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Changes of density occur naturally in phase transition processes

and introduce the bulk movement of material. It is customary in ana-

lyzing such problems to disregard this unpleasant complication and as-

sume the densities to be equal. However, such changes are unavoid-

able and for one-dimensional problems the complexities introduced by

this bulk movement can easily be circumvented. The key idea is posing

the problem in local coordinates which are fixed in each phase. In

this dissertation, we investigate freezing and thawing of soils in a

bounded two-phase medium with phases whose material properties are not

only distinct but their thermal dependence is also permitted.

Generally speaking, when a freezing process takes place in a

cooled melt situated in contact with its solid phase, an interface

boundary is formed whose movement (as the freezing proceeds) results

in compression of both phases. Owing to the density differences, the

density of the material will increase, movements will occur in each

phase, pressures and thermal stresses will build up in the respective

phases, and the freezing point will decrease. Mathematically, this

results in three nonlinear free boundary problems for determining:

(I) the location of the interface boundary along with the temperature

distribution throughout the medium, (II) the pressure and velocity
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distributions in the unfrozen phase, and (III) the displacement dis-

tribution and hence the thermal stresses in the frozen phase.

In fact, the temperature satisfies a nonlinear parabolic differ-

ential equation on each side of the interface while the temperature is

continuous across the interface and equals the transition temperature,

the condition of local thermodynamic equilibrium. To consider the

problems from the most general point of view, mass forces are taken

into account such that the pressure and velocity distributions satis-

fy a nonlinear couple of hyperbolic differential equations of the

first order in the unfrozen phase and the pressure is related to the

density through the equation of state. The displacement satisfies a

nonlinear hyperbolic differential equation of the second order in the

frozen phase which is related to the thermal stresses through the gen-

eralized Hooke's law. Across the interface, the pressure is equal to

the negation of the normal thermal traction on the interface. Further-

more, the movement of the interface is related to the temperatures, the

velocities and the material properties at the interface through condi-

tions of dynamical compatibility for energy and mass transfer.

Based upon potential theoretic arguments, we prove existence,

uniqueness and continuous dependence on the initial and boundary data

of solutions to Problem I. Along with these results, explicit expres-

sions for the densities, the specific heats and the thermal conductiv-

ities as functions of time and local coordinates in their respective

phases, which fit our analysis, are also obtained. Correspondingly,

the characteristic method is utilized to show existence and uniqueness

of solutions to Problems II and III, and we demonstrated the continu-

ous dependence of their solutions on the respective data. Moreover,



asymptotic estimates for the critical time of breakdown in their solu-

tions are also obtained. Some remarks on discontinuities in general

are finally discussed.
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NONLINEAR FREE BOUNDARY PROBLEMS ARISING FROM
SOIL FREEZING IN A BOUNDED REGION

CHAPTER ONE - THE PROBLEM

0. Introduction

In the classical two-phase Stefan problem the densities of the

two phases are assumed, either explicitly or implicitily, to be

equal. This allows one to neglect certain mechanical and thermo-

mechanical questions, since a change in density during a phase tran-

sition inevitably gives rise to the onset of convection currents and

motion in the liquid phase and of motion and thermal stresses in the

solid phase, even when there are no external forces acting on the

medium under consideration and the thermal expansion in both phases

is negligible. Generally speaking, if one neglects convective heat

transfer, motion and thermal stresses in a multi-phase medium one is

actually considering the change in the phase state of the individual

components of the medium to be a process dependent on the thermal con-

ductivity only and independent of any mechanical and thermomechanical

phenomena taking place in the course of the phase change. How-

ever, this leads to a serious incompatibility between the mathema-

tical treatment of the process and its physical nature. On the

other hand, taking the convective heat transfer into account forces

one to consider the Stefan problem for the freezing process as be-

longing to the theory of convection accompanied by a change in the

phase state. In other words, the heat transfer by convection must

be considered. In one dimension one merely replaces Jht by

3Tht + vDThx. To obtain a rigorous mathematical model, we have
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been forced to take into account the thermal expansion of both

the liquid and solid phases, and consequently have to consider the

temperature dependence of the physical properties (i.e., the densi-

ty, the specific heat and the thermal conductivity).

Nevertheless, several authors have attempted an anaysis of

one-dimensional, two-phase free boundary problems with phases of

different densities. Some have assumed the relevant parameters

to be temperature dependent, but others have not.

Chambrd [7] studied a one-dimensional solidification pro-

blem for a two-phase system of unequal densities under the assump-

tion that the liquid phase is a viscous incompressible fluid in

a field of constant pressure. In addition, the solid phase is

assumed to be immobile and of infinite thermal conductivity, so no

equations were needed for this phase. Obviously, these assump-

tions are physically untenable. Taking the Prandtl number equal

to one, Chambrd derives a self-similar solution to the problem

in processes with either a plane, a spherical or a cylindrical

solidification front.

In [18], Horvay considered problems similar to those posed

by Chambre. He pointed out that the assumption of constant pres-

sure violates the continuity equation. He wanted to satisfy the

continuity equation and to preserve the assumption of the liquid

phase incompressibility in the above mentioned processes. This led

him to the conclusion that the viscosity of the liquid phase does

not affect the development of the process. Horvay constructed

similarity solutions to the problem under investigation, assuming,

like Chambre, that the freezing front advances with velocity
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propotional to i/f. As Rubinstein [30] pointed out, Horvay did not

prove the consistency of such an assumption.

Tao [33] considered a two-phase solidification problem in one

space dimension with arbitrary initial and boundary conditions.

The region considered was the half line x>o. The phase densities

were constant but distinct. He made the change of variable

y(x,t) = (x + --s(t))/(1+-), where s(t) is the location of the

phase boundary, 76- = (p2-1211)/pl, and pi is the density of the phase

i, and rewrote the heat transfer problem in the moving liquid using

this coordinate. Tao's idea has the advantage that y(s(t),t) =

s(t), which simplifies the statement of the Stefan condition at

the moving boundary, and since the liquid extends out to infinity,

no difficulty arises at the other boundary on the right. Tao

then analyzed the transformed problem using an infinite series of

terms involving repeated integrals of the error functions.

In a very brief treatment indeed, Carslaw and Jaeger [6]

gave what is essentially a similarity solution for a simplified

two-phase Stefan problem with phases of distinct densities in an

infinite medium. They made no change of variable.

Dankwerts [10] examined several two-phase problems with

phases of distinct densities. These problems were posed on the

entire real line, so no fixed boundary condition was imposed.

The analysis is limited to what can be accomplished with similarity

solutions in the local variables.

In [14], Gelder and Guy gave an analysis of practical problem

involving the melting of glass. Their emphasis was on engineering

applications rather than in resolving mathematical difficulties.
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They suggested that a thorough mathematical formulation is needed

to take the substantial change in density during the course of

melting into account.

In a more recent paper, Wilson [36] defined suitable moving

coordinates, Lagrangian coordinates, and used them to pose and

solve a one-dimensional, multi-phase Stefan problem with phases of

distinct constant densities. This problem is just a modest gener-

alization, to the case of distinct phase densities, of a problem

studied by Weiner [35]. The latter represents a model of solid-

ification and subsequent cooling for a semi-infinite slab of a

material undergoing several successive phase changes, and a con-

stant temperature is maintained at the fixed boundary. Wilson's

explicit solution, like that of Weiner, is essentially a similarity

solution and is obtained in terms of error functions. In fact,

this solution is very nearly the same solution given by Weiner but

expressed in Lagrangian coordinates.

As a further study of similarity solutions, Andriankin [2]

examined some solutions for a one-dimensional, two-phase melting

problem in a medium with small thermal conductivity, but might be

thermally dependent. The other properties were taken to be con-

stant. The interval considered there was the half line x> o.

On the other hand, Cho and Sunderland [8] have extended the

Neumann problem [6] to the case when the thermal conductivity

varies linearly with temperature. However, all the other physical

properties (including the density) are constant for each phase,

but might be different for different phases. Unlike Anderiankin,

they considered convection within the liquid phase due to the
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density change. Their (similarity) solution was obtained in terms

of modified error functions, unlike Neumann's solution which was

given in terms of ordinary error functions.

In all the above papers except for the last two, the thermal

dependence of the physical properties has been neglected.

So far we have reviewed work relating to problems of the

construction of exact solutions of various versions of the two-

phase Stefan problem. However, comparison theorems for a one-

dimensional, two-phase melting slab problem with variable thermal

properties under arbitrary heat-flux conditions were proved by

Boley [4]; they state the intuitively reasonable conclusion that

higher temperatures and faster melting rates will always result

from higher heat inputs. These theorems are useful for construc-

ting upper and lower bounds to solutions of the problem correspond-

ing to given heat inputs; and, in fact, form the basis of one of

the available approximate methods for solution of this type of

problem.

In concluding this survey, we mention the subsequent work of

Boley [5]. He demonstrated the feasibility of Neumann's solution

[6] pertaining to change of phase in a one-dimensional melting

problem with temperature dependent properties. The region consi-

dered was x>o, and the solution was expressed in terms of an

auxiliary temperature distribution which was obtained by an itera-

tive procedure.

It is worth mentioning that similarity solutions cannot be

obtained in general. In fact, similarity solutions do not exist

for finite domains, two phases present initially, nonuniform initial
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temperatures, boundary temperatures that are arbitrary functions

of time, and prescribed heat-fluxes on the moving boundary. This

has prompted considerable interest in further studies of a more

realisitc model of a two-phase Stefan problem emphasizing two facts;

namely, the mathematical description of the freezing process must

take into account the convective heat transfer accompanied by a

change in the phase state as well as the thermal expansion in both

the solid and the liquid phases.

Therefore, in Section 1 of this chapter, we give a physical

description of the problem. The mathematical formulation is pre-

sented in Section 2. In Section 3, we outline the present study,

which in turn gives rise to three nonlinear free boundary problems.

Chapter 2 is made of five sections and gives a unified treat-

ment of Problem I. In Section 4, we utilize Storm's method to

transform Problem I into a version in which the governing partial

differential equations become linear. This version is referred

to here as Problem IV. A reduction of the resultant differential

system to an equivalent system of integral equations is the aim of

Section 5. In Section 6, we introduce a sequence of approximating

solutions for the system of integral equations. In addition, we

prove the convergence of this sequence as well as the existence of

solutions to the system of integral equations for sufficiently

small times. Uniqueness and stability of the solution to the system

of integral equations are obtained in Section 7. In Section 8, we

go back to Probelm I and deduce its well-posedness.

A treatment of Problem II constitutes the main goal of Chapter

3. Section 9 is devoted to the proof of the existence and
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uniqueness of its solutions. In Section 10, we derive an asymptotic

estimate of the critical time, tc, to breakdown of the solution of

Problem II; in addition, we establish the continuous dependence

on the initial and boundary data of this solution for all times up

to
tc.

In Section 11, remarks on discontinuities of solutions in

general are made and extended to the case of heat-conducting media.

Chapter 4 is concerned with the displacement problem, Problem

III. We begin with the reduction of the governing differential

equation to a system of first order equations, and therefore intro-

duce Problem V which is similar to Problem II. Thus, the proof of

existence, uniqueness and continuous dependence on the data of the

solution to Problem V is carried out in a manner analogous to that

of Problem II. Furthermore, we show how to obtain related results

such as thermal stresses and deformations in the frozen phase. See

Sections 12 and 13.

1. Statement of the Physical Problem

Consider a tube insulated from the surroundings, part of which

is filled with frozen soil and the other part with soil and water.

The process will be considered as one-dimensional, or quasi-one-

dimensional, i.e., the flow can be treated using a one-dimensional

model even though the "real" flow is in fact three-dimensional, and

the freezing is accomplished by the withdrawal of heat at a specific

rate. The right hand side of the tube, Figure 1, is insulated and

no mass is allowed to escape from the tube.



freezing
unit freezing front

Figure 1. The Physical model.

It will be assumed that both the water-soil and ice-soil phases

are compressible and the densities of the frozen and unfrozen

phases are unequal. More precisely, the density of the solid phase

is assumed to be strictly less than that of the liquid phase at any-

time. As a consequence, a convective motion occurs in the water-

soil phase having the characterisitcs of a source or sink flow be-

cause of the fact that a unit mass of the fluid occupies, on solid-

ification, a volume differing from the volume originally occupied.

It will be assumed that this convective motion obeys the Euler

momentum equation for a non-viscous flow.

As the freezing proceeds, the unfrozen mass is compressed

into a smaller and smaller volume. And because of the density

difference, the density of the unfrozen phase will increase and

pressures will build up. On the other hand, the unfrozen phase

will resist the compression so that the frozen phase may also be

compressed and, as a consequence, its density will increase and

thermal stresses will build up. Also inertia forces will take

place; and these forces will be related to the thermal stresses

through Newton's law of motion. Since the frozen phase is less

8

plugged and
insulated
right side
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dense than the unfrozen one, the freezing point will decrease as the

freezing proceeds. At some point in time, the pressures will become

so large that either the plug on the right will be pushed back or

the freezing process will come to a stop. Our concern is to model

this process under certain additional assumptions.

In a recent paper [16], Guenther studied a rather simple version

of this problem for a prescribed temperature boundary condition at

the left side of the tube. In fact, he treated the problem as a one

of thermal conductivity only, which evolved independently of mechan-

ical and thermoelastic processes in the two-phase medium, which

are generated by the change of the phase state itself. In addition,

the physical properties were assumed constant, except for the liquid

density which was assumed to be time dependent and linearly related

to the pressure.

2. The Mathematical Formation of the Problem

Suppose that the length of the tube is b units. Let x = s(t)

denote the location of the solidification front at time t and sup-

pose that s(o) = a, o< a< b. In addition, the thermal conductiv-

ity K, the specific heat C, and the density p are assumed to be

functions of the temperature T and therefore vary implicitly with

both the coordinate x and time t. Due to the fact that the two-

phase medium is being compressed, a certain amount of heat will be

released in each phase. The rate q at which heat is released due

to the compression per unit length appears in the energy equation

as a source term.



Let the suffixes 1 and 2 refer to quantities pertaining to

the frozen and the unfrozen phases, respectively. Then under the

above assumptions, the governing equations are derived in the fol-

lowing way.

Equations of the Unfrozen Phase

The first equation, the continuity equation, describes the

conservation of mass of the liquid,

D 9 v 9

Dt Dt 9x

Dp2W2
0.

Dt p2

The second equation expresses Newton's law of motion

Dv
2

P2 Dt

The third equation, the heat transfer equation, is an ex-

pression for the rate of the change of entropy of the liquid

10

Furthermore, since the interest is now in large pressure and

stress changes, gravitational effects as well as body forces will

be neglected. A partial derivative with respect to the time t at a

given point on the x-axis is denoted by VA, and a total or sub-

stantial derivative describing the time change in any quantity

following a moving particle in either, the liquid phase or the

solid phase, is denoted by D/Dt. If V is the velocity of the

particle, then

(2.1)

(2.2)

(2.3)
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DS
T 2 (v2

P2'2 Dt c12
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(2.4)

In these equations, K2, p2, and C2 all depend on T2, q2 depends on

x and t as well as T2, and P(x,t), v2(x,t), S2(x,t) and T2(x,t)

are respectively the pressure, the velocity, the specific entropy

and the temperature of the liquid phase at a point x and time t for

s(t)<x<b, t> O.

The fourth equation, the caloric equation of state, gives P

in terms of p2 or u2, and S2,

P = P(p2,S2) or P = P(u2,S2), (2.5)

where u, = -,11 is the specific volume.
c "2

So far we have four equations, (2.2) to (2.5), in the four un-

knowns p2, v2, P, T2 (or S2).

It is known that for most liquids the pressure does not depend

noticeably on the specific entropy. In other words, the influence

of changes in entropy is negligibly small, so that P may be con-

sidered to be a function of density (or specific volume) alone. In

this case the medium has separable energy, (for a definition, see

Courant and Friedricks [9]), and the equation of state takes the

form

P = P(p2) or P = P(u2) (2.6)

The most important liquid with approximately separable energy

is water. For water the caloric equation of state has some



resemblence to that of a perfect gas:

P = A pi - B
s 2 s'

where the parameters As and Bs are, for almost all practical pur-

poses, independent of the entropy, and y is a constant. We remark

that the exponent y in (2.7) is not the ratio of specific heats but

is denoted by this symbol for convenience because it plays the

same role as the ratio of specific heats in a perfect gas under-

going isentropic processes; in particular, it will be possible to

use the equations derived for the isentropic flow of a perfect gas

merely by replacing P by P + B. Equation (2.7) is commonly called

the Tait equation. For a brief discussion of the history of this

equation, see Rowlinson [29] and Hirschfelder et al. [17].

Now the rate of heat release q2 will be assumed proportional

to the rate of change of p2, i.e.,

Dp2DT2
q2 = constylf- -D B

a2, 2-2 Dt

where
a2

is a constant and2 = -p-1(3p2/aT2
)p is the volume coef-

2

ficient of thermal expansion of the liquid. Next, making use of

the familiar thermodynamic relation

CPdT2 1 ,2
dS + dP

2 T 2 3T
2 p2 2 p

where C is the specific heat at constant pressure, the heat

transfer equation can be written

r DT2
T2

3P2 DP

c12

, DT2
- -- (---) (K2 -TT)P2-P Dt p2 3T2 p Dt

12

(2.7)

(2.8)

(2.9)

. (2.10)



With the help of (2.8), Eq. (2.10) becomes

DT21
P C* - [11
2 2 Dt Dx -12 9x J

where

C = c + a + c22T
2 P 2 2 2 2

and c2 = dP/dp2 is the speed of sound in the liquid.

Equations of the Frozen Phase

The derivation of equations of this phase is based upon the

theory of thermoelasticity. For convenience, the thermoelastic

analysis will be presented in the following two steps (for simpli-

city, the suffix 1 pertaining to the frozen phase quantities will

be dropped in Step (i)):

Step (1). Basic Equations of Thermoelasticity

Consider a perfectly elastic solid, initially unstrained, un-

stressed and everywhere at temperature To on the absolute scale.

Such a state free from strain and stress will be referred to as

the reference state, and the temperature To as the reference tem-

perature. On departing from this reference state the solid in

general acquires a displacement field ui(i = 1,2,3) and a non-

uniform temperature distribution T. These changes give rise to a

velocity field vi(i = 1,2,3) and stress and strain distributions

described, respectively, by the tensors eij, aii(i,j = 1,2,3).

The absolute temperature T, the vector components ui, vi and the

(2.11)

(2.12)

13



tensor elements
eij, aij are functions of time t and position in

the solid, as measured by rectangular cartesian coordinates

= 1,2,3).

For a homogeneous isotropic material, we have, corresponding

to (2.2) - (2.4), the equations

au.
Dp 3vj

o; - at '

(2.13)
3 .

vj
xj

Dvi aoij

(2.14)
D t px. '

14

DS D 3T
pT - 7)T7 (K 7<--7) + q

where D/Dt = 3/at + via/ax.. (see References [3] and [13]).

The displacement ui of each particle in the instantaneous

state from its position in the reference state will be assumed to

be small, so that the infinitesimal strain tensor is

, Du. au.

e.. = v--- __11)
ij 2 ax. Dx.

On the other hand, the stress tensor is given by the generalized

Hooke's law

alJ = (Ae
e(T-T0

))6.. + 21.1e..; e =
ekk1J 1,3

where

(aekk)
= (x = k DT 'a

Here x and p are the (isothermal) Lame elastic constants of the

(2.15)

(2.16)

(2.17)

(2.18)



solid, and is is its volume expansion coefficient. In this work,

the coefficients X and z are taken as material constants but s is

assumed to be a function of temperature. Relations (2.17) are the

equations of state (or the constitutive equations) of the class of

solids under investigation. If, in addition, the velocity vi is

small, the substantial derivative D/Dt can be replaced by B/A,

and Eqs. (2.13) - (2.15) become

Dv.
o p __/ 0

at ax.

