TENSILE PROPERTIES OF GLASS-FABRIC LAMINATES WITH LAMINATIONS ORIENTED IN ANY WAY

LOAN COPX
PLEASE RETURN TO:
No. 1853

November 1955
Wood Engineering Research
Forest Products Laboratory Madison, Wisconsin 53705

Information Reviewed and Reaffirmed 1960

This Report is One of a Series Issued in Cooperation with the ANC-17 PANEL ON PLASTICS FOR AIRCRAFT
of the Departments of the
AIR FORCE, NAVY, AND COMMERCE

TENSILE PROPERTIES OF GLASS-FABRIC LAMINATES

WITH LAMINATIONS ORIENTIED IN ANY WAYI

By
E. C. O. ERICKSON, Engineer
and
C. B. NORRIS, Engineer

Forest Products Laboratory, 2 Forest Service U. S. Department of Agriculture

Abstract

A mathematical analysis of the elastic properties of glass-fabric-base laminates in the plane of the laminate is presented. This analysis provides a theoretical means of determining the mechanical properties at any angle in the plane of the laminate, based on the orientation and basic properties of the individual orthotropic laminations. Comparisons between computed and experimental verification values in tension are presented for two laminates composed of the same fabric and for one laminate combining three different fabrics.

Introduction

More efficient means of utilizing present-day glass-fabric-base laminates in structural applications for aircraft are now available. Previous studies have indicated that strength properties may be varied by varying the orientation of the laminations, or by combining laminations
${ }^{1}$ This progress report is one of a series (ANC-17, Item 54-1) prepared and distributed by the Forest Producte Laboratory under U. S. Navy Bureau of Aeronautics Order No. NAer 01610 and U. S. Alr Force No. DO(33-616) 53-20, Amend. A2(55-295). Results here reported are preliminary and may be revised as additional data become available.
${ }^{2}$ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
of differing mechanical properties within the leminate. The purpose of this report is to present and experimentally verify a mathematical analym sis of the elastic and strength properties of a laminate made of laminations oriented in any desired way by testing three laminates, one of which is orthotropic and the other two aeolotropic.

Fach of six test panels made by the Forest Products Laboratory for this stady were laminated from 38-inch squares of finish 1142 fabric. Three of these panels were parallel laminated and were tested to provide data upon which the computations could be based. The laminations in the other three panels were oriented in a way that seemed likely to best illustrate the usefulness of the analysis.

The load-deformation curves obtained by test presented a choice of elastic moduli. Four such choices were made for each specimen tested whenever such choices were possible. The values obtained by these choices from the control panels were substituted in the equations of the mathematical analysis to obtain computed values comparable to those obtained from tests of the other panels.

Materials and Fabrication

Materials

Three types of glass fabrics were used in'this study, namely 181-114, 143-114, and 162-114. Type 181-114 is a satin-weave fabric of approximately equal strength in the warp and fill direction. Type 143-114 is a unidirectional weave fabric with a warp-to-fill strength ratio of about 8 to 1. The 162-114 fabric has a warp-to-fill strength ratio of about 3 to 2. The leminating resin, identified as batch No. 884, was a high-temperature-setting, low-viscosity resin of the polyester (styrene-alkyd) type, known as laminating resin 2.

[^0]
Fabrication

Six test panels, each approximately $1 / 8$ inch by 36 by 36 inches, were made at essentially the same time, using a fresh batch of the same resin. The fabric and resin were laid up between cellophane-covered cauls. Each sheet of fabric was grasped at its four corners and carefully tensioned to bring the fill threads at 90° to the warp weave before it was finally positioned on the assembly caul. A paperboard template considerably larger than the cauls was placed under the bottom caul before assembly. Several groups of parallel grid lines had been scored upon the template, parailel to the several angles of orientation desired in the test panels. The template enabled two essembly men to orient the warp direction of each sheet as nearly parallel to the desired direction with respect to the chosen axis of reference of each panel as it was possible to aline them by eye, before lowering the sheet into position upon the previously positioned adjacent sheet and freshly spread resin. A considerable effort was made during layup to get a good distribution of resin, thoroughly wet all threads, and work out the air entrapped between plies. Minor flaws, such as surface wrinkles, were present in some panels. The specimens were so chosen, however, that there were no noticeable imperfections in the critical sections.

Each panel was cured in a hot press for 20 minutes at $220^{\circ} \mathrm{F}$., followed by 70 minutes at $250^{\circ} \mathrm{F}$. Curing pressures, resin content, and general information on each panel are presented in table 1.

Two of three panels (Nos. 4 and 5) designed for comparison with computed properties were composed of the same fabric, whereas three different fabrics were combined in panel No. 6. Panel No. 4 consisted of 12 plies of 143-114 fabric, laid up with the warp direction of 6 parallel alternate laminations at an angle of 30° to the warp direction of 6 parallel adjacent laminations. Thus the natural axis of the laminate (which was chosen to be the axis of reference) fell midway between the natural axis of each parallel group of six laminations.

Panel 5 consisted of 13 laminations of 143-114 fabric with the warp direction of three groups of laminations parallel and oriented as follows: The laminations were numbered consecutively from 1 to 13 ; laminations Nos. 1, 2, 4, 5, 7, 9, 10, 12, and 13 were laid up with the warp direction parallel to the axis of reference; laminations Nos. 3 and 11 making an angle of 170°; and laminations Nos. 6 and 8 making an angle of 140° With the same axis. The angles were measured positively in a counterclockwise direction from the arbitrary axis of reference.

The 12 laminations of panel 6 included 3 of fabric 162-114, 4 of 143-1.14, and 5 of 181-114. The warp direction of each fabric was parallel and was oriented as foliows: Laminations 1, 6, and 12 were of 162-114 fabric
and were laid up with their warp direction making an angle of 0° to an axis of reference; laminations 3, 5, 8, and 10 were of 143-114 fabric making an angle of 10°; and laminations 2, 4, 7, 9, and 11 were of 181114 fabric making an angle of 140° to the same axis. The angles were measured positively in a counter clockwise direction.

Three panels for test determinations of basic properties of each fabric were parallel laminated with the warp direction of all laminations parallel to the axis of reference. Panels Nos. 1 and 2 consisted of 12 laminations each of fabrics 143-114 and 181-114, respectively. Panel No. 3 consisted of eight laminations of 162-114 fabric.

Test Specimens

The location and direction of test specimens with respect to the trimed edges, warp direction of laminations, and axis of reference of the panels are indicated in the cutting diagrams, figures 1,2 , and 3.

Nine tensile specimens were taken parallel, 9 perpendicular, and 9 at 45° to the warp direction from each of the three parallel-laminated control panels (fig. 1). The axis of reference was taken parallel to the warp direction, so that these directions are referred to as $0^{\circ}, 90^{\circ}$, and 45°. Six tensile specimens from among those having the 0° warp airection and 6 from among those having the 90° waxp direction (numbered 1 , $3,4,6,7$, and 9) were used for tensile tests, and the 3 remaining 0° and 90° specimens (numbered 2, 5, and 8) were used for the determination of Poisson's ratios. Three compression specimens were taken from the 0° and 90° directions of each of the control panels (fig. l).

Three tension specimens were taken from panels 4, 5, and 6 in each of the several directions, as shown in figures 2 and 3.

Each tensile specimen was 16 inches long by $1-1 / 2$ inches wide before it was shaped. Each was reduced at the center of its length to a minimum section 0.8 inch wide and $2-1 / 2$ inches long, which was connected to the maximum end sections by circular arcs of 20-inch radius, tangent to the minimum center section. Tension specimens were cut to approximate size on a bandsaw, and finished to the desired shape and curvature by use of an emery wheel mounted on a shaper head.

Compression specimens 1 inch wide and 4 inches long were cut to size with a $1 / 8$-inch emery wheel rotated at 1,770 revolutions per minute in the arbor of a variable-speed table saw. Square, smooth edges were obtained by this method of cutting.

