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In infrared reflectance experiments with single

crystals, we have measured the bands v
2

and v
3

for YN
3

and KHF2, v2, v3, and v4 for CaCO3 and NaNO3 having

the calcite structure. Since an oblique incidence technique

was employed, several different polarizations allowed dis-

crimination between crystal modes whose transition dipoles

were parallel and perpendicular to the crystal face normal.

The bands were analyzed in terms of a damped harmonic

oscillator model of the anisotropic dielectric function

which associates three parameters with each mode. These

parameters are: vT, the transverse phonon frequency; S,

the strength; and y, the damping constant. For each of

these anisotropic crystals, an appropriate dipole lattice

sum was used to evaluate the effective internal field. This,

along with the S and vT parameters, was used to



determine the molecular dipole derivatives, 311/3qk, for the

several modes.

In the HF
2

ion study, it is demonstrated that the

transition strength is rather insensitive to the proportion

of quadratic and quartic terms in the potential function.

Also, some other intermolecular coupling mechanism, besides

dipole coupling, significantly perturbs the 91.1/q2 value

in the E
u

species. This might possibly be hydrogen bond-

ing between the two bifluoride ions in the unit cell.

These derivatives are then transformed to derivatives

with respect to internal symmetry coordinates. To accom-

plish this transformation for modes 3 and 4 in CaCO
3

and

NaNO3, a molecular potential function must be available: we

have carefully analyzed the uncertainties in the 91-1/D Sk

values which arise in consequence of imprecise definition of

the potential function.

Finally, the data are reduced to atomic effective

charges and charge fluxes utilizing simple bonding theory

to facilitate the choice of some of the indeterminate signs

of the 41/3qk which arise because (a1.1/3qk)
2

is the

measurable quantity in these studies.
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A STUDY OF THE INFRARED INTENSITIES
OF SOME SMALL MOLECULAR ANIONS

I. INTRODUCTION

The small molecular anions which are the subject of

this infrared intensities study in the solid state are: N3

and HF
2'

each linear D
coh

ions with sixteen valence

electrons; CO3 and
'

NO-
3

both planar D
3h

anions with

twenty-four valence electrons. Potassium azide and potas-

sium bifluoride both occur as D
18
4h crystals whereas calcite

and sodium nitrate grow with D6 symmetry (1). Potassium

bifluoride and sodium azide have been previous topics of

study in this laboratory (see references (2) and (3)). Our

intention was to augment the bifluoride work of Cooke by

using improved data analysis which included simultaneously

fitting modes 2 and 3, the bend and antisymmetric stretch,

respectively. Since v
3

is a very strong mode, its in-

fluence over v
2

cannot be neglected, so this new analysis

of KHF
2

does undoubtedly improve the values for the infra-

red active dipole derivatives. By studying the infrared

intensities of N
3

in the potassium salt and comparing with

those determined from the sodium salt (where a similar

method of measurement and analysis was used), we hoped to be

able to say something about how well the effective field of

the azide ion in both salts could be accounted for. We must

have a reliable method for calculating the effective field
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the ion experiences if our intention is to determine mole-

cular infrared intensities for species that are not easily

studied in the gas phase.

The bit of data that eludes the analysis, whether gas

phase or solid state, is the sign of the dipole derivative.

Luckily, this can be deduced upon further reduction of the

dipole derivatives to effective atomic charges and charge

fluxes within the molecule. The sign is then rationalized

by considering the relative electronegativities of the atoms

involved and general notions on multiply bonded resonance

structures. J. C. Decius has devised the effective charge-

charge flux model, or EC-CF model, to help rationalize infra-

red intensities (4). We have found the charges and charge

fluxes for N
3

and HF It would be more instructive how-

ever to compare effective charges and charge fluxes for a

sequence of molecules where the effect of a successive

increase in electronegativity could be studied. For this

purpose we have looked at BF
3 , 3CO

2-
.and NO

3
The infra-

red

I

intensities for BF
3

were studied in the gas phase and

we have extracted them from the literature (31). The

frequency dependent optical constants for sodium nitrate and

calcite were reported (5) and the dipole derivatives were

calculated for an isotropic dielectric model (6). More

recently, the frequency dependent dielectric constant was

evaluatedintermsofstrengths,si,transverse frequencies,

yjr and damping constants, y , for both the internal and
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external modes, but no dipole derivative analysis was given

(7). Since we were happy with our success in fitting azide

and bifluoride spectra, we were eager to subject calcite

and sodium nitrate to the same analysis and then to deter-

mine effective charges and charge fluxes in hopes of ration-

alizing the dipole derivatives.

To do a vibrational intensity analysis for a molecule

or molecular ion in a crystal one needs a single oriented

specimen, well polished, of at least 9 MH
2

surface area.

The observables in a reflection experiment are then: 1) the

band shape: its width, height, and placement on the frequen-

cy scale; 2) the polarization of radiation which makes pos-

sible the identification of modes active perpendicular to or

in the plane of the crystal face; 3) the angle of incidence

between the normal to the crystal face and the incoming

radiation. We then model the reflectance with a damped

harmonic oscillator response function for the directional

dispersion in the dielectric constant. To accomplish this

fit, one adjusts the strength, S
3'

or width of the band

vT), the transverse frequency, viT, and the damping

constant, y.3 , or the height of the band, all for a specific

mode j, until the theoretical response matches the experi-

mental reflectance. Then, provided one can account for the

effective field at the ion of interest induced by all the

other ions in the unit cell, Si and viT are used to

determine 314Pqj, or the dipole derivative with respect to
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the molecular normal coordinate q for mode j. The dipole

derivative is the measure of the infrared intensity for a

particular mode j.

The main aim of these studies is then to quantitative-

ly determine the dipole derivatives for the azide ion in

KN3, the bifluoride ion in KHF2, carbonate ion in calcite,

and the nitrate ion in NaNO3. Consequently we have tested

how well the harmonic oscillator model for the dielectric

constant, with frequency independent damping, accounts for

reflection in single crystals. Also we have compared our

values for the various anion intensities with those obtained

from different salts of the same anions. This tests direct-

ly how well interactions between ions in crystals can be

described using only dipole-dipole coupling. This is a sort

of oriented gas model with correction for polarizability.

Finally, exercising the EC-CF model we have compared signs

and magnitudes for the charges and charge fluxes in certain

molecules with basic trends in electronegativities and

fluxes in multiply bonded resonating structures in hopes of

proposing a viable scheme for choosing the sign of the

dipole derivative, a term not determinable from experiment.

These analyses have in most part appeared in publica-

tions listed as references (8), (9), and (16).
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II. THEORY

The process of characterizing the effective equilibrium

charges and charge fluxes within molecular anions, or the

quantities and qualities that are ultimately responsible for

the reflection of mid infrared radiation from certain ionic

crystals, will be developed in this section. Technically,

this capacity to reflect energy can be described in terms of

the frequency dependence of the dielectric constant, c(w).

We wish to define this frequency dependence with certain

adjustable parameters which can then be related to the

moleculardipolederivatives.
c13

for the infrared active

modes, j. These values will then lead to the calculation of

the effective equilibrium charges and allowed charge fluxes

as defined in the EC-CF model.

The first thing we need is an expression for the fre-

quency dependence of the dielectric constant. From basic

physics we know that the polarization, P, or the electric

dipole moment per unit volume, is related to the frequency

dependence of the complex susceptibility, x(w) through the

dielectric field strength, E, simply as

P = X(w) E (1)

We also know that the electric displacement is related to

the polarization as
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dependence of the complex susceptibility, x(w) through the

dielectric field strength, E, simply as

P = X(w) E (1)
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D = E + 47 P

and empirically that

D = E(w) E .

(2)

(3)

6

The frequency dependence of the dielectric constant then can

be expressed as

E(w) = 1 + 47x(w) . (4)

The description of the implied absorption process in

crystals is innately different from that for gases or

liquids. In fluids, the absorption is mediated by molecular

collisions. This is physically impossible in solids. In

the solid state, absorption of radiation is a consequence of

the anharmonic coupling of the wave vectors for the phonons

in the long wavelength limit, k ti 0. A Hamiltonian which

describes the lattice, as given in the analysis by Wallis

and Maradudin (10), is simply

HL = Ho + HA
'

where the harmonic contribution is given as

H =1- 7 {a(f('-j)(5( -k-j) + w2(itj)Q(1-(j)Q(-ic'.91 (5)0 2 -'
k.
J

and the anharmonic part considering only cubic terms, is

represented as
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HA =
/ V(i,1ZliejZ"ju)Q(j)Q(Iii)Q(ni")H

kk'ku jj'ju
(6)

The w(k-j) are normal mode frequencies, Q(k.j) are the

normal mode coordinates, and V(iZjS'j'S"j") are the an-

harmonic force constants for the modes j,j',j" at wave-

vectors iCS'S". In an earlier paper (11), these authors

indicated that it is precisely this anharmonic character

that gives rise to a band of absorption in a crystal and

furthermore, that this coupling of modes is accounted for by

including a damping constant in the dispersion for the

susceptibility.

Born and Huang in their esteemed tome "Dynamical Theory

of Crystal Lattices" (33) first addressed the problem of

vibrations in an anharmonic lattice by using time dependent

perturbation theory. Wallis and Maradudin (10) in their

later paper, used the time correlation formalism based on

the Kubo method for calculating transport coefficients to

solve for an expression for the elements of the dielectric

susceptibility tensor for an ionic crystal. They found that

the contribution to the dielectric susceptibility from the

dispersion oscillators could be expressed as

(311/3Q )
1 7

2

r 1
X(W) = w w+w .+LJJ .+ir

J 03 03 of

1
1w-w .-L .-ir

03 03 03
(7)
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where w
oj

is the characteristic frequency for mode j at

= 0 and v is the volume of the primitive unit cell.

The frequency shift, Awoj, from the purely harmonic woj, is

introduced to account for the effect of anharmonic coupling

and is given by these authors as

IV(oj; k-"j")12
=

oj 2
k'jlkLj" w(0j)Iw(kiji) Iw(k"j")

X (nr,i, + 1P (8)

They also give the frequency dependence of the damping con-

stant, F
03

., to be

where

IV(oj; k-"j"I2Trn()
2

k-* 'j'kuj" w
oj

ILAZ'j') Iw("j")

X (nk-'
1 3 .,

i) 8 [w-w(JZ1j1)-14ej")]

n = [e
MI(00Z1j') I -

1,-1
Jk,3

(9)

is the Bose-Einstein distribution for the phonon model (5 =

(kT)
-1 ). The symbols P and 6 refer respectively to the

principal part and the delta function and originate in the

analysis from taking

lim ( )

1
i76(x)

X
E- 4-0+

-1E x
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is a parameter, not to be confused with the dielectric

constant, which is used to turn on the electric field at

t = 0, since the susceptibility is a function of the history

of the system.

There are several criteria to be met if the damping

constant is to display frequency dependent behavior. One

obvious requirement is that anharmonic coupling of modes

must exist; therefore there are modes of the correct sym-

metry to couple and thus contribute to the potential energy

of the lattice. These can be combination, difference, or

overtone modes. The other conditions for a maximum in the

damping constant come from investigating equation (9). The

double sum over the wavevectors and 1.4c." for the

associated modes j' and j" can be broken down into two

main parts. One is a function of the frequencies of the

modes and the other is a delta function involving the fre-

quencies of the modes and the frequency of the exciting

radiation:

ral Iff,w(j'),w(iZuj")}6{w-w(Ziii)

(1-)<:11j11)

These sums can be approximated by integrating over each

wavevector:
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Fallf{(0(1j'),w("j")}(5{w-w(it'j')
Z'

-w(Z"j")1 .

Since infrared radiation imposes the long wavelength limit

on us, the selection rule for this process is

+ 0 .

For the case of an overtone, j' equals j", and in the fol-

lowing example, we will specifically discuss 2y4 in NaNO3.

The damping constant expression then becomes

r a f f{w(k:'4)}d{w-2w(Z14)}

where w(-k') = w(i.C'). However, we are more interested in

knowing how the damping constant varies with frequency

rather than wavevector, so we can modify this integral

further and state

F f f{co(k.'4)}(S{w-2w(iC'4)} d!' dw(141)
dw(k'4)

Now, when the scanning frequency is in resonance with this

mode, w/2 = w(it'4), or

P ti [f{w(14)} ]

(dw(14) w(kt41)=W
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We then clearly see that for a maximum in the damping con-

stant, the density of modes, or dfZ/dw, must be large. If

w(14) equals w4, i.e. mode 4 has negligible dispersion,

F will be large at w=2w4.

As an example for the existence of a frequency depen-

dent damping constant, let us refer to Figure 13 for the

reflectance of mode 3 in NaNO
3'

In the region extending

from v
3T

at 1440 cm-1 to v
3LL

at about 1600 cm 1, we

have observed a dip at 1448 cm 1 in the otherwise maximum

reflectance. From a calculated density of modes (12) and a

second order Raman experiment (13), we know the two phonon

density for mode 2 v4 in this region is high. If v4 is

around 725 cm-1 we would expect 2 v4 to be around 1450

cm-1, in close agreement with the observed maximum in r(w).

This feature was also observed by Nichols and Frech (14) and

ascribed to the same phenomenon. In this specific example

one might diagram the frequency dependence in r roughly

as

(v)

2.5

1448 v(cm-1 )

This theory seems to account for the frequency dependence

of F in the NaNO
3

case. However, it is not the aim of
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this present study to quantitatively determine the damping

constant. We are more interested in the
L
-v

T splitting,

or the strength of mode j, and its transverse frequency

since it is these two parameters that relate to W9qi.

We will neglect any dispersion in F and treat it as a

constant over the mode j. We will see that this is

usually reasonable over the frequency regions studied.

We can now revamp equation (7) into a more manaaeable

form by making two approximations. First, we acknowledge

that the Aw
o3

. terms are small at room temperature and

furthermore can be treated as constants. We therefore

assignwia,==w
o3

+ Aw
03

.. Second, while recognizing that

there may sometimes be resonances like 1448 cm 1
in NaNO

3
,

wewillalsotreatF.as a constant. In light of these

two approximations, equation (7) can be rewritten as

x(w) (A1L.)2 73T w+w
jm ir

3 w-w.3T
-11

3

1 (10)

Next, we want to put this equation in a form that will lend

itself to computation by combining terms and separating the

real from the imaginary part. The result is that

2 2 ,2 2 2 2
oi -co +.L F w +w +r

1 7 3.1 2 jT 1 i ._..1_2 jT
j) } ,X(w) = 2. (---) (v , ( D w ' D

J j jT

2 2 2where D = (w. -w2)) +2w. r.2 f2w
2
r.+r.

4
. Furthermore, we have3T 3T 3 j J



found that we can simplify this expression even more by

assumingtheF.2 and F.
4

terms can be neglected since

F. « Also, in the vicinity of a mode, w.
3T

will

always be close to w, therefore

2 2
31J W -CO

1 2 jTX(w) = 1 (Q3----) fv
.1

, 9
(w

2 -w2 2 .7

2) +4w 2

jT 3

2F.w
- i 1.2 2 2 2 2

(wiT-w ) +4F.w

13

(12)

So far, we have limited ourselves to the frequency

dependence of X due to the so-called dispersion oscilla-

tors. In reality, the dispersion in the infrared region is,

of course, not independent of that in the electronic region.

