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Generation of edge waves in shallow water 

T. C. Lippmann 
Center for Coastal Studies, Scripps Institution of Oceanography, La Jolla, Califomia 

R. A. Holman 

College of Ocean and Atmospheric Sciences, Oregon State University, Corvallis 

A. J. Bowen 

Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada 

Abstract. Theoretical growth rates for resonantly driven edge waves in the nearshore are 
estimmed from the forced, shallow water equations of motion for the case of a plane sloping bed. 
The forcing mechanism arises from spatial and temporal variations in radiation stress gradients 
induced by a modulating incident wave field. Only the case of exact resonance is considered, where 
the difference frequencies ,and wavenumbers satisfy the edge wave dispersion relation (the specific 
carrier frequencies are not important, only the forced difference values). The forcing is ex,'unined in 
the region seaward of the breakpoint and also within the fluctuating region of surf zone width. In 
each region, the forcing is dominated by the cross-shore gradient of onshore directed momentum 
flux, except for large angles of incidence and the lowest edge wave modes. Outside the surf zone, 
the spatial and temporal variation of the forcing is determined by considering the interaction of 
two progressive shallow water waves approaching the beach obliquely. In the surf zone, incident 
wave amplitudes are assumed to be proportional to the water depth. Thus inside the breakpoint, 
radiation stress gradients are constant and no forcing occurs. However, at the breakpoint, gradients 
arising from breaking and nonbreaking waves are turned on and off (like a wave maker) with 
ti•nescales and length scales determined by the modulation of the breaker position. The tbrcing in 
this region is stronger, with inviscid growth rates resulting in edge waves growing to the size of 
the incident waves of the order of about 10 edge wave periods, a factor of 2-10 times larger than in 
the offshore region. Using a si•nple par,-uneterization for frictional damping, edge wave 
equilibrium mnplitudes are lbund to depend linearly on the ratio tan ]•/C a , where fl is the beach 
slope and Ca is a bouom drag coefficient. For tan•/C a about 3-10, equilibrium amplitudes can 
be as •nuch as 75% of the incident waves over most of the infragravity portion of the spectrum. 
When the forcing is turned off, these dissipation rates result in a half-life decay timescale of the 
order of 10-30 edge wave periods. 

Introduction 

Since the initial observations of Munk [19491 and Tucker 
[1950] much effort has been aimed at understanding the origin 
and importance of low-frequency (relative to wind waves) 
surface gravity waves in shallow water. Field data obtained on 
natural beaches have shown that long-period (O(102-10 3 s)) 
infragravity motions often dominate power spectra in the 
inner surf zone and swash, particularly during storms when 
incident wave heights in shallow water are severely limited by 
breaking [Huntley, 1976; Huntley et al., 1981; Holman, 
1981; Thornton and Guza, 1982; Holman and Sallenger, 1985; 
Sullenget and Holman, 1987]. The data also indicate that 
infragravity surface gravity waves are predominantly 
composed of edge waves, longshore progressive waves 
trapped to the shoreline by refraction, together with a smaller 
component of leaky waves, normally reflected waves which 
escape from the nearshore into deep water [Guza and Thornton, 
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1985; Oltman-Shay and Guza, 1987; Howd et al., 1991; 
Herbets et al., 1995b]. 

The existence of edge waves in nature has been known for 
some time. Bowen and (;uza [1978] and Holman [1981] 
suggest that the growth of edge wave amplitudes, an, is 
determined by the coupling between the nonlinear forcing, 
F(a 1, a 2, x), arising from an interacting incident wave fidld 
and the cross-shore edge wave waveform, On (x), 

rYe f F(al,a2,x)On(x)dx g 
o 

(1) 

where al and a 2 are incident wave amplitudes, rYe is the edge 
wave radian frequency, g is gravity, t is time, and x is the 
cross-shore coordinate. Growth occurs when the forcing 
pattern is not orthogonal to the edge wave waveform. The 
details of the forcing are described by the spatially varying 
form of F. In this work we derive an analytic expression for F 
and numerically integrate the coupling integral to obtain an 
estimate for the growth rate. 

The principal forcing is believed to be derived from pairs of 
incident wind waves, which produce spatial and temporal 
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variations in radiation stress gradients of the same timescale 
and length scale as the edge waves. Outside the surf zone in 
intermediate and shallow depths, forcing occurs through a 
typical second-order nonlinear interaction [Gallagher, 1971; 
Bowen and Guza, 1978]. Inside the surf zone, difficulties arise 
in specifying the forcing functions all the way to the 
shoreline. Here we assume that amplitude variations are 
eliminated by saturation and no oscillatory forcing occurs. 
However, there is a time dependent momentum flux induced by 
the modulation in breakpoint position associated with the 
variation in incident wave height [Foda and Mei, 1981; 
Symonds et al., 1982; Symonds and Bowen, 1984; Schaffer, 
1993]. 

Outside the surf zone (referred to herein as offshore forcing) 
the generation mechanism evolves from the second-order 
forced (or bound) wave generated by wave groups in 
intermediate water depths [Biesel, 1952; Longuet-Higgins and 
Stewart, 1962, 1964; Hasselmann, 1962]. In two dimensions, 
the bound wave is, in principal, released at breaking and 
reflected at the shoreline; thus the incoming and outgoing 
waves form a complex pattern in the cross-shore, however, 
without the longshore component necessary for edge wave 
generation. This idea was extended to three dimensions by 
Gallagher [1971], who showed that nonlinear interactions 
between incident wave pairs could produce low-frequency 
oscillations with a nonzero alongshore wavenumber. Bowen 
and Guza [1978] generalized Gallagher's model to include 
forcing of all modes and showed with laboratory experiments 
that resonant response was greater than forced response. This 
same conclusion was reached by Foda and Mei [1981] in a 
fourth-order WKB expansion of the momentum equations. 

In the surf zone, forcing occurs because an interacting 
incident wave field produces spatial and temporal variations in 
locations of the position at which a wave breaks (herein 
referred to as surf zone forcing). Momentum is transferred 
from incident to lower frequencies through wave breaking, and 
the interactions again lead to fluctuations in the flow field 
with timescales and space scales of the order of wave groups. 
This idea was first explored as a generating mechanism for 
long waves by Foda and Mei [1981] and Symonds et al. 
[1982]. As will be shown later, there is also a contribution 
from nonbreaking waves within the region of fluctuating surf 
zone width. 

In the work by Foda and Mei [1981], low-frequency waves 
are generated by wave-wave interaction assuming a fixed 
breakpoint position for all waves. This allows incident 
modulations to progress to the shoreline, and edge waves are 
forced everywhere. In nature, however, the initial breakpoint 
of individual waves is not constant through time, nor is the 
breaker line uniform along the beach. Under most conditions, 
temporal and spatial variations in the width of the surf zone 
occur on large timescales and space scales, of the order of 
infragravity scaling [Symonds et al., 1982]. Although the 
basic physics inshore from the breakpoint is doubtful, Foda 
and Mei do consider resonant edge wave growth, also 
considered here, and thus a brief comparison with their results 
is made later. 

Symonds et al. [1982] consider the problem of long wave 
forcing by time modulations in surf zone width for the case of 
a plane sloping bed and later included interactions with barred 
topography [Symonds and Bowen, 1984]. In contrast to Foda 

and Mei [1981], they assume constant breaking criteria so that 
modulations in incident wave heights are manifested in 
fluctuations in the width of the surf zone. However, their 

model is limited to only two dimensions (no inclusion of 
longshore variability), precluding the possibility of edge 
wave forcing. Nevertheless, the results of Symonds et al. 
suggest that edge wave generation by temporal variations in 
surf zone width is possible. 

Schaffer and Svendsen [1988] retain the ideas of Foda and 
Mei [1981] and Symonds et al. [1982], by allowing 
fluctuations in both breakpoint positions and incident wave 
energy inside the breakpoint, although they limit their 
discussion to the two-dimensional case. List [1992] extends 
this mechanism in a numerical model to include arbitrary 
topography and further includes incoming bound waves, 
crudely •nodeled empirically using field data, as do Schaffer and 
Svendsen [1988]. They forego a more theoretical approach 
since it is not clear what the correct boundary conditions are 
for bound wave dynamics in the shoaling and breaking region, 
although it is expected the forced motions become nearly 
resonant in shallow water [Longuet-Higgins and Stewart, 
1964; Okihiro et al., 1992]. 