All specimens were conditioned to approximately constant weight at $75^{\circ} \mathrm{F}$. and 50 percent relative humidity before test. Specimens were tested under controlled conditions of $75^{\circ} \mathrm{F}$. and 64 percent relative humidity, but exposed to these conditions for as short a time as possible.

Test Methods

Tension Tests

All tensile-type specimens were held in Templin-type grips and tested in a hydraulic testing machine (fig. 4). Load was applied at a head speed of 0.035 inch per minute. The first tensile specimen of each testdirection group was tested directly to failure in one continuous operation. The remaining tension specimens in each group were first loaded to a load almost equal to the secondary proportional limit load as determined from the load-deformation curve of the first specimen of the group. Specimens were then unloaded back to the initial load point, after which they were inmediately reloaded under a continually increasing load until failure occurred. Load deformation data were recorded at convenient inm crements of load during the initial loading, the unloading, and the reloading operations. This loading cycle was used on all tensile specimens unless otherwise noted.

Data for the determination of Poisson's ratios were obtained from tensile-type specimens held in Templin grips. Each specinen was loaded and unloaded 4 times in one continuous operation at a rate of 0.035 inch per minute. The first 2 loading runs were carried up to a load of about three-fourths of the secondary proportional limit load of the material, as previously determined from the initial tensile tests, before unloading. The third and fourth loading runs were continued to the secondary proportional limit load before unloading. Once testing was begun, the specimens were not completely unloaded until after the fourth and final unloading run. Each of these specimens was loaded and unloaded in a continuous operation without any intentional rest or recovery periods.

Deformation data for specimens from panels 1 to 4 inclusive were obtained parallel to the applied load only. Strains were measured in the stress direction across a 2-inch gage length with a pair of Marten's mirrors reading to 0.00001 inch.

Strains for Poisson's ratio determinations from tensile-type specimens of panels 1 to 3, inclusive, were measured with SR- 4 metalectric strain gages reading to 0.000001 inch. Gages of 1 -inch and $1 / 2$-inch gage length were applied to each side of each specimen at the net section, the l-inch gages parallel and the $1 / 2$-inch gages perpendicular to the direction of stress.

Report No. 1853

Strains of the experimental specimens from panels 5 and 6 were measured With metalectric strain gages of the 45° Rosette-type gage (AR-7) having three elements at $0^{\circ}, 45^{\circ}$, and 90° to the first element. These gages were applied in pairs directly opposite each other, one on each side of the specimen, with the two 45° elements always in the some plene. No particuler difficulty was experienced in using these gages, except as follows: A few gages loosened before testing began and had to be reglued. Approximately 1 specimen in each like group of 3 had the 45° elements oriented at 90° to those of the 2 other specimens. This circumstance necessitated the use of individual rather than average experimental values in comparing these 45° stress-strain ratios with computed values.

Compression Tests

Compression specimens were loaded on their squared ends and were restrained from buckling by an apparatus similar to that shown under Method No. 1021.1 of Federal Specification L-P-406b for Plastics, Organic. Load was applied at a head speed of 0.012 inch per minute, and strains were measured across a 2 -inch gage length with a pair of Marten's mirrors.

Method of Obtaining Esperimental Data

Experimental load-deformation data obtained from each tensile test were plotted at convenient scales, and curves were drawn. Most of these specimens exhibited the usual two straight-line sections common to parallel-laminated tensile specimens at 0° and 90° to the warp direction and normally referred to as initial and secondary. Only the 0° specimens of the unidirectional fabric 143-114 in panel 1 failed to develop a definite second straight-line portion in all six test specimens. In all other instances at 0° and 90°, a full complement of six initial values of modulus of elasticity and stress at proportional limit, based on the initial straight-line portion of the load-deformation curve, was obtained, together with six secondary values based on the second straightline portions.

Perhaps unique among tests of this kind was the procedure of recording load-deformation data during each unloading, after the secondary proportional limit load was reached, and during the subsequent reloading to failure. Each of these plots exhibited definite straight-line portions and each such portion, beginning at the initial loading increment, was. used to obtain the respecitive unloading and reloading values. Thus there were 4 slopes recorded, l from each phase of the loading cycle. These slopes are referred to as the initial, secondary, unloading, and reloading slopes.

Report No. 1853

Representative load-deformation curves for the $0^{\circ}, 90^{\circ}$, and 45° tension specimens from the 143-114 and 162-114 fabrics used in panels 1 and 3, respectively, are shown in figures 5 through 10. The lood-deformation curve of the first specimen loaded directly to failure is shown, for purposes of comparison, adjacent to a companion specimen whose initial loading was interrupted shortly after a secondary proportional limit load was reached. Secondary load-deformation phases were not obtainable from the 45° specimens, so all of the 45° specimens were loaded directly to failure. Load deformation curves of the 181-114 fabric in panel 2 were quite similar to the curves of the 162-114 fabric in panel 3, shown in figures 8, 9, and 10.

A few representative load-deformation curves from tests of specimens taken from panels 5 and 6 at various angles to the arbitrary axis of reference are shown in figures 11 through 15. Load-deformation curves obtained from each of the three elements of the Rosette-type strain gage are shown in adjacent plots for ready comparison of the behavior characteristics of the 0° (vertical) element, the 90° (horizontal) element, and the 45° element of the Rosette geges. The vertical element of the Rosette gage was always parallel to the direction of applied stress.

In general, the 0° and 90° gage elements gave fairly consistent results among similar specimens. Contrarywise, the strain data obtained from the 45° element of the gages were very inconsistent. A number of the 45° gages first registered tension and later compression during the same loading phase. The 45° curves of specimens $150^{\circ}-5-1$ and $150^{\circ}-5-3$, shown in figure 12, illustrate such a condition and make obvious the reason why only the initial load-strain phase of the data could be used.

Similar load-deformation curves were plotted from data from the vertical and horizontal gages of the 0° and 90° specimens tested for Poisson's ratios. Only ratios of the slopes of the first 2 of 4 loading runs were used in calculating Poisson's ratios.

Presentation of Data

Experimental Data

Experimental values obtained from the tests are presented in tables 2 through 7.

Table 2 presents the results of tension tests with the stress applied at an angle of $0^{\circ}, 90^{\circ}$, and 45° to the direction of the warp of parallellaminated panels 1, 2, and 3. Maxinum, minimum, and average values of modulus of elasticity are given for each of the four phases of load-
deformation cycles, together with corresponding values of proportional limit stress and ultimate strength. Values of the modulus of rigidity associated with the 0° and 90° axes (G_{0-90}) computed by means of equa $=$ tions (14) of the Appendix and the experimental values in this table and in table 4 are also given.

Table 3 presents the results of compression tests with stress applied in the 0° and 90° directions with respect to the warp of the parallellaminated panels 1, 2, and 3. Individual and average values of modulus of elasticity, stress at proportional limit, and ultimate strength are given.

Table 4 presents individual and average values of Poisson's ratios from tensile-type tests with stress applied in the 0° and 90° directions with respect to the warp of the laminations in panels 1, 2, and 3. As far as possible, ratios were calculated for each of the 3 laminates in each of the 4 phases of the loading cycle.

Table 5 presents the results of tensile tests of panel 5 with the stress applied at various angles to an axbitrary axis of reference (fig. 3). Values of ultimate strength and stress-strain ratios for individual specimens are given. Values of stress-strain ratios in the $0^{\circ}, 90^{\circ}$, and 45° directions with respect to the direction of applied stress are presented. Values are shown for as many of the 4 phases of the loading cycle as were possible from the data obtained.

Table 6 presents corresponding tensile test data from panel 6 in the same form as presented in table 5.

Table 7 presents the results of tensile tests with stress applied at 0°, 90°, and 45° to the axis of reference of the orthotropic panel, No. 4 (fig. 2). Presented also in this table are the corresponding theoretical values computed for comparison with the experimental values.

Computed Data

Computed values of strength and elastic moduli corresponding to the experimental test values of panels 4, 5, and 6 are presented in tables 7 through 11. The computed values presented in these tables were obtained in accordance with the mathematical analysis presented in the Appendix. The elastic properties obtained from panels 1,2 , and 3 for each of the 4 phases of the loading cycle were substituted in the equations of the Appendix to obtain corresponding computed values for the 4 phases of the loading cycle for panels 4, 5, and 6. Using these values, 4 corresponding values for tensil.e strength were computed.

