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A forward-chaining logic programming system (FORLOG) has been developed

at Oregon State University. This system coupled with an assumption-based truth

maintenance system (ATMS), provides an alternative to the logic programming

paradigm of backward-chaining with Horn clauses. To compare FORLOG to this

paradigm, we define a subset of FORLOG, called mini-FORLOG, with a restricted

syntax. This syntax is derived in a straight forward manner from a Horn clause

program. We prove that mini-FORLOG is procedurally isomorphic to Horn clause

programming.

Logic programs derived from Horn clause programs contain implications with

disjunctive consequences. Each disjunct may either lead to a solution or to a

contradiction. We want FORLOG to choose only those that lead to solutions. In

an attempt to remove the nondeterminism inherent in this choice, FORLOG

compiles implications into several simpler ones, all void of disjunctions. Even with

compilation, FORLOG often must pursue each nondeterministic choice, some of

which may turn out to be contradictory. This requires FORLOG to handle

discovered inconsistencies. With traditional logic, the existence of an inconsistency

invalidates all deductions made. FORLOG uses the ATMS to maintain consistency

of its database of facts.

One alternative in a disjunction might not terminate. It turns out that

FORLOG can use contradictions discovered during computation to avoid some of

these cases. This process involves resolving the disjunctions with discovered

contradictions.
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Disjunctions in
Forward-Chaining Logic Programming

Chapter 1

Introduction

Logic programming involves writing programs as sets of logical assertions. Program

execution consists of applying a restricted theorem prover to deduce consequences of

the assertions.

The Handbook of Artificial Intelligence (Cohen & Feigenbadm, 1982) and

many texts on logic programming (Kowalski, 1979, Clocksin & Mellish, 1984, Lloyd,

1984, Sterling & Shapiro, 1986) define a logic program as a set of Horn clauses.

This restricted definition of a logic program along with a simple interpreter provides

an effective method for deducing consequences of these clauses. One particular

clause in the program is designated the goal clause. The interpreter takes a goal

driven approach, thus following a backward-chaining (also known as top-down)

strategy.

The general form of a Horn clause is

IC/ V C2 V ... V 'Ck-/ V Ck

where each C,, 1<i<k, is a positive literal. A positive literal is defined as an

atomic formula p(termi,...,termn) for some predicate p. In this view, the goal clause

is a Horn clause with all negative literals.

Semantically, a ground goal G of a program P asks whether G is deducible in

P. If, however, a goal contains logic variables, they are existentially quantified.

For example, the goal p(termi ..... termn), containing the variables x1,x2 x,, reads:
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"Are there values for xi,x2,...,x,n such that p(termi,...,termn)?" For convenience,

existential quantification is usually omitted.

The logic behind answering the question posed by the goal clause involves

using a proof procedure common in mathematics: proof by contradiction. Assume

that the goal is negative, if a contradiction is derived, then the goal is true. The

resolution rule (Robinson, 1965) is employed as the only rule of inference.

Negating the goal is the reason for defining a goal clause as a Horn clause with no

positive literals. Any given goal may have several successful computations, each

resulting in a different output. Unfortunately, it may have some nonterminating

computations as well. These nonterminating computations generally mean the

program has no (computable) answer.

Many factors contribute to the popularity of Horn clause logic programming.

As we shall see, it has a simple procedural and declarative semantics. Very efficient

implementations exist, for example, Prolog (Warren, 1977), MU-Prolog (Naish,

1985a), Concurrent Prolog (Shapiro, 1983), Par log (Clark and Gregory, 1986), and

GHC (Ueda, 1985). Also, in practice it 'has proven to be useful for many different

applications in engineering and artificial intelligence.

A project at Oregon State University has explored an alternative paradigm.

The result of this research being the FORLOG logic programming system. As its

name implies, FORLOG utilizes a forward-chaining approach to logic programming.

It defines a logic program as a set of assertions. These assertions may take the

form of almost any closed, well formed formula. The FORLOG interpreter applies

modus ponens to deduce consequences of the assertions.

This paper examines the manner in which FORLOG uses a particular formula.

This formula turns out to have particular relevance to Horn clause logic

programming. The general form of this formula is

V x1,x2,...,xn p(xi,x2,...,xn) J D1 V D2 V ... V Dn,
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where p is a predicate and each Di is an existentially quantified conjunction of

literals. Given an instance of p, using modus ponens, we can detach the

disjunction in the consequent. By itself, Di V D2 V ... V Dn probably would not

allow the interpreter to deduce much more. If however, FORLOG knew which

members of the disjunction were satisfiable, it could use them to find further

deductions and avoid the others entirely. By compiling the implication into several

equivalent implications, FORLOG attempts just that. We shall refer to the members

of a disjunction as branches. For example, with the disjunction Di V D2 V ... V

D, above, each Di is a branch.

This paper is organized as follows. Chapter 2 provides a foundation for

FORLOG by demonstrating that forward-chaining logic programming is, at the

least, capable of mimicking backward-chaining with Horn clauses. Chapter 3, then

discusses issues surrounding FORLOG's method for compiling implications having

disjunctive consequences. Chapter 4 illustrates a problem that arises with disjunctive

programming and shows a solution provided by FORLOG. The final chapter

provides some concluding remarks.

Several individuals have made significant contributions to FORLOG's

development. Colin Gerity designed and implemented the basic ATMS facilities

(section 3.2). Nick Flann designed and implemented the basic FORLOG interpreter,

including its method for handling negated literals (section 3.3). My involvment with

FORLOG included the following:

O with Dr. Tom Dietterich, discovered and proved the procedural isomorphism
between a subset of FORLOG and interpreters for backward-chaining with
Horn clauses (chapter 2)

o implemented FORLOG's method for compiling implications with disjunctive
consequences (sections 3.1 and 3.4)

O formalized the soundness of FORLOG's use of negation (section 3.3)

O modified the basic ATMS, adding disjunctive assumptions and giving it the
ability to use resolution (chapter 4).



4

Chapter 2

Backward- vs. Forward-Chaining Logic Programming

This chapter describes abstract computation models for the two logic programming

strategies. For comparison purposes, the model for FORLOG describes a

computation strategy for logic programs with a restricted syntax. This syntax is a

subset of the full FORLOG programming language and is derived from the

completion of a Horn clause logic program. We call this model mini-FORLOG.

The final section of this chapter describes one of the important results of this

thesis: Horn clause logic programming is procedurally isomorphic to

mini-FORLOG.

2.1 Computation Model for Backward-Chaining with Horn Clauses

For logic programming purposes, Horn clauses are usually written as implications.

This simple syntactic change means the clause

IC/ V 1C2 V ... V -'Cn -1 V Cn

is rewritten as

Ca :- Cl A C2 A ... A C_]

and is read "C, is true if C1, C2, ..., and Cn..1 are true." The head of the clause is

C, and the conjunction C1 A C2 A ... A C,,-1 is the body.

Given a Horn clause program, computation progresses by backward-chaining.

At each stage we have a goal lista list of predicates to be proven. A predicate

from this list and a Horn clause are chosen such that the predicate unifies with the

Horn clause's head. Next, a new goal list is composed by replacing the chosen

predicate with the body of the chosen clause, and then applying the most general
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unifier of the clause's head and the chosen goal. When the goal list is empty,

computation terminates with a successful solution to the goal. If, however, no

clause's head unifies with a given subgoal, computation terminates with failure.

Any chosen predicate could unify with several different Horn clauses. Each

clause might lead to a unique solution to the original goal. The choice of which

clause to use is a non-deterministic one. If all possible solutions are desired, the

interpreter must perform the computation several times, once for each solution.

Whenever the computation reaches a point where it must make one of these

non-deterministic choices, clauses that lead to results previously computed and

clauses that lead to failure should be avoided, if possible.

More formally, a computation of a goal Q =Qo by a program P is a (possibly

infinite) sequence of triples <Qi,Gi,Ci>. Qi is a conjunctive goal, Gi is a goal

occurring in and Ci is a clause

P(t1,t2,...,tn) :- Li A ... A Lk

in P renamed so that it contains new variable symbols not occurring in any 0 <

j < i. For all i > 0, Q;4.1 is one of the following:

O the result of replacing GI in Qi by the body of Ci, and applying the
substitution si, the most general unifier of Gi and the head of Ci

O the constant true if Gi is the only goal in a and the body of Ci is empty
O the constant fail, if Gi and the head of Ci do not unify.

A trace of a computation of a logic program <Qi,Gi,Ci> is the sequence of

pairs <Gbsit>, where si' is the subset of the most general unifier si computed at the

ith reduction, restricted to variables in G.

Figure 2.1 illustrates an abstract interpreter for logic programs expressed as

Horn clauses. This interpreter is based upon the one described by Sterling and

Shapiro (1986). It solves a query G with respect to a program P. The output of

the interpreter may be viewed as the bindings to logic variables in G that make G
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true, or failure, if a failure has occurred during the computation. Note that the

interpreter may also fail to terminate.

Input: A Horn clause logic program P, and a goal G

Output: The subset of subs, the composed set of unifiers, restricted to
variables in G, or failure if failure has occured.