Schaffer [1994] uses a WKB (optics) approach to describe 
the incident waves and drives the edge waves with radiation 
stress modulations determined by fluctuating amplitudes (i.e., 
the two incident waves are assumed to approach from the same 
direction). Numerical solutions are considerably complicated 
by an angular bottom which necessitates a matching condition 
at a corner in the profile. Furthermore, Schaffer's offshore 
profile is horizontal; thus waves propagating offshore beyond 
this "shelf" are no longer refracted, thus limiting the possible 
edge waves which can exist. Low-frequency response is found 
through numerical calculation, with resonant modes 
determined critically by the single-incident wave angle and the 
offshore profile configuration. This results in a very specific 
set of results only valid for these restricted set of conditions. 

In this paper we present a mechanism for the resonant 
forcing of edge waves in shallow water through modulations in 
radiation stress gradients. We consider two interacting 
shallow water incident waves whose difference wavenumbers 

and frequencies satisfy the edge wave dispersion relation. The 
total forcing is found by integrating the growth rate equation 
froin the shoreline to deep water (relative to wind waves). 
Contributions to the forcing from inside and outside the surf 
zone are examined by separating the forcing integral at the 
breakpoint. We consider the simplest case of a planar beach 
profile, where forcing in the surf zone is determined by a time 
and space dependent fluctuation in the width of the surf zone. 

In the next section we review the theory for edge waves on a 
plane sloping beach beginning with the forced shallow water 
(depth integrated), linearized equations of motion, leading to 
an analytic expression for the initial (undamped) edge wave 
growth rate. Model results are then presented, comparing the 
relative contributions to the forcing from the components of 
the radiation stress and also the strength of inviscid growth 
rates in the surf zone and offshore regions. Results are then 
discussed in terms of the validity of model assumptions, 
parameter sensitivity, and implications in field situations 
(spectral forcing). The effect of a linearized dissipation term 
on edge wave growth is discussed. In Appendix B the 
extension of the calculations to an incident wave spectrum is 
briefly discussed. 
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Model 

Edge Wave Theory 

The forced, shallow water (depth integrated), linearized 
equations of motion including a linearized dissipation term are 
[Phillips, 1977] 

m + - Sxx + - •,u (2) 3 t X -b--fx p h 3 y xy 

•+ - Sxy + -•v (3) a, g Tfy p h Tyy s" 
and the continuity equation 

--+ (h.)+ hu)-0 (4) 
3t 3y 

where x and y are the cross-shore and alongshore horizontal 
Cartesian coordinams with x positive seaward (for a right-hand 
system with z positive upward), u and v are the corresponding 
horizontal components of velocity, • is sea surface elevation, 
• is a friction coefficient (discussed later), h is the still water 
depth, and p is the densi• of water. The equations have been 
averaged over an incident wave period so that the time 
dependence is on infragravi W and longer scales. Spq are the 
radiation stresses of short (incident) waves introduced by 
Longuet-Higgins and Stewart [1962, 1964] and describe the 
flux of pth directed momentum in the qth direction. 

Combining (2)-(4) and temporarily dropping the damping 
term yield a single second-order (inviscid) equation in sea 
surface elevation [Mei and Benmoussa, 1984], 

c-)271 
c-)t 2 

p • ax + ay +•yy( ax + ay 
= Fxx + Fy x + Fxy + Fyy = F 

(5) 

where Fxx, Fyx, Fxy, and Fyy are the components of the total 
forcing, F, corresponding to the four second derivatives on 
the right-hand side. The forcing and frictional dissipation are 
assumed to be of second order, and we ignore their effects on 
both the wave solutions and the dispersion relation (which 
could be significant if the forcing and friction are large). 

For a plane beach, h= xtanfl, where/8 is the beach slope, 
the homogenous case (free waves) is satisfied by edge waves of 
the form [Eckart, 1951 ] 

rln (x, y,t ) - •-anc)n (x)e -i(l•y-cr•t) +(*) (6) 

where CYe=2nfeand ke=27r/L e are the edge wave radian 
frequency and alongshore wavenumber Ore and L e are the edge 
wave frequency and wavelength), n is the edge wave mode 
number, an are the complex modal amplitudes (which can be 
resolved into a magnitude and phase), (*) indicates the 
complex conjugate of the previous term, and i-4Z-f. The 
cross-shore structure of the edge wave waveform, qS,•(x), is 
given by 

c),• (x)- e-k•XL,• (2kex) (7) 

where L n is the Laguerre polynomial of order n. The 
approximate shallow water edge wave dispersion relation is 
given by [Eckart, 1951] 

2 
cye - gke(2n+ 1)tanfi (8) 

Growth Rates 

We seek an expression for the time rate of change of edge 
wave modal amplitudes, or growth rate, 3an/3t. Substituting 
(6) into (5) and allowing a n to be a slowly varying function of 
time give 

2a n 3a n 3--'•qn + i2tYe 
where 

-anZ(qJn)]e -ire - F (9) 

g-- 3xlh3•-•l+(CYe2-ghke2)cpn 
life - key- Get ß 

In (9), and in subsequent equations for the growth rate, we 
have dropped the complex conjugate for brevity, thus later we 
will take the real part to obtain the magnitude and phase. The 
function Z(cpn ) is the homogeneous equation for shallow 
water waves and vanishes for the case of resonance considered 

here. If we assume that the edge wave growth rate is slow 
relative to its period, then the first term describing the 
acceleration in growth can be neglected. Thus an equation for 
the initial edge wave growth rate is 

i2o'•,c-•--c),•e-iV•' -F (10) 
The cross-shore dependence is eliminated by multiplying by 
qS,• and integrating from the shoreline to infinity in the cross- 
shore direction, as in (1). Incorporating the dispersion 
relation and dividing by the primary incident wave amplitude 
(described later), (a i)o, the normalized growth rate becomes 

1 3a• iv/• = -2rri I (ai)of e •gt e- (ai)ogtanfl(2n+l) F0,•dx (11) 
0 

in which the normalizing factor [•cpn2dx - 1/2k e has been 
used. The coupling integral express4s the rate at which energy 
is transferred from the incident waves to resonant lower- 

frequency motions. The inverse of the magnitude of (11) is the 
number of edge wave periods necessary for the edge wave to 
grow to the size of the primary incident wave. 

Coupling Integral and Incident Wave Amplitudes 

In deep water, resonant interactions are quartic and only 
forced waves are produced by triad interactions. In shallower 
water, resonant triad interactions can occur, producing 
variation in radiation stress which can match the edge wave 
dispersion relation. This spatial and temporal modulation 
gives rise to the possibility of edge wave growth. Although 
the modulation scales remain the same, the forcing function F, 
which depends on wave amplitude, varies as waves shoal in 
intermediate water and eventually break in the surf zone. As a 
consequence, there are two distinct forcing regions separated 
by the contour of the breaker line, x b (y,t) (shown graphically 
in Figure 1), and the coupling integral can be written 
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Figure 1. Graphical representation of the edge wave forcing regions relative to an oscillating breaker line. 
The vertical axis is Z= cre2x/gtan,B and the horizontal axis is gr e =key-Get. The offshore forcing region is 
defined as seaward of the •nost seaward breakpoint. Inside the minimum breakpoint, no forcing occurs. The 
range of forcing by a modulating breakpoint position is a function o.__f incident wave modulation, 8. The 
regions where waves are alternately shoaling and breaking (between Zb and the oscillating breaker line) are 
labeled I and II, respectively. 

Go x!,(y,t ) 

IF(al,a2,x)cPnCx)dx- IFsz(al,a2,x)cpn(x)dx 
o o 

+ IFoff(al,a2,x)cpn(x)dx (12) 
xt,(y,t) 

where F sz and For f are the forcing inside and outside the 
breakpoint, respectively. The forcing functions are 
determined by the temporal fluctuations of radiation stress 
gradients, which are in turn determined by •nodulations in 
incident wave amplitude. 