The computed values of elastic moduli presented in table 7 for panel 4 were obtained in accordance with section 7 of the Appendix. Computed. strength values for this panel were determined by means of the equations of section 6 .

Tables 8 and 9 present the computed values of stress-strain ratios for comparison with corresponding experimental values from specimens of panels 5 and 6 respectively. Stress-strain ratios in the $0^{\circ}, 90^{\circ}$, and 45° directions with respect to the lengths of the specimens cut at various angles to the exis of reference are given for each of the 4 phases of the loading cycle. Values of the ratios at both plus and minus 45° were computed so that they could be compared with the particular experimental values obtained. These stress-strain ratios were computed according to section 5 of the Appendix.

Tables 10 and 11 present computed values of tensile strength for comparison with experimental strength values of specimens from panels 5 and 6. These computed values were obtained in accordance with the equations presented in section 6 of the Appendix. The elastic properties computed from each of the 4 phases of the loading cycle were used; thus, 4 computed strength values were obtained. Section 6 of the Appendix yields a strength value associated with each lamination of the laminate. Thus, the computed strength values for panel 5 arereagh apn average of 13 anch values, and those for panel 6 are each an average of 12 such values. These averages are welghted according to the relative thicknesses of the individual laminations.

Figures 16 through 21 show, with one exception, curves of computed stress-strain ratios and corresponding experimental vaiues for the four phases of the loading cycles for specimens taken from panels 5 and. 6. In most of these figures, the computed values are connected by a smooth curve.

The experimental values were taken from tables 5 and 6 and the computed values from tables 8 and 9. Experimental values in the stress direction $\left(0^{\circ}\right)$ and perpendicular to the stress direction $\left(90^{\circ}\right)$ are, in each case, the average value for each group of 3 test specimens at the respective test angles and loading-cycle phase. Experimental values at. 45° are in each case individual values, because the values measured at plus 45° could not, of course, be averaged with those measured at minus 45°. The plots of these values are divided into 2 helves. Stressestrain ratios at plus 45° are plotted on the left half and those at minus 45° on the right half.

Corresponding computed and experimental strength values for specimens from panels 5 and 6, are presented in figure 22. Experimental values are indicated by solid circles and computed values by open circles. A smooth
line has been drawn through the plotted points representing computed values for the initial phase. Plotted points for each of the other loadingcycle phases are also shown clustered around each corresponding initial value. The experimental strength values were taken from tables 5 and 6, and the computed values from tables 10 and 11.

Analysis of Data

Inspection of table 7 and figures 16 through 22, which show the degree of agreement between the theoretical and experimental values, leads to the following observations.

The computed values of the stress-strain ratios for panel 4 agree very well with the experimental values in all but the secondary phase of the loading cycle, as shown in table 7. Thus if initial, unloading, or reloading values of elastic properties are used in the equations of the mathematical analysis, reasonably good estimates of the related moduli of elasticity of panel 4 are obtained.

Figure 16 shows similar data for panel 5 and figure 19 for panel 6. Reasonable agreement between computed and experimental values is indicated.

Figure 17 shows the stress-strain ratios associated with Poisson's ratios for panel 5. Good agreement between the computed and experimental values is obtained only for the initial phase of the loading cycle. Only general agreement is obtained for the reloading phase and poor agreement for the other two phases.

Similar information is given for panel 6 in figure 20. Again good agreement between the computed and experimental values is obtained only for the initial phase. Values for the secondary phase were not plotted because they were too erratic. The computed values for the other two phases give only rough, unconservative estimates of the experimental values.

Figure 18 shows stress-strain ratios at plus and minus 45° for panel 5 and figure 21 those for panel 6. The computed curves for the secondary phase of the loading cycle are quite different from the computed curves for the other phases. The experimental velues for this phase do not agree well with the computed values. The agreement between the computed and experimental values for the other phases seems reasonable when it is remembered that individual rather than average values are plotted.

Figure 22 shows the tensile strength values for panels 5 and 6, respectively. Computations of tensile strength based on elastic properties

Report No. 1853
obtained from each of the four phases lead to substantially the same results. The computed tensile strength values are slightly conservative.

Conclusions

1. The mathematical analysis of elastic properties is not applicable to the secondary phase of the loading cycle.
2. The mathematical analysis for the elastic properties is in reasonable agreement with experimental values in the initial, unloading, and reloading phases. The best agreement was obtained in the initial phase.
3. The mathematical analysis provides an excellent estimate of tensile strength regardless of the loading-cycle phase used in the determination of the elastic properties. The values obtained from the secondary phase, however, are the least reliable.

APPENDIX

Mathematical Analysis

The first four sections of this appendix are taken from the material in Chapters 1, 2, 3, and 6 of "The Mathematical Theory of Elasticity," by A. E. H. Love but are restricted to two dimensions. This restriction greatly simplifies the mathematical expressions, so that they can be written in algebraic forms without being unduly cumbersome.

The fifth section of this Appendix applies this theory to laminates made of aeolotropic laminations and closes with the special case of orthotropic laminations.

The sixth section derives equations for the strength of laminates made of orthotropic laminations -. more particularly, those laminations made of fabric or veneer. This derivation is based on the previous sections and on some previously reported work of the Forest Products Laboratory.

Sections 7 and 8 deal with the special cases of a laminate made of two identical orthotropic laminations arbitrarily orientated with respect to each other, and of a laminate made up of a number of different orthotropic laminations having their natural axes parallel to each other.

1. Transformation Equations for Stress and Strain

Consider a sheet of material subjected to uniformly distributed loads applied at its edges and acting in the plane of the sheet. The stresses and strains in the sheet are referred to the orthogonal axes x and y or to the orthogonal axes ξ and η. The \underline{x} axis makes an angle $\underline{\theta}$ with the ξ axis, which is measured positively counterclockwise from the $\underline{\xi}$ axis to the \underline{x} axis (fig.23). The stresses are $f_{x}, f_{y}, f_{x y}$ related to the $\underline{x}, \underline{y}$ axes, and $f_{\xi}, f_{\eta}, f_{\xi \eta}$ related to the $\underline{\xi}$, η axes. Those with a single subscript are direct atresses acting in the direction of the axis indicated by the subscript. Those with two subscripts are shear stresses associated with the axes indicated by the subscripts. Similarly, the strains are e_{x},
$e_{y} ; e_{X Y}, e_{\xi}, e_{\eta}$, and $e_{\xi \eta}$.
The two sets of stresses are related to each other by the equations:

$$
\begin{align*}
& f_{\xi}=f_{x} \cos ^{2} \theta+f_{y} \sin ^{2} \theta-2 f_{x y} \sin \theta \cos \theta \\
& f_{\eta}=f_{x} \sin ^{2} \theta+f_{y} \cos ^{2} \theta+2 f_{x y} \sin \theta \cos \theta \tag{1}\\
& f_{\xi \eta}=f_{x} \sin \theta \cos \theta-f_{y} \sin \theta \cos \theta+f_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \\
& \text { or } \\
& f_{x}=f_{\xi} \cos ^{2} \theta+f_{\eta} \sin ^{2} \theta+2 f_{\xi \eta} \sin \theta \cos \theta \\
& f_{y}=f_{\xi} \sin 2+f_{\eta} \cos ^{2} \theta-2 f_{x y} \sin \theta \cos \theta \tag{2}\\
& f_{x y}=-f_{\xi} \sin \theta \cos \theta+f_{\eta} \sin \theta \cos \theta+f_{\xi \eta}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)
\end{align*}
$$

The two sets of strains are related to each other by the equations:

$$
\begin{align*}
& e_{y}=e_{x} \cos ^{2} \theta+e_{y} \sin ^{2} \theta-e_{x y} \cdot \sin \theta \cos \theta \\
& e_{\eta}=e_{x} \sin ^{2} \theta+e_{y} \cos ^{2} \theta+e_{x y} \sin \theta \cos \theta \tag{3}
\end{align*}
$$

