
i

ACKNOWLEDGMENTS

I would like thank Dr. Jon Herlocker for his guidance and help in my research.

His ideas and input have aided me greatly in the exploration of ideas. I would like

to thank my committee members, Dr. Margaret Burnett and Dr. Prasad Tadepalli,

for their feedback and support.

I would also like to the members of the CoFE group, whose input and

development of the CoFE system have greatly aided the research in this area. In

particular, I would like to thank Min Yang for her early work on distribution based

algorithms.

 I would like to thank my family support through the never ending process I

call school. Finally, I would like to thank Suzanne, Joe, and Kevin for making

college tolerable at the worst of times and highly entertaining at the best.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS.. i

TABLE OF CONTENTS.. ii

LIST OF FIGURES... ii

LIST OF TABLES.. iii

LIST OF EQUATIONS.. iii

1. INTRODUCTION .. 1

2. Flaws with popular CF algorithms ... 2

2.1 Assumptions .. 3
2.2 Experiment Design.. 3

2.2.1 User Nearest Neighbor.. 3
2.2.2 Item Nearest Neighbor (ITEM)... 4
2.2.3 Data sets... 5
2.2.4 Metrics... 5

2.3 Results ... 7
3. The Belief Distribution Nearest-Neighbor algorithm................................ 9

3.1 Description of Algorithm.. 11
3.2 Improved Properties of New Algorithm ... 13
3.3 Empirical Results of New Algorithm .. 14
3.4 Qualitative Results of New Algorithm.. 16

4. Conclusion and Future Work.. 16

5. Bibliography .. 18

LIST OF FIGURES

Figure Page

Figure 1 Modified Precision ……………………………… 8

Figure 2 Modified Precision (Top 1, 10, …) ……………... 15

Figure 3 Modified Precision (Recall) …………………….. 15

iii

LIST OF TABLES

Table Page

Table 1 Modified Precision ………………………………. 8

Table 2 MAE ……………………………………………... 16

LIST OF EQUATIONS

Equation Page

Eq. 1 …………………...…………………………………... 3

Eq. 2 …………………...…………………………………... 4

Eq. 3 …………………...…………………………………... 4

Eq. 4 …………………...…………………………………... 5

Eq. 5 …………………...…………………………………... 5

Eq. 6 …………………...…………………………………... 5

Eq. 7 …………………...…………………………………... 12

1

A Collaborative Filtering Algorithm and Evaluation Metric that Accurately Model the User

Experience

1. INTRODUCTION

Expansion of the internet and other sources of digital media have provided people with access to a

wealth of information. This great resource has brought with it the problem of sorting through enormous

amounts of information to find the pieces relevant to the user; often referred to as “information

overload”. There have been a variety of solutions proposed to aid users with this burden. Prior to the

digital era, people often relied on the opinions of a network of friends with similar taste to filter

information and decide what was relevant to them. Collaborative filtering expanded and improved

upon this idea. A collaborative filtering system stores the preferences and opinions of the thousands of

users of the system. These opinions are recorded as ratings by users for items. When an active user

would like a recommendation, the system finds users with similar taste and uses their opinions to

generate a recommendation. This methodology has proved to be very successful in a variety of

domains, especially domains where multi-value ratings data are available.

While there has been almost a decade of research in collaborative filtering (referred to as CF), we

believe that the user experience provided by current CF solutions could be improved upon substantially.

In particular, we believe that some of the most popular current predictive algorithms create a poor and

ineffective user experience.

The CF algorithm is the central computation of a CF system. The algorithm computes which items a

user will like and possibly how much he/she will like them. CF algorithms are most often used to

produce the “best bets” for a user, recommending a single best item or a ranked list of top items for a

user. We refer to this as a top-N recommendation; web-based recommender systems are commonly

asked to predict the top-N items where N is usually between 1 and 20.

In our practical experience deploying CF systems, we have observed that nearest-neighbor

algorithms, which have repeatedly demonstrated the best overall prediction accuracy for multi-value

rating data, are plagued with obscure or highly inaccurate recommendations at the top positions [1,3]. In

2

other words, when using a nearest-neighbor algorithm to generate the top 50 movies that you are most

likely to see, we expect most of the first 10-20 recommendations to be far from the user’s interests.

