cutoff parameter. Combining
the above equations we get:

F(J,O)X(UO+E,6)
o TF(%,0) 1X(U_,3)

Iy
TM(J,W,E) = 27 (1—)-—) (IT-11)

where (FY/D)O is the measured ratio of the average radiation
width to level spacing for compound nuclear states populated
by s-wave neutrons of zero energy, E is the neutron energy,
and UO is the neutron binding energy. For the case of
radium at high excitation energies, y-ray emission contri-
butes very little to the total cross section. Therefore,
the accuracy of the parameters used is not crucial to the
calculation of the fission cross section. However, the

parameter § can be related to the level density parameter
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a s which determined the slope of the log of the level den-
sity vs. the excitation energy in the compound nucleus.

The partial widths for fission through an exit channel

of given (J,K,m) were replaced by transmission coefficients

given by:

Txf(J,K,Tr,E) = (2ﬂ/<D>\J>) <T>\f(J,K,Tr,E) > (II-12)

As was mentioned before, in order to calculate the
transmission coefficients for fission, the fission barrier
was assumed to have the shape of an inverted parabola. Hill
and Wheeler (Hi 53) have shown that the penetrability is

then given by:

T (J,K,m,E) = {1+exp[2n(Ef(J,K,n)-En)/ﬁw]}‘1 (II-13)

where En is equal to the incident neutron energy, Ef(J,K,ﬂ)

is the fission barrier height relative to the neutron bind-

ing energy, associated with the state (J,K,T) of the transi-
tion nucleus, and hw is equal to the barrier curvature para-
meters.

We can see that for small values of hw, the barrier is
thick, and penetration only takes place close to the top of
the barrier. As hw increases, the barrier becomes thinner,
and penetration becomes a more gradual function of energy.
The barrier height is usually calculated assuming the
following expression:

T4k ](11-14)‘
K%

B¢ (3,K,m) = E_+(h?/200) [3(I+1) =a(=1)"7 7 (I+5) §
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where Eo is the constant representing the base of the rota-
tional band,'ﬁj_is equal to the nuclear moment of inertia
about an axis of rotation perpendicular to the nuclear
symmetry axis, o is the decoupling constant for Ke) bands,
and § is the familiar Kronecker delta.

It is worth mentioning that as the nucleus becomes mofe
and more elongated, 51_increases. The effect of this in-
crease for highly deformed shapes is to lower the effective
barrier corresponding to the different members of the rota-
tional band, and thereby increasing the fission probability.

Once the transmission coefficients have been defined,
they can be replaced in the Hauser-Feshback expression, to
obtain the cross section for neutron induced fission through
a state (X,J,m) of the transition nucleus, in the following
manner:

(23+1) ¢ (m)

(II-15)
2Tf(K,J,W)
X

22Tf(K,J,W)+T (E,J,m)+) )
K Y E'27J"

TR'J'(E')

where En is equal to the incident neutron energy, % is the
reduced wave length of the neutron, and Tf, TY' and ng
have already been defined. The primed quantities refer to
energy levels in the residual nucleus. Therefore, these

neutron transmission coefficients are "inverse reaction co-

efficients". They are evaluated at an energy which is the
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difference between the incident neutron energy, and that of
the level which is being fed. 1In the calculation, angular
momentum and parity are, of course, conserved, and only cer-
tain values of & are allowed to populate levels in the resi-
dual nucleus. The transmission coefficients for fission are
counted twice, in order to account for the possibilities of
two projections of the angular momentum over the nuclear
symmetry axis.

The question regarding the angular distribution of the
fission fragments hinges on the assumption that when the
nucleus reaches the saddle point, the K quantum number,
which is the projection of the total angular momentum over
the nuclear symmetry axis, becomes a constant of the motion.
This assumption would clearly become invalid in the event
that the nucleus lost axial symmetry.

Assuming then, axial symmetry, the dynamics of the
dividing nucleus is compared with the dynamics of a symme-.
tric top. 1In other words, the probability distribution in
space of the fission fragments is taken to be the same as
the probability distribution in direction of the symmetry
axis of a symmetric top, which has: (1) The same total an-
gular momentum quantum number J; (2) The same quantum num-
ber M for the component of the angular momentum about the
space fixed axis "s"; and (3) The same quantum number K for

the component of the angular momentum about the symmetry

axis of extension.
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The wave equation of the rotator is given by the ex-

pression for the symmetric top:

V= D (6,0, = &M® o)X (1I-16)

where ¢, ©, and X are the familiar Euler angles, and d(9)
will be defined later.
The probability that a fissioning nucleus will be

oriented in a certain way will be given by an expression:

d(probability) = 2721[Dy (0,0, |*27sined0  (II-17)

For neutron induced fission of even-even nuclei, the above
two equations yield the following relation for the angular

distribution:

(0) | ?1 (1I-18)

(0) | *+ldy_, ¢

J 1 J
g () = Z(2J+1)[ld

M=%,K

where the d functions are given by:

L

& (0) = [(F+M) 1 (I=M) | (J4K) | (J-K) 1]
14
(I1-19)
. - =K+M-
y 2 (-l)x[51n(%®)]K M+2X[cos(%®)]2J K+M=-2x
(J-K-x) ! (J+M=-x) ! (x+K-M) Ix!
where the sum is over x =0, 1, 2, 3, ... and contains all

terms in which no negative value appears in the denominator,
for any one of the quantities in parentheses.

Some typical WJ functions are shown in Figure 6.

M,K

These serve to illustrate the point that the fission frag-

ment angular distributions can be used as "fingerprints" to
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clarify the identity of the fission channels. For example,
K = % bands are the only ones responsible for angular dis-
tribution peaking at 0°. Therefore, when forward peaking is
observed, this represents the unqualified signature of K = %
character in the transition state spectrum. Assuming that
all the parameters are known, the fragment distribution
associated with fission through a channel of given K can
readily be computed from the expression:

J

MK(@) (II-20)

We(0) = ] 0.(3,K,mMW
m™,M

once the various partial fission cross sections have been
determined.

In reality though, some of 'the variables are not known,
and the way the calculation is carried out is to assume, in
a trial and error basis, values for some of the parameters,
until the experimental data have been fit in the most sta-
tistically significant manner. The free parameters in the
two regions singled out for calculation, namely, moderate
and low energies, are not the same. They will be specified
as each section of the calculation is individually

described.

B, The Role of Neutron Emission

By far, the dominant mode of decay of the excited com-
pound nucleus for incident neutron energies between 3.6 and

14.8 MeV, is the emission of neutrons to energy levels in
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the residual nucleus. This neutron emission represents "v95%
of the decay events observed in this region. Therefore, in
computing the cross section for fission, we see that the de-
nominator in the Hauser=-Feshbach expression (II-15) will be
largely determined by the neutron emission probability fac-
tor.

Under normal circumstances, the neutron emission term
in the denominator of the Hauser-Feshbach expression (II-15)
represents a summation of transmission coefficients for de-
cay to levels of energy E' in the residual nucleus in the
range of excitation energies from 0 to the incident neutron
energy. Because not all combinations of (&', J') are al-
lowed due to momentum conservation arguments, the sum only
takes place over a restricted selection of these values. If
these energy levels in the residual nucleus are known, the
sum can be made in an exact manner; however, at moderate ex-
citation energies encountered in this work, two complica-
tions come into play. In the first place, the residual nuc-
leus levels are only known up to a relatively low value of
the excitation energy, and secondly, even if the levels were
known accurately, their number would seriously lengthen the
calculation in terms of computer time, making it impracti-
cal. In the individual case of 22®Ra, the energy levels are
only known to 0.445 MeV. The lowest neutron energy for
which we have data available corresponds to 3.6 MeV. This

means that any summation in terms of energy levels should be
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performed up to this energy. Of course, the same situation
applies for the whole set of neutron energiés.

The way in which we have decided to treat this problem
is to assume a continuous distribution of levels from the
ground state to the incident neutron energy. In this man-
ner, for a given neutron partial wave with a (&', J') com-
bination and kinetic energy (Ek), decaying into a small num-
ber interval of levels dN of spin and parity Jnm and energy
(En-Ek) of the target nucleus, the effective number of chan-

nels dP is given by the relation:

dp = T (Ek)dNIﬂ(En-Ek) (T1-21)

Lt
For a small enough energy interval the number of levels

dNIﬂ(En-Ek) can be expressed in terms of the local level

density:

dNIﬂ(En-Ek) = p(En-Ek)d(En-Ek) (IT-22)

Substituting the above expression in (II-21) and integrating

over Ek' we get:
En
Pyyg (IT) = jo Tgrg1 (E ) p(E -E,)d(E_-E,) (II-23)

By reversing the limits of integration and differentiating

(En-Ek) with respect to E;, we get:

o

PQ.J,(ITT) = | TQ.J.(Ek)P(En-Ek)dEk (I1-24)

En
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The effective number of neutron channels of all (&', j') de-
caying into all (I,m) levels of the residual nucleus for all
allowed excitation energies is given by the relation:
oL Tpg @) T T 20 g Bey,

E' ' I,m 2'J! En
(II-25)

(En-Ek)dEk]
In order to be able to evaluate this expression we must know

the dependence on energy of the different neutron transmis-

sion coefficients, and that of the level density.
1. The neutron transmission coefficients

The evaluation of the different Tz'j'(Ek)’ requires the
use of an appropriate optical model code. To make use of
such a code in a continuous manner as would be required in
the evaluation of an integral would prove cumbersome be-
cause of the complexity of the calculation. For neutron
energies below 3 MeV, the tables produced by Perey and
Auerbach (Au 62) of neutron transmission coefficients, are
very useful, and have enjoyed widespread use. However, as
we have pointed out, neutron energies encountered in the
228Ra(n,f) data go up to almost 15 MeV, and therefore the
above tables are not appropriate for our use. Meldner and
Lindner (Me 64) have calculated values of the transmission
coefficients for several values of the atomic mass, and for

values of % corresponding to 0 < & < 7, as a function of
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neutron energy. We have used the Meldner-Lindner Tg'j'
values for A = 232 to represent the Tg'j' values needed in
our calculation for these reasons. 1In the first place, we
have not been able to find any specific data for ng values
corresponding to A = 226 specifically. Secondly, the depen-
dence of the transmission coefficients is expected to be on

1/3 rather than on A and therefore, the use of values cor-

A
responding to A = 232 rather than A = 226 should make very
little difference in the final results (Bo 69). Finally,
quite good agreement is obtained between the calculations
of total reaction cross sections using the Meldner-Lindner

Tg'j' values and the experimental data on ?3®?Th of Batchelor

et al. (Ba 65). This agreement is shown in Table I.

Table 1. Inelastic Cross Sections for ?3%?Th(n,n') Reaction.

En(MeV) Experimental* Theory**
3 2,96 b. 3.11 b.
4 2.85 b, 2.90 b.
7 2,77 b, 2,90 b.

* Batchelor et al. (Ba 65)

** Meldner and Lindner (Me 65)

In order to simulate analytically the energy dependence
of the transmission coefficients for the purpose of evaluat-
ing the compound expression (II-24) we fitted this energy
dependence using a non-linear least squares calculation with

five free parameters. Fits were made for each value of £

’
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between 0 and 7. In all cases the same functional form was
used, but of course, with different values of the free para-

meters. The general form of this relation is:

o + 8E &

B I+exp[B(Y-E, )] k (II-26)

TQ(Ek)

where @, B, Y, § and & are free parameters. Table II shows
the best values of these constants for the different 2
waves, and Figures 7 through 10 show plots of the real neu-

tron transmission coefficients and our empirical fits using

expression (II-26).

Table II. Parameters used in Calculating Compound Neutron
Transmission Coefficients.

L a B Y $ £

0 0.30 -0.2272 -5,250 0.36900 0.27150

1 1.00 8.1300 0.257 -0.05030 0.08210

2 0.35 2.8530 1.242 0.08972 0.49590

3 1.00 3.0550 1.574 -0.03078 0.48730

4 0.50 1.5220 3.099 0.00933 0.06276

5 0.50 1.1720 3.855 -0.04660 -0.50000

6 1.00 1.0939 6.865 0 0

7 1.00 0.6743 7.305 -0.00008 -1.00000

For some of the % values, the fits deviate from the

original curves at energies above 5 MeV.

This however, does

not introduce an important source of error in the calcula-

tion of the "compound transmission coefficients" because of
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the sharp dependence of the level density on the excitation

energy. See Appendix I.
2. The level densities in the residual nucleus

To evaluate expression (II-25) we need to know Pme
the level density of the residual nucleus. The problem con-
cerning the evaluation of this level density is a complex
one because of the almost non-existent data in the mass re-
gion around A = 226. In the case of radium in particular,
there is no information that can be used in determining the
densities. Experimental data relating to state densities
and their dependence upon excitation energy was available
for thorium and this data was used in the present calcula=-
tion because it is felt that it should closely approximate
the case of ??’°Ra. As we shall see in a moment, a justifi-
cation for this assumption is found in the fact that neutron
resonance data for the even-odd elements in the region
around uranium are quite similar in magnitude.

The detailed study of neutron resonances provides in-
formation about level densities that is confined to a very
narrow energy interval at the neutron binding energy. Evi=-
dence concerning the nuclear level densities over a much
wider energy interval can be obtained from the analysis of
the energy spectra of evaporated particles in nuclear reac-

tions. The level density p(E) at the excitation energy E
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is deduced from the yield of neutrons N(Eﬁ) of energy Eﬁ by

employing the statistical relation:

4 « 4 ' -
N(En) p(E)En cc(En,E) (I1-27)

where cc(Eﬁﬁﬂ is the inverse cross section for formation of
the compound nucleus at excitation energy E by bombardment
with neutrons of energy Eno

The dependence of the level density on excitation e
energy can be obtained naturally by plotting log N(EA)/E&
cc(Eﬁ,E) vs. E. The paper by Batchelor et al. (Ba 65) con-
tains plots of log N(Eﬁ)/Eﬁ vs., E for various incident
energies in the 23*2Th(n,n') reaction. Fission components
were subtracted from the total non-elastic neutron spectrum
to give the spectrum of the evaporation neutrons. The in-
cident neutron energies were 3, 4, and 7 MeV, and plots are
shown in Figure 1l. All these plots show linear dependences
of log N(EA)/EA vs. VE in the energy regions considered;
however, the ordinate is not directly proportional to the
level density because the inverse cross section is absent in
the denominator of the expression plotted in this figure.
We have made a correction by including this factor, which
was obtained from the 232Th capture cross section calcula-
tion by Meldner and Lindner7 (Me 64). The shapes of the

lines are only slightly changed as shown in Figure 12. 1In

7The magnitude of the error incurred by neglecting oo fluc-
tuates between 6 and 14% for the energy range considered.
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order to obtain the dependence of the continuous density on
energy, these lines are superposed on each other at the
overlapping excitation energies. The *°’Th data however,
presents the problem that there is a lack of data in the
curves for 1.6 MeVI/2 < VE < 2.1 MeV%. This problem was
solved by an extrapolation procedure that joins both curves
smoothly at the crossing point. The result is shown in
Figure 13, The data drawn in Figure 13 was then replotted
in the form: 1log N(EA)/EAOC(EA'E) vs. E, as shown in Figure
14. Having the dependence of the level density on excita-
tion energy, one needs to find the absolute level densities.
These absolute level densities were obtained by normalizing
the curve showing the energy dependence of the level density
to one measured value of the level density at a given exci-
tation energy.

Vorotnikov (Vo 69) has tabulated neutron resonance data
for a series of nuclei in the radium region. This data is

shown in Table III. The even-even nucleus closest to *2°Ra

Table III. Neutron Resonance Data for Nuclei in the Th

Region*.
Compound Binding i?tng:$ Number of N/4 Ene
Nucleus o Energy (MeV) n’ Resonances eV~
Th??®° 5/2 6.72 0-10 14 1.400.37
y?dt 5/2 6.78 20,5-62.8 68 1.60+0.,10
y?dt 7/2 6.40 0-25 42 1.68+0.16
pu?‘? 5/2 6.21 0-30 25 0.83%0.10

*YVorotnikov (Vo 69)
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for which this kind of information exists is 2°°Th. The
data in Table III are the observed density of levels excited
when an s-wave neutron strikes a target of spin Io' to form
a compound nucleus of resulting spin Io + 1/2 if Io # 0, and
of spin 1/2 if Io = 0 with the parity of the compound system
being determined by the parity of the ground state of the
target nucleus. In the case of the compound nucleus 230mp,
the angular momenta and parities of the levels excited are
J = 2+ and J = 3+, because the spin and parity of *2?°Th are
J = 5/2+. Knowing the local density of these states at the
neutron binding energy, we can determine the total level
density provided we also know the spin distribution. The
spin distribution is usually assumed to be Gaussian in

shape, and it is given in the form:

2
p(3) = 2D I (IHh) /20 (II-28)

where J is the total spin, and ¢ is the spin cutoff para-
meter that determines the width of the distribution. Gil-
bert and Cameron (Gi 65) give the following expression to

calculate o?:

5.2/3

c? = 0.0888 (al)“a (I1-29)

where a is equal to the level density parameter, in the
order of A/8; U is equal to E-P(Z2)-P(N): E is equal to the
excitation energy of the nucleus and P(Z) and P(N), are pro-

ton and neutron pairing corrections respectively. Assuming
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that we know all these values, we can calculate the total
density of levels at the binding energy from the relation:

p(all J;m=+)

p(J=2,3;m=+) (II-30)

(E,all J,m) = 2p(E,J=2,3;7m=+) X

We have made the assumption that the density of positive
levels is equal to that of negative levels. p(aIl J,m=+)
can be calculated by integrating (II-28) over all J's to
give:

p(all J,m=+) =1

In the calculation of 0% we have used the parameters given
by Gilbert and Cameron: a = 29,65, P(z) = 0.89, P(N) =
0.79 for 22°Ra. These values are very close to other esti-

mates (Ne 62). Using these values, we find:

o(E,all Jr) = 15p(E,J=2,3;7=+)
and p(Bn=6.72 MeV, all spins) =

2.05 x 107 Mev~!

The normalized level density curves is shown in Figure 14.
For purposes of comparison we also show the one estimated
for 22°Ra by Gilbert and Cameron (Gi 65).

We analytically parameterized the level density depen-
dence on excitation energy so that it could be used to com-
pute expression (II-24). For this purpose we have chosen
the standard Fermi-gas expression for the level density, and

left one parameter, a to vary as a function of energy, At

nl

excitation energies below 3 MeV, where the log of the level
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density is a linear function of energy, we have chosen to
use a constant temperature formula of the same form as that
used by Gilbert and Cameron (Gi 65). We have also added a
spin dependence to this expression of the form given by (II-
28) . The two models are made to join smoothly at 3 MeV., On

account of the above, we have the following expressions:8

Below 3 MeV p(E) = % e (E-Eo) /T (II-31)
/i e2’anl 1
Above 3 MeV D(E) = -—2 me (II-32)
n

where Eo is an empirical constant and T is equal to the nuc-
lear temperature (also to be determined empirically). Upon
fitting these expressions to the level density curve, we

find the following values for the parameters:

Eo

T

-0329

0.415

The variation of a, with E is shown in Figure 19, and it

seems to follow the empirical relation:

29.2 + 205.62 e 1-003E

an(E) (II-33)

or

-1.003U

an(U) 29,2 + 38 e

8A somewhat more complicated formula due to Lang and Le
Couteur (La 54) is sometimes found in the literature in-
stead of equation II-32, in which U5/4 is expressed as (U +
t)5/4, According to (Gi 65), this formula contains an
error regarding the procedure used in conducting the saddle
point integration
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The total fit to the level density is given in Figure 14.

Individual J contributions are obtained from the relation:

- 2
o(e,0) = p() 251 ¢ J(J+1) /20

C. Extension of the Model to High Energies

As the excitation energy above the fission barrier in-
creases, the number of fission channels increases to the
point where the statistical properties of the levels must be
considered rather than the discrete ones. This is done by
extending the calculation by defining "statistical transmis-
sion coefficients" for fission in the same spirit in which
we defined the "compound transmission coefficients" of ex-
pression (II-24). These compound fission penetrabilities
would then play the same role as the individual penetrabi-
lities in the case of the discrete fission channels, and
the parameters (K, J, m, E) describing them would be deter-
mined in a similar way.

These compound fission transmission coefficients are

given by the expression:

U-B¢+e
T (K,J,7,E) = i pp(E,K,J,m) TL(E)dE (IT-35)
o

where pF(E, K, J, ) is the density of channels with quan-
tum numbers K, J, and 7 at an energy E. T'f(E) is of the

same form as the expression given in (II-13). U represents
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the excitation energy of the nucleus, Bf represents the
height of the fission barrier, and € is a small energy in-
crement to the excitation energy interval over which the
integration is carried out to account for the contributions
of channels at higher energies.

The transition nuclear level density expression
pF(E, K, J, m) takes the form of the Fermi-gas expression
for two different types of particles for the sake of con-
sistency with the calculation used for the case of the neu-
tron exit channels. We assume that we have an equal number
of positive and negative parity levels.

For a rotating system of total energy E, the level den-
sity follows the relation:

J,K

(E) « exp [(E-E_[})/T] (II-36)

P7,K

where EJ'K
rot

of the deformed nucleus, and T is the temperature. This ex-

is the energy which is tied up in the rotation

pression can be transformed to yield (Gi 68):

(E) « explE/T-k232/291T- (h?k?/21) [1/, ~1/30-1
(I1-37)
where J is the total angular momentum. The quantity [l/ﬁ“-

P7,K

l/f&'l_]'1 is usually termed the effective moment of inertia
and it is symbolized bytfeff. If we assume that the distri-
bution in K for a fixed value of J is Gaussian, then we can

set:
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« w2 2 -
pJ,K exp (=K /2Ko) (II-38)
and
2 3effT
Ko = —r (II-39)

This leads to the following expression for the total

level density of the transition nucleus:

1
_ (2J+1) _
Pg(EKT) = om %574, °XP [27ag

ar g

(T4t 2 (II-40)
202

- x2 2

K /2KO]
where ag is the level density parameter related to the local
density of levels in the transition nucleus near the Fermi

surface, and ¢ is the spin cutoff parameter. It is cal=-

culated from the expression:
0?2 = %‘;% (II-41)

\ﬂl.is the moment of inertia for rotation about an axis
perpendicular to the nuclear symmetry axis.

The evaluation of the temperature, T, for use in (II-
41) above, is not as completely straightforward as it might
seem. The temperature is usually calculated directly as the
inverse of the partial derivative of the log of the state
density, w, with respect to the excitation energy. In this

respect then:

_ 9 1ln w(E)
= S (II-42)

L= o)
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For a Fermi-gas of two kinds of particles with equidistant

levels the state density is given by the expression (Gi 65):

YT exp (2VakE
w(E) 13 W (II-43)
From this definition, the resulting formula for the tempera-

ture is:

~
5

% e Z% (II-44)

The problem with this relation is that it assumes the
parameter 'a' to be a constant, independent of energy, and
this is not necessarily so. We have seen in the neutron
emission discussion that a, is a very sharp function of ex-
citation energy at low energies, tending to a constant value
at higher excitation. This is a result of fluctuations of
the local level density around the Fermi surface, and re-
flects the fact that the level spacings are not uniform as
is usually assumed.

The same is true in the transition nucleus and there
is no reason why we should expect ag to be a constant, at
least a priori. This fact also poses a problem in the sense
that there is no convenient analytical expression which de-
fines ag in terms of excitation energy, and therefore we
have to resort to empirical fits of the same nature that we
used in the neutron emission case. Under these conditions,

we might define a general form for ae in terms of a flexible
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function which would be expected to yield a constant asymp-
totic value of ag at the limits of higher excitation. As
we did before, and for convenience, we choose the function

to be of the form:

_'YE

af(E) = o+Be (I1-45)

where o, B, Y are free parameters. 1In terms of this func-

tion and (II-42), the temperature becomes:

(a+Be-YE)%_ ( E ~YE
_'YE

E d+8e

_ 5
-YE, 4E
(I1I-46)

and as the excitation energy E reaches high values, the in-

) Fgye™E 4 LXO
4 (atBe

] =

verse of the temperature approaches the form:

1 a, 4 5
7 > (E) - TE_: (1I-47)

where o represents then the asymptotic limit of af(E). So,
we see that at high excitation energies, the temperature is
expected to follow the uniform spacing model prediction but,
to deviate from this prediction for lower energy regions.
Of course, these conclusions are model dependent, and it
might very well be that our choice of an analytic function
for af(E) might not be right, but it provides us with a
start, Figure 21 shows results from calculating T from both
constant ag and variable ae assumptions. It will be dis-
cussed later.

The resulting level density expression must be nor-

malized in K. This is done by dividing the level density
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by the sum of all the relative K contributions up to the
maximum value of the angular momentum. The resulting ex-
pression for the statistical transmission coefficients for

fission is then:

U-Bf+e
o p(E,K,J,m)T' (E)dE
Tf(K'J'ﬂ'E) = J max (II-48)
| exp (-K?/2K})
-J max

Note that we are summing over a range of _Jmax LK L Jmax
because we must include both K projections, in the same man-
ner as we did in the case of the individual channels.9

Ké measures the mean square value of the project of
the angular momentum on the nuclear symmetry axis. It can
be extracted from the shape of the angular distribution of
fission fragments. The flatter this distribution is, the
higher Ké will be, reflecting the width of the distribution
in K., As the anisotropy increases, K; decreases, because
proportionally, we find more bands with low values of K.
Rapid and sudden shifts in K; as a function of excitation
energy in the statistical region are usually associated

with either the creation of new quasiparticle states, or

the occurrence of multiple chance fission.

9In many instances the normalization in K is done by inte-
grating the denominator in (II-48) between the limits of
- and +«, This is basically incorrect, because in cer-
tain cases, the value of Jpgx may be relatively small and
the sum will not approximate the value of the integral as
is usually assumed.
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D. Final Comments on the Model

In the three previous sections we have described the
determination of the parameters involved in evaluating the
"compound transmission coefficients" as given by (II-24) and
(II-35). The integrals in these expressions were solved
numerically by Simpson's rule of integration, using a total
of 30 terms. This was done for all neutron energies in-
volved in the calculations. Computer programs used in the
calculations are listed in Appendices III and IV. Calcu-
lated "compound transmission coefficients" for neutrons were
read into the modified version of the transition state
spectroscopy code WILDCAT as part of the total calculation.

In this chapter we have discussed the main assumptions
adopted in the calculational model. We have also described
in detail how neutron emission is treated in the calcula-
tion, but have not yet shown how the total calculation is
carried out. We have so far assumed in the development of
the formalism that the fission channels are discrete, and
have not said anything regarding their statistical behavior
in the limit of high energies above the barrier. This we
shall do as the need arises. A description of the practi-
cal aspects of the calculation, starting in the limit of a

few channels will be shown in the next chapter,
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ITI. RESULTS OF THE CALCULATIONS

The problem of determining the nature of the fission
channels from experimental data has been shaded with some
ambiguity lately because of the uncertainty in the shape of
the transition state nucleus. If the transition nucleus has
a reflection-symmetric shape, then one would expect the
usual form of the allowed (J,7m) values for a rotational
band, i.e., 0O+, 2+, 4+, 6+..., or 3/2-, 5/2-, 7/2-, etc.
However, if, as predicted by calculations (Ni 72), the tran-
sition nuclei in this region have asymmetric shapes, then
the number of levels in the rotational band are doubled.
For example, asymmetric e-e nuclei rotational bands have the
form 0+, l1-, 2+, 3-, 4+, 5=, etc., while odd-A nuclei rota-
tional bands have the form 3/2+, 5/2+, 7/2t, etc. The argu-
ment is that additional collective degrees of freedom result
from deformations that are not reflection symmetric. A de-
formation violating either of these symmetries leads to a
doubling of the energy levels, and hence to an increase of
the level density by a factor of two. Thus, each (K,R)
level of transition nucleus is fourfold degenerate, i.e.,
+ parity and * K value (Er 58). This effect was pointed out
by Vandenbosch (Va 73a), and later confirmed by Bjornholm,
Bohr, and Mottelson (Bj 73).

Although some theoretical predictions, as we have men-

tioned, favor an asymmetric shape for the ??’Ra transition
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nucleus, it would not be correct to, a priori, rule out the
symmetric shape. For this reason we have carried out the
calculations using both assumptions separately.

Before going directly on to the substance of the cal-
culations, we should describe the procedure followed in
practical terms, and tell also how the constant parameters

involved in the calculations are obtained.

A. The Analysis of the Experimental Data at Low Energies

From the theory that has been developed in the preced-
ing sections it is clear that angular distributions of fis-
sion fragments observed experimentally should be determined
by weighted contribﬁtions of curves similar to the types
shown in Figure 6. At low energies, close to the fission
barrier, the distributions are determined by the parameters
characterizing the first few individual levels, and we do
not know, a priori, what values these parameters assume;
in fact, this is exactly what we are seeking.

The procedure which is followed in this work is to
leave four free parameters for each channel and then, by
trial and error, to find the set of parameters that will
give us the best fit simultaneously to both the fission
cross sections and the corresponding angular distributions
at various energies. The parameters that are left to vary
are: (a) the single particle energy, Eo' which is the base
of the rotational band; (b) the K quantum number, or projec-

tion of the angular momentum over the nuclear symmetry axis;
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(c) the parity of the band, if reflection symmetry is as-

sumed; and finally, (d) the parameter }w which measures the
curvature of the parabola simulating the fission barrier.
Small values of Hw imply a thick, almost impenetrable, bar-
rier and vice versa.

The values of other constants, such as the rotational
constant h?/2Y,;, the decoupling constant a, the level den-
sity parameter §, the spin cutoff parameter ¢ for y decay,
and (I’Y/D)O are inserted into the calculation. The moment
of inertia is calculated from the formula given by Brack et

al. for a rigid body (Br 72):

<HBB> = 54> + & mAR? [c?+4/35 c®(c-1)] (ITI-1)
and
BB - %mARé [c='-2/35 c?(c-1)+4/525 c®(c-1)2] (II-2)

where <:h|RB> is equal to the nuclear moment of inertia
around nuclear symmetry axis, m is equal to the mass of the
nucleon, Ro is equal to the nuclear radius at zero deforma-
tion (8.5f) ,and ¢ equal to the nuclear elongation parameter
taken at the saddle point in the potential energy surface
(1.65, from estimates by Brack et al. [Br 72]).