Normally the dielectric response in the high frequency

region, c(0.), is treated as a constant exemplified by the

square of the index of refraction, n
2
, measured at 589.3

nm. In our analysis, the high frequency dielectric constant

provides a background contribution to the overall frequency

dependence of E that is added to the contribution from the

infrared region:

ca (w) =
a

(0.) + c (ir) (a = x,y,z) . (13)

Likewise, we can express x(w) as

Xu(w) = XG(') + Xu(ir) . (14)



The electronic contribution to the overall susceptibility

is expressed as

Xa(co) = ( B )

MM I m a
mm'

14

(15)

in which am , is the electronic polarizability of ion m'

and Bmm, is the effective field ratio that expresses the

field at ion m' due to all others, m, in the unit cell.

It is defined (15) as

(16)

E is a unit matrix; D is the field propagation tensor, aE

dipole wave sum. Both are 3Nx3N where N is the number

of ions in the unit cell. These dipole wave sums are found

by considering the whole lattice and in the point-dipole

approximation, depend on the geometry and physical size of

the unit cell. A typical form for Dz is

(l/t
3
) [1 3z2 /t2]

lattice

where the coordinates of a lattice point are expressed in

rhombohedral basis vectors as

t = T1a1 + T2a2 + T3a3

where the Ti are integers. it is interesting to note that

also depends on the directional polarizability of the
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ditributions of electrons about the molecular ions in their

unit cell.

The same effective field can be used to modify the

molecular moments. In light of the above relationships and

equation (4), one is led to two expressions for the

dielectric constant. The high frequency dielectric constant

is

47 7

a
00) = 1 + 77 Bmm

'

a
m'

mm'

and the infrared component is

1 3.1(m1)
]

2

c
2

j
mm

(17)

2 2
v.r,-v .v
IIX ( i

2 23 2 2 2U (18)2 2 2 2(viii,_v )-+y.v (vjrr-v ) +yjv
3

where v = w/(2rc), c being the speed of light, and

yj = 2rj. 1.1(m)/;Qj is the unit cell normal coordinate

dipole derivative for ion m`

We have briefly investigated how one describes the

high frequency dispersion in the dielectric constant. It

has been said that the dielectric response in this region

is a result of the susceptibility of the electrons to

deformation by radiation. The electronic polarizability,

a, is then a measure of the degree of their pliability. We

also know that the polarizability is accentuated by the
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existence of an induced effective field at the ion site in

the unit cell of the crystal. As the incident frequency is

lowered, the behavior of the atoms within the molecular

framework starts to contribute to the dielectric constant.

Unlike the subdued response the dielectric constant ex-

hibits in the electronic region, the response in the infra-

red is one of intense absorption by molecular species in

the crystal. e is forced to become a complex quantity at

the discrete frequencies of the fundamental molecular modes.

The largest contribution to the dielectric constant is

expressed when the frequency of exciting radiation is

lowered below the far infrared to radio frequencies. The

static dielectric constant, 60, is usually determined by

measuring the difference in capacitance between the material

and a vacuum at frequencies on the order of kilohertzs. It

could just as well be calculated by taking

(m1)
,2E = C B ,

1-1

0
3

mm Q.

where the sum is over the strengths of the infrared modes.

At low frequencies, all degrees of freedom can follow the

applied field.

In this study, we intend to observe the reflection of

radiation from the surface of a single crystal instead of

directly measuring the dielectric constant since our aim is

not to merely determine dielectric constants in the
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infrared region, but rather to use the dispersion in E to

characterize the molecular dipole derivatives. The reflec-

tance as a function of the dielectric constant, at normal

incidence is known to be

R
62

2 + 1

2

This is the simplest expression for reflectance but

the experiment it implies is the most difficult to carry

out in a conventional spectrometer. Incidence angles that

are near normal, around 10°, or that are oblique, greater

than 15°, are preferred. In this study only oblique inci-

dence was used with an average Ai of about 45°. As we

shall soon discover, the addition of a finite incidence

angle complicates the simple formula given above, but at

the same time, it opens the door for new experiments which

reveal certain polarized modes that would not be observed

atnormalincidence(e...0 ) .

The reflection equation, according tc Decius and

Hexter (15), becomes two different equations for two polari-

zations. If the incident electric vector is polarized

perpendicular to the plane of incidence, or transverse

electric (TE), we have

loos 0i (c. -sin
2
O.)

R(TE) = 1

1 -1 1

i
1

cos 0. + (E
1
-sin

2
eli )

2

(19)



and if the electric vector is polarized in the plane of

incidence or transverse magnetic (TM), we find

R(TM)

sin
2
e 1

6
2

cos 0
i

- (1
1

)

2

6
3

2
sin ,

E2 cos O. + (1
1

)

3

2
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(20)

The numbering used here refers to the principal axis of the

frequency dependent dielectric tensors. 61 and 62 define

the crystal face and 63 is the normal to the crystal face

for all systems of at least orthorhombic symmetry. We will

concern ourselves with uniaxial tetragonal and trigonal

systems in which 6
x
= Ey E

z
. This combination presents

us with four different possibilities for polarized resonance

of an isolated mode:

Resonance
Case in Label Condition

1
1

TE 1= x or v or z

2
3

TM2 2= x or y or z

3 c
3

TM3 3 = x or y or z

4
2

and E
3

TM23 2,3 = x, y

We now have two expressions for polarized reflectance

in terms of the directional energy dependence of the

dielectric constant. Earlier we found an expression for

the dielectric constant as a function of two mode
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parameters,viTand.Y3 (see equation 18). This equation

also displays the dependence of c on the modified molecu-

larmoments,(BW9.Q3 ). Using the operator form for

p = (9p/Q )Q, reference (38) gives an expression involving

the transition moment integral as

47 2w.
3T

v
B 3P

Q
<01Q11>

,

2

= S.w2.3 3T (21)

where S.
3

is a dimensionless strength parameter for mode

j and <01Q11> is the normal coordinate transition moment

integral. In the limit of a purely harmonic oscillator

<01Q11> = (h/2wiT)2 and (21) reduces to

12
( B

p(m')
)

2
= S.w 2

v mm' a;c2
j

3 jTmm'
(22)

Otherwise, if the potential function has a strong anharmonic

nature, one would need expressions for the transition moment

integral. We will investigate the degree to which 311/3Q

differs for the harmonic versus quartic potential for the

specific case of the v3 mode in bifluoride ion. It has

been suggested that the mode is quartic in the potential.

We have, however, found that for the ions studied here, it

is reasonable to treat them in the harmonic limit and we

will use the strength expression written in wavenumbers as



a 2
=

1 11(m') 2S.v.
3 3T 2

(1
mm'

DQ. uC TIV MM 3
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(23)

a = x, y or z. Not much has been said about how to find

the effective field values. This subject is covered in

reference (2), and only a summary will be given below. To

find B, one must know the dipole wave sum D, for the lat-

tice and the electronic polarizabilities, ,ct. For the ions

studied here these can be found in either reference (2) or

(17). In the potassium azide case, we modified the values

in (2) for the similarly arranged potassium bifluoride

crystal, since the azide values were not previously

determined.

There are two methods used to find geometrically depen-

dent D values: the Ewald-Kornfeld technique and the

planewise summation method. Both methods are thoroughly

discussed in reference (15). In either calculation, the

point dipole approximation is used in that an anion is con-

sidered to be sitting at a lattice point described by the

crystal structure, either D4h or D
3d

in this study.

To know the electronic polarizabilities requires that

one have values for the indices of refraction for the

materials being studied. The electronic polarizabilities

for most group I and II cations have been determined in the

halide salts of these cations where the Lorenz-Lorentz field

correction valid for cubic crystals was used to fit measured

indices.
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We will use the polarizabilities found either by

Tessman, Kahn, and Schockley (18) or those of Pirenne and

Kartheuser (19). The crystalline state anion polarizabili-

ties are more difficult to come by. One can see, however,

from equation (17) that knowing the index of refraction

(6(.0)
2

) would lead to the polarizabilities, if B were

known! A catch-22! To get around this, one selects a value

for the polarizability, calculates B (equation (16)), then

calculates an index of refraction, and compares to experi-

ment. Repeating the procedure eventually leads to a con-

sistent set of values for the anion polarizability and for

B.
r1,

We now have enough information to find
7

once

the reflectance band has been measured. We can write an

expression for the frequency dependence of the dielectric

constant in terms of three parameters which can be adjusted

to fit the experiment

0. 2 2 2
S.v, (v. _v )

ca (w) = c (co) + 1 r 727 T 3T
a 4 ' f 2,2 2 2J0)."-N) ) -i-i.V

3T 7

a 2v3S3 .. (y.v)
i

T 3

2 2 2
]

) +Y.2 y
2

(24)

The parameters are: the dimensionless strength of mode j,

Sj, in direction a; the transverse frequency of the mode

v.
3T in.cm-1,theciampingconstamt.ljof the mode in cm 1.



As one can see from equations (19) and (20) , the

reflectance will approach unity in certain limiting cases

such as

(el-sin2 8.)1- = pure imaginary;

e2 pure imaginary,
2

( 1

2sin e.
1 .0

) = pure real, or vice versa.
E3
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The frequency ranges over which this can happen are dis-

cussed below in the idealized limit in which y, the damp-

ing constant, is neglected. It is instructive for us to

investigate the conditions which cause the reflectance to

be a maximum and those which proceed to make it a minimum

since we wish to use parameters that model this behavior to

calculate Du /q..

The dominant behavior of the dielectric constant in

the vicinity of mode j can be represented by the real part

of a classical (i.e. undamped) harmonic oscillator function

o 2
S.v.

AL
(v) = ca(v)

2 2"T (25)

\)jT-v

again o. can be x, y, or z and EB is the background

dielectric constant. The modes that contribute to the back-

ground dielectric constant can be accounted for by express-

ing it as



S
a
v
2

a k kT
E (V) = (c°)

Ic
.

T3
2 2

.kT 3T
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( 2 6 )

where one notes the background consists of all modes except

the one being fitted. Consequently, 63 can be larger or

smaller than c(c0). When y equals yiT, there is a pole

in the dielectric function. It swings from positive

infinity through zero to negative infinity: the index of

refraction becomes imaginary. As the frequency increases

the dielectric constant becomes positive again and returns

to its background value minus the strength from the mode it

just experienced.

The conditions for maximum and minimum reflectance

are listed in Table 1 for the cases 1-4 stated above,

where we have also included some ballpark numbers for

reference. The reader who is familiar with normal inci-

dence experiments of this type should note that it is TM2

that most resembles a normal incidence experiment since

maximum reflectance occurs between the transverse, viT, and

longitudinal, \.),,j, frequencies. The reader who is unfami-

liar with normal incidence behavior may wish to consult

Appendix A. The longitudinal frequency is defined to be

that at which the dielectric constant equals zero. It is

interesting to note that TE, TM3, and TM23 experiments

performedatthesarreS.drop off at the same frequency

VjLL. This pseudo longitudinal frequency (20) occurs at a
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Table 1. Characteristic dielectric behavior for the four
cases of polarized reflectance.

Start of End of
Case Maximum R Maximum R Minimum R

TE
Cl

-4. co
Cl

> sin
2
ei E1 = 1.00

(v T) (v LL)

1-sin
2
ei/E3

TM2

TM3

TM23

m
2

(v T)

E
2

> 0

(v )

2
cos

1

2
singe.

> singe.E
3
= 0

3
9. c
1 3

1-cv cos
2
e
iNI) NT_J)

2
= co

(v T)

1-sin
2
ei/s3

E
3

> sin2ei c
2

cos
(vLL) 1

TE

TM2

TM3

TM23

E
1

E
2

E3

E
2

=

=

=

=

co

m

0

co

E
1

E2

E3

E
3

>

>

>

>

0.50

0.00

0.50

0.50

E1

=
2

£3

E2

=

=

=

=

1.00

1.50

-2.00

1.50

aValues given are for 8 = 45°, =
1

= =
2
= 2.5,

3
= 2.0.



higher value than
vjL ,which in turn is larger than v

jT'

From the simplified expression for the frequency dependent

dielectric constant given above,

and

S. 1
V . ( 1 + -1) 2
71: c

B

S.

LL = v
jT

(1 )1 .
c
B
-sin2

8
i
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(27)

(28)

A TM3 reflection concentrates all of its intensity between

v.
31J \)jLL'

and This polarization, unlike any of the other

cases, selects the situation in which the electric vector

in the incidence plane couples with a mode polarized

perpendicular to the crystal surface. Both TE and TM23

reflectance envelop TM2 plus TM3 reflectance, except for

slight differences at minimum R. One last comparison to

be made between the various types of spectra is that TE,

TM2, and TM23 exhibit minimum reflection after a band (at

higher frequencies), whereas TM3 has a minimum reflectance

before the band (at lower frequencies).

Once we have successfully modeled the reflection for

mode j, the strength and transverse frequency parameter are

used along with B , in equation (23) to calculate
MITI

1.1(m')/9q. By studying the magnitudes and proposing signs

for the molecular dipole derivatives for bends, stretches,
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etc., one can ultimately say something about the charges on

the atoms and the charge fluxes along the bonds.

Following the EC-CF analysis proposed by Decius (4),

the dipole derivatives can be attributed to effective

equilibrium charges,
-a
'(), on the atoms a in the molecule

and to charge fluxes, Ac
a
x
o

allowed during a vibration, so

that

N
pu = (co Ax

a
+Ac

a a
xo) .

ax a=1

More completely, the contribution from the equilibrium

charges can be written as

(29)

A
I x a a

= c°[1 Ax(k)S
k a

+ Ax(k'Z)s
k .S + .1 (30)

a k k,Z

The complete charge flux term is

where

and

A
2
u
x
= 7r7

'a
k),a 0)0 r yak' Z) xoSkS , (31)

a k k,Z

(

Ax
a
k)

=
a k

r(k)
v'a/

/3s
k

(32)

(33)
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The Sk are symmetry coordinates for mode k, and we have

illustrated a mode active along the x directed molecular

axis. Since we are interested in characterizing the mole-

cular vibrations in terms of fundamental electron charges,

it is more appropriate to express the dipole derivatives in

terms of symmetry coordinates rather than mass weighted

normal coordinates. The relationship between the two is

311 7 E]: au

k
tikj Dq

j

(34)

where L
-1 is the inverse of the transpose of the linear

transformation matrix (21) which defines the symmetry coor-

dinate in terms of the normal coordinates. In this study

we will only consider the first order terms in the equations

defining fixed charge, and charge flux, 21.1 contribu-

tions to the dipole derivatives. This scheme for distribut-

ing charges in a molecular anion while conserving the over-

all charge and dipole is similar to but not identical with

a Mulliken population analysis scheme for calculating net

atomic charges in molecules (22).

For the diatomic case, we can draw some general con-

clusions about the importance of fixed charge versus charge

flux in describing the infrared intensities from the

results tabulated in (4). For very polar covalently bonded

molecules, the equilibrium effective charges contribute more

to the stretching intensity than the charge fluxes do. For
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slightly polar or nonpolar covalently bonded systems,

especially those of multiple bond character, the charge flux

is responsible for most of the stretching intensity. For

the nonpolar multiply bonded polyatomics this study is con-

cerned with, we expect the stretching mode intensities to

yield large charge flux values and we will see that the

effective charges are determined solely by the bending mode

intensities.

The procedure for dissecting the infrared intensities

into charge and charge flux terms will be demonstrated for

the case of the linear D
coh

anion. The analogous steps

for the D
3h anion analysis can be found in Appendix B.

To find the fixed charge contribution to the dipole

derivative, one is first required to write expressions for

the instantaneous change in a dipole in terms of the effec-

tive equilibrium charges and the infinitesimally small

cartesian changes for each atom. Next, one can write down

expressions for the symmetry coordinates in terms of these

same coordinate changes. Combining the two functions, one

arrives at the relationship between the effective equilib-

rium charges and the symmetry coordinates. In addition, we

must consider the conservation of linear momentum since the

species is a charged ion and this will introduce mass depen-

dence into our final expressions for the fixed charge.