Algorithm:

Initialize the goal-list to be G, the input goal.
Initialize subs to be empty.
While the goal-list is not empty do

1. Choose a goal p(bi..... bn) from the goal-list and a (renamed) clause
p(ti.....tn) :- Li A L2 A ... A Lk, k > 0,

from P.
2. Unify p(bi,...,bn) and p(ti,...,tn) deriving the most general unifier s

(exit if the unification fails).
3. Compose s and subs.
4. Remove p(bi bn) from, and add L1, L2, ..., and Lk to, the goal list.
5. Apply s to the goal-list and to G.

If the goal-list is empty output subs restricted to variables in G, else output
failure.

Figure 2.1: An abstract interpreter for Horn clause logic programs.

Step 3 in the interpreter of Figure 2.1 requires futher explanation. Composing

two lists of substitutions constructs a combined set of substitutions from two other

sets (such as s and subs). We shall use

Si = f(x141),...,(xm=tm)}
S2 = {(xi=ti),...,(xnt=tni)},

to represent the two sets to be composed. Each of the (xi=ti) in S1 represent the

substitution of ti for xi. Even though it is represented as an equality, the

substitution is not reflexive. That is, we would never substitute xi for ti. The

left-hand side is always a variable, where the right-hand side is some arbitrary

term. The same holds for the elements of S2.

Composing S1 and S2 involves computing A U B, where

A= {(x=t) I x=x1 and t=Apply(S2,ti) where (xi=ti) E Si}
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B = {(x=t) 1 x=xi' and t=t1 where (xii=ti') E S2 and there is no y
such that (xi=y) E

The Apply operation in this step and in step 5 in the interpreter makes the

substitutions throughout the target term (or list of terms).

2.1.1 Example: Horn Clause delete

To understand this abstract interpreter, examine the Horn clause program for delete

(2-1) delete(xi,[xi1x2],x2).
(2-2) deiete(x/,[x21x3],[x21x4]) de/ete(xi.x3.x4).

The above clauses define what it means to remove a single instance of an item from

some list. The first parameter is the item to delete, the second the list to delete it

from, and the third the resulting list.

Each clause handles a separate case. Clause (2-1) covers the situation where

the item to delete heads the list. When this happens, the result is simply the rest of

the list. The second clause (2-2) defines delete as the result of adding the first

element of the list to the deletion of an item from the rest of the list.

Consider solving the goal delete(c,[a,b,c,d],x)? by the above program for delete

using the abstract interpreter of Figure 2.1. The goal-list is initialized to be

delete(c,[a,b,c,d],x). The interpreter selects it as the goal to reduce, being the only

one. Since the current goal only unifies with clause (2-1), it is chosen. The unifier

of the goal and the clause's head is {(xj=c), (x2=a), (x3=[b,c,d]), (x= [aIx4]) }.

The new goal-list becomes the instance of delete(xi,x3,x4)the body of

chosen clausewith this unifier applied, namely delete(c,[b,c,d],x4). With the next

iteration of the loop, this goal is chosen, being no other alternative. Once again the

interpreter selects clause (2-1) but the variables must be renamed to avoid a name

clash. The renamed clause is

delete(x5,[x61x7],[x61x8]) delete(x5,x7,x8).
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The unifier of the goal and the clause's head is {(x5=c), (x6=b), (x7:-.[c,d]),

(x4=[blx8])}. The new goal-list is delete(c,[c,d],x8). This time, the interpreter

may choose clause (2-1), whose variables must be renamed as well

de/ete(x9,[x91x/o].xio).

The final unifier is {(x9=c, xrt[d])}. 'This time, the new goal-list is empty and

the computation terminates.

To determine the result of the computation, we apply the relevant part of the

unifiers calculated during the computation. The first unification instantiated x to

[alx4]. The variable .x4 was involved in the substitution to (x4 =[bIx8]) in the

second unification, and x8 later became fixed to [d]. Putting these together, x has

the value [a,b,d].

<delete(c,[a,b,c,d],x), (x=[alx4])>
<delete(c,[b,c,d],x4), (x4=[blx8])>

<delete(c,[c,d],x8), (x8=[d])>
true
Output (x=[a,b,d]).

Figure 2.2: Horn clause trace

The computation can be represented by a trace. The trace of the delete

computation described above is presented in Figure 2.2. To make traces clearer,

goals are indented one depth more than their parent.

2.2 Completion of Horn Clause Logic Programs.

Clark (1978) originally introduced the completion of a logic program in order to

formalize the use of the negation-as-failure inference rule in Prolog. Here, we are

not interested in negation-as-failure. Instead we wish to derive a FORLOG

program that is equivalent to a pure Horn clause program (i.e. one without negations

or extra-logical predicates). We will show that this program, when given to a

constrained FORLOG interpreter (called mini-FORLOG), gives us the same

behavior as the interpreter described in Figure 2.1.
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The basic idea behind the completion is to find all the known ways of proving

each literal and then assert that these are the only ways. Let P be a pure Horn

clause program. The procedure involves the following. For each predicate symbol p

appearing in program P there are two cases to consider. Either (1) p appears as the

head of some clause or (2) it does not.

In case (1), gather up all clauses involving p in their head. Let one of the

clauses be

p(ti,t2.....tn) :- Li A L2 A ... A Lm

where each ti is a term involving the logic variables xi,...,xn and each Li is a

positive literal. Let yi,...,yb be all variables appearing in the clause's body but not

appearing in its head. Let uh...,un be unique variables to the entire clause. With

these conventions, we can rewrite this clause to be

V ui ..... Un p(111,...,Un) :- 3 (upti) A ... A (un=tn) A
Li A L2 A ... A Lm.

This syntactic reformulation simply removed the terms from the clause's

head and moved them to its body to form equalities. Notice that for an n-place

predicate we create n equalities. The universal variables u/..... un were introduced to

communicate across the implication. Clark calls this the general form of a Horn

clause.

Rewriting all clauses involving p makes their heads identical. Their bodies,

however, may be quite different from one another. Name each body of the k

general forms obtained in this way DI, D2, Dk. Using Ei to represent the

equality ui=ti, each Di has the form

3 xl,...,xa,Yb...,yb Ei A E2 A ... A En A Li A L2 A ... A L,.

With the clause's heads identical, the final step involves combining each general

form of p to obtain the formula

V ui,...,un D1 V D2 V V Dk.

This gives the completion for the Horn clauses of p.
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In case (2), where p is a predicate symbol that does not appear as the head of

any rule, we add the formula

Vub...,un

The completion of an entire logic program P, comp(P), is obtained by

combining the separate completions of all predicates in P. The equalities produced

employ a special theory. This theory of equality requires that two terms be equal if

and only if they are unifiable. This can be captured by the following axioms:

c * c' for any distinct constants c and c'
o f(x/,,xn) * g(y],...,yn) for distinct functors f and g

o (xi:Yr) A ... A (xn=Yn)

f(xi xn) c

t(x) * x where t(x) is any term in which x is free

2.2.1 Example: Completing delete

The delete program discussed earlier provides a simple example of computing the

completion of a Horn clause program. Once again we have the clauses

(2-3) delete(x],[x1lx2],x2).
(2-4) de/ete(x/,[x2lx3],[x2lx4]) de/ete(xi,x3,x4).

To complete this program, we begin by converting each clause to general form.

Clause (2-3) has the general form

ui,u2,u3 delete(ui,u2,u3) :- 3 x1,x2 (u/..x/) A (u2=[x1Ix2]) A (u3=x2)

and clause (2-4) has the general form

uhu2,u3 delete(uhu2,u3) 3 xbx2,x3,x4 (ut=xt) A (u2-4x21x3]) A
(u3.4x21x4]) A de/ete(xbx3,x4).

After computing the general forms, we collect them together into a single formula to

obtain the completion

V uhu2,u3 de/ete(uhu2,u3) =4 [3 xi,x2 (uP:xt) A (u2=[x1lx2]) A (u3=x2)]
V

[3 xr,x2,x3,x4 (up.x/) A (u2tx21x3]) A
(u3=[x2Ix4]) A de/ete(xbx3,x4)].
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23 Computation Model for Forward-Chaining with the Completion

The completion of a Horn clause program provides a method for converting a Horn

clause program to what are called mini-FORLOG programs.

DEFINMON. Given a Horn clause program P, the mini-FORLOG program,

for(P), is derived from comp(P) by replacing all equivalences with forward

implications.

In other words, start with a pure Horn clause program, compute its completion,

and then replace each E. with a D. For example, from the completion of delete we

derive the mini-FORLOG program

V U1,212,143 delete(ubu2,u3) [3 xi,x2 (ui=x,) A (u2=Extlx23) A (u3 =x2))
V

[3 xj,x2,x3,x4 (ur=xi) A (u2=[x21x3])
(u3= [x21x4]) A delete(xi,x3,x4)].

Any mini-FORLOG program can be given to a restricted FORLOG interpreter,

itself called mini-FORLOG. The only implications accepted by this interpreter are

ones with single literals as antecedents, sach as those in for(P).

As mentioned previously, FORLOG (and thus mini-FORLOG) takes a

forward-chaining approach to logic programming. Mini-FORLOG computes the

consequents of an assertion list and a mini-FORLOG logic program. This assertion

list is a conjunction of literals and is analogous to the goal list of Horn clause

programming. Instead of posing a question, however, the literals in the assertion list

make demands. Semantically, an assertion p(termi .....termn), containing the Skolem

constants s1,s2 ..... sk reads: "Find restrictions on sJ,s2,...,sk that must be true given

that p(termi,...,termn)." Mini-FORLOG uses Skolem constants in the same way that

Horn clause programming uses logic variables.