The poor performance of nearest neighbor algorithms operating in top-N mode when N is small can

be attributed to several factors, but is primarily due to a lack of sufficient rating information on the items

recommended.

There are two interacting reasons why such blatant flaws have escaped scientific notice for such a

long time. The first reason is that Mean Absolute Error (MAE), the most commonly used metric,

evaluates algorithms on a per prediction basis, biasing performance results towards algorithms which

predict all items well, not necessarily recommend top items well. The second is that most of the

published results on CF algorithms come from analysis of offline datasets and not experiences with real

users who would quickly detect these problems.

In this article, we will demonstrate flaws of two of the most popular algorithms We will propose the

use of Precision/Recall evaluation techniques in addition to MAE to measure performance in order to

help better estimate user experience in the future. Finally we will propose a new algorithm that

demonstrates most of the good qualities of nearest-neighbor algorithms while offering far superior

performance in top-N Precision/Recall metrics.

2. Flaws with popular CF algorithms

Nearest neighbor (NN) algorithms are the most frequently cited and possibly the most widely

implemented CF algorithms. They consistently are rated the top performing algorithms in a variety of

publications; however, we propose that they contain serious flaws. While using NN algorithms to

generate movie recommendations with the EachMovie [5] or MovieLens [2] datasets, we found that

many of the top movies recommended were terrible, highly questionable, or unverifiable. This leads us

to believe that these algorithms perform poorly where it matters most in recommendations. We also

believed that limitations of the MAE metric were responsible for concealing these flaws. We designed

an experiment to test these hypotheses.

3

2.1 Assumptions

In designing our experiment we made several assumptions about the usage of CF solutions and the

user experience.

• The CF algorithm is being used to generate the top-N recommendations of what each user

should view, buy, etc.

• The user is unlikely to view any recommendations beyond the top-20 best bets.

• Very obscure items are “bad” recommendations for the majority of users. Example: obscure

movies released in foreign countries that cannot be found on video or DVD in the US are bad

recommendations for a person living in the US.

• A user’s confidence in the CF recommendations is dependent on the user seeing

recommendations for items the user already knows are good. Example: given 10

recommended movies, a new user is more likely to believe the recommendations if they

recognize 4 of the movies to be good than if the user does not recognize any of them. The 4

known movies act as proof of quality to the users.

We believe these assumptions to be valid for many of the domains where CF recommendations are

used.

2.2 Experiment Design

To test our hypothesis we chose two of the most commonly used and best performing nearest

neighbor algorithms: User Nearest Neighbor and Item Nearest Neighbor.

2.2.1 User Nearest Neighbor

The User Nearest Neighbor algorithm, based on the Pearson r Correlation, coefficient was used in

some of the earliest collaborative filtering systems [6,9], yet it remains a popular baseline algorithm

today, since it is easy to implement and demonstrates high accuracy when measured with mean absolute

error. We refer to this algorithm as the User-User algorithm, because at its core is the computation of

similarity between each pair of users. In this algorithm, Pearson’s correlation coefficient is used to

define the similarity of two users based on their ratings for common items:

vu

IIi vivuiu
vu

rrrr

vusim
!!

" #$
%%

=
))((

),(
,,

 Eq. 1

4

u
! and

v
! represent the standard deviations of the ratings of users u and v, respectively. Iu is the set

of items rated by user u while ru,i is the rating of user u on item i. Both the rating averages (
u
r ,

v
r) and

standard deviations are taken over the common items rated by both users. In order to achieve the best

possible implementation, we have used the modification described in Herlocker et al. [3], which

weights similarities by the number of item ratings in common between u and v when less than some

threshold parameter � :

),(
),min(

),(vusim
II

vumsi
vu

!

!"
=# Eq. 2

This adjustment avoids overestimating the similarity of users who happen to have rated a few items

identically, but may not have similar overall preferences.

The adjusted similarity weights are used to select a neighborhood
i

UV ! , consisting of the k users

most similar to u who have rated item i. Ui is the set of all users who have rated item i. If fewer than k

users have positive similarity to u, then only those users with positive similarity are used. The ratings of

these “neighbors” are combined into a prediction as follows:

!