$e_{y \eta}=2 e_{x} \sin \theta \cos \theta-2 e_{y} \sin \theta \cos \theta+e_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$
or
$e_{x}=e_{\xi} \cos ^{2} \theta+e_{\eta} \sin ^{2} \theta+e_{\xi \eta} \sin \theta \cos \theta$
$e_{y}=e_{\xi} \sin ^{2} \theta+e_{\eta} \cos ^{2} \theta-e_{\xi \eta} \sin \theta \cos \theta$
$e_{x y}=-2 e_{\xi} \sin \theta \cos \theta+2 e_{\eta} \sin \theta \cos \theta+e_{\xi \eta}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)$

Equations (1), (2), (3), and (4) are arrived at by geametrical considerations. Therefore, they are independent of the properties of the material to which they are applied. Their derivations may be found in most any standard text on the theory of elasticity.
2. The relations Between Stress and gitrain

According to the generalized Hooks' law, each strain is linearly related to the three stresses, which results in 9 elastic properties for each material. These 9 properties are not independent of each other because of the existence of a strain-energy function. The most general relation between strain and stress, in two dimensions, is given by:
$\varepsilon_{\xi}=r_{11} f_{\xi}+r_{12} f_{\eta}+r_{13} f_{\xi \eta}$
$e_{\eta}=r_{12} f_{\xi}+r_{22} f_{\eta}^{\prime}+r_{23} f_{\xi \eta}$
$e_{\xi \eta}=r_{13} \mathbf{f}_{\xi}+r_{23} f_{\eta}+r_{33} f_{\xi \eta}$

The inverse of this group of equations is:

Report No. 1853

$$
f_{\xi}=s_{11} e_{\xi}+s_{12} e_{\eta}+s_{13} e_{\xi \eta}
$$

$$
\begin{equation*}
f_{\eta}=s_{12} e_{\xi}+s_{22} e_{\eta}+s_{23} e_{\xi \eta} \tag{6}
\end{equation*}
$$

$f_{\xi \eta}=s_{13} e_{\xi}+s_{23} e_{\eta}+s_{33} e_{\xi \eta}$

These two sets of equations are related by:

The inverse of this group of equations is identical in form; that is:

$$
\begin{align*}
& s_{11}=\frac{r_{22} r_{33}-r_{23}^{2}}{R} \text {, etc. } \tag{8}\\
& R=r_{11} r_{22} r_{33}-r_{11} r_{23}^{2}+2 r_{12} r_{23} r_{13}-r_{12}^{2} r_{33}-r_{13}^{2} r_{22}
\end{align*}
$$

The meanings of some of the coefficients in equations (5) are made evident by letting two of the stresses be zero; thus:

$$
\begin{align*}
& r_{11}=\frac{g_{22}^{s_{33}-g_{23}^{2}}}{5} \\
& r_{12}=\frac{s_{13}{ }^{B_{23}-s_{12}{ }^{5} 33}}{5} \\
& r_{13}=\frac{s_{12} \mathrm{~B}_{23}-\mathrm{a}_{13} \mathrm{~B}_{22}}{\mathrm{~S}} \\
& r_{22}=\frac{B_{11}{ }^{8} 33-8_{13}^{2}}{5} \\
& r_{23}=\frac{s_{13} \mathrm{~s}_{12}-\mathrm{s}_{11} \mathrm{~s}_{23}}{5} \\
& r_{33}=\frac{s_{11} s_{22}-s_{12}^{2}}{S} \tag{7}\\
& \mathrm{~S}=\mathrm{s}_{11} \mathrm{~s}_{22} \mathrm{~s}_{33}-\mathrm{s}_{11} \mathrm{~s}_{23}^{2}+\mathrm{Ss}_{12} \mathrm{~s}_{23} \mathrm{~s}_{13}-\mathrm{s}_{12}^{2} \mathrm{~s}_{33}-\mathrm{s}_{13}^{2} \mathrm{~s}_{22}
\end{align*}
$$

$r_{11}=\frac{1}{E_{\xi}} \quad r_{12}=-\frac{\mu_{\xi \eta}}{E_{\xi}}=-\frac{\mu_{\eta \xi}}{E_{\eta}} \quad r_{22}=\frac{1}{E_{\eta}} \quad r_{33}=\frac{1}{G_{\xi \eta}}$

Where E_{ξ} and E_{η} are the moduli of elasticity in the ξ and η directions, $G_{\xi \eta}$ is the modulus of rigidity associated with the ξ and η axes and $\mu_{\xi \eta}$ $\overline{\text { and }} \mu$ are Poisson's ratios of a contraction in the direction of the访
second subscript to an elongation in the direction of the first subscript due to a tensile stress in this last direction. The values of r_{13} and and r_{23} have to do with strain ratios involving shear strains.

23
3. Transformation of the Stress-Strain Equations

Equations (5) may be transformed to refer to the x, y axes by use of equations (1) and (4). The transformed equations are:
$e_{x}=a_{11} f_{x}+a_{12} f_{y}+a_{13} f_{x y}$
$e_{y}=a_{12} f_{x}+a_{22} f_{y}+a_{23} f_{x y}$
$e_{x y}=a_{13} f_{x}+a_{23} f_{y}+a_{33} f_{x y}$

Which are related to equations (5) by:

$$
(O T)
$$

$$
\left.-r_{13}\right) \cos ^{2} \theta \sin ^{2} \theta
$$

$$
\sin ^{4} \theta
$$

$$
\begin{gathered}
\infty \\
+\underset{4}{\infty} \\
\infty
\end{gathered}
$$

g
(Formulas (10) continued)

$a_{23}=$	$r_{23} \cos ^{4} \theta+\left(2 r_{22}-2 r_{12}-r_{33}\right) \cos ^{3} \theta \sin \theta+3\left(r_{13}-r_{23}\right) \cos ^{2} \theta \sin ^{2} \theta$
	$\quad-\left(2 r_{11}-2 r_{12}-r_{33}\right) \cos \theta \sin ^{3} \theta-r_{13} \sin ^{4} \theta$

$a_{33}=r_{33} \cos ^{4} \theta+4\left(r_{23}-r_{13}\right) \cos ^{3} \theta \sin \theta+2\left(2 r_{22}+2 r_{11}-4 r_{12}-r_{33}\right) \cos ^{2} \theta \sin ^{2} \theta$

$\quad+4\left(r_{13}-r_{23}\right) \cos \theta \sin ^{3} \theta+a_{33} \sin ^{4} \theta$
-18-

Report No. 1853

These relations are obtained by letting the stresses associated with the x, y axea be zero except one; then, substituting this one stress in equations (1), values of f_{f}, f, and f are obtained. These values are substituted in equations $\frac{5}{(5)}$ to obtain the related strains. These strains are then substituted in equations (4) (one equation at a time) so that the ratios of the strains to the stresses associated with the x, y axes are obtained, and the values of a are obtained by reference to equations (9).

Equations (6) may be transformed in a similar manner by using equations (1) and (4). The transformed equations are:

$$
f_{x}=b_{11} e_{x}+b_{12} e_{y}+b_{13} e_{x y}
$$

$$
\begin{equation*}
f_{y}=b_{12} e_{x}+b_{22} e_{y}+b_{23} e_{x y} \tag{11}
\end{equation*}
$$

$f_{x y}=b_{13} e_{x}+b_{23} e_{y}+b_{33} e_{x y}$

Which are related to equations (6) by:
$b_{11}=s_{11} \cos ^{4} \theta+4 s_{13} \cos ^{3} \theta \sin \theta+2\left(s_{12}+2 s_{33}\right) \cos ^{2} \theta \sin ^{2} \theta+4 s_{23} \cos \theta \sin ^{3} \theta+s_{22} \sin { }^{4} \theta$
$b_{12}=s_{12} \cos ^{4} \theta+2\left(s_{23}-s_{13}\right) \cos ^{3} \theta \sin \theta+\left(s_{11}+s_{22}-4 s_{33}\right) \cos ^{2} \theta \sin ^{2} \theta$

$+2\left(s_{13}-s_{23}\right) \cos \theta \sin ^{3} \theta+s_{12} \sin ^{4}-\theta$
(12)

(Formulas (12) continued)

These relations are obtained by letting the strains associated with the \underline{x}, \underline{y} axes be zero except one, then substituting this one strain in equaLions (3), and so on.