For the AB D
coh

anions, there are two active dipole

derivatives: the bend, Op/C,S2, and the antisymmetric
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stretch, 311/3S3. In all our analyses, we use the conven-

tion that the positive direction for the A atom displace-

ment corresponds to the positive dipole direction. We have

also used the crystal axes to describe the molecular acti-

vities. A bending symmetry coordinate is

S2z r4) = +2[AzA -2 (AzB1 AzB2)] (35)

and an antisymmetric stretch coordinate is

S3x 22[AxA 2 (AxB1 AxB2)] (36)

If the overall charge on the molecular anion is
m then

o
A + 2co = m (37)

We can immediately write down the expression for an instan-

taneous change in the dipole in terms of the effective

charges and the cartesian displacements for each atom as

A = cA
o

A GA lE3.1
A
631 + cE2 032 (38)

where 6 means x, y, or z. Assuming C
o
-Bl 132

we can

rewrite the above equation as

A
1

1.1 = A A 0A
+

m c
A
)(A

6B1
+A

32 ) (39)

Incorporating the conservation of linear momentum condi-

tion,

1
[m
A

G 0A m
B

(AG
B1

+ B2)] = 0 (40)



where M is the total molecular mass, into the defining

equation for S2 (a = z) we have

S2 = - rAz + Az 1
2 mA B1 B2-

30

(41)

Rewriting equation (39) we find a more suitable form to be

°111z c(p)ITAzA AzB2) ] crti[AzBi

We now have enough information to define Alpz as a func-

tion of symmetry coordinates 52

mA
i[cp, 111(7,T)]s2 (42)

Similarly we find for the fixed charge contribution in the

x direction

mAoA
1 x

= 2
A - m M(--)1S 3

. (43)

One parameter, namely cA, determines the nuclear contribu-

tion to the varying dipole for both modes 2 and 3.

Next, we wish to identify the charge flux influence on

the dipole derivative. If we are going to have a charge

flux about an atom during a vibration, then the irreducible

representation of that set of equivalent atoms must trans-

form as the vibration. For the atoms in a
h

AB2n molecu-

lar ion, we have only one coincidence with an active infrared

mode: S
3
(E
u

) transforms like atom B(E
u ). No flux occurs

during the bending motion. The charge flux parameter is then
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Mc;Bl-C )

9S3

31

b . (44)

This expression has the following meaning: as S
3

is

executed, the flux of charge describes the dynamical dif-

ference between the charge on atom Bl and that on atom

B2.

The complete expression for the varying dipole can now

be written down. Considering equation (42) for mode 2, we

have

3A1 zP
mA

A-1'(r
o

2
3S

2
'A (45)

and consolidating equations (43) and (44) into one function

for mode 3, we find

2 x o3Px 3A P1 x 3A
o= 2 -(,

mA
) 2-b r (46)9S

3
3S

3
3S

3
A M m

where r
o

is the equilibrium bond length and b has units

of e/A.

The analogous relationships for the case of the D3h

planar molecular anions are:

'1-tz

3S2
-

rt1

1(r0 ( t-%\

31i

Y =.6-2
3S3

m
A

(--) ) + 3(6 r
o

,m m

) (47)

(48)



and

22 (ro I A,

4
6 'spi %7/ ) c r°

m 2

where the charge flux parameters are

b = 6-i
(2 Bl B2 B3 )

3S
3

"3(2 r )CBI B2 ''133c = 6 2
3S

4
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(49)

(50)

(51)

For the derivations of these formulas one is directed to

Appendix B.

Considering both equations (46) and (47) above, one

can see that all the effective equilibrium charges can be

deduced from the intensity of the bending mode S2 in each

case. This means that the effective equilibrium charges

we will be finding depend on the motion of the atoms within

the nonpolar molecular anions. Consequently one should not

expect these effective charges to compare to those found

from an LCAO-MO analysis of the atomic electron densities

at equilibrium or to those charges resulting from molecular

quadrupole moment experiments, since both of these investi-

gations result in effective charges that are closer to

static point charges.
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III. EXPERIMENTAL

18KN
3

and KHF
2

are both of D
4h-I4/mcm crystal struc-

ture as determined by x-ray crystallography (1) and conven-

iently grow with large (001) faces (x,y). As seen in

Figure 1, the linear, D.h, anions occupy D2h sites and

the cations are on D
4

sites. Since the unit cell is body

centered with four molecules per unit, the dynamic primi-

tive cell is reduced to two molecular units. These tetra-

gonal crystals were grown by slow evaporation from saturated

solutions of commercially available salts. The solutions

were first filtered several times through a 0.45 wm Milli-

pore filter and then allowed to stand loosely covered for

several weeks at constant room temperature. Typical crys-

tals were 20 x 20 x 2 mm. After afixing them to squares of

Plexiglas for ease of polishing and mounting in the reflec-

tion cell, they were polished with fine carborundum paper

and then wet polished with Ce(IV)02 and isopropanol on a

polishing cloth. The pertinent optical constants and cell

parameter units are given in Table 2.

CaCO
3

(calcite) and NaNO
3

are both of D -R
3d 3c

crystal structure (1) and have two molecules in the unit

cell as shown in Figure 2. The planar D3h anions are on

D
3

sites and the cations occupy S6 sites in the crystal

unit cell. These crystals unfortunately do not grow with

a large major face so the crystals used in this study were
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Figure 1. Unit cell for tetragonal D
18
4h

crystal.

Filled circles = cations (D
4

sites);

unfilled circles = anions (D
2h

sites).
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Table 2. Unit cell and optical constants.

KN
3

KHF
2

CaCO
3

NaNO
3

a(A) 6.094
b

0

c(A) 7.056b

0

v(A
3

) 130.019

c
x
a

2.749

E
z

a
2.016

n
x 1.658 d

n
z

1.4204

r(°)(A-B)[A] 1.15
b

a
+

(A3)) 1.03

a
11

(A3)) 7.32h

as(A3) 2.765h

5.67
b

6.81b

109.47

1.833
e

1.772e

1.354

1.331

1.136Ac

1.03e

2.03
e

1.60
e

6.361c

e=46°61c

121.914

2.749E

2.208 f

1.658

1.486

1.32g

1.1
f

3.18 f

4.21 f

6.325c

0=47°101c

124.847

2.519E

1.785E

1.587

1.336

1.218

.292 f

2.76 f

4.79E

a
Measured at 589.3 nm.

b
See reference (1).

c
See reference (1).

dSee reference (37).
e
See reference (2).

f
See reference (17).

gSee reference (30).
h
Present work.
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Figure 2. Unit cell for trigonal D
d

crystal.
3

Filled circle = cations (S
6

sites) ;

unfilled circles = anions (D
3d

sites).
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acquired from commercial sources. The two single calcite

crystals used in the study were previously cut so that the

largest face (diameter about 2.5 cm, thickness 3 mm) is an

xy face, perpendicular to the symmetry axis. The other

crystal of similar size was cut to expose the yz face.

These crystals are surplus material originally manufactured

for use in anti-aircraft gun sights. The sodium nitrate

crystal was purchased from the Harshaw Chemical Co. and was

cut so the largest face is a yz face, on the order of 10 x

10 mm; the smallest face is an xy face of about 2.5 x 10 mm.

These crystals were mounted and polished as described above,

except that 100% ethanol was used to wet polish the nitrate

crystal. The optical and unit cell constants are listed in

Table 2.

The reflectance from these oriented single crystal

specimens was recorded in the double beam transmission mode

of a ratio recording Perkin Elmer 180 infrared spectrometer

to minimize background absorption due to CO2 and H2O vapor

and to eliminate any instrumental bias in the polarization

studies. The mounted crystals were inserted in a modified

Barnes beam condenser reflection cell which is normally

used to measure transmission in very small samples (see

Figure 3). This cell is equipped with three concave front

surfaced metal mirrors, two of which focus the source radi-

ation on the crystal surface and one that then sends the

reflected intensity into the monochromator at a spectral
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Figure 3. Perkin Elmer 180 infrared spectrometer equipped

with reflection cell.
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slit width (SSW) of about 1 cm 1. Utilizing an internal

silver bromide wire grid polarizer, we discriminated between

TE and TM polarized intensities. We recorded the fol-

lowing for each experiment: 1) closed beam (zero level);

2) the (polarized) sample signal; 3) the reflected signal

from a front surfaced metal mirror. Being an almost per-

fect reflector in the infrared region, the mirror provided

the 100% reflected signal that in conjunction with the zero

measurements allowed the conversion of sample reflection

into sample reflectance. The normalization of the spectra

was accomplished by hand in the earlier azide studies but

was performed on a minicomputer with the transferring of

data via paper tape for all later studies.

The incidence angle used in any one experiment was

measured by duplicating the path of the it beam through

the beam condenser with a small HeNe laser. Two different

methods were used to determine eh. In the azide studies,

the accepted procedure had been to remove the concave mir-

ror situated after the sample and trace out the path of the

laser beam from the sample surface to a convenient point

and then, knowing the placement of the sample, the mapped

out Si was simply measured with a protractor. This method

did present problems with respect to reinserting the con-

cave mirror in exactly the same orientation. Therefore, in

the later studies it was found to be more reproducible to

merely hold a small clear plastic protractor near the
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surface of the crystal, or flat mirror, in such a way as

to allow some of the laser light to pass through the pro-

tractor thus illuminating the incidence angle. The inci-

dence angle for maximum reflection was found to range from

42-50°. Even with the second method of determining 6i,

there is probably still a 10% error in the single value

assigned to the center ray of what is really a cone of

incident radiation. Since the globar is not a point it

source, one should really convolute the spectrum over a

range of angles. From experience, a variation in the angle

appears to affect mainly the wings of a TM2 reflection and

for TM23 and TE polarized bands, the high frequency (

syLL)

side of the band may also be slightly shifted. However, we

are most interested in determining the strength of the mode,

that is the vT -vL split, therefore we did not find it

necessary to refine 6i further.

It should be noted, though, that it is a TM3 experi-

ment that is most affected by an error in 6i.

back at equations (27) and (28) one can see that it is

necessarytoaccuratelyknow6.to find the correct S,

which in turn modifies v
T

to yield v
L

. Remember that in

a TM3 case, the maximum reflection occurs between v and

v
LL

but that v
T

is still the parameter that is inserted

in the reflection equation to calculate R. If the

apparent ei were lower than the true 6i, a strength

larger in magnitude than the true strength would be needed
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to give a good fit to the observed spectrum. Conversely,

calculations using a larger ei than was really employed

in the experiment would cause one to choose a smaller

strength to fit the band. An error in ei for a TE or

TM23 experiment would be less critical for two reasons:

1) the transverse frequency is an experimental observable;

2) only a small fraction of the total maximum reflectivity

is angle dependent, i.e. that from V
T to V

LI,'

The frequency scale was calibrated using ammonia in

the 800 cm-1 region, water in the 1500 cm-1 region and

carbon dioxide in the 2300 and 600 cm 1
ranges. Therefore,

the frequencies reported in this work are precise to 1.0

cm 1. The error in the chart recorded intensity scale was

determined to be '1,5% full scale by testing the transmission

through a 47% calibrated screen. However, we did not test

the linearity of the error. An error in the intensity

would manifest itself in the determination of the damping

constant, and like the error in di would have an effect

on fitting the wings of a band, rather than the width

(strength) of a band. Even though some uncertainties exist,

the overall fit achieved for the band width and for the

wings is reasonable and the magnitudes of the resultant

parameters are consistent for a particular mode under dif-

ferent polarizations at different incidence angles.

The opportunity to check the agreement between a tape

recorded spectrum and one of data points selected by hand
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was taken using a KHF2 spectrum. The average difference on

a scale of 0 to 1 reflectance was 0.0013 for 109 points.

Therefore we believe no significant error is introduced if

the spectra are collected and then normalized via paper

tape.
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IV. BAND ANALYSIS FOR Doh
MOLECULAR ANIONS

Using the structure information provided by x-ray

crystallography in conjunction with the correlation tables,

one can find the irreducible representations for the inter-

nal modes and lattice modes. The correlation of these modes

from free ion to crystal is given in Table 3. At k = 0,

when all molecules in the crystal move in phase, the vibra-

tions allowed by the solid state environment are those

admitted by the unit cell symmetry (here D4,1). One should

then observe six infrared modes: 2A
2u and 4E

u
. These are

evenly divided between the internal and external vibrations.

We have dubbed the two E
u lattice modes v

5
and v

6
. Cor-

relation shows that the E
u

far it modes arise from T (z),

T (x,y), and T
+

(+ and - refers to cation, anion); these

three degrees of freedom will become one acoustic mode and

two optical modes involving different relative displacements

of the cations and anions. We have called the A
2u

lattice

mode v
4' both anions and cations are active along the z-

axis. However, our interest in calculating molecular
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Table 3. Correlation table for Do.h D4h

Molecular
Symmetry

Site
Symmetry

Factor
Group Modes

Dooh

E+
g

(v1)

Trg

(R )

xy

D
2h D

4h

lg \)1

2g
R T

+

Eu

(T
z ,v 3)

B3g
lg

2g

( v 2x' v
2y

,T xy)

lu

infrared
r 44. = 2A

2u + 4E
x=0 u

R_

1

R T- +

v 2T-

v v T'T"
2 3 ± ±
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dipole derivatives has led us to be principally concerned

with the internal modes in the mid-infrared region.

In this region, one should be able to detect the lift-

ing of the degeneracy for the bending mode, v2, to allow

an in plane (x-y polarized) Eu bend and an out of plane

(z polarized) A2u bend. The doubly degenerate antisymmetric

stretch v
3

is also infrared active in the x-y plane with

Eu symmetry. Since v2 and v3 have components of the

same symmetry in the factor group, intermode mixing may

occur for modes close in frequency.

Figure 4 shows the x,y face of the primitive unit cell

for the crystal and identifies K+ ions as 1 and 2 and

anions as 3 and 4. Consideration of this figure along with

equations (19) and (20) suggests that TE polarization of

the x,y face will select the Eu modes only. TM polariza-

tion,case 2, will reveal v
3

and v
2

(E
u

) that are

62 = Ey = Ex active and case 3 will admit v2 (A2u) which

is £3 = z
active. Likewise, for the lattice modes, E

u

modes that are x,y active will be observed under TE and TM2

polarization, whereas A
2u modes will be TM3 polarized.

In both the KN
3
and KHF

2
studies only an x,y face of

the crystal could be studied since an x,z face was too

small, less than 1 mm x 20 mm. This edge of the crystal

resisted attempts to polish it from a tapered tip (<1 mm)

to a smooth surface of adequate area (r\,3 mm x 10 mm).
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Figure 4. XY face of D
4h
18

crystal with cations 1 and 2,

anions 3 and 4, showing v3(3)-Ell and

v2 (4) -Eu.
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KN
3
- Potassium Azide

In the case of KN3, the spectra were chart recorded.

The normalized reflectance was calculated at intervals of

4.0, 0.1, and 1.0 cm-1 in the ,
3 2

and far it regions,

respectively. Initial estimates of the reflectance para-

meters were made visually with a graphical Tektronix 4012

computer terminal equipped with a hard copy unit in which

we utilized an OS -3 program called GRAFIT. Refinement of

the parameters was accomplished by examining a certain

range of parameter space corresponding to the adjustable

parameters, viT, Sj, and yj.

aThe S. were found in the following way: the E
u]

modes were divided into three regions, namely, v3(I), v2(II),

and the two mode region of v5 and ,J6 (III). In each of

these three regions the contributions to the dielectric

constant from resonances occurring in the other two

regions were neglected. In the lattice mode region III

and the TM polarized region II, six parameters were simul-

taneously adjusted.