.V1 lj
P ataxj

as
P IT

x
kN q .D. 9xj

Equation (2.19) gives

p = po exp(
-ekk) Po(l ekk)

(2.22)

where pc) is the initial (uniform) density.

Now, introducing the Gibbs equation,

ds =
dT

de + C
P kk U f'

where C is the specific heat at constant deformation. We note

here that C and C are related by the equation

is2T
Cn = C +

F u KO

2 -1
in which K = (X

:j11)
is the isothermal compressibility.

15

(2.19)

(2.20)

(2.21)

(2.23)

(2.24)



Next, combining in turn the two sets of equations (2.16),

(2.17), (2.20) and (2.21), (2.23) and expressing the results in

vector notation we arrive at the thermoelastic equations

9 u
p 2 - p7 u + (x+1.1)7(div - 67T .

at

16

(2.25)

9T
pCo + ET (div = 7.(K7T) + q . (2.26)

Weiner [34] has proved that the solutions of Eqs. (2.25),

(2.26) in a region free from body forces and heat sources are unique

when the initial distributions of T, are given and T, II are

specified on the boundary of this region. His proof extends to the

other boundary conditions, i.e., the Neumann and Robin conditions.

Finally, the basic equations given above combine the theory

of elasticity with heat conduction under transient conditions.

Boundary value problems involving these equations are of consider-

able difficulty to solve. Fortunately, in most practical applica-

tions it is possible to omit the mechanical coupling term in the

energy equation (2.26) and the inertia term in the equation of

motion (2.25) without significant error. It is customary to refer

to the thermoelastic theory based upon none of these simplifying

assumptions as the coupled theory, upon the first only as the un-

coupled theory, and upon both of them as the uncoupled quasi-static

theory.

Step (ii). The Thermoelastic Equations Applied to the Frozen Phase

The problem considered in this phase is that of a finite
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medium, initially at a uniform temperature, subject to a heat source

intensity q1(x,t,T1) per unit volume due to its compressibility:

9ekk aT1q/ = const ( at )cy =
-a1131 at

where
a1

is a constant and

= (Dekk)
1 aT a

1

is the volume expansion coefficient of the frozen phase.

Suitable constraints are imposed so that the displacement

components ux, uy, uz in the (x,y,z) directions may be taken as

ux
E u = u(x,t); u =

uz
= 0 . (2.29)

If we write (x,y,z) instead of (x1,x2,x3), the equations to be

solved follow directly from Step (i):

32U aT1a2u
6 ax '

PI
_ (A +

at2 3X

aT 2 aT
_ (K1 U 9 1

PlCl -tu at + ET1
'ax ax 1 ax `11

aXX
= (X + 2u)exx - 6(1-1 - To)

a = a = Xe - E(T1 -
To)YY zz XX

au
=

exx ax,

(2.27)

(2.28)

(2.30)

(2.31)

a =a=a=e=e=e= 0; eyy =ezz =o, (2.34)xy yz xz xy yz xz

(2.35)

(2.32)

(2.33)



in which K
p1

and
Clu

all depend on Ti; and T1(x,t) is the tem-

perature of the frozen phase at a point x at time t for o < x s(t),

t> o.

Again, equations (2.30) and (2.31), forming the equations of

the coupled thermoelastic theory, are to be solved for u and Tl

simultantously so that the strain and stress components can be

readily found from Eqs. (2.32) to (2.35). However, the following

analysis is based upon the uncoupled theory of thermal stresses.

Thus, on neglecting the mechanical coupling term in (2.31),

the frozen phase problem degenerates into heat conduction and

thermoelasticity as two separate problems. With this in mind and

the use of (2.22) and (2.27), the above system of equations can be

rewritten

,L
utt

= w2(1 + u )u ; w
2

= , (2.36)
X XX

po

aT
r* 1 _ rv

(
at ax L-1 Dc 3 ' 2.37)

2= p1(vTe - ke) , (2.38)

1 1

(2.39)ayy = azz = T=7) (vaxx - Ee) '

e = (2.40)
ax

in which

exx =
e(x,t), e = Tl

- To' = Clu alfi

(2.41)

= v
/571T17-

pl P1

18
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where v is Poisson's ratio and VT is the isothermal velocity of the

dilational waves. We emphasize here that the thermal stresses axx,

ayy and a in the directions of x, y and z are given in terms of
zz

one component of the strain, the x-component e(x,t).

After the position of the interface s(t) is known, the dis-

Here e(P) = T(P)-T0, and T(P), the transition temperature, is a

prescribed function of the pressure P. We will assume that T(P)

is a twice continuously differentiable and that is decreasing.

The condition (2.45) states that at the boundary x = s(t) the

stress should be minus the pressure, i.e.,

a . (x + 20e - (T(P)-T0) .

xx

However, Eq. (2.46) implies that

1
c (T, (P))e

Since
To

= o, by (1.9) in the next section, the condition

(2.45) can be rewritten

(2.46)

(2.47)

placement u(x,t) satisfies the mixed boundary value problem con-

sisting of (2.36) under the conditions:

u(x,o) = o (2.42)

ut(x'o) = f(x) (2.43)

u(o,t) = o (2.44)

=ux(s(t),t) 12 [Ee(P)-P] (2.45)

PlvT



ux =

T(P)E(1"(0)ei-1 - P

x 2p

3. Outline of the Present Study

Once s(t) is determined, we can solve the mixed problem de-

fined above to obtain the displacement u(x,t). Then using (2.40),

(2.38), (2.39), and (2.34) the strain and stress components can

be readily specified. Also a knowledge of s(t) is sufficient to

find a pair (P(x,t), v2(x,t)) satisfying (2.2) and (2.3) together

with (2.6), or its alternative form

P2 = P2(P)
(3.1)

(See Problem II). However to get s(t), one has to solve (2.11)

and (2.37) under suitable conditions to be specified in the fol-

lowing:

The initial and boundary conditions are

at x = s(t) . (2.48)

At the solidification front, the conditions of local thermo-

dynamic equilibrium and conditions of dynamical compatibility for

heat and mass are necessarily satisfied. These are respectively

(see, for example, Rubinstein [3O])

20

v2(x,o) = r(x); T1(x,o) = To;

DT2

T2(x,o) = f0(x) ,

aT1

(3.2)

lim v,(x,t) = 0;
x.4.b

(b,t) =
=

(3.3)
-5-)-Z-

o; [K1
]x

T1(s(t)'t) = T2(s(t)'t) = T(P) (3.4)



21

DT
ds[piL+(piCi - p2C2)T(P)]

31*1 v 2 ,
dt = K1 ax '2 ax '

(piCiVi - p2C2V2)T(P) at x = s(t) , (3.5)

(P1 - P2) 1St = PiVi p2V2 at x = s(t) (3.6)

where v1 = au/at. Here L is the specific latent heat, in general

a function of the pressure, (see, for example, Morse [27]; how-

ever, L will be treated here as a constant), and Ci(i = 1,2) are

the specific heats of the same type (using Eq. (2.24) to convert

one to another; if necessary).

The discussion presented above now motivates the statements

of the following three problems:

Problem I. Find a triple (s(t), Ti(x,t), i = 1,2) satisfying the

following contitions:

3T1 ,
DT1

R1 at i[K1 75-(] n = f(x,t): o<x<s(t), o<t<il

with s(o) = a

DT,
DT2 .

R2 Di- - [K2 7TT1 in 22 = {(x,t): s(t)<x<b, o< t<

0.3) yx,o) =
To

o, o x s a

(I-4) T2(x,o) = f0(x) o, a x b

DT,

(I.5) [K, 774-1
60( -X=0 = ,e-(t), 0 t

DT2

(1.6) -57 (b,t) = 0, 0 t

(1.7) Ti(s(t),t) = T2(s(t),t) = T(P), o t i



ds fl-1 3.12[piL + p2(C1 - C2)T(P)]
= K1 757- K2 -5-C

p2v2(Ci - C2)T(P) at x = s(t)

and the compatibility conditions

t(o) = o, To = f(a) = [T(P

where Ri E R(pi,Ci) = = 1,2), D/Dt E VA V2V3X , and

the prime represents the differentiation with respect to x. Note

also that (I.3) is obtained by multiplying (3.6) by CiT(P) and sub-

tracting the result from (3.5). In these equations, is a fixed

value of t, a and b are given positive constants with b >a, and

the functions fo, t and T(P) are given functions of their respective

arguments. The function f0(x) is defined and three times continu-

ously differentiable for o x f co. In addition the functions Ri

(and so pi and Ci), Ki, vi are sufficiently smooth functions of

Ti (i = 1,2) over the range -co< T.1 T(P) f T2 <co; and Ki and pi

= 1,2) are positive functions with p1 <P2.

Problem II. Find a pair (P(x,t), v2(x,t)) satisfying the following

ilt=o = o,f1(b) = 0,

22

conditions:

(11.1)

(II.2)

(II.3)

(II.4)

DP2 3V2

=

)

in Q2 = {(x,t): s(t)<x<b, 0< t<

with
p2 = p2(P)

for a f x b

'f 2 ax

Dv
2 _

02 Dt

P(x,o) = Po(x)

v2(x,o) = r(x)



(II.5) v2(b,t) = o

for o t f

(II.6) P(s(t),t) = g(s(t))

together with the compatibility conditions

(II.7) Po(a) = g(a) and r(b) = o.

Here s,
Po and r are given functions of their respective argu-

ments, which are assumed continuously differentiable. We further

remark that the condition (116) expresses our assumption that the

pressure of the phase change is a known function of the location of

the phase boundary.

Problem III. Find a function u(x,t) satisfying the conditions:

(I1I.1)
a2u w2(1 au) a2u

in
o1

= {(x,t): o < x < s(t), o< t < i}
aX 2

Dt4 DX

u(x,o) = 0

t '

(x o) = f(x)
a

(III.4) u(o,t) = o

for o < x < a

for o < t <
au
7-( (s(t),t) = x(s(t))

and the compatibility conditions

(III.6) f(o) = o and x(a) = o.

Here s, f and x are given functions of their respective argu-

ments. The coefficient w2 = 4p/po is a constant. The function

x(s(t)) is just the right hand side of (2.48) combined with (II.6).
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CHAPTER TWO - ANALYTICAL TREATMENT OF THE
NONLINEAR PARABOLIC FREE BOUNDARY PROBLEM

We are concerned in this chapter with the study of Problem I

stated in the previous section.

4. Linearization Procedure

In the following, we shall describe a method of linearization

of the one-dimensional, nonlinear, nonsteady heat diffusion equa-

tion by successive transformation of the dependent and independent

variables. It will be shown that when the thermal properties depend

on the temperature in a certain way, the linearization is possible

when the heat flux is prescribed at x = o. This linearization pro-

cedure was developed by Storm [32], and re-interpreted by Knight

and Philip [23]. An extension to Storm's method when the time

derivative of temperature is replaced by its substantial derivative

is discussed below. Under a certain condition, the Kirchhoff

transformation [22] will be proved to be a special case of the

transformation used by Storm.

We are first concerned with the equations (I.1) and (I.5),

DT

EK
--1]DT1

3x 1 R1

EK1 (t)

(4.1)

(4.2)

where Kl = K1(1-1), R1 = R1(1-1), and Tl = Ti(x,t). The condition

(4.2) expresses the heat outflux from the two-phase medium through

the boundary surface x = o.
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Introduce a new dependent variable Qi(x,t) by the equation

Ql =
TI

[Ki(T)R1(T)]1/2dT . (4.3)

Then Eq. (4.1) becomes

1/2 a( 1/2 411 41
al ax 'al ax - at

where a/ E Ki/R1 is a function of 1-1.

Now let

Qi(x,t) = q[X(x,t),t] , (4.5)

where X(x,t) is a new independent variable defined by

Utilizing Eqs. (4.5) and (4.6), the variables x and t are trans-

formed to the variables X and t as follows:

4* DQ*1/2 41 1/2 1 aX 1

al ax - al aX 3X aX

and the left-hand side of Eq. (4.4) can be written as

2 *
4*X Q11/2 1/2 411 1/2 a ( 11 a

al ax 'al ax' = al DX DX' Dx

Hence, Eq. (4.4) yields

2Q* aQ
1 1

aX2
at

_1,,
dXX = 1/4- .

0 I
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(4.4)

(4.6)

(4.7)

(4.8)

The right-hand side of Eq. (4.8) is now expressed in terms of Q1c, as



aX2

-

-1/2
3Q1 DQT rX l DQ*

dx] + 3:t1 ,[I Ba
Dt x jo t

where

a
,_-1/2 ,_-1/2 _2QT

°a1 ( al ) dl 6

d()1 dQ1 (3x2

since 9Q1/3t is given by Eq. (4.8). Inserting Eq. (4.10) into

(4.9) and using the fact dx = a2dX, we get

32Q41 4T IX d

*

-1/2 1at - TT { [-ITT- (ln a/ )] ,) dX} + at .

aQ*
1

0 `el a`

Combining Eqs. (4.8) and (4.11) gives

D(.1., X A 1") D24;
' + ' II r ' (1- -11"] dX1 .

oLdQI
I" )

ax2

Now the integral in Eq. (4.12) can be evaluated in terms of

aq/aX if and only if

d f -1/2
n al ) = (K01)-1/2 (ln a-1/2dQ, O) EA= constant. (4.13)

1
dT1

Under this condition Eq. (4.12) reduces to

2

Q1 - - + A (TT) - A I--X=0 (4.14)
WC2 DA -DX

CDQT/DX4.0 can be evaluated from the prescribed heat flux

condition (4.3) as

(t) =

AT AT 2 AT AT.

aT aQ*lrli BX
[ J

K

1 DQ/ L JX=o aX X=o
(4.15)
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(4.9)

(4.10)

(4.11)

(4.12)

The term

boundary



Therefore, Eq. (4.14) becomes

32Q*1 9Qi 3QT 2
aQ*

1

aX2

- at. +
A(-T(

- Xe(t)

This equation is still nonlinear. However, introducing a new de-

pendent variable (1(X,t) by

Q* = - lln
1 A

2
3 _ 31) 31,

3X2
at aX

(4.16)

(4.17)

reduces Eq. (4.16) to a linear partial differential equation for (1):

(4.18)

In particular, if A = o in Eq. (4.13), al = constant, say a*.

For such a case, the transformation (4.3) reduces to the Kirchhoff

transformation [22],

Q a:1/2i = JT1K1(T)dT

and the equation (4.16), using (4.7) and (4.11), to

2

9 Q1 _

a* 2 at

which is linear.

It is easily seen that the most general forms for K1 and R1

which satisfy (4.13) are

and

,T

K1(1-1) = Gi(yexp[-A
1G1(T)dT]

27

(4.19)

(4.20)



or, by the definition R1 =p1C,

-1.

p1(T1)q(T1) = G1(T1)exp[A
1

G1(T)dT]

28

(4.21)

where G1(1.1) is an arbitrary function of T1. On the substitution

from (4.21) in the
relation= Cl + aol, we obtain

u

dpi

PlCl - al -
Gi(yexp[Ai 1Gl(T)dT] , (4.22)u dT,

since = -p(dio1/dT1)0. which is an alternative form to that of

(2.18); this is evident from (2.19).

We note here that G1(1-1), which depends upon the thermal pro-

perties of the medium under consideration, must be known a priori.

For simple metals, Storm [32] has shown that G1(1-1) is essentially

constant, its variation with temperature being much less than that

of either K1 or R1 considered separately. In fact, this discovery

was the motivation for an investigation of the relations between

the thermal parameters of simple metals on the bases of the theory

of solids and available experimental data. Therefore, solving

Eq. (4.22) gives the functional p1 in terms of C/u and T1, from

which Clu is obtained in terms of
p1

and
Tl'

and the functions

p1 and T1 will be obtained from the solutions of Problems I and

II. Indeed, this is the value of C/u which is applicable to our

analysis.

We remark that Eqs. (4.19) and (4.20) can be simplified if

the product

KIRI = constant (4.23)



in which case
G1(T1)

E D = constant, and the variation of
K1

and

R1
with temperature is given by

K1(T1) = D exp[-ADT1] , (4.24)

R1(T1) = D exp[ADT1] . (4.25)

If the exponentials in these expressions can be linearized, Eqs.

(4.24) and (4.25) reduce to

K1(T1) = 0(1 - ADT1) , (4.26)

R1(T1) = 0(1 + ADT1) . (4.27)

We now summarize the results of the above analysis: The

nonlinear heat-conduction equation (4.1) subject to the prescribed

heat-flux boundary condition (4.2) is transformed into the linear

equation (4.18) on the assumption that the physical properties

K1 or R1 depend on the temperature in the form specified by equa-

tions (4.19) and (4.20), (4.24) and (4.25), or (4.26) and (4.27).

Storm [32] applied this method to the solution of the problem of

a nonstationary temperature distribution in a semi-infinite medium

subject to an initial uniform temperature condition and a constant

flux boundary condition at the surface x = o.

We note also that if we define a new dependent variable V(X,t)

by means of

cD(X,t) = V(X,t)exp[- ()2t] (4.28)

equation (4.18) transforms to the more convenient form

29



where K2 = K2(T2), R2 = R2(T2), T2 = T2(x,t), and D/Dt= Vat+ v2a/ax.

In contrast to (4.2), the condition (4.32) expresses the fact that

the boundary surface x = b is insulated.

Since the same method applied above can be used to linearize

(4.31) subject to (4.32), only the salient steps will be given.

We define the new dependent variable Q2(x,t) by

a2V aV

-
aX2

at

Equations (4.17) and (4.28) when combined give

V(X,t) = exp[-Aq(X,t) + .8-e= X + (1)2t] .

We next consider the equations (1.2) and (16),

DT2

EK2 = R2 Dt '

ax 3X

aT9

[75r3x=b

T9
Q2 = `[1(2(T)R2(T)]1/2dT

so that Eq. (4.31) becomes

,1/2 (a1/2 2)
DQ

z

-2 9X 2 ax

where a2 K2/R2 is a function of T2.

A new independent variable Y(x,t) is defined by

rb

Y = I a-2.1/2dx

30

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)



and the corresponding dependent variable is dented by

42(x,t) = Q;[Y(x,t),t] .

Then Eq. (4.34) has the form

2 *
3 Q- DQ

2 2

;Y
Dt

The right-hand side of this equation can be expressed in terms of

Q; as

Combining (4.40), (4.41), and (4.39) yields

-1/2 -1/2
DY = (b rDa202 dP2 1421d

Dt -Dt L Dt '-x
ix 2 2

31

(4.36)

(4.37)

DQ2 A) Dy aq
(4.38)

Dt aY Dt 9t

where

-1/2
DY

Dt
3a2

dx
v2a21/2

. (4.39)

Since v2(b't) = o by condition (11.5), then

b-1/2
-v2a2 = I

3a-21/2
-1/2 DV2

dx + dx (4.40)v a
2 pc 2 pc

and, by equation (II.1),

a
v2 1 dp2 DT2 1 dp2

DQ
2

(4.41)
n
- 2 dT2 Dt p2 dQ2 Dt



rb
rdu2

-1/2 ,-
u1/2

A

-2 21 '2
dx .