Within the forward-chaining view, the computation model for mini-FORLOG

chooses a literal from the assertion list. If this literal matches the antecedent of an
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implication, a branch of the disjunction in the implication's consequent is chosen

and added to the assertion list replacing the chosen predicate. This choice of which

branch to pursue is a non-deterministic one.

As with Horn clauses, we pursue one result at a time. The computation model

for mini-FORLOG derives single equality restrictions for each Skolem constant in

the original assertion list. There could, however, be a set of restrictions for the

individual Skolem constants. For completeness all values need to be derived, which

means that every branch in the disjunctive consequent should be pursued. To do

this, we can execute the model once for each answer. Whenever the model must

make a choice between which branch to pursue, ones that lead to previously

computed results and ones that lead to failure, should be avoided.

More formally, a computation of the goal assertion S=S0 by program F is a

(possibly infinite) sequence of triples Si is a (conjunctive) goal assertion,

Ai is an assertion p(ci .....cn) in Si and B1 is one of the Di, appearing in the rule

V ui,...,un p(ub...,un) Di V D2 V ... V Dm

which is itself in F. Each cf is a term possibly containing Skolem constants.

Recall from computing the completion of p that each Di, and thus Bi, is a

conjunction of n equalities Eb...,En and k literals L1,...4k. Rename with unique

Skolem constants the existential variables appearing in Bi, and replace each ui with

cp 0 < j < n. This step derives new equalities Ei',...,En and new literals

For all i > 0, Si.,1 is the result of one of the following:

o replacing Ai by the literals LJ',...,Lk' in Si, and applying to Si the most
general equalities ei derived from Ei',...,En (more on e below)

O the constant true if Ai is the only goal assertion and there were no literals in
Bi (ie. k=0)

the constant fail if the equalities are contradictory

O the constant fail if we instead had the rule of the form

V
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Deriving the most general equalities from mirrors unification.

Because of rewriting and substitution, each Ey has the form c1-tj'. The equality

axioms discussed previously mean that simplification may be performed by unifying

each ci with tie. To compute ei, the most general equalities, compose results of

these single unifications.

As with the model for Horn clause programming, a trace of a computation of

a mini-FORLOG logic program <SbAbBi> is the sequence of pairs <A ,e;'>, where

is the subset of the most general unifier ei computed at the ith iteration,

restricted to variables in A.

Input: A mini-FORLOG program F, and a start assertion S

Output: The subset of equals, the composed list of equalities, restricted to
Skolem constants in S, or failure if failure has occurred.

Algorithm:

Initialize the assertion-list to be S, the start assertion.
Initialize equals to be empty.
While the assertion-list is not empty do

1. Choose an assertion p(ci,...,cn) from the assertion-list and B a
(skolemized) with each of the ci's replacing ui's. D1 is a branch
from the implication with p as an antecedent

V u/....,un p(ut,...,un) Di V D2 V ... V Di V ... V D,.
Therefore, B has the following form:

E1 A E2 A ... A En A Li A L2 A ... A Lk.

2. Simplify the equalities, EbE2, ..., and En, in B, deriving the most
general equalities e (exit if a contradiction arises).

3. Compose e and equals.
4. Remove p(ci,...,cn) from, and add L1, L2, ..., and Lk to, the

assertion-list.
5. Apply e to the assertion-list and to S.

If the assertion-list is empty output equals restricted to Skolem constants in
S, else output failure.

Figure 2.3: An abstract interpreter for mini-FORLOG.
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Figure 2.3, describes an abstract interpreter for FORLOG. It processed an

assertion S with respect to a program F. The output of the interpreter may be

viewed as the derived equalities involving the Skolem constants in S, or failure, if a

failure has occurred during the computation. As with the interpreter of Figure 2.1,

this interpreter may fail to terminate.

2.3.1 Example: mini-FORLOG delete

To understand this strategy, examine the mini-FORLOG program for deleting as it

appears in section 2.3.

Consider the deductions made as a consequence of the assertion

delete(c,[a,b,c,d],sk) using the abstract interpreter of Figure 2.3. The assertion-list

is initialized to be delete(c,[a,b,c,d],sk). It is chosen as the assertion to pursue,

being the only one. The Skolemized disjunction from the program is

(c=ski) A ([a,b,c,d]= [sk2lsk3]) A (sk =[sk2lsk4]) A de/ete(ski,sk3,sk4)

where the universal variables have been replaced. Simplifying the equalities gives us

{(ski=c), (sk2=a), (skp[b,c,d]), (sk=[alskal. The new assertion-list is the

instance of delete(xi,x3,x4) with these equalities applied, namely

delete(c,[b,c,d],sk4). Because there is no other choice again, this goal assertion is

chosen in the next iteration of the loop. The same disjunction from delete is

chosen but with different skolemized variables. The skolemized disjunction is

(c=sks) A ([b,c,d]=[sk6Isk7]) A (sk4=[sk6Isk8]) A delete(sk5,sk7,sk8).

where, again, the universal variables have been replaced. Simplifying equalities this

time give us {(sks=c), (sk6=b), (sk7 =[c,d]), (sk4=[bisk8])}. The new assertion-list

is delete(c,[c,d],sk8). This time the skolemized disjunction is

(c =x9) A Ccci]..[x9Ixio]) A (sk8=x/0)

Again we have replaced the universal variables. The final simplification of

equalities gives us {(x9=c), (sk8=[d])}. This time, the new assertion-list is empty

and the computation terminates.
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To determine the result of the computation, we apply the relevant part of the

simplified equalities calculated during the computation. The first simplification

equated sk to [alsk4], the second equated sk4 to [blsk8], and sk8 finally became

fixed to [d]. Putting these together by using the law of substitution of equals, sk

has the value [a,b,d].

<delete(c,[a,b,c,d],sk), (sk=[alsk.f])>
<delete(c,[b,c,d],sk4), (sk4=[bIsk8])>

<delete(c,[c,d],sk8), (skp[d])>
true

Output (sk=[a,b,d]).

Figure 2.4: Mini-FORLOG trace

The computation can be represented by a trace. The trace of the delete

computation described above is presented in Figure 2.4.

2.4 Isomorphism Between the Two Strategies

For brevity of this argument, we will call the logic programming strategy of

backward-chaining with Horn clauses BACKLOG. Notice that neither interpreter

provided a policy for adding and removing goals from the goal list. Prolog

implements a depth-first version of BACKLOG. It chooses the leftmost goal

instead of an arbitrary one, and replaces the non-deterministic choice of a clause by

sequential search for a unifiable clause and it backtracks when failure occurs.

Mini-FORLOG could have the exact same strategy.

Looking at the two interpreters and the delete example provided for each, it

should be clear that BACKLOG and mini-FORLOG are computationally equivalent.

The only major difference concerns the use of unification in Prolog and the use of

equality in mini-FORLOG. To show this equivalence we shall prove that the two

methods are procedually isomorphic.
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DEFINITION. Two procedures A and B are procedurally isomorphic if there

are three functions fi, fo, and fs each of which is one-to-one and onto, such that

fi(IA) = Ig
fo(OA) = OB
fs(SA) = SB

where fi takes any input given to A and returns the corresponding input given to B,

fo takes any output produced by A and maps it to the corresponding output from

B, and fs takes any internal state of A and maps it to the corresponding internal

state of B.

THEOREM. BACKLOG and mini-FORLOG are procedurally isomorphic.

Proof. P, a Horn clause program, and G, a goal, represent the input to BACKLOG.

Define fi to map any input pair (P,G) to the input pair (for(P),Sk(G)), where for is

the mapping from Horn clause programs to mini-FORLOG programs defined above.

Sk is a one-to-one, onto mapping from logic variables to Skolem constants. When

applied to a literal or a list of literals, Sk replaces all occurrences of each logic

variable with the corresponding Skolem constant. When applied to substitutions, it

similarly replaces all occurrences of logic variables (on either side of the equals sign)

with appropriate Skolem constants. Further, define fo and fs to be Sk as well. To

show the isomorphism, we must demonstrate the correspondence provided by fo and

fs. Also, since BACKLOG and mini-FORLOG are nondeterministic, we must show

that for every sequence of nondeterministic decisions in BACKLOG, there exists an

isomorphic sequence of decisions in mini-FORLOG and vice-versa.

First we shall prove that fs does in fact take any internal state of BACKLOG

and map it to a corresponding internal state of mini-FORLOG. The state for

BACKLOG is represented by the variables goal-list and subs. The state for

mini-FORLOG is represented by the variables assertion-list and equals. We will

use goal list;, subs;, assertion-lists, and equals; to indicate the values of these

variables at the end of iteration i. Therefore, we wish to demonstrate that for all i

> 0, assertion-listirSk(goal-list;) and equals;=Sk(subs;). We will use a proof by
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induction on the number of iterations in the respective loops. With no iterations,

since the start assertion S=Sk(G) by the definition of fT, after initialization

assertion-listo=Sk(goal-listo). Initializing subs and equals to be empty gives us

equals0=Sk(subso) trivially.

Now assume that for some m

assertion-listm=Sk(goal-listm)
equalsm=Sk(subsm).