!

"

"

#

$#

+=

Vv

Vv

viv

uiu
vumsi

rrvumsi

rp
),(

))(,(,

, Eq. 3

2.2.2 Item Nearest Neighbor (ITEM)

The nearest-neighbor algorithms introduced above finds users who have rated the active item and

have interests similar to the active user. Using the same data, an alternate approach is to find items rated

by the active user that are similar to the item being predicted (the active item). Sarwar et al. [8]

proposed several different algorithms that used similarities between items, rather than users, to compute

predictions. These algorithms all assume that the active user’s ratings for items related to the active item

are a good indication of the active user’s preference for the active item. Of the algorithms proposed by

Sarwar et al. [8], we only implemented adjusted cosine similarity, the algorithm Sarwar et al. [8] found

to be most accurate; here we refer to it as Item-Item, since it is the only algorithm we tested that

computes similarities between items. In this algorithm, the cosine of the angle between the item rating

vectors is computed, after adjusting each rating by subtracting the neighbor’s mean rating. Specifically,

5

!!

!

""

#"

$$

$$
=

ji

ji

Uw wjwUv viv

UUu ujuuiu

rrrr

rrrr
jisim

2

,

2

,

,,

)()(

))((
),(Eq. 4

Note that unlike User-User, means are taken over all ratings for a user or item, not a subset of ratings

shared with any other user or item. We found it helpful to adjust similarity weights based on the number

of users in common, if the number of common users was below a certain threshold:

),(
|)|,min(

),(jisim
UU

jimsi
ji

!

! "
=# Eq. 5

The predicted rating for a given user u and item i is computed using a neighborhood of items
u
IJ !

consisting of the k items rated by u that are most similar to i. If there are fewer than k items with positive

similarity to i, then just those are used.

!
!

"

"

#

$#
+=

Jj

Jj jju

iiu
jimsi

rrjimsi
rp

),(

))(,(,

, Eq. 6

2.2.3 Data sets

Each algorithm was tested using the MovieLens data set. MovieLens consists of 948 users who

rated movies they had seen on a scale of 1 to 5, 5 being excellent and 1 being terrible. The dataset

includes 100,000 ratings over 1,682 movies with each user having rated at least 20 movies. Based on the

rating guidelines presented to the users of MovieLens, we identified ratings of 4 and 5 to signify “good”

movies. These are the movies that would make good recommendations.

The 100,000 ratings were divided into 4 equal slices by giving each rating a random number from 1

to 4. Each result reported is the average of four runs, each on a mutually exclusive training set; each

algorithm was trained on 25% of the data and tested on the remaining 75%.

2.2.4 Metrics

Traditionally, mean absolute error (MAE) has been used to evaluate the performance of CF

algorithms. MAE works well for measuring how accurately the algorithm predicts the rating of a

randomly selected item. However, it has been documented in Breese[1] and Herlocker[4] that MAE

may not be applicable in evaluating rankings, which we claim to be vital in evaluating user experience.

To better understand how to evaluate user experience, we analyzed how MAE failed to capture the

experience. We found the following negative characteristics:

6

• During offline analysis, if no rating is available for a recommended item, then that

recommendation has no effect on MAE.

• An error of size e has the same impact on MAE regardless of where that error places the item

in a top-N ranking.

• Highly accurate predictions on many mediocre or bad items (perhaps rated 3 out of 5) can

drown out poor performance on highly ranked items.

• MAE cannot evaluate algorithms that produce ranked recommendations, but do not produce

predicted rating values.

It was our hypothesis that the problems listed in the first three bullets above were causing the MAE

metric to conceal flaws in the algorithms that hurt user experience.

In search of a better metric, we turned to Precision, the percentage of “good” recommendations at a

given cutoff in the ranked recommendation list. However, Precision had been used in previous

evaluations of CF algorithms, (e.g. [7]) and the authors had not reported poor top-N performance for

algorithms that we had observed to have poor top-N performance.