The above expressions yields a value of the rotational
constant at the saddle point equal to about 2 keV. The
value of the decoupling constant is not really known, but
it makes little difference in the calculation.lO A value

- of a=2 was used.
10

This was confirmed by assuming values of -2<a<+2.
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The contribution of y-ray emission to the total cross
section is very small in relation to neutron evaporation.
This means that if the denominator of the Hauser-Feshbach
expression (II-15) is almost totally controlled by neutron
emission, the cross section for y-ray emission may be

written as:

. Ty
on,Y(En) x Uc(En)(TH)En (ITI-3)

where I, and r, are the widths for y-ray de-excitation and
neutron evaporation respectively, and oc(En) is the neutron
capture cross section. Because FY increases slowly with
energy around 7 MeV (Gi 68), and cc‘decreases slowly with
energy, the dependence of O Y(En) on energy will be almost

-

totally dependent on (Ih)'l. Since I, is directly propor-
tional to the allowed sum of "compound transmission coeffi-
cients" for neutron emission, a partial test of the empiri-
cally determined level density, would be to compare the ex-
perimental and calculated dependences of on,Y(En) on En' In
reality, what we have done is to deduce the parameter § by
fitting the slope of the experimentally determined cross
section for y-ray emission as a function of incident neutron
energy. This is shown in Figure 15. The curve yields a
value of 6=0,07, and (I‘Y/D)o is estimated to be approxi-
mately equal to 0.0002, while ¢, the spin cutoff parameter

was assumed to have a value of about 6.0, On the basis of

the level density systematics, the value of § can be equated



78

0.5 r
g\
~ ~ _ Experimental
\\
0.2 ~—
s
) Calculated
>—
o]
0.1 pF ©
o
o
o
o
3]
0
0
0
0
)
5
O
0.05
0.03 F
Incident Neutron Energy (MeV)
3 \ - \
3.0 3.5 4.0 4.5 5.0 5.5

Figure 15. Experimental and Calculated Dependence of
Opn (n,Y) on Neutron Energy for 22%Ra,



79
with a value of a, = 29 at an excitation energy "9 MeV, if

it is assumed that:

2
2/30 = zng (III-4)

where E represents the excitation energy of the nucleus and
U-E=-P(Z)=P(N). P(Z) and P(N) are pairing corrections, pre-
viously defined. This relation is deduced from a comparison
of expressions (II-8) and II-39) for the level density. The
value of a deduced in this form is consistent with the one
estimated from the neutron evaporation data, a = 29.5,
Since the slopes of the lines in Figure 15 remain roughly
parallel in the energy range in question, this can be con-
sidered as partial indication that the treatment given to
the level density of the residual nucleus and the "compound
transmission coefficients" for neutron evaporation is basi-
cally correct,

The experimental data of Babenko et al. concerning
angular distributions is given in the form of differential
cross section ratios. In order to carry out the analysis
properly, these must be converted into absolute differential
cross sections. The procedure followed for this purpose is
outlined in Appendix II. Resulting differential cross sec-
tions are‘shown in Figures l6a, b, ¢ and d.

The best fit to the experimental data was determined by
a x? or "goodness of fit" test. Unsatisfactory fits were

rejected at the 99% level of confidence. A problem that
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arose in using the x? test was to estimate the numbers of
degrees of freedom in fitting the data. For a given number
of data points, the number of degrees of freedom is repre-
sented by the total number of experimental points minus the
effective number of free parameters used in the calculation.
There are a total of seven experimental points for every
neutron energy, and we are trying to find optimal values for
four variables, K, T, Eo and hu for every fission channel.
Two of these, Eo and fw are unrestricted in the number of
values that they can assume. K can only take a few values
and T can only be either positive or negative. The inter=-
pretation of this problem becomes a little different when we
consider the argument in terms of symmetric vs. asymmetric
saddle point shapes. In the latter case, both parities are
available for every channel, and 7 is no longer a free para-
meter. With the above in mind, we can now proceed to carry
out a search for the parameters that best fit the experimen-
tal data assuming both symmetric and asymmetric shapes at

the saddle point.
1. Fission channels in the symmetric nucleus *?’Ra

The technique that we have used is to try to fit the
data simultaneously for, at first one neutron energy, then
two, three, etc., by using the minimum number of channels
possible in each case. It is clear that as the number of

angular distributions and cross sections increases, the
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chance of obtaining a statistically significant fit to the
data decreases very rapidly. The reason for this is that we
need an ever increasing number of channels, and each channel
introduces four free parameters. Since we only have a total
of seven experimental points at each energy, the number of
degrees of freedom left in each case is exhausted quickly.
We can obtain fits to the data but they are statistically
meaningless.

The data listed in Table IV shows the different com-
binations of parameters tried. We note that it is possible
to fit the experimental data meaningfully only for two ener-
gies, 3.6 and 3.8 MeV. Statistically speaking, nothing can
be said about the parameters characterizing the distribu~-
tions at neutron energies equal to 3.9 and 4.1 MeV. We can,
however, resort to common sense to discover a few itemns.
Figure l6a shows that do/dQ at about 10° in the 3.8 MeV data
takes a value of about 0.60, and it is about 0.42 for En =
3.6 MeV. However, it jumps to 1l.35 for En = 3,9 MeV. The
calculations show that it is not possible to reproduce this
sudden rate of increase in cross section in do/dQ at 10°
with only three channels. Since only K = 1/2 bands peak at
forward angles, we conclude that there must be some nearby
K = 1/2 band which produces a sharp increase in cross sec-
tion around 3.9 MeV. 1In order to produce such a sharp in-
crease and not affect the distribution at 3.8 MeV, the

channel must open only very close to the top of the
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Table IV. Summary of Calculations Describing the Symmetric Nucleus Ra,
RUN
1 2 3 4 5 6 7 8 9 10
# of Energ. one one two two two two two two two two
Channel #
K 3/2- 3/2- 3/2- 3/2~ 3/2+ 3/2+ 3/2- 3/2~ 3/2~ 3/2~
1 Eo 3.650 3.650 3.650 3.630 3.600 3.600 3.650 3.650 3,650 3.650
how 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 o0.400
K 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 Eo 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675
how 0.750 0.750 0.750 0.750 O0.750 0.750 0.750 0.750 0.750 0.750
K 5/2+ 3/2+ 3/2+ 3/2+ 3/2+ 3/2+
3 Eo 3.800 3.800 3.800 3.775 3.750 3,750
ho 0.400 0.400 0.400 0.400 0.400 0.300
K
4 Eo
ho
K
5 Eo
fiw
K
6 Eq
w
X2 3.23 2.91 35.9 35.7 86.7 47.8 19.75 18.84 19.37 18,37
Satisfactory no no no no no no no no no no
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Table IV, continued

RUN
11 12 13 14 15 le6 17 18 19 20
# of Energ. two two two two two two two three three three
Channel #
K 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2-
1 Eo 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650
Hw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400
K 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 Eo 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675
ho 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750
K 3/2+ 3/2+ 5/2- 5/2+ 5/2~ 5/2- 5/2- 5/2+ 5/2+ 5/2+
3 Eo 3.750 3.725 3.800 3.700 3.800 3.800 3.800 3.700 3.700 3.700
ho 0.200 0.200 0.400 0.300 0.400 0.400 0.400 0.300 0.300 0.300
K 3/2~ 5/2- 1l/2- 1/2- 1l/2- 1l/2-
4 Eo 3.975 3,900 3.880 3.880 3.850 3.860
ho 0.400 0.400 0.150 0.100 0.050 0.075
K 3/2~
5 Eo 3.975
o 0.400
K
6 Eo
huo
x? 18.06 21.81 12.68 8.64 11.59 9.91 5,99 29.0 30.4 27.5
Satisfactory no no yes yves no no no no no no
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Table IV, continued

RUN
21 22 23 24 25 26 27 28 29 30
# of Energ. three three three three three three three three three three
Vh
Channel # '
K 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2- 3/2-
1 Eo 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650
w 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400
K 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 Eo 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675
ho 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750 0.750
K 5/2+ 5/2+ 5/2- 5/2- 5/2+ 5/2+ 5/2+ 5/2+ 1/2~ 5/2~-
3 Eo 3,700 3.700 3.740 3.740 3.700 3.700 3.700 3.700 3.880 3.800
ho 0.300 0.300 0.250 0.200 0.300 0.300 0.300 0.300 0.150 0.400
K 1/2- 1/2-~ 1/2- 1/2- 1/2- 1/2- 1/2- 1/2- 3/2- 1/2~
4 Eo 3.870 3.875 3.875 3.875 3.875 3.875 3.875 3.875 3.975 3.880
ho 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.400 0.150
K 3/2- 3/2=-  3/2= 3/2-
5 Eq 3.950 3.950 3.950 3.975
ho 0.200 0.200 0.200 0.400
K 1l/2- 1l/2-
6 Eo 4.050 4.090
ho 0.300 0.300
¥ 2 26 .4 26.7 27.24 28.0 72.15 41.6 35,7 32.8 59.0 30.0
Satisfactory no no no no no no no no no no
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Table IV. continued

RUN
31 32 33 34 35 36 37 38 39 40
# of Energ. three three three three three three three three three three
Channel #
K 3/2~ 3/2- 3/2- 3/2-~ 3/2- 3/2~ 3/2- 3/2- 3/2- 3/2-
1 Eg 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650 3.650
ho 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400
K 1/2+ 1/2+ 1/2+ 1/2+ 1/2- 1/2+ 1/2+ 1/2+ 1/2+ 1/2+
2 Eo 3.700 3.650 3.675 3.675 3.675 3.675 3.675 3.675 3.675 3.675
ho 0.750 0.750 0,850 0.650 0.750 0,750 0,750 0.750 0.750 0.750
K 5/2=~ 5/2- 5/2- 5/2=- 5/2=- 5/2=~ 5/2= 5/2= 5/2=- 5/2=~
3 Eo 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800 3.800
ho 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400
K 1/2- 1/2- 1/2- 1/2- 1l/2- 1/2- 1/2- 1/2- 1/2+ 1/2+
4 Eo 3.880 3.880 3.880 3.880 3.880 3.930 3.880 3.880 3.880 3.830
ho 0.150 1.150 0.150 0.150 0.150 0.150 0.100 0.200 0.150 0.150
K 3/2- 3/2- 3/2=- 3/2- 3/2~ 3/2~ 3/2- 3/2- 3/2- 3/2-
5 Eo 3.975 3.975 3.975 3.975 3.975 3.975 3,975 3.975 3.975 3.975
hw 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400. 0.400 0.400
K
6 Eo
fw
X2 30.0 35.5 30.6 30.7 164.3 54.6 29.0 32.4 38.6 36.3
Satisfactory no no no no no no no no no no
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Table IV. continued

RUNM
41 42 43 44

# of Energq. three three three four

Channel #

K 3/2- 3/2- 3/2- 3/2-

1 Eo 3.650 3.650 3.650 3.650

hw 0.400 0.400 0.400 0.400

K 1/2+ 1/2+ 1/2+ 1/2+

2 Eo 3.675 3.725 3.625 3.675

ho 0.750 0.750 0.750 0.750

K 5/2- 5/2= 5/2- 5/2-

3 Eo 3.800 3.800 3.800 3.800

how 0.400 0.400 0.400 0.400

K 1/2+ 1/2- 1/2- 1/2-

4 Eo 3.830 3.880 3.880 3.880

ho 0.100 0.150 0.150 0.150

K 3/2- 3/2- 3/2- 3/2-

5 Eo 3.975 3.975 3.975 3.975

hw 0.400 0.400 0.400 0.400

K 1/2-

6 Eo 4.090

to 0.300
x 2 31.2 34.8 47.3 37.4
Satisfactory no no no no

06
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barrier; if so, then the barrier must be wide and therefore
fw small.

In the case of En = 4,1 MeV, the fits become statisti-
cally meaningless; combination 28 of Table IV shows the best
fit that can be obtained with six channels, but with the
condition that we not be allowed to say much about them.

For the case in which only two neutron energies are
considered, the combination that gives us the best fit is
combination 1l4. However, we have some ambiguity present
with regard to the K = 5/2 channel; the table shows that the
parity is not defined, thereby making the energy and curva=~
ture parameter uncertain. We tried to fit the angular dis-
tribution with K = 3/2 channels instead of the K = 5/2 ap-
pearing in the table, but it was not possible to obtain an
acceptable value of ¥? for any combination tried. Figure
l6a shows the best fits obtained for three energies, 3.6,
3.8, and 3.9 MeV, and also other combinations of each chan-
nel with energy. Figure 17 represents a fit of channel
cross section vs. neutron energy for the optimum set of
parameters. The uncertainties in the deduced parameters
are hard to evaluate in an exact manner because the search
would have to become much more extensive and the meaning of
the information gathered in this fashion would not be en-
tirely accurate in any case, due to the other uncertainties
in the calculation. However, from the information available

in Table IV we have made a compilation of the best
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parameters and most likely errors for every channel. This
is shown in Table VI. The best fit to the fission cross

section is shown in Figure 18.
2, PFission Channels in the asymmetric nucleus 227Ra

The search for a best fit in this case was done in the .
same manner as in the symmetric case, with one exception;
for every channel both parities were allowed in the calcula-
tion. It was done in this fashion in order to simulate the
doubling in the rotational band as was mentioned before.

The same problems were encountered as in the symmetric case,
and Table V shows a list of all the combinations tried. The
best fit is obtained for E, = 3.6 and 3.8 MeV with the use
of three channels as indicated by combination 17. When the
third energy, En = 3.9 MeV, comes into play, the ground
state, and the one above, are pushed upwards in energy a
little bit in order to obtain the best fit for three ener-
gies simultaneously. As was pointed out for the symmetric
case, we cannot specify the parameters with any statistical
significance when the third neutron energy is included. The
uncertainties in the parameters as extracted from Table V
are shown in Table VI. Figure l6ashows the best fit ob-
tained for two energies. Other fits are also shown for
purposes of comparison and illustration. The best fit to

the cross section is shown in Figure 18.



Table V. Summary of Calculations Describing Asymmetric Nucleus 2?7’Ra at Low Energies.

RUN
1 2 3 4 5 6 7 8 9 10
# of Energies two two two two two two two two two two
Channel #
K 3/2 5/2 5/2 5/2 3/2 3/2 3/2 5/2 3/2 5/2
1 Eo 3.750 3.700 3.700 3.700 3.750 3.740 3.730 3.730 3.725 3.675
hw 0.600 0.600 0.600 0.400 0.600 0.600 0.600 0.450 0.500 0.500
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
2 Eo 3.875 3.890 3.890 3.890 3.890 3.910 3.910 3.910 3.910 3.910
hw 0.900 1.200 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000
K
3 Eo
ho
K
4 Eo
how
K
5 Eo
ha

x? 44,3 114.0 39.5 60.5 35.3 30.2 28.4 34.3 28.12 28.5

Satisfactory no no no no no no no no no no
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Table V. continued
RUN
11 12 13 14 15 16 17 18 19 20
# of Energ. two two two two two two two two two two
Channel #
K 5/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
1 Eq 3.665 3.740 3.740 3.740 3.740 3.750 3.755 3.755 3.758 3.760
hw 0.500 0.500 0.600 0.600 0.550 0.600 0.600 0.600 0.600 0.600
K 1/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3,910 3.850 3.850 3.850 3.850 3.840 3,830 3.830 3.830 3.830
hw 1.000 0.400 0.400 0,400 0.500 0.500 0.500 0.500 0.500 0.500
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1l/2
3 Eo 3,910 3.910 3.915 3.915 3.915 3.915 3.915 3.915 3.915
hw 1.000 1,000 1.000 1.000 1,000 1,000 1.050 1.025 1.025
K
4 Eo
hw
K
5 Eo
ho
x 2 26.7 21.0 16.8 15.6 15.6 13.9 13.4 15.2 13.8 13.65
Satisfactory no no no no no yes yes no yes yes
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Table V. continued

RUN
21 22 23 24 25 26 27 28 29 30
# of Energ. two three three three three three three three three three
Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
1 Eo 3,770 3.785 3.755 3.755 3.755 3.755 3.755 3.755 3.755 3.755
ho 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600 0.600
K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3.830 3.830 3.830 3.830 3.830 3.830 3.830 3.830 3.830 3.840
ho 0.500 0.500 0.500 0.500 0.500 0,500 0.500 0.500 0.550 0.550
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3,915 3.915 3.900 3,925 3.915 3.910 3.905 3.915 3.915 3.915
ho 1,025 1,000 0.150 0,150 0,100 O0.100 0.100 1.000 1.000 1.000
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
4 Eo 3.915 3.915 3.915 3,915 3.915 3.925 3.925 3.925
ho 1.000 1.000 1.000 1,000 1,000 0.150 0.150 0.150
K 3/2
5 Eg 4,000
ho 0.200
x 2 13.7 45,5 51.0 37.5 37.5 38.4 41.1 38.4 37.1 36.1
Satisfactory yes no no no no no no no no no
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Table V. continued
RUN
31 32 33 34 35 36 37 38 39 40
# of Energ. three three three three three three three three three three
Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
1 Eo 3.755 3.755 3.755 3.755 3,755 3.775 3.765 3.775 3.780 3.780
huw 0.600 0.600 0.600 0.600 0.600 0.630 0.625 0.630 0.630 0.650
K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3.850 3.860 3.870 3.870 3.880 3.880 3.880 3.880 3.880 3.880
ho 0.600 0.600 0.600 0.600 0.625 0.625 0.625 0.675 0.700 0.700
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3.915 3.915 3.915 3.915 3,915 3.915 3.915 3.915 3.915 3.915
hw 1.000 1,000 1.000 1,000 1,000 1,000 1.000 1,000 1.000 1.000
K 1/2 1/2 1/2 1/2 1/2 1/2 1l/2 1/2 1/2 1/2
4 Eo 3.925 3,925 3.925 3,905 3.905 3.905 3.905 3.905 3.905 3.905
huw 0.150 0.150 0.150 0.100 0.100 0.l1l00 0.100 0,100 0.100 o0.1l00
K
5 Eo
ho
x 2 35.1 34.6 34.4 35.6 34.8 34.8 34.2 33.5 33.4 33.1
Satisfactory no no no no no no no no no no
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Table V. continued

RUN
41 42 43 44 45 46 47 48 49 50
# of Energ. three three three three four four four four four four
Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
1 Eo 3,780 3.790 3.790 3,790 3.790 3.790 3.790 3.790 3.790 37.90
w 0.650 0.650 0.675 0.675 0.675 0.675 0.675 0.675 0.675 0.675
K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3.880 3.880 3.880 3.880 3.880 3.880 3.880 3.880 3.880 3.880
huw 0.750 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3.915 3,915 3,915 3,915 3,915 3.915 3,915 3.915 3.915 3.915
hw 1,000 1.000 1,000 1.000 1,000 1,000 1.000 1.000 1.000 1.000
K 1l/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
4 Eo 3.905 3.905 3.905 3,900 3.900 3.925 4.000 4.100 4.050 4.075
ho 0.100 o0.100 0.100 0.100 0.100 O0.150 0.200 0.400 0.400 0.450
K
5 Eo
ho
x 2 32,5 32,6 32,6 34.0 69.3 69.5 76.6 57.6 53.7 53.1
Satisfactory no no no no no no no no no no
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Table V. continued

RUN
51 52 53 54 55 56 57 58 59 60
# of Energ. four four four four two two two two two two
Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
1 Eo 3,790 3.790 3.790 3.790 3.755 3.730 3.780 3.755 3.755 3.755
hw 0.675 0.675 0.675 0.675 0.600 0.600 0.600 0.500 0.700 0.700
K 5/2 5/2 5/2 5/2 .5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3.880 3.880 3.880 3.880 3.830 3.830 3.830 3.830 3.830 3.805
ho 0.775 0.775 0.775 0,775 0.500 0.500 0.500 0.500 0.500 0.500
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3,915 4.025 3.925 3.850 3.915 3.915 3.915 3.915 3.915 3.915
hw 1.000 0.600 0.600 0.600 1.000 1.000 1.000 1.000 1.000 1.000
K 1/2
4 Eo 4.060
ho 0.450
K
5 Eo
hw

x? 52.3 324.0 167.5 86.8 13.4 19.5 15.5 18.7 15.4 14.4

Satisfactory no no no no yes no no no no yes
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Table V. continued
RUN
61 62 63 64 65 66 67 68
# of Energ. two two two two two two two two
Channel #
K 3/2 3/2 3/2 3/2 3/2 3/2 3/2 3/2
1 Eq 3.755 3.755 3.755 3.755 3.755 3,755 3.755 3.755
hao 0.700 0.700 0.700 0.700 0.700 0.700 0,700 0.700
K 5/2 5/2 5/2 5/2 5/2 5/2 5/2 5/2
2 Eo 3.855 3.830 3.830 3.830 3.830 3.830 3.830 3.830
hw 0.500 0.400 0.600 0.600 0.600 0.600 0.600 0.600
K 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
3 Eo 3.915 3.915 3.915 3.890 3.940 3.915 3.915 3.940
ho 1.000 1.000 1.000 1.000 1.000 0,800 1.200 1.000
K
4 Eq
hw
K
5 E
o}
ho
x 2 14.6 14.8 13.8 22.3 12.2 26.5 30.5 29.3
Satisfactory yes yes yes no yes no no no

00T
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Table VI. Parameters Describing the Low Lying Single
Particle States in the 2?’Ra Transition Nucleus.

Part A. Symmetric Saddle Point Deformation

State No. (K,T) - E_ (MeV) hu (MeV)
1 3/2~- 3.65%0.1 0.4 0.1
2 1/2+ 3.67%0,1 0.75%0,2
3 5/2% 3.70%0,1 0.3 0.2
4 1/2~ 3.88%0,.1 v0.1 0,05

Part B, Asymmetric Saddle Point Deformation

State No. K E, (MeV) ho (Mev)
1 3/2 3,76%0,05 0.6 #0.1
2 5/2 3.83:0.05 0.4 0.2
3 1/2 3.920.05 1.0 #0.1

B, Parameters Describing the ?%?’Ra
Transition Nucleus at Moderate Excitation Energies

The discussion concerning the excited transition nuc-
leus in this energy region follows basically the same pat-
tern used in describing the region where only a few channels
are available for fission. The calculations are carried out
on a trial and error basis. In this manner the values of
certain free parameters which best fit the experimental
data are chosen; the fit is judged according to the X2 cri-
teria. As we did before, we have to allow for two basic
possibilities: in one case the shape of the transition nuc-

leus is assumed to be symmetric, in the other the nuclear
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shape will be asymmetric. The number of levels in each ro-
tational band is doubled in the latter case.

One question that immediately comes to mind is in rela-
tion to where the "statistical region" lies. 1In other
words, at what point are we justified in using the statisti-
cal approximations developed above" We know that there is
in fact a "twilight zone" between the "discrete" and "sta-
tistical worlds". Conservatively speaking, we might expect
the application of a statistical model for E* < 1 MeV to be
questionable and that for E* > 3 MeV, such an application
should be quite acceptable. The excitation energy range !

1 < E* < 2 MeV constitutes a "twilight zone". Unfortunately
the interestingly large step in the cross section is ob-
served at the point corresponding to E = 4,7 MeV (E* = 1
MeV). This "discontinuity" in the cross section assures

the existence of a large jump, in the number of fission
channels available, within a short energy range.

What we have done to treat this lower energy region is
to feed discrete channels into the undefined region (from
V3.9 MeV to V4.7 MeV), with the idea of fitting the cross
section in this range in a way which will reproduce the
angular distribution of fragments at 4.7 MeV (the next point
where data of this kind is available)., Of course, the use
of discrete levels in fitting the data in this region has
no meaning other than perhaps giving us a vague idea of

the relative K strengths required to reproduce the
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anisotropy at 4.1 and 4.7 MeV. From 4.7 MeV on, we apply
the statistical formalism in a way such that all the data
points are fitted. The two models are made to join smoothly
in a region (En = 4,7 MeV) where some of the parameters des-
cribing the behavior of the system lose some of their sig-
nificance. This is the best that we can do under the cir-
cumstances and it might be a small price to pay in return
for the overall information which we will finally obtain.

As the excitation energy of the nucleus increases, the
cross section reaches a point where its variations with
energy is relatively small, because of the relative con-
stancy of (Pf/Fn). Large jumps in the slope of the curve
can be associated with fission after neutron evaporation.

f 227Ra we see that at neutron energies above

In the case o
approximately 9.0 MeV, the cross section increases very
rapidly; this rapid change takes place in a region where we
can expect second chance fission to begin occurring. Quali-
tatively it can be shown that this is the case. An incident

227Ra nucleus to about 13.5 MeV.

9 MeV neutron excites the
An evaporated neutron would, on the average, possess a kine-
tic energy of about 1.5 MeV, leaving the residual nucleus
excited to about 7.5 MeV. However, the range of excitation
is wide, and, for example, the most probable kinetic energy
would be in the order of about 0.75 MeV, which would leave

the residual nucleus with 8.25 MeV of excitation energy.

This is more or less the height of the fission barrier in
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the residual nucleus and thus where we would expect fission
to begin to be observed.

Therefore, the region over which the statistical cal~-
culation can be used is for excitation energies correspond-
ing to neutron energies between 4.7 and 9.0 MeV. Another
reason why the formalism in this calculation cannot be used
at higher energies is that we simply do not know the shape
of the level density of the residual nucleus at energies
much higher than the neutron binding energy, because no ex-
perimental data is available.

As might have been anticipated, the free parameters
left to vary in our calculation are a. and Ké. The deter-
minations of the parameters can be carried out separately,
also very conveniently, because the value of the fission
cross section does not depend strongly on Ké, as can be in-
ferred from the normalization implied in (II-48). There-
fore, we can proceed to fit the cross sections independent
of the angular distributions.

It is clear that the variation of ag with energy must
be simulated analytically such that it is a continuous func-
tion of energy. For this purpose we make use of expression
(II-45). As we have already mentioned, this form has three
free parameters, o, B, and Y. The variable o represents the
asymptotic value of ag as the energy becomes very high: ¥y
reflects the sharpness of the variation of ag with energy;

and B reflects the magnitude of the energy dependence
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itself. The excitation energy is evaluated from the barrier
heights (3.650 and 3.755 MeV), which were estimated from the
discrete calculations, for both the symmetric and asymmetric
shapes. The parameters extracted from the best fits are
listed in Table VII, while the fits themselves are shown in

Figure 18. The dependence of a_ on the excitation energy is

f

shown in Figure 19.

Table VII. Statistical Parameters for *?’Ra

Mode a B Y ho h2/2y,
Asym. 28.9 58.0 1.055 0.400 0.002
Symm. 30.0 55.0 0.960 0.400 0.002

The fit to the point at En = 4,7 MeV (E* = 1.5 MeV),
may be somewhat artificial, as we have explained, because it
is not possible to define a clear-cut transition point be-
tween the single particle calculations and the statistical
calculations. In order to fit this point, 15 channels are
added individually to the calculation between 4.0 and 4.7
MeV in the symmetric case, while ten are used in the asym-
metric case.

In the symmetric case, the integration of the statisti-
cal expression (II-35) starts at E = 4,650, while in the
asymmetric case the integral is evaluated beginning at E =
4,7 MeV. Fixed parameters used in the calculation are the
rotational constant hZ/ZQL, assumed to be the same as be-

fore (V2 keV); the curvature parameter hw, which assumes a
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value of 0.400 MeV (Be 68), and the upper integration limit,
e, used in the evaluation of expression (II-35). Although
'in most calculations done by others (Gi 68) the fission
channels are assumed to be completely open, up to the nomi-
nal excitation energy, with higher lying channels completely
closed, we have not adopted this approximation because it is
not physically correct. The nucleus in the transition state
at a given excitation energy samples the character of the
barriers immediately above that energy because of the nature
of the penetrability implied by (II-13). The value of € was
chosen by noting that if, for example, we integrate up to
0.400 MeV above the incident neutron energy, and have used
a value of hw = 0.400 MeV, then the barrier penetration fac-

tor at that point would be:

-2

T, = {1+exp[ (27/0.400) (0.400)1}~! = e~ “"~0.002

which is small enough to cause no appreciable error. Hence,
the upper integration limit has been chosen for an excita-
tion energy 0.4 MeV above (En + B, - Bf), where E, is the
neutron kinetic energy, Bn is the neutron binding energy,
and Bf is the height of the fission barrier. Since the
values for some of these constants have been assumed, we
have decided to determine the effect of varying them. We
express this effect as the percentage of change in ag in
relation to the original value, needed to reproduce the ex-

perimental data when the constants in question have been
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varied by a certain specified amount. Thus, when hw changes
by £0.200 MeV, ae varies by about 0.5%. In the same manner,
a variation in the rotational constant h?/2J1 from 2 to 5
keV, requires a decrease in ae of about 13%., Similarly, a
decrease in € from 0.4 MeV to zero, requires a change in ag
of roughly 1%.

From the fission fragment angular distributions we can
infer the values of Ké for every energy. Since, as we men-
tioned previously, the evaluation of both, as and Ké are
separable, the best value for Ké is obtained by fitting the
fission cross section by varying Agy and then varying Ké un-
til the smallest x? value is obtained for every angular dis-
tribution individually. The error limits in Ké are deduced
in a similar manner by finding the values of this parameter
corresponding to the points where the fits are no longer
considered to be acceptable using a x? criterion. Table
VIII lists the best values deduced for ké in this energy
region, together with the upper and lower limits of error.
Figures 1l6b, c, d how best fits to the angular distributions
of the fission fragments at the different energies, and
Figure 20 is a plot of Ké vs. the kinetic energy of the in-
cident neutron.

Figure 20 shows how Ké oscillates with energy in a man-
ner not expected from the theory developed in the previous
section, although the character of the eﬁergy dependence is

not very precise because of the uncertainty in the values
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Table VIII. Ké Values Describing Angular Distribution of
Fission Fragments.

E, Best x? Low x2 High x2
4,7 8.0 8.2 6.5 12 14.0 12.8
5.4 14,0 9.0 11.0 13 21.0 12
6.2 8.0 6.6 6.0 13 12,0 12.7
6.7 5.0 3.0 3.0 12 20.0 12
7.1 11.0 9.9 8.0 12 13.0 11.6
7.9 21.0 5.8 13.5 12.5 45.0 12
8.9 50.0 7.7 15.0 9.0 Very High =
9.0 19.0 6.1 13.0 12 30.0 12,7
9.7 11.0 4,2 8.5 12 16,0 ~12

deduced. However, for energies below 7.1 MeV, the value of
Ké fluctuates around an average of about 8, and of about 24
for energies between 7.9 and 9.0 MeV. Above this region, at
9.7 Mev, K; decreases substantially as the contribution from
second chance fission becomes more significant.

One final parameter which we have not commented on is
the nuclear temperature. The dependence of T on excitation
energy follows directly from (II-46). Figure 21 shows the
behavior of T(U) vs. U, where U is the excitation energy
above the fission barrier. For comparison, we also show
the behavior of the temperature when a uniform Fermi gas
model is assumed, in which ae remains constant (at a value

of v30 MeV-!), with varying energy. As we can see, the
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non-uniformity of the single particle levels near the Fermi
surface seems at first sight to be responsible for the pla-
teau and slight decrease in T. As the energy increases, T

approaches the value predicted by the constant a_ model. We

f
shall discuss this problem in more detail in the next
chapter.

Before we enter the discussion of the results reported
in this chapter, it is important that we point out and
clarify some of the terminology that will be used in rela-
tion to the excitation energies.

A plot of level densities vs., excitation energy for
even-even, 0odd-A and odd-odd nuclei in the same mass region

shows that at a given excitation energy, o > p o

0=-0 o-A e~e’

Moreover, the shape of the density functions is very similar
in all cases, the difference arising from a shift in the
energy axis. This phenomenon is associated with the fact
that an even-even nucleus has all its nucleons paired, and
its only low lying states are collective in nature. When
the excitation energy becomes sufficiently large to break a
nuclear pair, the level density begins to exhibit the char-
acteristic exponential increase with energy. An odd-odd
nucleus, by contrast, already has two unpaired nucleons and
intrinsic states associated with different orbits of the un-
paired nucleons can therefore be immediately excited. The
effective excitation energy, U, is thus related to the ex-

citation energy measured from the true ground state by:
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U =E for o-o nuclei

U=E for odd-A nuclei

- A(n or p)

U=E-A_=A for e-e nuclei
n o

It is very useful to be able to compare some of the
statistical parameters on a common ground of intrinsic ex-
citation. Therefore, in the coming discussion we will refer
to the quantity U as the energy "above the unpaired ground

state", or the "fictitious excitation energy".
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IV, DISCUSSION OF RESULTS

A. Interpretation of Results at Low Excitation Energies

In the discussion of the preceding chapter, we deduced

227Ra transition

the sets of parameters which describe the
nucleus at the saddle point for two types of deformations.
Since the neutron binding energy has a value of 4.5 MeV,
this calculation places the fission barrier height at about
8.2 MeV. How do our results compare with those obtained
independently by other investigators?