Now we must prove that after iteration m+1, that

assertion-listm.,1=Sk(goal-listm.,.1)
equalsm+1=Sk(subsm+i)

The five steps within the loops (see Figure 2.1 and Figure 2.3) maintain the

equivalences.

la. We must show that the goal literal chosen by BACKLOG corresponds to the
assertion literal chosen by mini-FORLOG.

Since assertion-listm=Sk(goal-listen), the chosen goal in BACKLOG
p(bi .....bn) E goal - listen, corresponds to some assertion p(ct,....cn) E
assertion listen. That is, p('ci,...,cn)=Sk(p(bi,...,bn)). Therefore, have
mini-FORLOG choose the assertion p(c],...,cn).

lb. For this step, we want to demonstrate the correspondence between the body
of BACKLOG's chosen clause and a branch of a disjunction from a
mini-FORLOG's implication.

Let p(ti,...,tn) :- Li A ... A Lk be the clause chosen by BACKLOG in this
step. Recall that this clause would have the general form

V ul,...,un p(u1,...,un) :- 3 X, Y (ui=o) A ... A (un=tn) A
L1 A ... A Lk.

where X are logic variables appearing in the and Y are logic variables
appearing in the body but not the head (i.e., X and Y are disjoint). Because
of the mapping for, mini-FORLOG has exactly one rule that defines p and
it must have the right hand side of the general form appearing as a branch
in its consequent. This, of course is the branch chosen by mini-FORLOG.
This mini-FORLOG step then replaces the ui's with the ci's found in
p(ci,...,en), the chosen assertion (step la), and uses Sk to Skolemize the
branch. The result being a conjunction of equalities and literals

(cpti') A ... A (cet,,') A L1' A ... A Lk',

where ti' and L' are Skolemized versions of ti and Li respectively.

Steps la and lb involve making nondeterministic choices. We have shown
that for the nondeterministic choice of a goal and clause in BACKLOG
there is a corresponding choice of an assertion and branch of a disjunction.
The reverse holds as well.
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2. Here we want to show that the most general unifier computed by
BACKLOG corresponds to mini-FORLOG's simplification of equalities in
the branch selected in the previous step.

Clark (1978, p. 306) proved the following lemma. Under the restricted
theory of equality (section 2.2), p(bi,...,bn) can be unified with p(t .....tn) with
most general unifier

s = {(x1=e1),...,(xk=ek)},

where each (xi=ei) represents the substitution of ei for xb if and only if the
conjunction of equalities

(b1 =t1) n ... n (bet?)
can be simplified to yield the set of equalities

s' = {(xpei),....(xk=ek)}.

Syntactically s and s' are identical, but semantically they differ.

Applying the Sk mapping to s' and to the conjunction of equalities above
certainly will not affect the equivalency. Therefore, we have

(ci=ti) ... (Cn=t

equivalent to
Sk(s') = {(sk1=e11),...,(skk=ek')},

where xi was mapped to the Skolem constant ski, and ci, ti1, and e,' are
Skolemized versions of bi, ti and ei respectively. This equivalency defines
the most general equalities sought by mini-FORLOG, we therefore have

e = Sk(s) = {(sk1=e1),...,(skk=e01.

Each (ski=ei') is an equality.

3. Here we wish to demonstrate that composing s and subs; corresponds to
composing e and equals,.

We know that equalsm=Sk(subsm) and e=Sk(s). Since substitutions and
equalities have the same syntactic form, BACKLOG and mini-FORLOG can
use the same Compose procedure. In addition, because of the result in step
2 above, we can treat the equalities just like substitutions. That is, each
(ski=e1) E e can represent the substitution of for ski. The left hand side
of an equality in e is always a Skolem constant and the right hand side is
some term. From

subsm.,1 = Cornpose(s,subsm)
equalsm.i= Cornpose(e,equalsm)

we have the following:
Sk(subsm,d) = Sk(Compose(s,subsm))

= Compose(Sk(s),Sk(subsm))
= Cornpose(e,equalsm)
= equalsm.i
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4. Now we want to show that removing p(bi,...,bn) from, and adding Li, ..., Lk
to, goal-list,, in BACKLOG and removing p(ch...,c,) from, and adding
Sk(LJ,...,Lk) to, assertion-listm in mini-FORLOG maintains the
correspondence. That is, from

g = goal -listen - p(bi ..... bn) + (Lb....Lk)
a = assertion -listen - p(ci,...,c,) + Sk(LJ,...,Lk)

we have the following:

Sk(g) = Sk(goal-listen POI.....Lon) + (Lb....4))
= Sk(goal-listen) - Sk(p(bi,...,b,)) + Sk(LJ,...,Lk)
= assertion -listen p(cj,...,c,) + Sk(LJ,...,Lk)
=a

5. Finally we have the correspondence between computing goal-listm+1 in
BACKLOG and computing assertion-listm+1 in mini-FORLOG.

We know that e=Sk(s) and Sk(g)=a. Therefore, from
goal-listm4.1 = Apply(s,g)
assertion-listm+1 = Apply(e,a)

we have the following:

Sk(goaHistm+i) = Sk(Apply(s,g))
= Apply(Sk(s),Sk(g))
= Apply(e,a)
= assertion-listm+1

Therefore, by induction, the states maintain their correspondence. Because of this,

when the goal -list; is empty (for some i), assertion -lists is empty as well, and

equalsi=Sk(subsi). Further, since the start assertion for mini-FORLOG was Sk(G),

where G was BACKLOG's original goal, Sk provides the mapping from the output

of BACKLOG and the output of mini-FORLOG. With this, we now have proven

that the two strategies are procedurally isomorphic 1

This somewhat surprising result means that backward-chaining and

forward-chaining are alternative methods for searching through different

formulations of the same problem space.
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Chapter 3

Programming with Disjunctions

Recall that the mini-FORLOG interpreter described previously did not specify how

to select which branch of the disjunction to pursue. We discovered that

mini-FORLOG can mirror Prolog's depth-first computation strategy. Full

FORLOG provides a more flexible method for dealing with this nondeterministic

choice. When it encounters an implication with a disjunctive consequent, FORLOG

compiles it into logically sound implications. These implications try to identify

which branches lead to solutions. When no identification can be made, each branch

is pursued by assuming that it is the "correct" one.

This implementation of nondeterminism requires FORLOG to track

assumptions. These assumptions are fundamentally different from assertions. Any

given assumption could be contradictory alone or in conjunction with other

assumptions made by FORLOG. To maintain a consistent database of assertions

and assumptions, FORLOG employs a truth maintenance system (TMS). The TMS

also provides support for deciding the validity of negated literals.

3.1 Compiling Disjunctions

When FORLOG encounters an implication with a disjunctive consequent, it compiles

the implication into several simpler ones, none of which contain a disjunction. This

operation, performed once at compile time, derives implications of the form

V xj,...,xn Al A A2 A ... Am C

where each A; is some literal or equality (possibly negative) and C is an existentially

quantified conjunction of equalities and literals.
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Notice that the implication p D q V r could be rewritten as p A 1q D r.

This is exactly what FORLOG does, except it enumerates all implications. For an

example, examine the following implication:

x p(x) D D/ V D2 V ... V Dn.

The number of parameters in predicate p is irrelevant for this discussion, so a single

one will suffice for illustrative purposes. FORLOG compiles this implication into

the implications

x [p(x) A 02 A 03 A ... A On] D Di
x [p(x) A 0/ A 03 A ... A --iDn] D D2

x [p(x) A 01 A 02 A ... A D Dn.

The above implications look to be in the desired form, but they, however, do

not complete the process. Recall that each branch of the disjunction is a

conjunction of existentially quantified literals and equalities (actually any disjunction

could contain an imbedded disjunction, which just means that this method must be

applied recursively). During the compilation process, equalities are treated exactly

like literals. Let the conjunction

(3-1) 3 yi Lid A Lia A ... A Li,,

represent Di, where each Lid is ground or contains the universal variable x and/or

the existential variable yi. Again, the number of parameters is irrelevant. Negating

a branch turns it into a universally quantified disjunction of negated literals

(deMorgan's law). If Di contains m literals as in (3-1), 1Di becomes

yi 'Lid V 14,2 V ... V 1Lim.

With each negated branch expanded with its literals, the implications above are not

particularly useful. If, however, the antecedents were in disjunctive normal form,

each implication could be divided into several simpler implications (e.g. pVq 3 r

can be rewritten as the two implications p 3 r and q 3 r).

With n=3, we will use the implication
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x [p(x) A -1D2 A D

to illustrate the process of putting an antecedent into disjunctive normal form.

Expanding the negated branches 11)2 and 11)3, by putting the literals in the

antecedent gives us

xj,I,Y2 [p(x) A (--IL2,1 V 'L2,2) A (-1L3,/ V 1L3,2)] D D1.

The right-most conjunction can be distributed to produce

X,Y1Y2 [p(x) A (('L2,1 A --Q,3,1) V (-1.L.,2,1 A -1L3,2) V
( -'L2,2 A 1L3,1) V (IL,2,2 A -'L3,2))] D DI

which amounts to taking the cross product between each branch in the antecedent.