The errors consequent upon this separated mode approxi-

mation were analyzed by finding the corrections to c a
(co) to

give a as in equation (26). This correction did not

exceed 2 or 3% of c6(00) for the internal modes. Assuming

that the error in S
a

is proportional to the error in

c
a
(00), we accepted the initial estimates of the parameters
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without further refinement, partly since the percent error

inD qj is only half that in S7, and also because no

account has really been taken of the dispersion in the

electronic resonance.

The antisymmetric stretch shown under two polarizations

in Figures 5 and 6, is a broad band of some 80 cm-1 with a

transverse frequency at 2025 cm-1 and longitudinal and

pseudolongitudinal frequencies of 2086 and 2099 cm-1 , res-

pectively. For sixteen separate determinations at angles

varying from 43° to 50°, the average strength was found to

be 0.162 with an average damping constant of 4.9 cm-1 (see

Table 4). The typical results shown in these figures

correspond to a root mean square error of 3% for 126 points.

This error is almost entirely attributable to the obvious

discrepancy at the top of the reflectance band. We believe

this deviation of experiment from theory is most likely due

to a surface that was not polished perfectly flat and/or

was not without microscopic pits. It is noteworthy that

this azide mode departs from the classical oscillator shape

in NaN
3
also (3), which may be indirect evidence for a

frequency dependent damping constant. In any event, this

deviation affects mainly the evaluation of gamma and has

little effect upon the parameter of primary interest, i.e.

the strength S for KN,.

Comparison of Figure 5 with 6 shows several differences

between TE and TM2 reflection band shapes which are very



Table 4. Experimental and fitting parameters for KN
3
reflectance.

v2(Eu)
\)2(A2u) v3(Eu)

0. P
a

Y 2
vb2T S

2 Y 2
vb

T2 S
2 Y

3

b
v
3T S

3

46.5 TE 0.22 649 0.0120 4.0 2029 0.150
TM 0.25 649 0.0120 0.70 642 0.0137 4.7 2023 0.164

46 TE 0.21 649 0.0128 6.2 2027 0.158
TM 0.25 649 0.0128 0.50 642 0.0132 5.5 2024 0.166

43 TE 0.18 649 0.0128 4.7 2027 0.164
TM 0.23 649 0.0128 0.52 642 0.0134 2.5 2024 0.164

43.5 TE 0.25 649 0.0130 4.5c 2024c 0.169 0
TM 0.25 649 0.0129 0.50 642 0.0137 3.6 2024 0.167

45 TE 0.28 649 0.0119 d
4.7 2026 d 0.162d

TE 0.21 649 0.0128 4.6 2024 0.168
TM 0.25 649 0.0119 0.70 642 0.0137 6.0 2025 0.162
TM 0.25 649 0.0128 0.55 642 0.0137 3.6 2024 0.166

47.5 TE 0.25 649 0.0119 4.7e 2027e 0.160e
TM 0.25 649 0.0119 0.73 642 0.0137

a"P" is polarization.
b
Units are cm 1.

dRMS
e
RMS

error of 3.6%.

error of 4.1%.
c
RMS error of 2.3%.
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Figure 5. TE reflectance in the v
3

region of KN3 at

room temperature and of = 43.5 °; rms error 3%.
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Figure 6. TM2 reflectance in the v
3

region of KN
3

at

room temperature and ei = 45 °; rms error 3%.
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well reproduced by the model theory. Note that the TM2

spectrum exhibits no conspicuous minimum on the high fre-

quency edge of the band. This behavior in TE is undoubtedly

due to the fact that the background reflectance, that is

the reflectance in a frequency region with no dispersion,

is larger for TE than for TM polarization (see Table 1).

For example, at ei equal to 45°, sx at 2.5 and Ez at

2.0, R(TE) is 0.11, whereas R(TM) is 0.02. So that even

though there is a minimum in the TM2 reflectance it is not

as apparent as it is in TE reflectance.

The TM reflectance in the v
2

region is shown in

Figure 7. The nondegenerate, z polarized A2u out of plane

bend observed only under TM3 polarization from an x,y face,

is shown here occurring at a lower frequency than the cor-

responding degenerate x,y polarized Eu bend. The average

fitting parameters are: SA = 0.0136, SEu = 0.0124,

\)2T(A2u) = 642 cm 1, v2T(Eu) = 649 cm 1,
YA

= 0.60 cm-1,
2u

yEu = 0.25 cm 1. Since the best employable resolution was

1.1 cm-1 but the width of the E
u
mode is 2 cm-1 at half

height and that of the A
2u mode is less than 1 cm 1 at half

height, it was necessary to convolute the calculated spectra

with a triangular slit function appropriate for a two slit

monochromator. However, no data manipulations can change

the fact that the resolution was inadequate to determine

the width of the A
2u

reflection. As we shall see in a

later section, SA2u is predicted to be twice SEu; we found
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Figure 7. TM2 and TM3 reflectance in the v
2

region

of KN3 at room temperature and 63. = 46°,

where SSW = 1.1 cm-1 .
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them to be almost equal. Remembering that in these azide

studies a less reproducible method was used to determine

8i than was used in later studies, suggests that there may

be a larger error in the value assigned 0i here than in

subsequent experiments. Since we could only study this

mode from an x,y face, it is impossible to say whether the

error is in ei or in the theoretical effective field for

the z direction in the crystal. As we have already said,

a variationine.does affect the strength for the TM3

polarization. It is, however, encouraging that the TE

experiment for v2 (Eu) yields parameters very similar to

those from the TM2 experiments: SEu = 0.0125, v.),/, (Eu) =

649 cm-1 , and YE
u

= 0.23 cm-1 . A typical experiment is

shown in Figure 8. In the further analysis of dipole

derivatives we have adopted an average of the TE and TM2

data to describe v
2

in N---,.

An attempt was made to measure the far infrared modes

for KN
3

for the purpose of determining their contribution

to the background dielectric constant in the internal mode

region. Unfortunately, only the Eu modes shown in Figure

9 could be identified and fitted. In this region, 230-90

cm
-1

, we were severely limited by decreased S/N. Perhaps

the most obvious discrepancy between theory and experiment

shown here is that the experimental reflectance dips much

lower between the modes than would be predicted. This sort

of behavior can be detected in another case we will look at
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Figure 8. TE reflectance in the v
2

region of KN
3

at

room temperature and e. = 46° and SSW = 1.1
-1

CM .
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Figure 9. Far infrared reflectance in the lattice mode

region for KN3 at room temperature, 8i = 43°,

TE, TM polarizations (A); calculated TE (B) for

S6 = 2.1, y6 = 10.0 cm-1,
\)6T

130.0 cm -1 and

S5 = 0.45, y5 = 35.0 cm-1, v5T = 165.0 cm-1.
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(vide post Figure 10). The difference at this point in the

spectrum could be minimized by choosing a smaller damping

constant, which would, however, change the fit at the tops

of the bands. Luckily, the strengths are not appreciably

affected by a change in the damping. This phenomenon may

be due to one or more things: 1) a not-so-perfect crystal

surface; 2) there may be water absorptions, especially in

this region of the infrared, that would interfere with the

reflectance from both the mirrored surface and the crystal.

The Perkin-Elmer 180 does have very large cell compartments

and a long optical bench, so that even though we purge the

instrument continually with dry air, some water is bound to

be present.

Compared with the internal modes, external modes have

large strengths. v5 at 165 cm-1 has a strength of 0.45

and v
6

at 130 cm-1 has an even larger strength on the

order of 2.0. An estimated strength and transverse fre-

quency for the would be A2u mode was made by simply assum-

ing it was not resolved from the low frequency side of v5;

no fitting procedure was used. The 1% or so error in 3u/

3q due to omitting the contribution of the lattice modes

to the background dielectric constant is within our expecta-

tion in light of all other errors introduced by experiment

and approximations in the theory.

As a point of interest, we did observe the production

of color centers in the azide crystal after it was exposed
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to the mercury source lamp conventionally used below 500

cm
-1

. A purplish gray hue appeared on the crystal upon

exposure to the focused beam. Many small rounded pits

developed on the surface. This darkly colored spot changed

to a faded yellow-orange spot upon additional exposure to

the infrared in the v
2

region. The reflectivity in the

v2 and v3 regions was checked and the intensities were

found to be diminished by about 30%. This was probably a

consequence of the roughened surface. No new features were

observed.

The grayish spot we observed could have been metallic

potassium deposited within the crystal. A process is des-

cribed by Gray and Waddington (23) for this production of

metal. Excitons are produced by a certain energy of inci-

dent radiation and these are trapped in bimolecular com-

binations of the surface cation vacancies. Pairs of exci-

tons may then decompose to form N
2

and F centers:

N
3
+ by - N3*

N3* + thermal energy - N3 + e
_

2N
3
+ 3N

2
+ Q .

In addition, when KN3 is irradiated at room temperature

an R' center is said to arise from aggregated F centers.



When an R' center is heated to around 60°C, the R'

centers dissociate and neutralize K
+

ion to form the

metallic K.

KHF
2
- Potassium Bifluoride

68

Representative experimental and theoretical reflectance

spectra for TE and TM polarizations of KHF2 are shown

in Figure 10 over the frequency range from 1060 to 1750

cm-1 . The data for this crystal were acquired digitally and

then reduced to normalized reflectance using a PDP-11 com-

puter. With the aid of plotting routines, these spectra

were outputed without smoothing.

In the bifluoride case, modes two and three are

separated by a mere 200 cm-1 . This and the fact that v3

is about 150 cm 1 wide (that is, it will require a large

strength to fit it), suggest that the separated mode

approximation used in the KN3 case is not adequate here.

Therefore, in the TM spectra, nine parameters were simul-

taneously adjusted and in the TE spectra, six parameters

were interactively adjusted until a reasonable fit was

indicated.

A good fit was determined by investigating the a

values generated by certain ranges about each parameter.

cs in this case is

1 -( (

2 -k

expt'l. ) )-N Rcalc.
R
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Figure 10. TE and TM reflectance of KHF
2

at room

temperature in the fundamental region.

+++ = observed, = calculated.
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where N is the number of data points. The use of a mini

computer to calculate a allowed hundreds of combinations

of parameters to be searched for those yielding the lowest

values. For example, in the 42° TE experiment, using 65

points for the v
2

region from 1060 to 1300 cm-1 and 45

points for the v
3

region from 1300 to 1750 cm-1, values

were generated by varying six parameters. For v2(Eu) the

strength was varied from 0.140 to 0.195, the transverse

frequency from 1225 to 1233 cm-1, and the damping constant

from 2 to 13 cm 1; while for v
3

(E
u
), S

3
was searched

- 1from 0.40 to 1.0, v
3T from 1430 to 1445 cm , and

13

from 25 to 100 cm-1 . In the corresponding TM experiment

an additional three parameters were needed. The strength

of the v
2

(A2u) mode was adjusted from 0.03 to 0.13, the

transverse frequency from 1225 to 1235 cm-1 , and the damp-

ing constant from 2.5 to 5.5 cm 1. These variations caused

the a values to change from 30% to 3%. For the TE

spectrum, the parameters shown in Table 5 lead to an RMS

deviation of 2.8% between experiment and theory; the cor-

responding deviation in TM using a slightly different

parameter set was 3.02%.

We did convolute the calculated spectra for KHF2

using the previously described triangular slit function.

We were fortunate here that the band width to resolution

ratio was around five to one compared to one to one in the

poorly resolved azide case. This lends greater credibility
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to the bifluoride numbers than we had for v
2

(A
2u ) in KN3.

Unfortunately, there is still a disagreement between the

predicted two to one ratio for S2 (A
2u

):S
2

(E
u

) and the

experimentally determined relation of approximately one to

two! However, KHF2 has a complicating feature. The fre-

quency for v3 (Eu) is close to that for v
2

(E
u

) and being

of the same symmetry, these modes can mix together, perturb-

ing their respective strengths. As we shall see in the next

section, we have used the parameters for v2 (A2u) to

characterize the dipole derivative for the bending mode. As

for mode 3, the parameters listed in Table 5 are used to des-

cribe a lower limit for the dipole derivative for the anti-

symmetric stretch.



Table 5. Experimental and fitting parameters for reflectance of KHF2.

O.
1

P
a

0 (%)

\)2 (Eu) \)2(A2u) v3 (Eu)

d
y
2

d
v
2T

S
(x)

2

d
y
2

d
v
2T

S
(z)

2

d
y
3

d
v
3T

(x)
S
3

42

42

43

43

45

45

46

46

TE 2.81

TM 3.02

TE c 3.70

TMC 2.36

TEb'c4.85

TM 3.14

TE
b

4.29

TMb 3.39

8.37

5.30

9.10

6.80

12.9

7.30

9.87

6.30

1232

1231

1233

1230

1232

1231

1232

1231

0.152

0.169

0.140

0.176

0.152

0.169

0.152

0.169

4.62

5.1

4.62

6.62

1235

1234

1235

1235

0.0865

0.0867

0.0865

0.0865

83.4

65.8

91.9

74.0

104.7

83.8

95.4

74.8

1442

1438

1442

1437

1441

1438

1442

1438

0.491

0.494

0.491

0.494

0.480

0.494

0.491

0.494

a H
"P means polarization.

b
Experimental reflectance multiplied by constant factor before fitting.

CAll six or nine parameters simultaneously adjusted; otherwise a partially restrained
set was used to generate theoretical reflectance where Sk and v

kT were set to 42°
values.

d
Units of cm-1 .
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V. DIPOLE DERIVATIVES FOR Doh ANIONS

To determine 1-1/3q
k (now abbreviated as pk), oncea

the dielectric parameters have been decided upon, one needs

to either locate in the literature or calculate the dipole

wave sums and also to define the electronic polarizability

values. These are then used to calculate the effective

field (see equation (16)). All of the matrices are

factored according to the crystal structure. Daamm , (c= x,y,z)

are diagonal in crystals of at least orthorhombic symmetry.

In addition, if the crystal axes coincide with the molecular

axes of the dipole sites, is diagonal, making e also

diagonal. This reduces all matrices involved to order NxN

where N is the number of entities in the primitive unit

cell. For example, for KN3 and KHF2, R, are 4x4

matrices.

The matrices and anion polarizabilities for KHF2

were evaluated by Cooke (2). He used the planewise summa-

tion method for determining the dipole wave sums. For KN3,

it was necessary to deduce the polarizabilities and

sums. Since KN
3

and KHF
2

have identical crystal sym-

metries, we simply scaled the KHF2 p matrices in the

ratio of the unit cell volumes: v
KHF2

/vKN3 = 0.836. A

repetitive procedure for finding al and an (described pre-

viously in the theory section) was used where a+ and

E (cc) were taken from the literature. For example, since
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Table 6. D and B elements for KN3 and KHF2.

KN
3

KHF
2

(x) (x)D12 = D34

(x) (x) (x) (x)
D 13 = D14 = D23 = D24

(z)
RIM

(z) (z)D12 = D34

D(z) = D (z) = D(z) = D(z)13 14 23 24

E(x)
11

13

E(x)
23

(x)
33

5(z)
21

0.03190

0.01804

0.03851

0.03213

0.06379

0.01892

1.09861

0.57303

0.00481

0.05772

1.10040

1.119131

0.16056

0.03818

0.01804

0.04609

0.03845

0.07874

0.02264

1.1349

0.1144

0.0051

0.0248

1.0379

1.2485

0.0659
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a and a
+ are associated with the z active modes (see

equation (47)), one can assume a starting value for a

and use equation (16) to calculate B. Upon substitution

in equation (17) a calculated
z

(00) can be compared to

the experimentally determined c
z
(0.). Once a is assured,

a
i

can be similarly calculated upon the
x
(c) determina-

tion. The R matrix elements and elements are listed

in Table 6; polarizabilities have been given in Table 2.