The most recent experimental data regarding fission of
227Ra is that of Konecny and co-workers (Ko 73), whose re-
sults are shown in Figure 22 for the reaction 2?2°%Ra(d,p)
227Ra » £. The "elbow" in the Ff/Fn curve observed in their
experimental data would place the fission barrier at appro-
ximately 8.2 MeV of excitation. This estimate agrees subs
stantially well with our own previously stated result.

Theoretical predictions of the single particle levels
and the barrier height have come from the calculations done
by Drs. Nix and Moller (Ni 73) (who have very kindly made
these available to us). The results involve calculations
for two deformations, one corresponding to the ground state,
and another corresponding to a very deformed, highly asym=-
metric saddle point shape. The potential energies of defor-
mation were evaluated according to the macroscopic-micro=-

scopic method. The macroscopic part was calculated for two
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orders of approximation. In one case the nuclear energy is
evaluated by including the Coulomb and surface energies,
expressed in terms of lower order shape dependent quanti-
ties; this approximation leads to the liquid drop model
(LDM) . The inclusion of higher order terms in the expan-
sion leads to the droplet model, which takes into account
effects that are associated with the finite size of nuclei,
such as nuclear compressibility and curvature corrections.
From the nuclear shape specified by the macroscopic
calculation, a potential is generated, and the Schrodinger
equation is solved to obtain the single particle energies.
From these, the shell and pairing corrections are calcu-
lated. They arise because of fluctuations in the actual
distribution of levels relative to a smooth distribution.
A partial potential energy surface diagram for 22%%Ra, as
calculated by Nix and Moller, is given in Figure 23, and
arrows indicate the most probable path to fission. The "s"

indicates the probable saddle point. Table IX lists the

Table IX. Macroscopic-Microscopic Calculations for 22%Ra*,

Ground Saddle

State** Point** Total**
Shell Correction -2.394 - 3.524
Pairing Correction +0.276 + 0.69§
LDM Energy +2.637 +13.780
Droplet Energy +2.720 +11.550
Potential Energy (LDM) +0.518 +10.950 +10,43
Potential Energy (Droplet) +0.602 + 8.72 + 8.12

* Nix and Moller (Ni 73)
** All energies in MeV.
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values for the shell and pairing.corrections, the liquid
drop and droplet energies, and the resulting potential ener-
gies at the ground state and saddle point deformations. It
is interesting to notice the difference between the bar-
riers calculated by the droplet model and the LDM. The
latter is higher by over 2 MeV. Therefore, it seems that
the introduction of higher order correction terms into the
LDM introduces a significant difference in the results of
the calculations at high deformations. The shell correc-
tions for the ground state and fission deformations can be
interpreted to mean that the calculations predict a lower
than average single particle level density around the Fermi
surface at these deformations.

In comparing these results with the ones extracted
from the experimental data, we notice that our estimate of
the fission barrier height is in very good agreement with
the calculations by Nix and MOller, whose barrier estimate
is 8.12 MeV in the droplet approximation.

Other fission barrier results are summarized in Table
X. Apart from the calculations that we have described,
good agreement is also obtained with the estimates of Brack
et al. (Br 72) for ??®Ra, It is important to note the
height of the inner barrier derived in this calculation,

It is only calculated to be 2,2 MeV. Also, not listed in
Table X, but worth mentioning is the magnitude of the shell

228

correction for Ra, which according to Brack et al., is



Table X. Fission Barrier Heights (In MeV) for Various Ra Isotopes.

Inner Outer Barrier Outer Barrier
Nucleus Source Barrier Symmetric Asymmetric Reference
228Ra Experimental - 8.5%0.5 Zhagrov (Zh 71)
228Ra Theory 4,5 10.0 10.0 Adeev (Ad 72)
228Ra Theory 4.2 10.5 9.0 Moller (Mo 72)
228Ra Theory 3.7 10.7 - Mosel & Schmitt
(Mo 71)
228Ra Theory - 10.2 10.2 Pauli (Pa 73)
227Ra Experimental - 8.2%0.1 This work
228Ra Theory 2.4 - ; 8.2 Brack et al. (Br 72)

0cT
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~0.4 MeV at the ground state. This is to be compared with
a shell correction of =2,394 MeV as estimated by Nix and
MGller and listed in Table IX. We shall comment more on
the subject of the shell corrections in a subsequent sec-
tion,

If the independent estimates of the fission barrier in
227Ra show such good agreement, it will be interesting to
see how well the single particle level calculations carried
out by other people compare with those deduced in this work.
We might begin by noting that the gradual decrease in the
anisotropy with decreasing energy from a maximum at 8.6 MeV
of excitation (En = 4,1 MeV) observed by Konecny et al.,

(Ko 73) would qualitatively support the notion that the
first channel at the barrier is not a K = 1/2 channel, 1In
both our estimates (symmetric and asymmetric), the lowest
lying channel is K = 3/2., Figure 24 shows the neutron
single particle levels calculated theoretically for the
saddle point deformation by Nix and Moller and also
Pashkevich (Ip 72), in comparison with those determined in
the present work, which assumes symmetric and asymmetric
saddle point deformations. The agreement between the Nix-
MSller set of data and ours can be considered remarkably
good, and perhaps fortuitous. 1In the symmetric case, the
order of the levels is predicted by the theory, even though
the energy differences are not well reproduced. In order

to empirically reproduce the level spacings, the level
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density of ?2®Ra would have had to be reduced. This would
have caused a rise in the height of the barrier which would
have been necessary in order to fit the experimental data.
In the asymmetric case, the level spacings are better re-
produced by the theory; however, the ordering of the 5/2
and 1/2 levels would have to be reversed. Considering the
numerous approximations that have been made in these calcu-
lations, we must say that the agreement is quite reasonable.

Very little or no agreement is observed between our
set of levels and that resulting from Pashkevich's calcula=-
tions. Sources of discrepancy between the theoretical and
empirically determined single particle levels would involve
the accuracy of the deformation at which these levels are
calculated in comparison to the one corresponding to the
precise saddle point. From looking at Nilsson~-type dia-
grams it is easy to see that a small displacement in defor-
mation can substantially alter the spacings between the
levels and even reverse their order if there are nearby
crossings.

Now we return to one of the important points in the
purpose of this project. In the introductory part of this
work it was suggested that even if the problem of the
"thorium anomaly" could not be resolved, we could perhaps
at least determine whether this disagreement between the
theory and experiment persisted in the case of radium, The

evidence displayed in this section would indicate that it
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does not. The agreement between different theoretical cal-
culations, particularly those of Nix and Moller, and experi-

227Rpa in this work is very good. This

mental analysis for
observation would lead us to conclude that there is some-
thing peculiar in thorium which does not seem to be present
in other nearby elements.

B. Interpretation of Results at Moderate
Excitation Energles

A great proportion of the results obtained from the
calculations outlined in the previous sections are based
upon the validity of the assumptions regarding the evalua-
tion of the level density of the 22°Ra nucleus at equili-
brium deformation. Under these circumstances we might
spend some time discussing the parameters that entered in
this particular part of the calculation.

The fit to the experimental level density dependence
on energy had made use of a back-shifted Fermi-gas model
expression with one free parameter, a. s at energies above
3 MeV. We have pointed out previously that in this fit, a
dependence of a_ on excitation energy is obtained as shown
in Figure 19. 1In the derivation of the Fermi-gas level
density expression, this parameter is proportional to the
density of single particle levels in the nucleus in the
following form:

. =12
n 6 g
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where 94 represents the single particle density for both
neutrons and protons. We have assumed that these particle
levels are equidistant and therefore 9q is a constant.

However, from fits to experimental data we know that
this is not the case and that in many cases a, is indeed a
function of excitation energy. At low energies the nucleus
only samples the levels close to the Fermi surface, and the
level density of the nucleus is therefore characterized by
the single particle levels in a short energy interval above
and below the Fermi surface. However, as the energy in-
creases, the nucleus begins sampling regions far from the
surface, with the effect that it now "sees" an average
single particle density, in which the local density fluctua-
tions are effectively washed out.

In the case of “?°Ra, values of a decrease steadily
as the excitation energy increases, until asymptotic values
are reached. The real location at which the a, dependence
on energy becomes flat is not known because we do not have
any more experimental data above this region, and therefore
our fit is not reliable at energies a little above the neu-
tron binding energy, or about 7.0 MeV of excitation energy.
The main point to be emphasized, is the meaning of this
steady decrease with energy.

Under normal circumstances, this energy dependence of
the level density could be equated with a high local den-

sity of single particle levels at the Fermi surface, in the
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order of 40/1.5 ~ 24 levels/MeV, or about 12 MeV~' for each

nucleon type. This is quite high if we look at other sys-
tems above and below the radium mass region and see that
the a, dependence is in a sense reversed. In other words,
what is observed is that a, increases with excitation
energy; the interpretation of this is based on the argument
that at ground state deformations, the Strutinsky shell
correction is negative because the local density of levels
at. the Fermi surface is lower than average. Therefore, un-
less the interpretation given to the experimental data is
wrong, it is clear that we have at hand a system which
shows some peculiar properties.

The problem becomes more important when we realize
that the behavior of the fissioning system depends directly
on the level density of the residual nucleus. For example,
the evaluation of Ff depends totally on what Fn values are
used in the calculations and Fn is, of course, directly
proportional to Pne the level density of the residual
nucleus.

Our version of the energy dependence of vy the den-
sity parameter at the saddle point, is therefore strongly
bound to what we may determine regarding a , as we have im-
plied previously. The result, as we have already seen, is
shown in Figure 19. As in the case of a ., we observe a
monotonic decrease of ag with energy in both the asymmetric

and symmetric calculations. It is interesting to notice
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that the symmettric curve does not cross the a, line at any
point, while the asymmetric line crosses it at a point cor-

responding to about 4.25 MeV of excitation above the un~

asym
f

discuss the meaning associated with this observation a

paired ground state: from there on, a < ap. We will
little later.

The derivation of the Fermi-gas expression (II-32)
assumes that the overwhelming contribution to the level den-
sity is provided by the random coupling between single par-
ticle excitations in the nucleus. This assumption could be
tested by theoretically calculating the level density depen-
dence on energy and comparing it with the results deduced
from the experimental data.

Single particle levels can be used to calculate micro-
scopically the nuclear level density. An important formal-
ism has been established by Decowski et al. (De 68) which
properly takes into account the effect of the pairing cor-
relations. Based on this formalism a computer code has
been developed by Bolsterli (Bo 73, Br 73) which calculates
the density of intrinsic levels as a function of excitation
energy. Input parameters in this calculations are the sin-
gle particle levels and the pairing strengths, which are
obtained from the macroscopic-microscopic calculations of
Nix and M6ller. We have used this computer code for calcu-
lating the density of states at the ground state and saddle

point deformations in 2?%®Ra. Table XI lists the values of
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Table XI. State Density Parameters for 22°Ra from Micro-
scopic Calculation

Part A. Equilibrium Deformation

E (MeV) log)yw 4 8y T
0.50 -0.605 1.230 0.89 0.353
1.00 -0.080 1.210 0.83 0.388
1.50 0.418 1.190 0.78 0.416
2.00 0.895 1.160 0.73 0.439
2.50 1.354 1.140 0.68 0.460
3.00 1.796 1.120 0.62 0.478
3.50 2.224 1.100 0.56 0.495
4.00 2.641 1.070 0.50 0.510
4,50 3.046 1.050 0.43 0.524
5.00 3,442 1.030 0.34 0.538
5.50 3.840 0.998 0.21 0.552
6.00 4.271 0.968 - 0.567
6.70 4,797 0.924 - 0.586
7.00 5.015 0.895 - 0.598
8.00 5.702 0.811 - 0.628

10.00 6.995 0.615 - 0.680

Part B, Highly Deformed Saddle Point

E (MeV) 10910“ An Ap‘ T
0.50 -0.510 1.320 0.54 0.355
1.00 0.010 1.300 0.44 0.390
1.50 0.505 1.280 0.32 0.418
2.00 0.979 1.260 0.15 0.442
2.50 1,486 1.240 - 0.467
3.00 1.911 1.210 - 0.490
3.50 2.318 1.180 - 0.511
4,00 2.715 1.150 - 0.531
4.50 3.099 1.120 - 0.549
5.00 3.472 1.090 - 0.565
5.50 3.835 1.060 - 0.581
6.00 4,191 1.030 - 0.595
6.70 4.676 0.990 - 0.615
7.00 4,879 0.970 - 0.623
8.00 5.542 0.900 - 0.648

10.00 6.801 0.750 - 0.693

the excitation energies, the resulting state density, the
pairing gap for both protons and neutrons, and the nuclear

temperature. The calculated state density does not include
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collective contributions such as rotations and vibrations,
and these would have to be included separately. Figure 25
shows a plot of the intrinsic state densities calculated in
this fashion, in comparison with those obtained empirically
from the experimental data. It is apparent from this graph
that the difference in magnitude between the experimental
and theoretical level densities is immense.

The recent paper by Bjornholm et al. (Bj 73) may shed
some light on the problem. This work discussed the relative
enhancements in the total level density of the nucleus based
on the degrees of asymmetry associated with certain nuclear
shapes. Thus, a spherical nucleus would possess the lowest
density of levels because of its higH symmetry. For example,
they point out that if the spin cutdff parameter o has a
value of five, a nucleus with no rotational symmetry would

be expected to have a level density:

i
(87) %0% =~ 625

times higher than its spherical counterpart at comparable
excitation energies. In the same manner, the total density
of levels of energy E would be enhanced by vibrational con-

tributions to the level density, expressed by the factor:

-ﬁw/T)-g

(T) = (l-e (IV=-1)

Zvib
where hw is the frequency of the vibration, T is the tem=-

perature, and g is a degeneracy factor equal to 2X+1l; A is
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in the multipole order. It is clear then, that the degree
of enhancement provided by the collective degrees of freedom
can be very substantial, particularly in cases where values
of the vibrational frequency are small, and multipole orders
are high, and also in cases where asymmetries are found in
the nuclear shape, particularly if the deformations are
large. For nuclei in the actinide region the characteristic
ground state deformations is prolate. The rotational en-
hancement provided for such a shape is equivalent to o2,
which is proportional to the temperature. Although 0% can
be large, its variation with energy is not expected to be
very significant in a relatively short range of energy be=
cause the temperature T varies approximately as T<vE. How-
ever, intrinsic excitations increase very rapidly with en-

ergy because of the exponential dependence of p on E,.

intr
The degree of variation of the vibrational enhancement with
energy is not expected to be nearly as large as for the in-
trinsic excitations, but larger than in the case of rota-
tions, particularly if X in (IV-=1l) is relatively high.
Therefore, the slope of the log10 of the level density curve
is expected to be largely determined by the dependence of
the internal excitations on energy with relatively small
deviations provided by the other contributions to the level
density. The degree to which these deviations are observed

should depend, to a great extent, on the mass region to

which a certain nucleus belongs. This is clearly indicated
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by the characteristic low energy spectra noted in certain
areas of the periodic table. These spectra are determined
largely by the corresponding nuclear shapes (see for example
[Ma 70]).

The "transitional character" of radium in relation to
other nuclei can be described in terms of the fact that
other nuclei of lower atomic number do not exhibit rota-
tional levels because of their sphericity. In contrast,
vibrational states are observed. In the case of radium and
thorium, both types of levels are present and the vibrations
are low in energy (Vv0.25 MeV for the first octupole state in
radium). We might say that radium is "soft" to octupole de-
formations (Jo 6l1l). As we can see, the enhancement of the
level densities predicted by (IV=1l) can be considerable,
particularly if T >> hw. The same is true of the rotational
contribution to the level density, which is in the order of
02, Now it is possible to begin answering the gquestion
which was posed before, namely why does the Fermi-gas ex-
pression (II-32) yield a value for the level density para-
meter a which implies a much larger than expected single
particle level density around the Fermi surface? The ans-
wer lies in the fact that our method of deducing a, does not
distinguish between single particle levels and collective
levels and thus, some of the collective effects may be "ab-
sorbed" into the deduced a value, thereby causing a rise in

the value of a . This effect would be expected to be large
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at low energies because the proportion of single particle
excitations is relatively low in relation to other types of
excitations.

To demonstrate this, we could ask ourselves how the
different types of excitations exist in proportion to each
other as the energy of the nucleus increases. What ratios
of collective to quasiparticle excitations are expected at
different temperatures? One typical type of motion is the
octupole vibration as we mentioned before. In the case of
thorium, from which we have borrowed our functional level
density, the first octupole vibration is observed at about
500 keV above the ground state. The partition function for
this type of motion is given by (IV-1l), where g = 7; since
A= 3., If we assume that the temperature is approximately

400 keV, we find that:

2 (T=0.4) ~ 10

vib
If we now assume that the temperature is about 500 keV, or

in the order of the vibration quantum energy,

2 (T=0.5) ~ 25

vib
Switching for a moment into the BCS formalism, we could com=-
pare these two quantities with the partition functions cor-
responding to quasiparticle excitations evaluated at these

same values of the temperature. For T > A/2, where A is the

pairing gap parameter, the partition function may be appro=

ximated by the following expression (K1 64);
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[+2]

log z(8) = 4g_ b | (-l)n+lKl(nBA)/n - log 4 (IV-2)
n=1

where B is the inverse of the temperature, and Kl is the

modified Bessel function of first order. If goA = 5 then it

is found that:

.9 for T = 0.4
Zintr(B)
24 for T = 0.5
The result is that the ratio of Zintr to ZVib increases by a

factor of about 2.6 when the temperature increases by 25%.
We have made this rough calculation to show that collective
excitations are extremely important, and that their contri-
bution is very large, particularly at low energies. In the
mass region A Vv 230, octupole vibrations seem to play a sig-
nificant role; other types of excitation might also contri-
bute, but for purposes of illustration we have only chosen
to discuss one mode. So far, that is how the situation re-
garding the level density appears at the equilibrium defor-
mation. However, we have not yet said anything regarding
collective effects at the transition state deformation. The
number of levels that are required to fit the fission cross
section and angular distributions goes up rapidly as the
energy increases. This is a direct consequence of the high
number of neutron exit channels which are present in the

residual nucleus.
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Just as in the previous case of a , we observe a gen-
eral decrease of ag with increasing excitation energy as
shown in Figure 19. The state density at the saddle point
deformation, calculated theoretically (Figure 25), follows
closely that corresponding to the ground state deformation,
crossing the latter at about 5.0 MeV of excitation (in rela-
tion to the unpaired ground state). Again, in this calcula-
tion we seem to be badly underestimating the collective con-
tributions to the level density. The single particle level
densities at the saddle point are too large in relation to
what is normally expected. It is possible to develop an
argument similar to the one which we expressed before, re-
lating a with some minor variations. In the first place,
the nuclear shape is very elongated and the moment of in-
ertia large; secondly, two types of deformations can be dis-
cussed, symmetric and asymmetric; whereas before one could
only talk about symmetric distortions. Finally, little is
known about the vibrational effects.

The elongated shape of the transition nucleus provides
for a great enhancement of the rotational contributions to
the level density, because the moment of inertia of the
transition nucleus is about three times larger than that
corresponding to the residual nucleus. If the transition
nucleus is reflection-asymmetric, as the theoretical calcu-
lations predict, this enhancement increases automatically
asym

by a factor of two. This explains why ae is
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consistently lower than afsym. In calculating the transi-
tion state level density, all contributions, collective and
intrinsic, were thrown together, and accounted for in one
parameter, ag. When we multiplied the level density by a
factor of two in order to include the asymmetry factor, this
had the effect of effectively removing one of the collective
factors (the one corresponding to x-y asymmetry) from ag and
accounting for it externally and artificially by doubling
the total density of levels. Actually this is a step in the
right direction because the nature of the level density para-
meters a. and a requires that only intrinsic contributions
be accounted for in their use, while collective effects
should appear as multiplicative factors to the internal
level density. We will return to this particular point

shortly. Similarly, the fact that afasym

crosses ag at some
point in our empirical level density is not indicative of
anything, except the fact that we have accounted externally
for the asymmetric degree of freedom predicted for the shape
of the transition nucleus.

At this point we do not know anything regarding vibra-
tional effects at the saddle point. Calculations by Nix
and Swiatecki (Ni 65) based exclusively on the ligquid drop
model would indicate that certain modes of vibration with

frequencies in the order of 1 MeV are possible at the saddle

point, We simply cannot say anything more in this respect.
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The variation of ag and a, with excitation energy has
been interpreted by Vandenbosch and Mosel (Va 72), and
Bishop et al. (Bi 72) as a reflection of the close relation-
ship between the sign and magnitude of the shell correction
energy and the local single particle level density near the
Fermi energy. If the single particle level density is
unusually low, the shell correction is negative, and vice
versa. However, as the excitation energy increases, single
particle levels farther away from the Fermi surface begin
playing a role, and shell effects tend to disappear.

From the decreasing trend of ag and a with increasing
energy, it might have appeared natural to predict positive
shell corrections for both the ground state and saddle point
deformations. We have pointed out however, that because of
the relatively high contribution of collective states to the
level density in both cases, it is hard to say what the real
dependence of a, and ag on energy is. In the previous sec-
tion we briefly mentioned that the theoretically calculated
values of the shell corrections are negative (see Table IX).
If these theoretical results are realistic, it is clear that
either one of two things is happening. Either our estimates

of a. and a, are wrong, in which case our level density cal-

f
culation is also wrong; or the extent to which collective
states are "absorbed" into the ag or a, values is fairly

substantial. From the very rough calculations involving the

two partition functions which were shown in the last section,
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we note that there is, in fact, a large probability that the
latter argument can be accepted. We might have made sub-
stantial errors in determining the level density of 2°’Th,
However, if anything these errors should have gone in the
direction of underestimating the number of resonances at the
neutron binding energy. The reason for this observation is
that, in counting these resonances, there is always a danger
of missing some resonances because of resolution problems.
Alternatively, the dependence of the level density in the
low energy region might have been overestimated, in which
case the treatment of the neutron evaporation data would
have been in error.

On the other hand, Lynn and Bjornholm (Br 72) have ex-
perimentally deduced a positive ground state shell correc-
tion for thorium. They find that the values of the ground
state shell correction decrease rapidly as a function of 7Z,
such that they are all negative for U, Pu, and Cm. From
this trend it would be expected that the ground state shell
correction energy would be positive in the case of radium.
This observation conflicts sharply with the results from
Nix and MOller who predict a large negative shell correction
for radium. It is conceivable that the Nix-Moller calcula-
tion might have failed to take into account effects of which
we are not aware. However, it is hard to forget that such
good agreement is found between their results and those

deduced in this work regarding the height of the fission
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barrier and the single particle levels as discussed in the
previous section.

From the above discussion, we conclude that at this
point we cannot infer much about the shell correction in
radium. All what can be said is that because of the similar
dependences of ag and a  Vs. energy, and because of the
occurrence of low energy collective phenomena, at both de-
formations, the sign of the shell correction is perhaps the
same in these two cases. Because of the predominance of
collective excitations at low energies over intrinsic exci-
tations, and the subsequent relative increase of the latter
with energy, it is worthwhile to point out that the real
variation of a/ and a, (oxr go) with energy is surely less
than what is observed in the empirical dependence shown in
Figure 19.

The behavior of the nuclear temperature as a function
of excitation energy is a direct result of the sharp depen-
dence of the nuclear level density parameters a. and a  on
energy. In the case of the ground state deformation, there
is a rapid increase in T up to about 2 MeV of excitation
(Figure 26). Between 2 and 4.5 MeV, the curve levels off
into a plateau, and then it begins to climb again at a
relatively slow rate. In the case of Ag, there actually
seems to be a small dip in the curve (Figure 27). It is
hard to say whether it is realistic to expect such an

occurrence in the excitation energy dependence of the
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temperature. If realistic, it could be interpreted as mean-
ing only that within the small range of energy in which T
decreases, there is a very small increment in the rate at
which the level density increases with excitation energy.
This behavior is not normally expected, and the temperature

is usually assumed to follow the smooth dependence:

T « vE (IV=-3)

Deviations from this dependence can be observed, for
example, in the values derived from the experimental data
on lighter nuclei by Tsukada and co-workers (Ts 66), who ob-
tained nuclear temperatures by fitting the level density
dependence on energy, and then computing the inverse of the

nuclear temperature according to the expression;

= ‘—r—,a in E(E)‘ (TV-4)

1

T
where p(E) is the level density. Qualitatively, the deduced
energy dependences of the temperatures are similar to that
which we observe for 22%Ra. It is worthwhile to also point
out that wvalues of a, obtained by Tsukada et al. are inksome
cases strongly dependent on excitation energy. Although the
calculations and experimental data which we have mentioned
concern lighter masses (Co, Ag, In, Ta, and Au), the results
reported serve to illustrate the point that in many cases

the expected energy dependence of the temperatures does not

follow the simpler relation (IV=3).
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Let us now see if it is possible by simple calculations
to numerically account for the degree of discrepancy between
the experimentally determined and theoretically calculated
state densities shown in Figure 25, For this purpose, we
make use of the temperature information described previ-
ously, and for simplicity, only the ground state deformation
is chosen. For two different temperatures, 400 and 500 keV,
the excitation energies relative to the unpaired ground
state are 1.65 and 5.6 MeV respectively. Vibrational con-
tributions, which are assumed to be mainly octupole, provide

us with the partition functions;

A=3 _
270 (1.65 MeV) = 10
A=3 5
Zoip (5.6 MeV) = 25

The partition function for rotations can be derived to be
Zrot = 202/S, where o is the familiar spin cutoff parameter,
and S represents a symmetry factor which is equal to 2 when
the nucleus is reflection-symmetric, and 1 when it is re-

flection-asymmetric. Under these circumstances, the ro-

tational partition functions are:

Zrot (1.65 MeV) ~ 30

Zrot (5.6 MeV) ~n 41

The degree of collective enhancement over the intrinsic

level density is the product of the partition functions
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contributing to the entropy of the system. The predicted
degrees of enhancement are now compared with the ratios of
the experimental state densities to the calculated intrinsic
densities shown in Figure 25 at the two energies in ques-

tion. The results are listed in Table XII.

Table XII. Collective Enhancements in 226pa.,

Energy 10910 Zyip Zrot) 19910 (Yexp/®inty
1.65 2,48 2.65
5. 60 3,20 3. 40

These results are remarkable in view of the rough ap=-
proximations used in calculating the collective enhancements
from the partition functions. They seem to indicate that in
principle the assumptions made regarding the predominance of
the low frequency octupole mode over other vibrational modes
are not at all unrealistic, and also that the single par-
ticle levels of Nix and Moller seem to correctly describe
the 22°Ra nucleus at its equilibrium deformation,

For some time now we have relied on the experimentally
deduced temperatures for conducting the partition function
calculations. The evidence seems to indicate that they are
fairly reliable. However, we should compare our estimates
with those predicted by the theory.

Figures 26 and 27 show plots of temperature vs. energy
for the two saddle point assumptions and for the ground

state deformation as deduced from the experimental data.
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Microscopically calculated temperatures are also shown for
both nuclear deformations with no collective correction. It
is clear from these figures that the theoretical estimates
differ substantially from those obtained empirically. These
differences in the separately evaluated temperatures are
consistent with the argument that we have employed all
along, namely that the general formalism has been neglecting
contributions from degrees of freedom other than intrinsic
excitations. Generally, the entropy in the exponential fac-
tor of the level density is expressed as the sum of several

terms;

S =1n Z + BE - Wy Nn - upr (IV-16)

where Z is the partition function, B is the inverse of the
temperature, up and u, are Lagrangian multipliers for the
proton and neutron numbers Np and Nn respectively. From

this condition we could for example, establish:

9 ln Z _
-3 " Ep

If all we are concerned with is intrinsic excitations, then
the above expression remains as written. However, if other
degrees of freedom are present, namely rotational motion
and vibrations, the expression converts into:

d 1n Zintr 3 1n ZVib 3 1ln Zrot)

-~ - 78 AT AT

(IVv-8)
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When we include three terms into the partition func=
tion, the value of B must increase by some amount in order

to conserve the total energy E as opposed to the case

o
where only the intrinsic excitations are included. In other
words, the temperature of a system decreases with increasing
number of degrees of freedom, when the total energy is con-
served. This explains basically the reason why the tempera-
tures calculated in the two manners, theoretically and em-
pirically, differ as shown in Figures 26 and 27.

The entropy in a system is given in terms of the state

density as:

S = klnw (IV=-9)
where k is the Boltzmann constant, S is also given by the
expression:

+ klnz (IV-10)

n
!
=

where E is the total energy, and Z the partition function.

From these two expressions, the state density becomes:

E/T

w(E) = Ze (IV-11)

and Z includes the contributions from all degrees of free-
dom. We have set T = kt for convenience in the above ex-
pression. If, for example, T = 0.400 MeV, the E-2A = 1.65
MeV, and E = 3.3 MeV. From previous discussions at the

- 2
v 3.9 and ZVib ~ 10, Zrot = 20°. for

a deformed symmetric nucleus and in the order of Zrot 30

given temperature Zintr
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in this case. Putting together all these quantities it is

found that:

(3.3/0.4)

w(T=0.4) =~ (10)(3.9) (30)e = 4.56 x 10°®

or loglow (T = 0.400) 6.66. The experimentally deduced
value is loglowexp (T = 0.400) = 5,25. Analogously, we
could calculate the state density at T = 0,500 MeV, which
corresponds to E = 2A = 5,6 MeV or E = 7,33 MeV, We found

previously that Zvib v 25, 2 v 23, and Zr v 40, These

intr ot
values give us an estimate of w(T = 0.500) = 3 x 10'° Mev-!,
or loglow (T = 0.5) = 10.48, as opposed to an experimen-
tally deduced value, loglowexp (T = 0.5) = 8.95), The dif-

ferences between the calculated and experimental state den-

sities are 101°4Y for T = 0.400 and 10%°°3

for T = 0.500,
This calculation indicates that the slope of the calculated
density line remains roughly equal to that of the experimen-
tally deduced one, through an energy interval of about 4 .
MeV, The constant difference in the state densities ob-
tained by these two methods is in part explained by the fact
that in our crude calculations we did not put any con-
straints regarding the total number of particles, which
would have the effect of reducing the total density of
states. Perhaps we have carried the statistical mechanical
analogy too far, in view of the simplistic arguments in-

volved. Nevertheless, it is important to notice that apart

from a normalization factor, the correct dependence of the
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density on excitation energy is predicted. This would argue
that, in principle, the calculations of the temperature as a
function of energy and the partition function arguments re=-
garding the collective contributions to the level density
are realistic.

C. Fission Fragment Angular Distributions at’
High Energies

In the last chapter we parameterized the fission frag-
ment angular distributions for 4.7 MeV < En £ 9.0 MeV in
terms of the variable K; which describes the width of the K
distribution in the transition nucleus. For sufficiently
high energies, the distribution in K is assumed to be
Gaussian, as in expression (II-38).