Distributing p(x) amongst the literals, we get the antecedent in disjunctive normal

form (not shown here). From this we derive the four implications

x,y1,y2 [p(x) A 1L2,1 A --1L3J] D D1
x,y1,y2 [p(x) A 'L2,1 A 'L3,2] D
x.Y1iY2 [p(x) A 'L2,2 A D Dl
.x.Y1,Y2 [p(x) A -'L2,2 A --1.L.3,2] D D1.

This process is repeated for the other two implications with D2 and D3 as

consequents, deriving a total of twelve implications (we will not list them here, but

the process is identical).

Even though the example showed the branches D2 and D3 with two literals

each, they don't necessarily have to have the same number of literals. In general,

we must take the cross product of n-1 varied length vectors to produce at most kn-1

new vectors where k is the length of the branch containing the largest number of

literals. Each of the new vectors contains n-1 literals which are conjoined together.

This must be done for each implied branch, that is n times. This may seem rather

expensive (it is exponential), but it is only performed once for an assertion and n is

usually small.

3.1.1 Example: Compiling delete

The FORLOG delete program discussed earlier contained a disjunction in its

consequent
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u1,u2,u3 de/ete(tibti2,u3) J xi.x2 (u/r-xi) A (u2::[xilx2]) A (u3=x2)
V

3 x1,x2,x3,x4 (up,xi) A (u2=[x21x3]) A
(u3=[x21x4]) A de/ete(xi,x3,x4).

Compiling this rule produces the following implications:

uhu2,u3 br1(ui,u2,u3) D 3 xi,x2 (ui=xi) A (u2=[x1lx2]) A (u3=x2)
ubu2,u3 br2(ubu2,u3) D 3 xi,x2,x3,x4 (upx/) A (U2=

p[X2IX4]) A X3x
i3[tX(21,:D,xA

(U

u1,u2,u3,x1 delete(ubu2,u3) A 1(11i=x1) D br2(u1,u2,u3)
u1,u2,u3,x1,x2 delete(u1,u2,143) A --02=[x1lx2]) D br2(141x2,u3)
u1,u2,u3,x2 de/ete(u1,u2,u3) A (u3 =x2) D br2(ti1,u2,u3)
u1,u2,u3,x1 de/ere(uhu2.u3) A "(upx/) brAubu2,u3)
ui,u2,u3,x2,x3 delete(u1,u2,u3) A 1(u2=tx21x31) bri(u1,u2,u3)
iii,112,U3,X2,X4 delete(UbU2,143) A '(u3= [x21x4]) bri(u1,u2.u3)
u1,u2,u3,x1,x3,x4 delete(u1,u2,u3) A "ndelete(x1,x3,x4) br1(u1,u2,u3)

u1,u2,u3 de/ete(u1,ti2,u3) A enumerate D br (1.1 bu2,u3) V br2(u1,u2,u3).

The first two implications serve to assert the original literals involved in each

branch when a particular branch is ruled in. The next seven implications attempt

to decide which branch is valid. The final rule enumerates the branches if and

only if no progress was gained with the previous implications. The enumerate

predicate gives FORLOG control over when this happens. Enumeration assumes

that each branch is viable. This may turn out to be a false assumption; FORLOG

must then handle these derived contradictions.

Notice that some additional syntax has been added to the method described.

Each branch of the disjunction is in fact associated with a unique name (i.e. tn./

and br2). This was introduced to avoid repeating the entire branch formula in the

second set of implications, and to simplify the enumeration process.

3.2 Handling Contradictions: Using a Truth Maintenance System

The abstract mini-FORLOG interpreter did not have to handle contradictions

because the choice of which disjunction to pursue was a nondeterministic one. The

interpreter simply chose the "right" disjunction to follow. In reality, FORLOG must
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enumerate branches of a disjunction to achieve this nondeterministic behavior.

Often, as a result of this enumeration, it derives a contradiction. This inconsistency

may be discovered immediately while simplifying equalities or derived later from

some deduction involving a literal in a branch.

In classical, monotonic logic, the presence of an inconsistency renders all

deductions meaninglessany assertion may be proven (or disproven). If, however,

we employ nonmonotonic logic and retract the assertions affected by the

contradiction, other assertions unaffected by the contradiction remain valid.

Enumerating the branches of a disjunction requires FORLOG to assume that

each branch is valid, otherwise it would not have to enumerate. This may in fact

be a false assumption. Often pursuing a particular branch leads to a contradiction.

For example, with the implications

pDqV r, rD .1

where J_ designates a contradiction, FORLOG would compile the first one into the

several implications:

branch' D q
branch2 D r

p A 1q D r

p A q

p A enumerate D branch' V branch2.

Asserting the predicate p, with the reformulation, does,not allow FORLOG to derive

anything further. Therefore, it enumerates by assuming both branch' and branch2.

From branch' FORLOG deduces q and from branch2 it deduces r. Remember that

r D 1. Since FORLOG deduces r, it also deduces .1. Assuming the validity of

branch2 led to a contradiction. To remove the inconsistency, we could remove

everything affected by this assumption (i.e. the predicate r).

Unfortunately, there are other ways to derive contradictions. I borrow an

example from deKleer (1986a). Examine the following assertions:

a, c,

a D b, c D d,
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aAcDe, J1.
Figure 3.1 describes the set of assertions graphically. This set of assertions is

inconsistent because it allows the derivation of 1. Unfortunately, everything is

affected by the contradiction, it cannot be removed short of retracting an assertion,

suchaseDdorbAdD.L.

e

Figure 3.1: Graph representing the assertions.

In general, it is costly to determine assertions affected by a contradiction. This

is exacerbated by the problem of selecting which of the affected assertions to retract.

Fortunately, there are reasonable ways to overcome these fundamental difficulties.

FORLOG employs an assumption-based truth maintenance system (ATMS) (deKleer,

1986a, b, c) to maintain the consistency of its database of assertions and to achieve

nonmonotonicity in the face of derived contradictions.

Now consider the alternative formulation for the second example:

:MA/A, :MC/C,Alb, C D d, A ACD e,

where M is Reiter's (1980) default reasoning operator. In this theory, :MA/A

translates to "in the absence of any information to the contrary, assume A." If A

somehow led to a contradiction, we have the contrary information. By convention,

capital letters represent default assumptions. We already used this assumption idea

when enumerating the branches of a disjunction. Now, any assertion may be
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implied by an assumption. Since it consistent to assume both A and C, we may

derive b, d, and e. The set {A,b,C,d,e} is called an extension of the theory.

Adding the implication bAdD 1 has a different effect than it did in the

original formulation. As before, this introduces a contradiction, but this

contradiction affects only e, nothing else. We cannot assume both A and C

simultaneously. We may assume A and derive b or assume C and derive d, but not

both. In formal terms, the theory now has two mutually exclusive extensions: {A,b}

and {C,d}. The contradiction split the original extension in two.

The ATMS implements the behavior suggested by this example. It maintains

with each assertion, the default assumptions used to derive it. The tuple

<fact,{Si,...,Sn}

states that fact is supported by the assumption sets Si,...,Sn. Logically, each Si

forms a separate conjunction that implies the assertion. The set of sets {S/,...,Sn} is

called a label. If, for any reason, one of the Si's contains assumptions that cannot

hold simultaneously, that Si is removed from fact's label.

Looking at the final state of the example, the following tuples describe all

known assertions:

<1), {{A}}>, <d, {{C}}>, <e, {

Notice that e has no default assumption set (i.e. an empty label), which means that

e is false. FORLOG has the important feature that while an assertion is false it

cannot be used in any deduction. In fact, the ATMS makes sure that any assertion

justified solely by other assertions that are false is itself false.

It is also possible for an assertion to be supported by the null assumption,

making the assertion a premise. For example, the assertion

<I; {{ } }>

indicates that f is a premise and must be true and not simply assumed true.
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Using ATMS terminology, deKleer calls default assumptions that cannot hold

simultaneously nogoods. The ATMS maintains a list of all nogoods derived or

asserted. In the example, adding the final axiom causes the ATMS to derive the

nogood {A,C}. This nogood simply asserts 3(A A C) or alternatively ( -'A V IC).

As mentioned above, the ATMS updates the labels of assertions by removing

contexts that are supersets of any nogood. For example, e started out as the

assertion <e, { {A,C } }> but when {A,C} was found to be nogood, it was updated to

be <e, {

Assertions inherit labels from the assertions used to derive them. With the

implication

(3-1) pAqDr
and the assertions

<p,{{F}} > , <q,{{G}}>,

FORLOG derives

(3-2) <r,{{F,G}}>.

Logically, from p A q D r, F D p, and G D q we can derive FAGD r, which is

exactly what the final tuple represents.

Suppose that, by some other means, FORLOG deduces the assertions

(3-3) <p,{{M}}>, <q,{{N}}>.

FORLOG, because of the ATMS, knows that r has previously been derived. These

new assertions simply provide additional support for believing r. Rather than

applying the rule (3-1) again, the ATMS propagates labels from p and q to r. It

does this by recording not only assumptions but justifications as well. In the

example, the ATMS knew that p and q were used to derive r. Therefore, it updates

r's label to reflect the new support provided by the assertions in (3-3). This

updating changes (3-2) to be

<r,{{F,G},{M,N}}>.
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In summary, an ATMS acts as a sophisticated database system for recording

not only assertions, but also their labels (underlying assumptions). It provides some

benefits in addition to those provided by a conventional truth maintenance system.