The R matrices calculated by Cooke were conveniently

found in an xy Cartesian frame oriented as shown in Figure

4. The analysis of the intensities, on the other hand is

more conveniently conducted with reference to an axis sys-

tem x,y which differs from x,y by a rotation of 45°

around the z axis. Since D , is diagonal and D
)

(17)
R, ,, such a rotation has no effect upon the elements,

but it must be noted that although diagonal, takes the

following form in the x,y axis system:

( x )

( z )

+ 0

0 a
+

0 0

0 0

Fa+
0

0 a
+

0 0

0 0

0

0

a
I I

0

0

0

-4al

0

01

0

0

a

o

0

0

a

;
(y)

=

a

0

0

0

0 0 0-1

a
+

0 0

0 a 0

0 0 01,11

(47)
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In addition, it is advantageous to subject the B-V?

matrix to a further symmetrizing transformation before

inverting it to find B. The equivalence of the potassium

ions, m = 1,2, and of the anions, m=3,4, implies four linear

combinations of dipole vector components which belong to the

following symmetry species of D4h:

1--- - _ -
z z

P
1

P
3

+ 1.1

4
A
2u

z z

=
171

2
=

2
1 1-1 + 1-1

2
A
2u

Il

1

Ilk' ,crystal (48)k ,crystal z z
T
3

113 1-1

4
B
lu

4

liz z

1 2
A
2g_

Therefore, the transformation UB-}Z,)-1 will factor the

matrix of interest into a 2x2 and two lx1 blocks,

where

U=

0 0 1

1 1 0

0 0 1

1 1 0

since j is orthogonal.

fl o

0
1

o 1 0 I
, (49)and u-1

T. 1/ 1 0 1 0

0 1 0 1 0

If we designate the matrices in

the symmetrized basis by putting bars over them, we have

-1

which factors into the same blocks as does 13
-1

. Now the
ti

strength as given earlier in equation (23) is seen to
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-involve the matrix vector product -01.1 and since = 0-1-

equation (23) can be rewritten as

a 2 1 tri 13- 371k' 2
S3 v.

3T
c
2

Try m,k k mk kk' 3Q (50)

From the form of ;J
1

given above, and from the fact that

the only nonvanishing auk,/3Q in the z direction is that

for which k'=1, we see that

1 -z
S
z
v
2 r2_A(B 5z N,z1

2 2T 2 ' 11 21i P2J
2

C 7TV

(51)

where we have replaced the barred crystal dipole derivative

with the unbarred molecular dipole derivative. The crystal

normal coordinate (large Q) is taken as

2- 2 {q2(3)
+

q2(4)

which has the meaning that in the z direction of the

crystal, the crystal normal coordinate is a normalized

linear combination of the molecular normal coordinate on

molecule number (3) plus that on molecule number (4). Also,

-1-.11 DP
D12

2 3'312

This result is applicable to the A2u,z polarized mode.

For modes whose dipoles have components in the x or

y crystal directions, transformation with the same

matrix yields the following symmetry species:



uk',crystal

if 4J

= 2

x x
113 + 1-14

x x
'11 + -12

x x
L`3 /-14

x x
'11 1'12

Eu

Eu

Eu

E
g

79

(52)

Thus in this case, one can only expect factoring into a 3x3

and a lxl. Since the sums 1 Um,1
k

vanish for k=3,4 and
m,k

since the only nonvanishing x oriented molecular derivatives

are u
3

for q
3
(3) and u

4
for q

2
(4), the strength

expressions reduce to the following. For the bending mode:

,x
v
2 1

2 2T 2
[(Ell +

21
- - DPx( )1 2

13 23
2

'

C 7TV

while for the stretching mode:

(53)

1
S
x
v
2

(54)3 3T 2 HE11
4- B21 B13 B23) '4[(33)]2

C 7TV

We have chosen to work with the x block of k and

-x -x= - = 2
- 1.1x(x)

or 2-11.
1

q(3)2
(4)

In the limit of vanishing polarizabilities, B becomes

a diagonal unit matrix, so that comparison of equation (51)

with (53) shows that the strength of the A2u bending mode

is expected to be twice that of the Eu bending mode.

This is easy to visualize on a unit cell basis. Both anions
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participate in the A
2u bending motion, whereas there is

only one active anion under a specific polarization (x or

y) for the Eu mode.

Molecular dipole derivatives have been calculated for

the D
coh

anions using equations (51) , (53) , and (54) .

These dipole derivatives are with respect to the normal

coordinate but in our later analysis of effective charges

and charge fluxes, it is more convenient to consider these

derivatives with respect to dimensionless symmetry coordi-

nates. To convert from 31 /cik to 1.1/Sk, we will need

to know the L matrix. In the harmonic approximation,

the is very simple for linear triatomic molecules
ti

because it is determined solely by the q matrix, no

force constant treatment is required. One can then write

the dipole derivatives with respect to symmetry coordinates

in elementary units of charge (e) as

where

au/ask (Gkk)'4i/cik

G22 211B 4PA

G =
B

+ 2p
A .

(55)

The are reciprocal masses of the respective atoms in

AB2. The dipole derivatives for these anions in the potas-

sium crystals and the previously studied sodium forms are
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0
listed in Table 7. We have used the conversion 1d/A =

0.2082 e with au /3q in units of esug-.

A molecular dipole derivative for a particular molecu-

lar anion should be constant throughout all the crystallo-

graphic forms that the anion can exist in. The matrix

hopefully guarantees this! However, the multitude of inter-

actions that occur between anions and cations in a crystal-

line environment may be more than just dipolar couplings.

The influence of lone pair-lone pair, lone pair-dipole,

dipole-multipole interactions between different anions or

of intra and inter molecular hydrogen bonding on the dipole

derivatives is not quantitatively known at this time.

Although these effects certainly express themselves in the

measured value of the high frequency dielectric and there-

fore influence the selection of Rcanion thus penetrating

into the evaluation of they are not directly included

in the theory for the effective field. Also, the p sums,

and hence p, are evaluated in the point dipole approxima-

tion which is probably not a good assumption for these non

spherical anions. A test of how well does describe the

anion's solid state surroundings so as to allow us to

extract a molecular property from a crystal response, is

afforded by comparing mutual 1.1°-/3cqk values (abbreviated

u6) between the potassium salts studied herein and the

sodium salts studied previously (2, 3, 24).
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Table 7. ±DII/ki, 9p/3S for KN3, NaN3, KHF2, NaHF2.

k ±3p/Bqk (esu.g1) ±911/3sk (e)

KN
3

2 (Eu) 30.8 0.126

3 (Eu) 320 1.86

NaN
3

2 (Eu) 30.1c 0.123

3 (A2u)
423a 2.45

KHF
2

2 (A2u) 111.5 0.148

2 (Eu) 225 0.299

3 (Eu) 439 0.825

NaHF2 2 (Eu) 112112b 0.149

3 (A2u)

aSee reference (3).
bSee reference (2).
c
Calculated with data from reference (3) with acknowledge-
ment of error in previously published Salal value (reference
(17)): -0.144433 should be -.114433.
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For the Doh anions, the magnitude of 11

2
in azide

ion seems to be well accounted for by a dipolar coupling

scheme. Refering to Table 7, one can see that the current

determination of 4 and py2 for KN3 agrees very well

with that value reported earlier for p2NaN3: 30.8 com-
_.1

pared to 30.1 esu g 2, respectively. Bifluoride ion, on

the other hand, does not behave so predictably in the

crystalline state.

Consulting Table 7 once again, one can see that 12

and µ2 for KHF2 do not agree with ;1 KHF
2

or p
2

NaHF2, which both seem to demand a smaller value for the

(same) molecular dipole derivative. One explanation for

this apparent discrepancy is the possibility of inter-

molecular hydrogen bonding mediating a mixing of infrared

intensities for the two E
u modes. Looking back to

Figure 4, one will agree that when anion 3 executes a

stretching motion and anion 4 a bending motion, a hydrogen

bond could be produced between the two anions. Since the

frequency difference v
3T

-v
2T

is only on the order of

200 cm 1
, and v3 is a mode of large strength (S3 = 0.42),

the weaker bending mode, say 52 = 0.09, can gain some

strength to become S2 = 0.16 at v3's expense. Hence we

find p 2 to be smaller than p
2

and can use it to des-

cribe the unmixed µ2 for HF2. One way to support this

hypothesis is to determine the empirical coupling constant



for the two modes and see how well it compares to one cal-

culated from dipolar coupling theory.

The vibrational secular determinant can be written as

X
2

0
-X K

K
0

A
3

-X

where A is 47
2
c
22

and

84

= 0 (56)

0.0
K = --1-[(DB)34 + (DB)43J 1.121-13 (57)

0
The uk values are the unperturbed dipole derivatives and we

have used: u2
0

= 112, p
2

= 225, p
3

0 = 481 and u3 = 440
_i

esu g 2. The coefficients of the orthogonal transformation

are found to be

2
= 0.9704 1.1

2

0
+ 0.2415 u0

(58)

= -0.2415 p2 + 0.9704 u03 .

These mixing coefficients, however, further imply via the

secular equations that a semi-empirical value for the

coupling constant is

K = -1.389 x 10 5 cm-2

whereas the direct use of equation (57) yields the value

K = -0.415 x 10 5 cm 2. Even though the dipolar model is

not quantitatively correct, some intermolecular coupling
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mechanism, which could be designated loosely as "hydrogen

bonding" significantly perturbs the 11°2 value in the Eu

species and the correct unperturbed values are closer to

110 for p
2

0
and 480 > p

3

0 > 440 esu.g

So far in our analysis we have assumed that all modes

are harmonic modes and have calculated pk accordingly

(see equation (23)). For a mode that is suspected to be

anharmonic, it would be nice to be able to use the complete

relationship as expressed in equation (21), to calculate

pk. v3 in HF2 is a mode which has been suggested to be

highly anharmonic with diverging rather than converging

energy levels. This belief seems to stem from the observa-

tion of a mode in the spectrum at 5099 cm-1 (25, 26). If

this is interpreted as 3v3, it is nearly 800 cm-1 higher

than three times the fundamental (1440 cm-1 ). But as has

been alluded to earlier (Chapter 2, page 11), the intensity

profile of an overtone in the solid state is usually a map

of the joint density of states. Since little is known

about the jZ dependence of v
3'

it may be premature to

reach conclusions about the anharmonicity. Also, one might

think that the great breadth of the KHF
2

reflection in

the v
3

region is due to a progression of transitions like

v = 0 a 1, 1 .4- 2, 2 3, etc. However, studies of HF2

isolated in alkali halide matrices (27, 38) do not show

any unusual breadth, nor are separate peaks identifiable.

The frequencies do exhibit quite a large sensitivity to
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the host matrix, and have been reported as 1599 (NaBr),

1570 (KC1), 1527 (KBr), and 1478 (KI), all in cm-1. Both

the fact that these numbers are significantly higher than

the transverse mode frequency in KHF2 (1440 cm-1 ) and

the variation with host are in qualitative accord with a

harmonic oscillator model involving a very large value of

113. Further, the excited states even for the harmonic

oscillator would have Boltzmann factors much too small to

contribute to the observed spectrum at room temperature; in

the quartic case the levels are even higher. From these

observations, it is unlikely that we are dealing with some

transition other than v = 0 -± 1.

Since Chan, Stelman, and Thompson (29) have given the

transition moments for any mixture of the two oscillator

models, we can consider what the magnitude of difference

is between the harmonic versus quartic description of V3

in KHF2. The strength equation (21) was given as

c 2 2w
kT

S w =
3k kT B <01Q11>

2
(21)

In reference (29) the transition integral is reported in

terms of a dimensionless coordinate X, and the above

equation becomes (in cm 1)

2 1SVkT
2

c 7V
B

2 ()1<01X11>1 2 (59)
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The last two terms of this expression are given as a func-

tion of a parameter a, by Chan, et al., such that when

a = 0, these two terms are unity (harmonic approximation),

and when a = 1, these terms amount to 1.33 (quartic

approximation). For the complete range then, 0 a 1,

the correction to Ilk varies by at most 15%. But as we

have expressed in the previous paragraph, we believe the

experimental evidence really suggests that HF2 behaves

as a quadratic not a quartic oscillator. Therefore, we

adopt a value of 440 esu g 2 for '03 in KHF2, keeping in

mind that the quartic anharmonicity could decrease the '13

value by the factor (1.33) 2 = 0.87 in the extreme though

unlikely limit of a pure quartic oscillator.

Unfortunately we were not successful in our attempts

to grow a single crystal of NaHF
2
and so we have no data

with which to compare our KHF
2
results. However, we are

lucky to have two independent determinations for 03 in

NaN
3
as comparisons for our KN

3
value.

One study of 1.13 NaN3 was done using only TM3

polarization for an X Y face (3), while the second was

accomplished through TE polarization on the Z Y face

(24). As we have discussed previously (see Chapter 3,

page 43), some restraint may be warranted in admitting that

a TM3 experiment alone could define 113 since this

arrangement is particularly sensitive to any error in

measuring ei. In this case, however, the TE
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determination of 113 in NaN3 supports the TM3 measure-

ment. Thus, we find a p
3

value for KN
3

',25% smaller

than that found for the same mode in NaN3.

An explanation for this difference is offered by

closer examination of the v
3

reflectivity in the NaN
3

crystal.1/ The v
3

band in the sodium case was observed

to have structure on its high frequency side. This struc-

ture then presents a dilemma as to whether or not it should

be included as part of the v
3

strength when the band is

fitted. Fredrickson and Decius (3) decided to include the

structure and thus S
3
(NaN

3
) may have been overestimated,

hence leading to a larger 311/B(13 value than would other-

wise be obtained.

On the other hand, in view of the assumptions made in

the theory, namely those of harmonic oscillator and point

dipole, a 25% difference between the two values for

pPq3 in N3 may not be unreasonable. In any event,

we have chosen at this time, not to attempt refinement of

Fredrickson and Decius' value for v
3
NaN

3
nor to pursue

any corrections to the theory that might otherwise help

explain this discrepancy but simply accept that for N3

320 < P < 420 esu g 2
3

.

/
See Figure 5, in reference (3).
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VI. BAND ANALYSIS FOR ID,. MOLECULAR ANIONS

Calcite (CaCO
3

) and sodium nitrate share a similar

crystal structure, D6 R3-. with D3h anions occupying

D
3

sites (1). The correlation of vibrational modes of the

free ion to those of the ion in the crystal is given in

Table 8, and the modes are diagrammed in Figure 11. v
2

is

an out of plane bend, v3 is essentially an in-plane

stretch, and v4 can be described as an in-plane bend. vi,

the symmetric stretch, is not infrared active. Since both

v
3

and v
4

are 7
u modes, intermode mixing of symmetry

coordinates occurs.

An experimental schematic in Figure 12 identifies the

crystal axes and incidence planes and can be used to illus-

trate which modes are active under a particular polariza-

tion. In part (a) of Figure 12, one sees that for a YZ

crystal face, modes 3 and 4 alone appear for TE polariza-

tion. The incidence plane is XZ and the E vector is

parallel to the Y axis. If instead TM polarization is

used, the E vector will have components in the X and Z

directions, so that all three infrared active fundamentals

are observable. If the incidence plane is changed to XY

as in part (b) of Figure 12, v2 appears under TE polari-

zation, v
3

and v
4

under TM polarization.

Since the three fundamental (internal) modes are quite

widely separated from one another and from the lattice
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Table 8. Correlation table D
3h

to D
3d

.