Figure 28 shows the dependence of K; on excitation
energy above the barrier for the transition nucleus 227Ra,
obtained by determining the values of Ké which minimize x?2
when the fission fragment angular distributions in Figures
16b, ¢, and d are fitted with expressions (II-15 (II-48).
For comparison, we also show the values of.Kg deduced for
the same system by Ippolitov et al. (Ip 72) who used the

expression:
K2 = (2.1 VE_+1)*/8(aA-1) (IV-12)

where A is the anisotropy and En is the incident neutron
energy. It can be noted that good agreement is found be-

tween the two methods. The data shows that K; oscillates
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around a value V8 for excitation energies E% £ 4 MeV and

then it seems to jump to Ké v .24 for 4 < E} £ 5.5. The
point at about 6 MeV has a value of Ké n~ 12, and it shows
strong contributions from second chance fission; therefore,
we will disregard it in our discussion.

In terms of the Fermi-gas model, the behavior of Ké as

a function of energy is expected to follow the relation:

T
2 _ eff _
R = —— (IV-13)

whereiji?f is the effective moment of inertia for a rigid
body as defined in (II-37), and T is the nuclear tempera-
ture. Since T =« VE, Ké is also supposed to be directly
proportional to E. However, at low excitation energies, a
significant deviation from the behavior predicted by the
Fermi-gas model is observed, and Ko appears generally de-
pressed in relation to the Fermi-gas value (IV-13). This
deviation is explained in terms of the BCS superconducti-
vity theory, which takes into account the pairing inter-
actions between nucleons. At excitation energies close to
the fission barrier, Ké is generally observed to increase

in a step-like manner; as the energy increases the step-like
structures smooth out and disappear rapidly and Ké increases
more or less linearly with energy until a point is reached
at which the behavior of Ké follows that predicted by ex-
pression (IV-13). This point of transition is labeled the

critical energy, and in the BCS superconductivity theory,
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it corresponds to the energy at which the pairing correla-
tions between nucleons disappear and the nucleus behaves as
a Fermi-gas. Figure 31 shows qualitatively the expected be-
havior of Ké as a function of excitation energy for a highly
deformed e-e nucleus. For even-even nuclei at low energies,
the first observed intrinsic excitation corresponds to ener-
gies just above 2A, where A is the pairing gap parameter.
Since the number of excited quasiparticles is low in rela-
tion to the number of available levels, the probability that
a given level will be doubly occupied will be small, and
configurations with the maximum allowed quasiparticle num-
ber are predominant. Therefore, in very simplistic terms,

a "jump" in the value of Ké should be observed every 2A

energy interval such that:

K2 (E*) =~ 2.V K?
o P

where vV is the average number of pairs of excited quasipar-
ticles and Kp's are simply the quantum numbers characteriz-
ing the single particle levels in a deformed nucleus, the
average of their squares being taken over an appropriate
energy range. The observed steps in Ké are more weakly pro-
nounced than required by expression (IV-13), mainly because
of the so-called "blocking effect", which leads to a de-
crease in A for individual excited nucleon states. In other
words, the presence of an odd particle in a given level k'

prevents pairs from scattering into this level, and the



152
level is said to be blocked; as the energy increases, more
and more individual particles occupy levels above the Fermi
surface, thereby increasing the blocking effect and causing
a decrease in the pairing correlations. At energies above a
few Ao the dependence of Ké can be expressed in terms of a
smooth function, A(T/Tc), which roughly relates the effec-
tive moment of inertia to the moment of inertia of a rigid

body, such that:

RB
2 JegsT

o ® —=i A(T/Tc) (IV-14)

The values assumed by A(T/Tc) depend on the ratio of T/Tc
where Tc is the nuclear temperature corresponding to the
critical energy Eé, above which the nucleus behaves as a

Fermi-gas. Suffice for the moment to say that for:
* %* =
E* < Ec’ A(T/Tc) f(T/Tc)

and for

* %* =
B¥ 2 Ege A(T/Tc) 1 (IV=15)

Numerical values for A(T/Tc) as a function of T/Tc have been
tabulated by Vonach et al. (Vo 64).

From the above discussion, it is clear that from the
dependence of Ké on energy it is possible to deduce some of
the parameters that describe the transition state nucleus.
In the case of ??’Ra we have few experimental points, and
their uncertainties are relatively large; however, by tenta-

tively identifying the points at which Ké seems to show
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"breaks" in its energy dependence, we might be able to
offer an estimate for the pairing gap parameter, Af. For
excitation energies 1 MeV < E* < 3 MeV, the average value
of Ké is about 8, and it corresponds to the excitation of
one quasiparticle. For 3 MeV < En £ 5.5 MeV, Ké increases
rapidly to an average value of about 25 which would be more
or less the value of Ké required from expression (IV-13) in
the presence of three quasiparticles. Therefore, we tenta-
tively place the value of pairing gap at the saddle point at
2Af ~ 3 MeV. From single particle levels provided to us by
Nix and Moller, sz v 6, Ipolitov et al. (Ip 72) calculated
K2 from sets of single particle levels with Nilsson and
Pashkevich potentials, and obtained values okazp = 7.52 and
K2 = 9,05 respectively. These estimates tend to agree
better with the experimental data, although the uncertain-
ties in the latter are large. Ippolitov et al. estimate the
pairing gap as 2Af = 2,7 *+ 0.7 MeV which substantially
agrees with our findings.

A value of the pairing gap in the order of 3 MeV con-
trasts sharply with values of the same quantity calculated
for the equilibrium deformation. The question concerning
the dependence of the pairing gap on nuclear deformation
has been the subject of controversy for some time. On
theoretical grounds, A may increase as the nucleus deforms.
The calculations by Kennedy et al. (Ke 64) on the slab model

of the nucleus show that while infinite nuclear matter
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presents very small pairing effects, the slab model calcula-
tions predict a finite pairing gap, very sensitive to the
slab thickness. However, from the experimental aspect there
have been arguments favoring both points of view, and there
is no conclusive evidence one way or the other. The classi-
cal paper by Griffin (Gr 53) in which the pairing gap at the
saddle point is deduced for the compound nucleus 2*°pu,
yielded a value of Af = 1.36. Subsequently this value was
found to be lower. Huizenga et al. (Hu 68) determined
24

f

2Af >~ 2,0 MeV for the same nucleus, and 2Af

More recently, Shpak et al. (Sh 71) have found 2A

H

2.2 MeV for 2%°pPu, while Britt et al. (Br 68) placed
~ 2,10 for 2%%u,
g =1.7 Mev

for 2“%Pu; however, their estimate is based on the expres-

sion:

* ~ 2 -
Ec ~ 0,78 gAO (1V-16)

where g is the single particle level density around the
Fermi surface. They estimate this quantity from the Fermi-
gas level density parameter a = (Tr2/6)go where they set

a =A/8. It is clear from previous discussions that g may
vary with excitation energy. Also because collective
effects have been included in the empirical determination of
'a', the real value of 'g' may be somewhat inflated, which
would have the effect of decreasing the value of Af calcu-

lated in (IV-16).
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Moretto et al. (Mo 69) have deduced the value of the

pairing gap in 2!°Po to be Ag = 1.62 by identifying the
breaks in the Ké spectrum. Itkis et al. (It 73) have de-

duced A, = 0.90 for the same nucleus. This latter estimate

f
offers the problem that the method used in its deduction
relies on a good estimate of ae which, again, is assumed to
be in the order of a v A/8. Therefore, it seems that at
present, the safest way of determining Af is by identifying
the breaks in the Ké spectrum and comparing the jumps in K;
with the predicted increases caused by quasiparticle break
up. However, it is important to stress the fact that none
of the results appear to be conclusive, there is a lot of
controversy surrounding this topic and more work needs to
be done in relation to the problem.

Finally, for purposes of illustration, we have calcu-
lated the predicted dependence of K; in 227Rra, assuming the
nucleus to be a Fermi-gas and also under the assumption of a
superconductor (Figure 29). For the case of the latter, the
gquantity A(T/Tc) in expression (IV-14) has been interpolated
from a table given by Vonach et al. The value of the criti-

cal temperature Tc is calculated from the relation:

T =50 (IV-17)
where according to Lang,ll OO v A, Therefore, Tc ¥ 0.87
MeV.
11

Vonach et al. tentatively set ©o = 1.3A in order to ob-
tain the experimental odd-even mass difference,
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D. The Energy Region 3.9 < E < 4,7 Mev

The region of the plateau in cf(En) is in essence what
we have termed the "twilight zone". The data in this region
could not be analyzed discretely because the number of
levels required to fit the experimental data would be too
large for the analysis to have statistical significance. On
the other hand, no statistical approximations are possible
because the number of levels is still too small for the
analysis to have any meaning. It is difficult to speculate
about the significance of the plateau and subsequent step
at 4.7 MeV. A step in the cross section could, under normal
circumstances, be identified with the same type of pairing
phenomena at low energies which we discussed in the previous
section. Breaks in the cross section have been predicted by
Strutinsky (St 58, 65). Kluge (K1 64) has also qualitati-
vely predicted jumps in the level density which are caused
by the pairing correlations at low energies. Much in the
same manner as in Ké, these breaks are expected at energies
which are multiples of 2A. Because of the "blocking ef-
fect", the breaks quickly disappear as the energy increases,
Under this interpretation, the sudden increase in O would
be expected not just above E = 4,7 MeV, but at about 6.7
MeV, where a second plateau has been reached. It is clear
that a great increase in 0y must occur at energies slightly

above 4.7 MeV, but it is hard to speculate about the causes
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of such a great increment. Figure 24 shows the single par-
ticle level spectrum calculated for the transition nucleus
226Ra by Nix and M&ller. As we have pointed out, the level
sequence above the 69th neutron level is very similar to the
one predicted in this work, and it goes 3/2, 1/2, 5/2, 1/2.
However, above this last 1/2 level, there is a gap of about
0.9 MeV, before the next level is encountered, and then
there is a sequence of fairly close levels. It may be pos-
sible that the region above En = 3,9 MeV, where the plateau
begins, corresponds to the gap above the K = 1/2 level in
Figure 24. While the sudden increase in the cross section
corresponds to a region of high channel density at the end
of the gap, which creates a great increase in e at that
point.

E. Comments on the Mass Distribution in the
Fission of #%%7Ra

The data reported by Konecny et al. (Ko 73) on the
reaction 22%Ra(d,p) %?’Ra » £, shown in Figure 22 is inter-
esting in the sense that it would seem at first sight to
show that the so-called triple-humped mass distribution in
fission is actually caused by fission proceeding through two
different saddle points, one symmetric and the other asymme-
tric. The latter fission barrier height appears to be lower
in energy than the former., The range of excitation energies
studied is between 7 and about 12 MeV, which would corres-

pond to neutron energies between 2.5 and 7.5 MeV. The
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plateau in the fission excitation function which Babenko et
al. observe between 4.1 and 4.7 MeV is not present in the
(d, pf) data. An increase in the Ff/Fn function is ob-
served however, and the uncertainties in the data do not
permit any assertion as to whether the slight drop in Ff/Fn
at an excitation energy of about 8.2 MeV (corresponding to
En = 3,8 MeV in the (n,f) experiment) is related in any way
to the features reported in the (n,f) cross section data.
The assertion made by Konecny et al. regarding the two
different paths leading to scission would seem to be sup-
ported by the difference in the anisotropies observed for
the symmetric and asymmetric fission components of the
cross section extracted in the study of the 2%f®Ra (°He, df)
reaction. However, this problem is far from being resolved
theoretically. Until recently, no account had been taken
of the dynamics of the fission process. When dynamic varia-
bles are included into the calculation of spontaneous fis-
sion rates, the path to fission may not necessarily be the
one where the energy remains lowest. Pauli and Ledergerber
(Pa 73) in a very instructive paper argue that the trajec-
tory adopted by the fissioning nucleus is really that of
least action which does not necessarily correspond to that
of lowest potential energy. In other words, it would seem
that the fission process would be controlled not by the
thermodynamics but, by the kinetics of the system. If this

were to be true, many of the experimentally deduced fission
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barrier heights might be in error, but as we pointed out
previously, this argument is still a subject of heated
debate,

Within the range of energies in which we so far have
carried our analysis (3.6 MeV < En £ 9.0 MeV), we have not
noted any irregular features which could be associated with
fission through two different saddle points. However, the
data by Konecny et al. indicates that we should not begin
seeing these effects except for energies E > 8,0 MeV, Un-
fortunately, the energy region corresponding to second
chance fission starts at about E WV 9.0 MeV, and any effects
caused by fission through a saddle point would be mixed with

those corresponding to fission after neutron evaporation.

F. Parameters Describing Second Chance Fission

We previously pointed out that the steep rise in the
fission cross section at incident neutron energies above 9
MeV is caused by the contribution from fission after neutron
evaporation. This was shown in Figure 4. The corresponding
angular distributions of fission fragments are displayed in
Figure 5.

Before we are able to analyze the behavior of the fis-

2
26R

sioning nucleus a, it is necessary to subtract the con-

227R

tribution to fission from a. The evaluation of this

contribution is dependent upon the assumption that since the



l6l

total fission cross section can be described by the

function:12

T
227 ~ fi227 _
cf(En) o cc(rn) (Iv~-18)

then of(En) should remain relatively constant as a function
of energy at moderate and high excitation. The reason for
this is that Ff/Fn is predicted to increase only slowly with
excitation energy, while 9 decreases slowly with increasing
incident neutron kinetic energy.

The result is that we can set O for first chance fis-
sion as equal to an average over energy of the cross section
in the plateau region between neutron energies of 5.4 and

227

r
9.0 MeV. This permits us to calculate (TE) if we also

know the neutron evaporation cross sectiog On(En). The lat-~
ter is given by the Hauser-Feshbach calculation as evaluated
in (II-15). Within the region in question, On(En) remains
fairly constant at about 2.92 barns. If we assume Oc to be

about 3.1 mb. between En = 5,4 and 9.0 MeV, then we can give

an approximate value for (Ff/Fn)227:

r o} -3
£ 227 o £ _ 3.1x10 _ -3
(T_) ¥ 5397 — % 1.061 x 10

n n

. : 226 -
Assuming Fn >> Ff + Fy, the expression for (Ff/Fn) be

comes for, first and second chance fission:

12226 and 227 written as superscripts mean reference to the

corresponding Ra isotopes.
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r 226,227 r
£i226 f _ fi227

(T—) ~ T (f—) (IV=-19)
n c n

Table XIII lists the calculated values of (rf/rn)226 and for

zzsof for the different incident neutron kinetic energies.

Table XIII. First and Second Chance Fission Cross Sections

En (MeV) (I'g/Tp) 228 228G £ (mb) 2274 ¢ (mb)
9.7 0.365x10-3 0.985 2.865
11.6 1.994x107 3 5.220 2,780
12.5 2.789x10~3 7.250 2.750
13.6 3.299x%10°3 8.310 2.690
14.4 3.739x10°° 9.350 2.650
14.8 5.339x10°3 13.350 2.650

Similarly, the angular distributions of fission frag-
ments corresponding to the fissioning nucleus 22°Ra are ob-
tained by subtracting the predicted ?2?’Ra distributions from
those observed experimentally from the combined system
2284227Ra,. 1In order to determine the first chance fission
angular distributions at high excitation energies, it is
necessary to know the dependence of Ké with energy. This
can be done because Ké is directly related to the inverse of
the anisotropy o(0°)/0(90°) by the following approximation
(Ip 72):

(2.1/E;+1)2

g(0°)/0(90°) T 1 + BKS (IV=-20)
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The shape of the angular distribution can be obtained with
sufficient accuracy if we assume that three points in o(9)/
0(90) are known, namely those at 0°, 45°, and 90°., The one
at 0° is the anisotropy calculated from (IV-20). The point
at 90° is unity, by definition. The point at 45° can be
assumed to be half way betweeno(0°)/0(90°) and 1. We can
easily prove this assumption by evaluating the anisotropies
at the three angles from a second degree polynomial fit.
First let us assume that the distribution can be simulated

by a function:

ag(©) a, + a,P, (cos 0)

(IV-21)

ag + (a2/4)(3 cos © + 1)

where ag and a, are constants. From the above expression we

find that:

g(0°) = a_ + a
0(90°) = a_ - 1/za.z

o (45°)

a, + a,/4

The latter is equal to the average between 0(0°) and
0(90°). A basic assumption is, of course that the angular
distribution of the fission fragments peaks only at 0°, and
decreases smoothly towards 90°.

The three points are then fitted with a function of the
form (IV-21l) in which ag and a, are free parameters to be

obtained. Once these two are known, the distributions over
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all angles can be simulated, and by using the methods of
Appendix ITI we normalize all of those to the corresponding

227Ra. The

fission cross sections shown in Figure 4 for
next and final step is to subtract point by point the calcu-
lated 2270(0) from the experimental 226'“7cf(®).

In the actual calculation we have made use of only the
data obtained from the symmetric saddle point shape assump~
tion. This decision was made for the sake of simplicity
since the outcome of the calculation is not affected
seriously, and because nothing new would be learned by
carrying out both approaches to greater lengths. The uncer-
tainties in some of the parameters, such as Af and Tc, would
not, in any case, permit great accuracy in the final re-
sults.,

Table XIV lists the values of K; which are obtained by

applying the formalism developed in the first section. The

Table XIV. Parameters for 228Ra(n,f) at Moderate Energies.
E_(MeV) U(MeV) Ké o (0)/9(90) a a, CO§§2gg%on
9.7 6.0 18,1 1,393 1.131 0.262 1.267
11.6 7.9 25,7 1,323 1.108 0.215 1.155
12.5 8.8 30.6 1.290 1.097 0.193 1.254
13.6 9.9 36.9 1.259 1.086 0.173 1.238
14,4 10.7 41.6 1,242 1.081 0.161 1.226

14,8 11.1 44,0 1.235 1.078 . 0.157 ... . 1.229
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critical temperature is assumed to be in the order of 0.87
MeV as was estimated in the previous section, and this
yields a critical energy of about 22 MeV. The dependence of
Ké on excitation energy is shown in Figure 29,

Table XIV lists the values of the anisotropies as cal-
culated from expression (IV-20), together with those of the
constants aq and a, obtained from fits to the angular dis-
tributions, for different neutron energies. Correction fac-
tors as defined in Appendix II are also tabulated.

Table XV lists the differential cross sections as a
function of angle (©), for:

+227’Ra fissioning data

a) The unresolved 22°®
b) The estimated 2?’Ra distributions, and
c) The deduced *?®Ra values.

This last set of data is shown graphically in Figures
30a and b. We have fitted these *?°Ra(n,n'f) angular dis-
tributions with a Legendre polynomial function of sixth
order, in the same manner as described previously, see
Appendix II, The fits corresponding to 11.6, 12.5, 14.4,
and 14.8 MeV are remarkable in the sense that they peak at
side angles. Assuming the fission barrier in ??fRa to be
about the same as in %?’Ra, i.e., about 8.2 MeV, and also
that evaporated neutrons have a mean energy of 1.5 MeV, the

corresponding excitation energies are 0.9, 2.8, 4.7, and 5.1

MeV above the fission barrier. Such effects are not



Table XV. Deduced Angular Distribution for the Two Fissioning Systems 22°Ra and %227Ra
En = 9,7 MeV En = 11.6 MeV En = 12.5 MeV

Angle 0(@)pyn 0(0)*%7 0(0)2%% 0(0)pyn 0(0) 227 0(@)22° o(@)pn 0(0) %27 o(0)22°
0° 2,794 1,765 1,029
10° 2,600 1.750 0.850 4,040 1.648 2,392 5.612 1.607 4,005
20° 2,521 1.707 0.814 4,278 1.613 2,665 6.886 1,575 5.311
35° 2,057 1,601 0.456 4,516 1.527 2.989 5.888 1.498 4.390
45° 2,109 1.517 0.592 4,000 1,458 2.543 6.070 1.436 4.634
60° 1.847 1.430 0.417 3.906 1.356 2,550 4,703 1.345 3.358
75° 1.613 1.300 0.313 3.720 1,282 2,438 3.946 1.319 2.627
90° 1.746 1,267 0.479 4,040 1.255 2,785 4,248 1.254 2,994

991



Table XV. . continued . . . . .
En = 13.6 MeV En = 14,4 MeV E = 14.8 MeV

Angle 0(0)pqn c(0)22%7 o(e)zzs_ 9 (0) pom o(0) 3227 g(@)zéé 6(0) pop 0(0)2%%7 g(0)22°8
10° 6.525 1.549 4,977 8.475 1.514 6.961 10.000 1.509 8.491
15° 6.525 1.537 4.988 6.839 1.503 5.336 9.534 1.498 8.036
20° 6.828 1.521 5.307 7.308 1.488 5.820 8.250 1.484 6.766
30° 6.525 1.478 5.047 5.845 1.448 4.357 7.976 1.446 6.530
40° 6.629 1.426 5.203 5.492 1.400 4,092 8.414 1.398 7.016
45° 5.274 1.398 3.876 6.082 1.374 4,708 8.110 1.373 6.737
55° 6.227 1.343 4,884 7.134 1.324 5.810 8.651 1.324 7.327
65° 4.772 1.295 3.475 7.013 1.279 5.734 8.451 1.281 7.170
75° 5.423 1.259 4,164 4.677 1.246 3.431 7.976 1.248 6.728
85° 4,519 1.248 3.270 4.682 1.235 3.447 6.625 1.238 5.387
90° 4.519 1.238 3.281 5.261 1.226 3.995 6.084 1.229 4,855

LOT
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expected in these regions of excitation, where the angular
distributions are expected to be forward peaked.

In order to investigate some of these effects we have
attempted to calculate the relative strengths of K bands
that are necessary to cause the observed irregularities.
The J distribution is assumed to be the same as that of the

227pa, and the values of M, the

initial compound nucleus
projection of J over the neutron beam direction, are assumed
to range from =1 to +1.

Under the above assumptions, we may write the differen-

tial cross section contributed by a given value of K for a

certain energy in the following manner:

J

2285 £ ?ax (2J+1)T_(E_) El
0,(0) = o
K K 3=0 S V=

J
EKWK,M(@) (IV=22)

where the fK's are weighting coefficients corresponding to
different values of K; €x takes a value of 2 for all values
of K, except for K = 0, where it is unity. This accounts
for the fact that K can normally be either positive or nega-
tive, except when K equals zero. The TJ(En)'s are transmis-
sion coefficients for the formation of the compound nucleus
with neutrons of kinetic energy En' and values of the angu-
lar momentum J.

The actual calculation is carried out by separately
evaluating the normalized angular distribution functions
J

Wy M(@), and summing them individually for 0 < K £ 5, and
14
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weighting each J = & wave correspondingly. The fK para-
meters are left to vary independently, and the angular dis-
tributions are fitted using a non-linear least squares code.
The results of these calculations are given in Table XVI for

the different values of K, while the angular distribution

226R

Table XVI. Partial K Fission Cross Sections for the a
(n,n'f) Reaction*
Incident Neutron Energy (MeV)
K 9.7 11.6 12.5 13.6 14,4 14.8
0 0.493 0 1.789 1.322 2,282 3.712

1 0.129 1.069 0.510 2,067 1.701 1.970

2 0.140 1.112 2,779 2,047 0.824 N0

3 O 1.045 1.186 2,530 0.489 3.027

4 0.223 0.128 0.986 O "0 0.111

5 O 1.866 0 0.343 4,053 4,526
* in mb,

fits are shown in Figures 30a and b, As we can see, these
results are very puzzling because of the zig-zagging in the
cross section function.

The distribution corresponding to E = 9.7 MeV seems to
peak at forward angles, The dominant channel excited cor-
responds to K = 0, and the distribution looks quite normal.
However, as we go up in energy, side peaking is observed in
the angular distribution data corresponding to 11.6 and 12,5
MeV., This is very unusual at these excitation energies

(v1.9 and 2.8 MeV above the fission barrier of 2%2%Ra),
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Solid Line: Best Fit with Wg M(@) Functions
M
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Figure 30a. Fits to the Angular Distribution Corresponding
to Second Chance Fission.
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where forward peaking would be expected if a Gaussian dis-
tribution in K is assumed. However, the percentage of K =
0 is very small at E = 11.6 MeV, in comparison with the
contributions from all other bands, especially in relation
to K = 5, At En = 12,5 MeV, K = 2 seems to predominate but,
K = 0 again becomes significant. K = 3 strength increases
to dominate at En = 13.6 MeV, but, K = 1 and K = 2 bands are
important. The angular distributions at both 14.4 and 14.8
MeV are fairly similar in shape, showing peaking at 0 and at
about 60 degrees. This requirement can only be met if large
percentages of K = 0 and K = 5 are mixed. Strangely indeed,
it seems that in three out of the six angular distributions
analyzed, K = 5 bands predominate relative to others. These
strange distributions at 14.4 and 14.8 MeV coincide with a
relatively sharp increase in the cross section at a place
where the cross section would be expected to level off,
Clearly, this increase is not caused by third chance fis-
sion, since the energy available would require too small a
fission barrier height (about 6.5 MeV).

In any case, the important point to notice is the
strong predominance of certain K # 0 bands at some of these
energies., Angular distributions in neutron induced fission
of 2%2Th at comparable energies (12.18 < E, < 18.26 MeV) do
not seem to show the anomalies observed in the case of

radium (Em 73).
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It is necessary to emphasize the fact that these calcu-
lations are by no means accurate. All we have pretended to
do is to find out in a rough way what kinds of K strengths
are necessary to assume in order to reproduce the unusual
angular distributions which are observed in the fission of

2%%Ra.
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V. CONCLUSIONS

The information obtained from the analysis of the ex-
perimental data can be summarized in a few paragraphs.

1. Our deduced height of the fission barrier
stands in very good agreement with the estimates by Brack
et al., and those of Nix and MSller. The ordering and
nature of the single particle levels above the barrier are
in near perfect agreement with those of Nix and Mdller, al-
though discrepancies are found in the level spacings. The
anomaly found in thorium seems to be confined to this ele-
ment. The disagreement found between theory and experiment
concerning the fission barrier does not appear in radium.

2. The agreement between the theoretical calcula-
tions of Nix and Mdller and the information deduced from the
experimental data leads us to believe that the methodology
employed in conducting the present analysis is a correct way
of carrying out transition state spectroscopy.

3. We have obtained what we think is a reliable
description of the excitation energy dependence of the level
density of radium at the equilibrium deformation, up to
energies around the neutron binding energies., This depen-
dence was deduced from the neutron evaporation spectra in
the 2%2Th(n,n') process, and the neutron resonance data in

230ph, From this information, and from the cross-section
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information data in the 22%Ra(n,f) reaction, the level den-
sity dependence on energy at the saddle point was obtained.

4, The empirical dependence on energy of the
parameters ag and a, in the Fermi-gas expression indicate
that these decrease with excitation energy. Normally this
would be interpreted as reflecting a higher than average
single particle level density around the Fermi surface at
the equilibrium and fission deformations. New calculations
based on the macroscopic-microscopic method indicate that
the shell correction is negative at both of these deforma-
tions, which signifies that, on theoretical grounds, the
density of levels around the Fermi surface is expected to
be lower than average.

5. The above discrepancy can be understood if we
accept the premise that many of the levels that are seeming-
ly missing in the microscopic calculation, are actually col-
lective in nature. Level density calculations carried out
microscopically show values at least 10® times smaller than
those obtained from experimental data. Rough estimates of
collective enhancements based on partition function argu-
ments show that collective degrees of freedom could possibly
account for the huge difference between the microscopic and
empirical estimates of the level density. Calculations show
that vibrational contributions are comparatively more impor=-

tant at low energies than at higher excitations. This might
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explain in part the observed decrease of the level density
parameters with increasing excitation energy at low
energies.

6. From the Ké dependence on excitation energy,
we have deduced a tentative value for the pairing gap at the
saddle point of about 3 MeV. This contrasts sharply with
the value deduced at the equilibrium deformation of 2Ao N

1.7 MeV., The estimate of 2A_. at the transition state defor-

f
mation may present a considerable degree of inaccuracy be-
cause of the scarcity of available data and also because of
the large uncertainties in the experimental points. The
dependence of the parameter A on nuclear deformation is
still the subject of considerable controversy.

7. The fission fragment angular distributions
corresponding to fission after neutron evaporation show very
unusual shapes. This phenomenum is not observed in other
systems and the question is still open to interpretation.

8. The problem concerning the origin of the mass
distribution in fission has not been resolved in this work.
There are indications that symmetric fission begins to con-
tribute significantly in radium at energies where second
chance fission is expected to become important, thereby
making the analysis difficult.

In conclusion, we might say that many of the problems

that have been observed in the study of the fission pheno-

mena, are being explained with relative success by recent
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theoretical developments. Particularly, impressive progress
has been made in describing the topology associated with
nuclear deformation, which has been born out by experimental
confirmations. More study needs to be carried out in rela-
tion to the problem of the level density dependence on

energy, and its connection with collective phenomena.
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APPENDIX I

Error Incurred in the Approximation for the Exit Channel

Neutron Transmission Coefficients Above 5,0 MeV
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The fits made to the neutron transmission coefficients
shown in Figures 7 through 10 are not very reliable at ener-
gies above 5 MeV., However, these fits are used in conjunc-
tion with the calculated level densities in order to calcu-
late the neutron emission expression in the denominator of
the Hauser-Feshbach relation (II-15).

For purposes of illustration we can make a rough evalua-
tion of the magnitude of the of the error that we are intro-
ducing into the calculation due to poor fit to the T, values
above 5 MeV by calculating the differential contribution to
the average kinetic energy of the outgoing neutron, and com-
paring it with that of a 5 MeV outgoing neutron.

Assume that a nucleus absorbs a 7 MeV neutron; the ex-
citation energy of the compound system is about 11.5 MeV,
because the neutron binding energy is 4.5 MeV. If the spec-
trum of neutrons is assumed to be Maxwellian, then the emis-

sion probability is roughly given by the expression:

E/T

P(E) « Ee (AI-1)

and the average neutron energy is twice the value of the
temperature, T. The temperature may be estimated from the

expression

(AI=-2)

Sl
1

-
20

where U is the excitation‘energy of the nucleus, a, is the

level density parameter and it roughly obeys the relation:
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a, N A/8 (AI~-3)

Therefore a, ~ 226/8 = 28.3, and T v 0.62 MeV, when U = 11.5
MeV. Then the average neutron kinetic energy is estimated
to be 1.24 MeV. The residual nucleus excitation energy is
about 5.76 MeV., If we assume the level density to be pro-

E/T, then we can calculate the ratio of the

portional to e
compound level densities at residual nucleus excitation
energies corresponding to an average energy neutron being

emitted (U = 5.76 MeV) and a 5 MeV neutron being emitted

(U = 2 MeV). Then the ratio, R, becomes:

5.76 2
R exp [ 450k - 515
] 5.25 []
In this case R = e is equal to 200.

What this means is that, at most, the error introduced
by neglecting contributions due to neutrons with E = 5 MeV
ig less than 0.5%. Of course, we are not neglecting this
contribution, but merely saying that there is a deviation in
the fit of Ti, (En) above 5 MeV for certain &' waves of out-
going neutrons. At worst, this deviation is about 25%, mak-
ing the average total error in the calculation in the order
of 0.12% which is certainly negligible.

We must also point out that the transmission coeffi-
cients for incoming neutrons are exact, and no calculational
source of error appears in the evaluation of the Hauser-

Feshbach expression (II-15).
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APPENDIX II

Normalization of the Experimental Data
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The experimental data shown in Figures 1 through 4
represent the ratios of the differential cross sections at
the given angles to the corresponding ones at 90°. Although
this representation might be useful in comparing angular
distributions at different energies, it might also be mis-
leading because the normalization is based on only one
point, the one at 90°. Consequently, should this point be
in error, it would throw off the relative strengths of the
distributions for comparison at the different neutron ener-
gies. It follows that it is important and necessary that
these angular distributions be expressed in a manner that
reflects the variation of the total fission cross section
with neutron energy, i.e., as differential cross sections.