It is the slowly varying breaker line, xb(y,t ), that creates 
first-order fluctuations in the surf zone coupling integral. If 
we assume that the breakpoint varies sinusoidally with gr e 
tilne and length scales (described later) and further separate the 
coupling integral at •'b and expand in a Taylor's series about 
'•t,, then to first order, (12) can be written (Appendix A) 

0 

+ IFoff(ala2,x)cPn(x)dx (13) 
x/, 

Thus the first-order contributions to edge wave growth occur 
through primary interactions from both breaking and 
nonbreaking waves within the fluctuating region of surf zone 
width and through cross-interactions of a pair of waves 
seaward of the average breakpoint position. 

In the following, the wave field is considered to be 
co•nposed of two waves, a primary wave with amplitude a I and 
longshore wavenmnber and frequency (k l, fl) and a secondary 
wave with mnplitude a 2 and slightly different wavenumber and 
frequency (k 2, f2)- If we choose 

a 2 = •a I (14) 

where • << 1 is a constant, then the primary wave determines 

the mean wave amplitude and the modulation (about the mean) 
is determined from a 2 [Symonds et al., 1982]. 

Because of sharp differences in the shoaling and breaking 
regions, the amplitudes of the incident waves are treated 
differently. In the offshore region the amplitudes are described 
by progressive shallow water waves over a plane sloping 
bottom; thus an interacting wave field has modulations all the 
way to the breakpoint. Wave amplitudes in this region are 
referenced to a convenient location (e.g., the breakpoint). 
Inside the surf zone, wave amplitudes are strongly attenuated 
shoreward by breaking and are described as a linear function of 
local depth, 

1 

a i =•-Th x <x b (15) 

where ), is a constant of O(1) [e.g., Thornton and Guza, 1982]. 
For a plane beach, reference amplitudes can then be given by 

1 

( ai )o = • ?xb tan/3 (16) 

where x•, is the position of the breaker line, a function of y 
and t. 

Once the incident waves break, •nodulations in incident 

amplitudes vanish and the forcing becomes constant 
shoreward. The possibility for edge wave forcing occurs 
because the breakpoint position varies on timescales and 
space scales associated with the incident beat. Thus the limits 
of integration in (12) for the surf zone integral will have 
modulations with edge wave timescales and space scales that 
are deterInined by the fluctuating breakpoint position (Figure 
2). The •nagnitude of the modulation is determined by the 
maximum and •ninimum breakpoint amplitudes, 
ama x = a I + 8a I and ami n = a I -c•al, respectively, so that the 
cross-shore range over which forcing occurs is defined by 

(17) 

where Z' b is the mean breaker position. 
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a=Th/2 • f ( a o) 

z / I I ....... i ....... f(ao(1-fi)) 

• x•(l+fi) msl ,. x 
Figure 2. Graphical representation of the envelop of 
incident wave ainplitudes over a plane sloping bed as a 
function of cross-shore distance. Surf similarity ( a = 7h/2) is 
assumed once waves are breaking so that inodulations in 
incident amplitudes produce variations in surf zone width. The 
vertical (elevation) and horizontal (cross-shore distance) 
diinensions are arbitrary. 

Parameterizing the Forcing 

Following Phillips [1977], the general forin of the 
radiation stress is given by 

,q'pq -- [3__jh C_)W 3X q (S pq Z-- • 
(18) 

where x is the horizontal space vector in which subscripts p 
and q denote either horizontal coordinate, (I) is the velocity 
potential of the incident waves, fi is the mean pressure, and 

5pq is the Kronecker delta. The momentum balance has been 
spatially averaged in the direction of the wave crests (allowing 
separation of the turbulent and wave terms) and temporally 
averaged over the incident wave period (allowing mean or 
slowly varying properties to be evaluated), denoted with the 
overbars in (18). In shallow water •--pgz and assuming 
7] = 0 at second order, 

Spq •ph•x• •x•+ •pq • • (19) 
We consider the bichromatic case where the incident wave 

field is composed of two discrete wave trains with slightly 
different wavenumber and frequency, 

• - • + •2 (20) 

where the subscripts 1 and 2 refer to the two incident waves. 
Substituting • into (19) produces 

Spq -Spq(*l*l)+2Spq(*l*2)+Spq(*2*2) (21) 
The first and last terms represent the self-self interactions 
which generate •nean flows and harmonics. The harmonics do 
not contribute to low-frequency forcing in either region and 
are therefore neglected. Letting the amplitude of a primary 
wave •i be much larger than any secondary waves •2 
(equation (14)), then •1•1 terms are of O(1), while cross- 
interaction terms •1•2 are O(8) and •2•2 terms are O(82). 
The stress arising from •i•i interactions will generate a set- 
down outside the breakpoint and a setup inside the breakpoint 

within the fluctuating region of the surf zone, which will 
oscillate at the same frequency and wavenumber as the 
fluctuating surf zone boundary (given by the tiine varying 
contour of the breaker line). 

We choose the velocity potential for progressive shallow 
water waves over a plane sloping bottmn after Stoker [1947] 

where 

(I) i -- aig[Jo(Xi)cosyt'i+Yo(Xi)sin I//i] (22) 

Xi_2( cri2x ) 112 gtanfi 

III i - ( ki y - crit ) 

and Jo and Yo are the zero-order bessel functions of the first 
and second kind, respectively, k i is the alongshore cmnponent 
of the incident wavenumber vector, and the subscript i is an 
index which refers to individual incident waves. For X i >3 
(equivalent to H>-•(Ttanfi)2/2, so valid for nearly all 
oceanic cases), the bessel functions inay be approximated by 
[Stoker, 1947] 

2 / ¾2 Jø ( Xi ) = '•i Cos(X/--•) (23a) 

sin(X i -•) (23b) 
Introducing complex notation yields the following form for (I) i 

aig(--2)l/2ei(X'-%+{) +(*) (24) (hi--• cr i •, •rx i 
The form of our velocity potential is only strictly valid for 
waves approaching the beach shore normally. However, Guza 
and Bowen [1975] show that nonnormal angles of incidence 
have only small effects on the forin of the velocity potential 
due to refraction decreasing the angle of incidence and show 
that where shallow water solutions are valid, the solutions for 
shore-normal and oblique incidence angle are nearly the same. 

Substitution of (24) into (21) produces terms with sum and 
difference wavenumbers and frequencies. The sum terms (high- 
frequency forced waves) are unimportant to the generation of 
infragravity motions [Bowen and Guza, 1978] and are not 
considered further. The difference terms describe the long 
timescales and space scales of the incident wave modulation 
and allow for the possibility for edge waves at infragravity 
frequencies 

Of = CY1-- CY 2 (25a) 
and 

[kfl-Ikl -k21 (25b) 
where k! and k 2 are the longshore wavenumbers of the incident 
waves and the subscript f indicates the forced difference values 
associated with the incident wave inodulation. For resonance 

to occur, (25a) and (25b) inust satisfy the edge wave dispersion 
relation (8). 

Incident wave angles are asstuned to follow Snell's law for 
wave refraction and are chosen at the breakpoint where the 
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linear shallow water phase velocity is simply a function of the 
local depth, c-•, so that 

k i •yi2 ' tYi sin(o•i)o (26) = sin O•o = 

g X4o 

where oo indicates the deep water condition and (o• i)o are the 
wave angles of the individual waves taken at some reference 
depth, ho. If we further reference ai to the breakpoint, where 
h o = hi,, then products ala 2 are given from (24) by 

= 7r o ]1/2 
where the subscript o refers to values at the reference position 
(e.g., the breakp.oint). 

Now substituting (24) into (19), incorporating (26)-(27), 
and evaluating the appropriate derivatives give an analytic 
form of the radiation stress 

Spq = • (28) 

where 

lpq = 3 2a• I 2a• 2al 2 +1 

JPq +a 2 2ala 2 +1 
XeA 

Kpq= •(Xlal _ X2a2) 
1 

XiX2 

O.e2 x / ¾2 X e = 2 gtan• 

-•(Xl 0•1- X20•2) 
0 

and sin(o•! )o and sin(o• 2)o have been abbreviated o•! and o• 2, 
respectively, for simplicity. In (28), O(1) terms are a result of 
ß 1• interactions, O(•5) terms are from •2 interactions, 
and O(•52) terms are frmn •2•2 interactions. 