Molecular Symmetry
D
3h

Site Symmetry
D
3

(ABn3 -)

Factor Group
D
3d

a
Mode

r. 3A
2u

+ 5Eu
ir

v
1

V
2
,T

z
,- R

z

V
3
,V

4
,T
x,y

,- R

xy

v
1
,T

z

- - +
v
2
,T

z
,R

z
,T

z

v ,v ,

3 4
T
x,y'

R ,- 2T
+

x,y x,y

a
Optical plus acoustic modes.
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Figure 11. Vibrational modes for D3h anions.
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Figure 12. Experimental perspectives for a D
3d

crystal

cut along the major axes. A) XZ incidence

plane; B) XY incidence plane.
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modes, the separated mode approximation?/ should be valid.

Thus, c
a

(equation (26)) can be used to represent the

background dielectric constant, one value for each mode,

and it can be used in the fitting procedure. Implementing

this approximation does require that one know at least

rough values for the strength and transverse frequency of

each mode (including the lattice modes) or that one use a

process of iteration starting with ea = ca (00). In either

case, good convergence is to be expected. Table 9 shows

the values of the background dielectric constants employed

in this work, based upon the dielectric constants at opti-

cal frequencies and earlier estimates of the strengths and

frequencies of the lattice modes (7).

With the background dielectric constant thus fixed, we

were then able to adjust the three characteristic parameters

for each band so as to minimize the deviation between experi-

ment and theory. With unrestrained variation of these three

parameters typical rms errors in the reflectivity were 2-4%.

Such errors could in some cases be further reduced by

adjustments of the incidence angle ei by a few degrees.

Moreover, somewhat different angle adjustments were found

to optimize the fit in experiments on the same band in dif-

ferent polarizations. Also, the unconstrained variation of

the three parameters yielded slightly different parameters

-3/Refer to page 22.
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Table 9. Background dielectric constants (c
B

) at v 'A, v
2'

v v4.
4'

CaCO
3

NaNO
3

a = X,Y a = Z a = X,Y cr = Z

c°(Ew) 2.749 2.208 2.519 1.785

v
3

2.626 2.062 2.464 1.744

v
2

3.367 1.959 2.987 1.711

v
4

3.032 2.091 2.912 1.773
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for the same band in different polarizations. For example,

TM3 seemingly required a viT value a few wavenumbers

lower than TE in some cases. Since none of these dis-

crepancies affected the strength S
ta) by more than 2%

(and hence 11Pq by as much as 1%), we report average

values in Table 10.

In Figure 13 (a-c) we illustrate for the v3 mode of

NaNO
3

the experimental and theoretical reflectance using

a partially constrained parameter set with S3 = 0.425,

v
3T

= 1354 cm-1 ,

3
taking values from 5.0 to 8.4 cm 1.

This set of figures further serves to illustrate the

limiting mode frequencies v
T'

v
L

and v
LI'.

For NaNO3,

the observations were made on the YZ face, so that with

an XZ incidence plane TE and TM3 polarization were

possible for this mode (see also Figures 12(a)), while

for an XY incidence plane, TM23 was observed (Figure

12(b)). The agreement between theory and experiment is

impressive so far as the general shape of the bands is con-

cerned. The theory accounts for the striking differences

in the shapes of TE, TM23, and TM3. The one notable dis-

crepancy is the narrow dip in the reflectance at about

1448 cm 1; this has been attributed (14) to a sharp maximum

in the damping constant at the frequency 2v4. This dip

appears in both the TE and TM23 spectra, but not in TM3

where the high intensity region lies above vL = 1466 cm 1.

Aside from this well understood discrepancy, the



Table 10. Dielectric parameters for V
2'

v
3'

V
4

in NaNO
3

and calcite.

Mode Face Polarzn 0i, deg
-1

VT
cm VL' cm

-1 a
a,%

NaNO3
v
2

YZ TE 45-49 834.1 839.1 0.0209 ± 0.0003 1.4 1.0
YZ TM2 41-46 834.0 839.2 0.0213 ± 0.0001 1.5 0.6

average 834.1 839.2 0.0211 ± 0.0003

V
3

YZ TE 46.5 1354.0 1465.6 0.423 ± 0.003 6.0 2.8
YZ TM23 46-49 1354.0 1465.5 0.423 ± 0.003 4.9 2.4
YZ TM3 41-46 1354.0 1465.4 0.422 ± 0.001 5.2 3.6

average 1354.0 1465.5 0.423 ± 0.002

V
4

YZ TE '1,45 725 (0.8-4) x 10-4 <2.8 (see

CaCO
3

V2 YZ TE 44-46 869.7 887.2 0.0796 ± 0.0020 1.5 2.2
YZ TM2 43-50 869.8 887.6 0.0811 ± 0.0014 2.0 2.2
XY TM3 50 869.8 887.2 0.0792 1.6 1.3

average 869.8 887.4 0.0803 ± 0.0017

V3 XY TE 46-48 1409 1552 0.56 13 4.3
XY TM2 46-48 1407 1551 0.565 11 4.0

average 1408 1551.5 0.56 ± 0.004

V
4

XY TE 46-48 712.05 713.1 0.00875 1.9 2.7
XY TM2 46-48 711.7 713.3 0.01400 2.5 0.7

average 711.9 713.2 0.0114 ± 0.0030

text)

a
± average range of parameter.
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Figure 13. Reflectance of v
3

mode from a YZ face of

NaNO
3

at e
i

= 46.5°: A) incidence plane

XZ, E // Y (TE); reflectance limits vT and

\)LL;
B) incidence plane XY, E* in incidence

plane (TM23); reflectance limits vm and vi,L;

C) incidence plane XZ, E. in incidence plane

(TM3); reflectance limits v
L

and v
LL

= observed; calculated.
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approximation of a frequency independent damping constant

is remarkably successful. It may also be noted in Figure

13(c) that the experimental points on the low frequency

side of the band lie considerably above the theoretical

curve. This we attribute to alignment imperfection or

polarization leakage, since this is a region in which a 90°

rotation of the polarizer yields very high reflectivity.

The polarized v2 mode for NaNO3 is shown in Figure

14(a,b) along with the theoretically generated curves. For

the XY incidence plane, a TE spectrum is produced and

for the XZ incidence plane, a TM2 spectrum is observed.

The agreement between parameters used here is very good:

S
2
= 0.0212, 0.0213-

'

v
2T = 834.1, 834.0 cm 1

'

y
2

= 1.38,

1.43 cm-1 . All in all, a well behaved mode! The v2 mode

in calcite serves here to illustrate the relationship be-

tween TE, TM2, and TM3 reflection spectra (Figure 15(a-

c)). In addition to the two incidence planes used in the

nitrate study, we were also able to observe a TM3 polar-

ized calcite v
2

from the XY face. Again, the theory is

impressively successful in accounting for the characteris-

tically different shapes and frequency limits of these dif-

ferently polarized experiments. In contrast to Figure

13(c), Figure 15(c) also in TM3 polarization does not

show an experimental reflectance significantly larger than

the theoretical value on the low frequency side of the band.

This is to be expected since neither polarization leakage
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Figure 14. Reflectance in v2 region from a YZ face of

NaNO3 at ei = 46.5°: A) incidence plane XY,

// Z (TE); rms error = 0.75% for 150 points;

B) incidence plane XZ, E in incidence plane

(TM2); rms error = 1.03% for 195 points.

= observed, = calculated.



103

B

830

WAVENUMBERS, CM-1

870



104

Figure 15. Reflectance of the v
2

mode of CaCO
3

at

di = 45°: A) crystal face YZ, incidence

plane XY, E // Z (TE); reflectance limits

vT and vi,L; B) crystal face YZ, incidence

plane XZ, E in incidence plane (TM2);

reflectance limits v
T

and v
L'

C) crystal

face XY, incidence plane YZ, electric vector

in incidence plane (TM3); reflectance limits

v
L

and v
LL

.

= observed; calculated.
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Figure 16. Reflectance of the v
3

mode of CaCO
3

at

ei ti 46° from XY crystal face, YZ incidence

plane: A) TE polarization, rms error = 4.2%;

B) TM2 polarization, rms error = 3.7%.

= observed; - calculated.
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nor misalignment can contribute to the reflectance in this

configuration.

An additional comment on the v
2

calcite spectra is

called for. There is an apparent dip at about 882.5 cm-1

in the TE and TM2 polarized spectra. This dip is most

probably due to the same phenomenon as has been ascribed to

the dip at 1448 cm-1 in v
3

of NaNO3. That is, there is

an increase in the density of modes for some overtone, com-

bination, or difference vibration. In this case at least

one member of the combination would seem to be a lattice

mode and, therefore, the mode would be expected to be

widely dispersed (1 dependent).

v
3
-CaCO

3
was observed from the XY face in both TE

and TM2 polarization as exemplified by Figure 16(a,b).

The degree of overall fit here is a bit less desirable than

previously found, and in general the TE polarized mode

required a v3T a few wavenumbers larger than that for

TM2 polarization. Noticing that there is a rather large

difference between theory and experiment over the "forbid-

den" gap in frequencies (v
T

- v
L
), one might first suspect

the polish on the crystal to be less than adequate. A

frequency dependence in y may be at work here, although

two few data points were taken to substantiate a dip at

say 2v4 (rv1426 cm-1) in either polarization. Again, we

stress the fact that y does not affect our calculation

of 1.1/Dcl, the strength does and one can see that the
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strength and transverse frequencies obtained for the two

polarizations agree very well.

For calcite we were able to observe the v
4

(E
u

) in

plane bending mode from the XY face. A typical fit for

this mode of weak intensity is illustrated in Figure 17(a,

b), in which 180 data points were taken over the 90 cm-1

region. Each spectrum shown here is an average of four

successively recorded runs. It was hoped that this proce-

dure would help increase the signal/noise ratio, which was

on the order of2.5 for any one run under TE polarization

and3.0 for TM polarization. However, the calculated

reflectivity in the wings for a TE curve remained high

compared to experiment. Resolution employed was around

0.8 cm-1 and this band is around 3 cm 1 wide at half

height. Convolution of the calculated spectrum was tried

with the result that it mainly influenced the selection of

the damping constant, leaving the strength and transverse

frequency unchanged. Convolution was therefore not con-

sidered crucial to fitting this band and the examples shown

here are without convolution.

It may be significant that a similar deviation to that

between experiment and theory for v4-TE was noted for the

low frequency side of the v3-TE band in CaCO3. This dif-

ference also accompanied a lowered signal/noise ratio. The

frequency regions affected had one thing in common: both

occurred at the beginning of a grating range in the



Figure 17. Reflectance of the v
4

mode of CaCO, at

O.
1
= 47.5° from XY crystal face, YZ

incidence plane: A) TE; B) TM2; each plot is

an average of four consecutive scans.

= observed; = calculated.
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spectrometer. At the beginning and end of a grating, reso-

lution drops off. This might explain why TE polarization

(E vector perpendicular to the grooves on the grating) is

more affected here than TM polarization (2 vector

parallel to the grooves). TE is simply more distorted

than TM in the wings of a grating. Since in both v2

and v
3'

TM2 polarization yields a reasonably good fit by

theory, one is led to believe there is some experimental

problem in the TE observations. To characterize the

dipole derivative for each of these modes, we have simply

averaged the parameters and acknowledge there is some error

in yj.

The v
4

band of NaNO
3

requires special discussion.

It appears as a slight fluctuation in the reflectivity

around a background value of approximately 0.13. In order

to achieve a S/N ratio on the order of 400, a slit width

of approximately 1.5-2 cm 1 was required; under these con-

ditions, in the direction of increasing frequency the

reflectivity rose to a maximum at 723.6± 0.3 cm -1 and then

fell to a minimum at 726.5 ± 0.4 cm 1. The total excursion

in reflectivity between maximum and minimum was about 0.7%.

For weak bands such as this one, the TE reflectance

as calculated using equations (19) and (26) shows that the

frequency separation of maximum and minimum is approxi-

mately eaual to 'y, and that the transverse frequency occurs

approximately at the inflection point. Our observations
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would thus seem to imply a y value of 2.9 cm 1 and a

transverse frequency of 725 cm-1 . Since this analysis

neglects convolution, we made a theoretical reflectance

calculation using y = 2.0 cm 1 and found that a strength

value of the order of 4 x 10 -4
would reproduce the observed

excursion in the reflectance.

It should here also be mentioned that the reflectivity

scans in this region invariably exhibited a weak minimum at

720.3 cm 1 superimposed upon the reflection curve. We sus-

pected that this was due to a well known carbon dioxide

band appearing as an absorption in the double beam mode

owing to the extended optical path required by our reflec-

tion optics. This suspicion was confirmed (a) by making a

single beam scan of the reference path, and (b) by record-

ing the reflection of a KBr crystal in this region for

the double beam mode. Incidentally, in contrast to the

other bands for which metal mirror (R ti 1.0) was used as a

reflection standard, we estimated the reflection scales for

v4 Nallo3usinglmrasastandardate..450; the

reflectance of KBr at 725 cm-1 is 0.096.

It is also possible to estimate the dielectric para-

meters of the v
4

mode in NaNO
3

by reference to the

transmission spectrum given by Matossi and Hohler (5) for

a crystal of 0.014 cm thickness. If one simply equates

3/
their observed transmission- with

1/See equation (5-5-1), reference (15) for transmission
through a slab.
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(60)

i.e. neglects reflection and interference effects, it is

possible to deduce values of y = 2.8 cm-1 and S = 0.8

x 10
-4

, by noting the values of a, the absorption coeffi-

cient, at the maximum and the width of the absorption,

say, at one-tenth the maximum absorbance. Again, the

effect of finite resolution has simply been neglected. We

are thus left with a rather wide uncertainty in the

strength of this very weak band, but have not thought it

necessary at this point to undertake a superior measure-

ment.
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VII. DIPOLE DERIVATIVES FOR D
3h

ANIONS

As in the D
4h

equations, p, B, and for the

D3d crystals are reduced to 4 x 4 matrices; there are two

cations and two anions in the dynamical primitive unit cell.

The evaluation of the D sums1
/

for NaNO3 and CaCO
3

was reported by Frech and Decius (20). The polarizabilities

are also given in this reference. It is then a straightfor-

ward procedure to find B and 91_1/3cik. thethe effective

field is of course expressed as: k - R]
-1

. p is

characterized by three types of interactions: those between

similar ionic species, those between different ionic

species, and those between ions of the same kind but of dif-

ferent orientation. B
z involves only the cation polariza-

ti

bility (a+) and the polarizability of the anion along the

main symmetry axis of the anion (all). B
x,y relates to

a+
and a . As in the D4h system, we can again employ

symmetry factoring of 1,3, to produce 13, a matrix which is

more easily inverted. Bx'Y is then composed of a 1 x 1

and a 3 x 3 matrix; Ez of two 1 x l's and one 2 x 2.

If these crystals were cubic in structure, one could

use the Lorentz-Lorenz field approximation for in the

limit of a cubic field,

1
/
D in this reference is called -S.
, ti



B
MITI

,

+ 2
co

3

so that equation (22) becomes

c + 2 '1,.1
, co

v .
2

=
1

2[
3 9q. .1

2

3T 2
C ITV 3
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(61)

(62)

As shown in Table 11, even the Lorentz-Lorenz field approxi-

mation lies within 2% of the values obtained from lattice

dipole sums in NaNO3 and within 1% in calcite. However,

we have used the effective field model developed earlier

(equation (23)) to calculate Wkik for these anions.