To understand this mismatch, we qualitatively evaluated the quality of the top-N recommended lists

produced by the User-User and Item-Item algorithms. We found that these nearest neighbor algorithms

were frequently recommending very obscure items in the top ranks. In the case of movies, the

recommendations would often be for movies which no group member had heard of and there was very

little retrievable information on. Because these items were obscure, rarely did we have ratings for them,

and therefore they were ignored by the Precision metric. In essence, in computing top-20 Precision as it

had been done before, we were essentially computing the Precision of a ranked list consisting of the top

twenty rated items, which may or may not have any relation to the recommended items that user would

actually see. The problem was critical; frequently we would find that less than two of the recommended

20 movies had been rated. Furthermore, when discarding non-rated items we might have to reach into

the 200th ranked item in order to find 20 items that the user had rated.

We hypothesize that these flaws have not been noticed because their evaluation procedure ignored

items for which no ratings are available. To evaluate the quality of the user experience more accurately,

we choose to measure Precision and treat non-rated items as non-relevant.

7

Counting non-rated items as non-relevant will produce an underestimate of the true Precision, yet we

believe the Precision that we measure in this way will produce a better indication of the actual user

experience given our assumptions in Section 2.1. We believe this is valid for multiple reasons:

• The more items we know to be positively rated in the top 20, the more confidence we have

the remaining items will be positive.

• From the user perspective. If user is recommended 20 items, but only recognizes 1, they may

have less confidence in the recommender as a whole.

• People pre-filter the movies they see, choosing not to view movies that they know they are

not interested. Thus, unrated items have a higher likelihood of having a true rating that is

negative than a true rating that is positive.

• The dataset utilizes a discrete ratings scale of 1 to 5, and on average, users supplied a good

number of the top rating (5). If there are predictable items for which we know the ratings are

5, then a good algorithm should recommend those items close to the top of the ranking.

Given this, we would expect to see known liked items near the top of recommendation lists.

• The original MovieLens data that we are using was collected on a system that utilized a top-

N algorithm similar to the User-User algorithm we are evaluating. Thus if our User-User

algorithm recommends a movie highly for a user, then it is reasonably likely that the user

was displayed the same recommendation when the data was collected. However, since they

did not enter a rating, it is likely that they chose not to see the movie. MovieLens had no

mechanism to say that a movie “looks awful”.

Precision with non-rated items counted as irrelevant was computed at 1, 5, 10, 15, and 20

recommendations, the most important range for users according to our assumptions.

An alternative that we could have used was proposed by Breese et al [1]. They proposed a metric

based on the idea that a recommendation’s importance decreases the further it is from the top of a

recommendation list. Their metric computes the “utility” of each recommended item, where the utility

decreases exponentially as you move down the ranked recommendation list. Unrated items were treated

as misses for this metric.

2.3 Results

The results of the experiment are summarized in Table 1 and Figure 1.

8

Table 1. The “modified Precision” (Precision with non-rated items counted as not relevant) with top-

N recommendation lists of different sizes. Notice how exceptionally low the Precision values are.

 User-to-User Item-Item

Top 1 2.4% 1.2%

Top 5 1.8% 1.5%

Top 10 2.0% 2.2%

Top 15 2.1% 3.2%

Top 20 2.3% 3.5%

Figure 1. The “modified Precision” (Precision with non-rated items counted as not relevant) at

increasing levels of Recall. Notice the exceptionally low values of Precision – never greater than 9%

Precision at their highest point.

Modified Precision/Recall Curve

0

0.02

0.04

0.06

0.08

0.1

0
10
%

30
%

50
%

70
%

90
%

Recall

M
o

d
if

ie
d

 P
re

c
is

io
n

User-to-User Item-Item

Table 1 shows that neither User-User nor Item-Item ever achieve greater than 3.5% Precision when

we are considering unrated items to be bad (i.e., not of value to the user). This means that we are only

confident that 3.5% of the recommendations presented to users in a top-20 list will be good using what

is widely regarded as one of the most accurate prediction algorithms!

9

Now, to be fair, 3.5% is an overly pessimistic estimate, as we would expect some of the items for

which we do not have to data to be “good”. However, consider that the average user in the MovieLens

dataset rated more than 50 movies as good. We would hope that a good number of those movies known

to be good would appear in the top-20 recommendations. Rather, the data in Table 1 shows us that, on

average, given a list of 10 top recommended movies, we can only be confident in the user recognizing a

single movie as “good” in 1 in every 5 top 10 lists recommended generated using Item-Item.