Differential cross sections for nuclear reactions are
expressed in terms of probability per unit solid angle;
since the fission cross section for the 22?®Ra(n,f) reaction
is so low, we choose to express the data in terms of mb/sr.
To compute the differential cross section from the observed
data we begin by noting that the angular distribution func-

tions are normalized in such a way that:

+1 J
w (@) d (cos @) =1 (AII-1)
K,M

-1 ’

Following the same idea, we found a smooth function of
cos ©, which when integrated between the appropriate limits,

yvielded the observed total fission cross section. We begin
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by defining the total fission cross section in the following

manner:

+1
o (E) = | f(cos ©) d (cos 0) (AII-2)
-1

This function f(cos ©) can be any useful function capable

of reproducing the angular distribution pattern. Legendre
polynomials are normally used for this purpose because of
their simplicity. In our case, we have chosen to use a
sixth order Legendre polynomial in which we only have even
terms, The reason for this is that the angular distribu-
tions are symmetrical about 90°, Therefore, the integrating

function would be:

f(cos 0O) = a, + a2P2(cos Q) + akP“(cos Q) + asPs(cos Q)
(AII-3)

where the a's represent coefficients to be determined for
each energy studied, and the Pn's are the Legendre poly-
nomials of nth order.

Having chosen these functions, we proceeded to fit the
angular distributions in their original form as shown in
Figure 5, with expression (AII-3) using a non-linear least
squares computer program, and leaving four free parameters
(ao, a,, a,, and ag). Table XVII shows the values of para-
meters extracted in every case.

Once we obtained these fits we proceeded to place the
polynomial functions into expression (AII-2) for integra=-

tion. From expressions (AII-2) and (AII-3) it can easily



Table XVII.

Parameters Derived in
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Fitting 22%Ra(n,f)

Anisotropies

En

(MeV) %o 2 &y 36
3.6 1.154 0.4610 0.1210 0.1100
3.8 1.029 0.1220 -0.0684 -0.0248
3.9 1.668 0.8780 ~0.5580 0.2645
4,1 1.306 0.7450 -0.3020 -0.1950
4.7 1.192 0.3620 0.0346 -0.0892
5.4 1.210 0.1750 0.0149 0.1020
6.2 1.075 0.2990 0.1421 -0.0188
6.7 1.323 0.5660 -0.1930 -0.0004
7.1 1.195 0.4270 0.0693 -0.1500
7.9 1.125 0.2230 -0.0460 ~0.0090
8.9 1.108 0.2110 -0.2010 0.0610
9.0 1.138 0.2680 -0.0012 -0.0763
9.7 1.103 0.3320 0.0853 0.0483
11.6 1.075 0.1020 0.0118 -0.1381
12,5 1.177 0.4520 -0.1095 -0.1975
13.6 1.217 0.3630 -0.0725 -0.0139
14.4 1.140 0.1952 -0.0893 0.4275
14.8 1.315 0.1927 -0.1480 . 0.3650
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be shown that the following relation is obtained:
+1

0g(E) = f—l f(cos ©) 4 (cos 0) = 2a (AII-4)
This conclusion is very useful because we can now relate in
a very simple manner the fission cross section to one of the
parameters in the fit, and therefore normalize the angular
distribution, point by point, through a constant factor, to
the total fission cross section. From the above we then
find:

9B (m,0)

o(E,0) = 2a, ¥ G(E,90°)

(AII-5)

where o0(E,O) represents the differential cross section for
a given neutron energy, E, at the angle ©. The resulting

angular distributions are shown in Figure 16.
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APPENDIX III

Computer Program for Calculating Compound Transmission

Coefficients and Sample Output



PeuGAM_ WILNCAT (INPUT sOUTPIT Y ARPE 7= [P T o TAPF £ =00 TPUT)

C SIL0Cate A CONE  FOR TRAMSTTION STATE SPFCTROSCORY T (NeF) =REACTI nun >
C O4S 003
c 604
C 1184/RE 257 RY CoENGELHRECHT +PoMOLDAUERsGNUFFY s WoLOVEL AND 004
C THIS IS THE 3300 VFRSTION(FORTRAN 32 COMPATISLE)IOF THE MODIFICATION
c OF_NEARREX CALLFD WILDCAT WHICH
C WILL RUN ON 704 FORTRAN 1 WITH A FEw MINOR MONIFICATIONS., K1NS000A
o O RPuN THIS CODE ON A 704 OR 7090/94eMAKFE THE FNOLLONING CHANGES=  R1950007
C (1) CriaiNGE THE INITIALIZE TEFMPORARPY STORAGF SECTION BY KREPLACING K10%000RK
C ALL MOLTIPLE FQUALTTIES WITH A SUITAKLE SURSTITUTF. R1050010
C (2) CHANGE ALL IF FXPONFENT FAULT STATFMENTS TO [F ACCHUMULATOR k1050011
c QVERFLOW STATEMEMTS, R10%0012
C (3)THRE 2 STATEMENTS FOLLOWING STATEMEMNT 9500 SET UP AN FRROR k1050013
C TERMINATION JUMPFO TOQ FROM 20 DIFFFRENMT LOCATIONS IN THE CODF. 1050014
C CHANGE THIS SURRONTINF s CALLED USUERRORTO SUIT YOUR SYSTEM, ®1050015
C THIS VERSION INCLUDES CORRECTIONS IN NEARREX TO AUGUST 1964 AND IN
C WILNDCAT TO DECFMAER.]19/6
C R10%0017
000003 DIMENSION H(26) sHI(26) sPT(2A) sPE(20) sFM(20) 4PAFO(19),
X AMFQ(19) «PAFT1(19) o AMF] (19) «PAHD(]9) e AMHO(19) R10S0019
X PAHLT (19) oG{30) o XK(30) «FINT(1397)sEN(IB) «FLIM(10),
A FHALF(1497) 9P (3FAe]19) 00 (36¢19)+01(36A¢19).
XENSIG(2A015015) «RGP(19) +RRR(19) 9 AGPLUS(19) s AGMIN(1Y) ¢ HBGM(19) »
XATFEARP (260]15) « 4MH](19) o RECORD(12) « GFHING(3D)
XENSIGHILDe26) e FSURP(10) ¢ ENSIGE (3A) ¢ VST () hHEFE 4 {AR) « XNOWI(G) sE(10) o
XTOTAL (10)+8(26e15)00(19) eCWCALC(10G)
XATEMP4(2HRe15) e GSIOGN(3IR) o GSIG(19)
XUSTGUE (19) « STETN(15) s CSSL10) 4 VAR(10) s
XWCALC(10G) « SIGMAF (10) ¢ WFXP{(10e3) «SIGMAW (1069} « JOPTTON(]) o
. X N1 0e2) «MIMN(1002) ePIN(100Z) e TN(Pe15410)
XECHI(a0) o b KAY (40) ¢ PSP (40) ¢PSM(40) o FZERD(4N) ¢ HRARO(GD) aHBOTI(40) o
XALPHA{AN)  AKPLUS (409 ]15) g AKMIN(40415) oNFTR(ED) e TCOFEFF (40415)
XFSTG(aNe 18) ¢« TEMPFA(AQDN) « ASURFF (60) s TEMPNE (AN) «FSIGE(60) o
X FSION(IUA0) s COMPTR (25915) s RHO(20410) s AMFV(10) +ESUP(1Y)
0000073 COMMUNZC/XJ(I) aW]1(19¢9) aW2(13¢Q) ¢W3(19¢9) aW&(19e9)9ewWS(19919+10)
XS5 (19¢9) sWFA (1949)
X /R/SIGST(20420)
C 10500289
C COMPUTE TARLE OF J=COEFFICIENTS 1050029
C
000003 NDO3331M=1e7 1050030
000005 3331 FHALE(1«N)=0,0 *1050031
000017 N03332N=1+13 k1050032
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TR =HI(D =PI (T =FN(T)=ENSIGF (1)=0.0

0007RA

000275 NO 401 N=ls?
0nn=74 0 401 NIE=1e10 ,
000277 EN(NLE eN)=HIN(NJE «N)=PIN(NIE«N)=0,0
000395 401 TN(NeNN'NTJE)=0,0
_0091315 DO_17 J=1.9
0onolln AMEV (J)=0.0
_000317 17 xJ(JI=0.0
000322 DO 3010 J=1+19
000323 Py )=00(1eJ)=Q1 (1o J)=ATEMPP(Js J)=ATFMPM (T4 J)=0,0 R1NSVOTI
000335 NN 9010 K=1419
- 000340 9010 _ ENSIG(IeJeK)=04,0 1050079
000354 00 9011 1=1.19 R10%0076
0001355 9011 PAFOQ(I}=AMFOQ(I)=PAFI(T)=AMFJ(T)=PAHO(T)}=aMHD (1) =PAH](T)=BGP(I)= R1050077
C AGPLUS(T) =AGMIN(I) =HGM ()= R1050078
CAMAI (T)=PE(T)}=FM(]) = 0.0
000416 D0 9012 I=1.30 R10500A31
_ 000417 9017 G(I)=XKA{(I)=6GFUNG(I)=0.0 ! R10500A2
000424 DY 9013 I=le19
001426 9013 HAX¥([)=GSIG(I1)=0.0
000432 DD 901s I=1+3% R1050045
00046734 9014 GSIGN(TY=0.0
000437 D0 9016 I=1,20 N
000440 ESUAR (1) =0,0
000441 DY 9015 J=1+36
000443 9015 ENSIGni{[e4)=0.0 ®1050098
000453 N0 ReAT I=160
000494 ENULT) = KAY (1) =PSB (T)=PSM(I)=F7FRPO(I1}=A8ARO(T)=H30TT(T)=
XALPHA(D) =MFTR(I)=TEMPFA(T) =ASURFE(I)=TEMPNE(I)=FSIGFE(I)=0.0
000511 DY 3910 _J=1.20
000513 3010 AKPLUS(T¢J)=AKMIN(I o« I =TCOEFF (14J)=FSIG(T9J)=0,0
000524 V0 REAT (=120
0005726 FSIGM{Le1) =040
000532 8667 CONTINUE
c
C ZERO OUT FIXED POINT TFMPORARIES, R1050089
c
000536 IAFGH = [AF = IAaG6 = _1aH = [AN = IRG = IEJP] = INAWT = R1NS0030
CINO = [PHI = ISIGMA= ITPT = JUPI = J = JUPPER= KC = K1050091
CKKK = K = LMAX]2= [ MAX = | = MR = ME = MJ = R1lo50092
CMN = MP =M = NCARE = NE = NIF = NINT = NLKN = R1050093
CNLK=KHMAX]=NMAX=NN=NOJ1=NQJ=N=TATI=0 094
000A0A [OPTION=9
c
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C HPREPARATION OF wWi{K,J) TABLES




000013 K=N+] R10500733
000015 FINT(N¥el)=],0 K1U500 34
00Nn016 3332 FHALR (Kel)=1,0 , 13504035
_Qonn22 SS=2.0 1050036
000023 PDND3IZIaN=Peh R1O090037
000025 ND3333J=14173 #10%003R
000026 AHEL=FLOAT(J=-1)
0000130 AHAL=AHFL +0 45 R1050040
nnoon32 K=J+| R1050041
000033 C  =0,5/(585#5S) R11050042
0000135 FINTCJoN) =EXP(=C #AHEL®AHEL) =EXP(=C #(AHFL+1.0)
X# (AHFL +1.0)) 1050044
nnooss 3333 FHALE(KReN)=FEXP(=C #AHAL#AHAL) -EXP(-C # (AHAL
X+]1e0)%(AHAL+]1,0)) R1050046
000076 3334 S5=5S5+2.0 R10S0047
000101 FINT(1e7}=1,0 R1li5004n
000103 FHALE(Pe7)=1,0 1050049
_000104 P03335J=1+12 R1050050
00010S K=J+} H1Ns005]
000107 L =x+1 R10%500652
000110 FINT(KeT) =F INT(JeT7)+2,.0 10500973
0001113 3335 FHALr (] e 7)=FHAl F(KeZ7)+1.0 R10500%4
C . R1I0S005%
[ INITIALIZE TEMPORARY STQRANGE, R1950054
C ZERO NUT FLOATING POINT TEMPORARIFS, R1050057
o
000120 301 af = AFPAL = AGSUPO= AHAL = AHFL = AMTOT = ANAJTA= ANAWTM= R105005R8
CANANVIP= AN = AQFN = ASUBFE= ASUHH = ATFMP = AwTA = Awfl = R10650059
Caxa = AYA = C = DHPROD= DELTA = FUPI =N = EYE = K1050060
XFINAWT= FKN = FLN = FNINT = FTFMMP1= FTEMP?2=
X PHiu=s  PHIUF= PATOT=  GFLTA= TEMP3=
CHHP AP = PHPH = PIFK = PIEN = PIE = PRONI1= PRONDIP= PRONZ2]= 1050063
KERIV22=PSTRAR=STGAA=SS=SUMINM=SUM [NP=SUM [NV =S{MK=
CoUMITM= SUMOTR= SUMYPM= SUMUPP= TEMP] = TFEMP2 = TEMP3 = TEMP4 = R1050N065
CIEMPS = TEMPAGS TEMPAD= TEMPA = TFEMPRG=S TEMPY = RI1US00&A
CTEMPOM = TEMPP = TFMP = TFMPT = TFMPX = U = RINS0IRT
CVEK = V¥L = VI = VJ = VKN = VK = VLN = vl = R1050068
C WOFMN=XKI=ZMIN=ZPLS= EXPSUM
C=CALSUM=CH]SOW=CHISQS= 0.0
000247 ) 9999 J=1.26A
0002sS1 DO 9999 NMN=1415
000252 COMPTR{T«NN)=0,0
00025A A(T«NN)=0,0
0002A1 9999 CONTINUFE
0007264 0O 9010 I=1+36
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C
C (194
C READ INPUT . w1080 09s
C R1OSH096
C
c READ IN TITLE e 1akid
C YR
000A07 READ FWPUT TARPE 743001 +KKKy (RECORD(T)eT1=14+12) ' R1050097
000A27 IF(KKK +E0. 999) 920549206
000/27 9205 Ccatl EXIT
000A30 9206 CONTINUE
000530 WRITFOQUTPUTTAPEA«3002 R105009A8
000ARG WRITFOUTPUTTAPEARRODA R1050099
000640 WRITEQUTPUTTAPEARQ27 4 (RECORD(I) o1=1912) R1050100
000AS2 READ{(T7«3003) TAGy [AF e NOK o NMAX « LMAX e NCAE o KCo ITPT«NF 9 Qe4N»
XNINT o NANGL o LTPRMT <L EVDENGSS
000716 READ (74 181S)LI0eKINDEX s JSTAT 9 IMAX9EPSTILsSINGeNLEVeAFFCTN
_00074? 1”19 FORMAT (4139 2F 3,1072+F3,1) '
0007472 IF(LEVDENFEOLLIREAD(T7«795)DFACT«DORLE
_00075¢4 799 FORYAT(2F10.5)
C
o} RFAD STATISTICAL PaRAMFTERS
-C .
_000754 [F(JSTAT,FQ.N)IGO TO 184K
N00N75% READ (794 70) ATOMW e Al s AP« EQ 9 AF o EXs TEMPERGHBAROSIRIGIDI o+A36EMINI
001007 70 FORMAT(RF10,5)
001007 WRITE (6eBNDA)
_aniotl IC=(4,0/7,0)%), 3% (P7+PN) /2.0
001021 ALITF=aE
_001027 DO 1844 [M=]«NE
001024 1844 READ(Te1845) VAR (IM) «ESUP (IM) ¢ AMEV (IM)
001040 1R4S FORYMAT(3F10,5)
001040 WRTTE (6eBDOA)
001043 1846 CONTINUE
_001043 LMAKI=LMAX+]
001045 IEJPI=KC R1050103
_001047 NOKK=NOK
001050 IF(MN=1)3701370243702 R1050104
_0019%> 3701 NINT=]2 1050105
001053 3702 CONTINUE R1INGO1INA
_001053 LMAX ] 2=P#  MAX+] 1050107
001055 NMAX I =NMAX+] R1050108
001057 IF(LEVDENGED S ]I NMAX J=NMAX#2
001061 NL IM=NMAX1+NLEV
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0n10en TNMAX2zuMAX +T

Q0)nas_ wRITFNUTPUTTAPEALRD0A F1050]199
001070 WRITEFOUTHFHTTARF A RO0A . K1am0110
001074 PRITFOUTPUTTAREG+3006 oKC RluS0o1lll
001107 WRITEOUTPUTTAPEG«ROOA R1050112
00110~ JFLEVINEN)S]124917+4912
001107 917 NO 914 N=T+NMAX]
_001111 READ(7«27IR(N) sHI (M) o PT (N)
001127 914 WRITE(6e27)B(N)+HI(N)+PI(N)
001137 WRITE (AeRONB)
0n1142 GO Tu TR0
001163 912 CONTINUE
001143 IF(SING.FQ,0.0)GO TO 780
001144 DO 750 N=NMAX24NL IM
001146 READ( T« 27)H(N) «HI(N) sPT (N)
_0011S7 760 WRITF (6+27IR(N) sHI(N) ¢PT (N}
001174 WRITE(AReB006)
001177 750 CONTINUE
001177 HI (1) =GSS
C 116%
C TEST IF G.S. SPIN IS INTEGRAL
(o 116%
001201 SS=HI(1)+0.75 .
001203 305 IF(55-1,0)3064307.307 R10S0114
C T1Hs
[ [ GaSe SPIN IS 1/2 INTEGRAL 113
C 11ms
001206 306 InagT=) #1050119
001207 AWT=0e5 K10S0120
001211 GOTD310 R1NS012]
0oni1>211 307 S$SS=S5S-0.5 Klosu122
_0012173 JF(SS=-1.0)308R+3094+309 R1080123
001215 308 INAAT=0 R105012¢4
001216 ANT=0.0 R1050125
oni2V7 6G0OTO310 R105012K
001217 309 S5=S55-u.5 R1050127
001221 GNTO3INS R105012R
001222 310 TEMP=FIL.OAT(LMAX+])
nn122s TEMP=TEMP+HT (1)
001227 IF(fieawT=11311+312312 1050131
00172131 311 TEMP=TEMP+(.5 R1050132
001233 312 TEMP=TEMP+0.25 R1050133

NOJ IS TRUNC(TOTAL NO. | WAVES + G.Se SPIN + 0.25)

OO0

NOJ IS NO. J=S IN  CaLC
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001235 MOJ=XINTF(TEMP) R10501 34
0n1241 PRINT 12724N0J /
001246 1222 FORMAT (T 3)
00174~ NOJ1=NOJ+1 R1050135%
0n125n IF{TAG-1)313+3144314 R165013A
00127252 313 AGSUPU=0,00005 R1050137
001754 GOTO315 1050138
C 13R8%
[} READ IN GAMMA CHANNEL DATA
C 13/%
001254 314 READINPUTTAPET793101+AGSUPOIMIME«MBIMPsSIGMA+UIDELTASZPLSsZMIN 1050139
001204 IF(MJ=1)3141431472«3142 R10S50140
001327 3141 SIGMA=k,.0 r1050141
001311 I1S1soMa=4 R10%0142
001312 GOT0 31473 R1050143
001312 3142 ISIGYA=XINTF(0.5%#SIGMA+]1,25) R10501464
001321 3143 TF(Mr=]1)3144+314503146 ' 21050145
001324 3144 IPHI=O R10S0146
001325 G0TN3147 RIOS0147
0013726 3145 U=R.0 R1NS0148
001330 DELTAa=0,12 k1050149
001331 IPHI=1 N R1050150
_001332 GOT03147 R1050151
001333 3146 [PHI=1 R1050152
001334 3147 [F (MP=-]) 3)4R¢3]14993149 153
001337 3148 ZPLS=1.0 R1050154
00134} ZAIN=].0 R1050155
0013472 3149 WRITEOUTPUTTAPEG6+3005+AGSUPO R1050156
0012350 WRITEJUUTPUTTAPFA.R006A R10%N157
001354 WRITE OUTPUT TAPE 643102 R105015R
0013560 WRITHEOUTPUTTAPEA926+4SIGMAIUDELTACZPLSsZMIN R1050159
001376 IF(MB=1)3150+4105+105 - k1050160
001401 3150 I8G=0 #1050161
001402 GOTO315 k1050162
0014073 105 -READINPUTITAPE 7425« (PFE(JPT) 9 JPI=14NOJ]) R1050163
0014al6 WRITE QUTPUT TAPE 648006 R1050164
001422 WRITFE QUTPUT TAPF 648011 R1050165
001426 WRITE OQUTPUT TAPE A«R0084 (PE(JPI) s JPI=14NOJI]) R1050166
0014641 READINPUTTAPE 79254 (EM(JIPT) o JPT=1sNOJ]) R]10501/7
001454 WRITE OUTPUT TAPE 648006 R1050168
001460 WRITE OUTPUT TAPE 648012 R1050169
001464 WRITE OUTPUT TAPE 648008 (EM(JPI) s JPI=]1+NOJL) R1050170
001477 13G=1] R1050171
001500 315 IF(IAF.EQ.0)GO TO 5000

86T



c 172+
c [MRPUT CHANNFL F DATA 172%
c , 172+
001501 WRITE (6eH006)
001505 DO 6 TAF=14NOK
001507 READ(7+2666) FNU(TIAF) o FKAY (TAF) oPSP(TAF) «PSM(TAF) +EZERO(IAF) »
XH3ARD (TAF) ¢y HROTI (IAF) s ALPHA (T1AF)
001532 2666 FORAAT(AF10.5)
001532 ANTA=AWT
001534 A CONTINUFE
001536 WRITE(643007)
0015472 IN0T7 FORMAT (8 # ¢ 2X g #tFNU(K) # e 3X o #K# 94X g ¥PSP# 4 2X o #¥PSM¥* 42X 9 #EZERO (K) *
FAKeHRARO(K) # 92X o #HROTT (K) ¥ 9 2X o ¥ALPHA (K) )
001542 DO 5 JTAF=]4NUK
001544 5 WRITE(633006)FNU(TAF) «FKAY(IAF)sPSP(IAF) sPSM(TAF) oEZERO(TIAF) »
#HRARO (JTAF) «HBOTTI(TAF) o Al PHA(TAF)
001572 3006 FORAAT(# %4 3XeF3e193XeF3a193XeF3.192X9F3al02XeFRaS593XeF6alr4Xs
#E T aSe2XeFTa6)
001577 5000 CONTINUE
nNn1s72 WRITF (A« B006K)
001574 LMAKX | 2=2%# MAX+]
C .
C INPUT EXPFRIMENTAL DATA
c
001600 N0 7043 I=1eNE
001602 READ INPUT TAPE T7+7046¢STGMAF (1) +USIGME (1)
001h11 wRITE QUTPUT TAPE 6+70669SIGMAF (1) «USIGMF (1)
001621} 2046 FORMAT(PF100.59)
001671 7043 CONT INUF
001624 DO 214 J=]1 «NANGL
00175 READ TNPUT TARE Te217eXJ(J)

001632 217 FORMAT(F12.8)

00137 218  CONTINUE
001635 CALL WKJ(NANGL)
001636 DO 7045 T1=1eNE
001449 DO_70aeS_J=1«NANGL
001641 READ INPUT TAPE T7970449WEXP (LsJ) oSIGMAW(T. D)
_001654 7044 FORMAT(2F10.H)
001654 7045 CONTINUE
_001%41 WRITE OuTPYT TAPFE £47047
001665 7047 FORMAT (1KMHOEXPERIMENTAL DATA//)
001665 N0 7048 I=]1eNE
001567 WRITE OUTPUT TAPE 64174941
001674 1749 FORMAT (19HOTHIS IS FNERGY NO,+12//)
001A74 WRITE OUTPUT TAPE 641750
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001700 1750 FORMAT (27HOANGLE WEXP SIGMA)
001700 NO_T7068 _J=1sNANGL
001702 XXXJ = J ,
001703 (RIIF QUTPUT TAPY 601751 eXJ(J) oWEXP(L1eJ) oSTOMAW (] o))
001721 1751 FORAAT(# #4F10.3+2F10.8)
001721 7048 CONTINUE
c K1N50192
(o _CALCULATE STAT, WT, FACTQORS.IEs G(K)ETC,
c R1050164
001725 ENINT=FLOAT (MINT)
001730 DO 1307 K=1eNINT R1050196A
001731 [EMP=FLOAT (K)
001732 TEMP]1=3.161592654% (2. 0%TEMP=1,0)/ (2. 0%FNINT) R1050198
001740 G =SIN(TEMPT)
0017464 TEMP=COS(TEMP1)
001767 1807 XK(K)=0,5%(1,0+TEMP) R1050201
001755 FINAMT=P 045/ (2.0#HI(1)+1.0)
0017451 JFIPHI=1) 1902518091901 +1050203
001763 1901 1FRR=1701 R1050204
001764 GO T 9500 R1050208
001765 1902 PHIU=1.D R1050206
001767 20 TO 18313 R1050207
001757 1809 TEMP=0.0 N R105020R
001779 CALL PHI (DFLTASTEMPW1J4PHIU) ®1050209
001773 1813 [F(IMNAWT=1) 1825181441814 R1050210
001774 1814 INO=XINTF (HI (1) *+1.25)
002004 TEMP I =FHALE (INO« ISIGMA) R1050212
002007 TNO=110s]) K1950213
002011 TEMPI=TEMP L +FHALE (INO+IS1GMA) R1050214
002015 GO _TO_ 1435 R1050215
002015 1825 INU=XINTFIHI(1)+0.7%)
002023 [EMP1=F INT (INOs ISIGMA) R10%0217
n02027 INO=THO+ ] R10SN21R
002031 . TEMP =TEMPI+EINT (INOQS ISTGHMA) R1N50219
0020135 1835 AFPHI=AGSUPO/ (TEMP1#PHIU) R1050220
002040 TEMP=(),5+HT1 (1)
002042 I¥F (IwAwT=1) 1865+1R5541250 R10K027?
_002044 1850 [FRR=3477 »1nsnp23
002065 GO TO 9500 R1050274
002046 1859 JEMP=[+MP+0,5 R1050225
002050 GO TO 1870 R1050226
002051 1865 TEMP=TEMP+],0 R1050227
002053 1870 TEMP=TEMP+0.25 R1050223
C
c JUPPER = NOJ FOR OUR CALC.

00¢



002055 JUPPER=XINTF (TEMP) - #1050229
0020A1 JUPPERSJUPPER+LMAX . RIOS02 30
0020613 wWRITENUTPUTTAPE64]1370 R1050231
0020KA 60 TO 321
002047 321 DD 322 T =1eNE
002071} READ( 7+ T046)E (1)
0020745 322  CONTIWNUE
0072101 READ INPUT TAPE 74260, I0PTION
002104/ 260  FORUAT(IL)
C R1050232
(o TRANSMISSION COEFFICIENT INPUT R1050233
c R1050234
0021046 IFUFYDENI1131+11321131
002107 1137 NIE=D
002110 1139 MIF=NIF+]
0072112 PHPH=()
002113 WRITF(A«3011)F (NITE)
0021721 WRITE (He 3012)PHPH
002127 WRITE (6eH0N6)
002133 WRITFE (s 391 3)
002137 WHRITE (5+R006)
0nz2143 DO 1134 NLK=19eNMaX] .
002145 1134 _READ(T+2A) (A(NLKoNN) sNN=}+LMAX]2)
002164 DO 1133 NLK=19NMAX]
0n216S 1133 YWRITHF(6+3914) (A(NLKoNN) sNN=1+1MAX12)
002204 6O TO 1107
002204 1131 CONTINUE
0072204 IR =0
002208 186 NlEZ=NIg+] R1050236
nn22n7 MNAAKT=2*NMAX
_002210 NOK=HOKK
0027217 READINPUTTAPE 7027« BN(NIEs 1) s HININIE« 1) s PIN(NIF 1)
002223 T WEADPUTTAPE 74260 (TN(1eNNNTE) sNN=1,| MAX]2)
002240 NO 400 LKN=1eNMAX] ' N
002242 DD 400 NN=)1el MAX]I?
N02243 COMPTRALKNsNM) =040
002247 400  CONTIJUE
002754 IF(SING.FN.0.,0)6G0 TO 762
002255 PO 760 WL =NMAX2WNL M
002,287 760 READ(T7+26) (A(NLKeNN) sNN=1+LMAX]12)
_0n2276 DO 761 NLK=NMAX2eNLIM
0072300 761 WRITE(643914) (A(NLKsNN) sNN=1+LMAX]12)
002317 762 CONTINVIE
PHPH =@

00”2317
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nnz321 R ITE OUTRUT TAPF 6¢30119F(NIE)

0N232A R JTEYUTRUTTAPEASIN] 2 PHPH R1050240
00?2334 PL1)Y=P[N(NIF«]) ,

0n233k HI (L) =HIN(NEE 1)

0072340 H1)=rN(NTIE 1)

0Nn2341 DO 407 NN=]14L.MAX]?

0072343 407 AllenN)=TN{1 o NNNTE)

_007235% DO 9HARA J=1+NMAX
002357 D) 9nR’K L=1eLMAX]
00723A0 9888 KHDN(Jel V=00
002371 B 19 LKN=]eNWAX
002372 15 READ(74304) (RHO(LKNoNN) sNN=]+sLMAX])

00”411 306 FORMAT(XE10.3)
0072411 D0 4046 LKN=]«NMAX] 42
0024172 J= LK+l /2

No2ala COMPTR(I KMNel1}=RHO( Je1)
00241A COMPTRILEN+19 1) =RHO(Je 1)

002420 DO 44 nh=Pel AAX]1Pe2
002421 M= (NN+2) /27
002423 COMPTRILKNGNN) =RHO (JoM)

0024327 COMP TR (LKN+1oNN) =RHO (JeM)
002437 COMPTIR (L KNoeNN+]1) =RHO (JoM) -
0024464 COMP IR (LEN+]1onNN+ 1) =RHO(Je M)

002451 406 CONT INUE
N02455 DO 790 LKN = 1eNMAX] .