In Table 12 we present the values of 1.1/3q2, 31.1/Dq3,

and 31.1/Dq4 for the carbonate and nitrate ions as obtained

from the present work and for comparison, from previously

reported dielectric strengths (7) or from estimates of the

v
T

and v
L

frequencies (6, 32). Table 12 also includes

the gas phase values for BF3. One can see that the agree-

ment between the values found in the present work and those

determined through different types of analyses compare

quite nicely.

Next, we wish to express these WDqk values as more

fundamental 911/9S
k

values. This change from molecular

normal coordinates to molecular symmetry coordinates

requires the Tt matrix (see equation (34)). For v

this transformation is simply

2



Table 11. Effective field values for NaNO
3

and CaCO3.

+' A
3 03 03

a A a A
0

V, A
3

z( -)
C

(a)) Bz B
X,Y

NaN0
3

0.41 2.67 124.8 1.785 1.815
0.292 2.76 1.823
Lorentz-Lorenz field 1.784
0.41 4.65 2.519 2.091
0.292 4.79 2.085
Lorentz-Lorenz field 2.130

CaCO
3

1.1 3.18 121.9 2.208 1.989
0.792 3.42 2.015
Lorentz-Lorenz field 1.984
1.1 4.21 2.749' 2.226
0.792 4.57 2.211
Lorentz-Lorenz field 2.239
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Table 12. Molecular dipole derivatives in CaCO3,
and BF3 [in units of esu(g-t)].

NaNO3,

9110q2 ±W3q3
±a1J/k14

12 2-
CO

3
(CaCO

3
) 72.3a 278a 20a

76
b

277
b

19
b

281c

80
d

282
d

(MgCO3) 88
b

253b 40
b

276
c

14
NO

3
(NaNO

3
) 39.5a 250a 2-5e'f

41
b

241b

236c

217
d

(LiNO3) 231c

11
BF3 102e 227

e 39e

a
Present work.

bCalculated from data of reference (7).
cSee reference (32).
dSee reference (6).
eSee reference (31).
f
See text.
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where G22 = 311A + 11B, a being the reciprocal mass. The

situation for modes 3 and 4 is a bit more complex. Both of

these modes have E' molecular symmetry and therefore each

symmetry coordinate must be expressed as a linear combina-

tion of the two normal

= 3',1

coordinates:

;1.1_LL
;s3 ,\,33 aq3 %34 9q4

(64)
au 9p
3S

4
t43 3q3 ^:;44 9q4

ti
-1The L matrix may be determined provided one knows a%

sufficient number of fundamental frequencies and can

identify the G matrix and F matrix: /

t(F G- E A ) )

k
= 0

k

rk,where A
k

= 47
2

c
2

k
and is a unit matrix.

(65)

Although we do not know the force constants for car-

bonate and nitrate, we can perhaps gain some insight into

the possible solutions to equation (65) by inspecting the

force constants used by McKean (31) for the analysis of

the infrared intensities in the isoelectronic molecule BF3.

/See reference (21), equation 12, p. 74.
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Figure 18. Dipole derivatives (symmetry coordinates),

31/Sk, for A) 11BF3,
B) CO3 in calcite, and

C) NO
3

in NaNO
3

versus F
34.

The symbols

3(+,T) and 4(-,±) designate, respectively,

311/3S3 and 3'1/9S4, where we have indicated

the sign choice of 31.1/9q3 and 311Pq4. The

lines (- -) indicate values of 3VDS4 (in-

plane bend) deduced from 3p/3S2 (out-of-

plane bend) shown as 2(+), assuming negligible

flux. The small letters indicate reported

values for F
34

: (a) reference (31) = -0.25;

(b) reference (33) = -0.81; (c) reference (34)

= -0.31 mdyn/A. Note that sign choices differ

from those shown in Figure (3) of reference

(9) .
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McKean (31) utilized a normal coordinate transformation

based upon a choice of force constants which reproduced the

v
3

and v
4

frequencies (with anharmonicity corrections)

of the isotopic species 10BF
3

and 11
BF3. This procedure

is not very certain in fixing the interaction force con-

stant, F34. More recent work has been directed to the

resolution of this problem through a study of the Coriolis

coupling constant. Levin and Abramowitz (33) reported a

Coriolis constant of 0.7 based upon the band contour at

relatively low resolution. More recently, Duncan (34)

found a Coriolis constant of 0.81 (

10
BF

3
) at relatively

high resolution. The values of F
34

which best fit

the observed frequencies, together with the Coriolis con-

stant in the latter two cases were: -0.25 (21), -0.81 (33),

or -0.31 ± 0.025 (34).

We have investigated the sensitivity of the ;T.I/Sk

values to various assumed magnitudes of F34. The other

potential constants were chosen to fit the observed v
3

=

1453.8 and v
4
= 480.1 cm-1 in

11
BF3. The Tt matrix

was next determined and finally the values of 1.1/9S3 and

311/S4 were calculated. The results are exhibited in

Figure 18A which illustrates the following points.

Firstly, although WDS3 varies by about 10% over

the range of the F34 values, the variation in the dipole

derivatives for the weaker mode, ;10S
4'

is much larger,

at least two fold. Secondly, if we fix the equilibrium
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charges so that no flux is allowed for the bending modes,

our vibrational description becomes equivalent to the bond

dipole model and from equations (47) and (49), one would

expect

=(WDS
4
)/(BP/S

2
) = (22/6)/3 -1 - 0.4082 . (66)

Therefore, if au /S2 = 0.48e, the expected value of

911/DS
4

is 0.196 e for the BF
3

case. Although the data

here do not support a fixed charge model for mode 4 for any

of the three reported F34 values, in the absence of a

really definitive determination of the potential function,

the extent of deviation of the bending mode intensities

from a fixed charge model must remain in some doubt.

Thirdly, in view of the above points, it does not seem

feasible to determine the flux term for mode 4, which is

the measure of the departure of this mode from the bond

dipole (fixed equilibrium charge) model. This is especial-

ly true in connection with our studies of the nitrate and

carbonate ions, for which the Coriolis data are not avail-

able to reinforce the determination of the potential func-

tion.

The data for carbonate and nitrate ions are treated

similarly in Figure 18b,c. Again, one sees that just as

for boron trifluoride, the dipole derivative 9u/9S4 can-

not be determined with any certainty until the potential

constant F
34

is fixed. Nevertheless, in calcite a
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solution for DI.I/BS4 in which the flux term vanishes would

require what we regard as a rather unlikely value of F34
0

(-1.15 md/A) and this is also the case for the nitrate ion
0

(F
34

-1.2 md/A). In the absence of information concern-

ing nitrate and carbonate interaction force constants, we

have arbitrarily adopted the same value for these two

anions as was found for BF3, F
34

= -0.31 and/A. Looking at
0

Figure 18 one can see that at an F34 of -0.31 md/A, the

difference between a 911/M4 with no flux (fixed charge

model) and one with flux is greatest for the multiply bonded

systems, which is reasonable, and also that W3s4 for both

carbonate and nitrate may have a very similar amount of

flux.

The selection of a representative molecular frequency

for these crystals also posed a problem. The assumption

that the only intermolecular coupling is dipolar is not

well born out by a comparison of the transverse, longitudi-

nal, and Raman frequencies in these crystals (35). The

arbitrary assumption that was made, namely that the un-

coupled frequency lies at about two-thirds the distance

from v
T

to v
L

probably produces a value within 1% of

the uncoupled frequency, and such a number was used in the

normal coordinate calculations for carbonate and nitrate.

The pertinent frequencies, and q matrix elements,

- -along with 1,1',] elements for CO3 , NO
3'

and BF
3

are

listed in Table 13. The 31/Sk values are listed in
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3

,

3
and BF

3'
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12 2- 11CO
3

NO
3

v
3

v
4

G
22

G
33

G
44

G34

F
34

F
33

33

t 43

ti -1

34

t44

1504 1428 1453.8

712.8 725 480.1

0.3125 0.2768 0.3251

0.18752 0.16964 0.18888

0.56256 0.50892 0.56665

0.21651 0.18554 0.23599

-0.31 -0.31 -0.31

5.92 5.88 6.53

1.72 1.78 2.12

0.449 0.501 0.133

-2.58 -2.57 -2.54

1.73 1.74 1.91
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Table 14 for these tetraatomic molecules. Here we have

indicated solutions for the sign choices of -Du /q3

811/Dq4 for reasons we will explain later. One should,

however, note that, from Table 13, L34 is a relatively

small negative number ('\., -0.4) compared to the other

transformation elements, which are on the order of +2.

Looking back to the equations in (64), this means au/S3

and W3S4 will be negative for this combination of signs

for 3p/q3 and 811/R14, since the magnitude of Wq3

>> 3VDq4. Only one half of the solutions for 911/9S3 and

;11/984 have been illustrated in Figure 18: +91.1/(43

311/3q4 and -91i/3c:13 Waq4.
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Table 14. Dipole derivatives with respect to symmetry
coordinates for

'

CO3 NO-
3

and BF
3

.

'

3u/M2 311/9S3

2
CO

3
±0.621e -1.14e -0.43e

-1.42e -0.25e

7-0.25e
b

NO
3

±0.383e -1.18e -0.35e

-1.21e -0.33e

TO.16e
b

BF
3

±0.842e -1.03e -0.28e

-1.56e +0.12e

±0.20e
b

aSign choice - Wag3 T au/3g4.
bFixed charge value based on theory:
x (0.4082).

WDS
4

= 31.1/S
2
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VIII. INTERPRETATION OF DIPOLE DERIVATIVES IN
TERMS OF THE EC-CF MODEL

The equilibrium charge-charge flux or EC-CF model,

discussed in the theory section, can be used in rationaliz-

ing the dipole derivatives in terms of fundamental charges

within the molecular anions. The word "rationalize"

implies a process based on empirical testing and categoriz-

ing. When the intensities of molecular vibrations are be-

ing rationalized, molecular symmetry plays a very important

role. Since we are considering dynamic, molecular vibra-

tions in the limit of their equilibria, the use of geometri-

cal constraints based on knowing the equilibrium symmetry

coordinates allows one to set up a reference frame for the

definition of a positively or negatively directed dipole

derivative. By studying isoelectronic and isosymmetric

molecules, one hopes to substantiate the EC-CF theory and

thus be able to report both the signs as well as the magni-

tudes of dipole derivatives. In turn, one can define

equilibrium effective charges for the atoms in the molecule

and also can quantitate electronic flux between the atoms.

Ultimately if one could characterize the infrared behavior

of many molecules, one would gain insight into, and perhaps

be able to actually calculate, the transition dipole matrix

(see equation (21)) by simply recording and analyzing an

infrared reflection from a single crystal.
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There are, of course, other ways of calculating so-

called "effective charges." One way is to measure the

quadrupolar splitting via NMR and extract the effective

charges. These charges are derived from the second moment

of the charge distribution, unlike vibrational moments

(p = qr). In addition, whereas an interaction between a

quadrupolar nucleus and an electric quadrient at the

nucleus is described by a point charge model, the vibra-

tional interaction with an electric field is a dynamic one.

Another method is to record the x-ray photoelectron

spectrum (XPES). In this case, one can measure the energy

it takes to ionize certain core electrons in each environ-

mentally different atom and relate this to the effective

charge at the atom. However, this result relies on an

oversimplification, namely that this selective ionization

occurs as an isolated incident, with no relaxation effects

(Koopman's theorem). A third way to obtain effective

charge information is to calculate it using electronic

wavefunctions. More of these calculated values are becom-

ing available and effective charges were published for HP;

as long ago as 1962 (36). Besides being very costly, this

method is plagued by a need to make decisions as to which

basis functions adequately describe the bonding in the sys-

tem; a slight change in basis functions may make the dif-

ference between assigning a positive or negative sign to

the effective charge. This sort of calculated charge



130

therefore can be contrived as well as more indicative of

the point charge model.

In interpreting the current EC-CF analysis, we shall

assume that the sign and approximate magnitude of the flux

terms are related to the dissociation of the molecule.

Provided we know the outcome of dissociation, we then gain

reliable insight into how the charges on the atoms are dis-

tributed in the dissociated fragments, which may be ions

or neutral molecules. We also must relate the sign of a

symmetry coordinate to a dissociation process. Following

our sign convention, / we have for the D anions,

+S
(B - A - B )

-C 3 -C
1 2

B
1

+ A B
2

zJ

and for the D
3h

case,

B333- A -B2
+SY

3A

B
1

V

x

x

Here is the overall net charge on the molecule.

With these definitions in hand, we are ready to con-

sider some specific values for the effective equilibrium

- - -charges and charge fluxes for N3, HF2, CO3 , and NO3.

The magnitudes and sign choices for the 's and

/
Refer to page 29.
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(k)
a
/S

k Is (abbreviated e
a

) are compiled in Table 15 for

D
coh

anions; Table 16 for D
3h

anions. In figuring these

values, we have used equations (45), (46) [Dcoh] , and

equations (47)-(49) [D3h].

D
coh

Anions

In the azide and bifluoride cases we are presented

with four choices for the sign and magnitude of these

effective charges and charge fluxes. One hopefully can

decide which combination best describes the molecular ion

by utilizing one's general chemical intuition. For

example, in the bifluoride study, one is suspicious of

solutions III and IV, since they would attribute equal

charges to all atoms in HF: hydrogen and both fluorines

would carry charges of -0.33e. A more plausible solution

would be I or II where CH = +0.27e and = -0.635e.

If the HF
2

molecular ion were naively regarded as a

superposition of the structures F H-F and F-H F,

using the effective charges for hydrogen fluoride (8),

= +0.4e, eF = -0.4e, would yield H = +0.4e and

F = -0.7e in the bifluoride ion. Some redistribution is

to be expected, but the solutions I and II would appear to

yield reasonable effective charges.

If one accepts this e set, the question remains as

to how to distinguish between the two possible solutions



Table 15. EC-CF values for some D
cola

anions.

WDS2(e) 311/M3 (e)
B(e) b(e/A)

(K±)

I -0.126 1.86 -0.586 -0.207 -1.24

II -0.126 -1.86 -0.586 -0.207 +1.24

III 0.126 1.86 -0.081 -0.459 -1.03

IV 0.126 -1.86 -0.081 -0.459 +1.03

HF2 (K
+

)

I 0.15 0.82 0.27 -0.625 -0.37

II 0.15 -0.82 0.27 -0.635 +0.62

III -0.15 0.82 -0.33 -0.335 -0.62

IV -0.15 -0.82 -0.33 -0.335 +0.37



Table 16. EC-CF values for some D
3h

anions.

WaS2(e) 1_1/S3 (e) Dp/3S4(e) r (e)
B
(e) b(e/A) c(e/R)

CO3

I +0.621 -1.42 +0.20 -0.73 -1.04 a

(-0.621) (-1.00) (-0.33)

II +0.621 -1.14 +0.20 -0.73 -0.86b
III +0.621 -0.25 +0.20 -0.73 -0.43a

IV +0.621 -0.43 +0.20 -0.73 -0.54
NO3

I +0.383 -1.21 +0.12 -0.37 -0.89a

( -0. 383) (-0.58) (-0.14)

II +0.383 -1.18 +0.12 -0.37 -0.87b
III +0.383 -0.33 +0.12 -0.37 -0.40a
IV +0.383 -0.35 +0.12 -0.37 -0.42b

BF3

I +0.842 -1.56 +1.46 -0.49 -1.36 a,c

II +0.842 -1.03 +1.46 -0.49 -1.03b,c

III +0.842 +0.12 +1.46 -0.49 -0.14a
IV +0.842 -0.28 +1.46 -0.49 -0.40b

aChoice of signs of 31_1/3q3 and 4t/Dq4 at F34 = -0.31 is (-,+)(corrected from ref. 9).
bChoice of signs of ap/ka3 and 3p/3q4 at F34 = -0.31 is (-,-)(corrected from ref. 9).
cr(°) for BF

3
is 1.29 K.
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0 0

with b(I) = -0.37e/A and b(II) = +0.62e/A. A positive

value of S
3

represents a displacement in the direction

of dissociation (vide supra). Such a dissociation requires

Fl
to decrease towards -le and

'F2
to increase towards

-0.4e. Such a change is consistent with a negative

b CF2)/53'
9-arr and on this ground we adopt solu-

tion (I) .