Even if we assume that modified Precision underestimated the number of “good” movies by factor

of 5, we still would only expect the user to recognize one movie in each list of recommendations as

being good.

To explore this idea further, we examined just how far down in the ranked recommendation list

would we have to go to reach the movies that we know to be good. This data is shown in Figure 1.

The relatively flat Precision/Recall curve shown in Figure 1 illustrates that the movies that we know

to be good are distributed across the ranked recommendation lists created by the Item-Item and User-

User prediction algorithms. This is counter to what we would expect in a good algorithm, where the

good items would be clustered at the top of the ranked list.

The evidence of poor quality of the User-User and Item-Item algorithm demonstrated in this article

contrasts with previously published results that have shown these two predictive algorithms to be the

best performers. The reason for the differences in algorithm evaluations is the evaluation metric. In the

past, MAE has been used; while we have used a modified form of Precision that we believe more

accurately models the user experience.

 Is it possible we can design a nearest-neighbor algorithm that overcomes this flaw? The

remainder of the paper describes an algorithm we have designed to accomplish this goal.

3. The Belief Distribution Nearest-Neighbor algorithm

Nearest-neighbor (NN) algorithms have a variety of desirable properties that have made them

popular. Our design goal was to create a new predictive algorithm that retained these properties while

achieving better performance on top-N recommendations and thus an acceptable user experience. The

primary advantages of NN algorithms are:

10

• Ability to predict a rating value for a single item.

• The best average accuracy in multi-value data (in terms of predicting the rating value).

• Good performance with large datasets (accomplished with sampling).

• Simple to understand, explain, implement, and maintain.

We designed a new algorithm using the User-User algorithm as a template, hoping to retain the

benefits of the old, yet account for top-N quality and the resulting user experience.

After analyzing where the User-User algorithms had failed, we hypothesized that the majority of

questionable or obscure recommendations were caused by two main sources of error. The first source of

error was the active user having too few neighbors who had rated an item. An example of this with the

User-User algorithm is if you have an obscure movie that is seen by small number of users, each who

rate it a perfect score, that obscure movie will attain the highest possible predicted rating value for all

other users. This will cause the obscure movie to be located high in the active user’s recommendation

list, despite having little confirming evidence that it is good. In fact, once a reasonable number of

confirming ratings accumulate for an item, it is almost impossible for an item to be predicted as a perfect

maximum rating. This occurs because as more people rate an item, the probability increases that one

does not rate it a perfect score, thus making it impossible for that item to receive a perfect maximum

score.

The second source of error was neighbors with very low correlation to the active user who rated the

movie. These neighbors by definition have very little predictive power for the active user; the User-

User algorithm accounts for this by multiplying their weight times there predictive value, effectively

giving more influence to neighbors with high correlation. This method does not account for cases where

all the neighbors who have rated an item have low correlation with the active user. For example,

imagine if 10 minimally correlated neighbors rated item A perfect while a different highly correlated 10

neighbors rate an item B with 9 perfects and 1 above average. User-user, will recommend the first item

higher, despite having those raters of A having substantially less similarity with the active user. While

heuristics can be used to address some of these problems, we believe that they can be addressed more

flexibly and consistently through adaptation of the predictive algorithm.

The User-User algorithm fails because the predictions it generates fail to take into account the

quality and quantity of the information used to generate each prediction. We chose to create a new

11

algorithm that enabled a system to predict not only rating values, but also to explicitly represent the

uncertainty in each predicted rating.

3.1 Description of Algorithm

Past experiments have shown that users, when asked to rate the same item in two different sessions,

will often rate an item differently. This change can be attributed to mood, change in taste, or a variety of

other reasons. There is also the possibility that the user entered the wrong rating accidentally. Thus we

consider the user’s rating as noisy evidence of the user’s true rating. To capture this fact, we represent

our current belief of each user’s rating as a belief distribution across all possible discrete (integer) rating

values. If we observe a user rating of 4 on a 1 to 5 scale, we might choose to represent our belief of the

true ratings as [.02, .06, .11, .70, .11] with .02 being the our belief that the user’s actual rating is 1 and .7

being our belief that the user’s actual rating is 4.