4. Orthotropic Materials

All of the equations given up to this point are perfectly general, and apply to all materials. They indicate that the most general material has radial symmetry. If various additional symmetries are imposed, the coef: ficienta of equations (5) assume particular values. If a material has an axis of symmetry (α) it also has another axis of symmetry (β) at right angles to α, because of the radial symmetry, and the material is called orthotropic. It can be shown that, ff equations (5) for such a material are written for the α and β axes, rather than for the arbitrary ξ^{5} and η axes, the values of \bar{r}_{13} and r_{23} are zero and equations (5) become: r_{13} and 23
$e_{\alpha}=\frac{1}{E_{\alpha}} f_{\alpha}-\frac{\mu_{\alpha \beta}}{E_{\alpha}} f_{\beta}$
$e_{\beta}=-\frac{\mu_{\beta \alpha}}{E_{\beta}} f_{\alpha}+\frac{1}{E_{\beta}} f_{\beta}$
$e_{\alpha \beta}=\frac{1}{G_{\alpha \beta}} f_{\alpha \beta}$

These equations may be transformed to refer to axes x and y, making angles Φ (measured positively counterclockwise from the α axis to the x axis as shown in figure 23) with the α and β axes by use of equations (9), so that:

$$
\begin{align*}
& e_{x}=a_{11} f_{x}+a_{12} f_{y}+a_{13} f_{x y} \\
& e_{y}=a_{12} f_{x}+a_{22} f_{y}+a_{23} f_{x y} \tag{14}\\
& e_{x y}=a_{13} f_{x}+a_{23} f_{y}+a_{33} f_{x y}
\end{align*}
$$

Report No. 1853

$$
\begin{aligned}
& \stackrel{H}{H}
\end{aligned}
$$

The inverse of this group of equations (13) is obtained by using equations (6) and relations (8). They are:
$f_{\alpha}=\frac{E_{\alpha}}{\lambda} e_{\alpha}+\frac{{ }_{E_{\alpha}{ }^{\mu}{ }_{\beta \alpha}}^{\lambda} e_{\beta}, ~}{}$
$f_{\beta}=\frac{{ }_{\beta}{ }_{\beta}^{\mu}{ }_{\alpha \beta}}{\lambda} e_{\alpha}+\frac{{ }_{\beta}}{\lambda} e_{\beta}$
$f_{Q \beta}=G_{O B} e_{\alpha \beta}$

$$
\lambda=1-\mu_{\alpha \beta} \mu_{\beta \alpha}
$$

These equations may be transformed to refer to axes x and y by use of equations (11). The transformed equations are:
$f_{x}=b_{11} e_{x}+b_{12} e_{y}+b_{13} e_{x y}$
$f_{y}=b_{12} e_{x}+b_{22} e_{y}+b_{23} e_{x y}$

$$
f_{x y}=b_{13} e_{x}+b_{23} e_{y}+b_{33} e_{x y}
$$

Relations (12) become:

5. Laminates

Consider a laminate made up of n individual laminations. The properties of each lamination associated with certain orthogonal axes ξ_{1} and η_{1} are assumed to be known. The individual laminations are orientated in the Iaminate so that the axes ξ_{1} make angles ψ_{1} with an arbitrarily chosen $\frac{1}{}$ axis with the values of ψ_{1} measured positively counterclockwise from the ξ_{1} axis to the ξ axis, as shown in figure 23. Equations (5) and (6) hold for each lamination, and it is assumed that a sufficient number of the r's and s's are known for each lamination so that they are all known because of relations (7) and (8). Equations (11) can then be written for each lamination thus:
$f_{\xi i}=b_{11 i} e_{\xi}+b_{121} e_{\eta}+b_{131} e_{\xi \eta}$
$f_{\eta 1}=b_{121} e_{\xi}+b_{221} e_{\eta}+b_{231} e_{\xi \eta}$

$$
f_{\xi \eta 1}=b_{131} e_{\xi}+b_{23 i} e_{\eta}+b_{331} e_{\xi \eta}
$$

The values of the coefficients to each lamination are given by relations
 sociated with the ξ, η axes in the 1th lamination.
Because the laminations are cemented together in the unstrained condition, the strains in equation (19) apply to all the laminations and to the laminate. The values of the stresses in the individual laminations vary from lamination to lamination according to equations (19). The average stresses in the laminate are given by:
$f_{\xi}=\frac{1}{t} \sum_{i=1}^{1=n} t_{1} f_{\xi i} \quad f_{\eta}=\frac{1}{t} \sum_{i=1}^{1=n} t_{1} f_{\eta i} \quad f_{\xi \eta}=\frac{1}{t} \sum_{i=1}^{1=n} t_{i} f_{\xi \eta i}$

In which t is the thickness of the laminate and t_{i} is the thickness of an individual lamination.

Report No. 1853

Substituting equations (19) into equations (20):

$$
\begin{align*}
& \left.f_{\xi}=\frac{e_{j}}{t}\right\rangle t_{1} b_{111}+\frac{e_{\eta}}{t} \sum t_{1} b_{121}+\frac{e_{\xi \eta}}{t} \sum t_{1} b_{131} \\
& \left.i_{\eta}=\frac{e_{1}}{t}\right\rangle \quad t_{1} b_{121}+\frac{e^{\eta}}{t} \sum t_{1} b_{221}+\frac{e_{\xi \eta}}{t} \sum t_{1} b_{231} \tag{21}
\end{align*}
$$

$$
\left.\mathrm{f}_{\xi \eta}=\frac{e_{\xi}}{t}\right\rangle \quad t_{1} b_{131}+\frac{e_{\eta}}{t} \sum \quad t_{i 231}+\frac{e_{\xi \eta}}{t} \sum_{1331}
$$

These equations are identical to equations (6) with:

$$
\begin{align*}
& s_{11}=\frac{1}{t} \sum t_{1} b_{111} \\
& \mathrm{~B}_{12}=\frac{1}{t} \sum \mathrm{t}_{1} \mathrm{~b}_{121} \\
& s_{13}=\frac{1}{t} \sum t_{i} b_{131} \\
& s_{22}=\frac{1}{t} \sum t_{1} b_{221} \quad s_{23}=\frac{1}{t} \sum t_{1} b_{231} \quad s_{33}=\frac{1}{t} \sum t_{1} b_{331} \tag{22}
\end{align*}
$$

They can be put in the form of equations (5) by use of the relations (7). These equations can then be transformed to any arbitrarily chosen x, y axes, the x axis making an angle θ with the 5 axis (as shown in figure 23) according to equations (9) and relations (10). Thus the properties of the laminate are known in any direction.

If the individual laminations are orthotropic, it is convenient to choose ξ_{1} and η_{1} parallel to the natural axes α_{1} and β_{1}. The coefficients of $\frac{1}{\text { equations }}$ (19) are then given by relations (18) rather than the more genferal relations (12).

6. Strength of Laminates Made of Orthotropic Laminations

It is assumed that the elastic properties of the laminate associated with the $\underline{\xi}$, η axes have been computed (that is, values of r for use in equations (5) are known).