= jx dQ2
-

P2 dQ2
Dt

Putting (4.42) in (4.38) yields, after using (4.37) and the fact

1/2that dx = -a2 dY, the equation

p2n;,n*
,n* v -1/2 2 *

_ °42 d'42 fir d

2 at ' aY
Erin ink )]

3
dYl .

ay 0 -'2 v2 W-

Now the integral in Eq. (4.43) can be evaluated in terms of

aq/BY if and only if

a-1/2 a-1/2

2 ) = (K2R2)-1/2
dln( I"(

2
) B = constant (4.44)dQ2

P2 dT2 P2

under which condition Eq. (4.43) reduces to

,2n* ,n* r;
° '2 °'2 B(__L)

at '9Y'\12

In Eq. (4.4E), we employed the condition (4.32), which in terms

of Q; has the form

[7(T3Y=0 = ° (4.46)

Finally, a new dependent variable W(Y,t) is introduced by means of

the equation

Q;(Y,t) = - in W(Y,t) (4.47)

so that Eq. (4.45) transforms to

a2W 9141

aY2
'

32

(4.42)

(4.43)

(4.45)

(4.48)



which is a linear parabolic differential equation for W.

In this case, the most general forms for K2 and R2 which

satisfy (4.44) are

and

T2
K2(T2) = G2(T2)exp[-Bi G2(T)dT]

2
T

R2(T2) = p2(T2)G2(T2)exp[131 `,G2(T)dT] (4.50)

or, by the definition R2 = p2q

C*(T2 ) T
2

02(T2) G2(T2)exp[Bf `9
G2(T)dT]

where G2(12) is an arbitrary function of T2. Again, the function

G2(12) must be specified a priori. Furthermore, the value of Cp,

which is being used in the above analysis, is obtained by com-

bining (2.12) and (4.51) and the definition of f32. The result is

fdp212
dp2 , 2, 3

'2'dT2
a2P2 dT = p G2 (T2 )expEB

P 2
2

with p2 obtained from the solution of Problem II.

Summarizing the above results, we see that equation (4.1)

subject to the condition (4.2) is transformed to

32V 3V

0(2
3t

subject to

1 + AZ(t)
V JX=o 2

- o ,
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(4.49)

(4.51)

(4.29)

(4.53)

G2(T)dT]
(4.52)



or, in an alternative form,

with

Ea - A(t'v)]x=0=

v(x,t) = exp[-AQ(X,t) + A(t) X + (AT))2t]
1

A(t,V(X,t)) = - Alt) V(X,t) (4.54)

Similarly, Eq. (4.31) subject to (4.32) is transformed to

D214 A
3Y2

-

subject to

44=0 =
(4.55)

W(Y,t) = exp [-M*2(Y,t)] . (4.56)

The conditions (4.53) and (4.55) are just Eqs. (4.15) and (4.46)

written in terms of V and W, respectively

We close this section by pointing out that the conditions

(1.3) and (17),

11(x,o) = To = o, lys(t),t) = T(P)

can be respectively expressed in terms of V given by (4.30) as

V(X0,0) E0 ) V(X ,t) =
VM (XS

)

S -

34

(4.53*)

(4.30)

(4.48)

(4.57)

with

and
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with
Xo

E X0 (x) = X(x,o) and X E X s(t) = X(s(t),t). Similarly, the
s

conditions (I.4) and (17),

T2(x,o) = fo(x), T2(s(t),t) = T(P)

are respectively expressed in terms of W given by (4.56) as

W(Yo'°) E q)(Yo), W(Ys't) E Wm(Ys)

with Y E
Yo

(x) = Y(x,o) and Y E Y (t) = Y(s(t),t).
o s s

As previously mentioned, C. can be expressed as functions of

Ti and pi = 1,2). On combining (II.6) and (3.1), we obtain

p2 = p2(g(s(t))) and hence C2 is obtained as a function of s(t)

on the phase boundary. Also from solutions to Problem II, we get

V2 = v2(x,t1s) or v2 = v2(tis) at x = s(t). On the other hand, we

combine (III.5) and (2.22) to get pl = P0(1-x(s(t))) on s. There-

fore, we have C1 as a function of s(t) on the phase boundary.

Finally, the quantity L, the specific latent heat, was assumed to

be constant. Thus, the quantities [cll. + p2(C1 - C2)T(P)] and

[p2v2(C1 - C2)T(P)] appearing in (I.8) are functions of t and s(t).

The quantity Kl(Ti/Dx) - K20T2/DO is transformed under

(4.3), (4.6), and (4.33), (4.35) to

ETC-Ix=x [7T-4--y

By virtue of (4.30) and (4.56), this can be expressed as

t(t) 1 r3V/9X 1 W/DV]

B W2 -PT L v

lx=xs Y=Ys

(4.58)



Therefore, the condition (I.8) may be written in the form

[aVfaX]
ki(s(t),t)

As
dt =

k2(s(t),t) +
v

x=xs

where

36

-
1 161/aY-

J
B W

(4.59)

Y=Ys

ki(s(t),t) Ep1L + p2(C1 - C2)T(P) (4.60)

and

k2(s(t),t) E p2v2(C1 - C2)T(P) , (4.61)

or, in a more compact form,

ds aV aW
=

dt
Z(t,x,V,W''for x= s(t), X= Xs(t), Y=Ys(t); t> 0, (4.62)aXaY

where the meaning of the funcitonal Z is clear from equation (4.59).

5. Reduction to a System of Integral Equations

By collecting the results of the previous section together, we

are led to a version of Problem I, where the governing partial

differential equations are linear. This problem is referred to as

Problem IV. Find functions V(X,t), W(Y,t) and s(t) such that a

triple (V,W,$) satisfy:



The Solid Phase Equations

(IV.1)

DX

2 - --a-t- , (X,t)Es4

(Iv 2) aax\I + V = o for X = o, t > o

(IV.3) V = q)00 for t = o, o X 5. Xs(o)

(IV.4) V = V(X) for X= Xs(t), t>o

The Liquid Phase Equations

2W DW 0*
(IV.1)' -aT2- - at ' "'+)""2

(I1/.2)1 4= o for Y=o, t >0

(IV-3)' W = Ip(Y) for t=o, Ys(o)

(Iv.4)1 W = Wm(Y) for Y= Ys, t>o

and

(iv.5) Z(t,x,V,W41,-) for x=s(t), X= Xs(t), Y=Ys(t); t>o

(IV.6) s(o) = o

where Q* and Q* are defined as follows:
1 2

Given i>o as a fixed value of time, and recall the definitions

1

= {(x,t): o < x < s(t), o < t

(5.1)

= {(x,t): s(t)<x<b, o<t<i}
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(IV.7) V is defined and uniformly bounded in 4; V and aV/aX are

continuous in Q* =Q*nS2* everywhere, with the possible exception
1 1 1

of the point (o,o) where

as2* = {X=o, X=Xs for 0 t < t; XX5(o) for t = 0}
1

(IV.8) W is defined and uniformly bounded in Q;; W and aW/0 are

continuous in Q* = Q*U9Q* everywhere, with the possible exception
2 2 2

of the point (o,o) where

as2* = {Y=o, Y=Ys for o t. t; Ys(o)Y?. o for t = 0}1
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(5.3)

(5.4)

(IV.9) s = s(t) is continuously differentiable for o< t < i and

continuous for oftf t, s(o) = a, and o< s(t)< b.

Conditions (IV.1) with (IV.7) and (IV.1)1 with (IU.8) imply that

V is parabolic in 4 and W is parabolic in 4 respectively.

Sometimes it is convenient to designate (IV.1) to (IV.4) and

(IV.1)1 to (IV.4) as an auxiliary problem for a given Lipschitz

continuous function s(t). By a solution to the auxiliary problem,

we mean a pair of functions V = V(X,t) and W = W(Y,t) such that

10. The derivatives appearing in the equations exist and are

continuous in their respective domains of definition,

2°. (IV.7) and (IV.8) are satisified,

which are tranformed under (4.6) and (4.35), respectively, to

1
= {(X,t): o< X< Xs(t), o< t< t}

(5.2)

21 = {(Y): Ys(t)> Y> o, o< t<

In these equations, it is assumed that:
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3°. V and W satisfy (IV.1) to (IV.4) and ov.ly to ov.4y respec-

tively.

Classical results in the theory of parabolic equations [15]

assert that the solution of auxiliary problem exits and is unique

under the assumptions given above.

By a solution (V,W,$) of Problem IV, we mean that

10. s satisfies (IV.9),

2°. The pair V and W is the solution of the auxiliary problem

for this s = s(t) in the sense specified above,

3°. V, W and s satisfy (IV.5).

In fact, Problem IV has the same form as that of Problem II

described in Fasano and Primicerio [11], a generalized two-phase

Stefan problem with the flux prescribed for boundary conditions.

They have proved, however, that Problem I, the same as Problem II

but with the temperature prescribed for boundary conditions, is

well-posed by proving the well-posedness of the differential system

involved. However, we will prove the well-posedness of an equiva-

lent system of integral equations. This approach was, in fact,

used by Rubinstein [31] in solving one-phase Stefan problem.

We shall now derive a set of integral equations equivalent

to the above differential system.

The fundamental solution for the heat equation

will be denoted by F(z,t), and

(5.5)



4
3N\ _

(VN) =(N - V -61,1 DT
(5.9)

over the domain sYc yields, upon using (IV.2) to (IV.4), the integral
1

representation
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r(z,t) = (47t2exp(-z2/4t). (5.6)

The Green's and Neumann's functions on the half-space z>o

(or z<o) are denoted by G(z,t; E,T) and N(z,t; T) respectively.

These are given by

G(z,t; ,T) = r(z-E, t-T) - r(z+, t-T)

(5.7)

N(z,t; C,T) = t-T) + r(z+, t-T)

where z is to be replaced by either X or Y for z> o or (z < o)

Suppose first that a triple (V,W,$) form a solution to Problem

IV in (o,i), and write

V0(t) = v(0,t); vx(x,t) = ay (X,t), o < X < Xs"
3X

3W 3W (Y,t) =
Y

,t), Ys>Y>o; v(t) =
V(Xs "(t) t) (5' 8)Y ; 3X

w(t) = W(Ys(t),t); cd4 = n(t).

Then integrating Green's identity



fXs(o)
AV(X,t) gdN(X,-t*, +

Tt(T)V,(T)N(X,t;
o,T)OT

o

ft

[V(T) X' ()V (T))]N(X,t; X (T),T)dT
S M S

JO

fk:Vm(Xs(T))(X,t; Xs(T),T)dT E
Al(X,tiVo,v,s,n)

(5.10)

where

Vo = AllX=o =4)(tIVo,v,s,n)
. (5.11)

Assuming that Vm and cp have bounded derivatives up to and

including the second and third orders, respectively, and that

Vm(Xs(o)) = qb(Xs(o)), 21(o) + AZ(o)V0(o) = o . (5.12)

Then differentiating both sides of Eq. (5.10) with respect to X,

we obtain, upon using the conjugacy of G and N together with in-

tegration by parts when necessary,

A TX (o)
VX(X,t) = -

t(T)Vo(T)G(Xt; o'T)dT + s (Pi()G(X,t; E,T)dE

+ I0v(T)Nx(X,t; X ( ),T)dT+1 X'(T)VI(X (T))G(X,t; Xs(T),T)dT
0 S M S

E U1(X,t1V0,v,s,n) (5.13)

where, from now on, primes denote differentiation of the function

under investigation with respect to its argument.

Now letting X->-Xs(t) - o in (5.13) and using the theorem of

Holmgren on the discontinuity of the heat potential of a double

layer (see Friedman [12]), according to which
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To obtain a similar representation for W(Y,t) and hence for

Wy(Y,t) and w(t), we start by integrating (5.9), with V replaced

by W, over st; to get the formula

W(Y,t) = - fY s(o) 4)()N(Y,t; o)dE -
Jo

I
Jo

N(T) +Y;(r)wm(Ys(T))]N(Y,t;Ys(T),T)dT

+ IO
WM (YS

(T))N (Y,t;Y (T),T)dT

E A2(Y,tw's,n) (5.16)

Again, differentiating (5.16) with respect to Y, and using the

conjugacy of G and N together with integration by parts result in

Y (o)

Wy(Y,t) = -I s V()G(Y,t;,o)k w(T)Ny(Y,t;Ys(T),T)dT

-I Y1(T)W(Y5(T))G(Y,t;Y5(T),T)dTEU2(Y,tjw,5,n) (5.17)
o

Here it is assumed that
Wm

and tp have bounded derivatives up to and

42

lim
XX(t)-o

1I v(T)Nv(x,t; Xs(T),T)dT = v(t) +
o A

+ I v(T)Nx(Xs(t),t; X (T),T)dT s (5.14)

we find that

0

v(t) = 2Ullvv E F1(tIV0,V,S,n) . (5.15)
A AS



including the second and third orders, respectively, and that

wm(Ys A(0))= (YS (o)), 4,!(0) = 0 .

Let Y-4-Y5(t) + o in (5.17) and employing the theorem

1lim I w(T)Nv(Y,t; Ys(T),T)dT = 2- w(t) +
Y+Ys(t)+0 o

+ w(T)Ny(Ys(t),t; Ys(T),T)dT,

we find that

w(t) =

2U21Y=Ys
E F2(t1w,s,n) .

Making use of the above results, the condition (IV.5) gives

s(t) = a + In(T)dT E S(tirl) s

0

where

n(t) = Z(t,s,Vm(Xs),Wm(Ys),v,w)

1

[k_(s(t),t)+t(t)
1 v(t) 1 w(t)

(5.22)k/ (s(t),t) 2 A Vm(Xs) B Wm(Ys)-1

This means that if the triple (V,W,$) is a solution of Problem IV,

the functions V, Vo,Vx,v,W,Wy,w,s and n are solutions of the system

of integral relationships (5.10), (5.11), (5.13), (5.15), (5.16),

(5.17), (5.20), (5.21) and (5.22).

Conversely, we shall prove that if the functions V,V0,Vx,v,W,

Wy,w,s and n are continuous solutions of the above system of

(5.18)

(5.19)

(5.20)

(5.21)
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ingegral equations over (o,i), then V, W and s constitute a solution

to Problem IV.

It is easily seen that V and W given by (5.10) and (5.16)

satisfy (IV.1) and (IV.1)1 respectively. Letting to in (5.10)

and (5.16), we get V(X,o) = cp(X), o s X Xs(o) and W(Y,o) =

tp(Y), Ys(0) Y o. If we let X÷o in (5.13) and Yo in (5.17),

then it is easily proved that Vx(o,t) = - AT) v0(t) or Vx(o,t) =

At(t)
V(o,t) and Wy(o,t) = o. Next we let X -->-Xs(t) - o and2

Y-4-Ys(t)+ o in (5.13) and (5.17) and apply (5.14) and (5.19),

we find that

lim VX =-v(t) + Ul(Xs(t),t)
X÷Xs(t)-o

1lim WY =

Y.-)1s(t)-1-o

w(t) + u2 (Ys(t),t)

Vx(Xs(t),t) = lim Vv = v(t)
X-X5(t)-o A

Wy(Ys(t),t) = lim WY = w(t) .

Y-*Y5(t)+o

(5.23)

(5.24)

where U1 and U2 are respectively the right hand sides of (5.13) and

(5.17). Comparing (5.23) with (5.15) and (5.24) with (5.20) shows

us that in fact

(5.25)

Differentiating (5.21), combining the result with (5.22) and using

(5.25), we get the relationship

1

Vx(Xs(t),t) Wy(Ys

s

(t),t)
[k2(s(t),t) + "e'(t)

let)=k (si(t),t) 2 A Vm(Xs(t)) B W m(Ys(t))

(5.26)



Comparing (5.26) with (IV.5) or (4.59), we have only to prove that

V(Xs(t),t) = Vm(Xs(t)) and W(Ys(t),t) = Wm(Ys(t)) . (5.27)

With this aim in mind, we integrate the identity (5.9) over q

and use the initial and boundary properties of V just proved. Then,
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The expression in the square brackets in (5.30) has absolute value

f c(t-T)-1/2, where c is a constant depending on t. Consequently,

(5.30) is a homogeneous integral equation of Volterra type of the

second kind with polar kernel. From the general theory of such

equations, we know that the solution is unique. Thus 0 E o and

the first assertion of (5.27) is proved. In exactly the same manner,

we can prove that W(Ys(t),t) = Wm(Ys(t)).

In summary, we have proved

Theorem 1. Problem IV under the conditions (5.12) and (5.18) which

are simply the conditions (1.9) in terms of V and W, is equivalent

to the problem of finding a continuous solution to the system of

integral equations (5.10), (5.11), (5.13), (5.15), (5.16), (5.17),

(5.20), (5.21) and (5.22).

subtracting

in which

Letting X4-X5(t)-o,

e(t) = 21

Jo

(5.10) from this result, we get

e(T)LC(T)- 2]N(x t;
xS

(T),T)dT = 0
'S

0(t) E V(Xs(t),t) - Vm(Xs(t))

and applying (5.14), we obtain

e(T)[* - x's(T)3N(xs(t),t; xs(T),T)dT = 0

(5.28)

(5.29)

(5.30)



Remark. Equations (5.12) and (5.18) are again the compatibility

conditions for the continuity of the boundary and initial conditions.

If these conditions are not valid, but V, W and s form a solution to

Problem IV, then v and w are determined by the equations (5.15) and

(5.20) if to their right sides we add the term

2[Vm(X5(0)) - qi(Xs(o))]G(Xs(t),t; Xs(o),o)

and correspondingly

2[4)(Y5(0)) - WITI(Ys(0))]G(Ys(t),-t; Y5(0),0)

Simultaneously, we must add the terms

[Vm(Xs(o)) - (p(Xs(o))]G(Xs(t),t; X5(0),0)

EIP(Y5(0)) Wm(Ys(0))]G(Ys(t),t; Ys(o),o)

to the right sides of equations (5.13) and (5.17), respectively.

In view of Theorem 1, it is, therefore, sufficient to prove that

the problem of finding a solution to the system (5.10), (5J1), (5.13),

(5.15), (5.16), (5.17), (5.20), (5.21) and (5.22) is well-posed.

6. Local Existence Theorem

We first recall the definition of X(x,t) and Y(x,t) given by

(4.6) and (4.35),

X(x,t) = IxaV/2(x1,t)dx1
,

Y(x,t) = a2 (x ,t)dx' .

According to the mean value theorem for integrals, we have

(6.1)
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fb
X(b,t) a-11/2(x1,t)dx' = ba-1/2

Jo
1 (XO't)

Y(o,t)

then we write

YE Max X(b,t) and 7 E Max_Y(o,t) . (6.3)
o<t<i ostt

We now begin with a list of the assumptions needed for the

existence theorem.

and

for some
xoE[o,b]

f -1/2
.a2 (x1,t)dx1 = La-1/2

2 (XO/t) for some
0s[o,b]

osX,Xss?.o; cwti; os(t). 1)

IV0KNo; 11115.N1; M N2; VxiN3;

InI N4; IWINT;

Then 1Vm1,111111 M2

Imm3;bp1,11P1124T;
1/41711'1W1fM;

I< Mo 1 ; 1*-1 < Mo 2 ; I VIII; < M2 , 1 ;
twill

i < Ivi;, 1at
0 '

1(1)"I'lq51 <M1; <
<N4,1

< N4,2; 11+1<N,2; 141 < N4,3; di < N1,3

I :14-1 < N4,4; 11-31Aly < N4*,4
X

(6.6)

where M M* N N* M N and N* are positive constants.
i,j' 4,j 4,i

(ii) Let V0,0(t), Vo(X,t), Wo(Y,t), Vo,x(X,t), Wo,y(y,t), vo(t),

wo(t), so(t) and no(t) be arbitrary differentiable functions which
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(6.2)

(6.4)

(6.5)
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have bounded partial derivatives with respect to all their arguments.