Using typical values found in nature, f• =f2 =0.1 Hz, 
x b--lOOm, and tanfi=0.02, we find A is O(10 -3 ) at the 
breakpoint, and therefore terms in (28) containing A 
contribute negligibly to the interaction and are neglected in 
the following. This implies that although interactions of the 
incident waves determine the response frequency, the specific 
carrier frequencies are not important. 

Response Outside the Surf Zone 

The forcing function outside the mean breakpoint position 
is found directly by inserting terms of order •5 in (28) (arising 
from cross-interaction radiation stresses) into the right-hand 
side of (5) and evaluating the second spatial derivatives, 

_ (Sei(Xe-U/e) 
p (gtanfi 

3-Xe -i3X e sina l+sina 2 ß X• 5 + 3(2n+ 1)X• 2 2sin o• 1 sin a 2 + 1 ) (29) 12(2n+ 1)2Xe 

The three terms are derived from the components of the 
interaction radiation stress from Fxx, 2Fxy, and Fyy. The 
three components of the interaction forcing are compared 
later. Contributions to edge wave forcing by nonbreaking 
waves seaward of the breakpoint but within the fluctuating 
region of surf zone width are considered in the next section. 

Inserting (29) into the coupling integral in (13) results in a 
complex expression for the undmnped response of edge waves 
by oscillating forcing seaward of the •nean breakpoint. After 
taking the real part, expressions for the normalized initial 
growth rate magnitude, Goff, and phase, Ooff, are given by 

(7off= 1 •an= 3•'•-• •(•bb)3(pn2+Qn2) 1/2 (30) fe (al)o at 4(2n + 1) 

where 

Pn - I (32 cos X e - B 1 sin Xe )q),•XedXe 

Qn = I(Bi cosXe + B 2 sinXe)q)nXedXe 
Xb 

B 1 = sin o• 1 q- sin a 2 2sin a• sin a 2 + 1 3-Xe 2 + - 
X• 5 3(2n+l)Xe 2 12(2n +1)2 X• 

3 

B 2 - Xe 4 

Surf Zone Response From Breaking and 
Nonbreaking Waves 

The cross-shore integral parameterizing the surf zone 
contribution to the total edge wave forcing ranges from the 
shoreline to the breakpoint, 0_< x_< x b. Following Symonds 
et al. [1982], we do not allow modulations in wave amplitude 
inside the mini•num, •nost shoreward breakpoint by choosing 
¾ to be constant for all waves. Thus for a plane beach, 
•nodulations in breakpoint amplitudes generate spatial and 
temporal variations in the width of the surf zone. Symonds et 
al. used this as the basis for their two-dimensional long wave 
model. 

Wave mnplitudes are expressed in terms of cross-shore 
breakpoint position using (16). The surf zone forcing 
function is then found by inserting (28) into the right-hand 
side of (5) and evaluating the spatial derivatives. Since we are 
only interested in first-order approximation, we need only 
retain the pri•nary self-interaction terms (Appendix A). Inside 
the breakpoint first-order radiation, stress gradients for 
breaking and nonbreaking waves are given by 
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•S xx 
3x breaking -- 

3Bo.•t,(Xe )o 3 
2Xe nonbreaking 

(31a) 

3Syx 
=0 (3lb) 

•)S xy 
3x - 4Bøx sin ctl Ibreaking 

0Syy = 0 
3y 

where B o = pg(ytan fl)2/8. The dependence of wave angle on 
depth is eliminated using (26) (the incident alongshore 
wavenumber is conserved across the nearshore region). 

Since we are taking T to be constant, all modulations inside 
the initial breakpoint vanish, and each component of (31) is 
constant. In essence, variations in the forcing are defined by a 
wave maker type problem, where the forcing is turned on and 
off at the initial breakpoint (as in the work by Symonds et al. 
[1982]). Periodic fluctuations in radiation stress gradients 
arise from fluctuations in the position of the initial 
breakpoint on timescales and space scales of the modulation. 
Alongshore modulations allow for the possibility of edge 
waves. 

Because radiation stress gradients are discontinuous at the 
breakpoint, we represent (31) as a co•nplex Fourier Series. 
Extending Symonds et al. [1982], 

3Spq Z CmeiU/ + ( ) 3Xp = Cø + * m=l 
X--' X b 

• 'r2 i TM) 35pq e_imu/, 
r! (y,t) 3Xp 

(31c) 

where 

1 

(31d) 

(32) 

where z' 1 and z' 2 define the interval over which forcing occurs 
and (*) indicates the complex conjugate of the previous terms 
under the summation. The form of (32) is given for the 
breaking waves only; nonbreaking waves in the fluctuating 
region of surf zone width are rc out of phase with (32). 
Symonds et al. present an extensive discussion for finding the 
Fourier limits of integration for the two-di•nensional case. We 
extend their ideas to three dimensions in the following. The 
mean breakpoint mnplitude is defined by the larger wave, and 
the fluctuation about the mean is defined by the amplitude 
lnodulation, B, such that by using linear superposition of two 
sinusoidal waves 

at,- a• I1 + tScøs!•,t,- •e)] (33) 
where Xt, is the mean X e value corresponding to x= •t,. We 
can express (33) in terms of breakpoint positions using (16) 

(34) 

where Zt, is the mean breakpoint position. The upper limit of 
integration in (32) is determined froln the argument of (34) 

x/, -xt, (35) = = cos 
Symonds et al. [1982] show that for small • the limits of 
integration are symmetric; hence z' l =-z' 2 --z'. Using (35), 
the Fourier coefficients are 

C o = const 

38pq sin mz 
Cm= re=l, 2 .... 

3p m'r 

The first term in the series (Co) represents the mean value 
over all •e space and subsequently vanishes when second 
derivatives are taken. For m > 0, the series consists of a 
primary modulation (m = 1) and its harmonics (m > 1). Thus to 
lowest order (considering only forcing contributions from the 
primary) the total forcing from breaking and nonbreaking 
waves in the fluctuating region of surf zone width is found 
(after evaluating the second spatial derivatives) 

r -- --123ø i(-'l•'•-IF") sz -- e 
p 

1( 3)sinx sintzlXt,2(cos•: sin•: sinx)} ß 1+• z' 6(2n+1) z' z' 2 •-i (37) 

(36a) 

(36b) 

The first and second terms arise from Fxx forcing by breaking 
and nonbreaking waves, respectively. The relnaining three 
terms arise frown Fxy forcing by breaking waves only. The 
components of the forcing are compared later. 

The initial growth rate is found by inserting (37) into the 
first coupling integral and evaluating in the salne manner as in 
the offshore region, except that the limits of integration are 
now given by (17). Taking the real part gives expressions for 
the magnitude, G sz, and phase, Osz, of the initial edge wave 
growth rate in the fluctuating region of surf zone width 

Gs z = 1 3a,• _ 12 7 2 2 (38) f e(t,,'••o 3, - (2n + 1)•t, 2 (Mn + Nn )1/2 

where 

Mtl • 
X 2 

f ( D l CO S •- •-•b - D2 s in •' •-•b ) cp n X t, dX t, 
X• 

Ntl • 
X 2 

I (D2 cos•t, + Dlsin•X--•)cpnXt,dXt, 
X• 

D 1 = 
sin a• Xb 2 sin z 
6(2n+ 1) z 

( 3•)sinz' Xt,2sintzl(COSZ ' sinz') D2= 1+ . 
z' 6(2n+1) z' •-2 

where X 1 = Xt, - 8Xt, and X 2 = Xt, + 8Xt,. 
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Results 

The results are presented in two parts. The first focuses on 
the relative magnitudes of FpqrPn which comprise the second- 
order forcing functions (29) and (37) from the offshore and surf 
zone regions, respectively. The second part compares initial 
growth rate amplitudes and phases in the two regions, (30) and 
(38), and for the total combined forcing. Sensitivity to mode 
number, n, and wave angle, (o•i) o, are examined in each part. 
Model parameters used in the following analysis are 
tanfl-0.01, 7-0.42, 6-0.1, and xb =100 m, chosen as 
reasonable for field situations. For convenience, incident 
wave angles were chosen to be identical at the breakpoint. 
Results are plotted against the nondimensional variable 

35l, = • (39) 
g tan fl 

The range of values plotted, 350 <10, covers the range of 
typical infragravity frequencies commonly observed in nature. 