First, it allows the system to store multiple, mutually inconsistent views of a single

database efficiently and correctly. These different views may be explored in any

manner, depth-first or breadth - first. Another benefit of an ATMS is that it

provides support for intelligent backtracking by determining which assumptions

contribute to a contradiction.

3.3 Handling Negations

Compiling an implication with a disjunctive consequent introduces negations to

FORLOG. Negative literals have historically caused plenty of problems for logic

programming. Our implementation relies upon negations, so we must have a sound

and effective method for using them.

Prolog employs the unsound method of negation-as-failure to implement

negations of literals. This method closes the database of facts by assuming that all

the true facts are known. Any facts not present are false. FORLOG employs an

alternative method by supporting several kinds of negated literals.

Except for equality literals, the user must inform FORLOG about a literal and

its type. The different types available are:

* Test literals. The user provides a boolean Lisp function to call when the
parameters of a test literal are bound.

O Functional literals. These are still predicates not functions. The user gives
one or more Lisp functions that establish a functional dependency between
the parameters of the given literal.

O Functional dependency literals. The user asserts that some parameters of the
literal are functionally determined by other parameters.

Any literal not defined to be one of the above is known as a simple literal. Each

type of literal employs a different but sound method to determine the truth value

of its negation. We will examine each one individually.
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33.1 Negating equality literals

Any given branch of a disjunction often contains several equalities. As we saw with

the compilation of the program for delete, these equalities end up negated in

antecedents of some implications.

It turns out that some of these may be discarded. For example, the compiled

implication

V ui,u2,u3,xi delete(uhu2,u3) A 1(upx/) D br2(uitu2,113)

could never detach the branch br2. When the variable ui gets bound by a particular

instantiation of the delete predicate, it will always unify with the universal variable

xi. Because of the equality theory employed, the equality (ui=xi) will always be

true, therefore the inequality (ui:xi) will always be false. FORLOG avoids

creating implications containing negations of this type.

Examine another implication generated by the compilation of delete:

V libu2,u3,xj,x2 de/ete(ubu2,u3) A 1(u2=[xilx2]) D br2(u/x2.u3).

In this case, whenever u2 gets bound to a list by a particular instantiation of delete,

the equality (u2=[xilx2]) can be satisfied, thus making the inequality --1(u2=[xilx2])

false. So, whenever the bound value for u2 unifies with the list [xilx2], the

inequality is false, otherwise the inequality is true.

In general FORLOG uses the success or failure of unification to evaluate an

inequality. If the left side of the equality unifies with the right, then the inequality

is false. If the unification fails, then the inequality is true.

3.3.2 Negating test literals

With FORLOG, a literal having an attached boolean Lisp function can be defined.

An instance of a test literal (positive or negative) must be bound before it is

evaluated. To evaluate a negative test literal, the bound parameters are passed to the
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attached Lisp function. If the function returns T, the negation is false. If, on the

other hand, the function returns NIL, the negation is true.

For example, suppose we had the implication

V x,y p(x,y) A 'greater(xy) D q(x,y)

where p and q are any predicates and greater is attached to the Interlisp-D function

IGREATERP. With the assertion

<p(3,10), { {A } }>

the universal variables, x and y, in the implication get bound. This permits the

literal igreater(3,10) to be evaluated. FORLOG runs IGREATERP(3,10). Since 3

is not greater than 10, the lisp function returns false, meaning that igreater(3,10)

is true. Therefore, using modus ponens, FORLOG deduces

<q(3,10), { {A } } >.

3.3.3 Negating functional literals

Not all attached functions in FORLOG must be boolean. Literals can have attached

lisp functions of any type. These attached functions define functional dependencies

among a literal's parameters. As with test literals, the parameters for a negated

functional literal must be bound before it can be evaluated.

For the functional literal r(xsyb.Y2,...,yn), let x be the parameter functionally

determined by the parameters yi,...,yn as defined by f, an n-place Lisp function

attached to r. Examine the implication

V y1Y2,....Yn XY/Y2,...yn) D 3 x

Suppose we had the assertion

<P(c1,c2,--cn),{{B}}>

where the c1,c2,...,cn are ground terms. FORLOG would use the attached function

f(c1,c2,...,cn) to compute a value for the existential variable x and assert

<r(d,c2,...,cn),{{B }}>
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where clrf(ci,c2.....cn).

To determine the truth value of a negated functional literal, Ir(x..Y.bY2,--.,yn),

FORLOG tests the equality between x and the value returned by f(yiy2,...yn). If

the two are equal, the negated literal is false, otherwise it is true.

For example, suppose we had the implication

V xy,z p(xy,z) A "nplus(xy,z) D q(xy,z)

where p and q are any predicates and plus has the Interlisp-D function IPLUS

defining a functional dependency between x, y and z (i.e. x+y=z). With the

assertion

<p(5,7,2), {{B}}>,

the universal variables in the implication get bound. The literal Iplus(5,7,2) can be

evaluated. FORLOG runs IPLUS(5,7) returning 12. Since this value not equal to 2,

--Iplus(5,7,2) is true. Therefore, using modus ponens, FORLOG deduces

<q(5,7,2), {{B}}>.

3.3.4 Negating functional dependency literals

Functional dependencies among the parameters of a literal without any explicit

attached function can be declared. Here again, the parameters must be bound

before a literal of this type is evaluated.

For a literal h, let be the parameters functionally determined by the

parameters yi,y2,...,yn. FORLOG enforces the following axiom for such a literal:

V ..... x,,zi ..... z,n,yi,...,yn [h(xl,...,xyi,...yn) A h(zi,...,z,n,yi,...,yn)]
D (xpzi) A ... A (x,,=z,n)

In this case, negations are true with respect to the contexts in which assertions

of h are made. Examine the assertion of the positive literal

<h(xi,...,xm,y1,...,yn), { {C } }>

and the assertion



32

< h(z 1 ..... z my1,...y), { {D } }>

where yi,...y, are the exact same (bound) parameters as above, but at least one

zi*xi. FORLOG uses the defined functional dependency to deduce that the context

{C,D} is nogood. Which also means that in context {C} --th(zi ..... zniyi,...y) is true,

and in context {D} --th(xi,...,xm,yi,...,yn) is true.

For example, examine the implication

V xy 'father(xy) D q(xy)

where q is any predicate, and the literal father states that x is the father of y.

Since everyone has only one father, y functionally determines x. But, any one

father can have several children, so x does not functionally determine y. With the

assertion

<father(Doug,Dan), {{F}}>

nothing else gets deduced. Adding the additional assertion

<father(Steve,Dan), {{G}}>

causes FORLOG to deduce the nogood {F,G} and the assertions

<q(Steve,Dan), {{F}}>, <q(Doug,Dan), { {G } } >.

Now, we have two valid extensions of the database of assertions: { father(Doug,Dan),

q(Steve,Dan)} under context {F} and ffather(Steve,Dan), q(Doug,Dan)} under

context {G}.

Asserting

<father(Doug,Karl), { {H } }>

does not cause any extra deductions to be made, because it fails to violate the

functional dependency (i.e. Doug can have several children).

3.3.5 Negating simple literals

With simple literals, no attached functions exist nor are there any dependencies

among parameters. Without these, we cannot evaluate the truth of a negated

predicate, unless it is explicitly derived or asserted as a fact. In general, there is no
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solution to this problem other than resorting to Prolog's method of

negation-as-failure.

As an example, examine the implication

(3-4) V xy throther(x,y) J q(x,y)

where q is any predicate and brother asserts that x is the brother of y. Since

anyone could have several brothers, we have no functional dependency between the

two parameters. With the assertion

<brother(Dan,Nick), { {I } }>

nothing else gets deduced. Adding the assertion

<brother(Dan,Karl), { {J } }>

is perfectly consistent with known assertions. Rule (3-4) would never detach its

consequent unless a specific ibrother assertion was made.

3.4 Enumerating a Disjunction

When FORLOG has to fall into enumerating the branches of a disjunction, it

employs the ATMS to maintain them in separate contexts.

Given the implication

x p(x) D q(x) V r(x),

FORLOG compiles it into the following:

x p(x) A branchi(x) D q(x)
x p(x) A branch2(x) D r(x)
x p(x) A 'r(x) D branchj(x)
x p(x) A 1q(x) D branch2(x)
x p(x) A enumerate D branchi(x) V branch2(x).

Using the ATMS notation, suppose we made the assertion <p(a), { {A } } >.

FORLOG has no way of ruling in either branch, since it knows nothing about r(a)

or q(a). So it employs enumeration. The special system predicate, enumerate, causes

FORLOG to introduce assumptions for each branch to keep them disjunctive. So

we get the assertions



34

<branchi(a), {{A,Bi} }>, <branch2(a), {{A,B2}}>

where the assumptions B1 and B2 are the ones introduced for branchi(a) and

branch2(a) respectively. Now, FORLOG can apply modus ponens with the first two

compiled implications, deriving

<q(a), { {A,B1 } } >, <r(a), {{A,B2}}>.

This gives us the single extension {p(a), q(a), r(a)} under the context {A, Bj, B2 }.

Imagine adding the implication

V x q(x) A r(x) D 1.