More precisely, these functions satisfy for (DX5,YYo,
(:) -t<i the

inequalities (6.4) and

3V
31/o 1V(13,0(t)I<L0; lif v(t)<L;

,X1"3t I<3
_3W aW- v Vox

lit al<Llic; Wilj(t)1<q; 1V7t7 :t5114.*3. Al<L
I X I 4'

3Wo Y *
I 3; l<1.4; 11(1)(t)l<L5 5

in addition to the compatibility conditions

s'o(t)= no(t ); Vo,x(Xso(t),t) vo(t); V0(0,t)=V0,0(t); Vo(X,o)= cp(X);

Vo,x(X,o)= (X); V
oo(o) =cp(o); Wo,Y(Ys(t)'t)= wo(t),Wo(Y,t) =(Y);

o

W0,y(Y,0)=q)1(Y); s0(o)=a (6.8)

where Ni, N Ei are positive constants, X X(so(t),t) and

Yso = Y(so(t),t). In particular, the continuous agreement of the

boundary and initial conditions are from (6.8)

41(o) + At(o)V0,0(t) = o; ep'(Xs(o)) = Vo,x(Xs ),0) = v0(0);

VI(0) = 0; 4)1(Y5(o)) = Wo,y(Ys(o),o) = wo(o); (6.9)

s(t) =o(t) .0

In what follows, we will employ the Picard method of successive

approximation to construct a solution to the system of integral equa-

tions obtained in the previous section.

A sequence of approximating solutions to the above system of

integral equations can be defined recurssively by the scheme

(6.7)



V. = ;V=A1;v= Fl;V = U1;14= A2;n,onnnnnn,Xnnn
w = F2;W = U2;n =Z.s = Sn n n,Y n n n' n n'

where the functions on the right sides of (6.10) are

rn = (1)(tIVn-1,o,vn-1,Sn-1,n-1)

1 1

An
= A

(X,tIVn,o
vn_i,sn_i,nn_i)

1 1

Fn = F (tIVn,o,vn-1,sn-1'n

1 1

Un = U
(X,tIVn,0,vn,sn-1'71n-1)

2 2

An
= A

(Y,t1wn-1,sn- ,nn_i)

F2 = F2(tIwn_1,s n )
n 1' .n-1.

2
Un = U2

(Y'tlwn,sn-1,r)n-1)

Zn =
Z(t,sn_i,Vm

(Xs ),W (Ys ),vn,wn)
n-1 m n-1

Sn = S(tInn)

We now turn to the proof of the following lemma which plays a

major role in the convergence proof of approximating solutions:

Lemma 1. There exists a constant to> o such that if V, Vo, Vx, v, W,

Wy, w and n satisfy (6.4) and (6.9) for o. X.5.X, oto, then at

these points the same conditions will be satisfied by the values of

the linear operators Ai, Ui, Fi, i=1,2, 4) and Z.

Proof. It is convenient to introduce the following notation:
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(6.10)

(6.11)



.(x,t,,T10(x,t,E,T)) = j 0(x,t,E,T)r(x+(-1)t-T)dT1,1

I2,i(X,t''Tle(X,t,E,T)) = I 0(X,t,E,T)r (X+(-1)i,t-T)dT , (6.12)
o

I3,i(X,t,E,a0le(X't' = I 0(X,t,E)r(X+(-1) E,t)d .

a

In this notation, the operators Ai' u for i=1,2 appearing on the

rignt sides of (5.10), (5.13), (5.16) and (5.17) become

Ai(x,tlt,v ,cp,V ,v,s,n)0 M

2

= 4(X,t,o,TIAT)V0(T))+I1,i(X,t,Xs(T),TI{v(T)+Vs(T)Vm(Xs(T))})
i=1 I

I2,i(X,t,Xs(T),T1'"Vm(Xs(T)))+I3,i(X,t1E,O,X5(0)1CP(E))] , (6.13)

A2(Y,t11p,Wm,w,s,n)

2

=
Z,[11 i(Y,t,Ys(T),T1-{w(T).-Ws(T)Wm(Ys(T))})

1=1

I2,i(Y,t,Ys(T),T1Wm(Ys(T))) + I3,i(Y,t,E,o,Ys(o)1-4)(d)] , (6.14)

2

= (-1)1+1[I, (X,t,Xs (T) (TN' (Xs (T)))
i=1

I2,i(X,t,o,TI- A(T)V (T)) + I2,i(X,t,Xs(T),T1-v(T))
2 o

I3,i(X,t,E,o,Xs(o)W())] , (6.15)
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Let X(t), Y(t) and E(T) be arbitrary differentiable functions such

that

o X(t),(T). ; 1X1(t)I,W(T)1 N5

or (6.19)

17? Y(t),(T)o; 11"(t)1,1C(T)1 N;

for o < T< t t(*) according as the medium under question is the fro-

zen phase or the unfrozen phase. Suppose also that the function 0

appearing in the definitions (6.12) satisfies the inequality

lel <M for o X; E5.5( or Y1Y, o; oTtto* , (6.20)

but is otherwise arbitrary. It obviously suffices to estimate Ii,j

< a< a - N4 t< a + N4 t*< b
o o '

where a is some constant. Then we automatically have

o<a<s = a + n(T)d-r.b;
SO °
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U2(Y,t10,W ,w,s,n)

2

= E(-1)i+1[Ii,i(Y,t,Ys(T),TI-Ys'(T)Wm(Ys(T))+12,i(Y,t,Ys(T),T1w(T))
i=1

+I3,i(Y,t,c,o,Y (o)1-4)1())] . (6.16)

By virtue of (5.11), (5.15) and (5.20), the expressions for 4),

Fl and F2 in the above notation can be trivally obtained from (6.13),

(6.15) and (6.16).

The values of I .(i=1,2,3; j= 1,2) are estimated by means of

the inequalities (6.4). Let t*> o be so small that

(6.17)

(6.18)



in one phase, say the frozen phase, o X,c < o T t t*o.

Then it is easily seen that

where

X(t)+(-l) ia X(t)+(-1)ifsC - , d -
2V-t7 2V7c7

Moreover,

II .1
M it dt mly/LL

21/7 JO 1/t-T
"ff

113 I exp(-x2)dx M , (6.22)
' c

It X(t)-(T) expr_ (X(t)-(T))2
I210((t),t,(T),TIO) =

1d

4/7 JO (t-) 4(t-T) j T

1 Ito X(t)-E(t) r (X(t)-E(t))2

4,7Tr (t-T)3/2
exPL- 4(t-T)

exp[_ (E(t)-E(T))2
4(t-T)

(X(t)-E(t))(t)-(T))
2(t-T)

,N2
1 Ito E(t)-(T) exp [-

(X(sQ-(T)) DT. (6.24)4t-T)
4iTr (t-T)3/

It follows from (6.19) and (6.20) that

M r ft 1X(t)-(01 (X(t)-E(t))2112,-1 < ex
I 41/7 0 (t-T)3/2 4Ct-T)

((t)-X(t)(*)-(T)) 1V1dTexpf
2(t-T)

Jo (t-T)3/2'

1X(t)-E(t)1< ---[C erfc + 1E ]

2/71:r
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(6.21)

(6.23)

(6.25)



where

1

C = f exp(N57/2) .

Finally, to estimate 12,2 we use the result obtained for 12,1,

replacing by -E. Thus

N

112,21 < M[C + ] . (6.27)

Hence

112,i1 < MEG (6.28)

Employing (6.21), (6.22), (6.28) and taking (6.4) and (6.5) into

consideration, we obtain

I 11 < [2M0 + 2 N2 + 3 M2N5] + 2(M2C + M1)
, (6.29)

16,21 < [2N; + 3WN; ] + 2(qC* + , (6.30)
Tr

1011 <
[N5

(M + 2M2 + N )] +
2C(Mo + N2) + 2M1 '

(6.31)
7 o 2

1021 < [N*(2M* + N*)]+2C*N* + 2M* (6.32)
7 5 2 2 2 1

with
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(6.26)

C* = exp(N*5 Y/2) . (6.26*)

We now require the inequality condition

N2 > 3M1
(6.331)

and thence fix
N2'

In addition, we require



dAlA It d
dt 2

jo

Tc: [t(T)Vo(T)]N(X,t; 0,T)dt

+
It

V(T)D(T)-41(X5(T))]N (X,t; Xs(T),T)dTOs
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N4 > M3 (6.332)

and thence fix
N4'

This is possible, since
M1

is independent of

V, Vo, Vx,v,W,Wy,w and n but M3 depends only upon M2 and is inde-

pendent of V, V0,---, and r, since M3 ? Z. We will also assume

the validity of the inequalities

No; N1 > 3(M1 + M2C); N3 > 3(M1 + MoC) + 2N2C (6.333)

and we then fix the values of
No' N1

and
N3.

This can be done for

fixed
N2

and
N4'

since
M1

and M2 are not dependent on N. 0 =

4). A similar argument applies to N*i =

Having fixed No, Ni, = 1,---,4), it is obviously possible

to choose to >o such that for o t <
to

t* we have simultaneously
o

1V01 < No; IVI < N1; Iv1 < N2; IVx1 < N3

(6.34)

Inl < N4; 'WI < Nj; lwl < N; 1Wyl < N;

which completes the proof of the lemma.

Lemma 2. Let V, V0,W,Vx,Wy, v,w, and 11 satisfy not only (6.4) and

(6.9) but also (6.7). Then the functionals Ai,Ui, Fi, i = 1,2,c1, and

Z satisfy (6.7) for o X, C Y, o, o T t t.s to,

where t is sufficiently small.

Proof: From (5.10) and (5.13), we obtain

vi(T)N(X,t; Xs(T),T)dT



fXs(o)

J

(E)N(X,t; o)ri = Al*
o

dU1
fX;(o)EVIIII(X (o))-v(0)] - e(X5(o))1G(X(t),t; Xs(o),o)dt
rX,(0)
I W"()G(X(t),t; E,o) + X1(t)e(E)N(X(t),t;

A t A

[t(T)V0(TflyX(t),t; o,T)dT2 J0 dT

A t d
+ -2;113X (t) iFF Et(T)vo(-0111(x(t),t; 0,T)dT

+ ft {cf., Dc(T)(vi'll(xs(T))-v(TMG(x(t),t; xs(T),T)
0

+ X1(t)v1(T)N(X(t),t; Xs(T),T)}dT

t
I {x"-(T)(v'(xs(T))-v(T))-NP(T)}G (X(t),t; Xs(T),T)dTs m

Also,
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(6.35)

+ Ix1(t)DC(T)(v(T)-v111(xs(T)))D(X(0,t; E,T)dT EU1* .

o
(6.36)

Here

o < X(t) <X(t) for X(t) Xs(t), or X(t) E Xs(T) . (6.37)

Using (5.11) and (5.15), we get

dcl) * 1*
dt =

dF1 - F1* = 2U

X =o

1*

'

X=Xs(t)

(6.38)

(6.39)dt

dul X5 (o)
e()N(X,t;

2
,o

't
--LE(T)Vo(T)]N(X,t; o,T)dT
dTdX



t
+ I vi(T)N(X,t; Xs(T),T)dT +

0

I XI(T)D(T)- V' (X (1-))iN (X,t; X(T),T)dT E U1**
S E0

Analogously, we have from (5.16) and (5.17) the results

I

t
dA2

Jo w1(T)N(Y,t; Ys(T),T)dTdt

it
Jo s

yi(T)N(T)-wicy (TmN (y t. Y
s '(T) T)dT

m S

Y5(o)
2*

I 4)"()N(Y,t; ,o)dE E A ,

0

{Y's(o)[14(Ys(o))-w(o)]-e(Ys(o))}G(Y,t; Ys(o),o)

i s(0){ 14)E)G(Y(t),t; ,o)+1"(t)e(C)N(Y(t),t;

ti
J4-6-PCs(T)(w(Y5(T))-w(T))1G(Y(t),t; Ys(T),T) +
o

+ Y1(t)w1(T)N(Y(t),t; Y5(T),T)1dT

f {Y's2(T)(WIIII(Ys(T))-w(T))-141(T)}yY(t),t; Ys(T),T)dT

Pt

J-

Y, (t)[Ys(T)(w(T)-Wilii(Ys(T)MyY(t),t; U2. (6.42)
o

Ys(t) > Y(t) >0 for Y(t) t Ys(t), or Y(t) Ys(T) . (6.43)

Using (5.20), we deduce
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(6.40)

(6.41)

dU2
dt

And



dF2 -F2*
= 2U2*

dt

Finally

Y=Ys(t)

Jo

Y (o)

dY s e(E)N(Y,t; ,o)cl -fow1(T)N(Y,t; Ys(T),T)dT

- YI(T)[w(T)-Wily,(Ys(T))]N (Y,t; Ys(T),T)dT E U2 (6.45)

We now introduce the notation

,1 _Adul, = 2- aje(T)vo(T)] ; el . = v'(T)
1,1,1

= Vs(T)D(T)-VIITI(X(T))] (6.46)

1

03,i = e(d

= XI(o)[V(X s(o))-v(o)l-e(Xs(o))
s m

2 =1,...,0+1 A x,,t, d IT11.02 = d ror_N- ,TN1
dT1- "' o 2 dTL"" "

2
= -d

1,i,1 -DC(T)(VI(Xs
(T))-v(T))] + (-1)i+1X'(t)vt(T)

dT s m

= [Vs(T)+(-1)1X1(t)].[X's(T)(V:11(X5(T))-v(T))]-vI(T)

:= ,r() (-1)1+1,(t)e(E)

( 3

01,i3O = -2--aT[t(T)vo(T)] ; 01,i,, vu(T)

02,i,1 = Vs(T)[v(T)-VIIII(Xs(T))]; e e(E)3

A d 3

3

A similar notation in terms of Y is introduced analogously. Using

(6.44)

(6.47)
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(6.48)

(6.12), (6.46)-(6.48) as well as (5.7), we can reduce (6.35), (6.36)



and (6.40) to the form

X,t,...) =

+ I2,i(X,t,X5(T),T1012,i,1)+13,i(X,t,,o,Xs(o)100] , (6.49)

dU1 1*
E U =

dt
2

(-1)i4-1[e
r(X(t)+(-1)1Xs(o),t)+Ii(X(t),t,o,TI4,i3O)=1

I1,1.(X(t),t,Xs(T),T le1,1,1)+12,i(X(t),t,o,T14,i3O)+

I2,i(X(t),t,Xs(T),T 1022,i )+I3,i (X (t),t,E,o,Xs(0)1032,i)]

(6.50)

dU1 1**
U (X,t,...) =

dX
2

= Tr[I .(X,t,o,T103 . )+I .(X,t,X (T),Tle
=

3
. )1,1 1,1,o 1,1 s 1,1,1

1

I2,i(X,t,Xs(T),T1032,i,1)+I3,i(X,t,E,o,Xs(o)1033,0] . (6.51)

Similarly, (6.41), (6.42) and (6.45) are reduced to the form

dA2 2*,,, \

dt E

A2
"'") =

= LED
1
.(Y,t,Y (T),TI-e1

1i
)+I (Y,t,Ys(T),T1-o1 )

i=1 1'
s , 2,1 i,1
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+ I3,i(Y,t,c,o,Ys(o)l-e0]

dU2 2*U=
dt

(6.52)



2

= E(-1)1[e0r(Y(t)+(-1)4Y5(o),t)+I1,i(Y(t),t,Y5(T),T18i)i=i

+ I2,i(Y(t),t,Y5(T),T1622,i,1)+13,i(Y(t),t,,o,Ys(0)10,0]

(6.53)

1Jy2
U2**(Y,t,...) =

le, L"

Therefore, we have

L t dT
II1,i(x,t,E,Tle)1 < -

2iTT id 2

,d
II3,i(X,t,,o,Xs(o)18)1 exp(-2)dx = (6.57)iTrfJcif

with c and d given by (6.23).

We now estimate
I2,i Using (6.24), we find that

1
IX(t)-E(t)1 (X(t)-E(t))2

C112,1 (X(t),t,E(T),T18)1< L'- ft ex [
4(t-T)Jo 1/-7 (t-T)3/2 P

4$7 fo 1

(t)-(3/2T)
I exp [ Wq-c(T))2

4(t-T)
(t-T)

(6.55)

(6.56)
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+

+ I3,i(Y,t,,o,Ys(0)1-(1,0] . (6.54)

We now estimate the integrals I aSsuming that the argument

function 8 satisfies the inequality



Since i(t)-(T)1 <N5(t-T), then

LNa t
dT LN5iTr-II"! <

4Jo

Also, on setting

2 [X(t)-(t)]2 F 1
1

4
Lt_T t]; IX(t)-(t)1 = G

in I', we find that

G2I'll < 2LC exp(-G2/4t) exp[-p 2jd,11 tLC u
P' 4tiif if

Hence,

LC
G2 LN547

1'2,11 < exp (- )

4t 4

In exactly the same way, we obtain

c*2 1\1 1/1-7

II2,2(X(t),t,E,TIO)1 < exp( ]if 4t 4 '

Here

G* = 1X(t)+(t)! .

From (6.58) and (6.59), we may write

N51/II2,i(X(t),tT16)1 < L[S__ Tr-]if 4

Using (6.56), (6.57), (6.60), the definitions (6.46)-(6.48) and

taking the inequalities (6.5), (6.6) and (6.9) into account, we

find that
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(6.58)

(6.59)

(6.60)



Al*i < [2M +N2(N +m )1+i [L 31-7-+ 2N (N +M )+2M ],c o,1 5 2 2 if 2 5 2 2 1

2* I 14T2- [ N*2 I

r'"olc+m* '] +
. 1 r

LL-v7 + 2N- (N-+M^)+2M-]
5 2 2 if 2 5 2 2 1

1* 2 3
IU I < iff [2-N5M0,1+N5M2

m ,m
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(6.61)

(6.62)

AT
+

(5L2 N5 +2L5 (N2 +M.,))+ (Ili+ 5( ))rt 2
'

2
2L2C

2C(M0,1+2N5(N2+m2))+2m1(1+N5)]+ t , (6.63)

lu2*1 < v Dil ,015c24-11;3(N*2+mp]

(M*+N*(N*+M *))if[ 2 2 5 5 2 2 iTr- 1 5 2 2

2L*9C*

4CNI5c2(N2*.+M;)+2M1((l+N;)]+ t" (6.64)

1** irry 2
j u j <

[2M0,1+N5(N2+M2)]+ [L2/7r+2N5(N2+M2)+21\41] , (6.65)

U2**1 < ET [N*2(e+M*)] + -1- [L*Iff-r + 2N*(N*+M*)+211*] . (6.66)
2 522 if- 2 522 1

We see that jUl**1 and jU2**I are estimated by the same bounds on

the right sides of (6.61) and (6.62) respectively.

A similar procedure to that in the proof of Lemma 1 can be

applied here to choose the numbers Lo, Li, q> 0(.1=1,2,3,4) and

L5> o so large, and < to sufficiently small that for o t

the inequalities

d(1), Lo 1 aLl Ll dFl L2 ;i laUl L3 ; I L4
< < I-1 <ti if dt if A if 3X

(6.67)



L5 ,2 dF2 B,2 L; 2dZI< < ___; < ___; < _; 11].2__1 < L*
if at vf dt at if aY 4

are simultaneously fulfilled. Hence our assertion is proved.