The laminate is aubjected to the stresses f_{x}, f_{y}, and $f_{x y}$ (associated with the x, y axes) which are held proportional to each other until failure takes place. The angle θ is measured positively counterclockwise fram the ξ axis to the x axis (fig. 24). The strains associated with these stresses are obtained from equations (9), using the values of r, previously obtained, in equations (10) to obtain values of a. These strains are transformed to the ξ_{1}, η_{1} axes, the natural axes of the individual laminations, by means of equations (3) (fig. 24), thus:

$$
\begin{align*}
& e_{\alpha i}=e_{x} \cos ^{2}\left(\psi_{1}+\theta\right)+e_{y} \sin ^{2}\left(\psi_{1}+\theta\right)-e_{x y} \sin \left(\psi_{1}+\theta\right) \cos \left(\psi_{1}+\theta\right) \\
& e_{\beta 1}=e_{x} \sin ^{2}\left(\psi_{1}+\theta\right)+e_{y} \cos ^{2}\left(\psi_{1}+\theta\right)+e_{x y} \sin \left(\psi_{1}+\theta\right) \cos \left(\psi_{1}+\theta\right) \tag{24}
\end{align*}
$$

$e_{\alpha \beta 1}=2 e_{x} \sin \left(\psi_{1}+\theta\right) \cos \left(\psi_{1}+\theta\right)-2 e_{y} \sin \left(\psi_{1}+\theta\right) \cos \left(\psi_{1}+\theta\right)$

$$
+e_{x y}\left[\cos ^{2}\left(\psi_{i}+\theta\right)-\sin ^{2}\left(\psi_{i}+\theta\right)\right]
$$

The stresses to which the individual lamination is subjected are found from these strains by means of equations (16), thus:

$$
\begin{align*}
& f_{\alpha 1}=\frac{E_{\alpha 1}}{\lambda_{1}} e_{\alpha 1}+\frac{E_{\alpha 1^{H}} \beta_{\alpha 1}}{\lambda_{1}} e_{\beta 1} \\
& f_{\beta 1}=\frac{E_{\beta 1}{ }^{\mu} \alpha \beta 1}{\lambda_{1}} e_{\alpha 1}+\frac{E_{\beta 1}}{\lambda_{1}} e_{\beta 1} \tag{25}\\
& f_{\alpha \beta 1}=G_{\alpha \beta 1} e_{\alpha \beta 1}
\end{align*}
$$

Report No. 1853

Each individual lamination will fail when: $4,5,6$
$\frac{f_{\alpha 1}^{2}}{F_{\alpha 1}^{2}}-\frac{f_{\alpha 1} f_{\beta i}^{\prime}}{F_{\alpha 1} F_{\beta 1}}+\frac{f_{\beta 1}^{2}}{F_{\beta 1}^{2}}+\frac{f_{\alpha \beta 1}^{2}}{F_{\alpha \beta 1}^{2}}=1$

In which $F_{\alpha i}, F_{B i}$, and $F_{\text {asi }}$ are the strengith of the individual laminations associated with the $\frac{\alpha \beta 1}{}$ 的resses $f_{\alpha 1}, f_{\beta 1}$, and $f_{\alpha \beta 1}$, each acting alone. Each of the strengths F and F have $\frac{\beta 1}{W O}$ values, $\frac{\alpha \beta 1}{O n e}$ in tension and one in compression. If the $\frac{\alpha 1}{a s o c i} \frac{\beta 1}{a t e d}$ stress $1 B$ negative, the compressive strength is used; if positive, the tensile strength is used. The strengths have the same signs as the stresses, so that the ratios are always positive.

Thus, values of f, f, or f are obtained at which the individual laminations will fall, one value for each lamination. The value of this stress at which the laminate, as a whole, will fail is at least as great as the least of its values associated with failure of the individual laminations, and will lie between this least value and the average of the values associated with the individual laminations.

7. A Laminate Made of Two Identical Orthotropic Laminations

Consider a laminate made of two identical orthotropic laminations placed so that the angle between their natural axes α_{1} and α_{2} is 2ϕ. Choose the direction of the $\underline{\xi}$ axis so that it bisects this angle, thus $\phi_{1}=\Phi$ and $\phi_{2}=-\Phi$ (ifg.25). In making the surmations indicated by equations (22),
${ }^{4}$ Norris, C. B., and McKinnon, P. F. Compression, Tension, and Shear Tests on Yellowpoplar Plywood Panela of Sizes That Do Not Buckle With Tests Made at Various Angles to the Face Grain. Forest Products Laboratory Report No. 1328. 42 pp., Illus. 1946.
${ }^{2}$ Werren, Fred, and Norris, C. B. Directional Properties of Glass-FabricBase Plastic Laminate Panels of S izes That Do Not Buckle. Forest Products Laboratory Report No. 1803. 49 pp., Illus. 1949.
6
TNorris, Charles B. Strength of Orthotropic Materials Subjected to Combined Stresses. Forest Products Laboratory Report No. 1816. 34 pp., Illus. 1955.
it will be noticed that in relations (18) a change in sign of $\$$ changes the sign of b and b and does not change the aign of the other coeffilcients. Thus 13
$s_{11} * b_{111} \quad s_{12}=b_{121} \quad s_{13}=0$
$s_{22}=b_{221} \quad s_{23}=0 \quad s_{33}=b_{331}$

Equations (6) become
$f_{g}=b_{111} e_{k}+b_{121} e_{\eta}$
$f_{\eta}=b_{121} e_{\xi}+b_{221} e_{\eta}$
$f_{\xi \eta}=b_{331} e_{\xi \eta}$

These equations show that the laminate is orthotropic and that the $\underline{\xi}$ and 1 axes are its natural axes. By comparison of equations (28) with equations (16):
$b_{111}=\frac{E_{\xi}}{\lambda} \quad b_{121}=\frac{E_{\xi} \mu_{\eta \xi}}{\lambda} \quad b_{221}=\frac{E_{\eta}}{\lambda} \quad b_{331}=a_{\xi \eta}$

Solving these equations for the elastic properties, or using relations (7):
$E_{\xi}=b_{111}-\frac{b_{121}^{2}}{b_{221}} \quad E_{\eta}=b_{221}-\frac{b_{121}^{2}}{b_{111}}$
$\mu_{\eta S}=\frac{b_{121}}{b_{111}}$
$\lambda=1-\frac{b_{121}^{2}}{b_{111}^{b_{221}}}$

Report No. 1853
8. A Laminate Made of a Number of Different Orthotropic Lamination EIther Cross or Parallel Laminated

A laminate is made of a number of orthotropic lamination placed with their natural axes $\left(\alpha_{1}\right)$ parallel to each other. The natural axis (α) of the laminate is parallel to those of the individual lamination. Equaltions (22) become:

$$
\begin{aligned}
& s_{11}=\frac{1}{t} \sum t_{1} \frac{E_{\alpha 1}}{\lambda_{1}} \\
& s_{22}=\frac{1}{t} \sum{ }_{t_{12}}=\frac{1}{t} \sum_{1} \frac{E_{\beta 1}}{\lambda_{1}} \quad t_{1} \frac{E_{\alpha 1} \mu_{\beta \alpha 1}}{\lambda} \quad s_{13}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Using relations (7): } \\
& \left.\mathrm{E}_{\alpha}=\frac{I}{t} \sum \mathrm{t}_{1} \frac{\mathrm{E}_{\alpha i}}{\lambda_{i}}-\frac{1}{\mathrm{t}} \frac{\left(\sum_{i} \frac{\mathrm{E}_{\alpha_{1} \mu_{\beta \alpha 1}}^{\lambda_{1}}}{\sum \mathrm{t}_{1} \frac{\mathrm{E}_{\beta_{1}}}{\lambda_{1}}}\right.}{}\right)^{2}
\end{aligned}
$$

$$
E_{\beta}=\frac{1}{t} \sum t_{1} \frac{E_{\beta 1}}{\lambda_{1}}-\frac{1}{t} \frac{\left(\sum t_{1} \frac{E_{\alpha 1} \mu_{\beta \alpha 1}}{\lambda_{1}}\right)^{2}}{\sum t_{1} \frac{E_{\alpha 1}}{\lambda_{1}}}
$$

$$
G_{\alpha \beta}=\frac{1}{t} \sum \quad t_{i} G_{\alpha \beta 1}
$$

Report No. 1853

Table 1.-Assembly data and some physical properties of the glass-fabric laminates. Resin 2^{I} was used.