This introduces a contradiction into our database. Now all three assumptions

cannot hold simultaneously (i.e. {A,BI,B2} is nogood). The implication splits the

original extension into two mutually exclusive ones: {p(a), q(a)} under the context

{A, Bi} and {p(a), r(a)} under the context {A, B2}.
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Chapter 4

Infinite Computations

Certain problems, when given to Prolog, never terminate. For example, the program

that declares the reflexive property of a sibling relationship

sibling(x,y):- sibling(y,x).

would never terminate when given any goal (e.g. sibling(Dan,Karl)).

FORLOG does not have this particular problem. Any instantiation of an

implication is only used once. The FORLOG equivalent to the above program is:

(4-1) V xy sibling(xy) D sibling(y,x).

Given the assertion <sibling(Dan,Karl),{{A}}>, FORLOG would deduce

<sibling(Karl,Dan),{{A}}>. This last assertion would cause FORLOG to use the

rule once more to deduce again the first assertion. But since this assertion was

already used once with rule (4-1), it is not used again. FORLOG caches every

assertion in the ATMS to avoid infinite computation such as this.

Unfortunately, other programs that cause problems for Prolog cause problems

for FORLOG as well. This stems mainly from FORLOG's eagerness to derive new

consequences of known facts. Resolution, a function performed by the ATMS upon

known assumptions, provides a method for terminating some infinite computations.

4.1 Examining the Problem Through an Example

Naish (1985b) used a program defining the permutation relation on lists to illustrate

the need to add flexible control rules to Prolog. This program

perm([],[]).
permExtlx2],[x31x4]):- perm(x5,x4) A de/ete(x3,[xtlx2],xs)

needs a different ordering of its subgoals depending upon which argument is bound.

The delete predicate is the same one discussed previously. If perm is called with
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the second argument a variable, the execution of delete should proceed ahead of

perm. If, on the other hand, the first argument is a variable, perm should proceed

ahead of delete. Nontermination is the consequence of not following this strategy.

Given the forward, mini-FORLOG version of this program

141412 perm(ui,u2) D (u/=[]) A (u27:[])
V

3 xi,x2,x3,x4.x5 (u1= [x/Ix2]) A (u2=[x31x4]) A
perm(x5,x4) A delete(x3,[zilx2],x5),

FORLOG would compile it into the following implications:

ubu2 p-brgui,u2) D (u/=[]) A (u2=0)
1/1442 p-br2(u1x2) D 3 xbx2,x3,x4,x5 (14/=[xilx2]) A (u2=[x31x4]) A

perm(x5,x4) A de/ete(x3,[zilx2],xs)

ul,u2 perm(ui,u2) A -1(lijr-D) D p-br2(ui,u2)
ubu2 perm(u1,u2) A '"(112*[]) p- b r2 (11 bU2)

ubu2,xbx2 perm(ui,u2) A 1(141=[xilx2]) p-brl(u1,u2)
ui,u2,x3,x4 perm(uhu2) A 1(u2=[x31x4]) D p-brl(uhu2)

u1,u2 perm(ui,u2) A p-enumerate D p-brgubu2) V p-br2(ubu2)

The compiled version of the FORLOG delete program of the previous section, adds

the following (slightly rewritten) implications:

ubuzu3
ubuzu3

d-br/(u1,u2,u3) D 3 xi.x2 (lii=xi) A (u2=[xilx2]) A (u3=x2)
d-br2(ui,u2,u3) D 3 xhx2,x3,x4 (upzi) A (u2=[x21x3]) A

(u3=[x21x4]) A de/ete(xi,x3,x4)

uhu2,u3,x],x2 de/ete(14/442.143) A 02=-[x/Ix2]) D d-br2(u1,u2.1.13)
u1,u2,u3,x2,x3 delete(uhu2,u3) A 1(u2=[x21x3]) D d-bri(ubu2,u3)
u1,u2,u3,x2,x4 de/ete(u/x2,u3) A 1(u3=[x21x4]) D d-br./(u1x2,u3)
u1,u2,u3 de/ete(ii1,il2,u3) A d-enumerate D d-brgui,u2,u3) V

d-br2(u1,u2,u3)

When discussing negated literals, we discovered that some could never be true.

Notice that the implications that contained such negated literals have not been

included in the ones above.

Examine the deductions produced as a result of making the assertion

<perm([1],y), { { } }>

with Skolem constant y in the null context (see Figure 4.1). Recall that the null

assumption set means that the assertion is true in all contexts; it is a premise.



<Perm([1].y).{{} 1>

<p-br2([1],y),{{}}>

<y4slis2],{{}}>
<perm(s3,s2), { { } }> <delete(s1,[1],s3),{{}}>

Or

<p-brl(s3,s2),{{P-1-1}}>

1<p-br2(s3,s2),{{P-2-1} 1>

V
<s3110,{{P-1-1} 1>
<s2= , { {P- 1 -1 } }>

V

or

i<d-br2(s1,[1],s2),{{D-2-1} 1>

1<d-brl(s1,[1],s3),{{D-1-1}})

<s1.1,{{D-1-1} 1>
(s3.0,{{D-1-1}})

<s2.[s6,s7],{{P-2-1}}>
<perm(s8,s7),{{P-2-1}} > <delete(s6,s3,s8),{{P-2-1}}>

<slns9,{{D-2-1}}>
<s3=[11s10],{{D-2-1} 1>

<delete(s9,[],s10),{{D-2-1} 1>

Or

Cd-br1(s9,[],s10),{{D-2-1,D-1-2} 1:

37

/ V
1:d-br2(s9,0,s10),{{D-2-1,D-2-2}})

<contradiction,{{D-2-1,D-1-2}}>

1<contradiction.{{D-2-1,D-2-2}} >

Figure 4.1: Permuting the list [1].

The initial assertion satisfies the antecedent of the implication

V 741,142 perm(uhu2) A 1(uP,D) D p-br2(ubi42),

since the inequality --1([1]=n) is true. FORLOG deduces that the second branch of

the permute rule can be detached and asserts

<P-br2([1]Y),{{}}>
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which detaches the actual branch, adding the assertions

<y::[slls2],{{}}>, <perm(s3,s2),{{}}>, <delete(sl,[1],s3), { { } }>.

Neither the perm nor the delete assertion causes a particular branch of its respective

implications to detach. They both must enumerate. FORLOG does this by

producing the branch assertions

<p-brl(s3,s2),{{P-1-1}}>, <p-br2(s3,s2),{{P-2-1}}>,
<d-brl(s1,[1],s3),{{D-1-1}}>, <d-br2(s1,[1],s3),{{D-2-1}}>,

each introducing its own assumption. This detaches the branches under those

assumptions, asserting:

<s3=[],{{P-I-1}}> <s3=[s41s5],{{P-2-1}}>
<s2=0,{{P-1-1}1> <s2a[s61s7],{{P-2-1} 1>

<perm(s8,s7),{{P-2-1}}>
<delete(s6,s3,s8),{{P-2-1}}>

<s1=1,{{D-1-1}}> <sl=s9,{{D-2-1} 1>
<s3=DED-1-1}1> <s3.411s10],{{D-2-1}}>,

<delete(s9,[],s10),{{D-2-1}}>.

FORLOG examines every equality assertion to enforce consistency. It discovers

that not all of the assumptions introduced can hold simultaneously. That is to say,

it derives some nogoods. For example, the equalities involving Skolem constant s3

assert s3=D under assumption P-I-1 and s3=[s41s5] (i.e. s3 must be a list) under

assumption P-2-1. These assumptions are inconsistent with each other. So the

context {P-I-I,P-2-1} is nogood. Through this type of reasoning, FORLOG

discovers the following four nogoods:

1P-1-1,P-2-11, {P-2-1,D-1-1}, {P-I-I,D-2-1}, {D-I-1,D-2-1}.

Inconsistencies, and thus nogoods, can be derived through other means as well.

For example, pursuing the consequents of the assertion

<delete(s9,[],s10),{{D-2-1}}>

derives a contradiction. With this assertion FORLOG cannot decide to pursue any

particular delete branch. It enumerates by assuming the validity of both branches,

producing the assertions

<d-brl(s9,[],s10),{{D-2-1,D-1-2}}>,
<d-br2(s9,[],s10),{{D-2-1,D-2-2}}>.
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each introducing an additional assumption. Looking back at the implications for

the branches, each consequent requires the second argument to be a list. In both

branch assertions, the second argument is [] which is contradictory. Therefore,

{D-2- 1,D -1-2 }, {D-2-1,D -2 -2}

are additional nogood contexts.

Notice further that an answer has been found for the initial Skolem constant

y. To find out what it is, we can apply the relevant part of the equalities asserted.

Right away y was equated to [sljs2]. When FORLOG assumed p-brl under P-1-1,

it equated s2 to []. Further, when it assumed d-brl under D -1 -1 it equated s/ to

1. Putting these together, y has the value [1] under context {P -1 -1, D-1-11, the

permutation of the list [1] is the list [1].

As it stands, however, FORLOG would continue deriving consequences of the

assertions believed under assuption P-2-1. In particular, the assertions

<perm(s8,s7), { {P- 2 -1 } } >, <delete(s6,[s41s5],s8),{{P-2-1}}>

are completely unconstrained. An attempt to pursue either would lead to infinite

computation.