From Lemmas 1 and 2, we deduce that there exists a small value

o such that for o X Y, -NT > Y > o, 0 t the sequences

{Vn(X,t)}, {Vn,o(t)}, {Wn(Y,t)}, {Vn,x(X,t)}, {Wn,y(Y,t)}, {vn(t)},

{wn(t)},n(0} are uniformly bounded and equicontinuous. Hence,

by the Arzela-Ascoli theorem and the uniform continuity of the oper-

ators A1 Z there exist subsequences of {Vn(X,t)},..., inn(t)}

which converge. In other words, a solution to the system of inte-

gral equations exists. Furthermore, by virtue of the uniform

boundedness of the sequences

311 dV aW aV v vn,. fif !If fvf n,. 1.
at dt at at at

dvdw d
riff ni. fA7 liT nn. Vn,X1. Wn,Y1

dt" dt'; dt " aX aY '
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(6.68)

we easily infer that this solution satisfies the Lipschitz condition

of the form

le(t)-e(T)1 < A*(it-+ iT)-1 !t-T1 (6.69)

with respect to t, where the constant A* is defined uniformly for

all X and Y. This completes the proof of the following theorem of

"local" existence.

Theorem 2. There exists a certain small value of time 7E> o depending

on bounds of A, Z, q, p, Vm and Wm, on bounds of all partial de-

rivatives of A,..., Wm arising in the conditions of the problem, and



Ec°
(v+1 -V),..., (rim+1 -rim) .

m=0 =o

This is guaranteed for o t to < 11: if
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on a = s(o) such that for o< t< -t7, there exists a solution to the

problem for the system of integral equations and hence to Problem

IV. This solution can be constructed by the Picard method of suc-

cessive approximation if we begin the iteration process with ar-

bitrary functions Vo, V0,0, Wo, V0,x, W0 w0, so, no which

have bounded partial derivatives with respect to each of their

arguments; moreover, the solution satisfies the conditions (6.9)

and (6.69).

We take note here that in Section 7 we will sharpen these

estimates somewhat by restricting ourselves to even smaller time

intervals if necessary and so obtain local uniqueness.

In addition to the uniform boundedness and equicontinuity of the

sequences {nn} that have been established above, a stronger

assertion can be yet proved. In fact, we will prove

Lemma 3. The sequences Unl, {Vn,0}, {Wn}, fVn,x}, {Wn,y}, {vn},

{wn}
and {IIn} are uniformly convergent.

This result will then imply convergence of the entire iteration

sequence to a solution of the system of integral equations of Problem

IV.

Proof. It suffices to prove uniform convergence of the series

(6.70)

1Vm+i-Vml<M(Lti)111/2,...,m+lm'<M(Lt1)n1/2; m=o,1,2,..., (6.71)

where M and L are positive constants independent of m. The proof
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of (6.71) will be by mathematical induction.

By virtue of the uniform boundedness of {Vnl,..., {nn}, (6.71)

holds for m=o. Hence it suffices to show that if (6.71) is valid

for a general case m=n, then it is also valid for m=n+1. To this

end we examine the family of functions, considering only the case

of solid phase variables,

{0(X,t,,T)}, {X(t)}, {(t)}, {Xs(t)}

having the following properties:

X(t), E(t) and Xs(t) are well defined and twice continuously

differentiable functions for o t --E; moreover,

o X(t), Xs(t), E(t) -,c(- for o t

(6:72)

1X1(t)1, Pc(t)1, WW1 N; X"(t)i, 1,/EX(t)I, cil(01 L

e(X,t,,T) is defined for o T t T, and continuous

together with its partial derivatives with respect to all its

arguments for o T t TE; moreover,

lel < IVf oxl, oti, 1/T 0,1, jve < m* , (6.73)

where M and M* are some constants, and the inequalities are uniform

for the entire family under investigation.

We will examine variations of the integrals within the

class of functions being considered. Let 0, X(t), (T), Xs(T) and

0*, X*(t), *(T), X:(t) be two groups of admissible functions.

We will write



and

We find that

t X*(t)+(-1)Y(T)
AI, = I OdT

4 r (,t-T)dk
0 TX(t)+(-1)1 (T)

or, equivalently,

t 6[X(t)+(-1)iE(t)]
AI .= f od, f r(X(t)+(-1)1 (T)+c,t-T)ck1,1 J0 o

t (-1)1+16[(t)-E(Tai

TedTo L
r (X*(t)+(-1)(T)+(-1)i(s(t)l-c,t-TW

We now set

i,j(X*(t),t,C*(T),T,...10*(X*(t),t,*(T),T))

- I.(x(t),t,E(T),T,... e(x(t),t,E(T),T))

= 61i,3(X(t),t,(T),T,...le(X(t),t,E(T),T))

maxi6I1.,j1 = 6*Ii,j; o T t -.E., 0 X, ;

1=1,2,3; j=1,2. (6.75)

We will use anologous notation for all functions in the class of

functions under investigation.

For any i and j, we have

61i,j =i,j(x*(t),t,C(T),T,...I60)
+ AI. .

1,3

where

I. = I. .(X*(t),t,C*(T),T,...10(X(t),t,...))1,3 1,3

-I(X(t),t,(T),T,...10(X(t),t,...))
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(6.74)

(6.76)

(6.77)

(6.78)



By virtue of (6.72), we have

Y1 1

ir <
c (tT1

; 16[E(t)-(T)]1 < (5*'(t-T) .

Consequently

Mil
< ts*Ei .

247

ym = max xm exp(-x2) .

ox<-
(6.79)

(6.80)

(6.81)

Next, changing the order of integraion for X(t) t (t) in the term

we get

4 fqx(t)+(-1)i(t)] it

Aii,i = (-1)1 dc orr(X(t)+(-1)i(t)+c,t-T)dT
0 Jo

or, in the notation of (6.12),

4 f15[X(t)+(-1)i(t)]
= (1) Io,i(X(t)+,t,E(t),T10(X(t),ts(T),T))0C . (6.82)

0

Using the estimates (6.28) and observing that the constants in these

estimates do not depend on sX and we find that

< w[16x(t)1+*(t)1] , (6.83)

where M' depends only on M, C, N and 'E. Combining (6.81) and (6.83),

we obtain

IAI1,i1 <
M1,2(6*X+6*)

(6.84)

We now estimate AI2,1 .. On writing
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we see that

v(t,T)
(t-T)

= - I1,i(X*(t),t,e`(T),T10(v:T)))

AI"' = - AI .(X(t),t,(T),T10 -v(t,T)) .

2,i 1,1 BT

Using (6.21), (6.84), (6.85), (6.72) and (6.73), we find that

1AI" .1 < if (5*ci
2

iTT

lAr,i1 < M't(5*1 + NVWX+S*d 9
1 2

where Ml and M are suitably chosen constants; independent of
2

6*', 6*X and s*c.

1 d v(t,T) +
-{dT ert

2A-T
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+ 2r(v(t,T),t-T) . (6.86)

Accordingly

t

2,i

A t (+
AI = f 2±-Serfc dT - e(S("\-"Ti)r(v*(t9T)9t-T)dT

2. dT DT
0 2c/T-77 0

a(t9) / /

0 orkVkt,T),t-T)dT (6.87)
DT0

= . + AI" . + Aim . .

2,1 2,1

We have

(6.88)

(6.89)

(6.90)

v*(t,T) x*(t) + (-1)Y( T) ;

v(t,T) = X(t) + (-1)1E(T)
(6.85)



But

we obtain

Moreover, for \(t,0) t 0,

v
AI' = 8(X(t),t,(0),0)(5 erfc

(t,o)
2,i 2

2,/f

+- ft
-- e(X(t),t,(T),T)s erfc dT .

2 j d
0 T 2A-T

1

-f 6 erfc v(t,T) _ 1-6v(t;T)

2/f=7 Jo rkv-At,T),t-T)dc
.

then

erfc
v(t,T)1 1_ _16y(t,T)1

1-16

" 21t -T 21/7 V:E=T

Employing (6.91), (6.92), (6.93), (6.85) and (6.73), we find that

< [s*x+isc(o)i] + (s*X+6*d . (6.94)

Combining (6.89), (6.90) and (6.94), we get

IAI2,i1 < M2,1if 6*C' + M2,2t-1/2[6*X+16(o)1] , (6.95)

where M2,i(i=1,2) are independent constants of 6*C, 6X and 61V.

We finally estimate A13,1. We have

a(t)
AI3,i = I e(X(t),t,c)ciE f (-1)1r (X(t)++(-1)iE,t)d . (6.96)

a

By changing the order of integration and taking absolute values,
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(6.91)

(6.92)

(6.93)



m(s*x
lAI3,.

1 iiTf
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(6.97)

Using the estimates (6.84), (6.95) and (6.97) and noting that

the first term of (6.76) is estimated by means of (6.21), (6.22) and

(6.28), we obtain, upon replacing M by 6*(:), the inequalities

6*I1,i
<

k11-1-
es

1,i
+ M1t6*V + M1,2(6*x+6*)

6*I <
k2 [1-1-,Ft] 6*02,i +M2,1rt cs*c' + M2'2[6*X+S*(o)] ; (6.98)

6*I3,i
<

a*e3,i
+

m3,i

where ki, m and M. are constants independent of 6X,..., 603,i.

Here we assign the same indices to 8 as we assigned to the operators

Assuming now that

X(t) E Xs(t), or X(t) E X = constant E(o,Xs) ;

E(t) E Xs(t), or (t) E 0

(9(5(0) = 0

-1/2
then for o t < -f, In(t)1 < N and la/ < -b- , we obtain

eX, (S/r, 6*)( < te`r17

S b

(6.99)

(6.100)

In what follows the symbols K and K denote arbitrary constants

entering into the estimates, which are independent of the variation.

Consequently, (6.98) can be written in the form



6*(1, < K/E (d*Vo+S*v+6*n)

d*Al < +*v+6*7-1)
0

*A2 < KA- (6%4-61-1'k)

6*U1 < (61cn) + R:(6*v +6*v) ;
0

64112 < (6*T1) + R7(6%)

6*F1 < Kiif (6*v +6*v+en)
0

6*F2 < af (6*w+6*11)

6*z < KA- (6*1-1) + 17Wv+6%) .

Let o T t, 0 )7 or Y? E 0 and write

eV =nV = max1Vn,o(T)-Vn-1,o( '
T.)
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S*Ii,j < KA- (6*01,i+ ern) ;

< K{(1+,1f)(5*02,i + lf en} (6.101)

,1
(S*83,i + Kif

We now estimate variations of the functionals Ai, Ui, Fi,
i=1,2, (1, and Z which are induced by the variations of V, W, Vx, Wy,

v, w, Vo and n. On observing that the expressions I3,j contain the

arguments qb or (1)1 (4) or for the unfrozen phase case) which are

not being varied, and writing Z(t, s, Vm(Xs), Wm(Ys), v, w) =

Z(t, x, v, w) in the calculation of the variation of Z, then by

means of (6.13)-(6.16), (6.6) and (6.101), we find after a lengthy

but straightforward computation that

(6.102)



ev = 6ny = maxlvn(T)-vn_1(E,T)1

ew = snW = maxiVin(,T)-
Wn-l(T)1 ;

6*v =nv = maxlvn(T)-v1 (T)1
n-

6*w =nw = maxlw (T)-wn-1 (T)1

S*Vx = SriVx = maxlVn,x(E,T)-Vn_l,x(E,T)1

S*Wy = SnWy = max1Wn,y(c,T)-Wn_i,y(E,T)1 ;

en = 6n r1
maxl

Then the definitions (6.10) and estimates (6.102) imply

dn+1V
< (

snVo+6nv+Sn3-1)

6n+1V < Kif (
6n+1Vo+6nv+6n1-1)

n+1
< (

snw+Sn
;

6n+1v < KVf (on+1Vo+6nv+onn)
;

n+1w < KVTnw+snT1)
;

1511+1Vx < Kif (Se) + K(611+1V0+6ni1v)

fln(T)-nn-1(T)1

6n+1Y < KVT (
snn) + i7.(6n+1w)

;

n+1
< Kif (

6n +R-(6n+1v+6n+1w)
.

Hence, there obviously exists some t*(t* -T) sufficiently small

and L sufficiently large, so that if
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(6.103)

(6.104)

On = max{6nV0; 6nv;nw;n11} (6.105)



Then for o f t f t*, we have

n+1
< n (6.106)

which is equivalent to (6.71). This completes the proof of our

assertion.

Now letting

V = lim Vn; Vo = lim Vn,o; W = lim Wn; VX = lim Vn,X
n-+.0

W = lim W v = lim v
'n;

w = lim w n= lim
nn;

s = lim
sn

.

n
n÷e.

Again by the uniform boundedness of the sequences (6.68), it follows

that V,..., n satisfy the Lipschitz condition of the form (6.69) for

o t t*. Thus, it is possible to modify the assertion of Theorem

1 to read

Theorem 1'. The solution constructed for the system of integaral

equations is simultaneously the solution to the original Problem IV

satisfying in addition the Lipschitz condition of the form (6.69)

with respect to each of their arguments.

7. Uniqueness Theorem. Stability of the Solution

(i) We now start with the proof of the uniqueness theorem. Let

(V,..., n) and (V*,..., 7-1*) be two sets of solutions to the system

of integral equations belonging to the class of functions in which

solutions have been shown to exist. Furthermore, let (A1 Z)

and (A1*,...,Z*) be the values of the functionals A1 Z cor-

responding to them. We then set
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(6.107)
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s(t) = min (s(t), s*(t)) (7.1)

and claim that the following inequalities are actually true:

IA1(X,t,...) - A1*(X,t,...)1 < N(G)L(t)S

IA2(Y,t,...) - A2*(Y,t,...)I < N(a)L(t)5

IU1(X,t,...) - U1*(X,t,...)I < N(a)L(t)(5

IU2(Y,t,...) - U2*(Y,t,...)I < N(a)L(t),5

14)1(t,...) - < M L(t)(5
(7.2)

F' (t,...) - F1*(t,...)I < M L(t)S

IF2(t,...) - F2*(t,...)I < M L(t)6 ;

IZ(t,...) - Z*(t,...)I < M L(t)5

where N and L are defined for o t rE, such that

Lim N(o) = ; Lim L(t) = 0 , (7.3)
0-->o to

M is a constant independent of s, and

= max{IV-V*1 , 1W-1,1*1 , 1Vx-Vx*-1 , 1Wy-W;1 , IV0-V0*1

lv-v*1 , lw-w*1 , ITI-n*l}
(7.4)

for

0 < 5. X X__(t) - a Y_(t) - G Y a; 0 t

and a is a sufficiently small number.

Next fix a< o. Then for o < t.s t(a) and aXX_- a,
we assert that



V = V*; W = W*; Vx= ex; Wy = Wy*; Vo= V*0; v = v*; w = w*;

For, since

SA1 = 6V; 6A2 = 6W; 01 = 6VX' du2 = SW
'

6F1 = csv; (sF2 = dw; 60 = 6Vo; dZ = dn ,

then Eq. (7.2) can be written in the form

dV; 6W;
dVX'

SW dv* 6w; dn<ML(t)(SY"
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n* . (7.5)

(7.6)

(7.7)

where Fi>o is a suitably chosen constant. Comparing (7.4) and (7.7),

we see that for 1-(a) sufficiently small and 6 >o we have

d L(t)d< 6, which is impossible. This proves our assertion.

Now considering 7E(G) as a new initial moment in time, we prove the

validity of (7.5) in the interval (o, 21-(a)). If we continue with

this reasoning we see that (7.5) is valid on the interval (o,7) of

definition of the solutions (V,..., n) and (V*,..., n ) for

a X .5. X_-a; Y- a Y ? cy. Since a > 0 is small but artibrary

and V, Vx are continuous for 0 X 5. Xs, and W, WY are continuous

for
Ys

Y > o, we see that the uniqueness conditions are established

in every interval (o,T) in which the solution is defined.

It now remains to establish the validity of the estimate (7.2)

in the class of functions satisfying a Lipschitz condition of the

form (6.69) with respect to t. To this end, we first note that

differentiability of the functions V, Vo,W, Vx, Wy, v, w and n

with respect to t is needed to estimate the integral I2,i. There-

fore, in this case the estimates (6.84) and (6.97) remain valid.

We first note that



cy

IAI2,2(X5(t),t,Xs(T),T18)I < MXs .

We now estimate
AI2,1(Xs(t),t,Xs(T),T10).

We write

°12 1(xs(t),t,xs(T),Tle(T)) = e(t)LI2,1(Xs(t),t,Xs(T),T11),

= N(a)cs*Xs . (7.9)

+ AI2,1(X5(t),t,X (T),Tle(T)-9(0)

= + AI" .
2,1 2,1
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(7.10)

(7.11)

Using (6.95) with (T) E Xs(T) and X(t) E Xs(t), we estimate AI as

IAI,11 M1
if. cs-knic,V/2.

I M2,2t-1/2[t6* 2nla11/1]

E m 6*7-1 9 (7.12)

since
lail/21 y/b.

As for AI"
1'

we have

*,

Ain ft e(T)-0(t) v kt,T)exp(- v*4%ItT,T))) \)(t,T)exp(_ v4((tt:Td)

2,1 o 4/(t-T) t - T
dT

(7.13)

AI2,i(X't'o'T10) = o for X = const. (7.8)

Furthermore, it is easily seen that for o X Xs(t) - a Xs(t)

and the use of the fact that a exp(-a) < const.,

const
<

s
6*X

IAI2,i(X,t,Xs(T),T101

By the same reasoning, we obtain for Xs(T)
Go

> o and

0 t ,



where

Let

Then

AI" = I' + I"
2,1

= ft o(T)-e(t) v*( (tt,T)-v,T)
t-T

exp -
4

o 41/71T-CE=TY

rs(t) -1/2
v(t,T) = Xs(t) - Xs(T) = jsmal ("t)GA

s*(t) -1/2
v*(t,T) = X5(t) - X(T) = al (x,t)dx .

s*(T)

ft e(t)-(t) N)(t,T)dTr(t'')

Jr(t-T)
c2

o 44 t-T v(t,T) 2(t-T) exP(- 4(t-T))ci

With the use of (7.14) and (7.15), the absolute values of I' and

I" are estimated as

A*5-(AiTy1 3/2
IAI'l < s* *

ri , II"1 < t .

41/7T- 4/7T

Therefore

IAI"2,11 < MtS*T-1 (7.17)

where M is a constant, independent of 6*1-1

From (7.10) and (7.11) together with (7.12) and (7.17), we deduce

that

le(T) - o(t)1 A*V-E=T ; Inkin*1 < N . (7.15)
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(7.14)

(7.16)

IAI2,i(X(t),t,Xs(T),T10)1 < MV'f (5*11 (7.18)



and

Id*12,i1 < K{(1+)/706*02,i + Vt(S*T1 } , (7.19)

which agrees with (6.1012). Thus we have the same estimate (6.101)

and hence the validity of (7.2) follows immediately from the dis-

cussion leading to (6.106).

Finally, since the uniform boundedness of the sequences
31/11 drin

} 1/T. --E 1 implies that the totality of the sequences

{Vn1,...
, {.11nI uniformly satisfies the conditions (6.69), the

uniqueness theorem is valid in every class of functions in which

the existence of the solution is established.

The above discussion leads to the following result:

Theorem 3. There exists a certain value of time -f> o depending

on the data such that for o< t<T, Problem IV is solved uniquely

by the triple (V, W, s) as given by (6.107).

(ii) We now turn to investigate the stability of the solution under

small variations of all known quantities appearing in Problem IV.