Liuch average value represents the average of six tests, except where foctnote-type number used with an average value indicates the number of tests
$\underline{S}_{\text {Eased }}$ on initial straight-line portion (lower slope) of load-deformation curve. KBased on second straight-Iine portion (upper slope) of load-deformation curve.
${ }^{4} C e l c u l a t e d ~ v a l u e s ~ o f ~ G ~ f r o m ~ \frac{1}{G_{O B}}=\frac{4}{E_{45}}-\frac{1}{E_{O O}}\left(1-\mu_{\beta \alpha}\right)-\frac{1}{E_{0}}\left(1-\mu_{Q \beta}\right)$, using data from thia table and table 4.
Feport to. 1553

Table 3.--Results of compression tests of parallel-laminated glass-fabric panels 1,2 , and 3.

Panel: No.	Fabric	- Stress	:Modulus of:		Stress at --		
		: direction ${ }^{1}$:	:elastici				
		: and specimen:			oportion		Ultimate
		: number :	:	:	limit	:	
:		:1	:1,000 p.s.		P.S.1.	:	P.S.1.
:		:	:			:	
1	143-114	+ $0^{\circ}-$ - $1-1$:	: 4,559		33,740	:	54,460
-		$: 0^{\circ}-1-2$:	: 4,506		30,100	:	53,460
:		: $0^{\circ}-$ - $1-3$:	: 4,570	:	33,130	:	$54,81+0$
:		: Average :	: 4,545	:	32,320	:	54,250
:		:	:	:		:	
:		: 90°-- $1-1$:	: 1,477	:	9,850	:	22,340
!		: $90^{\circ}-\mathrm{l}-2$:	: 1,612	:	8,940	:	22,040
:		: 90 ${ }^{\circ}-1-3$:	: 1,610	:	9,020	:	21,970
:		: Average :	: 1,566	:	9,270	:	22,120
:		8 :	:	:		:	
2 :	181-114	: $0^{\circ}-2-1:$: 3,221	:	21,740	:	41,000
:		: $0^{\circ}-\mathrm{-}-2-2$: 3,213	:	24,900	:	43,420
:		: $0^{\circ}-{ }^{-2-3}$:	: 3,211	:	23,760	:	40,240
:		: Average :	: 3,215	:	23,470	:	41,550
:		: 0°				:	
:		: $90^{\circ}-\mathrm{-}-1$:	: 3,104	:	14,900	:	34,120
:		: $90^{\circ}-\mathrm{-}$ 2-2 :	: 3,141	:	13,980	:	34,170
:		: 90 ${ }^{\circ}-2-3$:	: 3,030	:	17,120	:	33,460
;		: Average :	: 3,092	:	15,330	:	33,920
:		: 0 :	:	:		:	
3 :	162-114	: $0^{\circ}-\mathrm{-} 3-1:$: 3,021	:	13,530	:	21,650
:		: $0^{\circ}-3-2$:	: 3,031	:	13,910	:	19,640
:		: $0^{\circ}-\mathrm{-} 3-3$:	: 2,946	:	12,610	:	20,180
:		: Average :	- 2,999	:	13,350	:	20,490
:		:	:	:		:	
!		: 90 $0^{\circ}-3-1$:	: 2,225		12,790	:	23,030
:		: 90 ${ }^{\circ}-\mathrm{3-2}$:	- 2,228	:	13,590	:	21,330
!		: 90 -- 3-3 :	: 2,192	:	13,480	:	16,010
:		: Average :	- 2,215	:	13,290	:	20,120
:		:	:	:		:	

Direction of applied stress with respect to the warp direction of the laminations.
Table 4.--Poisgon's ratios of parallel-laminated glasa-fabric panela 1, 2, and 3.

1naged on ratios of initial straight-line portions (lower slopes) of load-deformation curves. $2_{\text {Based on }}$ ratios of second straight-line portions (upper slopes) of load-deformation curves. Report No. 1853

 wherever secondary values are missing.

> cS8T - OH quindey

[^1] Report No. 1853

Table 8.--Computed values of stress-strain ratios for tensile specimens of panel 5.

0° ANGLE BETWEEN STRAIN AND STRESS DIRECTIONS

Initial :	$3,511:$	$1,829:$	$1,403:$	$1,296:$	$1,672:$	$2,022:$	$2,120:$	2,464
Secondary :	$3,342:$	$2,717:$	$2,147:$	$1,643:$	$1,315:$	$1,996:$	$2,833:$	3,568
Unloading :	$3,560:$	$1,822:$	$1,330: 1,138:$	$1,296:$	$1,919:$	$2,290:$	2,775	
Reloading :	$3,524:$	$1,794:$	$1,321:$	$1,149:$	$1,346:$	$1,926:$	$2,233:$	2,679

90° ANGLE BETWEEN STRAIN AND STRESS DIRECTIONS

45° ANGIE BEITEEN STRAIN AND STRESS DIRECTIONS

| Initial $:$ | $7,634:$ | $2,603:$ | $2,731:$ | $3,681:$ | $5,986:$ | $6,168: 11,257: 74,278$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| Secondary : | $5,708:$ | $3,339:$ | $2,396: 2,036:$ | $2,861:$ | $7,245: 7,673:$ | 6,439 |
| Unloading : | $6,646:$ | $2,225:$ | $2,027:$ | $2,302:$ | $4,200:$ | $6,299: 11,071: 24,070$ |
| Reload1ng : | $6,762:$ | $2,253:$ | $2,110:$ | $2,474:$ | $4,488:$ | $6,721: 11,125: 29,275$ |

-45° ANGIL BETWEEN STRATN AND STRESS DIRECTIONS

Initial	-	11,257		54,383	:	7,634		3,476		2,731	:	5,311		5,986		5,548
Secondary	:	7,673	:	5,876	:	5,708	:	4,778	:	2,396	:	2,152	:	2,861	:	4,615
Unloading	:	11,071	:	19,807	:	6,646	:	3,216	:	2,027	:	3,050	:	4,200		5,396
Reloading	:	11,125	:	23,554	:	6,762	:	3,209		2,110		3,340	:	4,488	:	5,419
	:		:		:		,				:				-	
	:		,		:		:		:		:		:		:	

Table 9.-Computad values of stress-strain ration for tenaile spocimens of panel. 6.

0° ANGIE BETWEEN STRAIN AND STRESS DIRECTIONS

| Initial $:$ | $2,796:$ | $2,560:$ | $2,245:$ | $1,995:$ | $1,772:$ | $1,831:$ | $1,978:$ | 2,223 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Secondary : $2,524:$ | $2,571:$ | $2,491:$ | $2,046:$ | $1,311:$ | $1,478:$ | 1,917 | 2,440 | |
| Unloading : | $2,798:$ | $2,550:$ | $2,198:$ | $1,883:$ | $1,544:$ | $1,622:$ | $1,830:$ | 2,150 |
| Reloading : $2,771:$ | $2,512:$ | $2,161:$ | $1,862:$ | $1,558:$ | $1,643:$ | $1,840:$ | 2,143 | |

90° ANGIE BEIWEEN SITRAIN AND STRESS DIRECTIONS
Initial : $-8,751:-8,223:-7,759:-7,762:-8,751:-8,223:-7,759:-7,762$ Secondary : $-9,956:-18,587: 57,608: 33,764:-9,956:-18,587: 57,608: 33,764$ Unloading : $-9,840:-9,674:-10,026:-10,303:-9,840:-9,674:-10,026:-10,303$ Reloading : $-9,739:-9,555:-9,583:-9,690:-9,739:-9,555:-9,583:-9,690$
45° ANGTM BETWHERT STRAIN AND STRESS DIRECTIONS

| Initial $:$ | $9,757:$ | $5,552:$ | $4,670:$ | $4,270:$ | $4,670:$ | $5,453:$ | $7,098:$ | 9,611 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Secondary : | $6,026:$ | $6,378:$ | $3,956:$ | $2,628:$ | $3,956:$ | $5,815:$ | $7,703:$ | 6,566 |
| Unloading : | $9,204:$ | $5,177:$ | $4,056:$ | $3,445:$ | $4,056:$ | $4,937:$ | $6,796:$ | 9,200 |
| Reloading : | $9,112:$ | $5,056:$ | $4,023:$ | $3,487:$ | $4,023:$ | $4,963:$ | $6,737:$ | 9,123 |

-45° ANGLE BETWEEN STRAIN AND SITRESS DIRECTIONS
Inftial : 7,098: 11,252: 9,757: 7,239: 4,240: 4,149: 4,240: 4,608 Secondary : 7,703: $5,604: 6,026: 7,251: 2,443: 2,219: 2,443: 3,482$ Unloading : 6,796: 10,463: 9,204: 6,961: 3,337: 3,219: 3,337:3,856

Report No. 1853

Table 10.--Computed strength values for tensile specimens of panel 5.