More formally, let R be an n by m user-item matrix containing historical item rating information of n

users on m items. In this matrix, ru, i is a positive integer rating in the range [1-rmax] of the uth user for

the ith item. Let maxvalue represent the maximum rating an item may receive. We assume that maxvalue is

small (less than 20, usually less than 10). Let the active user correspond to the user for whom we are

trying to compute the top-N recommendations. The Belief Distribution Algorithm computes the top-N

recommended items for that user as follows.

First we identify the N most similar users in the database. This is done by computing the Pearson

correlation (Equation 1) between the active user and all other users in R and ranking them highest to

lowest according to that correlation. For each user u, let w(a,u) be the Pearson-Correlation between user

a and user u.

After computing the correlations, the next step is to map each rating to a discrete belief distribution,

representing our belief of user u’s rating on item i. However, rather than using a vector indicating our

belief in the possible rating values, we create a belief difference distribution. In nearest neighbor

algorithms, it has been shown that normalizing a neighbor’s ratings with respect to their average rating

provides a substantial increase in algorithm accuracy [3]. This was done by subtracting the user’s mean

rating from each user’s rating and then using those transformed values to predict how the active user

would rate the item compared to their average rating. To incorporate this normalization into the Belief

Distribution Algorithm, we represent each rating with a belief difference distribution d(u, i). If we were

to take an integer rating in the range of 1 to rmax and subtract an average rating in the same range, our

12

result would be an integer in the range from –(rmax–1) to (rmax–1) Thus our difference distribution is a

vector of size 2rmax–1, representing our belief that the user rated an item certain distances from their

average rating.

Example: With a rating range from 1 to 5, if a user’s average is 3 and he/she rated item i 5, we might

choose the difference distribution to be [0.01; 0.01; 0.01; 0.02; 0.06; 0.80; 0.06; 0.02] with the cells

corresponding to the possible differences from -4 to 4; the .80 indicates that we have an 80% belief that

the user’s true rating for this item is two points higher than their average rating.

We subtract the user’s average rating from the rating, round to the nearest integer, and then map that

rounded integer to a predefined difference distribution. The difference distribution that each rating is

mapped to can be configured depending on our confidence in that particular rating (an inferred rating

might have less confidence than an explicit rating), and our expected spread in the variability of that

rating. In our data, all ratings were collected in the same manner, thus if two users’ ratings have the

same value of Round(ru,i – average(ru)), they are mapped onto the same difference distribution.

For each item i that is unrated by the active user and has been rated by at least one of the user’s

neighbors, we estimate the difference distribution d’(a,i) in a manner that is motivated by the User-User

NN algorithm introduced in Section 2.2. Our approach is shown in Equation 7. We sum over the

difference distributions of all the neighbors, in essence weighting by the similarity with each neighbor.

The weighting is achieved by combining each neighbor’s belief distribution with the uniform belief

distribution. The intuition is that the less similar a neighbor is to the active user, the less belief we have

that the neighbor’s observed rating is the correct rating for the active user. By adding a fraction of the

uniform rating in proportion to the w(a,u), we effectively increase the uncertainty of that belief

distribution, converging the distribution closer to uniform.

1

)*)),(1(()),(*),(((

),(..1

+

!++

=

"
=

N

suawiuduaws

iad
Nu

 Eq. 7

The uniform belief distribution s at the beginning of the Equation 7 can be thought of a null vote

with a weight of 1. It provides a threshold that the subsequent weights must overcome in order to

predict a high confidence rating.

Finally, the predicted difference distribution d’(a,i) is transformed back into a vector of size rmax

through the following algorithm:

13

• The active user’s average rating is rounded to the closest integer

• We then remap the indices of the predicted belief vector by added the rounded average rating to

each index. For example, on a 1-5 scale, the difference distribution represents the relative ratings

-4 through 4. If the active user’s average rating rounds to 2, then we transform the rating indices

into -2, -1, 0, 1, 2, 3, 4, 5, and 6.

• Since we cannot have ratings less than 1, we sum the belief values for all indexes less than or

equal to 1, and this becomes our end belief that the rating is 1.