Let ai' Ai Vi,m' Wi,m'i, and Z. for i=1,2 be two different

sets of data, having the same differentiability properties. For

definitness, we refer to the former as the unperturbed system and

to the latter as the perturbed one. In addition, the perturbed data

are assumed to satisfy the conditions arising from (6.5), (6.6)

and (6.9) on the replacement of the unperturbed data by the perturbed

ones. Furthermore, let the corresponding solutions Up..., s/ and

V2,..., s2 of the system of integral equations be defined simultane-

ously for ostsf, where for osts TE and o s X 5 7, Y ? Y ? o,
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IVil , , Iwil , lwi, , ivi

(7.20)
o s.(t) b.; i = 1,2 .

We can now prove the following continuous dependence theorem.

Theorem 4. For every 6 >0 and for each small interval o t t*

(with t* independent of 6), there exist a 6(E,t*)> o such that

the inequalities

MI; AV ; AW AV; AW
Aw'

An; As < 6
0 X Y"

are fulfilled, provided the absolute values of the differences of

al, Al, Vl,m, 141,m, z1 and respectively a2, A2, V2,m, W2,m,

(1)2, 4)2, Z2, and all their partial derivatives of the first order,

taken at the same values of the argument satisfying the inequalities

(7.20), do not exceed 6. Here

AV maxIV.,(X,t)-V2(X,q; AW = max IW.,(Y,t)-W2(Y,t)1 ;

0.s%X5 I YsY?.oc:15.t.t*ott
MIX = max IV,

'A
v(X,t)-V2,x(X,t)l; AWv= max 11411 v(y,t)-1,412,y(Y,01

Ys.?11?..ol

ott ost5.-t*

Av = max Ivi(t)-v2(t)1; Aw = max Iw1(t)-w2(t)1 ; (7.22)

o. t* ' c:15.tt*

An max In1(t)-n2(t)i; As = max Is1(t)-s2(t)i

0.t*

AVo = max IV (t)-V (t)I

o5t<t*
1o 2,o

and
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(7.21)

s s(t)= min(s1(t),s2(t)) . (7.23)



Proof. Two cases must be considered.

Case 1. Assume that

a1
=

a2
. (7.24)

To estimate AV,..., As, we will use the estimates (6.98) and (6.100)

of the integrals I. We may remark here that the estimate (6.98)

remains valid for a nondifferentiable solution satisfying (6.75).

Let 01(X, t, yl,..., yn) and e2(X, t, yi,..., yn) be defined

and differentiable for o X o s t s t* and likia(k=1,...,n).

Set

(D1 3621 13°1 Ks21._ 3°211
Eo = max {181-z 0- I

aX aX at at ayk 1"
OsX5.X

o<t5.-t-

k=1,...,n <N . (7.25)

In addition, let

304

leii; i-jd; K

k=1,...,n ; 1=1,2,

where K is a constant independent of E0 . We have

101(X,t,V1,V1,0,W1,V1,xW, 1,y,v1,w1,nrsl) -

-0 N
2(X "tV 2'V 2,oW' 2V' 2,X'" 2,Yv' 2'-w2'n2's2)1

Ea+ K(AV+0o+0X+AltlY+Pv+Pw+Ani-As)
.

We now examine the variations of the functionals Ai, Ui,

= 1,20, and Z induced by variations of the data of Problem IV

and consequent variations of V, Vo, W, V, W. v, w, n, and s.
X Y

(7.26)
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(7.27)



According to (6.13)-(6.16) and the use of (6.101), (7.27) and the

above notation, we obtain, as in the derivation of (6.102),

61% < Klf (AVo+AV+An) + K*E

6*A1 < KVf (AVo+Av+An) + K*E

ep2 < Klf (Aw+An) K*E

6*U1 < Kif (An) + R7(AVo+AV) + K*E

6*U2 < KVf (An) + -R-.(AW) + K*E ;
(7.28)

s*Fl < KVf (AVo+AV+ATI) + K*E ;

6*F2 < (Aw+An) + K*E

6*Z < Kif (An) + T(AV+AW) + K*E .

Here K, i and K* are constants which are independent of AV, AU0, AW,

AYx, AWy, AV, AW, Afl and E, and

E = max {EA, Ez, Evm, Ewm, Ecb, E . (7.29)

Since V1,..., s1 and, respectively, V2,..., s2 are the solutions to

the problems corresponding to comparable values of the data, it is

possible to replace (51%,..., (5*Z by AV0,..., An in (7.28). Conse-

quently, we find that

AV; AV ; AW' AV AW V* WA' An' AS < HR E 6
o ' X' Y' " ' (7.30)
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where H is a suitably chosen constant, growing with t but independent

of AV,..., AS. This proves the assertion of Theorem 4 for this case.

Case 2. Suppose that (7.24) is not true. Let X10 and X20 (and

correspondingly Y10 and Y20) be the values of X (and Y) corresponding



to al and a2 as defined in (6.1). We set

u* x10
X20

u u* Y10 u. * X10 * Y10
A A; Y I, = Tr- or =

A20 20 A20 20 '

t* a"21 *_
T,

a
.

S
* * a1

a,
L, - (t ) = -a-- s9(t); n*(t*) =

n2
(t)

a2 a2 2 a1

V*(X*,e) = V2(X,t) ; W*(Y*,e) = W2(Y,t) ; (7.31)

X20V7(*(X*,t*) = ---xY20V2 X(X't); 14*Y*(Y*'t*) - ii-- w2,Y(Y't) ;10 ' 10

YX2020V(e)
=

V2 0(t); v*(t*) = jr--v2(t).' w*(t*) = Y---w'it)
10

Moreover, set

eni(X*) = V2,m(X); = W2,m(Y); A*(t*,V!) - 120 A2(t,V2,0)
u X10

X20Y20
cb*(X*) = T(---4)200; tP*(Y*) = qi2(Y) ;

10 10

a2
Z*(t*,V*,e,v*,w*,s*) = Z2(t,V201,142,m,v2,w2,s2)

m

Then we get the equations

V*(X*,e) = Al(X*,t*,Vt),v*,1-1*,s*)

1/1(t*) = cP(t*,V'c'),v*,/-1*,s*)

W*(Y*,t*) = A2(Y*,e,w*,n*,s*)

v**(x* t*) = u1(x*,t*,v*,V**,S*)
X 0
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(7.32)



w,*(*(Y*,t*).= u2(Y*,t*,w*,11*,s*) ;

v*(t*) = Fl(t*,V*,v*,n*,s*)

w*(t*) = F2(t*,w*,n*,s*)

n*(e) = Z(t*,V,W)11'.1,v*,w*,s*)

s*(t*) = S(t*,n*)

where, as above, A U Fi, i=1,24 and Z are operators as in Sec-

tion 5. We now have

AV = maxIV1(X,t) - V*(X*,e)1

AV0 = maxIV1(t) - VIc;(e)1

AW = maxlyY,t) - W*(Y*,t*)I

X

max1V.1,y(X,t) 1-1 VI;(*(X*,e)1
420

Y10*AWy = max1W1,y(Y,t) y W;*(Y*,t )1
'20

X
0

AV = maxlvi(t) - xl v*(e)1
20

AW = max1w1(t) - y10 w*(t*)1 ;

120

al
An= maxIni(t) - a h*(e)1

2

As = maxIs,(t) -
a2 s*(e)1 .

a1

(7.34)

*From (7.32), it follows that
V1 s1

and V,..., s* correspond to
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(7.33)



equal values of a. Therefore the variations

A^V = maxlyx,t) - V*(x,t)I

(7.35)

= maxIsl(t) - s*(t)1

can be estimated by (7.30). But the differences IAV -

IAS - A^SI tend to zero together with = Ial - a21 by virtue of

the continuity of V1,..., sl and V2,., s2 with respect to X, Y

and t on the one hand, and the fact that IX*-X1 , IY*-YI and It*-t1

tend to zero together with y on the other. Thus, our assertion is

valid for this case.

Generally speaking, the stability of the solution to the system

of integral equations was proved in a certain small time interval

(o,t*), rather than in an interval (o,--E) in which the solutions of

the perturbed and unperturbed problems are simultaneously defined.

However, since t* does not depend on e, but only on the bounds of

the data A, Vm, Wm, q), Z and their derivatives, and, moreover,

on the bounds of the solutions V1,..., sl and V2,..., s2, it is

possible to extend the conclusions of smallness of AV,..., AS to

the entire interval (o,-).

Indeed, let t* be the greatest length of a time interval on

which the inequalities

t,,t* t,t*
ia1-a21 <6; EA- ,Ezw <6; E , E , <6 (7.36)

Vm Wm
E
V(X,tor EW(Y,t0)

imply the inequalities
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; ; v; ; n; <6AV; AtoVo; AtoW; AtoVx AtoWy Ato Atow Ato A sto

to
Here

E0
i' s defined exactly as

Eo
above but on the interval

to
t . . t*+to instead of on the interval o < t < 1-, and

A, V = max IV1(X,t) - V2(X,t)1 ;

60 t <tt -Et
0- - 0 *

At s = max Is/(t) - s2(t)I .
0

to
.t<t

o+t*

Again, since t* is independent of 6, 6 and to, then we can take

6(6) to be a monotonically increasing function such that (7.21) holds

when E is replaced by.E(s). Let s(s) be the inverse of this function.

In addition, let n be a positive integer such that

n-1 < n .

t*

Put tk = kt* (k=o,..., n-1). Next, choose E > 0 arbitrarily small and

define the sequence

cn-1
= c;

cn-k
=

(cn-k+1)'
(k=1,..., n-1); 6 =

eo
. (7.40)

With this in mind, the inequalities

la <6. E0,t* E0,t*<
6; Evm,Ewm, Ev(x,0)., Ew(y,o)w (7.41)

1 21 ' A ' Z

imply the validity of (7.37) on each of the intervals (tk,t0.1)

(k=o,..., n-1), and at the same time on the entire interval (o,T).

Hence the proof of Theorem 4 is complete.
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(7.37)

(7.38)

(7.39)



8. The Nonlinear Problem

In this section, we go back to the original Problem I. First

of all, Eq. (5.10) contains the variables X and t, while Eq. (5.16)

contains the variables Y and t. It is now desirable to express x

in terms of X and Y in the respective domains of definition, since

the original problem was formulated in terms of x and t. From Eq.

(4.6), the relationship between x and X is given by

rX 1/2
x = I a/ dX

Jo I

or, by Eqs. (4.13), (4.5) and (4.30),

X X

x =/2 dX = exp(-Aq)dX
'

fX
At At 2

.10V(X,t)exp[-
X-(T) t]dX for o X <

Xs

Similarly, the relationship between x and Y can be obtained from

Eq. (4.35):

x = b - iYa1,/2 dY (8.3)

and, by Eqs. (4.44), (4.36) and (4.56),

Y 1/2
x = b - a9 dY = b

1

o J P2\4
- I exp(-Bq)dY

o

= b - 1
1

P2(w) W(Y't)dY
for Y Yo

As a consequence of Eqs. (8.1) and (8.3), we have at the freezing

(8.4)
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front

s(t) = IXs 1/2 s 1/2
a/ dX = b - fY a2' dY .

0 0

The expressions V = V(X,t) and x = x(X,t), given, respectively,

by (5.10) and (8.2), represent the solution to Problem I for

o s X 5. Xs, while the expressions W = W(Y,t) and x = x(Y,t), given,

respectively, by (5.16) and (8.4), represent its solution in

Ys
Y o. In fact, for a given instant of time, this solution of

Problem I is given until now in parametric form, where the parameter

is X in o X < Xs, and is Y in Ys Y o.

Once V is calculated as a function of X and t, Q can be cal-

culated as a function of X and t by means of the expression

= - in V + + 22t . Also, having obtained W as a function

of Y and t, Q; can be evaluated as a function of Y and t using the

relation Q; = - ln W. But x can be calculated for a given X and t

by means of (8.2) and for a given Y and t by (8.4); which means that

Ql and Q2 are then known as functions of x and t, (see Eqs. (4.5)

and (4.36)). Once Qi is known, Ti can be obtained from the relation

Ti

Qi = f [Ki(T)Ri(T)]1/2 dT (i=1,2) .

Therefore, although the calculation of T.(i=1,2) as a function of

x and t is tedious, the process is straightforward and can be

carried out.

The discussion and the results of Sections 6 and 7 yield the

following fundamental result of this chapter.
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Theorem 5. Problem I is locally well-posed.

Remark. Having obtained the unique solution (T1, T2, s) to Problem

I, we substitute for s = s(t) in the expressions of p1(x,t1s),

v.(x,t1s), C.(x,t1s), P(x,t1s) and T(P) described in the previous

sections. However, the calculation of P(x,t1s) and v2(x,tls) solving

Problem II uniquely is the core of Chapter 3. In the same way, the

calculation of the displacement u(x,t1s), and hence the thermal

stresses, v1=3u/t and pl, (see Eq. (2.22)), which solves Problem III

uniquely represents the main goal of Chapter 4.



CHAPTER THREE - HYDRODYNAMICS OF THE UNFROZEN PHASE

Throughout this chapter, all physical quantities that we will

encounter, belong to the liquid phase. Therefore, we will drop

the suffix 2 characterizing quantities of this phase.

9. The Method of Characteristics Applied to the

One-Dimensional Liquid Phase Flow

In this section, we shall investigate the existence and unique-

ness of solutions to the second problem stated in Section 2. For

convenience, it is restated here:

Problem II. Find a pair (P(x,t), v(x,t)) satisfying the following

conditions:

aV
0

Dt aX =

Dv + aP

" at ax

in 22 = {(x,t): s(t)< X< b, 0< t<

with p = p(P)
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P(x,o) = Po(x)

v(x,o) = r(x)

(11.5) v(b,t) = o

(II.6) P(s(t),t) = g(s(t))

and the compatibility conditions

(II.7) r(b) = o , Po(a) = g(a) .

Here Po, r and g are known functions of their respective arguments,

which are assumed to be continuously differentiable. We remark again

for a x b

for o < t i



that in this problem, s(t) is assumed to be known.

As stated in Section 2, the pressure in liquids does not depend

noticeably upon the entropy. In other words, the influence of changes

in entropy is negligibly small, and so in many practical applications,

the specific entropy can be everywhere approximated without signifi-

cant error by a fixed value, say S. In particular, this approxima-

tion is very good for liquid water. In gas dynamics, a flow satis-

fying this idealization is called homentropic flow. In this case,

the liquid flow can be described by two functions: the density

p(x,t), the pressure P(x,t), or the sound speed c(x,t). These

variables are uniquely related to each other at every point by the

purely thermodynamic relations:

p = p(P), C = C(p), or P = P(p), c = C(p) (9.1)

where in both cases c2 = dP/dp. If we choose the first set in (9.1),

then (II.1) becomes

1 DP
+ c = o .

pc Dt ax
(9.2)

To put the equations of motions (II.2) and (9.2) in characteristic

form, we add (9.2) to (II.2) and subtract (9.2) from (II.2) to ob-

tain the two equations

or

f3V+ 4.3P) (v 1 g)
Dt pC W DX- pC 3X

+ (v + c) i(v±F) = o
at 3X
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(9.3)

(9.4)



where the new thermodynamic function F(p,S0) is defined by

FE dP

pC

In this form, each equation contains only one differential operator.

By definition, an equation is in characteristic form if it contains

only one differential operator; equations (9.4) are thus the equations

of motion in characteristic form.

Equations (9.4) state that v±F are constant along the curves

C as the solutions to the differential equations

dx- = V ± C .
dt

90

(9.6)

Evidently, CI- ( or also C-) is the locus of a point moving for-

ward, i.e., in the positive x-direction (respectively, backwards,

i.e., in the negative x-direction) at the local wave speed c rela-

tive to the local fluid velocity v. These curves are called

characteristics and are physically identified with sound waves,

which may be thought of as infinitesimal signals of the pressure

disturbance. The C± characteristics serve as carriers of information.

The paths of characteristics are not known in advance (except in the

acoustic case) because the defining relations for the characteris-

tics, equations (9.6), depend on the solution yet to be found.

By (9.4), the quantities (v+ F) and (v- F) do not vary along

their respective characteristics and are called the Riemann invari-

ants. These invariants will be labeled

3+ E v+ F , 3- E v - F . (9.7)
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In general, the value of Jwill vary from one CI- characteristic to

another. Equations (9.4) are rewritten in this notation as

de = o , e = const along

F = C .

For a liquid satisfying Tait's equation (see Eq. (2.7)),

P = Asp:( - Bs

we have F = 2c/(y-1) and the Riemann invariants are just

v+ 2c j-

'

2c

Y-1 y-1

t+c,
"

- dxdJ- = o , along CJ- = const = V- C .
dt

This statement can be regarded as a generalization of relations

which hold for the case of acoustic waves propagating through a gas

with constant velocity, density, and pressure. In fact, these

relations may be obtained from the general expressions for the in-

variants as a first approximation.

We note that (9.5) can be written, alternatively, as

(9.8)

(9.9)

(2.7)

(9.10)

We remark here that the Riemann invariants are determined to within

an arbitrary constant, which can always be dropped for convenience,

as was done above in (9.10).

It is now convenient to introduce the following notation:

JI(x,t), where a is a positive number not necessarily an integer,a

means the initial value of the Riemann invariant J the point
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(x ,o) on the initial line MQ where x depends on the point (x,t)a a

at which we seek a solution to Problem II. That is, we write

JI(x,t) E J±(X ,O) with x = x (x,t) , a> 0 .a a a a (9.11)

Thus, for example, J41-(x,t) = J+(xi,o) with xi = xi(x,t), and

J12-(s(t),t) E e(x2,o) with x2 = x2(s(t),t). In fact, we have upon

the application of the initial conditions

1
J

1)0(xe)dP
±(x,t) = r(x ) , a> 0a a

(9.12)

It is now desired to find a solution to Problem II at a gen-

eral point (x,t) in Q2. (See Figure 2). Choose first a typical

point (x,t)E Di in the region 1, the region of determinacy. Ob-

viously, the solution at Di is determined completely by the initial

data on the line MQ. Indeed, use of (9.8) gives

v(D1) + F(D1) = J-IF(x,t), v(D1) - F(D1) = J-6(x,t).

Solving these relations for the unknowns v(Di) and F(Di) gives

v(D1) = - (JT(x,t) +J (x,t)), F(1211) = i(kq(x,t)- J-6(x,t)) (9.13)

The value of F in (9.13) with the help of (9.5) gives the corres-

ponding value of P. This value together with the value of v in

(9.13) constitute the desired solution.

Next the C- characteristic emanating from any Mc, for some a and

intersecting the phase boundary x = s(t) carries the initial value

J-(x,t). We then have, on the interface s,a
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Figure 2. Sketch of characteristics for the unfrozen phase.

J-(s(t),t) = v(s(t),t) - F(s(t),t)
a

so that

where

V(S(t),t) = F(S(t),t)

F(s(t),t) =

+ J;(S(t),t) ,

g(S(t))dp

pC

(9.14)

(9.14*)

We remark here that (9.1) gives at Ei

p(s(t),t) = p(g(s(t))) . (9.15)
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In particular, for a liquid satisfying (2.7), the pressure is given

explicitly by

p(s(t),t) =
Bs+g(s(t))-

As
(9.16)

We might call the attention to the fact that equation (9.15), or in

particular (9.16), was used in Problem I to express the quantities

[p1L+p2(C1 - C2T(P)] and [p2V2(C1 - c2)T(P)] as functions of the phase

boundary s(t). At the same time, (II.6) was employed in Section 2 to

express the free boundary condition for the displacement, (III.5), in

terms of s(t).