Forcing Components 

The relative strength of the components of 
F(al,a2,x)cPn(x ) for mode 0 edge waves by the offshore and 

surf zone mechanisms is shown in Figure 3. The magnitude 
and phase for the case of (a 1)o = (ø:2)o = 10ø are plotted as a 
function of nondimensional 35b (the legend defining individual 
forcing components is given in the figure caption). For small 
35b, Fxx dominates the forcing in each region. At higher 35b, 
longshore fluxes become relatively more important. Because 
the forcing decays rapidly as 35b increases (for mode 0), 
considering only Fxx gives a good first-order approximation to 
the overall forcing. The forcing at higher modes, n- 1, 2, and 
3, is shown in Figure 4 for (al) o =(o:2) o =10 ø. Only the 
forcing magnitudes are shown since the phases of Fpq are the 
stone as for mode 0 (Figure 3). The behavior of the forcing is 
similar in each region, with Fxx dominating all modes due to 
the dependence of Fxy (and Fyx) on (2n+l) -1 and Fyy on 
(2n+l) -2. Since Fxx is insensitive to mode number, the 
forcing at higher modes will be nearly the same as for the low 
modes, suggesting that all modes should be about equally 
forced. 

In general, the amplitude of the forcing function in the surf 
zone is an order of magnitude larger than in the offshore 
region. Thus it is expected that this part of the forcing will 
dominate the growth rate. Since the forcing function in the 
surf zone is nearly independent of Zb (to first order), the 
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Figure 3. Contributions to the total edge wave forcing function, Fen , for a mode 0 edge wave, (left) from 
the offshore region and (right) within the surf zone. The components of the forcing arising from Fxx (dashed 
lines), Fxy (dash-dotted lines), Fyy (dotted lines), and the vector sums (solid lines) are plotted as a function of 
35b = rYe2Xb/gtanfl (in the offshore region, Fy x = Fxy so that 2Fxy is plotted, whereas in the surf zone, Fy x 
and Fyy are zero). Results are shown for (al) o =(a2)o =10 ø. Forcing amplitudes (m/s 2) on a log scale are 
shown in the top panels; forcing phase (degrees) on a linear scale is shown in the bottom panels. Results are 
computed for tanfl = 0.01, y = 0.42, 6- 0.1, and x b = 100 m. 
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Figure 4. Forcing components arising from Fxx (dashed lines), Fxy (dash-dotted lines), F (dotted lines), 
and the vector sum, F•Pn (solid lines), for edge wave modes 1-3, with (Crl) o =(or2) o =•o, plotted as a 
function of ZI, = Cre2Xb/gtanfi ß Contributions from the offshore and surf zone regions are shown in the left 
and right panels, respectively. Only the amplitudes are plotted since the component phases are identical to 
mode 0 (Figure 3; the total phase does vary slightly as a function of mode). Results are computed for 
tanfi =0.01, ?'=0.42, 6=0.1, and x b =100 m. 

spectral dependence of the forcing term will be determined by 
the form of the edge wave waveform, having nodes at 
particular Zb. If the integration of the coupling occurs over a 
narrow range of Zb, then the spectral shape of the On will be 
strongly reflected in the growth rate. 

The effect of (oci) o is examined in Figure 5 with 
(Crl) o=(cr2) o=1 ø, 10 ø, and 30 ø . Results for a mode 1 edge 
wave are shown as a representative example. At small angles, 
Fxx dominates the forcing, being an order of magnitude greater 
than the other terms. However, the forcing for low modes 
should be enhanced for steeper angles of incidence because Fxy 
and Fyy have a strong modal and angular dependence, although 
on shallow beaches, incident wave angles are not expected to 
be large owing to refraction effects. 

Growth Rates 

Normalized growth rate magnitudes, G, and phases, 0, for 
the offshore and surf zone regions (equations (30) and (38)) 
and the total (vector sum) are shown in Figure 6 for edge wave 
modes 0-3 with (or 1)o =(cr2)o =10ø. The amplitudes are 
plotted on a log scale and the phases on a linear scale, as a 

function of Zb. As expected, the growth rates within the surf 
zone region are much larger (by a factor of 2-10) than in the 
offshore region. The growth rates are rapid, with a magnitude 
of about 10 -I across most of the range of Zb plotted. Because 
of the choice of normalization, the inverse of G gives the 
number of edge wave periods for the edge wave amplitude to 
grow to the size of the incident waves. Thus, assuming no 
dissipation, resonantly excited edge waves could grow to the 
same amplitude as the incident modulation in as fast as 10 edge 
wave periods (and even faster for lower modes and small Zb). 
The model predicts only initial, undamped growth rates 
(essentially the rate at which energy is transferred from 
incident to edge waves), and any reasonable damping 
mechanism will reduce these rates. The effect of damping is 
discussed in the next section. 

The results for the surf zone forcing mechanism show sharp 
valleys corresponding to nodes (zero crossings) in •Pn. The 
shape of the edge wave profiles is similar to the growth rates 
for the surf zone mechanism. The corresponding valley in the 
offshore growth rate does not occur at the first edge wave node 
(Zb =1.5), nor is there any indication of strong nodal 
structure at higher Zb. This result is due to integrating the 
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Figure 6. Normalized inviscid growth rate (top) magnitude and (bottom) phase for edge wave modes 0-3. 
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total (solid lines), are shown as a function of Zt, =Cre2Xb/gtan• ß The inverse of the growth rate is the 
number of edge wave periods necessary for the edge waves to grow to the size of the incident waves. Results 
are shown for (a 1)o =(a2)o = 10ø, tan•=0.01, ?'=0.42, 6=0.1, and xt, = 100 m. 
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Figure 7. Effect of incident wave angle on inviscid growth rates for a mode 1 edge wave. Results are shown 
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lines), 30 ø (dotted lines), and 45 ø (dash-dotted lines). Format is the same as in Figure 6. 

forcing in the offshore region over a larger length of the edge 
wave profile. In the surf zone, the length over which the 
forcing occurs is very much smaller, determined by the 
incident modulation (•=0.1), and thus nodal points are 
strongly reflected in the growth rates. 

The effect of o• on growth rates is shown in Figure 7 for 
n= 1 with (a I )o: (ø•2)o: 1ø, 10ø, 30ø, and 45 ø. The effect of 
o• is small for the directional range investigated, particularly 
for the offshore region where 2Fxy and Fyy are rr out of phase. 
The angular dependence is more pronounced in the surf zone 
region for Zb >'" 3.0, increasing the growth rate about a factor 
of 2 from 1 ø to 45 ø. Interestingly, in the offshore region, 
increases in wave angle tend to reduce the growth rate (a 
consequence of the rr phase relationships in the longshore 
components of Fpq), whereas the opposite occurs in the surf 
zone where the growth rate becomes larger as wave angle 

increases (owing to increased contributions from Fxy). 

Discussion 

Growth Rates 

The predicted growth rates for the case of phase-locked 
forcing by deterministic wave trains are not unrealistic if we 
expect this mechanism to provide reasonable forcing of 
progressive edge waves under the stochastic forcing 
conditions found in nature [Holman, 1981]. The same type of 
result arose in the study of energy transfer into internal 
gravity waves from surface wave packets. An initial study of 
Watson et al. [1976] showed a very strong forcing for the 
phase-locked case. Olbers and Hefterich [1979] redid the 
problem for a stochastic surface wave field and found the 
strength of the forcing to be several orders of magnitude 
weaker than predicted by Watson et al. This suggests that our 

predicted growth rates are higher than can be expected in 
nature and places an upper bound on edge wave growth. 

We have considered the forcing due to an interacting 
incident wave field consisting of only two shallow water 
waves, yet in natural situations, incident wave fields are 
distinctly not bichromatic but rather consist of a spectrum of 
energy. If we have a continuous directional spectrum in 
nature, some (small) components of the forcing will satisfy 
the resonance condition for a number of different edge waves 
of various frequencies and wavenumbers. 