${ }^{1}$ Panel 5 consisted of 13 laminations of 143-114 fabric with the warp direction of 9 laminations making an angle of 0° with the axis of reference, 2 an angle of 140°, and 2 an angle of 110°.

Report No. 1853

Table 11. Computed strength values for tensile specimens of panel 6.

Ifanel 6 was of 12 laminations consisting of 4,3 , and 5 laminations of 143-114, 162-114, and 187-114 fabrics respectively, with the warp direction of each fabric parallel and oriented with respect to an axis of reference as follows: 4 laminations of 143-114 at 10°, 3 laminations of $162-114$ at 0°, and 5 laminations of 181-114 at 140°.

Report No. 1853

Figure 1, - Plan for cutting tension and compresaion specimens froth $1 / 8$ + by 36 - by 36 -inch glass-fabric laminted panele 1, 2, and 3. Panel 1 conaisted of 12 plien of fabric $143-114$, panel 2 of 12 plice of fabric 181-114, and panel 3 of 8 plies of fabtic $162+114$, all. perallel leminated.
H 106808

Figure 2, - Cutting diagram for tenoile apecimene from $1 / 8$ - by 36 by 36 -inch glass-labric laminated panel 4.
1 106808

Figure 3.--Guting disgram for glass-fabric tensile speciment from $1 / 8$ - by 36 -by 36 -inch panels 5 and 6 .

Figure 4. -- Tensile test used in testing glass-fabric-laminate specimens.

Z M 80078 F

Pigure 5, --Repreatentative load-deformation curves for tenajon specimens of parallel-laminated panel 1 , tepted at $0^{\prime \prime}$ to the warp of the 143-114 fabric.
: 106 -661

Figure 6. --Repreaentative load-deformetion curves for tension mpeci * mens of parallel-laminated panel 1, teated at 90° to the warp of the 143-114 fabric.

M 10606

Figure 7. --Representative loaddeformation curve for tenzion specimena of parallel-laminated panel 1 , teated at 45^{\prime} to the warp of the 143-114 fabric.

Figure 8. - -Representative load-deformation curves for tenaion apecimens of parallel-laminated parel 3, tested at C " to the warp of the 162-I14 fabric.

Y 10686

Figure 9. --Representative joad-deformation curves for tension apecimens of parallel-1aminated panel 3, tested at 90° to the warp of the 162-114 fabric.

Figure 10. --Repreatintative load-deformation curve for tenvion apectmenn of parallel-laminated panel 3, tested at 45° to the warp of the 162-114 fabric.

[^2]

Figure 13. -- Representative logd-deformation curves for tention specimen (apecimen 6-3) teeted at 60° to the axis of referente for panel 6. Load-deformation data for the $0^{\circ}, 90^{\circ}$, and 45° element

[^3] of Rosette=type straingeges art shown.

Figure 14. - - Representative load-deformation curveg tor tension ppecimen (specimen 6-2) tepted at 90" to axis of reference for pamel 6. Load-deformation data for the 0°, 90°, and 45° elements of Roaette-type otrain gagea are shown.
M 106 070

Figure 15. - Representetive load-deformation aurved for tension. specimen (specimen 6-2) tested at 150° to axis of reference for pariel 6. Load-deformation data for the 0°, 90°, and 45° elements of Rosette-type atrain gaget are ahown.
W106871

Figure 16. --Computed and experimental valuea of ateena-gtrain ration for panel 5 in the strese direction (E_{0}), bataed on elastic properties. A, initial phase of loading eycle; B, 由econdary phatef; C, unloading phape; ㅁ, reloading phape.
A 106972

Figure 17, - Computed and experimental values of atresiobtrain ration for panel 5 at 90^{*} to the otrega direction ($\mathrm{E}_{\mathrm{g} 0}$), baed on eladtic properties. A, initial phase of loading cycle; B, mecondary phäde ty, unloading phabe; ㄹ, teloading phate.

M 1068

Figure 18. - Computed and experimental values of atrege-gtrain ratios for panel at plus and mitus 45^{*} to the otrege direction (E_{45}), besed on elastic properties. A. iaitial phate of loading cycle; B, gecondary praise; C. unloading platae; \underline{D}, reloading pbane.

Figure 19. --Computed and experimentil valuea of stretn-atrain ration for panel 6 in the

Figure 20. - Computed and experimental values of otresaretrain ratiog for panel 6 at 90° to the 㫙ess direction (E_{80}), baned on elastic properties, A, initial phase of hoading cycle: $\underline{B}_{,}$unloading pharé \underline{C}, zeloading phase.

Figure 21. . Gomputed and experimental values of atrede-Etrain zation for panel bat plus and minur 45° to the strean direction (Σ_{45}), beed on elatic propertien. A, initial phase of loaditag cycle; $\underline{8}$, mecondary phate; \underline{C}, trioading phase; \underline{D}, reloadtng phate.

Figure 22. --Computed and experimental values of tensile strength at various angles of
f 1066878

Figure 23. --Choice of axes for the mathematical andyysis of the elastic properties of a laminate.

Figure 24, .-Choice of axes for the mathematical aralysia of the strength of a lamjuate.
$\therefore z$ 日 106880

Pigure 25. - Choice of axea for a laminate made of two identical orthotropic laminations,

SUBJECT LISTS OF PUBLICATIONS ISSUED BY THE FOREST PRODUCTS LABORATORY

The following are obtainable free on request from the Director, Forest Products Laboratory, Madison, Wisconsin 53705.

List of publications on
Box and Crate Construction
and Packaging Data
List of publications on
Chemistry of Wood and
Derived Products
List of publications on
Fire Protection
List of publications on
Fungus and Insect Defects
in Forest Products
List of publications on
Glue, Glued Products, and
Veneer
List of publications on
Growth, Structure, and
Identification of Wood
List of publications on
Logging, Milling, and Utiliza-
tion of Timber Products
Partial list of publications for
Architects, Builders, Engineers, and Retail Lumbermen

Note: Since Forest Products Laboratory publications are so varied in subject no single list is issued. Instead a list is madefor each Laboratory division. Twice a year, December 31 and June 30, a list is made showing new reports for the previous 6 months. This is the only item sent regularly to the Laboratory's mailing list. Anyone who has asked for and received the proper subject lists and who has had his name placed on the mailing list can keep up to date on Forest Products Laboratory publications. Each subject list carries descriptions of all other subject lists.

[^0]: Σ^{2}
 inish 114 fabrics were approved for use in this study in order to make use of materials already on hand. These fabrics will not conform to the wet-condition requirements of glass fabrics now specified for alrcraft laminates, but will conform to the standard dry-condition requirements of Specification MIL-P 8013. As such, they are considered satisfactory for these experimental tests made solely to verify the mathematical analysis of laminates with random orientation of laminations. Since the study involves only tests made in the dry condition and comparisons of test results with computed results, the validity of the conclusion is in no way affected by the use of fabrics with this finish.

[^1]: ${ }^{\text {I }}$ Initial atraight-line portion (lower alope) of load-ieformation curve. ${ }^{\text {Sincond }}$ straight-line portion (upper slope) of load-deformation curve.

[^2]: Figure 12. --Representative load-deformation curves for tension specimens of 143-114 fabric tested at 150° to the axis of reference for panel 5. Load-deformation data from
 the $0^{\circ}, 90^{\circ}$, and 45° elements of Rosette-type strain gages are shown. Specimen
 150*-5-1 tested directly to failure; specimen $150^{\circ}-5-3$ preloaded, then reloaded to failure.

[^3]: 106969