4.2 Using Resolution to Cut off Deductions

Recall that FORLOG will not use false assertions in any deductions. An assertion

becomes false when all its supporting assumption sets become inconsistent (i.e. it has

an empty label). An individual assumption set is inconsistent if it is a superset of

a nogood. To enforce this, whenever FORLOG discovers a new nogood, the ATMS

removes supersets of this nogood from every assertion's label that contains the

nogood. With the example just presented, if the assumption set {P-2-1} were found

to be nogood, the ATMS would remove it from the assertions

<perm(s8,s7),{{P-2-1}}>, <delete(s6,[s41s5],s8),{{P-2-1}}>

among others, changing them to the following:

<perm(s8,s7),{}>, <delete(s6,[s41s5],s8),{}>.
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These assertions, which caused the infinite computation, would not be used for any

further deductions since they are false.

The ATMS employs resolution to derive additional nogoods not discovered by

FORLOG itself. Resolution works only with logical formulas in clause form

(disjunctions of positive and negative literals). For example, with the nogoods

discovered through equality reasoning, we have the following clauses:

(-1P-1-1 V -113-2-1), (-113-2-1 V --ID-1-1), (-1P-1-1 V -0-2-1),
(--ID-1-1 V -0-2-1), (-0-2-1 V --ID-1-2), (-0-2-1 V 'D -2 -2).

Because FORLOG also asserts to the ATMS that assumptions introduced with

enumerated branches are disjunctive, it has stored the following:

(P-1-I V P-2-1), (D-1-I V D-2-1), (D-1-2 V D-2-2).

These disjunctive assumptions tell the ATMS that one or more of the assumptions

in the disjunction must be true.

Now we have a set of propositions in clause form. Resolving (D-1-2 V

D-2-2) with (-ID -2 -1 V -'D -1 -2) we get the clause (-0-2-1 V D-2-2). Use this

result to resolve with (-0-2-1 V -1D-2-2) deriving The clause (D-1-I

V D-2-1) resolves with this new single nogood deriving D-1-1. This, then resolves

with (-1P-2-1 V ---0-1 -1) to derive -113-2-1. Therefore, the assumption set

{P-2-1} is nogood, which is exactly what we wanted.

After applying resolution, the computation tree for perm([1],y) may be

simplified by removing the false nodes. Only one answer remains (Figure 4.2).

4.2.1 Updating nogoods through resolution

As mentioned, the ATMS performs resolution at FORLOG's request. When

FORLOG enumerates branches of a disjunction, it informs the ATMS of the newly

introduced assumptions. The ATMS stores these disjunctive assumptions and also

the discovered nogoods.
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<Perm([1].Y),{{}}>

<p-br2([1],y),{{}}>

<yz[slis2],{{}}>
<perm(s3,s2),{{}}> <delete(sl.[1],s3),{{}}>

I<p-brl(s3,s2).{{P-1-1} 1>

V
<s3=0,{{P-1-1} 1>
<s2=0,{{P-1-1} 1>

<d-brl(s1,[1],s3),{{D-1-1} 1>

<s1 z1,{{D-1-1} 1>
<s3.0,{{D-1-1} 1>

Figure 4.2: Trimmed version of permuting the list [1].

The actual resolution method employed is called negative hyperresolution.

Given a single positive clause (a disjunctive set of assumptions) and a set of

negative clauses (nogoods) each of which contains a single distinct atom of the

positive clause, hyperresolution produces a single negative resolvent:

Ai V A2 V ... V An
1A1 V N/
1A2 V N2

1;4, V Nn

NI V N2 ... V Nn

Each (-1,41 V Ni) is a known nogood (Ni represents the remaining part of the

nogood so it is a disjunction of negated assumptions). In addition, for any j*i, Ai

Ni. That is to say that to use a nogood in the hyperresolution it can contain

only one negated assumption from the positive clause. The combined negative

clauses N/ V N2 ... V Nn, constitute a new nogood.



42

For example, in the previous section we could have used hyperresolution:

D-1-2 V D-2-2
--1D-2-1 V 0-1-2
0-2-1 V 'D -2 -2

+D -2 -1

Single nogoods like the one derived above help to simplify other nogoods and

disjunctions alike. In general, nogoods that are supersets of any other nogood can

be forgotten. The ATMS keeps track of only the simplest nogoods. Notice that

--IP A (IP V IQ)

by the law of absorption. This means that when 'D -2 -1 was derived through

hyperresolution, the ATMS can (and does) remove all nogoods that contain it.

Single nogoods also help to simplify cached disjunctions. The assumption that

was discovered to be invalid can be removed from any disjunction in which it

participates. The inverse is true for single disjuncts, such as the assumption D -1 -1

derived in the previous section. These can be viewed as assumptions that are true

(not just assumed true), therefore any nogood that contains the single nogood can be

simplified. The ATMS removes assumptions from any nogood that are

simultaneously single disjunctions.

Whenever FORLOG deduces an additional nogood, that nogood, combined with

existing nogoods, might hyperresolve with an existing disjunction. Likewise,

whenever FORLOG asserts a new disjunction of assumptions, it may hyperresolve

with existing nogoods. This means that for completeness, this resolution strategy

must be attempted whenever FORLOG discovers new nogoods or new disjunctions.

4.2.2 Updating labels through resolution

Not only does the ATMS discover additional nogoods through resolution, but it

updates labels (on assertions) as well. Recall that assumption sets act as

implications. For example, the assertion
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< father(Doug,Dan), {{A,C},{B,C}}>,

represents the following:

A A C D father(Doug,Dan)
BACD father(Doug,Dan).

These implications can be rewritten as clauses (formulas containing only

disjunctions), such as:

IA V IC V father(Doug,Dan)
'B V IC V father(Doug,Dan).

Suppose we had the disjunction A V B. We can use resolution to derive the clause

IC V father(Doug,Dan),

which is a simplified version of the original assertion. Therefore, that assertion's

label could be simplified to obtain

< father(Doug,Dan), {{C}}>.

As in the previous section, hyperresolution provides the specific method. To

resolve a particular assertion's label, each context (set of assumptions) in the label

can be treated as a negative clause. A disjunction that includes an assumption in

the assertion's label provides the positive clause. In this case, however, the resulting

negative clause is not a new nogood, it is a new context supporting the original

assertion. Often this new context is a subset of one of the original contexts in the

label, which acts to simplify the label as in the example above.

We want labels to be as simple as possible. Conceptually, to maintain these

simple labels, resolution needs to be performed whenever a label is changed or a

new disjunction or new nogood discovered. Because of its expense, in actual

practice we almost never take advantage of this feature.
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Chapter 5

Conclusions

This paper has described a logic programming language, FORLOG, and illustrated a

few key points in its design. This chapter summarizes these points, discusses further

work that needs to be done, and points out some of the contributions of this thesis.

5.1 Summary

FORLOG, since it uses a forward-chaining computation model, represents an

alternative paradigm for logic programming. In fact, the traditional method of

backward chaining with Horn clauses can be implemented with a computation

model for logic programs that is a subset of FORLOG. These programs are derived

in a straight forward manner from the original Horn clause program.

Disjunctions appear in the derivation of FORLOG programs from Horn clause

programs. In general, disjunctions represent nondeterministic choices. The valid

branches of the disjunction should be asserted and the invalid ones should be

discovered as soon as possible. Through careful compilation of the formula

containing a disjunction, the valid branches can be determined efficiently at

run-time. However, compiling introduces negative literals.

FORLOG handles negative literals in a "sound" manner depending upon their

types. These types include, test, functional, functional dependency, and simple. Test

literals call attached boolean Lisp functions when their arguments are bound that

determine their truth value. Both functional and functional dependency literals

require FORLOG to employ functional dependency theory to decide truth value.

Functional literals differ from functional dependency literals in that they have
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attached Lisp functions defining the functional dependencies among their

parameters. Any other literal is categorized as a simple literal. At present,

FORLOG has no means to evaluate the validity of negated simple literals.

One common method for dealing with negations of simple literals is to use

negation-as-failure. This method closes, down the database of facts. Any fact not

in the database is false. FORLOG could achieve this behavior but not easily.

Unfortunately, cases arise where compilation does not remove the

nondeterministic choice. When FORLOG cannot decide which branches are valid, it

falls into generate-and-test behavior by assuming that all of them are valid.

FORLOG takes advantage of deKleer's ATMS to keep track of all assumptions

made.

5.2 Future Research

Logic programming has thus far benefitted greatly from efficient implementations

of the backward chaining methodology. It is not clear that such efficiency gains are

possible with FORLOG. For this system to be acceptable for anything other than

research, progress must be made in this area. Parallelism might be the key here.

Another area of interest is the issue of control. Open questions remain

concerning the order in which branches of a disjunction should be enumerated.

Often enumerating the "right" branch will remove the need to enumerate some or

all of the other branches. The options include some kind of run-time control

versus compile-time control.

On the practical side, FORLOG needs further testing to see how it performs

with larger, more realistic problems. One research group is currently exploring

applications in machine learning and mechanical design (Dietterich & Ullman,

1986).
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5.3 Contributions of the Thesis

This work on disjunctions in forward-chaining logic programming contributes to the

logic programming field by presenting a method for compiling away

nondeterminism. It presents logically sound methods for handling negative literals.

In addition, it illustrates how the ATMS can be integrated into a logic programming

system.

FORLOG certainly will not replace systems like Prolog, but it does represent

another step toward having specifications as programs.
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