In the offshore region where we have referenced amplitudes 
to the breakpoint, the spectral problem seems inherently 
linear where the superposition of many wave components 
leads to the possibility of resonant triad interactions 

occurring for any number of different (cyi-cyj, ki-kj) 
incident wave pairs. The forcing of a particular edge wave 
mode is just a linear sum of all possible interactions 
satisfying the edge wave dispersion relation. Bowen and Guza 
[1978] discuss the implications of this resonant restriction 
and show that for narrow-beam incident swells, some 

frequency selection, with a strong modal dependence, may be 
expected. 

In the surf zone, the situation is more complicated because 
amplitudes are functions of local depth (and hence distance for 
monotonic beaches). However, for the bichromatic case, the 
forcing is dominated by F xx arising from the self-self 
interaction of the primary wave. If we consider only this term, 
then the growth rate equation takes the form 

1 c-)a n . -2 rci xb (y, t) e-t•e = (ai)of e c-')t (ai)ogtanfi(2n+l) f •(xb)•n(x)dx 0 

(40) 
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where F(xt, ) is the mean forcing arising from Fxx(•l•l). 
The operand of the coupling integral is simply a function of 
the edge wave waveform with amplitude equal to F. The 
possibility of edge wave forcing arises if the temporal and 
spatial scales of the oscillating breaker line match the edge 
wave dispersion relation. For the spectral case, the breaker 
line is described by a summation of perturbations about a mean 
breakpoint. Edge wave forcing results from a linear 
combination of various incident wave pairs contributing to 
the alongshore perturbation, where the contribution from any 
particular pair (with mnplitudes a la 2) can be shown (Appendix 
B) to be 

Axt, = 4 cos(•l •2 Ho?,tanfl ala 2 - ) (41) 
where H o is the mean breaker height calculated over all 
incident wave spectral components. 

Since zXx b is a function of y and t, the Fourier transform of 
(41) results in a spectral form for the perturbation, now given 
in terms of longshore wavenumber and frequency. This leads 
to the attractive result that time and space dependent 
observations of the width of the surf zone can be related to the 

edge wave forcing by the lYequency-wavenumber spectrum of 
the wave breaking distribution. 

As indicated by the growth rate equations (30) and (38), the 
behavior of the forcing as a function of the various parameters 
turns out to be quite simple. Growth rate contributions from 
the surf zone mechanis•n vary with Xl, in a way which largely 
follows the shape of On. In the offshore region, the influence 
of mode number on actual rates is largely through the variance 
distribution of On in Xb space. That is, the rate of transferring 
energy from the incident field appears to be about the same for 
all modes, where, for higher modes, the energy must be spread 
over a larger cross-shore distance. 

The only known measurements of growth rates for 
progressive edge waves are from the laboratory investigation 
of Bowen and Guza [1978]. Strict comparison with their 
results is difficult since their discussion was limited to 

Zb = 0.25, and furthermore, they have 6= 1.0, thus violating 
our assumption of small-amplitude modulation. Their 
observed growth rate is over an order of magnitude slower than 
predicted by the model. The effect of viscous damping is 
likely to be important in the laboratory case, and since the 
scales of the lab study are much different from those typically 
found in nature, no si•nple comparison is readily made. In 
addition, any reasonable damping mechanism is likely to be 
different in the two forcing regions and may well have 
characteristics which lead to preferential damping of high 
frequencies and low modes [Bowen and Guza, 1978' Holman, 
19811. 

Damped Growth Rates 

Up to this point we have considered only the undamped edge 
wave growth rate. Here we briefly examine the effect of 
frictional damping. If we retain the frictional term in (2) and 
(3), the normalized growth equation (11) takes the form 

(2or e + i;t)--•-- +/•CYea n (a 1)o O'e2 

i 2 rc (a•)oXtanfl(2n+l) FCndx-G (42) 

where G is found from (30) and (38) for the two forcing 
regions. Taking the magnitude of the real part of (42) results 
in a quadratic equation in 3an/3t which has solution of the 
fo rill 

•a n 
•=c, an[-l+ f(an) ] (43) 

where 

2•Cre 2 
c• - •[2 + 4ere 2 

f ( a n ) = •--• e + 1+ ;[2 Ir 2 a n 2 
The case of interest is the positive root, corresponding to 
energy transfer from the incident waves to the edge waves. We 
have already assumed that the frictional dissipation has only a 
negligible effect on the wave solutions and dispersion 
relation; thus ;t 2 <<4ere 2. Integrating (43) and considering 
only edge wave growth give a transcendental form for the 
amplitude 

a n =Coe-Clteq If(an)dr (44) 
where c o is an integration constant and for growth to occur 
f(an) •nust be real and positive. This equation cannot be 
solved analytically; however, we can examine the amplitude 
decay (dissipation) when the forcing is turned off (IGI= 0) and 
the expected amplitude at equilibrium ( 3an/3t = 0 ). 

For the case where the forcing is turned off, (44) becomes 

_l__At i •2 
an _ 4 o' e -e 2 e ISl-0 (45) 

where (an)o is the initial edge wave amplitude at t=0. 
Taking the magnitude of (45), the decay timescale normalized 
by the edge wave period is found 

t__= -2'n[a•l(a•)o] (46) 
It still remains to parameterize the damping. We take a very 
simple form for •, following Longuet-Higgins [1970] 

;t = Caluø•l (47) 
h0 

where h o is the depth at the breakpoint , Cot is a bottom drag 
coefficient of order 10-2-10 -3, and u o is the magnitude of the 
linear orbital velocity of the incident wave of height H o at the 
breakpoint given by 

uø=2[ 2 o (48) 

Using H o = 7Xo tanfi gives 

t -4'n[an/(a•)o](tanfi) TT = 77r3/2 (• Xt,'/2 (49) 
A plot of tit e as a function of Zb for various values of 
tanfi/Cct with an/(an) o =0.5 is shown in Figure 8. The half- 
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Figure 8. Normalized edge wave decay timescales (equation 
(49)) as a function of Zt, = O'e2Xl•/gtan, B , for various values of 
tan[¾C a . The vertical axis is in number of edge wave periods 
for the edge wave amplitude to decay 50% (an/(an) o =0.5) 
after the forcing is turned off. Results are shown for ?' = 0.42. 

life decay scale is moderately insensitive to Zt,. The ratio 
tan/•/C a is a rough indication of the Q (resonance) of the 
system, with higher values corresponding to weakly damped 
conditions with small drag coefficients. Steep beaches tend to 
have smaller dissipation rates than flat beaches, intuitively in 
agreement with conceptual damping mechanisms [Bowen and 
Guza, 1978; Komar, 1979; Holman, 1981]. For resonant 
systems, half-lives can be as high as 10-30 edge wave periods. 

At equilibrium, we can estimate the size of edge wave 
amplitudes relative to incident waves from (42) 

a• = 4[G•l l tan fi );(t,l/2 c-)an =0 (50) r 3/2 

This form can also be obtained from the simple argument that 
f(a,•) in (43) must be real for growth to occur. A plot of 
a,•/(al)o is shown in Figure 9 as a function of Zb for various 
values of tan•/C a and with Isl estimated conservatively 
from Figures 6 and 7 to be about 0.05. Guza and Thornton 
[ 1982] found edge wave rms amplitudes in the run-up of a near 
planar beach as high as 75% of the incident wave rms 
amplitude. Holman and Sallenger [1985] also observed edge 
waves of this magnitude on a barred beach under a wide range 
of conditions. The model suggests amplitude ratios of this 
magnitude for tan•/C a values ranging from 3 to 10. 
Comparison with field results is not strictly quantitative 
because waves in nature are never truly bichromatic, although 
it is noted that Komar [1979] suggested that tan/•/C a ratios 
of this magnitude are reasonable for mean currents on beaches 
often found in nature. 

The damping parameterization used in (47) is only 
applicable to waves in the surf zone. It is not known what the 
damping mechanism is in the offshore region. Herbets et al. 
[1995a] show that the ratio of shoreward to seaward 
propagating free infragravity waves decreases as sea and swell 
energy increases, suggesting that the damping of edge waves 
on the shelf depends on the incident wave energy level, in 
qualitative agreement with the surf zone damping mechanism 
examined. 