We can compare our ca value of +0.27e to some cal-

culated charges for cH in bifluoride. Many researchers

have published values for the gross charge on H in HF2

as determined by SCF-LCAO-MO calculations. The values are

unfortunately as varied as the basis sets used. From the

work of E. Clementi and A. D. McLean (36), A ranges from

+0.18e to -0.05e; from Bessis and Bratozs (39) Cm = +0.14e;

from Sanderson (40) = -0.44e! However, as we have said,

a dynamic effective charge determined via the EC-CF analy-

sis cannot be expected to coincide with a calculated

(static) atomic charge.

As for the azide ion, if one considers elementary

bonding schemes one learns in freshmen chemistry, azide

ion can be represented as: N = N = N . From Table 15,

solutions III and IV appear plausible since they would

have c
o
A more positive than c

B
Of these two choices,

III is consistent with a negative charge flux for a posi-

tive phase S3. That is, upon dissociation along the X

axis,
12.2)/S3

would be expected to be negative.
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-.46e -.46e
+S

3

x -1.0e O.Oe

NB1 = NA = N
B2 N

Bl
+ NA E N

B2
-.08e O.Oe

It should be noted that neither of these solutions for

CA and C
B

is close to the charges reported by Campbell

and Coogan (41) who measured the contribution to the second

moment of a 23
Na nuclear resonance in NaN

3
by quadru-

polar splitting. Using a point charge model they found

cA = +0.714e and r
B

= -0.857e. These charges are in quite
'

good agreement with charges deduced from a point charge

model of the molecular quadrupole moment as calculated by

Gora and Kemmey (42) who used SCF-MO molecular electronic

wavefunctions, of which the best included a functions in

the basis set.

D
3h

Anions

In addition to the effective charge calculations, we

report the flux terms b and c in Table 16 for CO-

and NO
3

ions, keeping in mind that we really do not have

an accurate value for F34. Upon examination of the

resonant bonding structures proposed for these molecules

by Pauling (29):

B

N
3

B
2

B
3

B
2

B
3

B?

I

/
1

B1
Bl B1

y

x



in the limit of dissociation we can expect

+SY
3

B
3

A B
2
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That is a positive value of S
3y accentuates structures in

which atom B1 becomes more negative and atoms B2 and

B3 become more positive, so that from equation (50) the

flux term is expected to be negative in sign. Combining

equations (47) and (48) , we find that

911b = 6-2 (2
9S's-3

,1 )/r (0)---
9S

2

and further since the magnitude of WaS3 exceeds that of

WS2, only negative solutions for au /3S3 will lead to

negative b. One is reminded that we did use a sign choice

of -11/q3 ; W3q4 to calculate ;11/S3 as shown in

Table 14, thus we have listed only the negative values for

41/;S3.

Correspondingly, the expression for the charge flux

parameter in mode 4, c, is from equations (47) and (49):

c = 3 2 (221JPS4 9pPS2)/r (0)

We do have available one bit of information that seems

to support our resultant signs for the effective charges and
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charge fluxes in the carbonate ion. Referring to informa-

tion given in reference (3), the gas phase values of CO2

for WM3 and Dp/3S2 are 1.73e and 0.26e. These yield

effective charges of cc = 0.52e and co = -0.26e. If one

accepts the dissociation limit argument, then a negative

flux for mode 3, where the flux parameter given in equation

(50) as

620(2CB1 CB2 CB3)

3

seems reasonable from these values, i.e.

-.73e -.26e -.26e

3
0 0

2
0 = C = 0

/ +.52e
dissociation

\C'+ .20e +
I via + SY

3

0 0
-2.0e

1

Upon dissociation, CB1, would be expected to become more

negative,
-B2

and cB3 more positive. The calculated

effective charges agree.

Another comparison to be made between the effective

equilibrium charges on the three D3b molecules analyzed

here, is that these charges follow the general trends in

0 0

CB CN'
electronegativity of the central atom:



138

REFERENCES

1.

2.

Ralph W. G. Wyckoff, "Crystal Structures," Interscience,
New York, 1964, Vol. 2, page 277 (D18 crystals),

4hpage 359 (D6
3d

crystals).

R. D. Cooke, Doctoral thesis, Oregon State University,
1973, "Infrared Reflections and Raman Spectra of
Sodium and Potassium Bifluoride."

3. L. R. Fredrickson and J. C. Decius, J. Chem. Phys., 63,
2727 (1975) .

4. J. C. Decius, J. Mol. Spectrosc., 57, 348 (1975).

5. F. Matosi and V. Hohler, Z. Naturforsch. A, 22, 1516
(1967) .

6. C. Haas and D. F. Hornig, J. Chem. Phys., 26, 707 (1957).

7. K. H. Hellwege, W. Lesch, M. Plihal, and G. Schaack,
Z. Phys., 232, 61 (1970).

8. J. C. Decius and C. Pastorek, J. Chem. Phys., 68, 1715
(1978) .

9. C. Pastorek and J. C. Decius, J. Phys. Chem., 83, 1379
(1979) .

10. R. F. Wallis and A. A. Maradudin, Phys. Rev., 125, 1277
(1962) .

11. A. A. Maradudin and R. F. Wallis, Phys. Rev., 123, 777
(1961) .

12. M. Plihal, Phys. Status Solidi B, 58, 315 (1973).

13. 0. P. Maksimov, V. S. Horelik, and M. M. Sushchinskii,
FizTverd. Tela, 17, 2827 (1975). [Sov. Phys. Solid
State, 17, 1892 (1976)].

14. H. Nichols and R. Frech, J. Chem. Phys., 68, 4983
(1978) .

15. J. C. Decius and R. M. Hexter, "Molecular Vibrations in
Crystals," McGraw-Hill, New York, 1977.

16. R. D. Cooke, C. Pastorek, R. E. Carlson, and J. C.
Decius, J. Chem. Phys., 69, 5 (1978).



139

17.

18.

R.

J.

Frech and J. C. Decius, J. Chem. Phys., 51, 5315
(1969) .

Tessman, A. Kahn, and W. Shockley, Phys. Rev., 92,
890 (1953).

19. J. Pirenne and E. Kartheuser, Physica 30, 2005 (1964).

20. J. C. Decius, R. Frech, and P. Bruesch, J. Chem. Phys.,
58, 4056 (1973) .

21. E. B. Wilson, Jr., J. C. Decius, P. C. Cross, "Molecular
Vibrations," McGraw-Hill, New York, 1955.

22. R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).

23. B. C. Evans, A. D. Yoffe, and D. Gray, Chem. Rev., 59,
515 (1959) ; P. Gray, Quarterly Reviews, 17, 441 (1963) .

24. R. Frech (private communication).

25. K. S. Pitzer and E. F. Westrum, J. Chem. Phys., 15, 526
(1947) .

26. G. L. Cote and H. W. Thompson, Proc. of Soc. London
Sec. A, 210, 206 (1951).

27. J. A. A. Ketelaar, C. Haas, J. van der Elsken, J. Chem.
Phys., 24, 624 (1956).

28. J. A. Salthouse and J. C. Waddington, J. Chem. Phys.,
48, 5274 (1968) .

29. S. I. Chan, D. Stelman, and L. E. Thompson, J. Chem.
Phys., 41, 2828 (1964).

30. L. Pauling, "The Nature of the Chemical Bond," 3rd
ed., Cornell University Press, Ithaca, 1973.

31. D. C. McKean, J. Chem. Phys., 24, 1002 (1956).

32. R. Frech and J. C. Decius, J. Chem. Phys., 54, 2374
(1971) .

33. T. W. Levin and S. Abramowitz, J. Chem. Phys.,
(1965).

34. J. L. Duncan, J. Mol. Spectrosc., 22, 247 (1967).

35. J. C. Decius, J. Chem. Phys., 49, 1387 (1968); R. Frech
and J. C. Decius, ibid, 51, 1536 (1969) .



140

36. E. Clementi and A. D. McLean, J. Chem. Phys., 36, 745
(1962) .

37. R. W. Dreyfuss, P. W. Levy, Proc. Roy. Soc. (London),
A246, 233 (1958).

38. M. Born and K. Huang, "Dynamical Theory of Crystal
Lattices," Claven Press, Oxford, 1954.

39. G. Bessis and S. Bratoz, J. Chem, Phys., 57, 769 (1960).

40. R. T. Sanderson, J. Chem. Phys., 23, 217 (1955).

41. I. D. Campbell and C. K. Coogan, J. Chem. Phys., 44,
2075 (1966).

42. T. Gora and P. J. Kemmey, J. Chem. Phys., 57, 3579
(1972) .



APPENDICES



141

APPENDIX A. THE "FORBIDDEN" FREQUENCY GAP

The motions responsible for phonon dispersion are com-

pletely described by wavevectors (k.) in the first Brillouin

zone (BZ); outside of the first BZ, the descriptions of the

modes are redundant. The boundaries of the first BZ are, of

course,-41 at k = 7/2a, where a is the lattice constant,

thus, k (phonon) will be on the order of 108cm1. For a

typical infrared photon, k- ti 103cm-1. Since wavevectors of

the photon and phonon modes are conserved upon their inter-

action, the dispersion in the phonon wavevector is the

dispersion near the BZ center, or k ti 0. The transitions

that occur between states then have A]:". 0. Since the

ground state has k = 0, the excited state must be for

1-Z 0. The infrared frequency region is therefore the long-

wavelength region and entire planes of molecules in the

crystal move in phase. Ideal dispersion of a polariton, or

the coupled photon-phonon wave in a crystal for radiation

incident normal to the surface, is diagrammed as

\I id-Photon
JL

v
T

Gap

/
For single cubic crystals.
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By the very nature of three dimensional space, the

molecules locked in the crystal structure have three degrees

of freedom in which to move in phase: a doubly degenerate

transverse degree (perpendicular to wave propagation) and a

non-degenerate, longitudinal degree (parallel to wave pro-

pagation). In the above figure, the degeneracy of the

transverse degree is broken down into a low frequency

component (shown) and a high frequency component. At the

transverse frequency, vT, resonance occurs between the

photons and molecules exercising a transverse degree of

freedom. There is a frequency gap between vT and vL, the

longitudinal frequency, where a wave (without damping) can-

not propagate. Here the dielectric constant is complex.

Resonance again occurs at vL when the molecules exercise

a degree of freedom parallel to the propagation of the

photon wave.

At oblique incidence the above story is perturbed a

bit, except for the TM2 polarized case, which does display

maximum reflectance between vT and vij. The off axis

polarized experiments, e.g. TM3, TM23, TB, extend maximum

reflectance past vij to some pseudo-longitudinal frequency,

that depends on the angle the incident radiation makes

with the normal to the crystal face. TM3 polarized spectra

are the most different from normal incidence reflection

spectra since, s3 is imaginary from v
L

to vLL . In this
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case, only dipoles active parallel to the propagation direc-

tion can couple with the incoming radiation.
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APPENDIX B. DEVELOPMENT OF THE DIPOLE DERIVATIVES IN TERMS
OF EC-CF PARAMETERS FOR THE D

3h
ANIONS.

The symmetry coordinates for the D3h molecular anions

which were diagrammed in Figure 11 can be described in terms

of angle bends and bond stretches as

S
ly

= 3-2 (Ar
1
+ Ar2 + Ar3) (Ai)Ai

-1
S
2z

= 3 -2 r
(0)

(0¢1 + "2 + "3) (A2)

_1
S3y = 6 2 (2Ar1 - Ar2 Ar3) (E')

S4y = 6-3- r(0)(2Acp, A,)2 - Ac 3) (E') .

According to J. C. Decius (4), the dipole derivative in a z

direction, which is also the symmetry axis in the crystal,

can be expressed simply in terms of S2, the out-of-plane

bend, which has no charge flux associated with it:

z

3
(0)

mA
)

3S
2

A M m

Thus all the effective charges can be determined from the

out-of-plane bending mode intensity. To write down expres-

sions for :)1.117/S
3

and DIY/BS
4

that have, in addition to

effective charge terms, flux terms, one first must find how

the various atoms in the molecule transform under the

symmetry operations of D3h, i.e.
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r(cA ) -> A'
1

F(B) -* Al E

This means that the charge on atom A can change during the

totally symmetric stretching vibration (Ai) . Also, the

charge on the B atoms can change during the totally symme-

tric stretch and the doubly degenerate (E') vibrations,

namely v3 and v4. A flux parameter can then be assigned

for each coincidence between the atomic irreducible repre-

sentations and the symmetry coordinates. These coincidences

are shown in Table 17 where small case letters are used to

symbolize the charge flux parameters. In order to conserve

the dipole, any charge flux on atom A must be balanced by

normalized and oppositely directed charge flux on all B

atoms. Since S
1

is not infrared active, we will be con-

cerned only with charge flux parameters b and c which we

have previously described in equations (50) and (51)

and

_12 CBI
3(2 - cB2 - c33)

b = 6
3S3

c = 6 2
9(2131 CB2 ;133)

3S
4

As for the equilibrium effective charge contribution

to the varying dipole, we have from equation (30),
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Table 17. Coincidence in symmetry between F(a) and Sk
for ID-,

-311
, AB3 molecules.a

A(A11 ) B(Ai) B(E')

S1 (A')

S
2 2
(A")

S3(E'

S
4
(E')

a

b

a
Reproduced from reference (4).
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+
( (

AlPy = A
(0)

AyA Bl
0)

AYB1 B0) AyB2

(0)

+ CB3 YB3

0)( (or, since (--; + 3r11
0)

= gym, where is the overall

molecular charge,

Al/ly CA
(0)

[AYA (AYB1 AYB2 AYB3)]

-s- crillAYB1 AyB2 AYB31

assuming c
(0) r(0) r(0)

-Bl '132 ':33
Since these molecular ions

are charged, consideration of conservation of linear momen-

tum about Y will yield the additional condition that

Y M
1

[mA
AyA

mB(AYB1 AyB2 AYB3)]*

Definition of SY and SY in terms of the Cartesian dis-

placements

4

placements results in

and

SY [30y3 2AYB1 AYB3)

1
32

-
2 (AxB2 AxB3) ]

SY = 3.6 2[3 A

32
(Ay

B2
+ Ay

B3
)

4

-1-(AxB2 AxB3)].
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Taking an appropriate linear combination of the two, elimi-

nates the x coordinate dependence:

1/T S3 + 1/2- S4 = 6AyA - 2
(L:\YB1 AYB2 AYB3)

We have then the fixed charge contribution to the changing

dipole, or

SA,
0

11

IDA
17-6 S

3
+ /fy = A6

lf
M m}{

4'

The charge flux contribution to the changing dipole in the

y direction is from equation (31):

(3) (0) 7 (4) (0)
21.1y

=
a

y
a

S
3 L'a

y
a

S
4

a

r(0) D(213.1.
-B2 133)

2
1 S

3
3

r(0) 3(2B,
-B2 B3)

2 3S
4

S
4

where r
(0) is the equilibrium bond length and incorporat-

ing the charge flux parameters this reduces to

A 2 Py = ibr (0) S
3
+ cr (0)

S41
4'

Finally, taking derivatives,

311

- A i_1(3) A ,1(3)

3S
3

1 y 2 y

and
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Bp y ,(4) u(4)
1"y '2'y

or equations (48) and (49), respectively.