002457 PO_790 Niy=]eLMAX]P
0024k0 COMP TR (LKN¢NN) =COMPTR (LKN«NN) #DFACT
Q0 26AS 790 CONTINUE
00?2472 wRITE(6e?22Q)

002475 2249  FORAAT(# #4%ENERGY LEVELS ARE IN THE CONTINUUM)
002475 IF(JSTATWFO I WRITEF (AL 1B4TIVARINTIE) «ESUP(NTE) oFMINI
002511 1847 FORMAT (% #e¥K7ERDO SAUARE=#4F 10,5/ #UPPFR LIMIT OF INTEGRATION=%#,
CXFI0LSe/ e # L OWEY LIMIT OF INTEGRATION=#4F10.5)
002511 VARTAy=vak (M]r)
002513 EAARSESUR INTE)

_00251% WRITHOUTRPUTTARPEGRLAOOA 1050116
002520 WRITHOUTPUTTAPFAe39]13 K1050242
002924 WRITEOUTPUTT AREAROOA R1050243
002530 IF(LIPRNT FQ,1)60 TO 11072

002532 3291 w10y QUTPUT TAPE Ae30]4y(A¢ 1 eNN) e NN=]LMAX]2)

002546 DO 18 LKN=]«NLIM
00272550 1R WRITF(H5e39]14) (COMPTR(LKNJNN) sNN=],4,LMAX]12)
002567 1102 CONTINUE
C 237
C Q IS JALPHA = TRANSMISSION COEFFICIENT FACTOR 237+
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C 237#
C
C CALC ouF CN TRANSMISSION COEFFICIENTS ,
C RN
nNnD2567 D = EA(NIE)
002571 IF(LEVDEMFO1INMAXT=]
0n>S74 DO330ANN=]«LMAX12
00257+ SS = Al LsnN)
00”2401 IF (PHPH) 9003+9002.9003 R1050249
_0p2k02 9002 JTEMP]=S5SS R1050250
NN2A0N4 HRH (NN) =040 r1050251
_002A05 GO T9 330 1050252
0Nn2A06A 9003 TFMP=SQRT (] ,0~PHPHH#SS) ’
_002R14 TEP =55+ (1,0=-TEMP)#{1,0=-TFEMP) /PHPH R1OSY 254
no2A20 RBA(NN) =0,1591549% (SS=-TEMP]) R1090255
par2k23 330 A LeNN) = 0,1591849#TFMP]

002A132 IF(N4aX1=1)333+333+331 r1050257
_0Nn2A3S 331 DO332EK=29NMAX] R1050258
0n2,37 DO3I32NN=1LMAX12 R1050259
002640 S8 = Al Nt Ko NN)

nNn2a44 IF (PrPH) 9001900049001 rR10S0261
002645 QNN TEMP1=SS R1OS02K2
00r2~a7 GO TOo 332 R10%0263
_002Ak47 9001 TrMP=SuRT (1.0=PHPH*SS)

00 2RSS TEMPI=5S+ {1, 0=-TFMP) #(1,0=-TEMP) /PHPH R1050265
002641 3372 af NEKsNN)Y = 0.1591549#TFMP] -
002A73 333 Tau=/ ' R1DS02AT
DO2614 IF (IPHI~-1) 2041420432040

00277 2040 1FEKR=2040 R1050269
002700 GO T v9n( R1050279
002701 2041 PHIUE=1.0 R1050271
002703 GO _Ta 205 rR1050272
002703 2043 CaLbL PHI (DELTAsDUPHIUE)

002706 205 CONTTMUF R1080274
0nN27068 IF(LEVDEN,EQ.1)GO TO 8050

002710 PO _ROSL LKN=]1+NMAX]

norP7172 DO B8NS1 NN=1eLMAX]1?

Q02712 COMP TR (LKMenNY) =8 (LKNoNN)

onr72? RNS] CONT INMNUE
_N02727 [F(LTPRNT L FU,.,1)60 TO 8050

002731 PO A0S2 LKN=1eNMAX]

002732 8052 WRITE(69391Q)(COMPTR(LKN.NN).NN=].LMAX12)

002751 B050 CONTINUE

002751 L1F(SING.FN,0.0) GO TO 765

no27s5? DO 7A6 NLK=NMAXZ2NLIM
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NN27%4

DU TRE NNZ1sLMAX]?

nNn275% ALK e SA{NLK «NN) /A ,2R32
0Nn27A1 Teae  COM2TR(ANLK«NN) =A (NLK «NN)
p0>2773 _7A5  CunTINUE
C ) R1050275
C CALC (F THETA-MU-S 2716
C R1050277
c
C CALC OF T=GAMMA (JsP1)/2%P1
C
0n2773 DO 4?3 JP1=1+JUPPER
002775 IF (148wT=]1) 40544034402 R]11SNP279
nn2777 402 1ERR=40? R10502%0
003000 GO_TO_ 9500 RINSN2R]
nN03001 403 TrvPz=FHALF (JPI+1+1SIGMA) K10502%2
00300S ) T 406k R10502K3
003005 4065 TP =FINT(JPT1+ISIGMA) rR1050284
003011 406 TEAP]=AFPHIH#TEMPU#PHIUF R1050285
003014 AGPLUS(JPT) =TEMP I #7PLS R10%0286
NN3016 4723 AGMIN(UPT)= TEMP]I#7MIN
C
C CALC OF T-F (JePL)/2%#P]
C <
_00302? [F(IAFFI.0)GO TO 1213
0on3n>3 N0 1A TAF=]14NOK
003025 XKKAY=FKAY (]AF)
003027 EKZERND=EZFRO (1 AF)
0013030 HIHOT[=+HOTI (JAF)
n03032 H4AROK=HRARO (T AF)
003033 ALPHAK=ALWHA (] AF)
0030135 IF(XKKAY=0,5)94+]104+9
003037 9 xKDELT=0.0
003040 6D Tl
003041 10 X<DELT = 1,0
003047 11 CONTINUF
_ 003043 T XAKAY = AKKAY
003045 KK1= XKKAY+0.%
0013050 FFK=0,0U
00305]) TFK=04,0
003052 KK2=1}
003083 IF(KINNERGEN QI KK2=KK ]
_00305S% PO 12 KK=KK?2+nNOJ
003057 IF(KKLTLKK1I)IGO TO 13
003061 EFK = EKZERO+ HIBOTI# ((XKAY® (XKAY+],)) ¢AL PHAK# (=] ## (XKAY +0,5))

X#(XKAY+05) #*XKDELT)
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nn3InT7 TFK SOl e+FXP (2,083, Jan(FFx ~D)/HBAROK) ) ## (=1))/(2.0%3,14)
_003110 X<AY = XKAY + ],
np33112 13 ARHLUS ([AF yKK) =PSP ([AF)RTFK%2,0 ,
003R)21 A ] (] aF ¢KK) =PSMITAF)*TFK#2,0
nn3ira TFK=0.0
003124 FFK=0 .0
nn3y 29 12 CONTINUE
003127 16 CONTINUE
nni3i> WRITE (Aer006)
0031139 M=0
Nn3113s N=]
003137 1212 #4=N+)
00314} N=M+9
Q031462 IF{N.GT JNOK) N=NOK
003148 N 2 I=MeN
003147 2__WFTR(IY=]
0031572 WRITE (60 1731) (NFTR(I) ¢ I=MoN)
0031468 1731 FOXMAT (# e JO(#F~TRANS (#4J29%)#) 4X)
0N031A/S . WRITE (AeR006)
003171 DO 8 KK=}eNOQJ
0n3173 DO 3h TAF=MsN
_0013175 IF (PSP (TAF) ,FU.1,0)G0 TO 7
003177 TCOEFF (IAF o KK) =AKMIN(TAF sKK)
003204 GO Ty 36
0n320% 7 TCOEFF(TAF«KK) =AKPLUS (IAF ¢KK)
_003213 36 CONT [wUF
0023716 8  CONTINUE
003220 PO 1306 KK=1+NOQJ
on3z22 1306 wRITE(ﬁ-l???)(TCOEFF(IAF.KK).IAF:M.N)
_00324) 1727 FORMAT (# #410(XeF9.3sX))
003241 WRITE(HeHNDA)
Q03244 IFINsEWSNOK) GO TO 12173
003246 6O TO 1217
003247 1213 CONTIHUE
C
C STATISTICAL TRANSMISSION COEFFICIENTS FOR FISSION
C
003247 IF(JUSTATFQRaNIGO TO anQ]
0n1>250 EREL=EZF=O(])
_N03272%2 ALITF=AMEV (N]F)
003254 caLL UISTAT(LMAX~EMINIoEMAXvHRAHOS.VAPIAN.DoEXoALITF.RIGID[vEO-
XTEMPvaATHMM.IMAX-ERFL.AFFCTN-A10A2~A3)
003275 [AFF =NOK+2%#N0J
_003300 KXX=NOK +]
003302 ND 4002 TAF=KXXsIAFF 42
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003303

Lo=(lAF=KkXX+1)/P+1

Nnn3nz DO _40N2 KK=1+NOJ
0n23n LKPLUS (IAF oKK) =SIGST (LDsKK) #*DORLE/ 642832 |
0n3y7 AKMIN(IAF+] oK) =STGST(LDKK)#DOBILE/6,2832
nn31°5 4002 CONTINUE
003331 AR ITF (her006)
003335 WRITE (694003)
00326] 4003 FOIMAT (# #4#STATISTICAL TRANSMISSION COEFFICIENTS FOR FISSION®)
00334 WRITE(6e8006)
003349 AF=AL ITF
0naIay WRITE (6e73)
003352 73 FORMAT (% #4% A Al A2 £0 AE
X EX TEMPER HBAROS RIGIDI A3%)
003352 WRITF (A T4)ATUOMY 9 AL e A2 EQWAEZEXTEMPER,HRARQSIRIGIDIZAZ
003607 74  FORAAT(10F10,5)
003402 : YRITE (HeKO0A)
003406 NEKXX=]
003410 4006 ri=Ne+]
nn0361? N=M+y
003413 IF(N.GT.IAFFIN=TAFF
003416 N0 4004 [=Men
N03420 4004 FIR(TY=]
003423 WRITE(6e1731) (NFTR(I) s I=MsNs2)
_003435K HRITE(HeRO0K)
0034642 NU 4005 KK=14NOJ
0034464 4005 WRITE(6e1727) (AKPLUS(TAF +KK) s TAF=MsNs2)
003463 WRITF (28006)
0023464 I1F (NSEOLTAFF)GO TO 4007
003670 6O TO 4006
003471 4007 CONTINUE
003471 4001 CONTINUE
C - R1050305
C RO(F e JeP) R10K0306A
C RP1050307
003471 IF (I86=1) S02+5064501 R1050308
003674 501 [EwRR=50 ] R1050309
003475 GO Ty 9500 R10S50310
_0nla7ah 502 N0 S04 JPI=1,JUPPER R1050311
003500 RAP(JP1)=1,0 R1050317
003502 906 HGAIPII=1.0 R10S0313
003505 60 TO 800 R1050314
003505 S06 DI 730 JPI=1+JUPPFR R1050415
003507 IF (INAWT=1) 70045124511 H1050316
003511 S11 IFRR=%]11] R1050317
0013512 G0 TO 9500 R1050318
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003513

S12

TF (JP1-1) 51345504515

RINSG 319
003516 513 JEKR=513 K1050320
nn1isy7 GO Tu 9500 R1050371]
003529 S15 FIrM2]=FHALE (JP T ISTGMA) R1050 327
003524 FTEMP2=FHALE (JPT+141SIGMA) R10%0323
_003526 FTEMP3I=FHALE (UPT+2+ ISIGMA) H1050324
001353} SUAIWV=FTEMP L +FTEMP3+FTEMP? R1050325
003534 525 £JPI=EM(JIPI-1) R1050326
0013536 IF (EJPI=D) 5294527+527
003540 S27 SUMUPP=FTEMP] F10S032R
003%4? a0 TO 532 R1050379
003542 S29 CALL PSI _(DeUsEJIPTDELTALPSIRAR)
003546 TEMP=RSIHAR/PHIUE R10%033)
003550 SUMUPP=FTEMP | #TEMP R1050332
0035572 S32 EJPI=EM(JIPT) R1050333
003554 IF (EJrI-p) S36:534+534
0013556 S34 SUMUPP=SUMUPP +FTEMP 2 R10503135
0013540 =0 TO 539 ' F10503136
00135A1 536 CALL PSI (DeUsEJPIDELTAsPSIBAR)
0013545 TEMP=PSIBAR/PHIUE R1N50G33A
003567 SUMUPP=F TEMR 2t TEMP + SUMUPP R10501339
_001572 . 539 FPT=F(JPT+]) £1050340
NnIsT4L IF (EJPI-N) 54395414541
LQ03s7A S41 SUHMUPP=FTEMP 3+ SUMYPP R1050342
003A00 GO TU 546 k1050343

_003601 543 CAlLL PSI _(DeUsEJPTLDEI TA.PSIBAR)

003/05 TEMP=PSIHAR/PHIUE R1050345
003607 SQUMUPP=FTEMP I#TEMP + SUMUPP 10503464
003612 S46 HOEP(JRPT) =SUMIPP/SUMTINY R10G0347
003615 EJPI=rF (JPI=]) R119450348
003A1A IF (EJPI-D) 62996274627

003620 627 SUMYPA=FTFNMP} R10503590
003~722 A G0 T 632 R1050351
003K22 29 CALL PST (DetUsEJRToDFLTAWPSIBAR)

003676 TEARP=PSIRAR/PHIUE k1050353
003430 SUMPMzE [FMP | # TEMP R105035%4
003A32 632 EJPI=PE(IPT) *1050355
003K/34 [F (EJPI-N) 63646344634

0036136 634 SUMIPI=SUMUPM+FTEMP? R1050357
003640 B0 TO H3Y R1050359
003641 636 CALL PST (DsUsEJPLINDELTALPSIBAR)

003665 TEMP=PSTHAR/PHIUE 21050360
003647 SUMUPM=F TFMP 2+ TEMP + SUMUPM R10507341
003652 639 EJPI=PE(JPI+]) R1050G362
003A54 IF (EJPI-N) 643+641+641
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fal SUAUPM=FTEMP 3+ SUMUEH

00 3A5A R10503R4
_003rAD 6O TY 66k 1050365
003F41 663 CALL PST (NetJeEJPTNFLTAPSIRAR)
QQ3IKAS TEMP=PS [SAR/PHIUE 21 NS0 38T
003647 SUMUPM=F T FMP 3% TFMP + SUMUPM R1Uo03A8
00372 ALE RGHM(JPT)=SUMUPM/SUMINY R1150 309
0013675 GO To 730 R10501370
_003A75 550 FTEMP]=FHAL E(2s ISTGMA) R1050371
003700 FTEAY?=FHALE (3+ ISTGMA) R1050377
003703 SUMINY=FTFMP] +FTFMPD $1050373
003705 EJPI=EM(]) R10S0374
003706 IF _(EJPI-1) 56445624562
003710 5A2 SUMURP=FTFMP] R1050376
003712 6O T 567 #1050377
0037172 564 CALL PST (DeUsEJPI«DELTAWPSIBAR)
003714 TEMP=PSTHAR/CHIUF #1050379
003720 SUMUPP=FTFMR 1 #TEMP R10503%0
003722 567 EJPI=¢M(2) R1050321
003774 IF (FUPT=M 57145694569
003724 5A9 SUHURP=SUMUPP+FTEFMP 2 R1050383
003730 GO T S74 R10503R4
00373 S71 CAll »ST (DeUFIPTLDOFI TAPSIBAR)
003735 TEMP=PS [HAR/PHIUE . R1N50386
003737 _ SUMUPP=FTFMP2#TEMP + SUMUPP
003747 ST74 RGP (1)=SUMUPR/SUMINY R105034A8
003744 EJRPI=PE(]) R1050349
003746 IF (EJPI=D) AEL46A24HA2
00137589 662 SUMUPA=FTEMD ] K10G5039]
003752 GO Ty 6n7 R10%0392
003752 ARG CALL PST (DeUsFEJPT4NELTAIPSIRARY
003756 TEMP=PS [RAR/FPHIUF : R1N%0394
_0037/0 SUMYPHM=FTFMP | #TEMP R1050395
nn37e? 667 FJIPI=PE(2) P1050396
003764 - IF (FyPI~N) AT71+669+AK9
0037A6 669 SUMUPM=SUMUFM+FTEMP?2 R1050 36K
003770 a0 10 K16 R1050399
003771 671 CALL PST (NeUsEJPT«DFLTAPSIBAR)
_003715 TrAR=PSHAR/PHTUE R1050401
0013777 SUMRASF TEMP2# TEMP + SUMUPHM R1050407
_foagn> 674 anM (1) =5UMUP4/SUMINY k1050403
004004 GO TO 730 R1050404
004005 700 IF_ (JPI-1) 70147024725 1050405
004010 701 JERR=T701 R10S0406
0040131 GO _TO 9500 k1050407
006012 702 EJPI=EM(2) R1050408
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nnanta

IF (FrOFI=0) 7057044704

0ne0)as 704 P (1))l — RI050410
nnan2n GO T 7172 , R105041)
006020 705 CALt 95F (PetleF JPToDFL TAsPSIBAR)
0nan2a B3P (1) =S [HaR/PHIUE
004026 1712 EIPl=rr (2) k1050414
004030 IF (EJPI=-D) 71547149714
004032 714 BEAME1)=1.0 R105041A
0046034 6O T 730
004034 218 cafi wST (DetleEFJP ] «DFI TALPSTHAR)
004040 RGA (1) =PSTRAR/PHIUF R10504109
004042 6O _T9 730 1050420
00ansl 7725 FTEMPI=FINT(JPI-]1+1SIGMA) R105047]
004047 FTIFA2=F INF (JP e ISTGMA) R1NG0422
0nans2 Freap 3=F INT (P T+l 1STGMA) R1050423
0040S9 SUMINV=FTFEMD] +F TFEMDDP+FTEMP3 R10G0a24
004060 GO TH s2s R1050475%
004061 730 CONTI NuUr 1050426
C R1050427
C SUMS OVER { AND K R105042R
C R10504729
_Noanss RGO  MIoEX=()
004065 IF(JSTAT.ENG1INOK=] AFF
_0046071 EAln=zu.0
0nan7? [FALIU) 12R2+126341267
004073 1262 uRlTr{6se1302) .
004077 1302 FORMAT(# #¢RNNF 93X e #VENE g IX e HVKN# 9 IX 9BV J#t g SX g #SIMINP# 45Xy
X#SUMINAZ e OX o #TFMPAQ® ¢ SX o #TFMP It g SX o #TFMPFA (14 JPT) %)
0naeny7 WRITr (ReH006)
004103 1263 CONT Ll
006103 IF(LEVDFE NGFIle 1) NMAX ] =P#NMAX
006107 IF(SIi0aF 0. 1aDINMAXT=NLIM
004113 DY 1245 MN=1LMAX]2
_aparys IEMP AR U0
004tlAh TEMPA4=0 .0
_006117 GSIGHNN) =0,0 K105043]
004120 DO 1717 1AF=]14NOK
D041zl 1717 FSIGLIAFWMN)=(.0
onai»7 DO 81y LK=] «NMAX] R108064 34
_004131 DY X1 MNEKN=]e MAX]2 w1904 39
004132 A10 ENSIG(NLKINNeNLKN)Y =0,0 R10504736
_00414sS Call EiLraY (NNgVIENesVKN) R1N0S0437
004147 MINDEX=INT(VKN+D,S)
006152 00 1261 JRPI=]1JUPPER R1DS043R8
004153 INK=JP]
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004154 IF(KINDEX«FNe 1) INK=NINDEX

_0n6l160 IF (JwewT~-1) B6098579856 1050439
0na61h? RS6 1ERR=756 R10504640
pna1el GO TO 9500 ' R1050441
006164 AST VJ=FLOAT(JPI)

004154 VJzVJ=0a5 R1050443
004170 GO TO 870 R1050444
0064170 A60 VJ=FLOAT(JIP]f=1)

004173 870 PATOT=0.0

006174 AMTOT=0,0

004175 PATOT=PATOT+AGPLUS(JPT)
004177 AMTOT=AMTOT +AGMIN(JUPT)

0047201 DO 1718 IAF=1ysNOK
0064203 PATOT=PATOT +aKPLUS (1 AF s INK)

004707 AMTOT=AMTOT +AKMIN (IAF 9 INK)
0062173 _ 1718 CONTINUE

0047215 SUMINP=0.0 R10504483
Nna2les SUMINM=0,0 ' R1050449
0naer17 DO 923 LKN=19NMAX1 RK10506450
004220 J=(LKN=1)/2 i

nnazz? TRIAL=AMODF (LKNy 2)
_N04229 SUNMDTP=0,0 R1050451
0naz2?26 SUMQT#=1)e0 R10504%7
_0nas>27 PO 921 N=1.LMAX]12 R1050453
004230 FLAGP=0.0

n0a6231 FI.AGM=0,0

0onap3? CALL ELKAY (NesVLeVK) R1050454
004234 IF (LFVDFN,FQ,0)G) TO 8053

004235 IF(LKN.GT L (28NMAX))IGO TO B0S3

Qnazal] VI=FLOAT ()

004742 IF(TRIALFN.0.0)PIFN==-1.0

006245 TIF(TRIAL oFUle0)PIEN=+1.0

0na?sn WOFN=FMIN
Q04282 GO T AnsSese

nNnaer?s? 8053 VI=HI(LxN)

Qgnazsa PIEN=P] (LKN)

0n4a?25A WOFN=r (LKN)
Q04257 R054 CONTINUE

004257 Ple=le0 R105045R
00464261 CALL ANEJLK (VJeVKoVEL sVI+PIEGPIENsDIWOFNS AOFN) R1050459
n06271 IF (AQFN-1,0) 911+908+507 R10504A0
004276 907 JERR=T707 R1050461
004275 GO TO 9500 R105046462
004274 908 CONTINUF

004276 ATEMPM(LKNyN) =0.0 R1050464
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00463072 FLAGR=) 0
006304 650 T 930
0046306 Q11 ATEMHL (LKNeN) =00 , R10504n/A
006310 PlE==~1.0 R1N59467
0046317 CALL ANEJHK (VJsVKeVLIVIePIESPIENSDsWOFNeAOFN) R10S04A/R
_004722?2 _IF (AOFN=1.,0) 91849164915 #10504m9
006125 915 [ERR=715 R10504 70
004326 GO TO_ 9500 R1050471]
004627 918 ATEMPM(LKNIN)I=0,0 R1050474
004333 GU_TO 92y
004336 916 FLAGHM=],9
004336 930  SPECTR=COMPTR (LKNeN)
0067347 IF(FLAGP.FQ.1.0)ATEMPP (LKNyN) =SPECTR
_004350 o IF(FLAGHMFQe)ls0)ATEMPM (L KNeN) =SPECTR
004354 920 SUMOTP=SUMOTRP+ATE VPP (LKNsN) R105047S
0046363 _ 921 SUM0TM=SUMOTH+ATEMPM (1 KNoN) R1080474
nna37} SUMINP=SUMOTP +SUMINP R1050477
0046373 923 SUMINM=SUMOTM+SUMINM R1050478
004377 PATOT=RPATOT+SUMINP R1050479
0046601 AMTOT=AMTOT +SUMINM R1150480
00464073 IF (ATEMPP (14sNN)=0,0) 953¢951+955 R1050481
004410 991 IF (ATFMPM{)1«NN)—=(0,0) 9531+952+9A0 R1050482
006616 952 GO T 1261 R10506473
0044617 953 JERR=753 R10N50484
004420 GO TO 9500 R1050485
004621 955  TEMPAOD=A(]NN)
004425 TEMPAP=TEMPAD
004642A PIE=1,0 R1050487
0064627 TEMPAG=AGPLUS (UPT) R1050488
_004613] TEMPRL=HGP (JPT) R10504R9
006433 DO 1719 [AF=1eNOK _
_0066346 1719 TEMPFA(TIAF) =AKPLUS (IAF s INK)
nnsss3 TEMPA=PATOT R1050492
00466465 GO TO 964 R1050493
004445 960  TEMPAO=A (] 9nNN)
_00s45] TEMPAM=TEMPAD
004652 DIF=~1.0 RING0495
004453 TEMPAG=RGMIN(JPT) R1050496
006455 TEMPRG=RGM(JIPT) R1050497
_006457 O 1720 JAF=1eNOK
004460 1720 TEMPFA(JAF)=AKMIN(IAF s INK)
0064A7 TEMPA=AMTOT 1050500
004671 964 TEMPJU=2.0%VJ+1.0 R1050501
00asla IF _(1FJPI-1) YAT7+1020+1020 R1050502
004477 967 ANAWTA=TEMPAQ/TEMPA R1050503
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nnasn] hSIﬁ(wu)=GS?G(NN);ANAWTA*TEMPAG*TEMPHG*TFMPJ rR1050504
Np4asnN& HO 1721 [AF=14NOK
nnasl1on FSIG(IAF.NN)=FSIG(IAF.NN)*ANAwTAﬁTEMPFA(IAF)*TEMPJ
004517 1721 CONTINUE
004521 IF(LIO) 1264412651264
004522 1264 wRITE(691303)MN.VLN-VKN.VJ-SUMIND.SUMINM.TEMPAooTEMPJ.TEMPFA(l)
004550 1303 FORMAL (# *9IZQZKQFA.1-2X.F4.192X9F4ol93X9E9o302X9E9.392X9E9.3q'
X2XeFSe205%XeFEFe3)
004550 1265 CONTINUE
004550 IEMPP=TEMPAP/PATOT
004552 TEMPM=TEMP AM/AMTOT
004554 DO 1010 MLK=1eNMAX] R1050509
004556 DO 1010 NLKN=l.LMAX12 R1050510
004SS57 CALL FLKAY (NLKN9VL VKD . R1050511
npasal IF(LEVDENGEQ.0)GO TO B055
0nuasSA2 IF(NLK, T (2#NMAX) ) GO TO 8055
00456K6 J=(NLK=-1)/2
0n4as7on TRIAL =xMONF (NLK«2)
004573 VI=FLOAT(D)
0046574 IF(TRIAL.FQ,0,0)PIFEN==1,0
004577 IF(TRIALEQe1+0)PIEN=+140
004602 OFEN=FMIN
006604 60 T RUS6 R
0046hQ4 8055 VI=HI (NLK)
0naANE PTEN=PT (NLK)
_006Kk10 WOFN=H (NLK)
004611 8056 CONTINUE
004611 PIEK=1.0 R1050515
0046613 CALL ANEJLK (VJaVKeVLsVI«PIEKsPIEND9sWOFNsAGFN) R1050516
004627 IF (AQFN-1,0) 1006+100241001 R1050517
006h?6A 1001 IERR=10L01 R105051R
004A27 GO JO 9500 k1050519
006630 1002 ATEMP=COMPTR (NLKeNLKN)
004634 CENS TGANLKaNN s NLKNY =FNSIG(NLKNNaNLKN) +ATEMP® R1050521
X TEFMPR#TEMPJ R1050527
004hkL4L GO TO 1010 r1050523
0046465 1004 PIEK==-1,0 RIUS0524
QQanat CALL ANFJLK (VJ.VK-VL.VI.PIEK.PIEN,D.WOFN-AOFN) R1050525
004657 [F (AUFN=140) 1010+1008+1007 RIUS0526
QQuhk62 1007 1ERR=1007 k1050527
0046663 60 TO 9500 R105052R8
0046AG 1008 ATEMP=COMPTR (NLKeNLKN)
004670 ENS TG (NLK s NNo NLKN) =ENS TG (NLK o NNoNLKN) +ATEMP# R1050530
X TEMPM#TEMPY R1050531
1010 CONTINUE R105053°7

004700
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004708S GO TO 17261
c rRINK0534
C CALCULATE INTEGRAND CASF 1 , R1150535
C R1050536
006706 1020 CONT Uk
00670A IF(PIE+1.0) 1100410611021
004711} 1021 DO 1069 K=19NINT R10S053R
006713 XK]1=XC(K)
006715 TEMPI=AGPLUS (JPT) # (1.0-XK1)/ (PATOT#XK1)
004723 [F (TFMP}-n%.0) 9027410251025
004775 1025 TEMP1=0,1736456E38 1050542
_00a7?2? GO TO 1028
004727 5027 TEMP3I=AGPLUS(JPI)/PATOT R10505%44
0Na73? {F (JE-23=0,0001) S029+502995031 R10%0545
‘0047734 S029 TEMPI=1.0 R1050546
006736 GO Ty v927
004736 G031 TEMPI=EXP(TEMP])
0047461 GO TO Y8527
00474l 5527 TEMP4=ATEMPP (1sNN)/PATOT R1050550
_004746 IF (IEMP4=0,0001) 5529410271027
0046750 S629 TEMP 1=XK % XK1#TEMP] 1050552
NO6TS2 (O TO 1028
004783 1077 TEMPI=AKI#XKI#TFMP1#(1.0+42.0%ATEMPP (19NN) ® R1050554
— (1.0=-XK1)/ (PATOT#XK1)) K1050555
004767 1028 PxUV11=1.0 R1050556
_nhos111} 00D 1daf N=]let MAX12
004772 PRON21=1.0 .
NQ4774 _Catl FirAY (NeVF] ¢YFK)
006776 DY 1046 LK=1+NMAX]
005000 VIi=Hl (LK)
005007 PIEN=P] (LK)
_005003 WOFN=H (LK)
005005 PIEK=1.0
005006 CCALL ANFJLK (VJIVEKIVEL'VIWPIEKPIENsDIWOFNs AQFN)
n0s017 IF (ADFN=1.0) 1040410421039
_098022 1039 IrreR=iu37 R1V505K7
0ns023 GO TO 9500 R1050568
_005024 1040 AMAWTP=0.0 R1050569
0050275 G TO 1045
0050725 1042 AMA4TR=A( LKeN)
0050732 1045 CALL PROU (ANAWTP9PATOT s XK19DBPROD) 1050572
005035 CALL OVERFL (IwQQ)
005037 IF (100Q =1 }104449104441064
0050461 10464 PRONZ1=PRONDZ21*DRPROD
005043 CALL OVERFL (I0QQ)
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NOSN44 IF (Inu=1 ) a06S 406541046

005047 anas PROD21=0,1234956F 3% R1S0LT7A
008051 1046 CONTINUF R10BNST77
005054 PRINT1=PRODZ21#PROD]L ' K105H057R
005055 CALL OVFRFL(IQON)
0nsNs7 IF (1Q0Q- 1) 406Rs4048+1047
005062 4048 PRUDL1I=0,123456F3R R10505A40
_0050A4 1067 CONT [NUE R105054]1
0050A7 AE=PATUT R10-0587
0Ns070 TEMPA=(1,0=-XX1)/XK] ‘ R1050583
005073 TEMPS=2.0/AE R1050584
_005075 DY 1726 IAF=1«NOK
005076 1776 ASURFE (LAF) =AKPLUS(IAFIJPI)
_005105 DO 416 JAF=14NOK
005107 1F(ASUBFE (TAF) =1.,0F-25)402604026+4126
N0s112 4126 TEMP=nSURFE (TAF) ZAF
ANs115 1IF (TF4P=-0,0001) 407P6+402R94028 R1050589
005117 4026 TEAPNE (TAF)=1,0 '
0051721 GO TN 4l6 .
005122 4028 TEAPNE (IAF)=(1.0+TEMPS# (ASUBFE(IAF) ZFNUCIAF) ) #TEMPX) #4 (FNUCLAF)/
X?40)
N0%135 416  CONTINUE
00S140 TEAP=]1,.0
_00S51¢41 DY 49 JAF=]eNOK
005143 49  TREWMP=TEMP#TEMPNE (TAF)
_00S147 GFUNG (K) =PRDN] 1 #TEMP L2 TEMP
005152 CALL OVERFLEINNQ)
005154 LF(Ini=1 )4034+4403449220
005157 40736 GFUNG(K)=0,12345AF 3R K1050601
nonsi1al G220 COMTIMUF
005161 1049 CONTTWUF ‘ RIOSOAD?
_0051k4 GO To 110}
C ] K1050604
C CAlCUt ATE TNTEGRAND CASE 2 R105060%
C R1050606
_00S164 1061 DO 1049 K=]1eMINT R1050607
005166 XK L=XK (K)
005170 TEAP2=AGMIN(IP])# () ,0-XK1) /(AMTOT#XK])
nnNs175 [F (TFMP2=R5,0) S06T7«1062+1065
005200 1068 TEMP2=0,]123a55F A% R1050611
0052072 GO TO 10k8
005202 5067 TEMRI=aGAIN{JIPI) /AMTOT R10)%06A13
005205 [f (TEMP3-0.0001) 5069+5069+5071
005207 5049 [EMP2=],0 R1050615

005211 6O T 5567
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005211 SOT71 TEMP2=p xP (TRMP2)