Sensitivity to Model Parameters 

The dependence of growth rates on Zb, tan/t, and cre is 
essentially combined into the nondimensional scaling 
parameter ,•b (equation (39)). Thus measured spectra obtained 
in the field can be interpreted in terms of sampling position 
and lowest-order profile characteristics. The effect of varying 
any particular combination of parameters is easily deduced. 
Additionally, because the forcing is dominated by Fxx, incident 
wave angles have little influence on the growth rate, except 
for low modes and large angles of incidence. 

In the model, y = 0.42 is assumed constant, consistent with 
field data [Thornton and Guza, 1982; Sallenger and Holman, 
1985], and enters the growth rate equations (30) and (38) 
linearly. Since all reported values of yare O(1). varying yis 
not expected to significantly influence the final results. Thus 
the formulation of the growth rate (in both the offshore and 
surf zone regions) is dependent on only one free parameter: 
the incident modulation, & Allowing the modulation to get 
much larger than about 0.1 is not accounted for exactly by the 
model, where we have assumed small 8, so that incident wave 
travel times are short compared to timescales associated wi th 
the modulation [Symonds et al., 1982]. 

Since terms in the radiation stress containing A (equation 
(28)) are small compared to other terms, the forcing is 
effective!y independent of incident frequencies. Hence the 
incident frequencies serve only to provide a necessary 
(Gf, kf) interaction which matches the edge wave dispersion 
relation. Products in incident wave velocity potentials, {I)i{I) j 
(equation (23)), have an (XiXj) -1/2 dependence, which 
contains products of incident frequencies o'io' j. However, we 
have removed the dependence on incident frequencies in the 
formulation of S((I)i(I) j) by choosing incident wave 
amplitudes relative to the breakpoint, where products aia j 
have an (XiXj) •/2 dependence. Substituting (27) into (21) 
eliminates dependencies on (J'io'j. 

Still, the resonant response assumed in the model restricts 
incident wave pairs to difference frequencies and wavenumbers 
which satisfy the edge wave dispersion relation. Bowen and 
Guza [1978] discuss these resonant restrictions in terms of 
incident wave angles and frequencies. They show that only a 
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Figure 9 Normalized edge wave equilibrium amplitude 
(equation i50)) as a function of Zb = C•e2Xb/gtanl • for various 
values of tan/J/C a . Edge wave amplitudes have been 
normalized by the incident wave amplitude at the breakpoint. 
Results are shown for 7-0.42 and IGI-0.05. 
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finite number of incident frequency pairs satisfy the resonant 
condition for a narrow beam incident swell. This places a 
restriction on the possible (o.1, o'2) combinations which could 
theoretically excite edge waves. 

Shallow Water Assumption 

In our formulation of the interaction radiation stress, the 

incident wave surface elevation is approximated by the 
shallow water Bessel function solution for progressive gravity 
waves over a sloping bottom. Inside the surf zone this 
formulation seems very reasonable since the water depth is 
always shallow with respect to incident wave wavelengths and 
amplitudes are given as a function of the local depth. Outside 
the surf zone, however, the use of the shallow water solution 
(which gives resonant triad interactions) is only valid for a 
limited distance offshore (determined by the beach slope) and 
depends on the incident wave frequency. In the offshore 
region, (24) gives an x '1/4 dependence on wave amplitude. 
Thus products of incident wave amplitudes decay in this region 
as x '1/2, whereas they should become constant in deep water 
where the wave profile we have assumed is only approximate. 
As there are no resonant triad interactions in deep water (only 
forced waves are generated), the magnitude of the forcing dies 
away quickly as incident waves approach deep water [Okihiro 
et al., 1992]. 

The growth rate equation also includes consideration of On- 
Since On decays exponentially offshore as a function of mode 
number, the offshore integral for low modes is not biased 
significantly by reduced contributions in intermediate water. 
Therefore, when evaluating the model, the upper limit of 
integration can be reduced for low sloping beaches without 
substantially underestimating the growth rate. This 
approximation is good for shallow beaches where edge wave 
length scales are small; for steep beaches the application is 
questionable. The approximation is also more accurate for the 
case of low modes which have a relatively rapid offshore 
decay' for higher modes with slower decay scales, 
contributions are more severely biased. 

Comparison With Foda and Mei [1981] 

Foda and Mei [1981] consider the problem of long waves 
generated by a normally incident swell which has a small 
alongshore variation which is fixed in space but has a slow 
modulation in time. This variation in wave height could be 
thought of as two incident waves of the same frequency 
approaching the beach from equal, but opposite, angles to the 
normal. The modulation is then the beat frequency between 
these waves and the normally incident wave. This is therefore 
a rather particular case of the general problem which we are 
considering. Their discussion was further limited in that the 
dominant (largest) wave is normally incident. However, Foda 
and Mei have carried through a very sophisticated analysis 
which includes results for the case where the long waves grow 
to magnitudes of the same order as the incident modulation. 
They can therefore discuss the processes that eventually limit 
edge wave growth. However, the complexity of the 
calculation rather precludes any simple interpretation of these 
results. 

A further complication is that, for the case of breaking 
waves, Foda and Mei [1981] have used a representation of the 
breaker condition in which the breakpoint is constant and the 
perturbation amplitude (modulation) extends to the shoreline; 

the variation in breaker position due to changing wave 
conditions is ignored. In effect, Foda and Mei assume that T is 
always larger when the incident waves are large. Field 
evidence [Guza and Thornton, 1982; Sallenger and Holman, 
1985] suggests that T is reasonably constant for any particular 
beach and the position of the breaker is the property that 
varies as a function of incident wave height. This is a central 
point in our calculation. 

Foda and Mei [1981] also compute growth rates for the 
interaction which vary over 2 orders of magnitude as a 
function of the parameter 

This parameter arises from a particular scaling which is not the 
natural scaling for the shallow water equations on a sloping 
beach we have considered (equation (39)). As a consequence, 
Foda and Mei have computed values of E2 which are very 
small, ranging from 1 to 3. If we consider a 60s beat, 10s 
incident wave, and slope of 1'100, then E2 =16. As growth 
rates increase very rapidly with E2 in Foda and Mei's results, 
we might expect very large growth rates for values typical of 
open coast beaches. However, precise values cannot be 
compared due to their complex (fourth order) representation of 
the forcing inside the surf zone. 

Conelusions 

A theoretical mechanism for driving resonant edge waves in 
the nearshore is derived from the forced shallow water 

equations. Forcing integrals are separated into an offshore 
region outside the breakpoint and within the region of 
fluctuating surf zone width. Contributions to the surf zone 
region occur from primary self-self interactions for both 
breaking and nonbreaking waves, whereas in the offshore 
region, forcing is from cross interactions of a pair of waves. 
The strength of the forcing in each region is based on 
amplitude modulations which arise from an interacting 
bichromatic wave field. Surf zone forcing is derived from 
momentum fluxes induced by temporal and spatial variations 
in initial breakpoint amplitudes, expressed for the plane beach 
case as three-dimensional modulations in surf zone width (first 
suggested by Symonds et al. [1982] while focusing on the 
two-dimensional problem). The nonlinear forcing is provided 
by the unbalanced gradient in radiation stress, Spq. Following 
Phillips [1977], a form for Spq due to the nonlinear difference 
interaction of two incident waves approaching the beach at an 
angle is derived. 

The model indicates that the forcing arising from the cross- 
shore component of onshore directed momentum flux provides 
the major contribution to the edge wave forcing, particularly 
for small angles of incidence, higher edge wave modes, and 
lower frequencies. Increasing incident wave angle tends to 
reduce the contribution in the offshore region for all modes 
because of the relative phase relationships of the forcing 
components, whereas the growth rate inside the surf zone is 
enhanced tending to favor the breakpoint mechanism in the 
overall growth rate. 