From Eqs. (9.14) and (9.14*), we see that both v and F are known

at the freezing front. To find a solution at a typical point

(x,t) E 02 near the phase boundary x = s(t) in the region 2, (see

again Figure 2), we have to know J+ and J- at this point. Since

J(D2) = J-(x,t), it remains to determine e(D2) In doing so, we
4

consider the C+ characteristic issuing from
E1

after reflection on

s and passing through the point D2 We then define the tangent line

at E1 to that C+ characteristic by

x = s(T) + [F(s(T),T)+ J-2(s(T),T)+ c(sH,T)](t-T) , (9.17)

and prescribe the Riemann invariant e(s(T),T) along that C4-

characteristic by

J+(s(T),T) E v(s(T),T)+F(s(T),T) = 2F(s(T),T)+Ji(s(T),T) (9.18)

with T(x,t) determined implicitly from (9.17).

Now, on setting



by

v(D2) --,12-{J+[s(T (x,t)), T(x,t)i+J4-(x,t)}

(9.19)

F(D2) E 712- {J+ES(T (X,t)), T (X,t)] J4-(X,t) ,

we readily see that the Riemann invariants J(D2) = J-4(x,t) and

J1-( D2) = J+[s(T(x,t)),T(x,t)] at D2(x,t) satisfy (9.4). Using

(9.5) to find P(D2) corresponding to F(02) in (9.192), then the

value of P just obtained and v given by (9.190 form a solution to

the couple of equations (II.1) and (II.2) satisfying the boundary

condition (II.6). Furthermore, this solution is unique since Eq.

(9.17) has only one root T = T(X,t).

On the fixed end, we apply a similar procedure. The C4- charac-

teristic issuing from Ma on the initial line MQ for some a will carry

the initial value J+(x,t), and on boundary x= b, we have
a

v(b,t) = o , F(b,t)=J:(b,t) . (9.20)

Again at a given point (x,t) E D3 near the fixed boundary x= b in

the region 3, at which we seek the solution of (HA) and (II.2), we

want to evaluate J+ and J. We have J+(D3) = d3(x,t). Next we

consider the C- characteristic emanating from E2(b,1) after re-

flection on the boundary x= b and passing through the point 03.

Then we define the tangent line at E2 to that C- characteristic by

m-: x = b - [c(b,T)](t-T) (9.21)

and define the Riemann invariant J-(b,T) along that C- characteristic

95
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3-(1),T) E - F(D,T) = - C(DIT) (9.22)

with T(x,t) given implicitly by (9.21).

Then, on letting

v(D3) E -7{J43.(X,t) - J-5[b,T(X,t)]1

F(D3) E -127{J(x,t) + J-5[b,T(x,t)]).

(9.23)

we see at once that the Riemann invariants J+(03) = J+(x,t) and
3

J(D3) = - J[b, (x,t)] constitute a unique solution to the system

(9.4). Again use (9.5) to find P(D3) corresponding to F(D3) in

(9.232) so that this value of P together with the value of v in

(9.231) satisfy (II.1), (II.2) and (II.5). Moreover, this solution is

unique because Eq. (9.21) possesses only one root T = T(x,t).

Naturally, for nonlinear systems one must remain aware of the

fact that statements are always meant to be valid merely for suf-

ficiently small regions. With this in mind, we can summarize the

above discussion in the following main result of this section.

Theorem 6. Assume that r(x), Po(x) and g(x)(o x b) are con-

tinuously differentiable functions. Suppose also the compatibility

conditions (II.7) hold. Then there exists a unique solution v(x,t),

P(x,t) of the system (II.1)-(II.6) for all t< t* for some positive

value t* < i. Moreover, this solution is continuously differentiable.

10. The Evolution of Discontinuities in the Solution of Problem II

The development of discontinuities in solutions of nonlinear

hyperbolic equations possessing discontinuous initial data has
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been the subject of research for many years. (See, for example,

Jeffrey [19] and the references cited there). On the other hand,

the evolution of discontinuities from smooth initial data was ap-

parently first examined in a simple problem by Riemann [28]. His

conjecture in the context of the initial-value problem for unsteady

isentropic perfect gas flow was re-examined by Ludford [26]. The

latter developed a variant of the hodograph method which basically

is unfolding process for initial curves in the hodograph plane, and

then applied his method to obtain an asymptotic estimate for the

earliest time of breakdown in the solution of the original set of

equations. At this time the derivative of the solution becomes

unbounded. The work of Lax [25] and Jeffrey [19] employ the

Riemann invariants to develop comparison theorems which provide upper

and lower bounds for the critical time of singularity occurrence.

Finally, an ingenious approach to calculate the critical time for

singularity formation was developed by Ames [1], which is useful

for a certain class of problems. The advantages of this method,

when applicable, are its simplicity and the exactness of the results

as opposed to asymptotic estimates or bounds. However, Jeffrey's

work [19] is more general, and he has given several examples uti-

lizing his theorems. Consequently, we shall apply the Jeffrey-

Lax method to examine Problem II for wave breakdown, and as corre-

spondingly was done in Ludford's paper, convert the original problem

to a pure initial value problem by a suitable smooth extension out-

side the interval a x b.

The governing equations for the liquid phase problem [see Eqs.

(Ill) and (II.2) of Sec. 9] are



Then from Reference in-[20], we have the Riemann

The Riemann invariants in (10.3) and (10.4) are the same as in

(9.7), except for the minus signs which are introduced to make

(3x/3,3+) and (X-PJ-) negative as required in Jeffrey's analysis.

From (10.3) and (10.4), we obtain

J++J- = -2v , J+-J- = -2 I Ap
pC
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(10.5)

Let
tinf (tsup

) denote the best estimate obtainable by Jeffrey's

method of the lower (upper) bound for the time of existence of a

solution to the original system of equations (10.1). Then the actual

V + FIT/. = o (10.1)

in which

V
v

V

pC-2 V

(10.1*)

The characteristic values of fT are

X+ = v+c , x- = v - c (10.2)

and the corresponding left eigenvectors are

El (10.2*)
pC

pc

respectively.

variant relationships

PdP +V + - -J along the C (10.3)

and

pC
v - = -J- along the C- characteristics. (10.4)



value tc.of the time of existence of a solution to the original

system (10.1) must satisfy the inequality

tinf< tc
<
tsup

. (10.6)

The numberstinf and tsup are to be interpreted in the sense that

the solution is certainly bounded for t< tinf, while the solution

is certainly unbounded for t>
tsup'

Note that
tc

t*, where t* is

given in Theorem 6.

In order to utilize the estimates for the critical time pro-

vided in Jeffrey's paper, we need to determine (Dx+/J+), (Dx+/9J-),

(DA-+) and (DA-/pJ-/DJ ), which will be denoted by (A+),(A)

(x+) and (A ), respectively.
-,

From (10.2) and (10.5), we obtain

_(dc)(d2m 3P )+ '+i
DJ DJ

= - -2-(1+(p)

where cp E d in c/d in p, and by similar reasoning

1 I 1

+,- = 74"! = 4. ;= (1 + qt)) .

The initial values of v and P, specified on a < x < b, determine the

initial values

J±(X) E J±(X,O) = -r(x) -
o

P0
(x)

dP
--- on a < x < b .

pC

Furthermore, the boundary conditions that are to be imposed are

v(b,t) = o and P(s(t),t) = g(s(t)) for all t o. So, by virtue
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of (10.5), we may write

g(a)dp
J0(b) + J-0(b) = o , J+(a) -J-(a) = -

o o 76-

Hence, by a suitable smooth extension of J+0(x) ± J0-(x) everywhere,

the original problem becomes a pure initial value problem, and the

boundary conditions may be disregarded.

Considering the pure initial value problem just defined and

using Jeffrey's estimates for tinf and tsup we see that when

max(aJ+/ax)t=o and max(J /3x)t=o are both positive,
tinf

is the

smaller of the two numbers

Tax [(1+)exp{ (J;-J-)(-1+(p)

J 5J- 4c0(x) t=o

2

+ +
(4-J M-(P) l]max(4-4=0max [(1+)exp{

J+,J-
4c0(X)

Similarly, tsup is the smaller of the two numbers

2

2

min [(1+)exp (4-J+)(l-(1)) J-

J+,J-
4c0(x) Amax( %x

't=o

9

In these expressions, it is assumed, as was done by Ludford [26],

_
that J+(x) and J(x) (and so also J+ and J since they are
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(10.8)

(10.9)

(10.10)

2
(10.7)5



(1i)max[exp{ (Y-3)(J:-J-) l]max(4-i-

J-
8c0(x) 3x t=o

4

(1+y)Tx[exp{ (3-y)(4-j+)
8c0(x) s'IT1Qx` )t=o

and t becomes the smaller of the two numbers
sup

4

(1+y)min[exp{ (Y-3)(3*-3-) }1max(" )
J-

8c0(x) - t=o

4
\fi+ 1+1

(1+y)min[exp
,-

{ (J-YRu*-') ) l]max(-112---)

3+
8c(x) DX t=0
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constant along their respective characterisitcs) differ only slightly

from their constant values J* and J.

A much simplified version of these results was obtained by Lax

[25] using different comparison theorems in which he assumed that

+ + -
J = J*, J = J; in order to study the existence of solutions of a

certain nonlinear string equation.

For a liquid satisfying Tait's equation (2.7), = (y-1)/2

so that (1-4) = (1+y)/2 and (1-fl = (3-y)/2. Therefore, tinf

becomes the smaller of the two numbers

4

(10.12)

(10.14)

_
If J+ and J in these results are replaced by their constant values

J* and J*, then tinf and t coincide, i.e., (10.6) reduces to
sup

equality, and we obtain the simplest asymptotic estimate

5 (10.13)
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4tc = cy+um , with /V = max { max(3J0x), max(3,30-/x) } , (10.15)

for the time of breakdown in the solution.

This is precisely the result obtained by Ludford when allowance

is made for the fact that his definition of the Riemann invariants

J and J- differ by a numerical factor two from those given in equa-

tions (10.3) and (10.4). Equation (10.15) also has a similar form

to that obtained by Ames [1], although the notation is somewhat

different. His result must be multiplied by two to compare ex-

actly with (f0.15). Stated alternatively, the initial data in the

treatment of Ludford and Ames must be taken to be one-half those in

the work of Jeffrey and Lax.

Remark. Assume that if

then

that

1 1

o x, s(t) b; o t tc; loc N s

1,01 ml; 1r1 m2; 1g1, 1g11

where N,
M1, M2' M3 are positive constants. Hence, the continuous de-

pendence of the solution on the initial and boundary data follows im-

mediately from (9.13), (9.18) and (9.19), and (9.23). Indeed, let

(vi, Pi) (i=1,2) be the solutions of Problem II corresponding to the

two different sets of data (Pio, r1, g') (i=1,2). In addition, we

assume that

11)10(x) -P(x)1 <6; Iri(x) -r2(x)1 <6; 191(s(t))-92(s(t))1< 6. (10.18)

where 6>0 is a small number. Then equation (9.12) for any a implies



r2(x) +NIP01(x) -P(X)1Jal±(X,t) J!±(X,t)1 rl (x) -

< 6(1+N) .

However, it is easily seen from (9.13) that

1\1100-v2001 <6(l+N)

1P1(D1) - F2(1)1)1 < (5(l+N)

so that the application of the mean value theorem for integrals gives

P1 (Di) - P2(D1 < 6 (Nl+N)

0

where

No
(pC)-1(5) for some P between Pl and P2.

In a similar way, we find from (9.19) and (9.23) that

1v1(D2)-v2(D2)1 <6(1+2N);
(D2)

p2(D2)
(1N+2N)

0

and

1v1( D3 )
v2(D3)1 6(l+N);

1 (D3) p2(D3)1 s(N1 +N

respectively. Let

s(1+2111
6 = max {(1+2N) , m 1 .

"o
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(10.19)

(10.20)

(10.21)

(10.22)

(10.23)

(10.24)

(10.25)

whenever (10.19) is defined. Here D(x,t) is either Di(x,t), D2(x,t)

Then

Iv] (D) v2(D) (D) p2(D)
(10.26)



or D3(x,t). This proves our assertion.

The results of Sections 9 and 10 may be gathered together as

follows:

Theorem 7. There exists a value of time tc > o depending on the

initial and boundary data such that for o t < tc, Problem II is

well-posed.

11. Remarks on Discontinuities and Shock Waves

Let V(t) be a material volume of a continuum model bounded by

a material surface z(t). By definition, V(t) is an arbitrary col-

lection of matter made up of the same type of particles as time

progresses which is enclosed by a material surface (or boundary),

every point of which moves with the local fluid velocity. If V(t)

is shrunk to a point, the resulting material point is called a

fluid particle. Let, however, V*(t) be a moving volume in space

(not necessarily a material volume) with boundary surface E*(t).

Such an arbitrary moving volume is often called a control volume;

the boundary need not in general be identified with any physical

boundaries.

Specialized to one dimension and disregarding the body forces

(although it would not affect the jump conditions), in which case

V(t) is bounded by the surfaces xl(t)< x2(t) and V*(t) by the sur-

face x*(t)< x* (t) In other words, the xi(t), i=1,2, denote the
1 2

positions of the moving particles that form the bounding surfaces

of the material volume V(t). A similar statement applies to x(t),

i=1,2. Then the integral equations for V*(t) (see, for example,

Jeffrey [21]) are
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Conservation of Mass (continuity):

c(1'
1.x(t)pdx+Epw])4(t) = o ,

Jx*(t) x1(t)
1 1

Balance of Linear Momentum (Newton's second law):

d fx2(t) 4(t)

dt* pvdx + [P + pot] = o

x1
(t) x(t)

1

Conservation of Energy (first law of thermodynamics):

f4(t) 1212 4(t)
dt

+Pv+q] = o
jx*(t)

P(E+,-z.v )dx + [pw(E ) ,

1 x*1(t)

Production of Entropy (second law of thermodynamics):

d r4(t) 4(t)
1

pSdx+ [pwS+---,,q] > o , (11.4)
dt j *

''*l(t)
(t)xl A'

where E is the specific internal energy, q = -K 317D( is the heat

flux (K is the thermal conductivity), and w = v-U is the fluid velo-

city relative to the control volume with dx,f(t)/dt = v(x!ir,t), i=1,2.

Often the above integral equations are applied to V(t), in

which case the boundary velocity U is just the fluid velocity

v(x.,t) and the balance statements respectively become
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(11.2)

(11.3)

x2(t)

dt
fx ipdx= o ,

1(t

(11.5)



By definition, a shock wave is a relatively thin region of

rapid variation in the variables governing the behaviour of the

system across which there is a flow of matter. Because the region

is thin, it is usually idealized as a surface of discontinuity in

space. This surface propagates into the fluid and is not neces-

sarily stationary. In general, all the fluid flow variables v, p, P

and S are discontinuous across the shock surface.

The treatment of shock waves as discontinuities, or surfaces

of zero thickness, in fact, is an idealization of inviscid gas

dynamics. Physically, shocks are found to have a finite and measur-

able thickness, commonly of the order of 10-6 m. In the following,

shocks are treated, however, as true discontinuities.

Since the shock wave is treated as a true discontinuity, we

can make the control volume V*(t) arbitrarily thin and still enclose

a portion of the shock. This can be achieved by letting x2-x1 be

sufficiently small (for example, x2(t)- xi (t) --T(t) with 7(t)-+0).

On the other hand, in applying the integral balance statements

(11.1) to (11.4), the condition that the control volume be thin

d

dt

'x2(t) x2(t)
= ,

(t)pvdx+p]
o

x1(t)
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(11.6)

d 1x2(t) 1/ 2

ixl(t)P\E-Ff
v )dx+Pv+q]x2(t) = 0

X1(t)

(11.7)

"

x2(t)1x2(t) 1

pSdx+ Li= q] > o

I

(11.8)

X1(t) X1
(t)
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allows us to neglect the volume integrals (because there can be no

storage of mass, momentum, etc. in essentially zero volume). Then the

balance statements (11.1) to (11.4) for mass, momentum, energy, and

entorpy become respectively, per unit area of the shock surface,

[pw] = o

EP + pvw] = o

[pw(E. +12- v2) + Pv + q] = o ,

1
[psw q] > o

Plwi[v]+ [P] = 0

1 2

v i'L[Pv+q] = °

in which [ip] = 1p2- ql is the discontinuous jump of tp across z*(t),

and the suffixes 1 and 2 denote the value of tp on adjacent sides of

and arbitrarily close to z*(t), according as the discontinuity sur-

face is approached from the side 1 or the side 2, respectively.

These are called the jump conditions across the discontinuity sur-

face z*(t).

Rearranging Eq. (11.9) yields

w1[p] + p2[v] = o .

Similarily, using Eq. (11.9), Eqs. (11.10) and (11.11) may be written

respectively,



Properties of the Jump Conditions

Equation (11.9) says that the mass flux density pW is continu-

ous across E (t), say m=pw. If, now, wl = o, m=o and also w2 = o

since the densities on adjacent sides of E (t) may be assumed to be

non-zero. Then no fluid crosses E"k(t) (i.e., it moves with the

This type of discontinuity is called a contact discontinuity and

has the property that the pressure, the fluid velocity and the heat

flux are continuous across the contact discontinuity.

If, however, [p]= o and stilt o, it follows from Eqs. (11.13)

and (10.14) that v and P are continuous and so

U- v = - w =i -44
1 plLEJ

This type of discontinuity is called a phase front. Clearly a

phase front cannot exist if there is no heat conduction since Eq.

(11.19) implies that [7] =o if [q] = o and so all variables then

become continuous across the phase front; Eq. (11.15) becomes an

identity, and thus a phase front ceases to exist.

A stronger form of discontinuity, the shock, occurs when

[p] to and wlt o, in which case Eqs. (11.13) and (11.14) gives
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fluid) and Eqs. (11.13) to (11.15) become

[v] = o , (11.16)

[P] = o , (11.17)

[q] = o . (11.18)



[v] [P] _

P1W1

P2[P] 1/2

= [ ])P1 Pw1

Because of the square root in Eq. (11.21), the liquid pressure and

density can only either increase or decrease together, i.e. [P]

and [to] are both of the same sign. Up to this point, the mathema-

tical solution to the shock conditions is not physically realizable

because a liquid shock wave is known from physical observation al-

ways to be compressive, in the sense that liquid density increases

after the passage of the shock wave. The difficulty is resolved

in this case by appeal to a mathematical principle which has not

so far been used in connection with (11.9) to (11.11). At the end of

the present section, we will find that, with the help of (11.12),

only the compression shock is possible.

The selection principle utilized here for identifying a physi-

cally realizable liquid shock wave is called the entorpy condition

which comes in from outside the framework of the equations of fluid

dynamics. In general, without this selection principle the mathe-

matical shock solution would not be unique.

A further investigation for the shock discontinuity now

follows:

Subtracting U[pw]=o from Eq. (11.10) gives

[P+pW2] = o (11.22)

which states that the total momentum flux density is the same in both
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sides of the shock.

On the other hand, Eq. (11.11) can be rewritten as

[pw(hq v2) + UP + q] = o

where h = + P/p is the specific enthalpy. Using Eqs. (11.9)

and (11.10), and the result [liz v2 - Uv] = w2], this becomes

[pw(h+-ja w2) + q] = o . (11.23)

This means that the total energy flux density is the same on both

sides of the shock.

Finally, it follows from (11.12) that there is an increase in

the total entropy flux density across the shock and a corresponding

production within the shock due to thermal and mechanical and relax-

ation processes.