005214 LCT0 BN 0 I S T 4

ons>14 S5AT TEMPazATEMPA (] eNN) ZAMTOT , R1US0A10
005221 IF (T¥4Ru-0,0001) 5569410671067

005223 556G TEUR2=XK]¥XK]1# TEMP2 r1050621
005225 GO _TO_10mnK

005226 1067 TEMP2=XKI#XK1#TEMP2# (1,042, 0%ATEMPM(14NN)# R1050623

X (1.0=-XK1)/ (AMTOT#*XK1)) R1050624

0ns24? 1068 PRODI2=1.0 R1050625
0062464 N 1087 N=1.L.MAX12

005745 PRUN22=1.1

005247 CALL ELKAY (NyVELVEK)

0052%] PO 108”6 LKX=1e+NMAX]

_ 005253 VI=A] (LK)

0052755 RTEN=P] (LK)

005256 wOF N== (1K)

00520 PIrK=-1.0

008261 CALL AMFJLK (VJIVEKSVEL sVIoPIFKsPIENsDsWOFN,

X AOFN}

_008272 IF (AQFN-1.0) 1080+1082,1079

005275 1079 1ER==1077 R1050637
005274 GO_T0 94900 £10906/38
005277 1680 aNAWTM=0,0 R1050639
_005300 G TO 1085

0051301 10H2 ANMawTH=A4( LKeN)
005305 1085 CALL PROD (ANAWTMeAMTIOT ¢ XK1 9 DBPROD) R1050642
005310 caLlL OVERFL(INQM

0ns3y? I1F (fouiy =1 ) 10-44410R441084 '

005314 1024 PRODZ2=PRON22*¥DRPRON

005316 CALL uveErRFL (TOQ)

005317 IF (1aQu-1 )40854408541086

005222 4085 PRON22=0, 123456E38 1050646
nns374 1086 CONTINUF R1050647
005327 T PRODI2=PrON22#PRODLZ R1050648
005330 CALL OVERFL{TIWAG) :
_0n%332 IF (INQ0=1 ) 40RA408R+1087

0n533% GOAR PRODTI2=0.123456E 34 R1050650
005337 1057 CONT 1MUY R1050651
005347 AE=AMTOT R1050652
005343 TEMPA=(]10-XK])/XK] 1050653
005344 TEMPS=2,0/AE R1050654
005359 DO 30 TAF=]14M0DK

005351 30 ASUBFE(IAF) =AKMIN(TAF«JPI)

005360 DO B0 I4aF=]eNUK

005362 IF(ASURFE(IAF) =1.0F=25) 4526462654625
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005745 4625 TEMO=ASUSFE (1AF) /8F

_005370 C_IF (TEMP=0,0001) 652h452H«4528 R1050659
005372 452A TEMPNE ([AF) =140 ,
005374 Gy T9 KO
005375 4528 TEAPHE (TAF) =(1.0+TEMPS# (ASUBFE (TAF) /ZFNUCTAF) ) #TEMPX) #3# (FNU(TAF) /
— X2.0)
005410 A0 CONT IwUE
_0nSs4l3 [EvP=],0
0054146 DO 53 TAF=1eNOK
00S461A G3 JFAP=Ip AP TFYPNE(TAF)
005422 GFUNG (K) SPRON] 2% TEMP2# TEMP
0054625 Calt oOVEWF] (1QAN)
005427 IF (Iduw-1 )45344453441089
005432 4534 GFUNG(r) =0,123456E38 R1050671
005434 1089 CONT Irtuf - R1050/72
005437 60O TO 1101
C R10OBNDATA
C SIGMa CAPTURE ' : R1050675
C K1050AT76
005437 1100 TERR=1140 : R1050677
0054640 G0 T 9900 R10GNARTR
0054461 1301 IF (¥ JPT=1) 1310940210701111 o DISIVIWAS)
005444 1107 TEMP=TLMPAQ*TEMPAG/ (TEMPA#TEMPA) R1050640
_ 00546467 IF (TrMP=-0,0001) 1109+1109+1111
N0S482 1109 EYE=].0 R1050632
_005454 GO T _111%
005454 1111 SUMK=0.9 R10506R4
0085455 NO S116 K=1«NINT
005487 SUMK=SUMK+G(R) /GFUNG (K)
0054662 5116 CONTINUF 1050617
N0546AG EYE=34141592054%SUMK/ (2, 0#FNINT)
_005470 1115 GSIG(MNI=GSIGNN)+TEMPAQ#TEMP JHEYEH#TEMPAG R1M0506R3
X “TFMRPRG/TEMPA R1050690
C R1380691
C SIGMA FISSION R10506927
. C 1050693
0N5500 DO 1140 TAF=14NOK
_005501 IF (IFdrPi=1) 1127112011724
0nssNa 1120 THEAP=[EMPAQRTEMPRA(TAF) /(TEMPARTEMPA)
_005510 1F (TFIP=0,0001) 1122112241124
005512 1172 EYk=1.0 R1050697
_ 005514 GO TO 1130
005814 1124 TEMP =2 0%TEMPFA(TAF) /(FNU(TAF)#TEMPA)
0095520 SUMK=0 .0

005521 DO 5131 K=1eNINT
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nNNGs>3 TF ARz (FMSFA(LAF) /TEMPA
_DNS524 F_(JE0n=0,0001) A12319512995179
IHELED) A131 TrarT=1.0 R1050704
_005%32 GY T 5130
0055132 S179 TEMPT=1404 (1 0=XK(K))#*TEMP/XK(K) R1050/706
_00s5s537 5130 SUMK=SUMK+ (G(K) /GFUNGI(K)) /TEMPT R1050707
005544 S131 CONTINUE R1050 708K
_005546 FYE=361915926544%SUMK/ (20%FNINT)
nNnsSsSs? 1130 FSIG(IAF «MN) =FSIG(IAF «NN) + TEMPAO®TEMP J*EYER*TEMPFA(TIAF) /TEMPA
005542 1140 CONTIwur
C R1050731
C SIGHMA SCATTERING R1050737
C R1050733
005545 DY 1260 NLK=]eNMAX]
0085KA 1205 i3) 126U NLKN=1le¢LMAX]12 R10S8071735
005570 1210 CAlLL FIKAY (NLEKNsVEL «VEK) RIOB0T3A
0055773 1220 v]I=AI(NLK) R1050737
008575 PIF=PT(NLK)
005577 WFN=H3 (NLK)
005600 1223 CALYL ANEJILK (VJIoVEKsVEL sVIsPIESPIENIDyWOFNy R1050740
X AQOFN) RIN50741
005611 1226 TF (A0FN=1,0) 1226+41228,1225 k1050742
0nSAk14 1225 [KERR=1225 R R10%0 7473
_005A15 GO_Tu 9500 R1050744
005A16 127726 AN=0.0 R1050 745
005517 1227 G TO 1260 1050746
005,70 1228 AN=A( MLK s NLKN)
N0Sa24 1251 [€ (KC-1) 1231+3122951241 R105074%
NNSR2T7 1229 JEAR=TEARAO#AN/ (TEMPARTEMPA) R10%0 749
00532 1230 JF (TFPr=0,0001) 1231+1231+1241 R1US07%0
NNSA35 12731 EYE=1.0 RI050751
005637 1232 6D Ti) 12955 R1050752
0NSALD 1241 [F (HLr=1) 1246¢12472¢124A K10507%3
005842 12642 JF (VL nN=VEL) 12461243+1246 R1050754
00SkLL 12763 [F (VKI=VFK) 1246412464 ]1246 #1050755
_00S646 1244 _GELTIA=3.0 R10507%6
005ASN 12744 ) TO 1247 R1050757
005651 1246 GELTA=].0 R105075R
N05AKA 12647 TFMR=2,0%AN/TEMPA R1050759
005558k 1250 SuUik=y,n R10S07450
005AKAS7 5251 DY 5256 K=l NINT R10507K1
005651 6754 TEAPS=AN/TEMPA R1050767
005A673 6265 [F (TEMPS5=0,0001) 6256+45254+5254 R1050763
_00S66A 6256 TEMPT=140 R10507A4
005670 6257 6D TU 57255 R1050765
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005AT1 5264 TEMPI=1.0¢TEa0% (].0=XK(K)) /XK (K)

Hinan7a6
0DNSATA 5288 SYUMK=SUMK+ (G ¥GELTA/GFUING(K) ) /TEMPT RINS07AT
0057073 5256 COAT ITvuE , R10S07/R
008705 1254 EYE=4,191592054%¥SUMK/ (2.0#FNINT) R1N50769
005711} 1255 FASTOINLKe N e NLKN) =ENSTG (NLKoNNoNLKN) ¢+ TEMPJ# rkINSNTT0

X TEMPAQ#AN®EYE/TEMPA R1050771
nns724 1260 CONTINUE R10S0777
005731 1261 CONT [MUE R1950773
005734 1270 TEMP=FINAWT/D R1050774
005734 1271 GSIS(IN)I=TEMO*GSTG(NN) R1050775
005741 DD 12772 1AF =14NOK
0085742 1272 FSIG([aF enNN)=TFMPHFSTG(TAF o NN)
0nsS751 12740 DY 1282 NLK=1«NMAX] R105077R
_005753 1281 Dy 1242 MLKN=].LMAX1? R10%0779
00575% 12832 ENSTGINLKeNNoNLKN)Y =TEMPHENSTG (NLKoNNoeNLKN) R10507%0
0nsz71 [F (KKkn=7)3349334+334] 1050781
ons773 334l T012°285 RINS07R?
005774 336 FNSIGLLIeNNGNN)=ENSTG (] sNNINN) +TEMP#BHEB (NN) #TEMP Y R10%0783
0nk004 172836 CONT [NUE R10507R4

c R195078%
C SUM OVER INCINDENT CHANNELS R10%07H6
C R1050787
nos007 1300 GSIGE=ULY R10507RA8
_00A010 09 1301 JaF=],sMNOK
00ANY2 1301 FSIGE(TAF)=0.0
_0060185 1309 pU_ 6k NNz1lMAX]2
00AN1L7 GSIGE=6516E+6G316G(NN)
006021 DO 399 JAF=]1.NOK
006023 399 FSIGe (JAF)=FSIGF(TAF) +FSTIG(IAF o+NN)
_00A0133 AA CONTTF
0060135 1310 DD 131 WiLK=]e«NMAX]) R10507935%
005037 1311 ENSIGE(NLK)=0.0 RINS0796
N0A04L] 1312 H0O 1314 WN=]eLMAK]2 1050797
006043 1313 2O 1314 N KN=]e{MAX]? R1050798
006045 1314 FASTGR (NLK) SENSTGE (NLK) +FNSTG (NLK o NN oNLKN) 1050799
C 110505300
C wrITE OQUTPUT MATRIX R1050801
C R1050807
0NANKG 335 CONT Uk R10508073
00Aa0AL 334 IF (ITP]=]1)337+338433R R1050204
00A06KT 337 wrRITEOQUIPUTTARPEARSI3T0 R1050805
006073 GOTul4e27
006074 33” CONTINUE
_006074 a2 wRITEOUTPUTTAPESR«HO0A R1050R1°2
006100 WRITEQUTPUTTAPEG.3013 k1050813
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00Kk1NG Tafon=2 R1050H14
00A10S AR JTEOUTPUTTARPE6.BOOA R115031S
0nAl1l1l PEN) ,
00K112 _N=0
006113 1503 mM=n+1}
006115 N=M+9
006116 IF (NJGT o NOK) N=NOK
005121 DO343NN=1LMAX]2 R1050816
006123 CALLELRAY (NNFLNeFKN) R1050817
0061729 363 RITE(Ae30)4) FLNIFKNGSTGNN) o (FSIG(IAFINN) o JAF=MeN)
00A153 3014 FORMAT (# #4F5,20XeFS5¢2¢11(XeEG.30X))
0061532 WRITFE(heABOH)
00A1SA IF (M FeNUKIGOD TO 1802
00A1AN G0 To 1593
00h161 1562 CONT [nur
006141 3431 WRITAOUTPUTTAPE4.8006 21050319
006165 IF ({OFTION) 34593441+345
_0061AAK 3a6] wRITE OJTPUT TAPE 643015 !
on6172 D034hNLK=19NMAX Y 21050421
006174 M=ol K=} rR1050322
006175 IF (D=8 (NLK)) 3464346344 R1050823
006200 a4 COWT INUE R10504124
006200 WRITEOUTPUTTAPEA«3016eMeRINLK) sENSTGE (NLK)
006212 WRITEVUTPUTTAREACRNQG R1150R26
00A216 DO3asiiN=leLMAX]12 RINSOR27
006220 CALLELKAY{NNeFLNyFKN) R]1050K28
00R222 WRITFOUTPUTTAPES 93017 +FLNeFKNs (ENSIG(NLKsNNoNLKN) o R1050829
XNLKN=1ol MAXTZ2) . r10508230
006245 345 CUNT INUr R1050431
006250 346 CONT [wuk 1050432
0NnA253 347 CONTIWUE R1050K133
006253 1501 6O TO 7051
C : R1050360
c FORMAT STATEMENTS R105086]
C R1050262
NOAPSSE . 25 FORMAT (AF12.6) R1050863
006254 26 FORALT (bF12.8) R10S0H864
006254 27 FIRMAT (PXeFR.A930X«2F10.6) R10508A5
006254 1370 FORMAT (1H1) R1050866
_D0A284 3001 FORMAT ([de]206) R1NS0867
006254 3002 FORMAT (116H]
XJTLOCAT NDECEMRBER1966 LOVELAND-NEARREX
006254 30N FORAAT ([5¢612921192124F13.R«512+F5.2)
_D0KR256  3N04 FORMAT (44K ENFRGY LEVELS KC = I2) R1050871
006254 3005 FORMAT (13H0A(GAMMA) = F15.9) R1050872
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nN0APS6

3005 FORMATCIOHOMIU(R)Y = FR,4) R105087A
_00A254 01T _FOMAT CLIHUENMERGY = F20.8) R1050379
006k?254 3012 Foval(51H , 0 = FRGSIRIIHORAN
00AZ2S8G 3013 F0RAAT (54HQCRDSS SECTIONS FOR CAPTURE FISSION OTHER) R105NHR]
00A~254 3015 FORMAT{30H0CROUSS SECTIONS FUR SCATTERING) R10650R13
00KR2S54 AN1A FORMAT(23H0EXCITED LFVEL NUMHRER 13e14H W(N) =F10.,6420H RI1I0S0OKRH4
SIoMA(NGE) =F1l4,8) R10S0RRS
QNARPS4 3017 FNARAAT(IN 2F5.245H 9F11.7/(16H 9F11.7)) R10508RA
0NAPS4L 3018 FORMAT(26H SCATTERING CROSS SECTIONS) R10508R7
006254 3021 FORMAT(21HOOTHER CROSS SECTIONS) R1N50R9]
00R254 10 FORAAT(F12erne 229211 0F6.294F10.5) P1050R97
_00ARPS4 3102 FORMAT (H5H0 SIGMA 9] DELTA ZPLS ZMIN)IR1050K94
00APSL 3313 FORA44T(26H TRANSMISSION COEFFICIENTS) R1050895
_00R254 3914 FORMaT (IH GF 12.8) R1NS0494
00APSG ROuUA FORMAT (0} R10S0897
p0R254 RO08 FORMAT (RE1S,6) R1050898
006254 AN11 FOR™MAT (31HOF SUB J AND PI FOR PI POSITIVE) R1050899
00KPS4 AN12 FORMAT (31HUE SUY J AND PI FOR 'PT NEGATIVE) P1050900
006254 8027 FORMAT (1246} 1050901
006254 G105 FORMAT (]Xa]Rttsrstsstnaitaid FRR = 474) R1050907
o R1050903
Q06254 9500 w=ITE QUTPUT TAPF 649109 IERR R1050904
00K7A7? MESS = 4HOHKL
c
[ CALC OF ANGULAR DISTRIRBUTION
C
00RPK4L 7051 DO A99Y9 I=1+NANGL
_0062A/6 £999 DIST(I) = Q.9
0ns271 MOK = J1)KK
006273 N 700« [AF=1«NOK
0042746 7001 D0 7302 J=leLMAX]Z?
_00A2T76 DO_7yd2 [=]1eNANGL
0nKk2T7 X1=]
00/300 XX1 = XJ(I)
0nA207 FXKAYSFKAY (] aF)
NV ESRIEA JF (FxKaY = 1.5) 7016«¢7017+701R
NNARDA TO1A DISTOD) =0ISTLL) +FSIGITIAF ) W1 (Je])
_Q0A316 GO T Tu02
0ns317 TOYT7 DISTODY=DISTCL) +FSIGUIAFsJ) W2 (JaT)
QK327 GO T 7002
00A~330 T0IR IF(FXKAY =3.5)701941211sR123
005333 7019 DISTOD) =ISTLII+FSIGLIAF o J) *W3(Je])
00A~34673 60 T) 7602
- 00A344 1211 DISTED =nIST{I)+FSIGITAF s JI ¥ Wa(Je])

006354

GO TO 7007

02z



00A3RGS A123 [F(FRAY=-5,5)15120e¢R1217002
_00A3A0N A1729 DIST (D) =NIST(I)+FSTIGUIAF«J)Y* W5 (Je])
0DAT70 [RIA I NS T AV RV
_00A371 _B812] OIST(L)=DIST(I)+FSIG(IAF»J) #¥WE(Js])
006401 7002 CONTINUE
_006406 7004 CONT INUE
(o
C CALCULATION OF STATISTICAL ANGULAR DISTRIBUTION
(o . .
YR B 1F (JSTATLFQL.0)060 T0O 4008
[T NO 4009 KX=KxXxesIAFF
00AR414 L= (KX=KXX) /2 +1
0064617 DN 4009 LK=1sLMAX]1?
006621 DO 2002 I=1+NANGL
006427 DIST(L)=DIST(I) +FSIGIKXsLK)H#WS(LDLKeI)
00K/415 2002 CONTINUE
006437 4008 CONT INUE
_N0A444 4008 CONTINUE
(o
[o OUTPUT ANGIH AR DISTRIKBUTION DATA
C
006644 WRITE OUTPUT TAPE 647012
N0R/RLSY 7012 FORMAT (40HO  FISSION FRAGMENT ANGULAR DISTRIBUTION)
_006K450 wRITE QUIPUT TAPE A+7013
006L54 7013 FORMAT (21H0 THETA DIST(I))
00K684 DO_701S  I=1«NANGL
N0ALSA al=1
0064657 XXI=XJ {1}
0nAGL6]) WRITE OUTPUT TAPE AeT7014eXXTeDIST(I)
_00k670 7014 FORAAT (2F105)
006470 7015 CONT INUE
_006473 PO _Tua] I=1 e NANGL
C . R1050834
C wirRITE QUTPUT SUMMARY R1OS50835
C R1050836
_0084T4 7041 wCALC(NIESI) = DIST(I)
NNASH T IF(USTAT eF QL 1)INOK=TAFF
_006A5N7 1627 GSIGHINIE) =GSIGE R1050837
N0A%1 ] DO 1o TAF=]14NOK
_00kK513 1428 FSIGU(NfE«JAF) =FSTGE (TAF)
00ARSP? 3079 FORMAT(IH JOFL11e7)
—00A522 1430 DO 1431 Nik=1eNMAK] 1050840
006524 1431 FNSTIGMN (NTF enLK) =ENSIGE (NLK) R1050R41
_006533 1432 ESUHP(NIE) =D R1050847
006535 WRITEOUTPUTTAPEGRS 1370 R1050K643

1ce



00654 IF (LEVOCH) 3432400003632
NNnAB4L?P 3432 JF (NIF=riF) |45 e34R434K R1050%44
Na/RSLS 4000 IF(NIE-NF)Y1135e34H434R ,
006550 48 CONT T U R1050845
C
C COMPUTATION OF CHI-SQUARF
c
_00A/A5%0 CHISIS =060
006551 CHISHE =040
006552 EARSUAZD L0
00AKRE] CALSUM=0,0
_00nASSa 0N 7062 I=1«NE
006R55G DY 7061 K=]1aNANGL
00AS5F J =K
nN0R”R5SY EXPSUM = FXPSUM + WEXP(TeJ)
_00KSAL CALSUM = CALSUM + WCAIC(Ted)
0NASAT 7061 COMT [~Nue
00ASTI XXXX =FXKPSUM/CAL SUM '
00ART? DO 7070 K=1sNANGL
Q0AS T4 J=K
N0ASTS 7070 CONT UK
NNASTT PO 7iRs  K=1«NANGL
00AAD ] J = K .
006502 CHIS 1= ((CALC(Ta J)=WEXP(J9J))##2) /(SIGMAW(T+J)##2) +CHISQOW
0naAsa1D CHCALC(T+J)= WCALC(IsJ)
006617 EXPIUL =0.0
00AAY7 CALSUM =0a0
00AAPO 2062 COMTINUFE
0NAAK2S ) 7065 [=]eME
QnA62T SIGTUI)=0,0
0NAATIN 10 7955 TAF=]1+NOK
_0D0FRR32 SIGTOI)=SIGTOCL)+FSIGN(TI.JAF)
006A3T7 706S CONMT [k
00RALL DO 7060 I=1.0F
0066L5 Css (D = ((SIGTO(I)~SIGMAF (1)) ##2) /(USIGMF () #=2)
00A/HAS2 CHISYS = CHISQS + €SS(I)
00AKS4 T06A CONTINUE
ol
C wITe ITERATION QUTPUT
C
QD AASA DD 146hA I=1eME
0066KA0 WRITE QUTPUT TAPE A48006
006KAAAT DO 1Rnb J=1 ¢« NANGL
_00m/AKS xXJ=xJ(J)
006ARET 1966 WRITE QUTIPYT TAPE 647014 XXJeCWCALC(I))

cle



DL R AVAS W I Te QUIRPUT TAPE 647067
_00s711 7067 FORMAT(3YH0  CHI SQUARE SIGMA CHI SQUARE DIST)
00,711 WRITE QUTPUT TAPE A«706R«CHISOSCHISUW
_006721 7068 FORAAT(2FP0.9)
_Qnk721 349 WRITEOUTPUTTAPEA301R R10S0K46
006725 WRITE (6¢8006)
005731 Mz
nN0~732 N=0
006733 503 M=N+]
00AT3S NZid+ 4
_006AT713A WRITE (54 R00A)
00R74L? IF(N=NF) 80545054507
_NNATLS S07 N=NE
00RrT74T G505  wRrITH(6e3020) (ESURP(INIE) «NIE=MeN)
006762 020 FORAAT (¥ #4#FNFROY#e6XeS(F11.7e5X) )
00ATA? wRITr (6ex006)
_00hTAA DO Sus NtK=1eNMAX]
00ARTTO LLL=NLK
00AT77Y TF(NLK 2T (MMAX#2) )L =INT(HT (NLK))
00RTTA 385 WRITH (6630723 ) LLLe (ENSIGN(NTE «NLK) o IE=M9N)
007015 3023 FQIAAT (3 #o) FVE] %o Xe[2e6XeG(F11aTe5X))
0n701% SO0R  CONTInUE ' R
_007029 N0 _S1s NIF=MN
007022 TOTAL(NIFE) =040
_007023 DO_S1a MLK=]eNMAX]
0070728 S14  TOTAL(NIF)=TOVYAL(NIF) +ENSTIGN (NTE « NLK)
007037 WRITE (e S1A) (TOTALINTFE) oNIE=MN)
NN7ns1 S1A  FORMAT (¥ #«%TOTAL®eT7X 95 (F1lle7e5X))
_0n7051 IF (NFOGNF)GO TO S10
nn7NS3 GO To S¢3
_0070%4 5190 COMT INUE
no7INGsa IF(IAFGH=1) 3519352352 R1050851
007057 351 60T0 301
0070A/N 352 wRPTFOUTPUTTAFEG6YROO6E K1(3%0853
0070RA4 M=y
N070A5 nN=0
ONT70AA 1715 m=iri+ |
0n7079 N=M T
_0Q7071) IF (NG MOK ) N=NOK
007074 WRITE(6e3022) INFTR(1) « I=MsW)
_No7io7 3027 FORMAT (# T e IX s HENFRGY# 4 SX e #CAPTURE® 94X 0 10 (HFISSTON* e X9 124X))
0n71n7 WRITHOUTPUTTAREGRODA 1050859
-no71113 153 pO3SaiiE=],nn R1050856
007115 IS4 WRITE(He362S)FESUHPINIE) ¢GSIGNINIE) o (FSIGNINIF«IAF) « TAF =M4N)

€zl



0071137 wR [T (oedNDA)

007142 IF (N,rdoNOK) GO TO 1214

0071464 Gy To 1218 )
R NATA 1214 CoMT I g0k

007148 AR ITE (heRTDS)

0071951 BT05 FORAAT (% %9 20X+ #ENERGYH# 45X 9 #F ISSTON TOTAL®)
007151 WAITE (he3006)

007155 NN _A73y WIE=1eNE

nn71s7 TOTALI=040

007160 D) A731 Jar=1]eNOK

0071A2 R731 TOTALLI=TUOTAL1+FSIGN(NIEsIAF)

007171 8730 wRITE(He121A)ESUBP(NTE) «TOTAL

0077204 1216 FORMAT (3 #417XeF11eT96XsF11e7)

007204 GO To 3901

007204 END

R1050907

vee



SR YT [F WK J(NANGLE)

cC
cc oivasE TASLES W(KeJd)  FOR PROGPAM WILNDCAT
cC
0000073 DIMENSTON D(2)
0000073 CUMMON/C/XT(9) eW1(19949) sW2(1949) sW3(1949) eW4(19+49)9W(19919410)
XeS{19¢9) ewb{1949)
0ononn3 RPFAL Ko Jott
000003 N0 8- TY=teManlGLE
000005 Y=xI{Iv)
000007 IF(XT(IY)eF3s0e0)Y=0.0001
nnontl [4aX=[1AX1=]1AX2=30
000014 00 s <J=x1.19
000014 K=FLOAT(nI) =05
000020 X=0aU
000n21 J==0.5
000023 DO 45 JI1=1e1992 '
0nnonra J=J+ 1.0
00002724 TF(JaLTer)IGD TO 30
nooo3n 1) S K=l e?
000032 IE (MK k3, 1)M=0 a5
noooils IF (MK GE}e2)M==0e5 R
00004l 14AX =730
0nnna? DENT=DH2=DEN3=NENSG=1,.0
000047 K=040
000050 28  [FlLat=g
0000951 pEN]= J=K=X
000084 NEN 2z Jei=X
0no0s7 NEN3I=X+K=M
000061 G =X
nnnna2 [FI)E41)P0s21427
nNnNnnkKaL 21 JFLAG=Y
000085% 22 JF (D i2) P e 2326
nnonsv 23 IFpLAnG=
000076 P4 JFANDFI13)20) ¢ 2ne2h
n0on7? PA TR (Xm0 N,0) IENG=1.0
00007% JF(IFLAGL*R.1)G0 TO 27
nnonTv X=X+] .1
002101 O T 2s
00010> PT  IMAx=TuT(X+1.0)
000105 SUM=EN G0
0010k Dy 4 TE=lelMAX
000107 x=FlLoa¥(le~1)

000111 NENT= J=r=X

G¢c




000114 DE 42 Jeiimx

9t¢

oeayrr 0 ENR=xas=n
onny 2y RLATITER ,
_Qon122 CAall FACT(DE Y]eIMAXT4PRONT)
nnn12a . CALL FACTIDF 24 TMAX T «PROD2)
onn]27 CALL _FACT(NEN 34 IMAX ] «PRONT)
nnny3? CALL FACT (O ENae IMAXTePRODG)
_0Qn3s DEIN=BRON] %0 2ON2#PRRONDIHPRONDG
0N014tl IF(DF O E Qa1 06D TO 20
0n01a? SE Q=20 =K eti=2 QX
0onN1sn PR IMeK =M 2 ) A
_0nn15>2 AN =STNIY/7.0)
00N187 aANZ=COS(Y/72.0)
AR KK AMUM= (AIN]##PR IM) # (ANP##SEC) #(=1) ##INT (X)
0007201 SUM=SUN+ARNUM/Z/DENOM
0002013 4  CONTI™NUFE
000207 FACL=J+™
000211 FAC?2= j=
onnr12 FAC 3= J+K
_000214 FACa= j=-K
onn2is CaLL FACTU(FACLsIMAX24PROT)
non220 CAll FACT(FACPeIMAX24PRO2)
000223 CALL FACT(FaC3+IMaX24sPR0O3}
_0002324 Calt FACT(FACLs]YAX2PRNG)
00n>13) FACTOR= (PROL#PRN2HPROIPROL) #8(,5
000237 SO DMK) =625 (FACTOR%SUM)
non24%5 KT el el Y)Y =0a25% (2,08 04]1.,0)%(D()) #8240 (2) #22)
_00Q2a2 GO T aYy
0nnz42 30 w(KTeJla]lY)=0,0
_QQ0n210 6 w(KIsJf+)eIY)=u(K]eJIslY)
nnnNansg 4 CONT LUy
000205 S5 COMT L UrF
nnn31n DO 39 T =leMANGLE
Q00311 0D 39 JT=lel+
noon3i> wl CdTal)=v()aJlal)
_onn32y W2 (JTal) = (2eg1a])
00n27 Vi3Il el )= (30 Jle])
nnn3ie va(JTeld) = (wedlel)
non4 wo lJdlel)=w(Sedlol)
_0003%1 vAL{JLe )= (hadle])
non3s7 39 CONT e
_0003/72 WE )=\
nNoa3Ak3 20 ARITH (Ael) X
Q00371 1 FORMAT (# #48x ERWOR= #eFA,3)

000371 END



 SUAWOUTINE FACT (FACTOR IMAXSsPROD)

nonnnea PRON=FACTOR

000004 JF(FACTOR=1,0)1e]102

000011 2 DY 3 12=1s1IMAKS

000013 JIF(FACTUR-FLOAT(12)) 44445
000015 5 PROND=PROD*(FACTOR-FLOAT(I2))
000020 3  CONTINUE

000022 GO TU 4

0aop22 1 PRON=]1,0

000023 4  RETUKRN

0000246 END

Lee



~ S_iARGUT [0F Or [ (DELTASE sUWPHIVE) R1050927
ononn? S THUP =R o797 >3 (USE) /DELTA , R1050928
nooni12 10 T-w=2=5aH] (Tk i)
nenels 15 «IHV=1e0/TFEMPR R1050930
000017 P20 POLYaz=) 0+XINVH (XINV#(45,0-105.0%XINV# (1.0~ XINV))=-10.0) R1050931
no003n 25 TEMRY=TEPETEMP g R1050932
000n3? 30 TEMP 2 XR(TEMPR)
nonn3s 35 PHIUE=TEMPL*#TEMP2#POLY4 R1050934
000047 40 RPETU=Y R1050935
nnonanl END R1050936

BZ¢C



—— Su==yTLwr Psi (£eUsEJPTWNELTAPSIBAR) R10%0937
R1U509 3%
000019 S A=SIKT (657975% (U+F) /DELTA)
nonn21 10 2 JRP[=SORT(6.57975% (U+EJPT) /DELTA)
000037 15 TP 1=XJPI/X R1050941
nnon 4 17 1EM2 = FrmP | *TeMP ] R10SC942
000035 20 TEMO 2=}, y=TEMP]) 1050943
nonni3zy 28 Trew 3=TEMPDRTEMPY R1050944
000nal 30 TFAPa=Tr dB3#Tr b2 R105094%
0nonas 35 TEARG=X#K R1050946
00004s 4} TFPPAZTEILGEETEMP S R1050947
000nav 45 TEMR T7=TFMILETEMP R R1050948
000051 50 TEAR]I=7,0#TEMP] R1050949
000053 55 TeM237=3,0=THHMP 17 R1050950
000059 60 JeMpPIYy=] N=TEMP]7 R1090951
0000S7 65 TEAP=TEMPL=THURIHTEMP 1 7/XUP1=A,0 R1050352
X FIEARPRTEMP IT/TEMPS+6,0# (3,0~ R1050953
X TEMP1#(30,0-35.0%TEMPL) )/ (XJPI* R1050954
X T24PS) . R1050955
000100 70 TFMPE=120.0%(TEMP37=3,0%TEMP17/XJPI)/ R1050956
X, TEMPA=5040,0%(],0-1,0/XJPT)/TEMPT R1050957
000113 7S TEMPH=EXP (XJP]) <
000116 A0 _PSI3AR=TEMPAR* (TEMP+TEMPE) # (TEMPGSH R1050959
X TXJPI¥ES.0) /48,0 R1050960
_000131 5 RETURN R1050961
000137 ERD R1050962