We find that the strength of the surf zone generation 
mechanism is 2-10 times greater than in the offshore region 
for parameter ranges of particular interest. Thus considering 
only the surf zone component may provide a reasonable first- 
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order estimate of the growth rate. The strength of the growth 
rate is inversely proportional to edge wave mode number and 
directly proportional to the incident wave modulation, with a 
linear dependence in each region. Initial inviscid growth rates 
are found to be quite rapid, with edge waves amplitudes 
growing to incident wave mnpntut•es of the ---•-- of •n •.•_•. 
wave periods. 

Including a simple parameterization for bottom frictional 
damping and using inviscid growth rates to describe the 
energy transfer from incident to edge waves allow predictions 
of edge wave equilibrium amplitudes consistent with field 
•neasurements of Guza and Thornton [1982] and Holman and 
Sallenger [1985], who found shoreline mnplitudes as high as 
75% of the incident waves. Edge wave dissipation rates in the 
surf zone are found when the forcing is turned off and suggest 
half-life decay scales of the order of 10-30 edge wave periods 
for tanfi/C d values of about 3-10 (esti•nated from equilibrium 
conditions). Dissipation rates outside the surf zone are not 
estimated since the appropriate damping mechanism in this 
region is not known. 

The extension to spectral forcing is shown to be possible. 
The development in the offshore region can be based on a 
linear sum of all possible co•nbinations of wave triads 
satisfying the edge wave dispersion relation. The same is true 
for the surf zone, where the combination of various incident 

wave pairs contributes to the alongshore perturbation of the 
oscillatory breaker line. The contribution to spectral forcing 
by any particular pair is shown in principal to be due to the 
linear sum of all resonant interactions. 

Appendix A: Expansion of First-Order Coupling 
Integrals 

Edge wave growth rates are given as a function of the 
coupling integral between the wave forcing, F, and the edge 
wave waveform, On 

0 

where (I) 1 and (I) 2 are velocity potentials of the incident waves 
which have mnplitudes a• and a 2 -aa•, respectively. The 
coupling integral can be separated at the breakpoint, x b(y, t), 
into surf zone (first term on right-hand side of (A2)) and 
offshore (second term on right-hand side of (A2)) integrals 
with the forcing defined in each region by F sz and F of f, 
respectively, 

•, • (•+aoo• v,•) 

f FOndx - I Fsz•)ndx q- 
o o 

where the breakpoint has 

I F off CP n dX 
7b (1+?; oos % ) 

(A2) 

been defined by 
xb(y, t)-•b(l+r•coSgte) and the functional dependencies 
have been dropped for brevity. 

The surf zone integral (first term on right-hand side) in (A2) 
can be further separated by the mean breakpoint, Y'b, into a 
nonvarying component from the shoreline to -•b and a 
component arising from modulations in the breakpoint 
position 

(+aco 

f FszrPndx- IFsjCPndx+ IFsjrPn dx 
0 0 

(A3) 

The first integral on the right-hand side of (A3) is zero since 
radiation stress gradients are constant inside the mean 
breakpoint. Thus, after evaluating the second integral in (A3) 

•b (1+• cos •e ) 

f Fsz,Ondx =Q(•b + •b cos •e)-Q(•b) 
0 

(A4) 

where Q(x) is the unspecified result of t•e integration. 
Expanding (A4) in a Taylor's Series about •t, p:•,tluces 

•b (I+'•COS •) 3Q(.•b ) 
I Fsz On dx = •b cos I//e •)-•• 
0 

, +.. (AS) 
2 3x 2 ' 

which can be written in terms of the integrand of (first term on 
right-hand side of (A2)) evaluated at -•t, plus higher order 
harmonics 

7b (1+,• cos • ) 

f Fsz CPndx = •b COS I//eFsz ('•b)On (•b) 
o 

+O(• 2 coS2•e)+... (A6) 
Thus for the first integral on right-hand side of (A2) we need 
only consider the forcing at the •nean breakpoint, F sz(j b), 
which has terms arising from self and cross interactions of •1 
and •2. The •• and •2•2 interactions produce coupling 
terms which contain primary •nodulations (cos •e)of order 8 
and •3 respectively, whereas •2 interactions produce 
additional harmonic reruns (cos2•e) of order •2. Considering 
only first-order, primary modulations (arising from •• 
interactions), the surf zone coupling integral is approximated 
by 

• (l+•co• % ) 

•FszOnd•- •bCOS•eFsz(OlOl , •b)On(•b) (A7) 
() 

As in the surf zone region, the offshore coupling integral 
(second term on right-hand side of (A2)) can be separated at 
Xb, 

• X b • 

• F offOndx - • F offOn • + • FoffOndx (h8) 

The second integral on the right-hand side of (A8) has 
modulations which arise from only the •2 interactions and 
is numerically evaluated in the main text (•• and •2(I) 2 
interactions produce only nonvarying components through 
this integral). The first integral describes the contribution to 
edge wave growth by nonbreaking waves in the fluctuating 
region of the surf zone. Evaluating this integral produces 

I F offOndx -- g(.• b )- g(.• b q- (•b cos lif e ) 

(A9) 
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where R(x) is the unspecified result of the integration. 
Expanding in a Taylor's series about S b and keeping only 
first-order, primary modulations give 

f FofflPndx--• b cos lff eFoff (0101 , -•b )(Pn(.•b ) 
• (l+aoos •,,) 

x b 

(AlO) 

The total coupling integral (A2) can thus be approxi•nated 

IF•n dX- •b cos lff e•n(•b )[Fsz(0101, •b )- Foff(0101 , '•b)] 
o 

+ leor (OlO2, x)O (x)a (All) 

which shows the first-order contributions to edge wave growth 
occur through self-self interactions from both breaking and 
nonbreaking waves within the fluctuating region of surf zone 
width, and through cross interactions of a pair of waves 
seaward of the average breakpoint position. Since the signs 
of F sz and F of f are opposite in the fluctuating region of surf 
zone width, the •1•1 forcing contributions from breaking and 
nonbreaking waves reinforce. 

Appendix B: Breakpoint Forcing in a Wave 
Spectrum 

If the sea surface elevation r I is described by 

1 l - • a i (x)cos I//i (B 1) 
i 

where V/i =lix+kiy-Git+ cpi, then the significant wave 
height is 4 ti•nes the standard deviation of r I, and the mean 
wave height H o is given by 

The variation in wave height, given by the envelope of the 
wave groups, can be defined and is often calculated in terms of 
the low-passed values of the square of the surface elevation, 
where 

"(X,t)--2'•'[( T•2 >] 1/2 (B3) 
where { } is the low-passed value; then from (B1), 

. [1+o42 )] 

the low-pass filter re•noves the high harmonics and sum 
interactions, so that 

ai2 cos( - (B5) 
i j 

and the second term represents the perturbation of the wave 
height about its •nean value. 

The problem can be simplified if the perturbation of the 
wave height about the mean value H o is not too large (it is, of 
course, necessarily less than one). So expanding (B5), 

ai 
i 

(x) 1 i _-- H o + i j • ai 2 (B6) 

There is a potential forcing term for edge waves from each 
of the second terms in the expansion 

cos(%- •j)- cos[(//-//)x+(k i - kj )y-( cr i - cr i )t + cpi - cpj ] 
(B7) 

with resonant forcing possible if 

k i - kj = k e and cr i - crj = cre (BS) 

where (c re, ke) satisfy the edge wave dispersion relation. 
Within the spectra, the interaction between several different 
sets of incident waves can produce the same values of 
(or e, k e), and the net forcing is the sum of all these potential 
inputs. 

Now the wave breaks when H = Th, so the mean breaker 
position h b is given by 

hb -Ho(xo)/7 (B9) 

and for a plane beach, the mean breakpoint is 
xo - H o(xo)/(ytan/•). The perturbation in breaker height 
then leads to a variable breakpoint position in both the 
longshore direction and in time, where 

1 
xb(y, t)-•H(x, t) 

7tanfi 

H o 
T'tanfl 

Z Zaiajcøs(lffi-Iffj) 
•1+ i J 

Z ai 
i 

(BlO) 

which is a linear co•nbination of a large number of 
contributions to the longshore perturbation from pairs of 
incident waves. The contribution from any particular pair is 
then 

Axe, = 4 cos(•l g2 ) Ho7tanfi ala2 - ) (Bll 
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