• Since we cannot have ratings greater than rmax, then we sum all belief values for ratings greater

than or equal to rmax and this becomes our end belief that the predicted rating is rmax.

Finally, we are left with a predicted belief distribution d’(a, i) representing our discrete belief that

the active user provided each of the ratings between 1 and rmax. An example of d’(a,i) for a rating range

of 1 to 5 is [.07, .11, .15, .4, .27] with .07 being the probability of a user rating the item 1 and .4 the

probability of the user rating the item 4.

We may then use the belief distribution to make decisions, or if we need to produce the “most

probable” rating (similar to NN algorithms), we can compute the expected value of the distribution.

3.2 Improved Properties of New Algorithm

We claim that our new Belief Distribution Algorithm maintains the positive characteristics of class

NN algorithms introduced at the beginning of Section 3, while at the same time providing these

improvements:

1. Produces belief distributions that communicate the algorithm’s confidence in a prediction,

instead of just producing a predicted rating value.

2. Detects and communicates low confidence situations caused by small numbers of neighbors who

have rated an item.

3. Detects and communicates low confidence situations caused by only having neighbors that are

minimally similar to the active user.

4. Produces top-N recommendations lists that are substantially more valuable to the user.

5. Enables users to tune their recommendation lists to their desired risk/benefit tradeoff.

14

6. Supports ratings observations at different levels of confidence. For example: an explicitly

entered rating vs. a rating inferred from observation of user behavior (sometimes called an

implicit rating)

Properties 1-3 are introduced in Section 3.1. We will demonstrate Property 4 in Section 3.3. In

support of Property 5, consider the possible different ways that ranked recommendation lists could be

computed in a five-point rating scale, given the output of the Belief Distribution Algorithm. We could

rank recommendations by the sum of belief that ratings are 4 or 5, or we could rank by the sum of belief

that the ratings are 5, or even the sum of belief that the ratings are 3, 4, 5. In the active’s user’s

perspective, those three rankings translate respectively to “show me items that you are confident are

good”, “show me items that are most likely to be excellent”, and “just show me items that won’t be

bad!” Furthermore, users could just set thresholds for such belief levels, under which no

recommendation is made.

These ranking approaches work because the sum of belief across all ratings values in a distribution is

1. A low confidence predicted item may have a most-probable rating equal to the rmax, but the belief in

rmax will only be slightly higher than the belief in other rating values. If we rank only by the belief in

rmax, we capture this lack of confidence.

Property 6 exists because we can tune the initial difference distributions. For observed ratings of

high confidence, we create a more peaked distribution. For those observed ratings of low confidence, we

can use a much more flat initial distribution.

3.3 Empirical Results of New Algorithm

We tested our new Belief Distribution Algorithm in the same fashion that we tested the classic

nearest neighbor algorithms in Section 2. The results are summarized in Figure 2 and Figure 3.

15

Figure 2. Modified Precision (Precision considering non-rated items as not relevant) for

recommendation lists of varying sizes for two popular NN algorithms and our new Belief Distribution

Algorithm.

Modified Precision at Top-N

0

0.05

0.1

0.15

0.2

0.25

0.3

Top 1 Top 5 Top 10 Top 15 Top 20

M
o

d
if

ie
d

P

re
c

is
io

n

User-to-User Item-Item Distribution

Figure 3. Modified Precision (Precision considering non-rated items as not relevant) at varying

levels of Recall.

Modified Precision/Recall Curve

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0

1
0
%

3
0
%

5
0
%

7
0
%

9
0
%

Recall

M
o

d
if

ie
d

P

r
e

c
is

io
n

User-to-User Item-Item Distribution

Figures 2 and 3 demonstrate the substantial improvement in Precision of top-N recommendations

that our Belief Distribution Algorithm provides over the User-User and Item-Item NN algorithms, two

16

algorithms that have consistently demonstrated the best accuracy in the scientific literature. The size of

the difference is astounding; our algorithm has a decisive advantage through the entire Precision curve,

with a 350% increase over the User-User algorithm at 30% Recall. These data provide substantial

evidence that our Belief Distribution Algorithm will provide a better user experience.

Table 2. Comparison of new Belief Distribution Algorithm to classic CF NN algorithms using mean

absolute error. To convert a belief distribution into a point value, we computed the expected value of the

predicted belief distribution.