This completes the reduction of the balance or conservation

statements to the elementary shock conditions. For convenience, the

main shock conditions are rewritten from (11.9), (11.22), (11.23)

and (11.12) for continuity, momentum, energy, and entropy, respec-

tively,

[pw] = o (11.24)

[p pw2]
(11.25)

[pw(h+---12-w2)+q] = o (11.26)

[pws = o (11.27)

We observe here that the shock conditions may be written with the

relative velocity w only. Such a result is a consequence of



Figure 3. Flow quantities for moving discontinuity.
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Galilean relatively; for the laws of mechanics must have the same

expression in any intertial frame. (That means they must be invar-

iant if v is replaced by v+vo and U by U+vo where vo is a constant

velocity).

In what follows we shall always take m positive, with the liquid

going from side 1 to side 2. That is, we call liquid 1 the one into

which the shock wave moves, and liquid 2 that which remains behind

the shock. We name the side of the shock wave towards liquid 1 the

front of the shock, and that towards liquid 2 the back. (See Figure

3).
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The usual situation is that the flow in the front of the shock

is known and we ask whether the shock conditions can be used to

determine uniquely the flow behind in terms of the shock velocity

or to determine uniquely the shock velocity and the remaining flow

quantities in terms of one of the flow quantities behind.

It is assumed that the fluids ahead of and behind the shock

are essentially the same fluid and satisfy the same equation of

state (this assumption precludes certain chemical relations). Then

the thermodynamic state of the fluid is fixed by two variables,

say P and u. The unknowns are any three of w2, P2, u2, U, and the

other one is fixed as a parameter. To determine these unknowns in

a unique manner, three equations, (11.24) to (11.26), are available.

As a matter of completeness, we shall establish four important

properties of the liquid state on either side of a shock wave,

namely:

10. Only compression shocks, [P]> o, are possible, assuming that

(32u/DP2)5>o. Correspondingly, [10] > 0 and [w]<o.

2°. The increase of the total entropy flux density across a weak

shock is at most of the third order in the shock strength, or the

pressure jump [P].

3°. The flow velocity relative to the shock wave is supersonic at

the front side, subsonic at the back side.

To prove these statements, we first use the shock conditions

to derive some useful relations.

Combining the continuity and momentum conditions (Eqs. (11.24)

and (11.25)) yields



_ [P]
W1 w2 - [P]

Further manipulation of Eqs. (11.24) and (11.25) leads to the non-

dimensional relation

[P]--M [w] m2 [u]
2

Plcl
in

c1
in ul '

- [P]
- 2
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(11.28)

(11.29)

where M1n = w1/c1 is the shock Mach number. This result is valid

for all types of fluid dynamic discontinuities and shows that a

decrease in w is associated with an increase in P and an increase in

p. Conversely, an increase in w is associated with a decrease in P

and a decrease in p. This allows the immediate classification of all

discontinuities into those of compression (deceleration) types and

those of expansion (acceleration) types. If the three quantities

equated in Eq. (10.29) are zero, there is no discontinuity. If they

are small the discontinuity is called weak.

It will be convenient to introduce the nondimensional pressure

jump

(11.30)

By definition, the numerical value of II is a measure of the strength

of the shock. Two extreme cases exist:

II « 1 weak shock,

rr » 1 strong shock.



Using (10.28), the energy condition can be expressed in the form

[h] = 1)1 [P] [0][P] -riLmJ .
(11.32)

For non-heat conducting fluids, q = o, this is the famous Rankine-

Hugoniot equation which has the useful property that it contains

only thermodynamic quantities.

In general, shocks are classified according to the sign of the

pressure jump [P]:

[P] > o compression shocks,

[P] < o rarefaction shocks.

To calculate the entropy change in terms of the pressure change

for a weak shock,. we expand h(S,P) and u(S,P) of Eq. (11.32) in

a Taylor series. Then using the identities T = (9h1DS)p and

u = (h/P) and retaining terms up to third order in [P] (because

the first- and second-order terms in [P] are cancelled) and of the

first-order only in [S], Eq. (11.32) gives the important result

2

DIS+1- ] = 12mT (4)S 1[P]3
1 1 P'

Rewritten in nondimensional form

[mS+21-] =C21T n3

T1
6 1 '

where

T = -c4 (-D2u)
22u3 DP S
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(11.33)

(11.34)

(11.35)

Since the temperature behind the shock wave must be higher than that



in front of it, (i.e., T2 Ti) it follows that

q q2< r
T T2 T1 T1

and Eq. (11.33) leads to

2

[mS +a] < m[P]3
T 12

T1 3132 S'1

The entropy condition (11.27) implies that the right-hand side of

(11.36) must be positive; thus the pressure jump [P] necessarily has

,2
the same sign as (=-L)(or T). Except in bizarre cases, T > O.

P'-
S,1

In particular, for a liquid satisfying the Tait equation (2.7), we

have

T =
2

(11.37)

in which y is not the ratio of specific heats, see Section 2, but

satisfies 1; e.g. water has y = 7, giving T = 4. Values of T

for various liquids can be found in the literature. Roughly, we

can take T to be of order unity for fluids in general. In any

case, assuming T> 0 it follows that [P] o, and only compression

shocks are possible for normal fluids. Correspondingly, [w]< o and

[p]>o from Eq. (11.29). This proves assertion 10. At the same

time, assertion 2° follows from (11.36).

Finally, the first part of property 3° follows immediately from

10. For, since S2 S1 and DPhS o, Eq. (11.28) yields
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(11.36)

P(p2,S2) P(pi,Si) P(p2,SO P(pi,Si)

w1w2
1 2 P



aP( )15-,s,
2

' > = C2(P1,S1) = Ci
Bp

in which TT is a properly chosen intermediate value between p1 and

2 2
p2. Hence wi>c, by property 10, and so

Alternatively, using the entropy condition and the Hugoniot

diagram, both parts of assertion 3° can be shown to be true; see,

for example, Landau and Lifshitz [24] or Zel'dovich and Raizer [38].
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CHAPTER FOUR - THERMAL STRESSES IN THE FROZEN PHASE

This chapter is devoted to the discussion of the displacement

problem which was formulated in Section 3 and was referred to as

Problem III. Find a function u(x,t) satisfying the following con-

ditions:

(III.1
) utt = w2(11-ux)uxx

in 2/ = f(x,t): o< x< s(t), o< t<

)

(III.2) u(x,o) = o

(III.3) ut(x,o) = f(x)

(III.4) u(o,t) = o

(III.5) ux(s(t),t) = X(s(t))

o < x s s(o) = a

o<t

and the compatibility conditions

(III.6) f(o) = o , X(a) = o .

Here w2 is a constant and, s, f and x are given functions of

their respective arguments. We shall assume that in the functions

f and X are continuously differentiable, while the function u is

twice continuously differentiable.

As mentioned in Section 3, the knowledge of the value u(x,t)

of the wave function u at a general point (x,t), i.e., the solution

of Problem III, is sufficient to determine the stress and strain

components by using Eqs. (2.38), (2.39) and (2.40).

12. The Method of Characteristics Applied

to the Displacement Problem

If we define
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W =
Ux

, V =
Ut

, (12.1)
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then (III.1) can be written as two coupled partial differential equa-

tions of the first order:

where

H2(w) =2(1+w) .

vt-H2(w)wx = o

v Hwt+ - Hv - H2wx = 0
t-+ x

(12.2)

(12.3)

(12.4)

Equation (12.3) is a consistency condition, whereas Eq. (12.2)

describes the nonlinear behavior given by (III.1). In terms of the

unknowns w and v, Problem III is transformed into

Problem V. Find a pair of functions (w(x,t), v(x,t)) satisfying

the following conditions:

\it- H2(1,v)wx = o
(x,t)(421

wt-vx = o

w(x,o) = o
o x a

v(x,o) = f(x)

v(o,t) = o
o t t

w(s(t),t) = x(s(t))

where H(w) is defined by (12.4).

The solution to Problem III is clearly recovered from that of

Problem V by integration.

If we now multiply (12.3) by H(w) and add and subtract the result

to (12.2), we obtain the pair of equations:

(12.5)



or

Jt-
H(w)J- = o (12.6)

Jt+ H(w)Jx = o (12.7)

where

= v + H(w')dw' = v R(w) . (12.8)

Equations (12.6) and (12.7) are the characteristic equations

for equations (12.2) and (12.3). Here the variables J and J+ are

the Riemann invariants; J- is invariant along the characteristic

-F: dx = -Hdt and J+ is invariant along the characteristic r+:

dx = +Hdt (see Section 9).

From Eq. (12.4), we get

R(w) = j H(W)dw' = 2w-(1 + 03/2 .

Then Eqs. (12.8) become

,T 2w/, ,3/2_\
- V ± 1- w)

3

Again, the Riemann invariants are determined up to an arbitrary

constant, which can always be dropped for convenience. This was

actually done in Eq. (12.9) and hence also in (12.10). Thus, sub-

tracting Eqs. (12.10) from each other and taking the inverse yield

w = -1 + [437-, - )]21 .

Also, adding the two equations in (12.10), we obtain
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(12.9)

(12.10)

= J+)
(12.12)
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The equations in Eqs. (12.11) and (12.12) are evaluated for the same

values of their arguments.

It is desirable now to obtain the solution to Problem V at a

typical point (x,t) in Q1. This point will be called either
D1, D2

or D3 whenever it belongs to either the region 1, 2 or 3. (See

Figure 4).

For convenience, we will employ the same notation introduced in

Section 9. Thus

J±(x,t) E J-1(x ,o) with x = x (x,t),a a a a
(12.13)

o)
x2

N4 5(x5,o x6'° Q(b,o)

Figure 4. Sketch of characteristics for the frozen phase.
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where again a is a positive real number, not necessarily an integer.

Then, according to (V.3) and (V.4), we obtain

J(x,t) = f(x06)± , > 0
a 3

(12.14)

Clearly, the solution at Di is determined completely by the

initial data on the line OM. In fact, by the invariance properties

of J+ and J along their respective characteristic curves F+ and

r , we obtain

J+(o1) = J1-(x,t) , J701) = J-5(x,t) . (12.15)

Hence, on employing the formulas (12.11) and (12.12), we get

w(Di) = -1+ [1 + f(x1)1]213 (12.16)

v(Di) = {f(x6) + f(y} . (12.17)

where
x.1

= x.(x,t) for i=1,6. This is the solution of Problem V
1

at a general point D1 = (x,t) in the region 1.

Now the r+ characteristic issuing from N5 and impinging on

the freezing front at Ell carries the initial value J+5(x,t). On

s, we have

J4-5(s(T),T) = v(s(T),T) - 23w (1 + u(s (T),T 3/2

so that

v(s(,),T) J+5(s(,),T)40+ x(s(,))3/2 . (12.18)

In order to find the solution of Problem V at a general point D2

near the moving boundary x = s(t) in the region 2, one has to



determine the Riemann invariants at this point. Since J+(D2) =

it remains to find
J-(D2)

In doing so, we consider the r

characteristic emanating from -E-1 after refelction on s and passing

through the point D2. We then define the tangent line at -ff1 to

that r- characteristic by

k-: x = s(T) - co(l+x(s(T)))1/2(t-T) (12.19)

and prescribe the Riemann invariant J- along that r characteristic by

r[s(T),T] E v(s(T),T)+R(w(s(T),T))

j+5(s(T),T)+43C00 +x(s(T))3/2
(12.20)

with T(x,t) determined implicitly from (12.19).

Then, on setting

R(02) E ---(J-[S(T(X,t)) T(x,t)]-4(x,t)} (12.21)

V(D2) E 12- C[S(T(X,t)) T(X,t)]+J+3(X,t)} (12.22)

we see at once that the Riemann invariant J+(D2) = J3(x'0 and

J(D2) = J-Es(T(x,t)),T(x,t)] at the point D2 = (x,t) satisfy the

system of equations (12.7) and (12.6). Using (12.9) to calculate

w(D2) corresponding to R(D2) in (12.21), we obtain

w(D2) = -1+ [7437{J-[s(T(x,t)),T(x,t)] -J+3(x,t)}]2/3 . (12.23)

Therefore, the values v(D2) and w(D2) of the functions v and w

given by (12.22) and (12.23) form a solution to the system of equa-

tions (V.1) and (V.2). This solution satisfies the boundary condi-

tion (V.6). Moreover, it is unique since Eq. (12.19) has only one
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root T = T(x,t).

On the left end x = o, we apply a similar procedure. The r-

characteristic carrying the initial value J-(x2,o) will impinge on

the fixed boundary x = o after some timer, i.e., at the point 1-2

in Figure 4. On the boundary x = o, we have upon using (V.5) the

result

Again, assume that we wish to determine the values v(x,t) and

w(x,t) of the functions v and w at a point D3 near the boundary

x = o with coordinates (x,t). Then as mentioned above, we have to

evaluate the Riemann invariants at 03. Since 3-(03) =

we only have to specify 3/-(D3). To this end, we consider the r+

characteristic issuing from rE2 after reflection on the boundary

x = o and passing through the point D3. Then we define the tangent

line at
E2

to that r+ characteristic by

and define the Riemann invariant Ji-(o,T) along that r+ character-

istic by

J+(o,T) V(0,T)-R(0,T) = -3-2(0,T) (12.26)

with T(x,t) found implicitly by (12.25).

Thus, on writing

2w
J-2(o,T) = 3(1+w(o,T))3/2

3 -
k+: x = wLE J2(o,T)]3(t-T)

R(03) = fJ-(x,t) - J2[o'T(x,t)]}- 2 4
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(12.24)

(12.25)

(12.27)

V(D3) 12' { J-4(X,t) 32-[0,T(X,t)]} (12.28)
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we readily see that the Riemann invariants J(D3) = J4(x,t) and

J+(D3) = J2[o,T(x,t)] form a unique solution to the equations

(12.6) and (12.7), since Eq. (12.25) has only one root T = T(x,t).

Using the relation (12.9) to evaluate w(D3) corresponding to

R(D3) in (12.27), we get

w ( D3 ) = -1 + J -4 x , t - J [o , x , T )]} 1213 . (1 2 . 29 )

Hence, the values of v(D3) and w(D3) of the functions v and w

given by (12.29) and (12.28) constitute a unique solution to the

system (V.1) and (V.2) satisfying the boundary condition (V.5).

As remarked in Section 9, any statement regarding nonlinear

equations is meant to be valid only for sufficiently small regions.

We then summarize the above discussion and state a theorem similar

to that of Section 9:

Theorem 8. Let f(x) and x(x) (o x b) be continuously differen-

tiable functions and satisfy the conditions (III.6). Then there exists

a unique solution v(x,t), w(x,t) to Problem V for all t t** for

some positive constant t** t. Furthermore, the solution is con-

tinuously differentiable.

By the previous remarks, a further quadrature to the solution

of Problem V is needed before the solution of Problem III can be

determined. The following result then follows at once from Theorem 8:

Theorem 9. Problem III possesses a unique, twice continuously dif-

**ferentiable solution u(x,t) for all t t.



13. The Development of °Discontinuities in the Solution

of the Displacement Problem

We now turn to the application of the Jeffrey-Lax theory to

study Probelm III for wave breakdown. We further developed this

theory in Section 10 to calculate an asymptotic estimate for the

earliest time of breakdown in the solution of Problem II. At this

critical time the derivative of the solution becomes unbounded. As

Problem V is a mixed initial and boundary value problem it will re-

quire conversion to a pure initial value problem before Jeffrey's

estimates [19] can be used. This will be accomplished later by a

suitable extension of the solution from the fundamental interval

[o,a] to the entire initial line.
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The system of equations

in which

-t
+

involved (see Eqs.

o

o -H2

(12.2) and (12.3)) is

(13.1)

and

,1"1=
-1 o

(13.2)

H(w)
wo+w)1/2

(13.3)

The characteristic values of M are

x = -H and x+ = +H (13.4)

and the corresponding left eigenvectors are

[1,H] and [1,-H] . (13.5)



Therefore, we have along the characteristic curves

and

respectively.

Subtracting Eq. (13.8) from Eq. (13.7) and taking the inverse

gives again

(12.11)

In Jeffrey's paper, we need (Dx-/J-) , (Dx-/J4-) , (DA+/DJ-)

and (x-I-/DJ). These quantities will be respectively denoted by

, A
x5-
, and A .
' +5+

In terms of J- and J+, the defining relation of H using (12.11)

becomes

H E H(J-X) = 4L(J--J+)]1/3 (13.9)

from which

where

Hence, we have

- dxr: H and r+ --d

dt

the Riemann invariant relationships

v+(1+w)312-J-
3

+w) 3/2 ,. j+

3 +
w = -1+

[47(L)(J-
- J )]2/3 .

q) 5
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(13.6)

(13.7)

(13.8)



- , -
1 1

= x+,-F = T`P = 4 _,- - T. 4'
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(13.12)

We may further notice from (13.12) that A and x+ are both nega-

tive, as required in Jeffrey's analysis, provided c is positive.

(Otherwise the signs of J- and J+ must be changed.) Initially

(t=o), we have

x- = -c, X = c ;x1 1
= = - x-,+ = x+,- = . (13.13)

It is at this point in the argument that the problem requires

conversion to an equivalent initial value problem. We may first note

that the specification of the initial values of v and w on [o,a]

determines the initial values of J±(x) = J±(x,o) on this interval.

The boundary conditions that are to be imposed on v and w are

v(o,t) = o and w(s(t),t) = x(s(t)) for all t o. So, by virtue of

(12.11) and (12.12) and the compatibility condition x(a) = o, we

obtain

J,,-(a) 9J+

J-(o)+J+(o) = o and u
o(a)

- 0.

Therefore, by a suitable smooth extension of Jo(x)+Jo(x) from [o,a]

to the entire initial line, the boundary conditions may be disregarded

since the problem becomes then a pure initial value problem.

Considering the pure initial value problem just defined and

using Jeffrey's estimates for the tinf and tsup (see Sec. 10 for

their precise definitions) show that when max(9J-Px)t.0 and

max(DJ+/Dx)t=o are positive, tinf is the smaller of the two quantities



4 4
+ +

J -J
max _[(/) exp(-iT7*-)Jmaxf1(x) max_[) exp(jij*)]max fl(x)
J+,J

Similarly, t is the smaller of the two quantities
sup

4 4
+ +

min_[(p exp(-7/T71flmax fi(x) min_[(pexp(--*----)]max fi(x)
j+ ,J J ,J 8c0

It is to be remembered, as remarked in Sec. 10, that J-0(x) and

Jo(x)
(and so J and J+, since they are constant along their respec-

tive characteristics) differ only slightly from their constant values

J* and J. Here -11(x) means df(x)/dx.

When J and J+ in these expressions are replaced by their

associated constant values J; and J*, as was done by Lax [25], so

+
that J = J* and J = J*, the estimates tinf and tup coincide with

s

tc:

t
1.r 1J4±

, where (3 = max -11(x)j ,
c t34) J-11,
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. (13.14)

. (13.15)

(13.16)

which is the simplest asymptotic estimate for the time of break-

down in the solution of Problem V and hence of Problem III.

This is precisely the result obtained by Lax when account is

taken for the fact that his initial conditions are differently

described from those considered here. In his paper, Lax [25] used

different comparison theorems from those applied by Jeffrey [19]

+ +
in which the former assumed that J = J* , J = J* in order to study

the existence of solutions of the nonlinear string equation,
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Eq. (III.1). This equation was previously studied by Zabusky [37],

who utilized the hodograph method to develop both a solution and an

estimate for the time of breakdown in this solution.

Remark. A similar discussion to that at the end of Section 10

may be carried out here to deduce the main result of this chapter.

Theorem 10. There exists a value tc >o depending on the data such

that for o t< tc, Problem III is well-posed.

We finally point out that tc t**, where t given in

Theorem 8.
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