62¢



SHSEOUTIMNE Ak JLr (VJeVKeVLoVIePIESPIFN RIY99673
FewOF Ne A0FN) R10%0964
000014 S5 JF (r=u0FiN) 1019515 R10506965
noon=0 10 A0FN=0.0 R1050866
g0nn21 11 6D T B5 1050967
0o0nnr>2 15 TEMP=ans (VJ=vI)
000025 20 IF (TEMP=VK) 25¢25410 R1050969
0000730 25 IF (VK=VJ=VT1) 30+30+10 R1050970
0000313 30 TrHP=anS(PIEN=-PIF)
0000 3A 31 IF (T¥rHMP=0.2%) 35432945 R1050972
_000n41 37 I¥rrR=3? k1050971
00N006? G T 9500 R1050974
00N04an 39 JTEMP=XINTF (VL+0.2S) k1050975
00nnss 36 TTEMAP=XA0DF (ITEMP+2) R10S50976
_0000AK9 37 IF (JTEM==1) 38410940 1050377
NN00AA IR AOFN=1.0 R10509784
Q00070 39 G TO 55 ' R10S0979
000071 40 [Ex<=4al K1050940
000072 60 TD 9500 R1050981
000073 45 TEAP=ARS(PIEN+PIE)
000076 ab JF (TEMP-9,29) S0s32:47 R10%09K83
000101 47 IfFw=R=4a7 R1050984
_000102 GNO_TO 9500 R10509K15
0001073 GO0 TTEMP=XINTF(VL+0.25) R105094/6
_00011a S1_ITFMR=XM0NF (I TEMP 4 2) R1050987
000170 52 1IF (ITFMP=1) 10+3Re40 R1N509RK8
000127 55 RETURIY R1050989
000130 9500 WRITF OUTPUT TAPE 6+9105«1ERR R10509990
000134 MESS = 4HOHEL
000140 9105 FORMAT (1Xe ltHirstirwitstdtstust ERR = ¢]4) R1050993
000149 END R1050994

(24



FONCTION FVALZ2{U«AFsAedsieSIGMAR)

000011 REAL ,

00001} VE(1,0/(Pa0%STGUAR) ) # (J+0,5) 882

0nnn1s C=2,0%SORT (AF#U)

000025 D=C~V-w

000030 CONSTU= (17.0% (AE##0,25) * (U #8],25)) %% (=1.0)
000043 CONSTJ=(2.0%J+1) / (SORT (8,0 ) # (SIGMAR##1,5))
000060 EVAL2=CONSTO#*CONSTJ#EXP (D)

000065 RETURN

000065 END

1e€e



ST INE PELK(FPELKeENI VLNV VKN ALPHAWBFTAWIN]) R1050995
nnoogl1> S T A= (L PHA=RETA# (VKN (VKN+]1,0) ~VLN*(VLN+],0)~0,75)) ®1050996
p00n22 10 Y=k s 0%TE 4P #1N50997
nonnza 11 yiiv=1l.0/Y RI105099RK
000026 15 GO TO (204256300 35440445450+55060) sLN1 1050999
00004 20 ALNY=1.0 R1051000
000045 21 60 TO 740 K1051001
NNNNLA 25 ALNY=]1.0+YINV R1051007
000050 26 GO Ty 1y R1051003
o00NsS] 30 ALNY=1.0+YINY#(3,0+49,0%#YINV) RINDS1004
00005k 31 6D T Tu R10S5100%
onnnsy 35 ALNY=]1,0+4YINVR(A,Q+YTNVR(45,0+4225,0%YINV)) R105100A
0000k4 36 6O T9 70 r]051007
ononAT 40 BINY=]1oeU+YINV#(10.0+YINVH(]135,0+YINV#(]1575,.0+ R1US100R

11025, 0#YINV))) 11091009
000100 4]l GO o 70 R1051010
000101 45 AMNY=]1a0+YINVH(19,0+YINYH*(3]15.0+YINV*(6300,0+ R10531011
YINVH#(99225,0+893025.0%YINV)))) 1051012
000114 46 G0 TO 79 P1051013
000115 SO AINY=1.0+4Y IV (2] 0+YTNVH(/A30,0+YINVH*(]18900,0+ R1051014
X YINVHE (496125, 0+ YINVH# (QR23275,0+ R1051018
X 104056003.,0F1%YTINV))))) r1051016
000132 S1 60 TOo 70 RIUS51017
0n0133 58 ALNY=]0+YINV# (28, 0+¢YINV# (1134, 0+YINV#(4T725040+ R105101R
YINV¥ (JRIYV125.0+YINYH*(SR939650.0+YINVH R1051016
(1404T2H3,0E2+1R26146R,0E3%YInV)))))) ®1051020
Q00152 S6 G0 TO 70 1051021
000152 A0 ALNY=To0+YINV# (3R L0+YTNVH (1H890,0+Y INVH#(103950.0+ k1051022
YINVHR (5497375,0+YINV*(25540515.0F 1+ k1051023
YINV#(OH3309R3,.0FE2+YINV# (27362202.0F4+ K105102¢4
41048304, 0E5%YINV)IIIN) R1051025

000174 70 TEMRR=SQRT (Y)
000177 75 FPRrLK=TEMPR/ALNY k1051027
000204 B0 RETURN R105102R
00020% END R1051029

[AN4



SUAROUTINE PR (ASURNSAE « XK1+ DBPROD)

~10-1030

000007 11 IF (as5UAN=1.uE=25) 144144112 1151031
00NnN12 112 TEHP=45URN/AFR R16G51037
0onnla 113 IF (TEMP=-0,0001) 144545 R19510373
_hanniz S _TEAPX={]1.0=-XK1) /XK1 R1051034
0ononzt 10 TeEMPA=2.U/AE R1051035
_0000273 12 DAPRUD=SQRT (1. 0+ TEMPA#ASURN®TEMPX)

000n33 13 GO TO a0 - 21051037
000034 lg DAPROD=],0 R10U5103AR
000035 40 RETURN 1051039
00003~ END R1051040

€€



FUNCTTON XINTF (X)

0nooo03 XInTy = X
000004 RETURN
000005 END

vee



SHAROUTINE FL KAY (NN FLNeFKN) k1050908

00000A 1 TEMP=FLOAT (NN)
000019 S5 TrRav=TFMR/2,0 R1050910
000012 10 TeMP2=(TEMP~1,0)/2.0 R1050911
onpol1s 15 TTEMP=XMONF (NiNe 2) ) R1050912
000023 20 IF (ITEMP=1) 45430425 R1056913
000N2A ?5 [ERR=245 R1050914
0000”27 GO T 9500 R1050915
nnnnin 30 FLN=TEMP? R10%0916A
0000131 35 FAN=THMP R1050917
0noni? a4 GO Tu 58 R1050918
000033 45 FLN=TFEMP] R1050919
_00003¢4 S50 FXN=TFEMP2 R1050920
000035 55 RETURN R1050921
00003A 9500 wRITE OUTPUT TAPE 649105 IFRR R105Q922

000046 MESS = 4HOHFL
000046 9105 FORMAT (X ]gHusRaaadaaed FRR = 'yJ4) R1050925
000046 END R1050926

Gge



FUNCTTION XMODF (KeL)

000005 AMODF = K = (K/L) %L
000012 Re TURN
000012 END

9€C



SUBRUUTINE DISTAT (LMAXeEMINCGEMAX 9 HBARD e KO2sDsEXAEsHHOTTI «F Qs

XTEMRP s e TMAX o FEREL«AFFCTNeAL«AP«A3)

]

CALCULATION OF COMP TRANSMISSION COEFF FOR FI{SSTON

000025 DIMENSTION F (S0)
000075 COMMON/R/STGMAF (20420)
200025 REAL ReJeK(?2
0000725 HYAK=] JUKF =27
000024 H= (EMax=FMIN) /FLOAT (IMAX)
000031 S13MAP=TEMP/ (2.0%#HROTT)
000034 E(1)=EmMIN+H
0N0non3a DO 1 [=2eIMAX
000040 FAD)=£(I-1)+H
0090473 1 CONTINUE
000045 Kl=LmMaxe+]
nonnaz DO 78 KX=1+20
ononso ) 74 LK=1+20
_0000S1} 78  SIGYAF (KXe LK) =0.0
ononaAl FRKiNE==0 o9
_00qQn&a> D2 A0 LK=1eK1
0n0nAG FEKN=FKN+1,0 ~
0N0NAc SUMNUR=0,0
nonoAR7 K==0.5%
0nenron D) 30 KX=]4LK
onno7? K=K+1l,.0
Qnnn7a SUMNOR=SUMNOR+ 2 O#EXP (~ (K#*#2) / (2, 0#K(Q2) )
nop107 30 CONT INuUF :
000111 K==0.5
nnn113 DO 51 KX=1sLK
0onnita’ K=K+].0
000116 W= (K##2) /(2. 0%K02)
000121 J=FKY
000177 TEMRP U= ,0#FKN+1,0
0n01°25 NINT=IMAX/P?
ono127 YrVENZYOUO=0,.0
000131 YSUMO=YSUME=NL0
000133 DU 2 W=l eNINT
00014 [=n=-1
00013~ KO=2%]+]
nnni17 KE=2%[+7
noo14l FP=E (KU)
000143 FR=E (kE)
000145 IF(EP=EXI10910+515



000150

10 RAO=cVALL (FReEDeSIGMARTFMPy Jow) /2,0

000157 GO Tu 29

000163 15 IF(AFFCTNGFU. LeN) AE=AL+A2#EXP (=A3%EP)

000292 FILL=AP#AIRE R (=03#FP)

000711 TINV=FILL#(1e0/ (4%AF) =SQRT (EP/AE) ) +SQRT(AE/EP) ~1.25/FP
000232 SIGMAZ=1.0/(2.0%TINV#HBOTI) )
000236 RAOZEVAL2 (FP e AEsAs JsW«SIGMAZ) /2.0

000245 20 Y= (EX=-D+EREL) * (6.2832/HBAROD)

00N?287 DENOM=] ¢ G+EAP(Y)

pnnzAe YODHI=wHO/NENMNOM

000766 YSUMO=Y SUMO 44 . 0#YOND

DL ELY [F(F4=EX) 25925931

0nn27% 25 RHO=CVALL (EB«EQsSIGMARsTEMP e JsW) /2,0

000106 60 T0 35

000310 31 IF(AFFCTN.EQele0)AFE=AL+A2RERP (-A3#ER)

0001327 FILL=AP#A3#EXP (=A3HER)

0001336 TINVSFILL®(1.0/(a*AE) -SQRT(EB/AE)) +SQRT (AE/EB) -1.25/€8
nnn3is7 SIGMACZ1 .0/ (2.0%TINV#HHOTT) :

000343 RA0=FVAL2(EBsAE«As JeWeSIGMAR) /2.0

000372 35 Y= (En=-D+EREL) # (6.2R32/HBARO)

000406 DENO4=1.0+EXP (Y) ‘

00046G7 YEVEM=RHQ/DENOM

0nosll TF(NEQNINT) YEVEN=YEVEN/2.0

000420 YSUME =YSUME + YEVEN#2,0

000423 ? CONTINUE

000425 _ SIGMAF (KXeLK) =(H/3,0) % (YSUME +YSUMQ) #2,0/SUMNOR

0006736 61 CONTINUE

000460 AQ CONT I NUE

000442 RETURN
_000443 END

8¢€¢



FUNCTION FVALI(EJsFO+SIGMAZ2sTEMP s Jo W)

000011 <Al J

000011 T=TErv

000011 V=(1a0/(2,0%SIGMAR) ) #(J+Q.5) %2
000015 C=(EJ-FII/T

000020 D=C=V-u

000023 CONST y=(2,0%#0+1) /(2. 0*STGMA2)
nn0on27 EVAL1=CONSTJU#EXP (D) /T

000034 RETURN

000034 END

6€C
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APPENDIX IV

Transition State Spectroscopy Computer Code

and Sample Output
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PROGWAM [MTEGRO (LINPUT $OUTPUT s TAPES=INPUT s TAPE6=0UTPUT)

fonon3 " TDIAENSLUN TRCU30+15) +RHONTI096) sRHO (6) S E (1B sELIM(1S)

0000023 READ (59 ”200) ATOMWSEO«TEMPERWEX9PZ9PN

007073 200 FORMAT(8F10.5)

000073 FEAD (59201 ) NESNMAXsLMAX

0000357 201 FORMAT(312) T

0000735 WRITF (64202)

goonat 507 EORAAT(# & A FATOMUSy TRIFEOH s 6Ky FTEMPER® 96X 9 HEX® 94X 94X s #P L%y
H4Ke G4 X e PN ¢ TX 9 NMAX¥ 9 6X e ¥LMAX)

000041 WRITE(Py 3U3YATOMWEED s TEMPER«EX9PZyPNeNMAX s LMAX

00006% 303 FORMAT (% #46(XeF7e392X) 94Xe1294XsaXe1294X)

GO000AE T T=FE4Per .

0000A7 UX=EX=-PZ~PN

000072 AR[T=AUIT (£ X)

000074 STGR1=0,0RR8%SQRT (ARIT#UX) #ATOMWH# (2,0/3.,0)

000107 LMAX]=LMAX+]

000111 MIMAX I =NHAX#2

Gooite” TTUMAXT2E2% L MAK v ]

0001173 PO 13 [=)NE

000115 T3  REAUTS«I0METTY vELIMI(T)

ooni27 300 FORMAT(2F10.5)

0001727 N 146 L=lsLMAX]

000130 READ (54 70) (RHON(LsIP) s IP=146)

0O0TE 70 FURAATI6FI0.3)

000162 14 CONTJINUE

po0iss D10 TTE1WNE

000146 EMIN=FLIM(I)

000150 EMAK=E (1)

000151 DO 11 LKN=19NMAX1

000153 po 11 C=isLMax12

000156 11 TRC(LKNeL)=0,0

N0016S WR1TE (645)

000179 S FORMOLT (#(#)

000170 WRITE (Fe?0)F (1)

000176 20  FORMAT (# #4#THE NEUTRON ENERGY IS%43X9F5,2)

000176 T WRITE(6sS)

000707 WRITE (60923)

BG0205 " TGP T FORMAT(H K HIFy IR HPIENFs 3Xs #ENERGY INTEGRATED TRANSMISSION
X COEFFICLENTS#)

00070A DO 1 LRN=19+NMAKX]

000210 J=(LKN=1) /7

600712 VI=FLOAT (D)

000°P14 TRIAL=XMODF (LKNe?2)

000717 IF(TRIAL.FQ.0.0)PIEN=-1.0 “““
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009221 T TUTIFATRIALLFO N LOYPTENSYI O~ T e T
000724 NO 2 L=lsLMAX]2

VONP2A T T TTTCALL FLKAY(LaVLWVKD -
000230 LVL=IHTIVL+1.0)

000233 DO 18 V=1,4A

000236 18 RHO(LV).=RHON(LVLLV)

D0N243 77 T TTCALL AREA(EMINGEMAX yRHO 4 SPECTRIEO02SIG219ToVIePZsPNyATOMWIEXY
000256 TRC(LKNsL) =SPECTR :

0002A? T 2 TTCONTINUE T T T

000265 ARITE(69926) JoPIENY (TRC(LKNsN) sN=19LMAX12)

000304 326 FORMAT (¥ #401291XeFb4e193K+s11(E104391X))

000306 1  CONTINUE

000307 T 10 CONTINUE

000311 STOP

000313 END : -




SUBROUTINE AREA(EMINIEMAX s AySPECTRFEQsSIG219TAU JsPZyPNyATOMSEX)

000017 DIMENSTON £ (40)9A(6)

000017 T(S9KsCrUFaFINT)I=S/ (1o 0+EXP (R* (C-EINT)) ) +D*EINT##F
000050 weaL J

0Nn00S0  H=(EMAX~EMIN) /30,0

000052 YEVENZYODD=0,.0

000055 _ YSUMO=YSIIME=0,0

000057 — E(1)=EMIN+H

000060 DO 1 1=2430

0000672 F(I=E([=1)+H

000065 1 COWTINUE

00006A WINT=15

N000NAT DO 2 N=19NINT

0non71 T FACTOR=FACTUR=1,0

000074 I=M=-1

000075 KO=p#[+1]

000076 O KE=Pw[+2 o o o B
000100 IF(A(O) 6T WE(KO))FACTOR=040

non10nsg IF(A(A) «GTLE(KE) )FACTUR=0,0 - )
000112 T T T TER=EMAX=E(KDY T T

000114 _ EH=EMAX-FE (KE)

000117 IF(EP-EX) 10510915

0nn122 10 RHO=EVALL(EP+E0+SIG21«TAUsJ) /72,0

00013 T T TG0 Ty 2o o T
00013 15  AF=ALIT(EP) B _

D0013A T RHOZEVALZ (UePZyPNSEPYAEYATOMy J) 72,0

000150 20 YODD=RHO¥T (A(1) +A(2) 3A4(3) 9A(4) sA(5) sE(KO))
Go0T7n YOON=YODD*FACTOR

nOnN172 IF(YODNLTL0.0)YODND=0.0

000175 T TYSUMO=YSUMO+4.,0%Y0DD

000200 IF(E=EX) 256259 30

NN0AG3 25 RHUSEVALLI(EHGEGISTIG21TAUY I /72.0

00n215 6 TO 45

000715 30 AE=ALTT(ER)

0no217 RHO=EVALZ (UaPZyPNsEBy AE s ATOMy J) /2.0

000231 7 35 T YEVEN=HAO*T (A(TY s AT2Y 9A(3) sA(4) sA(S) s E(KE))
000751 YEVEN=YEVEN#FACTUR

000253 7 TTTIF(YEVENL.LTL0. 0V YEVEN=0.0

nnnrse IF(NJEOLNINT) YEVEN=YEVEN/2,.0

060761 YSUME =YSUME+YEVEN®2,0

000264 ?  CONTINUE

000766 SPECTR=(H/3.,0) ¥ (YSUME+YSUMO) /7 (2.0%3.146159)
000272 RETURN '

0606277 END
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FUNCTION XMODF (KyL)

00000%
000012

KA0DF=K={K/L) #L
RETURN

000012

END
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FUNCTIUN ALIT(E)

000003 ALIT = 29.2 + 205.62%FEXP(~1.003%E)

nnonl1z 20 RETURN

000014 END




SUSROUT INF FLKAY (NN9FLNsFKN) R1050908 _
T000NA L TEMP=FLOAT(NNY . T
000010 S TEMPI=TEMP/2,0 R1050910
000017 10 TEMP2=(1FMP=1,0)72.,0 R1050911
000015 15 1TEAP=XMODF (NN»2) R1050912
000023 20 IF (ITEMP-=1) 45530525 R1050913
LELDEL 25 1ERR=25 R1050914
000027 TG0 T ws00 R1050915
0000730 30 FLN=TEMP2 R1050916
00nn31 35 FRA=TEMP] R1050917
000032 40 GO TH 85 R1050918 _
000033 45 FLN=TEMP] R1050919
000034 S50 FKN=TEMP? R1050920
000035 S& RETURN T T T R1050921
000036 9500 4RITE OUTPUT TAPE 6+9105sI1FERR R1050922
0n0nas MESS = 4HOHEL
000046k 9105 FORMAT(1Xe]BHt###anarne? ERR = 414) R1050925
000046 END R1050926

[AK4



000010

000010 H=Jg# (J+ 1) /(2.0%51621)
000014 C=(EJ-tu) /T

000016 0=C-d

000020 CONSTI=(2%J+1)7(2.0%51G21)
000025 EVALI=CONSTJU*EXP (D) /T
000036 RETURN R
000035 END

£G¢



FUNCTIUN EVAL2(UsPZsPNIEPIAELASY)

neoN12T T REAL 0
000012 U=t P=r/=PN

000014 ST1622=0.0R8RR#SOURT (AF#U) #a#4 (2,/3,)
000932 R=J#(J+]1)/(2.0%¥S51622)

000040  C=2.0%SuRT (AL #*U)
000051 N=C=-r

000053 T T CONSTO=(12,0% (AE##0,25) # (UB¥®] ,25)) ## (~1.0)
0000A4 CONSTU=(2%J+1) / (SQRT(R.O ) #(S1G22%%1,.,5))

0007101 EVAL2=CONSTO®CONSTI®EXP (D)
000106 _ RETURN

000106 ~END

A4
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0 -1.0 ],590°090  1,6915001  1,691Fe0)  2.730E+00 2,73UEe00 1,315€000 1,315F+00 2. 9HLE=01__2,986€=-0)__ 3,366F=03__ 3.3A6E-02
T 1.0 S e O] G I 0] % DA 20T T.BhuEs 00  T.AGHE+00  3.7H2E+00 3.7A2E+00 B.595€-01 8.595€-01 9.6R1E=03 9.681€-03
1 -1.0 P eTrEe0]  6,299F001 4,297E+01  T.B6BE+00 7.H68E+00  3.782£000 3.782€+00 8.595€- 0)__B.595F=01__9,681£-03_9.681€-03
2 1,0 T AIRETOT hoBITE 0T E.AITEs01  1.210F¢01 1.2106+01 5.797€+00  5.737€+00 T1.3186+00  1.318€400  1,483€-02 1.043€-02
2 =1.0 oMl oG] b AITEo0]  ALAITES0)  1,210F+01 ). 210E¢01 S,7976400 S,797€+00 1,319£200__1.318E+00 1. 4A3E-02__1.4R3E-02
2 1.0 9.73.8001 A.220K.01 8. 30F 01 15016001 1.5016¢01 7s159E+00  7.159€+00 1.629€+00 1.629€+00 1.830€-02 1.A0E-02
3 =1.0 7 | #.2200+0)  B.2205 400 1.501E+01 _1.501€200  7.159E¢00 1 ISYE00_ 1.629E+00 _1.629E+00__1.330F-02 1.830€-02
4 1.0 I 9.013E+01 9.013E001 1.664E501 1.604E+01 7.7u5E000 T.785E¢00 1.776E+00 1.776E¢00 1.988€£-02 1.988E-02
4 -1.0 5.2235001  9.003t00) 9.013E+01 1.664F+0)_ 1, A4eEe0l T,765E200 T.7856000 __1,774€+00__].774E+00__1.9RHE-02 _1,9R9E-02
S 1.0 B.34aEe0]  9.02RFsU1  9.02BE+01  1.643t+01 1.643E401 1 19E+00 7.719E+00 1.762€+00 1.762€+400 | 9AHE-02 1.96HE-02
S =-1.0 G,2urE o) YeUenFe0]  9,00HE+0)  },663te0] 1.h%43Ee0] T,719E200 _T.T19E+00 14762k 00 le70ctr00. _1.964E= -02_ 1 .968E-02
6 1.0 a0 SE U] Mme40GFr0) B 604E«0) 1.526E°01 1.526E¢01 7.096E°00 7.098£+00 1en24E+00 1.6264E+00 1.307€-02 1.R07€-02
6 =1,0 4,9085001 0, 6045001 R H0GE+0)  1,5267¢0)_1,526€+01  T,098£+00 7, 098E+00_ 1.624E+00 _ },629€+00 __),R07t-02 1,8078-02 _ __ __
T 1.0 o 0eE T T 3 TEs 01 T, 3aTEs 01 143306401 123306401 6.111E+00 6.111E+00 1.401E-00 1.601E00 1.55JE-02 19553€-02
7 -1.0 4,307F+01 7, 3415+01 _7,361E¢0} _1,330e001  1,330€001 6,111E¢00 6,11 1E+00__1,601E+00 1 ,401€+00 1,553€-02 1.553E-02
R 1,0 3 SR Es 0T B 0B6F 0T B 054E+01  1.093E+01  1,093€+01 4.956F+00 4.956E¢00 1.139€+00 1.139€+00 1. 256E=02 1.256E-02
A -1.0 1.566r 001 6.05ar 001 A.056E+01  1.093E+0]  1.093Ee01 _ 4,956£200 4,956€¢00 1.139€+00 |,[39f¢9g__1,2§§§ 02 _le256E-02
9 1.0 S RGWF 0T 4. 736501 4. TIGE+0)  B8.522E+00 W.52PE+00 3,802E+00 3I.BO2E+00 B.766€-01 B.76 9.611E-03 9.611€-03
e -1.0 P.ANGESD] 4, TISE+01  4,734E+01  B,5226¢00 R,522E+00 3,802b¢00 3. ROPE00 __B,766E-0)__A,T6hE~ 014_9 611E-01 _9.611E-03__
10 1.0 ST at s 0T I OI9Er0T  3.519E+01 64312L+00 6.312€+00 2.760E+00 TT2.76AE+00  6.400E-01 6.4008-01 6.9726-03 6.972E-0)
10 =1.0 2,09RE+0] _3.519%001 _3.519E+01  6.312E+00  6,312€+00 2.766F+00 ¢ 66E+00 __ 6,000E-01__6.400€-01__6.972E-0] _6.972E-03
17 1.0 T G0 7Ev 01 2,506 501 2.493E+01  4«4BaE+U0  4e454E+00  1.913E+00 136400 4.442€-01 #.6426-01 4.804E=-03 4.804€E~03
11 _=1.0 1.497F+01 2,690F+0] 2,6493€+01 4.656K+00 4,456F+00 1.913€+00 1.913E+00  4,642E=0) 4,4062b6=-0}  4,B804E-03 4,PQ4€-03
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T 1. 06sE D] TS 7ES0T T RS TESUT 3,413k 00 J.aidEc00 1. T66TEY00  1.667E+00 3 3.710€-01 4.421€-03 4.021€-03
0 -1.0 1.09GE 601 1oHS7Fe0]1  1.B5TE+01 3,613t 400  3.613€400 1.667€200 1.667F00 3.710€-01 3. 7106-0) 4.421€-03 4,421E-03
T 1.0 3. 076E+01 3.3555-01 S 356501 9.540C 100 9. RUE+00 4. TYSE~00 e 795E+00 1.0686£+00 1.068E+00 1.272€-02 1.272€-02
1 -1.0 Je0TuE*01 JoRE+0]  S.3GRE+0) 9. AGOE+UN 9. RGOE+00 4.795E+00 4, 7956000 1.069€E+00 _1,068F+00 ) 1.272E-02 _1.272€E=02
2 1.0 «.763£‘0T"b.?s?t 0T TRPSEIOT T.51aEe01  1.514€+01 1.352€+007 7.352E+00 1.A39E€400 T1e639E+00  1.964E-02 1.94RE-02
? =1.0 4 76 3F+Q1  M.PG2Ee01  R.2S2F 01 1,516F00)1  1,514€401  7,352€+00 7.352€¢00 1. 6IFE+00_ 1.639E00 __1.949F-02 _1.967E-02
PR T Y S, 3120001 T1L0278002 1027k 402 l;haétooi 1.BR2EY01  9.042E«00 9.0R2E+00 2.029E+00 L02nE200 2.404E-02 2.404E-02
3 -1.0 CLI1PE001  1.0275407 1,0276+02 1,882Fe0) 1.,8A2E01 9.0R2E+00 9,0R2€+00 128F+00 _2,02HF+00_ 2.404F-02  2.,606E-02
4 1.0 R BTt e0]  1elcntt02 1. 17HF+02 2+063r+01 2.0A3E+01 9.HA2E+00 9.HH2E00 2.2106+00 2.2108+00 2.611E-02 2.611E-02
4 =1.0 AuS12E 001 1o129E 002 1 12HF+02  2.0A3Ee01  2.063E+01 9.BH2E+00 9.HAZE+0Q _2.210E+00 _2.210€+00_ 2.411€-02 2.611E-02
1.0 B.561F001 1a133E 002 1.1336402  2.06TE 01 2.067E 201 9.A05E+00  9.BOSE+00 2.198E+00 2.194E+00 2.586€-02 2.5A%E-02
5 ~1.0 h. %hlEgO}__J.lJJ>002 11336002 _2,06TE+0L__2.,067E001  9.R05E+00 9.805€+00 2.1986+00 _ 2.19HE+00__ 2.5R86E-02 _ 2.5BAE-02____
& 1.0 A 1606 e0T 1. 064E+02  1.098E+02  1.9256+01 1,9256+01 9,0226400 9.02¢E+00 2,029€+00 2.02vE+00 2.373t-02 2.373€-02
6 =-1.0 Ae )50 1054k 202 |.nsar.oe f oyl 1.925€+401  9,N22E+00  9.0272E+00 2,029€000 2, 0296+00_ 2.373€-02 _2,3736-02
7 ) RN ES 4.p,~;.(ﬁ'_b TV0T 1.RH2E01 T.T15E+00 00 ToT75€+00 1.754€+00 1.754E+00 2.039E-02 2.039¢-02
7 .0 S,ulITe0] 9279t +01 .,7&».n| AZF 01 1.RR2E0]) _ 7,775F+00 _7.77SE+00 _1.754F+00 _1.754E€+00 2.039€E-02 2.,039€-n?
A 1.0 4.5 ure0) " ToRlIEe01T TJRATESOL 1.3ABE01 T 1,38HEC0L T 6.312E+00  6.312E400 1.430€400  1.430E+00 1.650E-02 1.650E-02
R .0 4 5105001 Tefnlbeul T,AHTES0L  1,IHMEC0] 1,38RE«0)  6.312€+00 £.312€+00 _ 1,6306400__ 1,430E400  1.650£-02 1.650€-02
9 , F.5655 031 hobulbedl 6. DGIFs00 1.0HRE U] 1.0HNESOT &, HGBE00 4 BLHESVU 1.103E400 1.103E+00 1.,262€-02 1.262€-02
9 3.5A6F 3] b.lalce0] 6He.0alf+0) 1.08a2010 1.08AF+0)  4.84nF400 4. BedE+00 1. 103€+00_ _1.103E+400 1,262F-02__ 1.242E-02
o 1 330l G STRC 0T @ ST6ET0T B.0A1F+00 8.081E300 3.535E+00 3.533t+00 A.074€=-01 B.074E-01" 9.157€-03 %.157€-03
o190 -1.0 P.6R7E001 4. S16E+0]  6.5IHE40]  R.O0RIE.00 AL,0R1E+00 _J.,533F+00 3. S533£+00 B.074E-01 B.074€-01 _9.157€-03 9.157€-03 ___
U 1o 1. 92nE e 01 3.21964017 " 3.210E601 S. 7316200 5. 731E+00  2.buTE200 2.447€400 S.623€-01 T 6,6236-01 6.311€-03 6.311€-03
10 -1.0 1o926£00)  3.2196¢01  3,219€¢0)  S,731E+U0_ S, TI1E+0U 2,447€+00 2. #4T7E+00 _5.623€-01 _5,623€-01  6.311E-03__ 6.311€~03
‘2—‘7’0': MEUTRON FNERGY 1S P -

66¢