 User-to-User Item-Item Distribution

MAE 0.7954 0.7805 0.8556

Table 2 illustrates that our new Belief Distribution Algorithm on average cannot predict “most

probable” point ratings as well as the popular NN algorithms. However, this only has bearing on

recommendation systems that display one-dimensional predicted ratings to the user. Furthermore, we

believe that the difference in MAE performance can be recovered with some additional tuning of the

Belief Distribution Algorithm.

The far superior performance of our Belief Distribution Algorithm without a catastrophic loss in

MAE gives us further confidence in our analysis from section 2.3: that Item-Item and User-User NN

algorithm results are excessively low, indicating a poor user experience.

3.4 Qualitative Results of New Algorithm

Additionally, we have anecdotal evidence on the recommendations provided by the various

algorithms. We found results which were in line with those reported in figures 2 and 3. Belief

Distribution Algorithm provided significantly fewer obscure or horrible ratings than User-User and

Item-Item. This decrease, however, was accompanied with more blockbuster movies being

recommended, illustrating the trade-off between serendipity and confidence in recommendations. In

practice, Belief Distribution will need to be tuned to the proper serendipity/confidence ratio for the

target audience.

4. Conclusion and Future Work

17

Collaborative filtering algorithms’ performances have been evaluated using a variety of metrics.

These metrics, such as Mean Absolute Error and Precision, have often ignored recommendations for

which they do not have data. Ignoring these recommendations has provided numbers which do not

accurately represent the user experience. Qualitatively we have seen that User-User and Item-Item

algorithms are often plagued with obscure recommendations. This flaw was illustrated quantitatively by

the extremely low modified Precision scores. To address this problem and provide a better user

experience we proposed a new Belief Distribution Algorithm. Our Belief Distribution Algorithm

retained comparable predictive capabilities to previous nearest-neighbor algorithms while achieving far

superior results for recommendations.

In the future, we plan to run a user study in which a complete set of ratings is collected, enabling us

to evaluate just how accurately modified precision measures the user experience and look for significant

gaps where it does not.

18

5. Bibliography

 1. Breese, J. S., Heckerman, D., Kadie, C., 1998. Empirical analysis of predictive
algorithms for collaborative filtering. Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence (UAI-98). Morgan Kaufmann, San Francisco. (pp.
43-52).

 2. Dahlen, B. J., Konstan, J. A., Herlocker, J. L., Good, N., Borchers, A., Riedl, J., 1998.
Jump-starting movielens: User benefits of starting a collaborative filtering system with
"dead data". University of Minnesota TR 98-017.

 3. Herlocker, J. L., Konstan, J. A., Riedl, J., 2002. An Empirical Analysis of Design
Choices in Neighborhood-based Collaborative Filtering Algorithms. Information
Retrieval, 5 287-310.

 4. Herlocker, J. L., Konstan, J. A., Terveen, L. G., Riedl, J., 2004. Evaluating
collaborative filtering recommendation systems. ACM Transactions on Information
Systems{TOIS}. Vol. 22, Issue 1, p. 5-53, Jan. 2004.

 5. McJones, P., DeTreville, J., 1997. Each to Each Programmers Reference Manual. Digital
SRC Technical Note 1997-023.

 6. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J., 1994. GroupLens: An
open architecture for collaborative filtering of netnews. Proceedings of the 1994
Conference on Computer Supported Collaborative Work. ACM Press, New York. (pp.
175-186).

 7. Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2000. Analysis of Recommendation
Algorithms for E-Commerce. Proceedings of the 2nd ACM Conference on Electronic
Commerce (EC'00). ACM Press, New York. (pp. 285-295).

 8. Sarwar, B. M., Karypis, G., Konstan, J. A., Riedl, J., 2001. Item-based collaborative
filtering recommendation algorithms. Proceedings of the 10th International World Wide
Web Conference (WWW10).

 9. Shardanand, U., Maes, P., 1995. Social Information Filtering: Algorithms for Automating
"Word of Mouth". Proceedings of ACM CHI'95 Conference on Human Factors in
Computing Systems. ACM, New York. (pp. 210-217

